
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Depto. Sistemas Informáticos y Computación

Máster en Ingenieŕıa del Software, Métodos Formales y Sistemas de

Información

MASTER THESIS

Protocol analysis modulo exclusive-or

theories: a case study in Maude-NPA

CANDIDATE: Antonio González Burgueño

SUPERVISOR: Santiago Escobar Román

May 1, 2014

Departamento de Sistemas Informáticos y Computación

Universitat Politécnica de Valencia

Camino de Vera, s/n

46022 Valencia, Spain

Contents

1 Introduction 3

2 Background on Term Rewriting 9

3 Maude-NPA 13

3.1 Maude-NPA’s Execution Model 13

3.2 Syntax for Protocol Specification 16

3.2.1 Specifying the Protocol Syntax 16

3.2.2 Algebraic Properties . 17

3.2.3 Specifying the Strands . 18

3.3 Protocol Analysis . 19

4 Protocols with XOR 23

4.1 Needham-Schroeder Protocol with XOR algebraic properties (XOR-

NSL) . 23

4.1.1 Symbols . 24

4.1.2 Algebraic Properties . 25

4.1.3 Strand specification . 26

4.1.4 Protocol analysis . 27

4.2 Fixed Needham-Schroeder protocol with XOR algebraic proper-

ties (XOR-NSL-Fix) . 29

4.2.1 Symbols . 29

4.2.2 Algebraic properties . 30

4.2.3 Strand specification . 30

4.2.4 Protocol analysis . 31

4.3 Bull Recursive Authentication Protocol (RA) 32

4.3.1 Symbols . 33

3

4.3.2 Algebraic properties . 34

4.3.3 Strand specification . 34

4.3.4 Protocol analysis . 36

4.4 Bull Recursive Authentication Protocol Fix (RA-Fix Protocol) . 37

4.4.1 Symbols . 38

4.4.2 Algebraic properties . 38

4.4.3 Strand specification . 38

4.4.4 Protocol analysis . 40

4.5 Shoup-Rubin Protocol . 43

4.5.1 Symbols . 44

4.5.2 Algebraic properties . 46

4.5.3 Strand specification . 47

4.5.4 Protocol analysis . 49

4.6 Symmetric Key distribution protocol using Smart Cards (SK3) . 50

4.6.1 Symbols . 52

4.6.2 Algebraic properties . 52

4.6.3 Strand specification . 52

4.6.4 Protocol analysis . 53

5 The CCA series of protocols 55

5.1 CCA-0 Original . 58

5.1.1 Symbols . 60

5.1.2 Algebraic properties . 61

5.1.3 Strand specification . 62

5.1.4 Protocol analysis . 64

5.2 CCA-0 version of Küesters and Truderung 66

5.2.1 Symbols . 66

5.2.2 Algebraic properties . 67

5.2.3 Strand specification . 67

5.2.4 Protocol analysis . 68

5.3 IBM’s first recommendations to avoid the attack 70

5.4 CCA-1A . 70

5.4.1 Symbols . 71

5.4.2 Algebraic properties . 71

5.4.3 Strand specification . 71

5.4.4 Protocol analysis . 71

5.5 CCA-1B . 72

4

5.5.1 Symbols . 72

5.5.2 Algebraic properties . 72

5.5.3 Strand specification . 73

5.5.4 Protocol analysis . 73

5.6 CCA-1B version of Küesters and Truderung 74

5.6.1 Symbols . 74

5.6.2 Algebraic properties . 75

5.6.3 Strand specification . 75

5.6.4 Protocol analysis . 75

5.7 IBM’s second recommendations to avoid the attack 76

5.8 CCA-2B . 79

5.8.1 Symbols . 79

5.8.2 Algebraic properties . 79

5.8.3 Strand specification . 79

5.8.4 Protocol analysis . 80

5.9 CCA-2C . 81

5.9.1 Symbols . 81

5.9.2 Algebraic properties . 81

5.9.3 Strand specification . 81

5.9.4 Protocol analysis . 82

5.10 CCA-2C version of Küesters and Truderung 83

5.10.1 Symbols . 83

5.10.2 Algebraic properties . 83

5.10.3 Strand specification . 83

5.10.4 Protocol analysis . 84

5.11 CCA-2E . 84

5.11.1 Symbols . 85

5.11.2 Algebraic properties . 85

5.11.3 Strand specification . 85

5.11.4 Protocol analysis . 85

6 Conclusions 87

Bibliography 87

Appendix A Never Patterns in CCA-0 Protocol 95

Appendix B Never Patterns for IBM’s recommendations 97

5

6

Abstract

The development of this master thesis aims at verifying various existing secu-

rity protocols using an advanced automated protocol verification tool, namely

the Maude-NPA tool developed by Santiago Escobar (Universitat Politècnica de

València) in collaboration with José Meseguer (University of Illinois at Urbana-

Champaign, USA) and Catherine Meadows (Naval Research Laboratory, Wash-

ington, DC, USA). We focus on protocols using exclusive-or as the only crypto-

graphic properties of symbols, apart of the standard cancellation of encryption

and decryption. The protocols analyzed in this document are borrowed from

the paper “Reducing Protocol Analysis with XOR to the XOR-Free Case in

the Horn Theory Based Approach” by Ralf Küesters and Tomasz Truderung

published in the Journal of Automated Reasoning, volume 46, pages 325-352,

Springer 2011. These protocols are divided into two groups, those that can be

specified in the Alice-Bob notation and those corresponding to an Application

Programming Interface (API). We have proved the same security properties de-

scribed in Küesters and Truderung paper, but we go beyond that paper in the

sense that we have provided protocol specifications that meet all the require-

ments of the original protocols, whereas Küesters and Truderung paper uses

simplified versions of these protocols without exclusive-or properties.

The main problem that we have encountered is to specify API protocols

in Maude-NPA, since this was the first time that this kind of protocols were

specified in the tool. A relevant contribution of this thesis is to confirm that

complex protocols with exclusive-or can be verified in Maude-NPA.

1

Chapter 1

Introduction

The Maude-NPA is a tool and inference system for reasoning about the security

of cryptographic protocols in which the cryptosystems satisfy different equa-

tional properties. The tool handles searches in the unbounded session model,

and thus can be used to provide proofs of security as well as to search for at-

tacks. It is the next generation of the NRL Protocol Analyzer [Meadows 96], a

tool that supported limited equational reasoning and was successfully applied

to the analysis of many different protocols.

The area of formal analysis of cryptographic protocols has been an active one

since the mid 1980s. The idea is to verify protocols that use encryption to guar-

antee secrecy, and that use authentication of data to ensure security, against

an attacker (commonly called the Dolev-Yao attacker [Dolev 83]) who has com-

plete control of the network, and can intercept, alter, and redirect traffic, create

new traffic on his/her own, perform all operations available to legitimate partic-

ipants, and may have access to some subset of the longterm keys of legitimate

principals. Whatever approach is taken, the use of formal methods has had a

long history, not only for providing formal proofs of security, but also for uncov-

ering bugs and security flaws that in some cases had remained unknown long

after the original protocol’s publication.

A number of approaches have been taken to the formal verification of crypto-

graphic protocols. One of the most popular is model checking, in which the inter-

action of the protocol with the attacker is symbolically executed. Indeed, model-

checking of secrecy (and later, authentication) in protocols in the bounded-

session model (where a session is a single execution of a process representing an

honest principal) has been shown to be decidable [Rusinowitch 01], and a num-

3

CHAPTER 1. INTRODUCTION

ber of bounded-session model checkers exist. Moreover, a number of unbounded

model checkers either make use of abstraction to enforce decidability, or al-

low for the possibility of non-termination. The earliest protocol analysis tools,

such as the Interrogator [Millen 87] and the NRL Protocol Analyzer (NPA)

[Meadows 96] while not strictly speaking model checkers, relied on state explo-

ration, and, in the case of NPA, could be used to verify security properties spec-

ified in a temporal logic language. Later, researchers used generic model check-

ers to analyze protocols, such as FDR [Lowe 96] and later Murphi [Mitchell 97].

More recently the focus has been on special-purpose model-checkers developed

specifically for cryptographic protocol analysis, such as Blanchet’s ProVerif

[Proverif 10], the AVISPA tool [Armando 05], and Maude-NPA itself

[Maude-NPA 09].

There are a number of possible approaches to take in the modeling of crypto

algorithms used. In the simplest case, the free algebra model, crypto systems

are assumed to behave like black boxes: an attacker knows nothing about en-

crypted data unless it has the appropriate key. This is the approach taken,

for example, by the above-cited use of Murphi and FDR to analyze crypto-

graphic protocols, and current tools such as SATMC [Armando 04] and TA4SP

[Boichut 04], both used in the AVISPA tool. However, such an approach, al-

though it can work well for protocols based on generic shared key or public

key cryptography, runs into problems with algorithms such as Diffie-Hellman

or algorithms employing exclusive-or, which rely upon various algebraic proper-

ties such as the law of exponentiation of products, associativity-commutativity

and cancellation. Without the ability to specify these properties, one needs to

rely on approximations of the algorithms that may result in formal proofs of

secrecy invalidated by actual attacks that are missed by the analysis (see, e.g.,

[Paulson 98, Ryan 98, Stubblebine 00]). Thus there has been considerable in-

terest in developing algorithms and tools for protocol analysis in the presence of

algebraic theories [Abadi 06, Baudet 09, Bursuc 09, Chevalier 08, Ciobâca 09].

Another way in which tools can differ is in the number of sessions. A session

is defined to be one execution of a protocol role by a single principal. A tool

is said to use the bounded session model if the user must specify the maxi-

mum number of sessions that can be generated in a search. It is said to use

the unbounded session model if no such restrictions are required. Secrecy is

known to be decidable in the free theory together with the bounded session

model [Rusinowitch 01], and undecidable in the free theory together with the

unbounded session model [Durgin 04]. The same distinction between bounded

4

CHAPTER 1. INTRODUCTION

and unbounded sessions is known to hold for a number of different equational

theories of interest, as well as for some authentication-related properties; see

for example [Bursuc 09, Chevalier 08]. Thus, it is no surprise that most tools,

whether or not they offer support for different algebraic theories, either operate

in the bounded session model, or rely on abstractions that may result in reports

of false attacks even when the protocol being analyzed is secure. Maude-NPA

is a model-checker for cryptographic protocol analysis that both allows for the

incorporation of different equational theories and operates in the unbounded

session model without the use of abstraction. This means that the analysis is

exact. That is, (i) if an attack exists using the specified algebraic properties, it

will be found; (ii) no false attacks will be reported; and (iii) if the tool termi-

nates without finding an attack, this provides a formal proof that the protocol

is secure for that attack modulo the specified properties. However, it is always

possible that the tool will not terminate. Maude-NPA is a backwards search

tool, i.e., it searches backwards from a final insecure state to determine whether

or not it is reachable from an initial state. This backwards search is symbolic,

i.e., it does not start with a concrete attack state, but uses instead a symbolic

attack pattern, i.e., a term with logical variables describing a general attack

situation. The backwards search is then performed by backwards narrowing.

Each backwards narrowing step denotes a state transition, such as a princi-

pal sending or receiving a message or the intruder manipulating a message, all

in a backwards sense. Each backwards narrowing step takes a symbolic state

(i.e., a term with logical variables) and returns a previous symbolic state in

the protocol (again a term with logical variables). In performing a backwards

narrowing step, the variables of the input term are appropriately instantiated

in order to apply the concrete state transition, and the new previous state may

contain new variables that are differentiated from any previously used variable

to avoid confusion. To appropriately instantiate the input term, narrowing uses

equational unification. As it is well-known from logic programming and auto-

mated deduction (see, e.g., [5]), unification is the process of solving equations

t = t’. Standard unification solves these equations in a term algebra. Instead,

equational unification (w.r.t. an equational theory E) solves an equation t =

t’ in a free algebra for the equations E, i.e., modulo the equational theory E.

In the Maude-NPA, the equational theory E used depends on the protocol,

and corresponds to the algebraic properties of the cryptographic functions (e.g.

cancellation of encryption and decryption, Diffie-Hellman, or exclusive-or).

In this thesis we focus in protocols with one exclusive-or operator. Exclusive-

5

CHAPTER 1. INTRODUCTION

or (XOR) is a binary operator with typical algebraic properties that has drawn

a lot of interest. For example, XOR is often used in radio frequency identifica-

tion (RFID) systems, which have become popular in recent years. The chosen

exclusive-or operator (for example *)has the following four properties, where

symbol 0 can also be chosen by the protocol user:

x * (y * z) = (x * y) * z : (associativity)

x * y = y * x : (commutativity)

x * 0 = x : (neutral element)

x * x = 0 : (nilpotence)

We work with different XOR protocols (see Section 4), and in order to detect

attacks on XOR-protocols, we need to model not only the actions of the pro-

tocol but also the intruder actions to denote the ability of exploring the above

algebraic properties, in addition to the perfect cryptography assumption.

In this thesis we also work with Application Program Interfaces (see Section

5). For this thesis we work with the IBM 4758 Common Cryptographic Architec-

ture API (CCA-API), where XOR is used extensively. In an attack discovered

by Bond [Bond 01] the self-inverse property of XOR can be exploited, together

with some other coincidences in the API transaction set, to reveal a customer’s

PIN. However, the combinatorial possibilities caused by the associative, commu-

tative and self-inverse properties of XOR pose a significant challenge to formal

analysis. We show in Section 5 how the Maude-NPA tool works with these set

of protocols (the original CCA-0 protocol, and the different variants due to the

recommendations of IBM) .

In the following table we can see a summary of the results of the different

protocols that we use in this thesis comparing our results with the results of

the reference paper. In it we can see first the name of the protocol, then if it is

secure according to the analysis of Küesters and Truderung and in our analysis

in the next column. After that, we show if the tool reached a finite space of

solutions or not, the number of states that the tool obtains and finally the depth

of the search space. We should note that we tested two different versions of some

protocols because we specify the original and a modified version of the protocol,

instead of one only modified version of the original protocol as they did in the

paper of reference because they can not handle the entire exclusive-or theory.

6

CHAPTER 1. INTRODUCTION

Protocol Secure Our
Analysis

Finite
Space

States Depth

XOR-NSL No No Yes 459 7

XOR-NSL-Fix Yes Yes Yes 9 5

RA No No Yes 120 8

RA-Fix Yes Yes Yes 307 26

Shoup-Rubin Yes Yes Yes 365 17

SK3 Yes Yes Yes 3 3

CCA-0 No No Yes 37∗ 6

CCA-0-Küesters No No Yes 2495 6

CCA-1A Yes Yes Yes 21∗ 5

CCA-1B Yes Yes Yes 46∗ 6

CCA-1B-Küesters Yes Yes Yes 1 2

CCA-2B Yes Yes Yes 50∗ 11

CCA-2C Yes Yes No 131∗ 7

CCA-2C-Küesters Yes Yes No 105 4

CCA-2E Yes Yes No 385∗ 7

* This protocol analysis includes Never Patterns

Table 1.1: Experimental results.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

Background on Term

Rewriting

We follow the classical notation and terminology from [TeReSe 03] for term

rewriting and from [Meseguer 92, Meseguer 98] for rewriting logic and order-

sorted notions. We assume an order-sorted signature Σ with a finite poset of

sorts (S,≤) and a finite number of function symbols. We assume an S-sorted

family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.

TΣ(X)s denotes the set of terms of sort s, and TΣ,s the set of ground terms of

sort s. We write TΣ(X) and TΣ for the corresponding term algebras. We write

Var(t) for the set of variables present in a term t. The set of positions of a term

t is written Pos(t), and the set of non-variable positions PosΣ(t). The subterm

of t at position p is t|p, and t[u]p is the result of replacing t|p by u in t.

A substitution σ is a sort-preserving mapping from a finite subset of X to

TΣ(X). The identity substitution is id. Substitutions are homomorphically

extended to TΣ(X). Application of substitution σ to term t is denoted by tσ.

The restriction of σ to a set of variables V is σ|V . The composition of two

substitutions is X(σ ◦ θ) = (Xθ)σ for X ∈ X .

A Σ-equation is an unoriented pair t = t′, where t ∈ TΣ(X)s, t
′ ∈ TΣ(X)s′ ,

and s and s′ are sorts in the same connected component of the poset (S,≤).

Given a set E of Σ-equations, order-sorted equational logic induces a congruence

relation =E on terms t, t′ ∈ TΣ(X); see [Meseguer 98]. Throughout this paper

we assume that TΣ,s 6= ∅ for every sort s. We denote the E-equivalence class of

a term t ∈ TΣ(X) as [t]E and the E-equivalence classes of all terms TΣ(X) and

9

CHAPTER 2. BACKGROUND ON TERM REWRITING

TΣ(X)s as TΣ/E(X) and TΣ/E(X)s for a sort s, respectively.

