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Abstract

Decision making in engineering is becoming increasingly complex due to the

large number of alternatives and multiple conflicting goals. Powerful decision-

support expert systems powered by suitable software are increasingly necessary. In

this paper, the multiple attribute decision method known as analytical hierarchy

process (AHP), which uses pairwise comparisons with numerical judgments, is

considered. Since judgments may lack a minimum level of consistency, mechanisms

to improve consistency are necessary. A method to achieve consistency through

optimisation is described in this paper. This method has the major advantage of

depending on just n decision variables - the number of compared elements - and

so is less computationally expensive than other optimisation methods, and can be

easily implemented in virtually any existing computer environment. The proposed

approach is exemplified by considering a simplified version of one of the most

important problems faced by water supply managers, namely, the minimisation of

water loss.

Keywords: analytic hierarchy process, consistent matrices, decision making,

optimisation, water distribution systems, leaks.

1 Introduction

A variety of powerful tools have emerged in recent decades to help decision makers

understand and analyse various types of decisions. Decisions are usually dynamic in
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nature and arise in every type of application - including engineering, medical manage-

ment, sports, and emergency situations. This paper considers one of the main chal-

lenges that water supply managers face: the minimisation of water loss [1, 2, 3, 4, 5].

Vast sums are devoted annually to this aim worldwide.

There are many reasons why today’s decisions are becoming increasingly complex:

more intangible elements, heightened uncertainty and subjectivity, shorter deadlines,

greater pressure, rapidly changing conditions, and higher risks. In this paper, focus is

placed on the various types of system attributes that permeate all the current multi-

criteria decision making processes.

There are two types of system attributes that need to be considered in decision-

making: objective and subjective. Objective attributes are measured and defined in

numerical terms. For example, engineering attributes, such as pipe capacity, load

conditions, pressure head, demands, and energy expenses; or cost attributes, such as

acquisition and installation costs for various elements, maintenance costs, and penalties

for lack of service. Subjective attributes may be considered as qualitative and include

damage to goods and properties, consequences of service disruption, increases in vehicle

driving time, congested traffic delays, and the cost of CO2 emissions derived from

energy consumption. These attributes cannot be precisely and numerically measured

by the decision maker.

Nevertheless, decision makers need to be concerned not only with the tangible and

quantitative factors, such as the cost in engineering selection problems, but also with

the intangible and qualitative factors, such as environmental and social impacts [6].

Let us refer back to the problem under examination. By considering an exclusively

economic point of view, investment in minimising water loss is usually balanced by

the benefits derived from the use of the recovered water. Nevertheless, this scheme

does not reflect the whole dimension of the benefit-earning capacity of repairing leaks.

The associated benefits may include more aspects than just the economic value of the

recovered water. In this paper, an economic assessment approach that includes other

costs caused by leaks and the benefits derived from their control is considered. These

are mainly environmental and social costs and benefits, which are called externalities

from an economic point of view. Their inclusion renders the assessment of leaks more
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realistic, but raises important problems about how such costs and benefits should be

considered. The main problem derives from the fact that comparisons with regard to

certain properties will only work for properties with well-defined scales of measurement.

Nevertheless, direct comparisons are necessary to establish measurements for intangible

properties that have no scales of measurement.

The analytical hierarchy process (AHP) [7] is a multiple attribute decision method

that uses structured pairwise comparisons with numerical judgments from an absolute

scale of numbers. AHP has been applied in several areas, such as logistics, manufac-

turing, government, and education [8].

The fundamentals of AHP, including its hierarchical, multi-level structure with

goals, criteria, and alternatives, the way judgment is compiled into positive reciprocal

matrices, the estimation of the relative weights of the decision elements, the use of

prioritisation techniques, and the way in which aggregation is performed to obtain a

final composite vector of priorities can be found in any handbook and many papers

about the subject (see, for instance [7, 9]). Ultimately, the decision-making problem is

discrete and involves selecting the best alternatives from a finite set of feasible choices

based on the evaluation of each against a given set of criteria.

When using judgment to estimate dominance in making comparisons between two

alternatives - and especially for intangibles - instead of using numbers from a scale,

a single number drawn from a fundamental scale of absolute numbers is assigned.

Judgment must be based on knowledge, that is to say, on data. One method to

collect data is by directly interviewing experts. This data can be supplemented with

contingent valuation methods [10]; or by the participation of an expert panel [11]; or by

applying the Delphi technique (a systematic and interactive forecasting method that

relies on a panel of experts for forecasting) [12]. The person coordinating the Delphi

method is known as a facilitator, and facilitates the responses of the panel of experts.

