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Abstract

This paper presents an efficient method for computing approximations for
general matrix functions based on mixed rational and polynomial approx-
imations. A method to obtain this kind of approximation from rational
approximations is given, reaching the highest efficiency when transforming
nondiagonal rational approximations with a higher numerator degree than
the denominator degree. Then, the proposed mixed rational and polynomial
approximation can be successfully applied for matrix functions which have
any type of rational approximation, such as Padé, Chebyshev, etc., with
maximum efficiency for higher numerator degrees than the denominator de-
grees. The efficiency of the mixed rational and polynomial approximation is
compared with the best existing evaluating schemes for general polynomial
and rational approximations, providing greater theoretical accuracy with the
same cost in terms of matrix multiplications. It is well known that diagonal
rational approximants are generally more accurate than the corresponding
nondiagonal rational approximants which have the same computational cost.
Using the proposed mixed approximation we show that the above statement
is no longer true, and nondiagonal rational approximants are in fact generally
more accurate than the corresponding diagonal rational approximants with
the same cost.
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1. Introduction

Matrix functions play a fundamental role in many areas of science and
engineering and are an important subject of study in pure and applied math-
ematics [1, 2]. Evaluating a function f(A) of an n-by-n matrix A is a fre-
quently occurring problem and many techniques for its computation have
been proposed. The main methods for general functions are those based on
polynomial approximations, rational approximations, similarity transforma-
tions and matrix iterations [1].

In this paper we propose the use of mixed rational and polynomial approx-
imations to compute matrix functions. We show that this kind of approxi-
mation can be more efficient than polynomial and rational approximations
which provide similar theoretical accuracy. Moreover, we show their relation
with rational approximations, and provide a method to obtain the mixed
approximations from rational approximations whenever they exist for the
considered matrix function, showing that the mixed rational and polynomial
approximation can be applied to matrix functions which have any type of
rational approximation, such as Padé, Chebyshev, etc., reaching maximum
efficiency for nondiagonal rational approximations.

Throughout this paper R™*™ and C™*"™ denote the sets of real and complex
matrices of size n X n, respectively, and I denotes the identity matrix for both
sets. Z denotes the set of integers, [2] denotes the lowest integer not less
than x and |z| denotes the highest integer not exceeding x.

We will describe the cost of the computations counting the number of
matrix operations, denoting by M the cost of a matrix multiplication, and
by D the cost of the solution of a multiple right-hand side linear system
AX = B, where matrices A and B are n X n.

This paper is organized as follows. Section 2 summarizes results for effi-
cient polynomial and rational approximations for general matrix functions.
Section 3 deals with the proposed mixed rational and polynomial approxi-
mation. Section 4 gives a method to obtain the mixed approximations from
nondiagonal rational approximations, and discusses some rounding error is-
sues in the evaluation of the mixed approximation. Section 5 studies the

ional
and polynomial approximations. Finally, conclusions are given in Section 6.



2. Polynomial and rational approximations

Many methods for the computation of matrix functions based on polyno-
mial and rational approximations have been proposed [2, 1]. Among them,
the most widely used techniques are those based on Taylor, Padé and Cheby-
shev approximations. In the following subsections we summarize results for
the cost of evaluating polynomial and rational approximations, and some
basic properties for Taylor, Padé and Chebyshev approximations.

2.1. Polynomial approximations of matrix functions

Among the different polynomial approximations, Taylor series is a basic
tool for computing matrix functions, see Section 4.3 of [1, p. 76-78]. Let
f(A) be a matrix function defined by a Taylor series that converges for the
square matrix A. Then, we denote T,,(A) the matrix polynomial of degree
m that defines the truncated Taylor series of f(A). For z € C the truncated
Taylor series T,,(x) of a scalar function f(z) about the origin satisfies

f(@) = T(2) = O(@™*), (1)

and, from now on, we will refer to m as the order of the Taylor approximation.

Below we retrieve some results for the cost of evaluating a matrix polyno-
mial in terms of matrix multiplications M. From (4.3) of [1, p. 74] it follows
that the cost of evaluating a matrix polynomial of degree m

P (A) = ibkAk, (2)
k=0

using Horner and Paterson-Stockmeyer’s methods [3] is

) 1 if s divides m,
(s+r—1—g(s,m))M, with r=|m/s|, g(s,m)= { 0 otherwise,

(3)
and this quantity is approximately minimized by s = /m, so we can take
s = [y/m] or s = |\/m], giving both values the same cost [1, p. T4].