For a set E of Σ-equations, an E-unifier for a Σ-equation t = t′ is a sub-

stitution σ s.t. tσ =E t′σ. A complete set of E-unifiers of an equation t = t′

is written CSUE(t = t′). We say CSUE(t = t′) is finitary if it contains a finite

number of E-unifiers.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X)s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple

R = (Σ, E,R) with Σ an order-sorted signature, E a set of Σ-equations, and

R a set of rewrite rules. A topmost rewrite theory (Σ, E,R) is a rewrite theory

s.t. for each l → r ∈ R, l, r ∈ TΣ(X)State for a top sort State, r 6∈ X , and no

operator in Σ has State as an argument sort.

The rewriting relation →R on TΣ(X) is t
p→R t′ (or →R) if p ∈ PosΣ(t),

l→ r ∈ R, t|p = lσ, and t′ = t[rσ]p for some σ. The relation→R/E on TΣ(X) is

=E ;→R; =E , i.e., t→R/E s iff ∃u1, u2 ∈ TΣ(X) s.t. t =E u1 →R u2 =E s. Note

that →R/E on TΣ(X) induces a relation →R/E on TΣ/E(X) by [t]E →R/E [t′]E

iff t→R/E t′.

When R = (Σ, E,R) is a topmost rewrite theory, we can safely restrict

ourselves to the rewriting relation→R,E on TΣ(X), where the rewriting relation

→R,E on TΣ(X) is t
p→R,E t′ (or →R,E) if p ∈ PosΣ(t), l → r ∈ R, t|p =E lσ,

and t′ = t[rσ]p for some σ. Note that →R,E on TΣ(X) induces a relation →R,E

on TΣ/E(X) by [t]E →R,E [t′]E iff ∃w ∈ TΣ(X) s.t. t→R,E w and w =E t′.

The narrowing relation R on TΣ(X) is t
p
 σ,R t′ (or σ,R, R) if p ∈

PosΣ(t), l → r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that

E has a finitary and complete unification algorithm, the narrowing relation

 R,E on TΣ(X) is t
p
 σ,R,E t′ (or σ,R,E , R,E) if p ∈ PosΣ(t), l → r ∈ R,

σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p). In this thesis we consider only equational

theories E = E′]Ax such that the oriented equations E′ are confluent, coherent,

and terminating modulo axioms Ax such as commutativity (C), associativity-

commutativity (AC), or associativity-commutativity plus identity (ACU) of

some function symbols. We also require axioms Ax to be regular, i.e., for each

equation l = r ∈ Ax, Var(l) = Var(r). Note that axioms such as commu-

tativity (C), associativity-commutativity (AC), or associativity-commutativity

plus identity (ACU) are regular. The Maude-NPA has then both dedicated

and generic algorithms for solving unification problems in such theories E′]Ax
under appropriate conditions [Escobar 12].

The use of topmost rewrite theories provides several advantages; see [Thati 07]:

10

(i) as pointed out above the relation →R,E achieves the same effect as the rela-

tion→R/E , and (ii) we obtain a completeness result between narrowing (R,E)

and rewriting (→R/E), in the sense that a reachability problem has a solution

iff narrowing can find an instance of it.

11

CHAPTER 2. BACKGROUND ON TERM REWRITING

12

Chapter 3

Maude-NPA

In this Chapter we briefly present the Maude-NPA cryptographic analyzer tool.

In Chapter 3.1 we present the Maude-NPA’s execution model. After that, in

Chapter 3.2, we show the syntax for protocol specifications in Maude-NPA’s. In

Chapter 3.3 we show how to specify the protocol syntax. Next, in Chapter 3.4

we show how to specify the algebraic properties of the protocol. Also, in Chapter

3.5 we show how to specify the protocol strands. And finally, in Chapter 3.6 we

show how is performed a protocol analysis.

3.1 Maude-NPA’s Execution Model

Given a protocol P, a state in the protocol execution is an EP -equivalence class

[t]EP with t a term of sort State, [t]EP ∈ TΣP/EP (X)State, where ΣP is the sig-

nature defining the sorts and function symbols for the cryptographic functions

and for all the state constructor symbols, and EP is a set of equations specifying

the algebraic properties of the cryptographic functions and the state construc-

tors. A protocol P is specified with a notation derived from strand spaces. In a

strand, a local execution of a protocol by a principal is indicated by a sequence of

messages [msg−1 , msg
+
2 , msg

−
3 , . . . , msg

−
k−1, msg

+
k] where each msgi is a term

of sort Msg (i.e., msgi ∈ TΣP (X)Msg). Strand items representing input messages

are assigned a negative sign, and strand items representing output messages are

assigned a positive sign. We write m± to denote m+ or m−, indistinctively. We

often write +(m) and −(m) instead of m+ and m−, respectively. For each pos-

itive message msgi in a sequence of messages [msg±1 , msg
±
2 , msg

±
3 , . . . , msg

+
i ,

13

CHAPTER 3. MAUDE-NPA

. . . , msg±k−1, msg
±
k] the non-fresh variables (see below) occurring in an output

messagemsg+
i must appear in previous messagesmsg1,msg2,msg3, . . . ,msgi−1.

In Maude-NPA [Escobar 06, Escobar 09c], strands evolve over time and thus

we use the symbol | to divide past and future in a strand, i.e., [nil,msg±1 ,

. . . ,msg±j−1 | msg
±
j ,msg

±
j+1, . . . ,msg

±
k , nil], where msg±1 , . . . ,msg

±
j−1 are the

past messages, and msg±j ,msg
±
j+1, . . . ,msg

±
k are the future messages (msg±j is

the immediate future message). We often remove the nils for clarity, except

when there is nothing else between the vertical bar and the beginning or end of

a strand. We write P for the set of strands in a protocol, including the strands

that describe the intruder’s behavior.

Maude-NPA uses a special sort Msg of messages that allows the protocol

specifier to describe other sorts as subsorts of the top sort Msg. The speci-

fier can make use of a special sort Fresh in the protocol-specific signature Σ

for representing fresh unguessable values, e.g., nonces. We make explicit the

Fresh variables r1, . . . , rk (k ≥ 0) generated by a strand by writing

:: r1, . . . , rk :: [msg±1 , . . . ,msg±n], where r1, . . . , rk appear somewhere in

msg±1 , . . . ,msg±n . Fresh variables generated by a strand are unique to that strand.

To illustrate this we use the well-known Needham-Schroeder-Lowe (NSL)

protocol [Lowe 96]. We reproduce the NSL protocol in the following.

1. A→ B : {NA, A}pk(B)

2. B → A : {NA, NB , B}pk(A)

3. A→ B : {NB}pk(B)

where {M}pk(A) means message M encrypted using the public key of principal

with name A, NA and NB are nonces generated by the respective principals,

and we use the comma as message concatenation.

The specification of the strands of the participants is as follows:

:: r :: [(pk(B,n(A, r);A))
+
, (pk(A,n(A, r);NB;B))

−
, (pk(B,NB))

+
]

:: r’ :: [(pk(B,NA;A))
−
, (pk(A,NA;n(B, r′);B))

+
, (pk(B,n(B, r′)))

−
]

A state is a set of Maude-NPA strands unioned together by an associative

and commutativity union operator & with identity operator ∅, along with an

additional term describing the intruder knowledge at that point. The intruder

knowledge is represented as a set of facts unioned together with an associative

and commutativity union operator _,_ with identity operator ∅. There are two

14

3.1. MAUDE-NPA’S EXECUTION MODEL

kinds of intruder facts: positive knowledge facts (the intruder knows message

m, i.e., m∈I), and negative knowledge facts (the intruder does not yet know m

but will know it in a future state, denoted by m/∈I).

When new strands are not introduced into the state, the rewrite rules RP

obtained from the protocol strands P are as follows1, where L,L′ are variables

of the sort for lists of input and output messages (+m,−m), IK is a variable of

the sort for sets of intruder facts (m∈I,m/∈I), SS is a variable of the sort for

sets of strands, and M is a variable of sort Msg:

SS & [L | M−, L′] & (M∈I, IK) → SS & [L,M− | L′] & (M∈I, IK) (3.1)

SS & [L | M+, L′] & IK → SS & [L,M+ | L′] & IK (3.2)

SS & [L | M+, L′] & (M/∈I, IK) → SS & [L,M+ | L′] & (M∈I, IK) (3.3)

In a forward execution of the protocol strands, Rule (3.1) synchronizes an

input message with a message already in the channel (i.e., learned by the in-

truder), Rule (3.2) accepts output messages but the intruder’s knowledge is not

increased, and Rule (3.3) accepts output messages and the intruder’s knowledge

is positively increased. Note that Rule (3.3) makes explicit when the intruder

learned a message M , which is recorded in the previous state by the negative

fact M/∈I. A fact M/∈I can be paraphrased as: “the intruder does not yet know

M , but will learn it in the future”.

New strands are added to the state by explicit introduction through dedi-

cated rewrite rules (one for each honest or intruder strand). It is also the case

that when we are performing a backwards search, only the strands that we are

searching for are listed explicitly, and extra strands necessary to reach an initial

state are dynamically added. Thus, when we want to introduce new strands

into the explicit description of the state, we need to describe additional rules

for doing that, as follows:

for each [l1, u+, l2] ∈ P : SS & [l1 | u+, l2] & (u/∈I, IK) → SS &(u∈I, IK)

(3.4)

where u denotes a message, l1, l2 denote lists of input and output messages

(+m,−m), IK denotes a variable of the sort for sets of intruder facts (m∈I,m/∈I),

1To simplify the exposition we omit the fresh variables at the beginning of each strand in
a rewrite rule.

15

CHAPTER 3. MAUDE-NPA

and SS denotes a variable of the sort for sets of strands. For example, intruder

concatenation of two learned messages is described as follows:

SS & [M−1 ,M−2 | (M1;M2)
+] & ((M1;M2)/∈I, IK) → SS & ((M1;M2)∈I, IK)

In summary, for a protocol P, the set of rewrite rules obtained from the protocol

strands that are used for backwards narrowing reachability analysis modulo the

equational properties EP is RP = {(3.1), (3.2), (3.3)} ∪ (3.4).

3.2 Syntax for Protocol Specification

In this Chapter, we briefly describe how to specify a protocol and all its relevant

items in the current version of the Maude-NPA. For further information we refer

the reader to [Escobar 09b]. Note that, since we are using Maude also as the

specification language, each declaration has to be ended by a space and a period.

3.2.1 Specifying the Protocol Syntax

We begin by specifying sorts. In general, sorts are used to specify different types

of data, that are used for different purposes. The Maude-NPA tool always as-

sumes that the sort Msg is the top sort, but it allows user-defined subsorts of Msg

that can be specified by the user for a more accurate protocol specification and

analysis. To illustrate the definition of sorts, we use the Needham-Schroeder-

Lowe (NSL) [Lowe 96]. For this protocol we need to define sorts to distinguish

names, nonces and encrypted data. This is specified as follows:

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg .

subsort Name < Public .

We can now specify the different operators needed in NSL. A nonce gener-

ated by principal A is denoted by n(A, r), where r is a unique variable of sort

Fresh. Concatenation of two messages, e.g., NA and NB , is denoted by the

operator ; , e.g., n(A, r);n(B, r′). Encryption of a message M with the public

key KA of principal A is denoted by pk(A,M), e.g., {NB}pk(B)
is denoted by

pk(B,n(B, r′)). Encryption with a secret key is denoted by sk(A,M). We begin

with the public/private encryption operators.

16

3.2. SYNTAX FOR PROTOCOL SPECIFICATION

op pk : Name Msg -> Enc .

op sk : Name Msg -> Enc .

Next we specify some principal names. For NSL, we have three constants

of sort Name, a (for Alice), b (for Bob) and i (for the Intruder). We need two

more operators, one for nonces and one for concatenation. The nonce operator

is specified as follows.

op n : Name Fresh -> Nonce .

Note that the nonce operator has an argument of sort Fresh to ensure

uniqueness. The argument of type Name is not strictly necessary, but it pro-

vides a convenient way of identifying which nonces are generated by which

principal. This makes searches more efficient, since it allows us to keep track of

the originator of a nonce throughout a search. Finally, we come to the message

concatenation operator. In Maude-NPA, we specify concatenation via an infix

operator ; defined as follows:

op _ ; _ : Msg Msg -> Msg [gather (e E)] .

Note that the gathering pattern of an operator [Maude 09] restricts the

precedences of terms that are allowed as arguments. We give a (non-empty)

sequence of as many E, e, or & values as the number of arguments in the oper-

ator, that is, one of these values for each argument position:

− E indicates that the argument must have a precedence value lower or equal

than the precedence value of the operator,

− e indicates that the argument must have a precedence value strictly lower

than the precedence value of the operatorand

− & indicates that the operator allows any precedence value for the corre-

sponding argument. In fact, the precedence values work because of their

combination with the gathering patterns.

3.2.2 Algebraic Properties

Next, we specify the algebraic properties of the symbols defined above for the

NSL protocol. There are three types of algebraic properties in Maude-NPA:

(i) equational axioms, such as commutativity, or associativity-commutativity,

17

CHAPTER 3. MAUDE-NPA

called axiomsand (ii) equational rules, called variant equations, and (iii) equa-

tional rules for dedicated unification algorithms, called dedicated equations .

Variant and dedicated equations are specified in the PROTOCOL-EXAMPLE-

ALGEBRAIC module, whereas axioms are specified within the operator dec-

larations in the PROTOCOL-EXAMPLE-SYMBOLS module, as illustrated in

what follows. Note that combinations of all three different types of algebraic

properties will be available in the future but in the current version only axioms

and variant equations can be combined.

An equation is oriented into a rewrite rule in which the lefthand side of

the equation is reduced to the righthand side. In NSL, we use two equations

specifying the relationship between public and private key encryption, as follows:

var X : Msg . var A : Name .

eq pk(A,sk(A,X)) = X [variant] .

eq sk(A,pk(A,X)) = X [variant] .

Note that there are restrictions on the equations that can be included here,

since the narrowing-based unification algorithm provided by the tool for those

equations must be finitary, see [Escobar 09b]. For instance, the algebraic prop-

erties of exclusive-or symbol are specified as follows:

eq X * X * Y = Y [variant] .

eq X * X = null [variant] .

eq X * null = X [variant] .

Note that the redundant equational property X * X * Y = Y is necessary

in Maude-NPA for coherence purposes; see [Escobar 09a].

3.2.3 Specifying the Strands

As explained in previous sections, the protocol itself and the intruder capabilities

are both specified using strands. We use the keyword STRANDS-PROTOCOL for

storing the principal strands. For example, the strands associated to the NSL

protocol are specified as follows:

eq STRANDS-PROTOCOL =

:: r ::

[nil | +(pk(B,n(A,r) ; A)),

-(pk(A,n(A,r) ; NB ; B)),

18

3.3. PROTOCOL ANALYSIS

+(pk(B,NB)), nil]

&

:: r ::

[nil | -(pk(B,NA ; A)),

+(pk(A,NA ; n(B,r) ; B)),

-(pk(B,n(B,r))), nil] .

[nonexec] .

The next thing to specify is the actions of the intruder, or Dolev-Yao rules

[Dolev 83]. These specify the operations an intruder can perform. Each such

action can be specified by an intruder strand consisting of a sequence of negative

nodes, followed by a single positive node. If the intruder can (nondeterminis-

tically) find more than one term as a result of performing one operation (as in

deconcatenation), we specify each of these outcomes by separate strands. Every

operation that can be performed by the intruderand every term that is initially

known by the intruder, should have a corresponding intruder strand. For each

operation used in the protocol we should consider whether or not the intruder

can perform itand specify a corresponding intruder strand that describes the

conditions under which the intruder can perform it. For the NSL protocol, we

have four operations: encryption with a public key (pk), decryption with a pri-

vate key (sk), concatenation (;) and deconcatenation. We use the keyword

STRANDS-DOLEVYAO for storing the intruder strands:

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] &

:: nil :: [nil | -(X ; Y), +(X), nil] &

:: nil :: [nil | -(X ; Y), +(Y), nil] &

:: nil :: [nil | -(X), +(sk(i,X)), nil] &

:: nil :: [nil | -(X), +(pk(Ke,X)), nil]

[nonexec] .

3.3 Protocol Analysis

Next, we describe how to analyze a protocol in practice. First, we explain how

a protocol state looks like and how an attack state is specified in the protocol.

Then, we explain how the protocol analysis is performed.

In Maude-NPA, each state associated to the protocol execution (i.e., a back-

wards search) is represented by a term with five different components separated

19

CHAPTER 3. MAUDE-NPA

by the symbol || in the following order: (1) the set of current strands, (2) the

current intruder knowledge, (3) the sequence of messages encountered so far in

the backwards execution, (4) some auxiliary data and (5) the never pattern, a

technique to reduce the search space, associated to that state, i.e., a term of the

following form.