Pairwise comparisons are quantified using a scale. There are several approaches in

developing such scales [13]. In this paper, we consider a nine-point scale developed by

Saaty [9, 14], with the possibility of including intermediate numerical (decimal) values

in the scale to model hesitation between two adjacent judgments [15]. To extract

priority vectors from the comparison matrices, among the many existing methods

3



[16, 17, 18, 19], the eigenvector method, which was first proposed by Saaty in his

seminal paper [9] in 1977, is used in this paper.

A comparison matrix, A, exhibits two basic properties, namely homogeneity (aij =

1, if elements i and j are considered equally important; in particular aii = 1 for

every i) and reciprocity (aji = 1/aij for all i, j). Besides these two properties, a third

property, that of consistency, should theoretically be desirable for a comparison matrix.

A positive n× n matrix is consistent if aijajk = aik, for i, j, k = 1, . . . , n. Consistency

expresses the coherence that may exist between judgments about the elements of a set.

Since preferences are expressed in a subjective manner it is reasonable (and, arguably,

even desirable) for some kind of incoherence to exist. When dealing with intangibles,

judgments are rarely consistent unless they are forced in some artificial manner.

A is not generally consistent because it only contains the comparison values obtained

through numerical judgment. For most problems, estimates of these values by an

expert are assumed to be small perturbations of the ‘right’ values. This implies small

perturbation of the eigenvalues (see, for instance, [20]).

The next problem to solve is the eigenvalue problem Aw = λmaxw, where λmax is,

according to the Perron-Frobenius theory (see, for example, [21]), the unique largest

eigenvalue of A, which also gives the so-called Perron eigenvector, that is an estimate

of Z, the priority vector. A decision about the consistency level of a matrix is now

crucial.

Although various measurements of inconsistency can be developed, the measure-

ment proposed by Saaty [7] is used in this paper. The intrinsic consistency threshold

developed by Monsuur [22] is also used.

In [18] Finan and Hurley state that additional artificial manipulation to increase

consistency will on average improve the reliability of an analysis. Several alternatives

to improve consistency, mostly based on various optimisation techniques, have been

proposed in the literature. In this paper, a solution based on the minimisation of the

distance between two matrices that uses a truly reduced number of decision variables is

proposed. As a consequence, the process may be accomplished with no computational

burden at all.

This paper is a revised and extended version of a conference paper [23]. The re-
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mainder of this paper is structured as follows. In the following section, the notation

and necessary elements used later - a reduced version of a number of results included

in [23] - is concisely presented. Based on these properties, in Section 3 an optimisation

technique (the main contribution in [23]) is developed that produces the closest con-

sistent matrix to a given positive reciprocal matrix, and which involves only n decision

variables (n being the order of the matrix) and just one constraint, in stark contrast to

other optimisation methods [6, 24, 25] that consider O(n2) decision variables and many

constraints (Section 3 being a significant expansion of [23]). A simple decision-support

expert system implementing various prioritising methods, in particular the method

presented in this paper, has also been added (Section 4). Finally, these results are ap-

plied to a comparison between two alternatives in water supply management, namely,

active leakage control and passive leakage control. The paper closes with enriched

conclusions.

2 Notation and review of the properties of consistent ma-

trices

Mn,m will hereinafter denote the set of n×m real matrices, and M+
n,m will denote the

subset of Mn,m composed of positive matrices. It will be assumed that the elements

of IRn are column vectors, i.e., IRn is identified with Mn,1. For a given A ∈ Mn,m, let

us write [A]ij the (i, j) entry of the matrix A. The superscript T denotes the matrix

transposition.

The mapping J : M+
n,m →M+

n,m defined by [J(A)]ij = 1/[A]ij will play an important

role in the sequel. The following facts are evident : If A ∈ M+
n,m and λ > 0, then

J2(A) = A and J(λA) = λ−1J(A). If, in addition, x ∈M+
n,1, then xTJ(x) = J(x)Tx =

n. Obviously, a matrix A ∈M+
n,1 is reciprocal if and only if J(A) = AT .

The next result [23] gathers well knows equivalent facts (see [7, 26], among others)

and enables the definition of consistent matrices.

Theorem 1. Let A ∈M+
n,n. If aij = [A]i,j, then following statements are equivalent.