From [4, p. 6454-6455], see Table 4.1 of [1, p. 74|, using Horner and
Paterson-Stockmeyer’s methods the maximum degrees of the matrix polyno-

mial (2) that can be evaluated for a given number of matrix products are

m = {1,2,4,6,9,12,16,20,25,30,36,.. .} , (4)
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Table 1: Cost Cp in terms of matrix multiplications for the evaluation of
polynomial P,,(A) with the first ten values of m .

i.e. for m = s? (odd positioned elements in m*) and m = s(s + 1) (even
positioned elements in m*), both with s = 1,2, 3, ... The evaluation of matrix
polynomial (2) for the degrees in m* can be performed with minimum cost
using evaluation formula (23) of [4, p. 6455]

Po(A) = {{- - {bn A"+ by 1A+ by 1At by I}
x A°+ bm 5,1145 ! + bmfs 2145 2 + ...+ bm 25+1A + bmfgsl}
X A* + bm 2571145 ! + bmf2s 2A572 +.ot bm 35+1A + bmf?)s]}

X AS by AT by g A2 4 by A+ Ty, (5)

after computing and saving matrix powers A%, A3, ..., A*, where one can take
s = [v/m] or s = |\/m]|. Both selections of s divide m and give the same
total cost. Hence, the cost of evaluating (5), denoted by Cp, is (s 1)M to
compute the matrix powers, plus (m/s 1)M for evaluating the remaining
matrix products in (5), to give

Cp=(r+s—2)M, withr=|m/s| =m/s, (6)

see (3). Table 1 presents the cost Cp of evaluating (5) in terms of matrix
multiplications for the first ten values of m*.

One of the most studied matrix functions is the matrix exponential exp(A).
For A € C™*™ the matrix exponential can be defined by the Taylor series

k
exp(A) = Z % (7)
k>0

tions
has been proposed for its computation in [5]. The algorithm uses Horner and
Paterson-Stockmeyer’s evaluation schemes and is competitive with state-of-
the-art algorithms in the literature, such as the one proposed in [6]. New
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kinds of polynomial approximations based on series of orthogonal matrix
polynomials have been proposed for the matrix exponential and other matrix
functions in [4, 7, 8].

2.2. Rational approrimations of matriz functions

Rational functions
__ DPkm (l’ )

(@) ®)
where pp,, and qpm, are polynomials in z of degree at most k and m, re-
spectively, are also basic tools for approximation, and they are better able
than polynomials to mimic the behavior of general nonlinear functions, see
Section 4.4 [1, pp. 78-81]. Two of the main classes of rational approxima-
tions used in the computation of matrix functions are Chebyshev and Padé
approximations.

We summarize some basic results for rational approximations from [1].
Let Ry denote the space of rational functions with numerator and denom-
inator of degrees at most k and m, respectively. The rational function r is a
Chebyshev approximation to f on [a,b] from Ry, if

I7(@) = f(@)lloo = min |ls(z) = f(2)||, (9)

k,m

T ()

where ||g||cc = max,epy |9(x)|. Chebyshev approximation is usually only
employed for Hermitian matrices, so that error bounds for the scalar problem
translate directly into error bounds at a matrix level.

The rational scalar function 74,,(%) = pem(®)/qem(x) is a [k/m] Padé
approximant of scalar function f(x) if ry,, € Rim, ¢em(0) =1, and

f(@) = rim(@) = O+, (10)

From now on, dg will denote the degree of the last term of the Taylor series of
f about the origin that 74, (z) reproduces, i.e. dg = k+ m, and we will refer
to dr as the order of the Padé approximation. If a [k/m]| Padé approximant
exists then it is unique, and it is usually required that py,, and ¢, have no
common zeros, so that they are unique. For a given f, k and m, a [k/m)]
Padé approximant might not exist, though for certain f existence has been
proved for all k and m. That is the case of the matrix exponential [9], where
using (10.23) [1, p. 241] the [k/m| Padé approximant rg,,(A) of the matrix
exponential is defined by

Tkm(A) = pkm(A) (ka(A)) ! ) (11)
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(k+m— )kl . k+m—])'m'
A) = E Al m( Z &

J=0 J=
(12)

Classical theory states that nondiagonal rational approximants, i.e. 7y,
with k # m, are less accurate than diagonal rational approximants 7;;, where
J = max(k, m), and that r;; can be evaluated at a matrix argument with the
same cost [9, p. 11|, [2, p. 573], [1, p. 242]. In the following sections we
show that the last part of this statement is no longer true.