Strands || Intruder Knowledge || Message Sequence || Auxiliary Data || Never Pattern.

The first component, the set of current strands, indicates in particular how ad-

vanced each strand is in the execution process (by the placement of the bar).

The second component contains messages that the intruder already knows (we

use symbol inI for the notation m∈ I)) and messages that the intruder cur-

rently doesnt know (we use symbol inI for the notation m/∈ I)) but will learn

in the future. The third and fourth components are irrelevant for the purposes

of this work, see [Escobar 09b]. The fifth component is used to specify negative

conditions on terms or strands. Never patterns can also be used to cut down

the search space (see [Escobar 09c] for more details).

An initial state is the final result of the backwards reachability process and

is described as follows:

1. in an initial state, all strands have the bar at the beginning, i.e., all strands

are of the form :: r1, .., rj :: [nil | m±1 , ..m
±
k];

2. in an initial state, all the intruder knowledge is negative, i.e., all the items

in the intruder knowledge are of the form m/∈ I.

From an initial state, no further backwards reachability steps are possible.

Attack states describe not just single concrete attacks, but attack patterns (or

if you prefer attack situations), which are specified symbolically as terms (with

variables) whose instances are the final attack states we are looking for. Given

an attack pattern, Maude-NPA tries to either find an instance of the attack or

prove that no instance of such attack pattern is possible. We can specify more

than one attack state. Thus, we designate each attack state with a natural

number.

When specifying an attack state, the user should specify only the first two

components of the attack state: (i) a set of strands expected to appear in

the attack and (ii) some positive intruder knowledge. The message sequence,

auxiliary data components and never pattern should have just the empty symbol

20

3.3. PROTOCOL ANALYSIS

nil. Note that the attack state is indeed a term with variables but the user does

not have to provide the variables denoting the remaining strands, the remaining

intruder knowledge and the two variables for the two last state components.

These variables are symbolically inserted by the tool.

For example, to prove that the NSL protocol fixes the bug found in the

Needham-Schroeder Public Key protocol (NSPK), i.e., the intruder cannot learn

the nonce generated by Bob, we should specify the following attack state:

eq ATTACK-STATE(0) =

:: r ::

[nil, -(pk(b,a ; NA)),

+(pk(a,NA ; n(b,r) ; b)),

-(pk(b,n(b,r))) | nil]

|| n(b,r) inI

|| nil

|| nil

|| nil .

[nonexec] .

And the search space associated to this protocol is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 7 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 0 Solutions>> 0

which cannot reach an initial state and has a finite search space, proving it

secure.

Maude-NPA also allows verification of authentication properties by using

never patterns, i.e., the reachability analysis succeeds when none of the states

in the reachability sequence is an instance of the never pattern. Never patterns

can also be used to cut down the search space. Never patterns can share variables

21

CHAPTER 3. MAUDE-NPA

with the attack pattern in order to have more specific patterns and the vertical

bar is not included in strands of never patterns, since all the combinations

of the vertical bar are taken into account. For instance, we can specify the

following authentication attack pattern for NSL by including Bob’s strand and

adding never patterns for Alice’s strand (note that we have to specify two never

patterns because states may contain always partial strands):

eq ATTACK-STATE(1)

= :: r ::

[nil, -(pk(b,a ; N)),

+(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) | nil]

|| empty

|| nil

|| nil

|| never *** for authentication

(:: r’ ::

[nil, +(pk(b,a ; N)),

-(pk(a, N ; n(b,r))) | +(pk(b,n(b,r))), nil]

& S:StrandSet

|| K:IntruderKnowledge)

[nonexec] .

22

Chapter 4

Protocols with XOR

In this section we describe different protocols in which the main property that

we use is the exclusive-or. To describe these protocols we use the textbook

Alice-and-Bob notation. This notation is a way of expressing a protocol of cor-

respondence between entities of a dynamic system, such as a computer network.

In the context of a formal model, it allows reasoning about the properties of

such a system.

The standard notation consists of a set of principals (traditionally named

Alice, Bob, Charlie, and so on) who wish to communicate. They may have

access to a server S, shared keys K, timestamps T, and can generate nonces N for

authentication purposes.

A simple example might be the following: A → B : {X1}KAB
. This states

that Alice intends a message for Bob consisting of a plaintext X1 encrypted

under shared key KAB . Another example might be the following: B → A :

{NB}PKA
. This states that Bob intends a message for Alice consisting of a

nonce encrypted using the public key of Alice.

4.1 Needham-Schroeder Protocol with XOR al-

gebraic properties (XOR-NSL)

This protocol is a variant of the well-known Needham-Schroeder-Lowe (NSL)

protocol that involves the exclusive-or (XOR) algebraic property, as shown in

[Chevalier 05]. We reproduce the XOR-NSL protocol below, using the textbook

Alice-and-Bob notation.

23

CHAPTER 4. PROTOCOLS WITH XOR

1. A → B : {NA,}pk(B)

2. B → A : {NB ,NA* B}pk(A)

3. A → B : {NB}pk(B)

where A, B denote principal names, NA and NB denote nonces generated by

participants, {M}K denotes encryption of message M using key K and * is the

exclusive-or operator. This protocol is insecure; an attack similar to the one

of the standard Needham-Schroeder Public Key Protocol (NSPK) was found in

[Chevalier 05] exploiting in this case the algebraic properties of the XOR .

The informal description of this attack, is as follows:

1. I(A) → B : {NB ,I}pub(skI(A))

2. B → I(A) : {NA,NB * I(A)}pub(skI)

3. I(A) → B : {NB}pub(skB)

where A,B are principal names, I is the intruder’s name, I(A) is when the

intruder spoofs Alice’s identity, NA, NB are nonces generated by A and Band

skI is the public key of I. As we can see in this description, the intruder spoofs

Alice’s name. Bob thinks that he was talking to Alice and it doesn’t, it was

talking to the intruder.

4.1.1 Symbols

In the following we show how to specify the sorts and symbols for this protocol

in the Maude-NPA’s syntax. More specifically, we need sorts to denote names

and nonces. This is specified as follows:

sorts Name Nonce Null NNSet .

subsort Name Nonce < NNSet < Msg .

subsort Name Null < Public .

We can now specify the different operators needed in XOR-NSL. A nonce gen-

erated by principal A is denoted by n(A, r), where r is a unique variable of

sort Fresh. Concatenation of two messages, e.g., NA and NB , is denoted by

the operator ;, e.g., n(A, r) ; n(B, r′). Encryption of a message M with the

public key of principal A is denoted by pk(A,M), e.g., NBpk(B) is denoted by

24

4.1. NEEDHAM-SCHROEDER PROTOCOL WITH XOR
ALGEBRAIC PROPERTIES (XOR-NSL)

pk(B,n(B, r′)). Encryption with a secret key is denoted by sk(A,M). The

specification of these operators in the Maude-NPA’s syntax is as follows:

op pk : Name Msg -> Msg [frozen].

op sk : Name Msg -> Msg [frozen].

Next, we specify some principal names. For XOR-NSL, we have three constants

of sort Name, a (for Alice), b (for Bob) and i (for the Intruder). We need three

more operators: one for nonces, one for concatenation and one for the XOR.

The nonce operator is specified as follows:

op n : Name Fresh -> Nonce [frozen].

Note that the nonce operator has an argument of sort Fresh to ensure unique-

ness. The argument of type Name is not strictly necessary, but it provides a

convenient way of identifying which nonces are generated by which principal.

This makes searches more efficient, since it allows us to keep track of the origina-

tor of a nonce throughout a search. Finally, message concatenation is specified

in Maude-NPA via the infix operator (;), which is defined as follows:

op _ ; _ : Msg Msg -> Msg [gather (e E) frozen].

Finally we define the characteristics of the XOR operator which is defined to

be used with NNSet type variables. Also we indicate that this operator has the

associative and commutative properties. This operator is specified as follows:

op _ * _ : NNSet NNSet -> NNSet [assoc comm frozen] .

4.1.2 Algebraic Properties

In this section we specify the algebraic properties of the symbols defined above

for the XOR-NSL protocol using equations. In XOR-NSL, we use two equations

specifying the relationship between public and private key encryption, as follows:

var X : Msg . var A : Name .

eq pk(A,sk(A,X)) = X [variant] .

eq sk(A,pk(A,X)) = X [variant] .

The properties of the XOR operator are denoted by the following equations:

25

CHAPTER 4. PROTOCOLS WITH XOR

eq X * X * Y = Y [variant] .

eq X * X = null [variant] .

eq X * null = X [variant] .

where X and Y are variables of sort NNSet. Note that the redundant equational

property X * X * Y = Y is necessary in Maude-NPA for coherence purposes;

see [Escobar 09].

4.1.3 Strand specification

In this section we describe the strands denoting the actions of the protocol’s

honest principals and the intruder capabilities. The strands of this protocol are

specified as follows:

eq STRANDS-PROTOCOL

= :: r :: *** Alice ***

[nil | +(pk(B, n(A,r) ; A)),

-(pk(A, NB ; n(A,r) * B)),

+(pk(B, NB)), nil]

&

:: r’ :: *** Bob ***

[nil | +(pk(B, NA ; A)),

-(pk(A, n(B,r’) ; NA * B)),

+(pk(B, n(B,r’))), nil]

where A and B are variables denoting names and NA and NB are variables

denoting nonces of A and B respectively.

The intruder capabilities are specified by the following strands:

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] &

:: nil :: [nil | -(X ; Y), +(X), nil] &

:: nil :: [nil | -(X ; Y), +(Y), nil] &

:: nil :: [nil | -(XN), -(YN), +(XN * YN), nil] &

:: nil :: [nil | -(X), +(sk(i,X)), nil] &

:: nil :: [nil | -(X), +(pk(A,X)), nil] &

:: r :: [nil | +(n(i,r)), nil] &

:: nil :: [nil | +(null), nil] &

26

4.1. NEEDHAM-SCHROEDER PROTOCOL WITH XOR
ALGEBRAIC PROPERTIES (XOR-NSL)

:: nil :: [nil | +(A), nil]

where variables X and Y denote messages, variable A denotes a sort name of

the participant, variables XN and Y N are of sort NNSet. The first strand

denote concatenation of two messages, whereas the second and third strands

denote the ability of deconcatenation. The fourth strand allows the intruder to

perform the XOR. The fifth, sixth and seventh strands denote the ability of the

intruder to perform private encryption and public encryption and to generate

his own nonce, respectively. Finally, the two last strands allow the intruder to

generate the XOR null element and any name, respectively.

4.1.4 Protocol analysis

This protocol is insecure as it shown in [Chevalier 05] since it is subject to

an attack similar to the one of the original NSPK protocol that exploits the

algebraic properties of the XOR.

This attack is found in Maude-NPA by searching backwards from the attack

pattern below:

eq ATTACK-STATE(0)

= :: r’ :: *** Bob ***

[nil, +(pk(b, NA ; a)),

-(pk(a, n(b,r’) ; NA * b)),

+(pk(b, n(b,r’))) | nil]

|| n(b,r’) inI

|| nil

|| nil

|| nil

[nonexec] .

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 20 Solutions>> 0

27

CHAPTER 4. PROTOCOLS WITH XOR

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 48 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 72 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 93 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 110 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 116 Solutions>> 1

For this attack pattern Maude-NPA finds an initial state. The sequence of

exchanged messages of the attack is as follows:

generatedByIntruder(a),

generatedByIntruder(pk(b, (b * i) ; a)),

-(pk(b, (b * i) ; a)),

+(pk(a, n(b, #0:Fresh) ; i)),

-(pk(a, n(b, #0:Fresh) ; i)),

+(pk(i, n(a, #1:Fresh) ; a * n(b, #0:Fresh))),

-(pk(i, n(a, #1:Fresh) ; a * n(b, #0:Fresh))),

+(n(a, #1:Fresh) ; a * n(b, #0:Fresh)),

-(n(a, #1:Fresh) ; a * n(b, #0:Fresh)),

+(a * n(b, #0:Fresh)),

-(a),

-(a * n(b, #0:Fresh)),

+(n(b, #0:Fresh)),

-(n(b, #0:Fresh)),

+(pk(b, n(b, #0:Fresh))),

-(pk(b, n(b, #0:Fresh)))

where generatedByIntruder is produced by the Maude-NPA’s optimization

of the Super Lazy intruder (see [Escobar 14] for details), which means it is a

28

4.2. FIXED NEEDHAM-SCHROEDER PROTOCOL WITH XOR
ALGEBRAIC PROPERTIES (XOR-NSL-FIX)

message that the intruder can trivially learn,i.e., it is not necessary to find out

how it is generated. In this case, this happens with the name of one of the

participants. After that, the intruder is able to use it with his own name and

the other participant name to make a public encryption and use it in the attack.

4.2 Fixed Needham-Schroeder protocol with XOR

algebraic properties (XOR-NSL-Fix)

Since the Needham-Schroeder Protocol with XOR algebraic properties (XOR-

NSL protocol) of Section 5 has an attack, a fixed version of the protocol (XOR-

NSL-Fix) is proposed in [Küesters 11] in which the message {NB , NA * B}pk(A)

is replaced by {NB ,h(NA, NB) * B}pk(A), using a hash function h(·).
The informal description of the fixed version of the protocol, is as follows:

1. A → B : {NA,A}pk(B)

2. B → A : {NB , h(NA, NB) * B}pk(A)

3. A → B : {NB}pk(B)

where A,B denote principal names, NA and NB denote nonces generated by

participants, {M}K denotes encryption of message M using key K, * is the

exclusive-or operatorand h(M) denotes the hash function over a message M .

This protocol is secure with the fix proposed. This fixed version of the XOR-

NSL protocol is secure against the attack of [Chevalier 05] .

4.2.1 Symbols

All the symbols are the same that for the original version of the protocol except

the one for the hash function. This is specified as follows:

sorts Hash .

subsort Hash < NNSet < Msg .

We can now specify the hash operator as follows:

op h : Msg -> Hash [frozen] .

29

CHAPTER 4. PROTOCOLS WITH XOR

4.2.2 Algebraic properties

The algebraic properties of the XOR-NSL fixed protocol are the same of the

XOR-NSL protocol, which are specified by the AC property of symbol * and

the equations of Section 4.1.2.

4.2.3 Strand specification

As explained in previous section, the protocol itself and the intruder capabilities

are both specified using strands. The principal strands are as follows:

eq STRANDS-PROTOCOL

= :: r :: *** Alice ***

[nil | +(pk(B, n(A,r) ; A)),

-(pk(A, NB ; h(n(A,r) ; NB) * B)),

+(pk(B, NB)), nil]

&

= :: r’ :: *** Bob ***

[nil | +(pk(B, NA ; A)),

-(pk(A, n(B,r’) ; h(NA ; n(B,r’) * B)),

+(pk(B, n(B,r’))), nil]

[nonexec] .

where A and B are variables denoting names and NA and NB are variables

denoting nonces of A and B respectively. The difference between the specifica-

tion of the fixed version and the original version of this protocol (see 4.1.3) is

that in the original version of the protocol the message “pk(A, NB ; n(A,r)

* B)” is replaced by “pk(A, NB ; h(n(A,r) ; NB) * B)” for Alice’ strand

and “pk(A, n(B,r’) ; NA * B)” is replaced by “pk(A, n(B,r’) ; h(NA ;

n(B,r’) * B)” for Bob’ strand.

The intruder capabilities are specified as in the XOR-NSL protocol in Section

4.1.3, the only difference is the inclusion of the ability of the intruder to apply

the hash function, that is specified as follows:

:: nil :: [nil | -(XN), +(h(XN)), nil] &

where XN denotes a sort sort of Msg.

30

4.2. FIXED NEEDHAM-SCHROEDER PROTOCOL WITH XOR
ALGEBRAIC PROPERTIES (XOR-NSL-FIX)

4.2.4 Protocol analysis

We use an attack pattern similar to the one used in Section 4.1.4. for the original

version of the protocol, to prove wether the fix makes the protocol secure.

eq ATTACK-STATE(0)

= :: r’ :: *** Bob ***

[nil, +(pk(b, NA ; a)),

-(pk(a, n(b,r’) ; h(NA ; n(b,r’) * b)),

+(pk(b, n(b,r’))) | nil]

|| n(b,r’) inI

|| nil

|| nil

|| nil

[nonexec] .

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 0 Solutions>> 0

31

CHAPTER 4. PROTOCOLS WITH XOR

The protocol is secure with this fix and, when this protocol is analyzed with

Maude-NPA, it generates a finite search state space finding no initial state for

the attack pattern above.