1. There exists x ∈M+
n,1 such that A = J(x)xT .
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2. There exists w = [w1 . . . wn]T ∈ M+
n,1 such that aij = wi/wj for all i, j ∈

{1, . . . , n}.

3. aijaji = 1 and aijajk = aik hold for all i, j, k ∈ {1, . . . , n}.

It is worthwhile providing an interpretation of this theorem. Statement 3 corre-

sponds to the definition of consistency given in Section 1. Statement 1 provides the

main tool in this paper for developing the optimisation process described in Section

3. Finally, the components of vector w given by Statement 2 may be considered as

absolute values for any of the elements involved in the process. If such values are

known, the comparisons are straightforward: aij = wi/wj for i, j = 1, . . . , n. In gen-

eral, however, such absolute values are unknown. Specifically, the aim of AHP is to

assign to each of the n elements under comparison, priority values wi, i = 1, . . . , n,

that reflect the emitted judgments. If judgments are consistent, the relations between

the judgments, aij , and the values, wi, are aij = wi/wj , i, j = 1, . . . , n, and A is

consistent.

Item 3 of Theorem 1 shows that any consistent matrix is reciprocal. Even though

the converse is false in general, however, it is simple to prove that any reciprocal matrix

of order 2 is consistent.

It is worthwhile noting that for a given consistent matrix A = (aij), the vector

x = [a11 · · · a1n]T satisfies A = J(x)xT . It is also well known that the rank of any

matrix of the form uvT (where u,v ∈ Mn,1 are nonzero vectors) is 1, hence the rank

of any consistent matrix is one. Furthermore, for a consistent matrix A written as in

item 1 of Theorem 1 one has AJ(x) = J(x)xTJ(x) = nJ(x), which proves the very

well known fact that n is an eigenvalue of any consistent matrix A = J(x)xT of order

n and J(x) is an eigenvector of A associated with n. Moreover, it is known (see, for

example, [21, Exercise 7.2.13]) that any matrix of the form uvT (where u,v ∈ Mn,1

are nonzero) is diagonalizable if and only if uTv 6= 0. Therefore, any consistent matrix

is diagonalisable. Thus, taking into account that the rank of A is 1, any eigenvector

of A associated with n is a scalar multiple of J(x).

If λ > 0 and x ∈ M+
n,1, then obviously J(λx)(λx)T = J(x)xT . Does a type of

converse hold? If x ∈M+
n,1 and y ∈M+

n,1 satisfy J(x)xT = J(y)yT , then xj/xi = yj/yi
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for all i, j ∈ {1, . . . , n}. Hence xj/yj does not depend on the index j, and thus, by

denoting λ = xj/yj , one has xi = λyi for all i ∈ {1, . . . , n}. Therefore, the following

result holds.

Theorem 2. Let x,y ∈ M+
n,1 such that J(x)xT = J(y)yT . Then there exists λ > 0

such that x = λy.

From the Perron-Frobenius theory (see e.g., [21, Chapter 8]) it is known that there

is λmax, an eigenvalue of A, such that λmax > |λ| for any λ eigenvalue of A (the

eigenvalue λmax is called the Perron root of A). Saaty proved [7] that λmax ≥ n, and

the equality holds if and only if A is consistent. At this point another criterion for a

reciprocal matrix to be consistent may be given. It will be used in the next section to

achieve consistency for a non-consistent matrix.

Theorem 3. Let A be a reciprocal matrix. Then A is consistent if and only if

rank(A) = 1.

Proof: As stated before, any consistent matrix has rank one. Assume that A is

a reciprocal matrix whose rank is 1. It is a simple textbook exercise that any matrix

A ∈Mn,n having rank 1 can be written as A = uvT , where u,v ∈ IRn are nonzero. As

A is positive, it can be assumed that the vectors u and v are positive. From AT = J(A)

vuT = J(uvT ) = J(u)J(v)T (1)

is obtained. Pre-multiplying by vT and transposing yield (vTv)u = (vTJ(u))J(v).

Taking into account from this point that u and v are positive, it is possible to write

u = λJ(v) being λ > 0. Using (1) produces λvJ(v)T = J(λJ(v))J(vT ) = λ−1vJ(v)T .

From Theorem 1 and bearing in mind that vJ(v)T 6= 0 it is found that λ = λ−1. Using

λ > 0 leads to λ = 1. Since A = uvT and u = λJ(v), Theorem 1 finishes the proof. 2

3 Achieving matrix consistency

As stated above, the interest is in finding (approximate) solutions for the following

problem: given A ∈M+
n,n, find a consistent matrix B such that A ‘is close to’ B.