Note that the multiplication by the matrix inverse in (11) is calculated as
the solution of a multiple right-hand side linear system. From [10] the cost of
the matrix product for n x n sized matrices and the solution of the multiple
right-hand side linear system of the same size are 2n® —n? and % — "22 + o
flops, respectively. Therefore, the cost of solving the multiple right-hand side
linear system is asymptotically 4/3 matrix products:

D ~ 4/3M. (13)

Section 4.4.3 of [1, 80-81] analyzes the cost of evaluating rational func-
tions. When the Paterson-Stockmeyer method is used to evaluate py,,(A)
and ¢mm(A) from a diagonal rational approximation 7,,,,(A), savings can be
made: the powers A%, A%,..., A® can be computed once and used in both
the evaluations of p,,m(A) and ¢m(A). From [1, p. 80] the cost of evaluating
Tmm 1S then

(s+2r—1—2g(s,m))M + D, with r = |[m/s], (14)

where g(s,m) is defined in (3). This quantity is approximately minimized
by s = v/2m, and therefore one takes for s whichever of [v/2m] and [v/2m]
yields the smaller operation count.

From Table 4.2 of [1, p. 80] the maximum values of m that can be
obtained for a given number of matrix multiplications in r,,,,(A) are

t=11,2,3,4,6,8,10,12,15,.. .} . (15)
Using (13) and (14), the cost of evaluating 7,,,(A) for the values of m™ is
Cr=2r+s—3M+D~Q2r+s—1 2/3)M, r=m/s, (16)
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mt [ 1 2 3 4 6 8 10 12 15

T 0 1 2 3 1 5 6 7 8
Cr | 1+1/3 241/3 3+1/3 4+1/3 5+1/3 6+1/3 7+1/3 8+1/3 9+1/3
dr 2 4 6 8 12 16 20 24 30

Table 2: Number of matrix products m,, and cost in terms of matrix multi-
plications Cg for diagonal rational approximation 7,,,(A). Approximation
order dp if r,,, is a Padé approximant of a given function f.

where s takes whichever value s = [v/2m] or s = |v/2m/] divides m and gives
the smaller Ckg.

From Table 4.2 of [1, p. 80] Table 2 presents the number of matrix
products, denoted by 7,,, needed for evaluating both p,,,m(A) and gunm(A)
for a diagonal rational function r,,,(A) and the first values of m*, using
Horner and Paterson-Stockmeyer’s method. This table also presents the
total cost Cg of evaluating 7,,,(A) in terms of matrix products, where we
have used (13), and the order dg of the approximation 7, (x) if it is a Padé
approximant of a given function f(x), i.e. dg = 2m.

3. Mixed rational and polynomial approximation.

The proposed method is based on using mixed rational and polynomial
approximations of the type

() = Z;Eg + (), (17)

where u;(x), vy (z) and w;(z) are polynomials of x of degrees at most j, k and
[, respectively, u;j(x) and v(x) have no common zeros, and v;(0) = 1. When
x is a matrix in C"*", adding polynomial w;(x) can provide extra accuracy
at the same cost in terms of matrix multiplications as the evaluation of the
rational expression u;(x)v, ' (z). The following example illustrates this fact.