4.3 Bull Recursive Authentication Protocol (RA)

The Bull Recursive Authentication Protocol (RA) [Bull 97, Comon-Lundh 03],

aims at establishing fresh session keys between a fixed number of participants

(for instance 3) and a server: one key for each pair of agents. We reproduce the

RA below, using textbook Alice-and-Bob notation.

A computes XA = h(A,B,NA), (A,B,NA)

1. A → B : XA

B computes XB = h(B,C,NB ,Xa), (B,C,NB ,XA)

2. B → C : XB

C computes XC = h(C,S,NC ,Xb), (C,S,NC ,XB)

3. C → S : XC

4. S → C : KAB * h(NA,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS),

KBC * h(NC ,KCS)

5. C → B : KAB * h(NA,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS)

6. B → A : KAB * h(NA,KAS)

where A, B, C, S denotes participants names, NA and NB , NC denotes nonces

generated by participants, KAB and KBC denote session keys between partici-

pants A and B and B and C respectively, KAS , KBS and KCS denote encryption

of principal names using the server’s nonce, and * is the exclusive-or operator.

This protocol is insecure; an attack similar to the one of the standard Need-

ham Schroeder protocol was found in [Chevalier 05] exploiting in this case the

algebraic properties of the XOR .

As we can see in [Comon-Lundh 03] this protocol is subject to an attack

because secrecy of KAB from C fails if the following constraint is satisfiable:

T = {MB , x, y,KAB∗ h(KA, NA),KAB ∗ h(KB , NB),KBC ∗ h(KB , NB),KBC

32

4.3. BULL RECURSIVE AUTHENTICATION PROTOCOL (RA)

∗ h(x, y)} implies KAB , where variables x, y represent terms whose value can

be chosen by C . We guess that x, y are not instantiated and that the sub-

terms are derived in the following order: h(x, y) < KBC < KAB . Observe

that h(x, y) is derivable from T in one step by applying function symbol h

to x and y, KBC is derivable from T ∪ h(x, y) in one step, by (X), KAB is

derivable from T ∪ h(x, y) ∪ KBC in one step, by two application of (X) :

((KAB ∗h(KB , NB)) ∗ ((KBC ∗h(KB , NB)) ∗KBC = KAB . Therefore, after the

second reduction step we obtain an empty constraint, proving that secrecy of

KAB is violated.

The informal description of this attack is as follows:

A computes XA = h(A,B,NA), (A,B,NA)

1. A → B : XA

B computes XB = h(B,C,NB ,Xa), (B,C,NB ,XA)

2. B → C : XB

C computes XC = h(C,S,NC ,Xb), (C,S,NC ,XB)

3. C → S : XC

4. S → C : KAB * h(NA,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS),

KBC * h(NC ,KCS)

5. C → B : KAB * h(NA,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS)

6. B → I : KAB , h(NA,KAS)

7. I(B) → A : KAB * h(NA,KAS)

4.3.1 Symbols

The symbols of the Bull Recursive Authentication Protocol (RA) are the same

of the XOR-NSL-Fix protocol, which are specified by the equations of Section

4.2.1.

33

CHAPTER 4. PROTOCOLS WITH XOR

4.3.2 Algebraic properties

The algebraic properties of the Bull Recursive Authentication Protocol (RA)

are the same of the XOR-NSL protocol, which are specified by AC and the

equations of Section 4.1.2.

4.3.3 Strand specification

In this section we describe the strands denoting the actions of the protocol’s

honest principals and the intruder capabilities. First of all we define different

variables of type Hash that will be used at the protocol specification.

1. HA represents h(A ; B ; NA)

2. HA’ represents h(KA ; NA)

3. HB represents h(B, C ; NB ; (A ; B ; NA ; h(A ; B ; NA)))

4. HB’ represents h(KB , NB)

The strands of this protocol are specified as follows:

eq STRANDS-PROTOCOL =

:: r :: *** Alice ***

[nil | +(A ; B ; n(A,r) ; h(A ; B ; n(A,r))),

-((SK * h(pkey(A,NS) ; n(A,r)))), nil]

&

:: r :: *** Bob ***

[nil | -(A ; B ; NA ; HA),

+(B ; C ; n(B,r) ; (A ; B ; NA ; HA) ;

h(B ; C ; n(B,r) ; (A ; B ; NA ; HA))),

-((SK * HA’) ;

(SK * h(pkey(B,NS) ; n(B,r))) ;

(SK’ * h(pkey(B,NS) ; n(B,r)))),

+(SK * HA’), nil]

&

:: r :: *** Charlie ***

[nil | -(B ; C ; NB ; (A ; B ; NA ; HA) ; HB),

+(C ; S ; n(C,r) ; (B ; C ; NB ; A ; B ; NA ; HA ; HB) ;

h(C ; S ; n(C,r) ; (B ; C ; NB ; A ; B ; NA ; HA ; HB))),

34

4.3. BULL RECURSIVE AUTHENTICATION PROTOCOL (RA)

-((SK * HA’) ;

(SK * HB’) ;

(SK’ * HB’) ;

(SK’ * h(pkey(C,NS) ; n(C,r)))),

+((SK * HA’) ;

(SK * HB’) ;

(SK’ * HB’)), nil]

&

:: r,r’ :: *** Server ***

[nil | -(C ; S ; NC ; B ; C ; NB ; A ; B ; NA ; h(A ; B ; NA) ;

h(B ; C ; NB ; A ; B ; NA ; h(A ; B ; NA)) ;

h(C ; S ; NC ; B ; C ; NB ; A ; B ; NA ;

h(A ; B ; NA) ; h(B ; C ; NB ; A ; B ; NA ; h(A ; B ; NA)))),

+((seskey(A, B, n(s,r)) * h(pkey(A,n(s,r)) ; NA)) ;

(seskey(A, B, n(s,r)) * h(pkey(B,n(s,r)) ; NB)) ;

(seskey(B, C, n(s,r’)) * h(pkey(B,n(s,r)) ; NB)) ;

(seskey(B, C, n(s,r’)) * h(pkey(C,n(s,r)) ; NC))), nil]

where A, B and C are variables denoting names and NA, NB and NC are

variables denoting nonces of A, B and C respectively.

The intruder capabilities are specified by the following strands:

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] &

:: nil :: [nil | -(X ; Y), +(X), nil] &

:: nil :: [nil | -(X ; Y), +(Y), nil] &

:: nil :: [nil | -(XN), -(YN), +(XN * YN), nil] &

:: nil :: [nil | -(XN), +(h(XN)), nil] &

:: nil :: [nil | -(pkey(i,NX)), +(NX), nil] &

:: nil :: [nil | -(NX), +(pkey(A,NX)), nil] &

:: r :: [nil | +(n(i,r)), nil] &

:: nil :: [nil | +(null), nil] &

:: nil :: [nil | +(A), nil]

[nonexec] .

where variables X and Y denote messages, variable A denotes a sort name of

the participant, variables XN and Y N denote Msg. The first strand denotes

concatenation of two messages, whereas the second and third strands denote the

ability of deconcatenation. The fourth strand allows the intruder to perform the

35

CHAPTER 4. PROTOCOLS WITH XOR

XOR. The fifth strand denote the ability of the intruder to generate his own

hash function. The sixth strand allows the intruder to encrypt data with his

public key. The seventh strand allows the intruder to encrypt a message of sort

Msg with any public Key and the eight strand allows the intruder to generate

his own nonce, respectively. Finally, the two last strands allow the intruder to

generate the XOR null element and any name, respectively.

4.3.4 Protocol analysis

This attack is found in Maude-NPA by searching backwards from the attack

pattern below:

eq ATTACK-STATE(0)

= :: r :: *** Alice ***

[nil, +(a ; b ; n(a,r) ; h(a ; b ; n(a,r))),

-(SK * h(pkey(a,NS) ; n(a,r))) | nil]

|| empty

|| nil

|| nil

|| nil

[nonexec] .

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 8 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 14 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 18 Solutions>> 0

36

4.4. BULL RECURSIVE AUTHENTICATION PROTOCOL FIX
(RA-FIX PROTOCOL)

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 20 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 24 Solutions>> 1

reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 32 Solutions>> 1

For this attack pattern Maude-NPA finds an initial state as it was expected.

The sequence of exchanged messages of the attack is as follows

+(a ; b ; n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

-(a ; b ; n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

+(b ; n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

-(b ; n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

+(n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

-(n(a, #0:Fresh) ; h(a ; b ; n(a, #0:Fresh))),

+(n(a, #0:Fresh)),

generatedByIntruder(pkey(a, #2:Nonce)),

-(pkey(a, #2:Nonce)),

-(n(a, #0:Fresh)),

+(pkey(a, #2:Nonce) ; n(a, #0:Fresh)),

-(pkey(a, #2:Nonce) ; n(a, #0:Fresh)),

+(h(pkey(a, #2:Nonce) ; n(a, #0:Fresh))),

generatedByIntruder(#1:Sessionkey),

-(#1:Sessionkey),

-(h(pkey(a, #2:Nonce) ; n(a, #0:Fresh))),

+(#1:Sessionkey * h(pkey(a, #2:Nonce) ; n(a, #0:Fresh))),

-(#1:Sessionkey * h(pkey(a, #2:Nonce) ; n(a, #0:Fresh)))

4.4 Bull Recursive Authentication Protocol Fix

(RA-Fix Protocol)

Since the RA of previous section has an attack, a fixed version of the protocol

(RA-Fix) is proposed in [Küesters 11] in which the messageKAB∗h(NA, key(A))

sent by the key distribution server to A is replaced by KAB ∗h(NA, B, key(A)).

37

CHAPTER 4. PROTOCOLS WITH XOR

We reproduce the RA-fix protocol below, using textbook Alice-and-Bob notation.

A computes XA = h(A,B,NA), (A,B,NA)

1. A → B : XA

B computes XB = h(B,C,NB ,Xa), (B,C,NB ,XA)

2. B → C : XB

C computes XC = h(C,S,NC ,Xb), (C,S,NC ,XB)

3. C → S : XC

4. S → C : KAB * h(NA,B,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS),

KBC * h(NC ,KCS)

5. C → B : KAB * h(NA,B,KAS),

KAB * h(NB ,KBS),

KBC * h(NB ,KBS)

6. B → A : KAB * h(NA,B,KAS)

where A, B, C, S denote participants names, NA and NB , NC denote nonces

generated by participants, Kab and Kbc denote session keys between partici-

pants A and B and B and C respectively, KAS ,KBS and KCS denote encryption

of principal names using Server nonce, and * is the exclusive-or operator.

4.4.1 Symbols

The Symbols of the Bull Recursive Authentication Protocol Fix (RA-Fix Pro-

tocol) are the same of the RA, which are specified by the equations of Section

4.3.1.

4.4.2 Algebraic properties

The Algebraic properties of the Bull Recursive Authentication Protocol Fix

(RA-Fix Protocol) are the same of the RA, which are specified by the equations

of Section 4.3.2 .

4.4.3 Strand specification

In this section we describe the strands denoting the actions of the protocol’s

honest principals and the intruder capabilities. First of all we define different

38

4.4. BULL RECURSIVE AUTHENTICATION PROTOCOL FIX
(RA-FIX PROTOCOL)

variables of type Hash that will be used for clarity at the protocol specification.

1. HA represents h(A ; B ; NA)

2. HA’ represents h(NA ; B ; KA)

3. HB represents h(B, C ; NB ; (A ; B ; NA ; h(A ; B ; NA)))

4. HB’ represents h(NB ; KB)

And after that, we show the protocol strands in Maude-NPA:

eq STRANDS-PROTOCOL =

:: r :: *** Alice ***

[nil | +(A ; B ; n(A,r) ; h(A ; B ; n(A,r))),

-((SK * h(pkey(A,NS) ; B ; n(A,r)))), nil]

&

:: r :: *** Bob ***

[nil | -(A ; B ; NA ; HA),

+(B ; C ; n(B,r) ; (A ; B ; NA ; HA) ;

h(B ; C ; n(B,r) ; (A ; B ; NA ; HA))),

-((SK * HA’) ;

(SK * h(pkey(B,NS) ; n(B,r))) ;

(SK’ * h(pkey(B,NS) ; n(B,r)))),

+(SK * HA’), nil]

&

:: r :: *** Charlie ***

[nil | -(B ; C ; NB ; (A ; B ; NA ; HA) ; HB),

+(C ; S ; n(C,r) ;

(B ; C ; NB ; A ; B ; NA ; HA ; HB) ;

h(C ; S ; n(C,r) ;

(B ; C ; NB ; A ; B ; NA ; HA ; HB))),

-(SK * HA’) ;

(SK * HB’) ;

(SK’ * HB’) ;

(SK’ * h(pkey(C,NS) ; n(C,r)))),

+(SK * HA’) ;

(SK * HB’) ;

39

CHAPTER 4. PROTOCOLS WITH XOR

(SK’ * HB’), nil]

&

:: r,r’ :: *** Server ***

[nil | -(C ; S ; NC ; B ; C ; NB ; A ; B ; NA ;

h(A ; B ; NA) ;

h(B ; C ; NB ; A ; B ; NA ; h(A ; B ; NA)) ;

h(C ; S ; NC ; B ; C ; NB ; A ; B ; NA ;

h(A ; B ; NA) ; h(B ; C ; NB ; A ; B ; NA ;

h(A ; B ; NA)))),

+((seskey(A, B, n(s,r)) * h(pkey(A,n(s,r)) ; B ; NA)) ;

(seskey(A, B, n(s,r)) * h(pkey(B,n(s,r)) ; NB)) ;

(seskey(B, C, n(s,r’)) * h(pkey(B,n(s,r)) ; NB)) ;

(seskey(B, C, n(s,r’)) * h(pkey(C,n(s,r)) ; NC))), nil]

where A, B and C are variables denoting names and NA, NB and NC are

variables denoting nonces of A, B and C respectively. The intruder capabilities

are specified as in the original protocol (see Section 4.3.3).

The difference between the specification of the fixed version and the original

version of this protocol (see 4.3.3) is that in the original version of the pro-

tocol the message “(SK * h(pkey(A,NS) ; n(A,r)))” is replaced by “(SK *

h(pkey(A,NS) ; B ; n(A,r)))” for Alice’ strand and “(seskey(A, B, n(s,r))

* h(pkey(A,n(s,r)) ; NA))” is replaced by “(seskey(A, B, n(s,r)) *

h(pkey(A,n(s,r)) ; B ; NA))” for Server’ strand.

4.4.4 Protocol analysis

We use an attack pattern similar to the one used previously for the original

version of the protocol in Section 4.3.4, to prove if the fix makes the protocol

secure.

eq ATTACK-STATE(0)

= :: r :: *** Alice ***

[nil, +(a ; b ; n(a,r) ; h(a ; b ; n(a,r))),

-(SK * h(pkey(a,NS) ; n(a,r) ; b)) | nil]

|| empty

|| nil

|| nil

40

4.4. BULL RECURSIVE AUTHENTICATION PROTOCOL FIX
(RA-FIX PROTOCOL)

|| nil

[nonexec] .

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 8 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 11 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 9 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 8 Solutions>> 1

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 10 Solutions>> 0

reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 12 Solutions>> 0

reduce in MAUDE-NPA : summary(8) .

result Summary: States>> 11 Solutions>> 0

reduce in MAUDE-NPA : summary(9) .

result Summary: States>> 12 Solutions>> 0

reduce in MAUDE-NPA : summary(10) .

result Summary: States>> 17 Solutions>> 0

reduce in MAUDE-NPA : summary(11) .

result Summary: States>> 26 Solutions>> 0

41

CHAPTER 4. PROTOCOLS WITH XOR

reduce in MAUDE-NPA : summary(12) .

result Summary: States>> 33 Solutions>> 0

reduce in MAUDE-NPA : summary(13) .

result Summary: States>> 29 Solutions>> 0

reduce in MAUDE-NPA : summary(14) .

result Summary: States>> 18 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 11 Solutions>> 0

reduce in MAUDE-NPA : summary(16) .

result Summary: States>> 8 Solutions>> 0

reduce in MAUDE-NPA : summary(17) .

result Summary: States>> 10 Solutions>> 0

reduce in MAUDE-NPA : summary(18) .

result Summary: States>> 13 Solutions>> 0

reduce in MAUDE-NPA : summary(19) .

result Summary: States>> 14 Solutions>> 0

reduce in MAUDE-NPA : summary(20) .

result Summary: States>> 13 Solutions>> 0

reduce in MAUDE-NPA : summary(21) .

result Summary: States>> 11 Solutions>> 0

reduce in MAUDE-NPA : summary(22) .

result Summary: States>> 9 Solutions>> 0

reduce in MAUDE-NPA : summary(23) .

result Summary: States>> 6 Solutions>> 0

42

4.5. SHOUP-RUBIN PROTOCOL

reduce in MAUDE-NPA : summary(24) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(25) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(26) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure with this fix and, when this protocol is analyzed with

Maude-NPA, it generates a finite search state space finding no initial state for

the attack pattern above.