Several alternatives, mostly based on various optimization techniques, have been

proposed in the literature to help improve consistency. The weighted least squares [16]
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method tries to minimize the sum of errors of the differences between the judgments

and their derived values. In [25] it is proposed a goal programming method that uses

relative deviations to force changes in the values of the comparisons so that the target

values differ as little as possible from the original values - while approximately taking

homogeneity into account and preserving reciprocity and consistency. A slight modi-

fication of this method that reduces the number of decision variables and constraints

is used in [6]. The logarithm least squares method has a long history and has been

intensively studied by many authors (e.g. [17, 27, 28]), although it has been shown

that is equivalent to the normalization of geometric means of rows (NGMR), which is

easier since NGMR consists in multiplying the n elements in each row and taking the

nth root, and then normalising so that these numbers add up to unity [17, 29, 30].

Other methods include fuzzy programming [31] and enhanced goal programming [27].

In [24], a method is developed that uses linear programming (LP); the output is easy

to understand, and sensitivity analysis can be performed using the LP standard theory.

Even though not fitting strictly the form of an optimization problem, various other

methods deserve being considered here. For example, Saaty [32] proposed a method

based on perturbation theory to find the most inconsistent judgment in the matrix;

this action could be followed by the determination of the range of values to which that

judgment could be changed and whereby the inconsistency could be improved - and

then asking the judge to consider changing the judgment to a plausible value within

that range. The authors have recently developed a method [33] based on a linearization

process [34] that follows an iterative feedback process to achieve an acceptable level of

consistency while complying to some degree with expert preferences.

Despite the abundance of prioritisation methods, it becomes clear that those meth-

ods based on optimization perform, in general, better than other more direct methods.

Also, as shown in [19], ‘none of prioritization methods perform better than others in

every inconsistent case’, and ‘the most appropriate prioritisation operator is in fact

on a case-by-case basis’. The purpose of this section (and of the paper) is to provide

another optimisation process that has the important advantage of depending of only

n decision variables - the number of compared elements. Thus, this process is simpler,

less computationally expensive, and can be easily implemented either in a stand-alone
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piece of software using any optimisation library or integrated in a specific platform

built using any of the existing computer environments, as the one presented below.

The concept of closeness between matrices is, of course, defined in terms of a matrix

norm (see [21, Section 5.2]). This is the approach used in this paper, namely, the

minimisation of a matrix norm using Theorem 1, which enables reducing the number

of decision variables to just n, the order of the matrix. Thus, the main purpose of

this section will be to study the following problem: given A ∈ M+
n,n, find a consistent

matrix B such that ‖A − B‖ ‘is small’. The Frobenius matrix norm is proposed in

view of its simplicity. Such a norm is defined as

‖A‖F =

∑
i,j

[A]2ij

1/2

= [tr(ATA)]1/2, A ∈Mn,m.

Let us, then, formally write the posed problem as:

Problem 1. Let A ∈M+
n,n. Find x ∈M+

n,1 such that

min
y∈M+

n,1

‖A− J(y)yT ‖F = ‖A− J(x)xT ‖F.

Using the Frobenius matrix norm is equivalent to minimising the root mean square

variance of the differences aij − wi/wj , which is one of the measurement methods

propagating measurement priority vectors described in [19].

Observe that J(λx)(λx)T = J(x)xT holds for any λ > 0 and x ∈M+
n,1. Therefore,

bearing in mind Theorem 2, Problem 1 can be ‘normalised’ to the following:

Problem 2. Let A ∈M+
n,n and ‖ · ‖ a norm in IRn. Find x ∈M+

n,1 such that ‖x‖ = 1

and

min
y∈M+

n,1, ‖y‖=1
‖A− J(y)yT ‖F = ‖A− J(x)xT ‖F.

It will be shown in the next result that the solution of Problem 2 does not depend

on the considered norm in IRn.