Example 3.1. From (12) the diagonal Padé approximant rop(x) for the scalar
exponential e*, v € C, is given by

?/12+x/2+1
22/12  z/2+1’

roo(z) = (18)



and it satisfies
" —ry(r) = O(2”). (19)

Thus, the Taylor series of roa(x) reproduces the first five terms of the Taylor
series of the exponential ¢* about the origin, i.e. Z?:o 27 /3!, For a matrix
A in C™", the computation of Padé approximant reo(A) can be performed
efficiently by the evaluation of the matriz power Ay = A?, and the solution
of the corresponding multiple right-hand side linear system to obtain

roo(A) = (A /12 4+ A/2 +1) x (A3/12 — A/2 4+ 1)1, (20)

with total cost M + D.
Now, for the matriz exponential we show how to obtain an approximation
of the type (17)
uy(x)

2122(1') = UQ(J;) + wg(l'), (21)

whose cost for square matrices is the same as the cost of evaluating rqs(A),
and with

e® — 213 (x) = O(z"). (22)
Let uy(z) = byz + by and vy(x) = ayx® + a1z + 1. We can obtain the coeffi-
ctents by, by, a1 and ay so that Taylor expansion of rational approrimation

uy(x)/va(x) reproduces the terms of degrees 3, 4, 5, 6 of the exponential Tay-
lor series to give

ui(z) = 55/92 — 125/6, wy(x) = 2%/30 — /3 + 1. (23)
The first terms of Taylor expansion of rational expression us(x)/vo(x) are
—125/6 — 5/6x + 5/122° + 2° /3! + 2* /A + 2° /5! + 25 /6! + 27 /5400, . .. (24)
Hence, taking
wy(z) = 1/122° + 11/62 + 131/6, (25)

and

550z — 1875  2? 1lz 131
322 — 30z + 90 * 12+ 6 * 6’
where ug(x) and va(x) have been multiplied by 90 so that all the coefficients
in the rational part of z195(x) are integer, it follows that z199(x) satisfies (22).
For a matric A € C* ", the evaluation cost of z129(A) is the same as that

2122 (JJ) = (26)



for roo(A), i.e. M + D. Note that manipulating adequately zi90(x) we can
obtain an equivalent expression zag(x):

13122 — 210 180 211
wyw) = e T T T o7

us() LT
622 — 60x + 180 12 6

vo()

2122 (I) = 2222 (I) =

where uy(0)/v2(0) = 1 and Taylor expansion of the rational part us(x)/ve(x)
reproduces the terms of degrees 0, 3, 4,5 and 6 of the exponential Taylor
series.

It is important to note that the Taylor approximation of the same order
as z192(A) and z995(A), i.e order 6, can be evaluated efficiently using Horner
and Paterson-Stockmeyer’s expression (5) in the following way

To(x) =) %T = ((A2/6! 4+ A/5) + TJANA? + A/31 + T/2)A% + A+ I, (28)
k=0

at cost 3M. Thus, using approximation (26) or (27) with cost M + D instead
of (28), we are changing two matrix products for the solution of one multi-
ple right-hand side linear system to obtain the same approximation order.
Hence, using (13), for square matrices and the same approximation order,
the mixed polynomial and rational approximation saves 2/3 matrix prod-
ucts with respect to the truncated Taylor series. And with respect to Padé
diagonal approximation, the mixed polynomial and rational approximation
increases the degree of the approximation error order from O(x°) to O(z7)
at the same cost in terms of matrix multiplications.

Moreover, the following example shows how we can perform aggregations
of expressions of type (17) to increase the approximation order with an even
lower cost.

Example 3.2. From (10) the diagonal Padé approximant rss(x) for the scalar
exponential ¥, v € C satisfies

e® —r55(x) = O(z'h). (29)

Using (12), for a matrix A in C™*", the Padé approximant rss(A) can be
computed by the solution of the corresponding multiple right-hand side system
to obtain

rs5(A) = (A°/30240 + A*/1008 + A /72 + A*/9 + A/2 + 1)
x (—A®/30240 + A*/1008 — A%/72 + A%/9 — A/2 4+ 1) 1. (30)
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From Table 4.2 of [1, p. 80], the cost of computing rss(A) is 4 M to ob-
tain the numerator and the denominator of rs5(A) and the cost of solving
the system, to give 4M + D =~ (5 + 1/3)M where (13) has been used. How-
ever, [11, p. 1183-118/] shows that for the matriz exponential we can ex-
ploit the similarity between numerator and denominator coefficients to re-
duce the work, and using (13) from Table 2.2 [11, p. 1184] the reduced cost
is 3M + D~ (4 +1/3)M.