4.5 Shoup-Rubin Protocol

Shoup and Rubin’s contribution is the design of a smart card protocol for

session-key distribution, which is discussed within an extension of the Bellare-

Rogaway’s framework [Bella 03] [Shoup 96]. In the original version of the pro-

tocol, there were five participants of the protocol: Alice, Bob, the Server and

smart cards of Alice and Bob. According to what the protocol says, it is as-

sumed that the communication between smart cards and participants Alice and

Bob is secure and therefore the attacker can not extract anything from that

communication. We have made the following simplifications to this protocol:

− We have removed the strands of smart cards.

− Alice generates its nonce, rather than generate their smart card and send

it to her.

− Bob generates its nonce, rather than generate their smart card and send

it to him.

− Bob generates the session key and sends it to Alice. In the original version

was one of the smart cards who generated it and is sending his honest par-

ticipant and this corresponding forward it to the other honest participant.

We use these aliases to make easy the understanding of the specification:

− SK represents {A,B}NB

− PAB represents KAB ∗ {B}KA

43

CHAPTER 4. PROTOCOLS WITH XOR

− KAB represents {A}KB

The specification of this protocol using textbook Alice-and-Bob notation is

as follows:

1. A → S : A, B

2. S → A : PAB , {PAB , B}KA

3. A → B : A, NA

4. B → A : NB , {NA, NB}KAB

5. B → A : {SK}KAB

6. A → B : {NB}KAB

where A,B denote principal names, NA and NB denote nonces generated by

participants, {M}K denotes encryption of message M using key Kand * is the

exclusive-or operator.

We use this attack pattern to check if the session key is secure

eq ATTACK-STATE(0)

= :: r :: *** Bob ***

[nil, -(a ; NCA),

+(n(b,r) ; e(nse(symKey(b), a), NCA ; n(b,r))),

*** Simulation: Bob sends session key to Alice

+(e(nse(symKey(b), a), sesK(n(b,r), a, b))),

-(e(nse(symKey(b), a), n(b,r))) | nil]

|| sesK(n(b,r), a, b) inI

|| nil

|| nil

|| nil

[nonexec] .

As you can see in Section 4.5.4 this protocol is secure.

4.5.1 Symbols

In the following we show how to specify the sorts and symbols for this protocol

in the Maude-NPA’s syntax. More specifically, we need sorts to denote names,

nonces, hash operator and Keys. This is specified as follows:

sorts Name Nonce Symkey Key Sessionkey NSymEnc Null .

44

4.5. SHOUP-RUBIN PROTOCOL

subsort Name Nonce < Msg .

subsort Symkey Sessionkey NSymEnc < Msg .

subsort Name < Public .

subsort Null < NSymEnc .

We can now specify the different operators needed in the Shoup-Rubin pro-

tocol. A nonce generated by principal A is denoted by n(A, r), where r is a

unique variable of sort Fresh. Concatenation of two messages, e.g., NA and

NB , is denoted by the operator “ ; ”, e.g., n(A, r); n(B, r’). Next, we specify

some principal names. For XOR-NSL, we have three constants of sort Name, a

(for Alice), b (for Bob) and i (for the Intruder). We need three more operators:

one for nonces, one for concatenation and one for the XOR. The nonce operator

is specified as follows:

op n : Name Fresh -> Nonce [frozen].

Note that the nonce operator has an argument of sort Fresh to ensure

uniqueness. The argument of type Name is not strictly necessary, but it provides

a convenient way of identifying which nonces are generated by which principal.

This makes searches more efficient, since it allows us to keep track of the orig-

inator of a nonce throughout a search. Message concatenation is specified in

Maude-NPA via the infix operator ; , which is defined as follows:

op _ ; _ : Msg Msg -> Msg [gather(e E) frozen].

Next we define the characteristics of the XOR operator which is defined to

be used with NSymEnc type variables. Also we indicate that this operator has

the associative and commutative properties.

op _*_ : NSymEnc NSymEnc -> NSymEnc [assoc comm frozen] .

Next we define diferents kinds of key generators. First we define the sesK

operator which is defined to be used with the principal names and the nonce of

one of the participants.

op sesK : Nonce Name Name -> Sessionkey [frozen] .

Second we define the symKey operator which is defined to be used with the

participant name.

op symKey : Name -> Symkey [frozen] .

45

CHAPTER 4. PROTOCOLS WITH XOR

Also we define the nse operator which is defined as follows:

op nse : Symkey Msg -> NSymEnc [frozen] .

Next we define diferents kinds of encryption and decryption operators. We

define the first encryption and decryption operators which are defined to be

used with an arguments of sort Key and Msg.

op e : Key Msg -> Msg [frozen] .

op d : Key Msg -> Msg [frozen] .

Next we define the second encryption and decryption operators which are

defined to be used with an arguments of sort Symkey and Msg.

op se : Symkey Msg -> Msg [frozen] .

op sd : Symkey Msg -> Msg [frozen] .

Next we define diferents kinds of key generators. We define the first key

generator operator which are defined to be used with the principals names and

the nonce of one of the participants

op sesK : Nonce Name Name -> Sessionkey [frozen] .

Next we define the second key generator operator which are defined to be

used with the participant name .

op symKey : Name -> Symkey [frozen] .

And finally we define the third key generator operator which are defined to

be used with a sort Symkey and the participant name.

op nse : Symkey Name -> NSymEnc [frozen] .

4.5.2 Algebraic properties

In this section we specify the algebraic properties of the symbols defined in the

section 6.5.1, using equations apart of associative, commutative and identity

properties. In Shoup-Rubin protocol, we use two equations specifying the rela-

tionship for each one of the two different types of encryption/decryption that

we use. We specify as follows:

46

4.5. SHOUP-RUBIN PROTOCOL

var NSEnc : NSymEnc . var M : Msg .

eq d(NSEnc, e(NSEnc, M)) = M [variant] .

eq e(NSEnc, d(NSEnc, M)) = M [variant] .

var SKey : Symkey .

eq sd(SKey, se(SKey, M)) = M [variant].

eq se(SKey, sd(SKey, M)) = M [variant].

The properties of the XOR operator are denoted by the following equations:

var NSEnc NSEnc’ : NSymEnc .

eq null * NSEnc = NSEnc [variant] .

eq NSEnc * NSEnc = null [variant] .

eq NSEnc * NSEnc * NSEnc’ = NSEnc’ [variant] .

Note that the redundant equational property of the last equation is necessary

in Maude-NPA for coherence purposes; see [Escobar 09].

4.5.3 Strand specification

In this section we describe the strands denoting the actions of the protocols

honest principals and the intruder capabilities. The strands of this protocol are

specified as follows:

:: r :: *** Alice ***

[nil | +(A ; B),

-((PAB * nse(symKey(A), B)) ;

(se(symKey(A), (PAB * nse(symKey(A), B)) ; B))),

+(A ; n(A,r)),

-(NCB ; e(PAB, n(A,r) ; NCB)),

***Simulation: Bob sends session key to Alice

-(e(PAB, sesK(NCB, A, B))),

+(e(PAB, NCB)), nil]

&

:: r :: *** Bob ***

[nil | -(A ; NCA),

+(n(B,r) ; e(nse(symKey(B), A), NCA ; n(B,r))),

*** Simulation: Bob sends session key to Alice

+(e(nse(symKey(B), A), sesK(n(B,r), A, B))),

47

CHAPTER 4. PROTOCOLS WITH XOR

-(e(nse(symKey(B), A), n(B,r))), nil]

&

:: nil :: *** Server ***

[nil | -(A ; B),

+((nse(symKey(B), A) * nse(symKey(A), B)) ;

se(symKey(A),

(nse(symKey(B), A) * nse(symKey(A), B)) ; B)), nil]

where A and B are variables denoting names and NA and NB are variables

denoting nonces of A and B respectively.

The intruder capabilities are specified by the following strands:

eq STRANDS-DOLEVYAO

= :: nil ::[nil | -(X), -(Y), +(X ; Y), nil] &

:: nil :: [nil | -(X ; Y), +(X), nil] &

:: nil :: [nil | -(X ; Y), +(Y), nil] &

:: nil :: [nil | -(NSEnc), -(NSEnc’), +(NSEnc * NSEnc’), nil] &

:: nil :: [nil | -(M), -(NSEnc), +(e(NSEnc,M)), nil] &

:: nil :: [nil | -(M), -(NSEnc), +(d(NSEnc,M)), nil] &

:: nil :: [nil | -(M), -(SK), +(se(SK,M)), nil] &

:: nil :: [nil | -(M), -(SK), +(sd(SK,M)), nil] &

:: nil :: [nil | -(SK), +(nse(SK, i)), nil] &

:: nil :: [nil | +(symKey(i)), nil] &

:: nil :: [nil | -(N), +(sesK(N,i,A)), nil] &

:: nil :: [nil | -(N), +(sesK(N,A,i)), nil] &

:: r :: [nil | +(n(i,r)), nil] &

:: nil :: [nil | +(null), nil] &

:: nil :: [nil | +(A), nil]

[nonexec] .

where variables X and Y denote messages, variable A denotes a sort name of

the participant, variable SK denotes Symkey, variable M denotes Msg, variable N

denotes Nonce, and variables NSEnc and NSEnc’ are of sort NSymEnc. The first

strand denote concatenation of two messages, whereas the second and third

strands denote the ability of deconcatenation. The fourth strand allows the

intruder to perform the XOR. The fifth , sixth, seventh and eighth strands

allows the intruder to perform different kinds of encryption and decryption.

The ninth strand denotes the ability of the intruder to generate any kind of nse

encryption with his name. The tenth strand denotes the ability of the intruder

to generate his own symmetric key. The eleventh and twelfth strands denote the

48

4.5. SHOUP-RUBIN PROTOCOL

ability of the intruder of generate a session key. Finally the three last strands

allow the intruder to generate his own nonce, the XOR null element and any

name, respectively.

4.5.4 Protocol analysis

The number of generated states in the different levels with Maude-NPA tool is

as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 4 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 12 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 28 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 51 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 74 Solutions>> 1

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 80 Solutions>> 0

reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 70 Solutions>> 0

reduce in MAUDE-NPA : summary(8) .

result Summary: States>> 55 Solutions>> 0

reduce in MAUDE-NPA : summary(9) .

result Summary: States>> 45 Solutions>> 0

reduce in MAUDE-NPA : summary(10) .

result Summary: States>> 46 Solutions>> 0

49

CHAPTER 4. PROTOCOLS WITH XOR

reduce in MAUDE-NPA : summary(11) .

result Summary: States>> 36 Solutions>> 0

reduce in MAUDE-NPA : summary(12) .

result Summary: States>> 43 Solutions>> 0

reduce in MAUDE-NPA : summary(13) .

result Summary: States>> 21 Solutions>> 0

reduce in MAUDE-NPA : summary(14) .

result Summary: States>> 11 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(16) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and, when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

4.6 Symmetric Key distribution protocol using

Smart Cards (SK3)

The Symmetric Key distribution using Smart Cards (SK3) protocol [Bond 01]

is a key distribution protocol for smart cards, which uses the XOR operator.

This protocol is a version of the Shoup-Rubin protocol of the Section 4.5 .

We have specified a simplified version of this protocol. In the original version

of the protocol, there were five participants of the protocol: Alice, Bob, the

Server and the smart cards of Alice and Bob. The informal description of the

protocol in [Bond 01] assumes that the communication between smart cards and

participants Alice and Bob is secure and therefore the attacker can not extract

anything from that communication. We have made the following simplifications

to this protocol:

50

4.6. SYMMETRIC KEY DISTRIBUTION PROTOCOL USING
SMART CARDS (SK3)

− We have removed the strands of smart cards.

− Alice generates its nonce, rather than generate their smart card and send

it to her.

− Bob generates its nonce, rather than generate their smart card and send

it to him.

− Bob generates the session key and sends it to Alice. In the original version

was one of the smart cards who generated it and is sending his honest par-

ticipant and this corresponding forward it to the other honest participant.

We use these aliases to make easier the understanding of the specification:

− SK represents {A,B, 1}NB

− PAB represents KAB * {B, 1}KA

− KAB represents {A, 0}KB

The specification using textbook Alice-and-Bob notation would be as follows:

1. A → S : A, B

2. S → A : PAB , {PAB , B, 2}KA

3. A → B : A, NA

4. B → A : NB , {NA, NB , 1}KAB

5. B → A : {SK}KAB

6. A → B : {NB , 0, 1}KAB

where A,B denote principal names, NA and NB denote nonces generated by

participants, {M}K denotes encryption of message M using key K, * is the

exclusive-or operator and 0 and 1 denote a sortrbitrary padding constants,

known by all principals.

We use this attack pattern to check if the session key is secure

eq ATTACK-STATE(0)

= :: r :: *** Bob ***

[nil, -(a ; NCA),

+(n(b,r) ; e(nse(symKey(b), a), NCA ; n(b,r) ; 1)),

*** Simulation: Bob sends session key to Alice

+(e(nse(symKey(b), a), sesK(n(b,r), a, b, 1))),

51

CHAPTER 4. PROTOCOLS WITH XOR

-(e(nse(symKey(b), a), n(b,r) ; 0 ; 1)) | nil]

|| sesK(n(b,r), a, b, 1) inI

|| nil

|| nil

|| nil

[nonexec] .

As you can see in Section 4.6.4 this protocol is secure.

4.6.1 Symbols

The symbols that we use for this protocol are the same that we use for the

Shoup-Rubin protocol in Section 4.5.1.

4.6.2 Algebraic properties

As in the previous section, we use the same equational properties that we use

for the Shoup-Rubin protocol in Section 4.5.2.

4.6.3 Strand specification

In this section we describe the strands denoting the actions of the protocol’s

honest principals and the intruder capabilities. The strands of this protocol are

specified as follows:

:: r :: *** Alice ***

[nil | +(A ; B),

-((PAB * nse(symKey(A), B ; 1)) ;

(se(symKey(A), (PAB * nse(symKey(A), B)) ; B ; 2))),

+(A ; n(A,r)),

-(NCB ; e(PAB, n(A,r) ; NCB)),

***Simulation: Bob sends session key to Alice

-(e(PAB, sesK(NCB, A, B, 1))),

+(e(PAB, NCB ; 0 ; 1)), nil]

&

:: r :: *** Bob ***

[nil | -(A ; NCA),

+(n(B,r) ; e(nse(symKey(B), A), NCA ; n(B,r) ; 1)),

*** Simulation: Bob sends session key to Alice

+(e(nse(symKey(B), A), sesK(n(B,r), A, B, 1))),

52

4.6. SYMMETRIC KEY DISTRIBUTION PROTOCOL USING
SMART CARDS (SK3)

-(e(nse(symKey(B), A), n(B,r) ; 0 ; 1)), nil]

&

:: nil :: *** Server ***

[nil | -(A ; B),

+((nse(symKey(B), A ; 0) * nse(symKey(A), B ; 1)) ;

se(symKey(A),

(nse(symKey(B), A ; 0) * nse(symKey(A), B ; 1) ; B ; 2), nil]

where A and B are variables denoting names and NCA and NCB are variables

denoting nonces of A and B respectively and 0 and 1 denote a sort of arbitrary

padding constants.

The intruder capabilities of the Symmetric key distribution using Smart

Cards (SK3) are the same of the Shoup-Rubin protocol, which are specified by

the strands of Section 6.5.3.

4.6.4 Protocol analysis

The number of generated states in the different levels with Maude-NPA tool is

as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and, when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

53

CHAPTER 4. PROTOCOLS WITH XOR

54

Chapter 5

The CCA series of protocols

CCA stands for Common Cryptographic Architecture API [IBM 08] as imple-

mented on the hardware security module IBM 4758 (an IBM cryptographic

coprocessor). As we can see in [Keighren 06], the CCA is a key management

system, which provides commands that use encrypted keys to achieve desired

functions. A 168-bit triple-DES key, known as the master key, is stored in the

security module’s tamper proof memory and is used to encrypt all other keys

which are then kept on the host computer. These other keys, known as work-

ing keys, are used to perform the various functions provided by the CCA API,

and have types associated with them. In all, the CCA supports the following

functions and features:

− Encryption and decryption of data, using the DES algorithm

[DES Encryption].

− Message authentication code (MAC) generation, and data hashing func-

tions.

− Formation and validation of digital signatures.

− Generation, encryption, translation and verification of PINs and transac-

tion validation messages.

− General key management facilities.

− Administrative services for controlling the initialization and operation of

the security module.

55

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

As a number of the provided commands are particularly sensitive, the CCA

enforces an access-control system, whereby certain commands are only available

under specific circumstances. It is, however, the responsibility of the device

administrator to ensure that the correct separation of duty provided is upheld.