Theorem 4. Let ‖ · ‖ and | · | be two norms in IRn. If u is a solution of the Problem 2

with respect to the norm ‖ · ‖, then u/|u| is a solution to Problem 2 with respect to the

norm | · |.
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Proof: Define û = u/|u|. To prove the theorem, it must be shown that

‖A− J(û)ûT ‖F ≤ ‖A− J(y)yT ‖F ∀ y ∈M+
n,1 such that |y| = 1. (2)

Pick any y ∈ M+
n,1 such that |y| = 1. Define ŷ = y/‖y‖. Since u is a solution to

Problem 2, one has

‖A− J(u)uT ‖F ≤ ‖A− J(ŷ)ŷT ‖F. (3)

Since û is a scalar multiple of u, one has J(u)uT = J(û)ûT . Similarly, J(y)yT =

J(ŷ)ŷT is obtained. Consequently, (3) enables (2) to be proven. 2

Hence any norm in IRn can be used to solve the minimisation Problem 2. Two

norms in IRn will be proposed.

1. The 1-norm in IRn (i.e., ‖x‖1 = |x1| + · · · + |xn|). This norm is proposed since

for any x ∈ M+
n,1, it is found that ‖x‖1 = x1 + · · · + xn, which is a very simple

and differentiable expression.

2. The 2-norm (or Euclidean norm) in IRn (i.e., ‖x‖2 = (x21 + · · · + x2n)1/2 =

(xTx)1/2). It will be noticed that ‖ · ‖2 is differentiable (the origin is the unique

point of non-differentiability and ‖0‖2 6= 1). Although the expression of this

norm is more complicated than the 1-norm, the Euclidean norm is also proposed

in view of the Theorem 5 result shown below.

Theorem 5. Let A ∈Mn,n and x ∈Mn,1. Then

‖A− J(x)xT ‖2F = ‖A‖2F + ‖x‖22‖J(x)‖22 − 2J(x)TAx.

Proof: Before proving this theorem, notice that tr(XY ) = tr(Y X) holds for any

pair of matrices X and Y such that XY and Y X are meaningful. Now,

[
A− J(x)xT

]T
(A− J(x)xT )

= (AT − xJ(x)T )(A− J(x)xT )

= ATA− xJ(x)TA−ATJ(x)xT + xJ(x)TJ(x)xT .

Observe that J(x)TJ(x) = ‖J(x)‖22 is scalar and commutes with any matrix, hence

xJ(x)TJ(x)xT = ‖J(x)‖22xxT . Therefore, by taking advantage of the fact that the
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trace is a linear operator,

tr
[
xJ(x)TJ(x)xT

]
= ‖J(x)‖22 tr(xxT ) = ‖J(x)‖22 tr(xTx) = ‖J(x)‖22‖x‖22.

Furthermore, since J(x)TAx is scalar, tr[J(x)TAx] = J(x)TAx holds. As a result, one

obtains

tr
[
ATJ(x)xT

]
= tr

[
(ATJ(x)xT )T

]
= tr

[
xJ(x)TA

]
= tr

[
x(J(x)TA)

]
= tr

[
(J(x)TAx)

]
= J(x)TAx

and the theorem is proven. 2

Observe that for x ∈ IRn such that ‖x‖2 = 1, one has

‖x‖22‖J(x)‖22 − 2J(x)TAx = J(x)T (J(x)− 2Ax) . (4)

In the implementation of the method, this latter expression will be used to avoid

arithmetic multiplications.

In view of Theorem 4, Theorem 5, and (4), one finds that Problem 2 is equivalent

to the following:

Problem 3. Let A ∈M+
n,n. Find x ∈M+

n,1 such that ‖x‖2 = 1 and

min
y∈M+

n,1, ‖y‖2=1
{J(y)T (J(y)− 2Ay)} = J(x)T (J(x)− 2Ax) .

The Lagrangian multiplier method can be readily used to solve Problem 2 with

respect to the 1-norm or Problem 3. It is clear that if x is a solution of Problem 2,

then λx is a solution of Problem 1 for any λ > 0.

In the next result, it is shown that the set of solutions of Problem 2 is not empty.

Theorem 6. Let A ∈M+
n,n. There exists x ∈M+

n,1 such that ‖x‖1 = 1 and

min
y∈M+

n,1, ‖y‖1=1
‖A− J(y)yT ‖F = ‖A− J(x)xT ‖F.

Proof: Let us introduce the following subsets of IRn:

C = {y ∈M+
n,1 : ‖y‖1 = 1},

S = {y = [y1 · · · yn]T ∈ IRn : ‖y‖1 = 1, there exists i such that yi = 0}.
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Let ε > 0 satisfy C \ ∪y∈SB(y, ε) 6= ∅, where B(y, ε) denotes the open ball centered

at y ∈ IRn with radius ε. Finally, let us denote D = C \ ∪y∈SB(y, ε).