Proceeding as in Example 3.1 we can obtain an approximation of type

(17)

ug(x
Z342($) = 3( ) +UJ2(I) (31)
vy(x)
B 176962 223440z + 1651104z 4304160 n x? n 292 869
1524 — 42023 + 504022 — 30240z + 75600 30 15 157
where uz(x) /vy(x) reproduces the terms 3, 4, ..., 10 of the exponential Taylor

series, and z342(x) satisfies
e — z349(x) = O(x'h). (32)
As in Example 3.1, we can also obtain an equivalent expression

8692 — 663623 + 685442% — 100800z + 75600 z* 29z

5ot 42029 1 50402 302407 1 75600 30 15 ¥ (z),

(33)
where the rational part reproduces the exponential Taylor series terms of de-
grees 0, 3, 4,...,10. The evaluation cost of both (31) and (33) for a square
matriz A is 3M to obtain the powers A%, A3 A*, and D, i.e. 3M + D =~
(441/3)M. The same cost holds if we compute only A% and use Horner and
Paterson-Stockmeyer’s method to compute the numerator and denominator
of zyaa(A) or z349(A).

Now, we proceed to transform (33) into the following expression

2442 (JU) =

uy(z) u(@) o ()
Zagp(x) = m +wy(7) = (Ué)(m) +up(z)  Juy (@) +wh(z), (34)

where wh(x) = 2%/30 4+ 292 /15 and
o(@) = v (@) (@), wa(e) = u? (@) + 07 @)uiP (@) (35)
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There are different options for factorizing vy(x) into the product U§2) (m)vél)(ac).

If real matrices are considered, factorizations with all real coefficients avoid
complex arithmetic when evaluating the mized rational and polynomial ap-
proximation zjg. Then, taking into account that, for instance, 75600 =
280 x 270, we used Matlab’s Symbolic Math Toolbox and high precision arith-
metic to obtain the following factorization of vy(z) with real coefficients

vi(z) = (@22 + Pz + 280)(aV2? + V2 + 270), (36)

solving the corresponding system of equations, where the values of the con-
stants with 20 significant digits are

al? = 3.6072579301677768986, a\” = 44.739103822600446097,
al?) = 4.1582831863931438203, a\" = —64.858721313920998406. (37)

This factorization of vy(x) gives ugg)(m) = ng)I2 + ng)I + b(()Q) and ug)(m) =
bg)mQ + bgl)m, where

b? = 52459.797022614745322, b\”) = —422291.34163282687469, b’ = 75600,
Y = 240.90320593170946532, b = 1148.1833629743816953. (38)

Note that from (36) it follows that v4(0) # 1, as we multiplied the numerator
and denominator of the rational part of zssa(x) by 75600 so that both of them
had integer coefficients.

Using (34), approximation zys(A) can be evaluated in one matriz product
to obtain Ay = A? and two solutions of multiple right-hand side systems,
resulting in M + 2D =~ (3 + 2/3)M. Thus, (34) can be evaluated saving 2/3
matriz products with respect to the most efficient existing evaluation scheme
for matrixz exponential rational approximation rss(A) [11].

Taking into account Example 3.2, we propose the following general expres-
sion for the aggregation of mixed rational and polynomial approximations

tijs(x) = ((-+- (ul?(2)/v0(2) + ulD (@) /ol V() +ul ?(2))
Jol D)+l D)) [+ ulD (@) ol (@) +wgl@), (39)

where v (x), ugk)(m), k =1,2,...,i, are polynomials of x with degrees at
most s, wjs(z) is a polynomial of x with degree at most js, and 4 1,
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s > 0 and 7 > 0. We will show in Section 5 that the definition of w;s as a
polynomial of degree js instead of just s provides the lowest cost for some
orders of approximation.

Note that the number of divisions in (39) is directly equal to variable i.
Hence, for convenience, for ¢ = 0 we take

tijs(x) = wjs(x), i=0. (40)

and then ¢ ;s(x) is a polynomial.
The following section provides a method to obtain ¢;;, from rational ap-
proximations.