The CCA API uses four main types for classifying DES working keys, each

of which is further sub-divided into more specific and restrictive types. Each

type takes the form of a control vector (a bit-string that is the same length as

the associated working key). A working key is stored outside of the security

module, encrypted under the exclusive-or of the device’s master key and the

control vector representing the type of the key. The main key types, and their

uses, are as follows:

Data Keys

Keys of this type are used to encipher and decipher arbitrary data, as well as

for the generation and verification of message authentication codes (MACs).

Subtypes place greater restrictions on exactly which of these various functions

a particular key can be used for.

PIN Keys

This type covers keys which are used for PIN block encryption, PIN block de-

cryption, PIN generation and verification, and just PIN verification. A key

cannot be of the general PIN type, but instead must be assigned a subtype that

restricts its use to exactly one of the four operations mentioned.

Key Encryption Keys

These keys are used to encrypt and decrypt other working keys during transfer

between security modules, and are divided into import and export types. Keys

encrypted under an export key are referred to as external keys, as they must be

imported into a security module before they can be used. Note that the transfer

of a working key requires the same key encryption key to be present in both

security modules (as an export key in one and as an import key in the other).

Key Generation Keys

The CCA API provides commands which generate DES keys, given an initial

key, and will typically use the provided key to encrypt or decrypt a supplied

piece of data. This type covers such initial keys and restricts them from being

used with other commands (e.g. Encipher and Decipher) in order to prevent

56

the value of the generated key being discovered.

The typing mechanism restricts the working keys which can be used for a

particular command, for example, the PIN derivation key used in the verifica-

tion of a customer’s PIN cannot be used with the Encipher command to encrypt

arbitrary data.

The following terms are used in this section to represent the various control

vectors and cryptographic keys:

− DATA → Control vector for data keys

− IMP → Control vector for import-type key encryption keys

− EXP → Control vector for export-type key encryption keys

− KP → Control vector indicating that a key is only a key part, and not a

complete key

− KM → The security module-s master key

− ekek → An arbitrary key encryption key

− ek → An arbitrary cryptographic key

− T → An unknown, randomly generated, new cryptographic key An arbi-

trary key type control vector. We can say that T ∈ {DATA, IMP,EXP,PIN}.

− kpi → Key part i (used to build an arbitrary key)

− x → Arbitrary (unencrypted) data

The exact steps that the security module carries out for each command have

not been included, since the process is virtually the same in all cases. The

master key and all control vectors are known to the security module, and any

additional information required is either passed as a plaintext parameter, or

is encrypted under a known key. For example, in the case of the Key Import

command, the security module knows both KM and IMP so is therefore able to

obtain kek from the third parameter. This key encryption key is then XOR-ed

with the second parameter, type, and used to obtain key from the first parame-

ter. Finally, key is encrypted under the exclusive-or of KM and type to produce

57

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

the result that is returned by the command.

In the following we test nine protocols:

− CCA-0 Original (Section 5.1)

− CCA-0 version of Küesters and Truderung (Section 5.2)

− CCA-1A (Section 5.4)

− CCA-1B (Section 5.5)

− CCA-1B version of Küesters and Truderung Original (Section 5.6)

− CCA-2B (Section 5.8)

− CCA-2C (Section 5.9)

− CCA-2C version of Küesters and Truderung Original (Section 5.10)

− CCA-2E (Section 5.11)

5.1 CCA-0 Original

In this section we describe the specification and analysis of the original CCA

protocol (CCA-0).

The informal description of the CCA API is as follows:

API Operator Description

Encipher x, {eK}{KM∗DATA} → {x}eK
Decipher {x}eK , {eK}{KM∗DATA} → x
Key Export {eK}(KM∗T}, T, {ekek}{KM∗EXP} → {eK}(ekek∗T)

Key Import {eK}(kek∗T}, T, {kek}{KM∗IMP} → {eK}{KM∗T}
Key Part Import
First

km1, T → {km1}{KM∗KP∗T}

Key Part Import
Middle

km2, km1{KM∗KP∗T}, T→ (km1 * km2){KM∗KP∗T}

Key Part Import
Last

km3, km2{KM∗KP∗T}, T→ (km2 * km3){KM∗KP∗T}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP
→ {eK}(ekek2∗T)

Table 5.1: CCA API operators and description.

58

5.1. CCA-0 ORIGINAL

The Encipher rule corresponds to a data encryption command which allows

data keys to be used to encrypt any given plaintext. Decipher allows data

keys to be used for decryption. Key Export is used to encrypt a working key

under a key encrypting key for transport to another HSM (hardware security

modules). Key Import allows a key from another 4758 module, encrypted for

transport under a Key Encrypting Key (KEK), to be made into a working key

for this HSM (Hardware Security Modules). The three Key Part Import com-

mands can then be used one after the other, by three different security officers,

each in possession of one key part, to create the working import key. It is this

process that is subverted in Bond’ attack to change the type of a key. The

last API operator, Key Translate, is used to encrypt a key under a different

key-encryption-key.

This series of commands builds up a working key from individual parts and

can be used in one of two ways. Either the first, the middle and last commands

can be used. In order to provide security through separation of duty, the com-

mands are split into three groups, with individuals only allowed access to one,

so the combination of these three commands allows more than one individual to

obtain completed working keys. The other combination ensures that the people

responsible for inserting the key parts cannot obtain a final key and the person

who obtains the final key cannot modify it in any way.

In this specification X denotes a sort Msg, eK, ekek, km1, km2, km3 denote

a sort Key and * is the exclusive-or operator.

This protocol is insecure. The attack that we found uses the same assump-

tions as Bond’s attack [Bond 01] in terms of the role played by the intruder and

his knowledge, and this attack is the same that found Küesters and Truderung

in [Küesters 11]. As a result of the attack, the intruder obtains a PIN derivation

key in clear, like in the IBM attack and hence, can compute PINs from bank

account numbers. We use several strands in the attack pattern to prevent the

increase of the number of generated states becomes this protocol into unhandled.

Since the sequence of exchanged messages of this initial state is quite long,

we explain it below step by step.

First, the intruder receives {km1 ∗ km2}{IMP∗KP∗KM}, then he performs

59

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

Key Part Import Last with {k3 * pin} instead of {k3}. In this way he ob-

tains {PIN ∗ km1 ∗ km2 ∗ km3}{IMP∗KM}.

Next the intruder uses the same command again, this time with {k3 * pin *

exp}, obtaining {PIN ∗ km1 ∗ km2 ∗ km3}{IMP∗KM}.

Next, when {PDK} is imported, the intruder uses Key Import twice: The

first time with input {PIN ∗ km1 ∗ km2 ∗ km3}{IMP∗KM} and

{PDK}{PIN∗km1∗km2∗km3} and the results is the message {PDK}{KM}.

The second time the command Key Import is used with input

{PIN ∗ EXP ∗ km1 ∗ km2 ∗ km3}{IMP∗KM}, and {PDK}{PIN∗km1∗km2∗km3}

and {type = exp}, which gives the message {PDK}{EXP∗KM}.

Now, using Key Export with input {PDK}{KM} and {PDK}{EXP∗KM},
the attacker obtains {PDK}{PDK}.

Finally, using Decipher with input {PDK}{PDK} and {PDK}{KM}, the

attacker obtains the clear value of PDK, which can be then used to obtain the

PIN for any account number: Given an account number, the corresponding PIN

is derived by encrypting the account number under PDK.

5.1.1 Symbols

In the following we show how to specify the sorts and symbols for this protocol

in the Maude-NPA’s syntax. More specifically, we need sorts to denote names,

different kinds of keys and encrypted data. This is specified as follows:

sorts Name Nonce Key Null type KPdk KData KPin KExp KImp

KKek KMaster KKP .

subsort Name Nonce Key < Msg .

subsort KData KPin KExp KImp < type .

subsort KMaster type KKek Null KKP KPdk < Key .

subsort Null < KData .

subsort Name < Public .

subsort Null type < Public .

The specification in Maude-NPA of the different key operators is as follows:

60

5.1. CCA-0 ORIGINAL

op DATA : -> KData .

op PIN : -> KPin .

op EXP : -> KExp .

op IMP : -> KImp .

op KP : -> KKP .

op PDK : -> KPdk .

op KM : -> KMaster .

These operators were previously defined in Chapter 5, We can now specify

the different operators needed in CCA-0. We specify some principal names. For

XOR-NSL, we have three constants of sort Name, a (for Alice), b (for Bob) and i

(for the Intruder). We need two more operators: one for concatenation and one

for the XOR. Message concatenation is specified in Maude-NPA via the infix

operator (;), which is defined as follows:

op _ ; _ : Msg Msg -> Msg [gather (e E) frozen].

Next we define the characteristics of the XOR operator which is need to

be define twice, one to be used with variables of type Msg and another to be

used with variables of type Key. Also we indicate that both operators have the

associative and commutative properties.

op _ * _ : Msg Msg -> Msg [assoc comm frozen] .

op _ * _ : Key Key -> Key [ditto] .

Finally we define a customer’s account number (PAN)), as a constant of sort

Msg operator.

op PAN : -> Msg .

5.1.2 Algebraic properties

In this section we specify the algebraic properties of the symbols defined above

for the CCA-0 protocol, using equations apart of associative, commutative and

identity properties. In CCA-0, we use two equations specifying the relationship

between public and private key encryption, as follows:

var X : Msg . var A : Name .

eq pk(A,sk(A,X)) = X .

eq sk(A,pk(A,X)) = X .

61

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

The properties of the XOR operator are denoted by the following equations:

vars XN YN : Msg .

eq null * XN = XN [variant].

eq XN * XN = null [variant] .

eq XN * XN * YN = YN [variant] .

Note that the redundant equational property XN ∗ XN ∗ Y N = Y N is

necessary in Maude-NPA for coherence purposes; see [Escobar 09].

Finally as we can see in [Küesters 11] we use for DATA operator the following

equation:

eq DATA = null [variant] .

We use two equations specifying the relationship between encryption and

decryption, as follows:

eq d(K:Key, e(K:Key, Z:Msg)) = Z:Msg [variant] .

eq e(K:Key, d(K:Key, Z:Msg)) = Z:Msg [variant] .

5.1.3 Strand specification

For this protocol we have followed the original protocol specification instead of

the version described in [Küesters 11], which is a simplified version of the orig-

inal protocol.

Here we show the strand specification, of the original version of the protocol,

in Maude-NPA.

eq STRANDS-PROTOCOL

***Strands for the transaction

= :: nil :: ***Encryption with data key

[nil | -(X),

-(e(KM * DATA, eK)),

+(e(eK, X)), nil]

&

:: nil :: ***Decryption with data key

[nil | -(e(eK, X)),

62

5.1. CCA-0 ORIGINAL

-(e(KM * DATA, eK)),

+(X), nil]

&

:: nil :: ***Key Import

[nil | -(e(kek * T, eK)),

-(T),

-(e(KM * IMP, kek)),

+(e(KM * T, eK)), nil]

&

:: nil :: ***Key Export

[nil | -(e(KM * T, eK)),

-(T),

-(e(KM * EXP, ekek)),

+(e(ekek * T, eK)), nil]

&

:: nil :: ***Key Part Import First

[nil | -(km1),

-(T),

+(e(KM * KP * T, km1)), nil]

&

:: nil :: ***Key Part Import Middle

[nil | -(km2),

-(T),

-(e(KM * KP * T, km1)),

+(e(KM * KP * T, km1 * km2)), nil]

&

:: nil :: ***Key Part Import Last

[nil | -(km3),

-(T),

-(e(KM * KP * T, km2)),

+(e(KM * T, km2 * km3)), nil]

[nonexec] .

where X is a variable of sort Msg, K, kek, km1, km2 and km3 are variables of

sort Key and T is a variable of sort Type.

The intruder capabilities are specified by the following strands:

63

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X * Y), nil] &

:: nil :: [nil | -(X), -(K), +(e(K,X)), nil] &

:: nil :: [nil | -(X), -(K), +(d(K,X)), nil] &

:: nil :: [nil, +(Km3) | nil] &

:: nil :: [nil, +(PIN) | nil] &

:: nil :: [nil, +(IMP) | nil] &

:: nil :: [nil, +(EXP) | nil] &

:: nil :: [nil | +(null), nil] &

:: nil :: [nil, +(e(KM * KP * IMP, Km1 * Km2)) | nil] &

:: nil :: [nil, +(e(Km1 * Km2 * Km3 * PIN, PDK)) | nil]

[nonexec] .

where variables X and Y denote messages and variable K denotes a sort key.

The first strand allows the intruder to perform the XOR. The second and third

strands allows the intruder to perform encryption and decryption. The fourth,

fifth, sixth and seventh strands allow the intruder to generate different kind of

keys. The eight strand allows the intruder to generate the XOR null element. As

we can see in [Küesters 11], the ninth and tenth strands show how the intruder

can perform KPILast and how the key kek(Km1 ∗ Km2 ∗ Km3) is used to

import a new PIN -derivation key (PDK) to the security module, respectively.

5.1.4 Protocol analysis

The specifications of the attack in Maude-NPA is as follows:

eq ATTACK-STATE(0)

= empty

|| e(PDK, PDK) inI

|| nil

|| nil

|| NP: NeverPatterns

[nonexec] .

where NP denotes a set of ?Never patterns? to reduce the search space (See

Appendix A).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

64

5.1. CCA-0 ORIGINAL

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 5 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 13 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 8 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 7 Solutions>> 1

For this attack pattern Maude-NPA finds an initial state as it was expected.

The sequence of exchanged messages of the attack is as follows:

+(e(PIN * Km1 * Km2 * Km3, PDK)),

+(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(EXP),

-(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

+(e(EXP * KM, PDK)),

+(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(null),

-(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

+(e(KM, PDK)),

-(e(KM, PDK)),

-(null),

-(e(EXP * KM, PDK)),

+(e(PDK, PDK))

65

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

5.2 CCA-0 version of Küesters and Truderung

In this section we describe the specification and analysis of the version of the

original CCA-0 protocol they made Küesters and Truderung in [Küesters 11]

(CCA-0 Küesters and Truderung).

The informal description of the CCA API is as follows:

API Operator Description

Encipher x, {eK}{KM∗DATA} → {x}eK
Decipher {x}eK , {eK}{KM∗DATA} → x
Key Export {eK}(KM∗T}, T, {ekek}{KM∗EXP} → {eK}(ekek∗T)

Key Import {eK}(kek∗T}, T, {kek}{KM∗IMP} → {eK}{KM∗T}
KPI-First +
KPI-Add/Middle

km12, T → {KM * KP * IMP}

Key Part Import
Last

x, T, KM * KP * T → (x){KM∗T}
x, IMP → (X * km12){KM∗IMP}

The Encipher, Decipher, Key Export and Key Import API operators are

the same that the CCA-0 original protocol (see Section 5.1). The KPI-First

+ KPI-Add/Middle and Key Part Import Last API operators are the equiv-

alent to the original Key Part Import First , Key Part Import Middle and

Key Part Import Last API operators. They do these modifications to the orig-

inals API operators because they had problems to manage the entire exclusive-or

theory. The way that this version of the protocol works is the same that for

original version (see Section 5.1).

All the variables are the same that for the CCA-0 original protocol except

the km12 variable that denotes a sort Key.

This protocol is insecure as the original CCA-0 protocol. The attack is the

same that we could found in the original version (see Section 5.1)

5.2.1 Symbols

All the symbols are the same that for the original version of the protocol except

the one for the km12 variable . This is specified in Maude-NPA as follows:

sorts Key Msg .

subsort Key < Msg .

66

5.2. CCA-0 VERSION OF KÜESTERS AND TRUDERUNG

We can now specify the km12 variable as follows:

var km12 : Key .

The specification in Maude-NPA of the different key operators are the same

that for the original version of the protocol (see Section 5.2)

5.2.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.2.3 Strand specification

The strand specification is the same than in the original version (see Section

5.1.3) except for the Key Part Import Last operator. Here we show the specifica-

tion of the Küesters and Truderung version of this API operator in Maude-NPA.

:: nil :: *** Key Import Last

[nil | -(X),

-(T),

-(KM * KP * T),

+(e(KM * T, X)), nil]

&

:: nil :: *** Key Import Last

[nil | -(X),

-(IMP),

+(e(KM * IMP, X * km12)), nil]

[nonexec] .

where X is a variable of sort Msg, km12 is a variable of sort Key and T is a

variable of sort Type.