Observe that the minimisation Problem 2 is carried over the compact set C, however

the function y 7→ ‖A− J(y)yT ‖F is not defined on the whole set C: in fact, if y ∈ S,

then J(y) is not well defined in view of some division by zero. Hence, it will necessary

to manage the smaller set D.

Obviously D is bounded because D ⊂ C. Also, D is closed because C is closed

and ∪y∈SB(y, ε) is open (an arbitrary union of open balls). Therefore, D is compact.

Moreover, the function f : D → IR given by f(y) = ‖A − J(y)yT ‖F is continuous,

hence there exists x ∈ D such that miny∈D ‖A− J(y)yT ‖F = ‖A− J(x)xT ‖F.

Since

lim
y→p, y∈C

‖A− J(y)yT ‖F = +∞

holds for any p ∈ S,

min
y∈C
‖A− J(y)yT ‖F = min

y∈D
‖A− J(y)yT ‖F

is obtained. The proof is finished. 2

Problem 3 can be solved numerically using any optimisation library or integrated

in some specific platform built using any of the existing computer environments. Once

vector x is obtained, the sought consistent matrix may be readily built: J(x)xT .

However, this consistent matrix may not fully reflect the original expert judgments.

Experts may wish to enforce their know-how, and propose the modification of one or

more entries of matrix J(x)xT . In facing the problem of how to overcome inconsistency

in AHP while still taking into account expert know-how, the described procedure must

be integrated into a suitable tool to balance the latter with the former. The simple

decision-support expert system presented in the next section integrates the straight-

forward optimisation procedure described in this section along with a simple method

of eliciting information to achieve a compromise that produces optimal comparison

matrices.
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4 Implementing the process

In this section, a tool developed in MatLab for implementing an iterative process to

streamline the trade-off between expert know-how and synthetic consistency obtained

by using the results of the previous section is presented. Figure 1 shows the GUI

(guided user interface) containing the problem elements. The various criteria can be

selected at the top left-hand side. The criteria matrix (top centre) is then able to accept

expert judgment using Saaty’s 9-point scale. This scale is presented on the right for

convenience. In the second row of elements, the alternative comparison matrices for

the various criteria may be introduced.

Most provided matrices will almost certainly be non-consistent, and with non-

negligible probability will not have acceptable consistency ratios. In addition to the

method presented in this paper, various methods for consistency improvement are also

implemented, namely NGMR, and the methods described in [6, 25, 33, 34]. Any of the

implemented prioritising processes, in particular, the optimisation described in this

paper, can now be used to build a consistent matrix.

The matrix selected by the user is shown in the lower-central part of the GUI and

subject to consistency improvement through any of the available methods. Specifi-

cally, for the prioritising method described in this paper the function fmincon (from

the MatLab Optimization Toolbox) is executed to perform the optimisation process

described in Problem 2. This function minimises the expression in Problem 3, while

considering the constraint therein contained.

The new matrix thus generated with non-negligible probability may now be con-

sidered by the expert(s) to partially reflect their opinions and they may choose to

modify some of the matrix entries. Shifting one or more entries of the matrix while

preserving reciprocity will produce an inconsistent matrix, and a similar process can

again be undergone in an attempt to reach a reasonable trade-off between consistency

and expert know-how compliance.

The final decision may be accessed using the options in the lower right-hand area.

This tool has been used to develop the decision-making process described in the para-

graph below. Associated documentation can be found online at [35], and the tool is
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available from the second author on request.

5 Application for water leakage management

For the sake of simplicity, a problem with only two management alternatives for leakage

control to achieve the stated objective of minimising water losses is considered. These

alternatives are active leakage control (ALC) and passive leakage control (PLC). ALC

is associated with the enforcement of a specific project and involves taking action

to identify and repair leaks that have not been reported in distribution systems or

individual district metered areas. On the other hand, PLC (no specific project con-

sidered) boils down to just repairing reported or evident leaks [36]. Even though this

is a simplified statement of an important real-world problem, it is used to numerically

exemplify the optimisation developed in Section 3. This problem is similar to another

problem considered in [6]. Nevertheless, the problem is here extended to a wider range

of criteria, and is solved with the method proposed in this paper which, in contrast

with the method used in [6], uses only n decision variables.