4. Method for obtaining mixed rational and polynomial approxi-
mations. Rounding error issues.

Note that using (39) it follows that

tijs(w) = (Wl (@) + ol (@)ul V(@) + o (@)l D (z)ul ()
oo @l (@) o @)l (o) (41)
o0 @)l V(@) oD@ (o)) /O @)l @) o)),
which is a nondiagonal rational expression with numerator of degree at most
(i + j)s and denominator of degree is. Hence, if for a given function f
there exists any type of nondiagonal rational approximation, such as Padé,
Chebyshev, etc., with numerator and denominator degrees (i + j)s and is,
respectively, with ¢ > 1, s 0 and 7 0, then we can obtain an equivalent
approximation of type (39) by factorizing its denominator in the polynomials
ng)(x), k =1,2,...,4, and then obtaining the polynomials ulk) (), k =
1,2,...,4 and wjs(z) by successive polynomial division. For the case of
Examples 3.1 and 3.2 it is easy to show that approximations (27) and (33) are
equivalent to exponential nondiagonal Padé approximants r4(x) and res(z),
respectively. Analogously, nondiagonal rational Chebyshev approximations
can be transformed into equivalent approximations of type (39). For the case
where the original nondiagonal rational expression has all real coefficients
and s is even, it is possible to obtain ¢;;; with all real coefficients, avoiding
complex arithmetic if A € R™ .
Note that we can also obtain approximations of type (39) from diagonal
rational approximations. In that case j = 0, and therefore wj, is null or a

12



constant. However, Section 5 shows that these approximations are not so
efficient as those with j > 0.

Now we present an example where we obtain a mixed rational and poly-
nomial approximation from a rational approximation of the matrix cosine:

Example 4.1. From [1, p. 290] the diagonal Padé approximant ray(zx) for
the scalar cosine cos(z), x € C, is given by

313/151202% — 115/25222 + 1
13/151202% + 11/2522% + 1

T44(JJ) =

and it satisfies

cos(z) — ry(z) = O(2'°). (43)
From Table 12.1 of [1, p. 290/, the computation of Padé approzimant ryu(A)
for a matriz A in C"*™ can be performed efficiently with total cost 2M + D.

Using MATLAB Symbolic Toolbox the rational Padé approximation rgy(x) is
given by

127 o7 6 11212t 27142
() — TOI0  Towo + ey — et + 1 "
84 - 7 + 19 22 + 1 ,
67320 | 1122
Dividing the polynomials of numerator and denominator we obtain
673621z* | 11830475 2>
tia(z) = ricso0 T —rooor — T L 217672’ N 127 2 .
ol 1922 4| 57 e
67320 | 1122

where the rational part results 1 for x = 0. The evaluation cost of t114(A) is
the same as that for ryy(A), i.e. 2M + D. However its approximation order

18 greater
cos(z) — tya(z) = O(z™). (46)

Some considerations must be made about the evaluation of the approx-
imation ¢;;,(A
when computing the mixed rational and polynomial approximation ¢;;s of a
function f for a given S%uare matrix A, it is important to verify that matrices
vgl)(A), v§2)(A), ol (A) are nonsingular, and, for an accurate computa-
tion, that all of them are well conditioned. The rounding error analysis
of each matrix polynomial to be computed in t;;5(A), i.e. ugk)(A), vgk)(A),
k=1,2,...,i,and w;s(A), is given by Theorem 4.5 of [1, p. 74], where the

13



rounding error in the polynomial coefficients must be taken into account. All
the coefficients of ¢;;; should be obtained to full precision to reduce round-
ing error in the evaluation of (39). This can be performed using symbolic
tools and high precision arithmetic as the task is performed only once for a
given function. The denominator roots should be obtained with high preci-
sion arithmetic, and the operations performed with them to obtain the final
factorizations should be also performed with high precision arithmetic. For
an accurate evaluation of polynomial coefficients from the polynomial roots
the ideas from [13] can be applied, combined with symbolic tools and high
precision arithmetic.

In order to verify the accuracy of the IEEE double precision arithmetic
version of the coefficients from (37) and (38) in Example 3.2 we used high
precision arithmetic to calculate the coefficients of vy(z) and ug(x) from (35)
with the values of the double precision coefficients. The relative error for
all the coefficients in vs(z) and uy(x) was zero, except for the denominator
coefficient 15, which had 1.18 x 1076 relative error, and the numerator coef-
ficients 100800 and = 6636, which had 2.89 x 1076 and 1.37 x 106 relative
errors, respectively. Note that the three error values were very near the unit
roundoff in IEEE double precision arithmetic, i.e. v =275~ 1.11 x 10716,

Finally, note that different selections and orderings of the denominator
factors v produce different polynomials ugk), k=1,2,...,i and different
values of the rounding error. A different selection of polynomial w;s also
produces different polynomials ugk), k=1,2,...,i, see for example w, from
(31) and w), from (34) and the corresponding rational expression numerators.