The intruder capabilities are specified by the following strands:

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X * Y), nil] &

:: nil :: [nil | -(X), -(K), +(e(K,X)), nil] &

:: nil :: [nil | -(X), -(K), +(d(K,X)), nil] &

67

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

:: nil :: [nil, +(Km3) | nil] &

:: nil :: [nil, +(PIN) | nil] &

:: nil :: [nil, +(IMP) | nil] &

:: nil :: [nil, +(EXP) | nil] &

:: nil :: [nil | +(null), nil] &

:: nil :: [nil, +(e(KM * KP * IMP, Km12)) | nil] &

:: nil :: [nil, +(e(Km1 * Km2 * Km3 * PIN, PDK)) | nil]

[nonexec] .

where variables X and Y denote messages and variable K denotes a sort key.

The first strand allows the intruder to perform the XOR. The second and third

strands allows the intruder to perform encryption and decryption. The fourth,

fifth, sixth and seventh strands allow the intruder to generate different kind

of keys. The eight strand allows the intruder to generate the XOR null ele-

ment. The ninth strand shows how the intruder can perform the modification

of the original protocol that made Küesters and Truderung of Key Part Import

First and Key Part Import Middle and the tenth strand shows how the key

kek(Km1 ∗Km2 ∗Km3) is used to import a new PIN -derivation key (PDK)

to the security module.

5.2.4 Protocol analysis

The specifications of the attack in Maude-NPA is as follows:

eq ATTACK-STATE(0)

= empty

|| e(PDK, PDK) inI

|| nil

|| nil

|| nil

[nonexec] .

Keep in mind one important thing, as this version is simplest than the

original version of the protocol we do not need any never pattern to reduce

the search space to obtain the desired result.

The number of generated states in the different levels with Maude-NPA tool

is as follows:

68

5.2. CCA-0 VERSION OF KÜESTERS AND TRUDERUNG

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 51 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 331 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 547 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 624 Solutions>> 1

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 936 Solutions>> 4

For this attack pattern Maude-NPA finds an initial state as it was expected.

The sequence of exchanged messages of the attack is as follows:

+(e(PIN * Km1 * Km2 * Km3, PDK)),

-(null),

-(IMP),

+(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

-(EXP),

-(IMP),

+(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(null),

-(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

+(e(KM, PDK)),

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(EXP),

-(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

+(e(EXP * KM, PDK)),

-(e(KM, PDK)),

69

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

-(null),

-(e(EXP * KM, PDK)),

+(e(PDK, PDK))

5.3 IBM’s first recommendations to avoid the

attack

In order to prevent the attack of the CCA-0 protocol [Bond 01], IBM proposed

two recommendation. At the first one, they argue the attack would have to

be carried out by an insider and that the vulnerability is intrinsic to public key

schemes. We suggest that access control should be used to restrict any single in-

sider from having access to both the PKA Symmetric Key Import, Key Import

and Key Translate. The PKA Symmetric Key Import takes an encrypted data

block, containing the key to be imported and corresponding type information

and returns the key encrypted under the local master key. The data block is

encrypted under the public key that corresponds to the security modules private

key.

We created two models, each one allowing access to only one of these functions

and checked them with Maude-NPA. The different API operators for the IBM’s

first recommendation are as follows:

API Operator CCA-1A CCA-1B

Encipher X X
Decipher X X
Key Export X X
Key Import X
PKA Symmetric
Key Import

X

Key Translate X

Table 5.2: CCA API operators and description.

5.4 CCA-1A

In this section, we explain the specification and analysis of the CCA-1A proto-

col, that restricts the kind of commands that certain rules may perform. This

70

5.4. CCA-1A

version of the protocol uses a subset of operations of the original CCA-0 proto-

col (See Section 5.1).

5.4.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.1.1).

5.4.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.4.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the original one (see Section 5.1.3).

The intruder capabilities that we use for this protocol are the same that we

use for the CCA-0 protocol (see Section 5.1.3).

5.4.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, but in

this case NP denotes a different set of ?Never patterns? to reduce the search

space (See Appendix B).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 5 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 9 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

71

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

5.5 CCA-1B

In this section, we explain the specification and analysis of the CCA-1B protocol,

that restricts the kind of commands that certain rules may perform. This version

of the protocol uses a subset of operations of the original CCA-0 protocol and

a new one called PKA Symmetric Key Import. As we previously define,

PKA Symmetric Key Import takes an encrypted data block, containing

the key to be imported and corresponding type information and returns the key

encrypted under the local master key. The data block is encrypted under the

public key that corresponds to the security module private key.

The informal specification of this operator is as follows:

PKA Symmetric Key Import

{eK ; T}PKA → {eK}(KM∗T)

5.5.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.1.1).

5.5.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

72

5.5. CCA-1B

5.5.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the original one (see Section 5.1.3), and

a new one called PKA Symmetric Key Import.

The specification in Maude-NPA of the new operator is as follows:

:: nil :: ***PKA Symmetric Key Import

[nil | -(e(PKA, eK ; T)),

+(e(KM * T, eK)), nil]

The intruder capabilities that we use for this protocol are the same that we

use for the CCA-0 protocol (see Section 5.1.3).

5.5.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, but in

this case NP denotes a different set of ?Never patterns? to reduce the search

space (See Appendix B).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 8 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 19 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 13 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 4 Solutions>> 0

73

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and, when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

5.6 CCA-1B version of Küesters and Truderung

In this section, we explain the specification and analysis of the the version they

made Küesters and Truderung in [Küesters 11] of the original CCA-1B protocol.

In this section we describe the specification and analysis of the version of the

CCA-1B protocol they made Küesters and Truderung in [Küesters 11]. The dif-

ference between this version and the original version is that they cannot handle

the entire exclusive-or theory and because of that should transform the original

Key Translate API operator:

{eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP → {eK}(ekek2∗T)

into these two rules:

{eK}ekek1∗T , T, {ekek1}KM∗IMP → transf(eK,T)

transf(eK,T), {ekek2}{KM∗EXP} → {eK}(ekek2∗T)

5.6.1 Symbols

The symbols that we use for this version of the protocol are the same that we use

for the original one (see Section 5.1.1) except the one for the transf function.

This is specified as follows:

op transf : Key Tipo -> Tipo [frozen] .

This operator is used in Key Translate API operator to translate a key from

encryption under one KEK (of import type) to encryption under another (of

export type).

74

5.6. CCA-1B VERSION OF KÜESTERS AND TRUDERUNG

5.6.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.6.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the version of the original one (see Section

5.2.3) made by Küesters and Truderung, and two new API operators, one called

PKA Symmetric Key Import, and a second one called Key Translate

The specification in Maude-NPA of the first one is as follows:

:: nil :: ***PKA Symmetric Key Import

[nil | -(e(PKA, eK ; T)),

+(e(KM * T, eK)), nil]

And the specification in Maude-NPA of the second one is as follows:

:: nil :: *** Key Translate

[nil | -(e(Kek1 * T, eK)),

-(T),

-(e(KM * IMP, Kek1)),

+(transf(eK, T)), nil]

&

:: nil :: *** Key Translate

[nil | -(transf(eK, T)),

-(e(KM * IMP, Kek2)),

-(e(Kek2 * T, eK)), nil]

[nonexec] .

The intruder capabilities that we use for this protocol are the same that we

use for the CCA-0 protocol (see Section 5.1.3).

5.6.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, to prove

if the recommendation works as it should.

75

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and, when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

5.7 IBM’s second recommendations to avoid the

attack

In order to avoid the attack of the CCA-0 protocol explained in section 5.1.4,

IBM suggested another recommendation. This recommendation use the Access

Control System. Users of IBMs 4758 HSM are assigned to roles that determine

which commands they are allowed to execute. The goal is to prevent one single

individual from having access to all the commands required to mount Bonds

attack. This is enforced using access controls. IBM provide an example of the

KEK transfer process involving five roles (A -E) such that no single role is able

to mount the attack, as we can see in the next table

76

5.7. IBM’S SECOND RECOMMENDATIONS TO AVOID THE
ATTACK

Person Responsibilities Commands
A the two clear key parts, using the Ran-

dom Number Generate command, and
the key verification pattern (KVP)
for the complete key encryption key
(KEK). The First key part is given to
person B, the second to person C, and
the verification pattern to persons C
and E.

Not Applicable

B Enters the first key part into the des-
tination security module.

Key Part Import 1

C Enters the two clear key parts, using
the Random Number Generate com-
mand, and the key verification pattern
(KVP) for the complete key encryp-
tion key (KEK). The First key part is
given to person B, the second to per-
son C, and the verification pattern to
persons C and E.

Key Part Import 3
Key Test

D Distributes the PIN derivation key
(PDK) encrypted under KEK.

Not Applicable

E Verifies that the KEK is correct, then
imports the PDK.

Key Import.
Key Test

Table 5.3: Roles described by IBM in their 2nd recommendation.

77

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

The different API operators and their description for the IBM’s second rec-

ommendation are as follows:

API Operator CCA-2B CCA-2C CCA-2E

Encipher X X X
Decipher X X X
Key Export X X X
Key Import X X
Key Part Import
First

X X

Key Part Import
Last

X

Key Test X X

Table 5.4: CCA Original API operators for the IBM’s second recommendation.

API Operator CCA-2B CCA-2C CCA-2E

Encipher X X X
Decipher X X X
Key Export X X X
Key Import X X
Key Part Import
First

X X

Key Part Import
Last

X

KPI-First + KPI-
Add/Middle

X X

Table 5.5: CCA version of Küesters and Truderung API operators for the IBM’s
second recommendation.

The Key Test API operator command is the equivalent to the KPI-First

+ KPI-Add/Middle API operator command of the version of the protocol of

Küesters and Truderung. It’s important to highlight that even though “Key

Part Import Last” API operator has the same name in both versions, the spec-

ification is different. At the original version, the informal specification is as

follows:

Key Part Import Last

km3, km2{KM∗KP∗T}, T → (km2 * km3){KM∗KP∗T}

Meanwhile for the second one, the modified version of the protocol that made

78

5.8. CCA-2B

Küesters and Truderung in [Küesters 11], the informal specification is as follows:

Key Part Import Last

x, T, KM * KP * T → (x){KM∗T}

x, IMP → (X * km12){KM∗IMP}

To implement this recommendation, additional access control needs to be

assumed, to ensure that no single role is able to perform an attack. From

Sections 5.8 to the 5.10 we follow these recommendations of the CCA protocol.

For this second recommendation, we specify the original CCA-2B, CCA-2C and

CCA-2E and a version of CCA-2C they made Küesters and Truderung of the

original specification of the CCA-2C protocol. This is the only that has different

specifications of the original protocol due to their problems to handle the entire

exclusive-or theory as you could see in Section 5.7.

5.8 CCA-2B

In this section following the second recommendation of IBM we implement the

role of person B, who enters the first key part into the destination security

module as shown in Table 5.3.

5.8.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.1.1).

5.8.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.8.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the original one (see Section 5.1.3). The

intruder capabilities that we use for this protocol are the same that we use for

the CCA-0 protocol (see Section 5.1.3).

79

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

5.8.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, but in

this case NP denotes a different set of ?Never patterns? to reduce the search

space (See Appendix B).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 10 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 7 Solutions>> 0

reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 7 Solutions>> 0

reduce in MAUDE-NPA : summary(8) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(9) .

result Summary: States>> 10 Solutions>> 0

reduce in MAUDE-NPA : summary(10) .

80

5.9. CCA-2C

result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(11) .

result Summary: States>> 0 Solutions>> 0

The protocol is secure against this attack and, when this protocol is analyzed

with Maude-NPA, it generates a finite search state space finding no initial state

for the attack pattern above.

5.9 CCA-2C

In this Section we describe a version of the CCA protocol fulfilling IBM’ second

recommendation. This protocol version implements the role of person C, enters

the second key part and verifies that the completed KEK is correct by checking

the Key Verification Pattern (KVP). Key Test verifies that the completed

KEK is correct by checking the key verification pattern (KVP), that can be

specified. The informal description of this operator is as follows:

Key Test

:: nil :: [nil | +(e(KM * KP * IMP, Km1 * Km2)), nil]

5.9.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.1.1).

5.9.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.9.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the original one (see Section 5.2.3), and a

new one called Key Test.

81

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

The intruder capabilities that we use for this protocol are the same that we

use for the CCA-0 protocol (see Section 5.1.3).

5.9.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, but in

this case NP denotes a different set of ?Never patterns? to reduce the search

space (See Appendix B).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 15 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 31 Solutions>> 0

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 38 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 17 Solutions>> 0

reduce in MAUDE-NPA : summary(7) .

result Summary: States>> 26 Solutions>> 0

At the original version of the protocol (see Section 5.1.4), the attacker just

needs seven steps to find an initial state for the attack-state, so we could as-

sume that if in this version we reached the seventh step without finding an initial

state, the tool won’t find a solution for this attack, so the protocol is secure.

82

5.10. CCA-2C VERSION OF KÜESTERS AND TRUDERUNG

This bound could be set much higher, but informal analysis of the tool’s out-

put, shows that the intruder never would be able to obtain any useful new terms.

At TACAS’s paper [Cortier 07] they do the following assumption for the

same protocol:

Person Bound Analysed

States

Reachable

States

Run-Time (s)

C 3 413 68 58.22

where they do a similar assumption to ours to arrive to the same conclusion.

5.10 CCA-2C version of Küesters and Truderung

In this section we describe the specification and analysis of the version of the

CCA-2C protocol they made Küesters and Truderung in [Küesters 11].

5.10.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.2.1).

5.10.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.2.2).

5.10.3 Strand specification

The strand specification that we use for this subset of the API operators of

the protocol are the same that we use for the original one (see Section 5.2.3),

and a new one called Key Test using the same specification that in the original

version for this API operator .

The difference between this version of Küesters and Truderung [Küesters 11] and

the original version is the specification of the Key Import Last API operator as

we could see in Section 5.7. You could see the specification of the Key Import

Last API operator in Maude-NPA in Section 5.2.3.

83

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

The intruder capabilities that we use for this protocol are the same that we

use for the CCA-0 protocol (see Section 5.2.3).

5.10.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.2.4, to prove

if the recommendation works as it should.

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 2 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 6 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 26 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 48 Solutions>> 0

This bound could be set much higher, but informal analysis of the tool’s out-

put, shows that the intruder never would be able to obtain any useful new terms.

At TACAS’s paper [Cortier 07] they do the following assumption for the

same protocol:

Person Bound Analysed

States

Reachable

States

Run-Time (s)

C 3 413 68 58.22

where they do a similar assumption to ours to arrive to the same conclusion.

5.11 CCA-2E

In this section, we implement the role of person E, that verifies that the KEK

is correct, then imports the PDK. This version of the protocol uses a subset

of operations of the original CCA-0 protocol (See Section 5.1), and Key Test

operator (See Section 5.8).

84

5.11. CCA-2E

5.11.1 Symbols

The symbols that we use for this version of the protocol are the same that we

use for the original one (see Section 5.1.1).

5.11.2 Algebraic properties

The algebraic properties of this protocol version are the same than in the original

version (see Section 5.1.2).

5.11.3 Strand specification

The strand specification that we use for this subset of the API operators of the

protocol are the same that we use for the original one (see Section 5.1.3 to see

the strand specification and see Appendix B to see all the never patterns that

we use in this specification for this recommendation) and Key Test operator

(See Section 5.8.3). The intruder capabilities that we use for this protocol are

the same that we use for the CCA-2B protocol (see Section 5.8.3).

5.11.4 Protocol analysis

We use the same attack pattern of the CCA-0 protocol in Section 5.1.4, but in

this case NP denotes a different set of ?Never patterns? to reduce the search

space (See Appendix B).

The number of generated states in the different levels with Maude-NPA tool

is as follows:

reduce in MAUDE-NPA : summary(1) .

result Summary: States>> 1 Solutions>> 0

reduce in MAUDE-NPA : summary(2) .

result Summary: States>> 3 Solutions>> 0

reduce in MAUDE-NPA : summary(3) .

result Summary: States>> 9 Solutions>> 0

reduce in MAUDE-NPA : summary(4) .

result Summary: States>> 25 Solutions>> 0

85

CHAPTER 5. THE CCA SERIES OF PROTOCOLS

reduce in MAUDE-NPA : summary(5) .

result Summary: States>> 57 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 133 Solutions>> 0

reduce in MAUDE-NPA : summary(6) .

result Summary: States>> 157 Solutions>> 0

As in CCA-2C protocol (see Section 5.8.4), the original version of the proto-

col (see Section 5.1.4), the attacker just needs seven steps to find an initial state

for the attack-state, so we could assume that if in the new version we reached

the seventh step without solution, the tool won’t find a solution for this attack,

so the protocol is secure. This bound could be set much higher, but informal

analysis of the tool’s output, shows that the intruder never would be able to

obtain any useful new terms.

At TACAS’s paper [Cortier 07] they do the following assumption for the

same protocol:

Person Bound Analysed

States

Reachable

States

Run-Time (s)

E 10 54 10 0.03

where they do a similar assumption to ours to arrive to the same conclusion.