The criteria used in this paper to decide on the eventual alternative(s) are the

following:

C1: planning development cost and its implementation;

C2: damage to properties and other service networks;

C3: effects of supply disruptions (compensations, required time to re-fill the network,

presence of trapped air pockets and related problems such as reduction of system

capacity, transient effects, water quality impairment, etc.);

C4: inconveniences caused by closed or restricted streets;

C5: water extractions (benefits for aquifers, wetlands or rivers);

C6: building of storage infrastructures (environmental and recreational impacts);

and

C7: CO2 emissions (produced by the used energy, mainly by pumps).
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The first step involves building a suitable matrix of criteria that embodies know-

how regarding this specific problem. In this case, a decision was made about taking

the point of view of the management of a supply company - OOAPAS (a public water

company) in Morelia, Michoacán (Mexico). Since more criteria - some of which were

unfamiliar to second level management staff - were used (compared with the problem

presented in [6]), judgment from a top ranking group of experts in the company was

the key interest in this application. The results correspond with the conclusions of this

panel of experts, and were compiled after comprehensive discussion. As a consequence,

the entries of this matrix represent the expert knowledge of the company managers.

Upon evaluation and following the nine-point Saaty scale, matrix A in Table 1 was

produced to reflect the opinions regarding the relative importance of the seven criteria.

C1 C2 C3 C4 C5 C6 C7

C1 1 7 3 5 9 3 5

C2 1/7 1 3 3 5 3 3

C3 1/3 1/3 1 1/5 1/3 3 3

C4 1/5 1/3 5 1 9 3 1/3

C5 1/9 1/5 3 1/9 1 3 1/5

C6 1/3 1/3 1/3 1/3 1/3 1 1/3

C7 1/5 1/3 1/3 3 5 3 1

Table 1: Matrix of criteria, A

Clearly this matrix is positive, homogeneous, and reciprocal, but not consistent.

For example, a12a23 = 7 · 3 6= a13 = 3. The Perron eigenvalue is λmax ' 9.5, which

gives a consistency index CI ' 0.416 and a consistency ratio CR ' 30.8%. According

to Saaty’s criterion [7, 9], the consistency of this matrix is inadmissible. Neither does

it pass the scale-independent criterion given by Monsuur, since λmax > 7.87 [22].

Matrix A is now used to build the problem described in Problem 2. This problem

is solved by applying the optimisation processes described in Theorem 6. Starting

with an initial iterate defined by the vector whose 7 components are 1/7, the MatLab
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C1 C2 C3 C4 C5 C6 C7

C1 1 2.017 4.418 1.285 9.714 4.774 2.713

C2 0.496 1 2.191 0.637 4.817 2.367 1.345

C3 0.226 0.456 1 0.291 2.199 1.081 0.614

C4 0.778 1.569 3.438 1 7.559 3.715 2.111

C5 0.103 0.208 0.455 0.132 1 0.491 0.279

C6 0.209 0.422 0.925 0.269 2.035 1 0.568

C7 0.369 0.743 1.628 0.474 3.58 1.76 1

Table 2: Matrix of criteria, B

function fmincon produces the vector

x = [0.29 0.59 1.30 0.38 2.86 1.41 0.80]T ,

that generates the consistent matrix given in Table 2, which, accordingly, is the closest

consistent matrix to A in the sense of the Frobenius norm. Following the iterative

process described in Section 4, a reasonable trade-off between consistency and expert

know-how compliance is eventually reached. It will be supposed that matrix B in

Table 2 embodies this trade-off.

For this matrix B, the normalised Perron eigenvector is:

Z = [0.31 0.16 0.07 0.24 0.03 0.07 0.12]T .

Z represents the priority vector regarding the seven considered criteria. Higher values

for Z’s components correspond to more weighted criteria in the evaluation process;

while lower values refer to criteria regarded as less important. In this case, the largest

value corresponds to planning development costs and implementation. The lowest

value corresponds to water extraction.

As a multi-criteria decision-making method, the AHP also uses derived composite

priorities of alternatives obtained from their priorities with respect to each criterion.

The simplest way to compose priorities consists of multiplying each priority of an

alternative by the priority of its corresponding criterion and adding through all the

criteria to obtain the overall priority of that alternative [32]. Thus, the next step
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Planning p.v.

1 9 0.9

1/9 1 0.1

Damage p.v.

1 1/3 0.25

3 1 0.75

Supply p.v.

1 1/5 0.17

5 1 0.83

Closed p.v.

1 1/3 0.25

3 1 0.75

Extraction p.v.