Suitable factorizations to reduce the rounding error when evaluating ¢;;5(A)
should be used, see [12].

5. Cost analysis

Matrix polynomial w;s(A), j > 0, can be evaluated efficiently obtaining
matrix powers A%, A3 ... A% and then using (5) from Horner and Paterson-
Stockmeyer’s method, with a total cost given by (6), where r = |js/s| = j.
Taking into account that matrix powers A2, A3 ... A® can be reused to
compute the remaining matrix polynomials in (39), the only extra cost of
computing (39) for a square matrix A consists of ¢ solutions of multiple
right-hand side linear systems. Hence, the total cost for computing (39) is

Crp=(s+j—2)M+iD~ (s+j—2+4i/3)M, j>0,s>0,i 0 (47)
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where C'rp denotes the mixed rational and polynomial approximation cost
in terms of matrix multiplications. If j = 0 and wj, is null or a constant then
it is easy to show that the corresponding cost is

Crp=(6—-1)M+iD~(s—1+4i/3)M, j=0,s>0,1>0.  (48)

Note that for the case where approximation (39) is intended to reproduce
the first terms of the Taylor series of a given function f, from the results
in Section 4 it is equivalent to a [(i + j)s/is| Padé approximant, and then,
whenever it exists, #;;, satisfies

f(x) = tijs(x) = O(z®Hst), (49)

In that case we denote by dgp the order of the mixed rational and polynomial
approximation

Using (47) and (48), Table 3 presents for t;;s(z) the values i, j, s, the
number of matrix products 7;;s, the approximation order dgp if t;;5(x) re-
produces the first dgp terms of the Taylor series of a given function f, and the
cost C'rp in terms of matrix products for the values of i, j, s that maximize
drp for a given cost. Note that in Table 3 ¢,;5(A) is a matrix polynomial for
drp = 1, 2 and 4 because i = 0. We have verified that for dgp = 2,12 and
30 there are other combinations of 4, j and s that provide the same cost as
that shown in Table 3,i.e. 1 =0,1,2, j =2,2,2 and s = 1, 3, 5, respectively.
Note also that for dgp = 4 and 16 the values of j are greater than 1. This
justifies the selection of w;s in (39) as a polynomial of degree that can be
greater than s.

In general, if we use Horner and Paterson-Stockmeyer’s method to com-
pute a diagonal rational approximation 7,,, (A) using matrices A, A2, ..., A%,
we can evaluate an approximation of type (17)

o) + ws(z), (51)

Zmms (JJ) =

where wu,,(z), v, () and wg(x) are polynomials of x with degrees at most m,
m and s, respectively, at the same cost as r,,,,(A). We have shown that by
adding a suitable ws(A) then z,,,,s(x) can be equivalent to a nondiagonal ra-
tional approximation with higher numerator degree than r,,,,(A), whenever
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drp | 1 2 3 4 6 9 10 12 15 16
i 0 0 1 0 1 1 2 1 2 1
j 1 1 1 2 1 1 1 1 1 2
s 1 2 1 2 2 3 2 4 3 4
Tijs 0 1 0 2 1 2 1 3 2 4
Crp 0 1 1+1/3 2 2+1/3 3+1/3 3+2/3 4+1/3 4+2/3 5+1/3
drp 20 21 25 28 30 35 36 42 45 49
i 2 3 2 3 2 3 4 3 4 3
j 1 1 1 1 1 1 1 1 1 1
s 4 3 5 4 6 5 4 6 5 7
Tijs 3 2 4 3 5 4 3 5 4 6
Crp | 5+2/3 6 6+2/3 7 7+2/3 8 8+1/3 9 9+1/3 10

Table 3: Number of matrix products 7;;s, approximation order dgp if ¢;;5(x)
reproduces the dgp first terms of the Taylor series of a given function f, and
cost in terms of matrix products Crp for the mixed rational and polynomial
approximation ¢;;5(A) and the optimal (i.e. with minimal cost) values of i, j
and s.