86

Chapter 6

Conclusions

From this work we can draw some interesting conclusions. The first one is

how the Maude-NPA can work effectively and appropriate with protocols with

exclusive-or operator and its properties. This has been really useful to us, since

previously existing collection of protocols that handle this property was very

meager, being now far more extensive. By reference to the work of Ralf Küesters

and Tomasz Truderung (see [Küesters 11]), we found another interesting thing

about the Maude-NPA. This has happened on the analysis of the CCA API

protocol. While they, unable to handle the full theory of XOR, were working on

a modified version of the protocol, the Maude-NPA tool could handle both the

modified version and the full version. This has also happened in the versions

that have been made based on IBM recommendations. In these, Maude-NPA

could handle the full versions of these variants, while the tool used by Küesters

and Truderung in his paper could not handle it and must modify some of the

versions recommended by IBM to perform the analysis .

This series of protocols (see Section 5), has also been very interesting because

the Maude-NPA had never previously managed API protocols, thus it was also a

challenge to check whether the tool was able to work with such protocols. Note

that the behavior of the tool has been really good, allowing us to implement

and work with it and to check the cryptographic properties we wanted to check

into it.

This work has raised many challenges that have been solved satisfactorily,

such as whether it can be handled the exclusive-or property completely or if it

could work with API protocols using the Maude-NPA tool.

87

CHAPTER 6. CONCLUSIONS

88

Bibliography

[IBM 08] CCA Basic Services Reference and Guide: CCA Basic Services Ref-

erence and Guide for the IBM 4758 PCI and IBM 4764

[Abadi 06] Abadi, M., Cortier, V.: Deciding knowledge in security protocols

under equational theories. Theoretical Computer Science 367(1-2), 2-32

(2006)

[Armando 05] Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna,

L., Cuellar, J., Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Manto-

vani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J.,

Turuani, M., Viganø, L., Vigneron, L.: The AVISPA tool for the auto-

mated validation of internet security protocols and applications. In: Etes-

sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281-285.

Springer, Heidelberg (2005)

[Armando 04] Armando, A., Compagna, L., Lierler, Y.: SATMC: A SAT-based

model checker for security protocols. In: Alferes, J.J., Leite, J. (eds.)

JELIA 2004. LNCS, vol. 3229, pp. 730-733. Springer, Heidelberg (2004)

[Baudet 09] Baudet, M., Cortier, V., Delaune, S.: YAPA: A generic tool for

computing intruder knowledge. In: Treinen, R. (ed.) Proceedings of the

20th International Conference on Rewriting Techniques and Applications

(RTA 2009), Brasilia, Brazil. LNCS.Springer, Heidelberg (to appear, 2009)

[Boichut 04] Boichut, Y., Héam, P.-C., Kouchnarenko, O., Oehl, F.: Improve-

ments on the Genet and Klay technique to automatically verify security

protocols. In: Proceedings of Automated Verification of Infinite States

Systems (AVIS 2004). ENTCS (2004)

[Bursuc 09] Bursuc, S., Comon-Lundh, H.: Protocol security and algebraic

properties: decision results for a bounded number of sessions. In: Treinen,

89

http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf

BIBLIOGRAPHY

R. (ed.) Proceedings of the 20th International Conference on Rewrit-

ing Techniques and Applications (RTA2009), Brasilia, Brazil. LNCS.

Springer, Heidelberg 2009

[Chevalier 08] Chevalier, Y., Rusinowitch, M.: Hierarchical combination of in-

truder theories. Inf.Comput. 206(2-4), 352-377 (2008)

[Ciobâca 09] Ciobâca, S., Delaune, S., Kremer, S.: Computing knowledge in

security protocols under convergent equational theories. In: Schmidt, R.

(ed.) Proceedings of the 22nd International Conference on Automated

Deduction (CADE 2009), Montreal, Canada. LNCS (LNAI). Springer,

Heidelberg 2009

[Durgin 04] Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewrit-

ing and the complexity of bounded security. Journal of Computer Security,

677-722 (2004)

[Millen 87] Millen, S.F.J.K., Clark, S.C.: The interrogator: Protocol security

analysis. IEEE Transactions on Software Engineering, 274-288 (February

1987)

[Lowe 96] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key

protocol using FDR. Software Concepts and Tools 17, 93-102 (1996)

[Meadows 96] Meadows, C.: The NRL protocol analyzer: An overview. Journal

of logic program-ming 26(2), 113-131 (1996)

[Mitchell 97] Mitchell,J.,Mitchell,M.,Stern,U.:Automated analysis of crypto-

graphic protocols using Murphi. In: IEEE Symposium on Security and

Privacy. IEEE Computer Society, Los Alamitos (1997)

[Paulson 98] Paulson, L.C.: The inductive approach to verifying cryptographic

protocols. Journal of Computer Security 6(1-2), 85-128 (1998)

[Rusinowitch 01] Rusinowitch, M., Turuani, M.: Protocol insecurity with a fi-

nite number of sessions and composed keys is NP-complete. In: 14th IEEE

Computer Security Foundations Workshop, pp. 174-190 (2001)

[Ryan 98] Ryan, P.Y.A., Schneider, S.A.: An attack on a recursive authentica-

tion protocol. a cautionary tale. Inf. Process. Lett. 65(1), 7-10 (1998)

90

BIBLIOGRAPHY

[Stubblebine 00] Stubblebine, S., Meadows, C.: Formal characterization and

automated analysis of known-pair and chosen-text attacks. IEEE Journal

on Selected Areas in Communications 18(4), 571-581 (2000)

[Küesters 11] Ralf Küesters, Tomasz Truderung: Reducing Protocol Analysis

with XOR to the XOR-Free Case in the Horn Theory Based Approach. J.

Autom. Reasoning 46(3-4): 325-352 (2011)

[Keifgren 07] Gavin Keifgren, Graham Steel and Alan Bundy. Analysing IBMs

Common Cryptographic Architecture API with a Protocol Analysis Tool.

ACM Journal Name, Vol. V, No. N, May 2007

[Bond 01] Bond, M.: Attacks on cryptoprocessor transaction sets. In: Crypto-

graphic Hardware and Embedded SystemsCHES 2001. Third International

Workshop. Lecture Notes in Computer Science, vol. 2162, pp. 220234.

Springer, Heidelberg (2001)

[Shoup 96] Shoup, V., Rubin, A.: Session key distribution using smart cards. In:

Advances in Cryptology EUROCRYPT 96, International Conference on

the Theory and Application of Cryptographic Techniques. Lecture Notes

in Computer Science, vol. 1070, pp. 321331. Springer, Heidelberg 1996

[Chevalier 05] Chevalier, Y., Ralf Küesters, R., Rusinowitch, M., Turuani, M.:

An NP decision procedure for protocol insecurity with XOR. Theor. Com-

put. Sci. 338(1-3): 247-274, 2005

[Dolev 83] D. Dolev, A. Yao. On the security of public key protocols. IEEE

Transaction on Information Theory, vol. 29, no. 2, pages 198208, 1983

[Escobar 09] S. Escobar, C. Meadows, J. Meseguer. Maude-NPA: Cryptographic

Protocol Analysis Modulo Algebraic properties. In A. Aldini, G. Barthe,

R. Gorrieri, editeurs, FOSAD 2008/2009 Tutorial Lectures, volume 5705

of LNCS, pages 150. Springer, 2009.

[Escobar 09a] S. Escobar, C. Meadows and J. Meseguer. Maude-NPA: Cryp-

tographic Protocol Analysis Modulo Equational Properties. In A. Aldini,

G. Barthe and R. Gorrieri, editeurs, FOSAD 2008/2009 Tutorial Lectures,

volume 5705 of LNCS, pages 1-50. Springer, 2009.

[Escobar 09b] Santiago Escobar, Catherine Meadows and José Meseguer.

Maude-NPA, version 1.0. University of Illinois at Urbana-Champaign,

March 2009. Available at http://maude.cs.uiuc.edu/tools/Maude-NPA.

91

BIBLIOGRAPHY

[Escobar 14] S. Escobar, C. Meadows, J. Meseguer, S. Santiago. State Space Re-

duction in the Maude-NRL Protocol Analyzer, In Information and Com-

putation, to appear, 2014

[Bull 97] Bull, J.A., Otway, D.J.: The authentication protocol. Technical Re-

port. DRA/CIS3/PROJ/ CORBA/SC/1/CSM/436-04/03, Defence Re-

search Agency, Malvern, UK, 1997

[Bella 03] Giampaolo Bella. Inductive verification of smart card protocols, in

Journal of Computer Security 11 (2003) 87132 87 IOS Press

[Cortier 07] V. Cortier, G. Keighren and G. Steel. Automatic Analysis of the Se-

curity of XOR-based Key Management Schemes, in Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’07)

[Lowe 96] G. Lowe, Breaking and fixing the Needham-Schroeder public-key pro-

tocol using FDR, in: Tools and Algorithms for the Construction and Anal-

ysis of Systems (TACAS 1996), Lecture Notes in Computer Science, Vol.

1055, Springer, Berlin, 1996, pp. 147-166

[Maude 09] M.Clavel, F.Durán, S.Eker, P.Lincoln, N.Mart́ı-Oliet J.Meseguer

C.Talcott. Maude Manual (Version 2.4), October 2008 (Revised February

2009)

[Comon-Lundh 03] H. Comon-Lundh, V. Shmatikov. Intruder Deductions, Con-

straint Solving and Insecurity Decision in Presence of exclusive-or. LICS

2003: 271

[Küsters 08] Küsters, R., Truderung, T.: Reducing protocol analysis with XOR

to the XOR-free case in the Horn theory based approach. In: Proceedings

of the 15th ACM Conference on Computer and Communications Security

(CCS 2008), pp. 129-138. ACM, New York, 2008

[Meseguer 92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of

Concurrency. Theoretical Computer Science, vol. 96, no. 1, pages 73-155,

1992

[TeReSe 03] TeReSe, editor. Term rewriting systems. Cambridge University

Press, Cambridge,2003

[Thati 07] P. Thati and J. Meseguer. Symbolic reachability analysis using nar-

rowing and its application verification of cryptographic protocols, J.

92

BIBLIOGRAPHY

Higher-Order and Symbolic Computation, 2007, volume 20, number 1-

2, pages 123-160

[Escobar 12] Santiago Escobar, Ralf Sasse and José Meseguer, Folding Variant

Narrowing and Optimal Variant Termination,J. Log. Algebr. Program.,

2012,

[Keighren 06] Gavin Keighren. Model Checking IBM’s Common Cryptographic

Architecture API. Informatics Research Report 862, SCHOOL of INFOR-

MATICS, October 2006

[DES Encryption] Data Encryption Standard (DES), Dec. 1993. Federal In-

formation Processing Standards publication 46-2. Available online at

www.itl.nist.gov.

[Meseguer 98] J. Meseguer. Membership algebra as a logical framework for

equational specification. In F. Parisi-Presicce, editor, Proc. WADT-97,

pages 18-61. Springer LNCS 1376, 1998.

[Escobar 06] Escobar, S., Meadows, C., Meseguer, J., 2006. A rewriting-based

inference system for the NRL protocol analyzer and its meta-logical prop-

erties. Theor. Comput. Sci. 367 (1-2), 162–202.

[Escobar 09c] Escobar, S., Meadows, C., Meseguer, J., 2009. Maude-NPA :

Cryptographic protocol analysis modulo equational properties. In: Aldini,

A., Barthe, G., Gorrieri, R. (Eds.), FOSAD 2008/2009 Tutorial Lectures.

Vol. 5705 of LNCS. Springer, pp. 1-50.

[Maude-NPA 09] Maude-NPA : Escobar, S., Meadows, C., Meseguer, J.:

Maude-NPA, version 1.0. University of Illinois at Urbana-Champaign

(March 2009)

[Chen 09] Xihui Chen, Ton van Deursen, Jun Pang: Improving Automatic Ver-

ification of Security Protocols with XOR. ICFEM 2009: 107-126

[Steel 05] Graham Steel: Deduction with XOR Constraints in Security API

Modelling. CADE 2005: 322-336

[Proverif 10] ProVerif: Cryptographic protocol verifier in the formal model

93

http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://maude.cs.uiuc.edu/tools/Maude-NPA
http://maude.cs.uiuc.edu/tools/Maude-NPA
http://maude.cs.uiuc.edu/tools/Maude-NPA
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

BIBLIOGRAPHY

94

Appendix A

Never Patterns in CCA-0

Protocol

(S:StrandSet || (e(#0:Key, KM * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (PDK inI,K:IntruderKnowledge))

(S:StrandSet || (e(EXP,PDK) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km1 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km2 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km3 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(EXP * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(PDK * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(PIN * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((Km1 * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((Km2 * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((KM * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((KP * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((PDK * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(#0:Key, IMP * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km2 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * EXP * Km2 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km1 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * EXP * Km1 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (#0:Msg * e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KM, PIN * Km1 * Km2 * Km3)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2 * #1:Key)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2 * #1:Key)) inI,K:IntruderKnowledge)

(S:StrandSet || (Km1 inI,K:IntruderKnowledge))

(S:StrandSet || (Km2 inI,K:IntruderKnowledge))

(S:StrandSet || (Km3 inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km1 * Km2 * #0:Key) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, Km1 * Km2 * #1:Key) inI,K:IntruderKnowledge))

(S:StrandSet || ((PIN * EXP) inI,K:IntruderKnowledge))

(S:StrandSet || ((EXP * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (#0:Msg * e(#0:Key, #1:Msg)) inI,K:IntruderKnowledge)

95

APPENDIX A. NEVER PATTERNS IN CCA-0 PROTOCOL

(S:StrandSet || (e(KP * KM, #0:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(#0:Key, null) inI,K:IntruderKnowledge))

(S:StrandSet || (e(PIN * EXP * Km1 * Km2 * Km3, PDK) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KM, #0:Tipo * #1:EKey) inI,K:IntruderKnowledge))

(S:StrandSet || (e(null, PDK) inI,K:IntruderKnowledge))

96

Appendix B

Never Patterns for IBM’s

recommendations

(S:StrandSet || (e(#0:Key, KM * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (PDK inI,K:IntruderKnowledge))

(S:StrandSet || (e(EXP,PDK) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km1 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km2 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(Km3 * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(EXP * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(PDK * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(PIN * KP * KM,#1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((Km1 * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((Km2 * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((KM * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((KP * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || ((PDK * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(#0:Key, IMP * #1:Msg) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km2 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * EXP * Km2 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km1 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * EXP * Km1 * Km3) inI,K:IntruderKnowledge))

(S:StrandSet || (#0:Msg * e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KM, PIN * Km1 * Km2 * Km3)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2 * #1:Key)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2)) inI,K:IntruderKnowledge)

(S:StrandSet || (#0:Msg * e(IMP * KP * KM, Km1 * Km2 * #1:Key)) inI,K:IntruderKnowledge)

(S:StrandSet || (Km1 inI,K:IntruderKnowledge))

(S:StrandSet || (Km2 inI,K:IntruderKnowledge))

(S:StrandSet || (Km3 inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, PIN * Km1 * Km2 * #0:Key) inI,K:IntruderKnowledge))

(S:StrandSet || (e(IMP * KP * KM, Km1 * Km2 * #1:Key) inI,K:IntruderKnowledge))

(S:StrandSet || ((PIN * EXP) inI,K:IntruderKnowledge))

(S:StrandSet || ((EXP * Km3) inI,K:IntruderKnowledge))

97

	Introduction
	Background on Term Rewriting
	Maude-NPA
	Maude-NPA's Execution Model
	Syntax for Protocol Specification
	Specifying the Protocol Syntax
	Algebraic Properties
	Specifying the Strands

	Protocol Analysis

	Protocols with XOR
	Needham-Schroeder Protocol with XOR algebraic properties (XOR-NSL)
	Symbols
	Algebraic Properties
	Strand specification
	Protocol analysis

	Fixed Needham-Schroeder protocol with XOR algebraic properties (XOR-NSL-Fix)
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	Bull Recursive Authentication Protocol (RA)
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	Bull Recursive Authentication Protocol Fix (RA-Fix Protocol)
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	Shoup-Rubin Protocol
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	Symmetric Key distribution protocol using Smart Cards (SK3)
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	The CCA series of protocols
	CCA-0 Original
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-0 version of Küesters and Truderung
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	IBM's first recommendations to avoid the attack
	CCA-1A
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-1B
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-1B version of Küesters and Truderung
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	IBM's second recommendations to avoid the attack
	CCA-2B
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-2C
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-2C version of Küesters and Truderung
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	CCA-2E
	Symbols
	Algebraic properties
	Strand specification
	Protocol analysis

	Conclusions
	Bibliography
	Appendix Never Patterns in CCA-0 Protocol
	Appendix Never Patterns for IBM's recommendations