8§ 12 16 20 24 30

dr 2 4
6 12 16 21 28 36 45

6
drp | 3 9

Table 4: Approximation order dgp that can be obtained with the mixed ra-
tional and polynomial approximation with the same cost (or lower if there
is no equal optimal cost) as diagonal Padé rational approximation with ap-
proximation order dg.

it exists. Furthermore, using aggregations of the mixed rational and polyno-
mial approximations in the form of (39) this advantage can be even greater.
Using Tables 2 and 3, Table 4 shows that for the same or even lower cost the
mixed rational and polynomial approximation reaches higher approximation
orders than diagonal Padé approximations for all values of approximation or-
der di, whenever both approximations exist for a given function f. Similarly,
nondiagonal rational Chebyshev approximations with higher numerator de-
gree than the denominator degree can be computed at the same cost as the
corresponding diagonal rational Chebyshev approximations.

Next we show that given a Taylor approximation about the origin of a
matrix function f(A) with order m € m (see (4)) it is possible to build a
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6 9 12 16 20 25 30
6 10 15 21 28 35 42

Table 5: Approximation order dgp that can be obtained with the mixed
rational and polynomial approximation with the same cost (or lower if there
is no equal optimal cost) as Taylor approximation of order m.

mixed rational and polynomial approximation with the same approximation
order and lower cost in the majority of cases, whenever the equivalent non-
diagonal Padé approximation exists. The cost of Taylor approximation with
order m € m* is given by (6). Taking the same order for the mixed rational
and polynomial approximation, i.e. dgp = m, and the same value of s as in
Taylor approximation, from (50) and (6) it follows that

r—j

_ (52

7 =

If r = m/s is odd, taking j = 1 from (52), (47) and (6) it follows that the
difference between the Taylor cost and the mixed rational and polynomial

approximation cost is
r—1
CR - CRP = 3 . (53)

Hence, whenever the [(i + j)s/is| Padé approximation exists for function
f(A), with 7 = 1,4 = (r—1)/2, the cost of the equivalent mixed rational and
polynomial approximation is lower than the cost of the Taylor approximation
forr =m/s > 1. Asr was odd, the last condition is accomplished for m > 3s.

If r = m/s is even, taking j = 2 and proceeding analogously it follows
that

Cr—Crp=

T (54)
and whenever the corresponding [(i + j)s/is| Padé approximation exists for
function f(A), with j = 2, ¢ = (r — 2)/2, Crp is lower than Cg for r =
m/s > 2. As r was even, the last condition is accomplished for m  4s.

Using Tables 1 and 3, Table 5 shows that for the same or even lower cost
the mixed rational and polynomial approximation reaches higher approxi-
mation orders than the Taylor approximation for m > 6, whenever both
approximations exist for a given function f(A).
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Comparing Tables 1, 2 and 3 in general the approximation ¢;;5(A) is more
efficient than both Taylor and Padé approximations for the same approxi-
mation order. For instance, for order 30 the mixed rational and polynomial
approximation requires (7 + 2/3)M, saving (1 + 1/3)M, ie. 14.81%, with
respect to Taylor approximation and (1 + 2/3)M, i.e. 17.86% with respect
to diagonal Padé approximation, and the absolute difference increases with
the approximation order. Another interesting property of ¢;;5(A) is that its
computing cost when increasing approximation order grows many times by
steps lower than 1M.

Finally, it is important to note that approximations with other approxi-
mation orders than those listed in Table 3 can be obtained with expressions
similar to (39) by reducing the degree of one or several of the polynomi-
als involved, for instance by reducing the degree of w;s(x). However, such
approximations are not optimal because they do not provide maximum ap-
proximation order with minimal cost.

6. Conclusions

This paper proposes an approximation for matrix functions based on the
aggregation of mixed rational and polynomial approximations. The cost anal-
ysis of the new approximation yields that, in general, it is more efficient than
polynomial and diagonal rational approximations. We show how to obtain
the new kind of approximation from rational approximations whenever they
exist for a given function f(A), and, with the use of the mixed rational and
polynomial approximation, we can state that nondiagonal rational approxi-
mations are in general more efficient than diagonal rational approximations
for similar accuracy.

We are currently applying the mixed rational and polynomial approxima-
tions proposed here to the algorithm in [5] to compute the matrix exponential,
and to other algorithms to compute other transcendental matrix functions.
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