1 1/3 0.25

3 1 075

Reservoir p.v.

1 1/5 0.17

5 1 0.83

CO2 p.v.

1 9 0.90

1/9 1 0.10

Table 3: Matrices of alternative comparisons according to the seven established criteria

and their corresponding priority vectors

is to obtain vectors of priorities for our two alternatives, namely ALC and PLC, for

each criterion. These vectors will reflect the weight, or relative importance, of each

alternative for each criterion [8]. Calculation of these priority vectors is straightforward

since the seven matrices are 2×2. In fact, as said, reciprocal 2×2 matrices are always

consistent. As a result, any column of any such matrices is a principal eigenvector

(corresponding to λmax = 2). Consequently, normalisation of any of these columns

directly gives the sought priority vector. The seven priority vectors are given in Table

3 for any of the alternative comparison matrices also obtained during the workshop

with the panel of experts. Elements (1,2) of each matrix corresponds to the attributed

importance of ALC over PLC, regarding each displayed criterion.

Finally, the main target is accomplished by aggregating these scores - a synthesis

of priorities to determine the best decision. A decision score is computed for any

alternative by multiplying its priority value times the priority of any criterion and

summing through all the criteria:
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W =

 0.90 0.25 0.17 0.25 0.25 0.17 0.90

0.10 0.75 0.83 0.75 0.75 0.83 0.10





0.31

0.16

0.07

0.24

0.03

0.07

0.12


=

 0.52

0.48

 .

The largest coordinate of W will be associated with ‘the best alternative’ and the

lowest with ‘the worst alternative’ [15].

As a consequence, in this specific problem there is no clear preference for any alter-

native, although the ALC policy is slightly preferred over PLC. It is remarkable that

the first impression of the co-author who acted as a facilitator, and the priority vector

obtained before optimisation, pointed towards a slightly greater difference between

both alternatives, and showed an a priori clear inclination for ALC over PLC by the

decision-maker. Nevertheless, the economic aspects become relevant when consistency

is enforced, and the stark reality is that the planning development cost and its imple-

mentation (C1) that a water utility may incur for ALC, as much as PLC, play a leading

role in the decision. A clear interpretation can be inferred taking into account the spe-

cific location of the study - where the economic conditions clearly prevail over other

criteria. The second factor influencing this decision must be attributed to potential

inconveniences caused by closed or restricted streets. The interesting aspect regarding

the application of AHP is indeed the inclusion of social costs in decision-making. In a

similar way, environmental costs, and all the externalities and normal costs for leakage

management can also be included.

6 Conclusions

Decision making in engineering is becoming progressively more complex. Problems

involve more decision variables, sophisticated constraints, and conflicting objectives;

and in many cases problems are pervaded by uncertainty and subjectivity. Although

18



pairwise comparisons, as in AHP, have been seen as an effective way for eliciting qual-

itative data, a major drawback is that when dealing with intangibles, judgments are

rarely consistent - no matter how much effort is made - unless forced in some artificial

manner. In this paper, after revising a number of spectral properties of the so-called

comparison matrices, it is shown that consistency can be economically achieved by

minimising the distance between the original matrix and a rank-one matrix built from

a single vector. The main property is given by Theorem 1, which states that a positive

matrix A is consistent if and only if there is a vector x such that A = J(x)xT , where

J(x) is the vector of the reciprocal coordinates of x. A standard minimisation proce-

dure involving the well-behaved Frobenius matrix norm provides the sought solution,

as proven by Theorem 6. Remember that the Frobenius matrix norm minimises the

root mean square variance of the differences between the judgment coefficients and the

ratios between the related components of the priority vector. In addition, it is worth

noting that, in contrast to other published optimisation approaches, the procedure

presented here involves a much reduced number of decision variables, specifically a

number equal to the order of the matrix.

This optimisation process has been implemented within an iterative feedback pro-

cess that achieves an acceptable level of consistency while complying to some degree

with expert preferences. As a consequence, it can be used as a decision support system

for streamlining the trade-off between expert reliability and synthetic consistency.

The obtained results have been applied to a simplified version of a complex problem

in engineering: the selection of a suitable policy to manage a water supply network to

avoid water losses - a worrying and crucial issue in water management. The interest of

the application herein presented is that it goes beyond the classical evaluation of the

water losses from a mere economic point of view. The results show that the inclusion

of social and environmental costs point slightly in the direction of ALC as the best

alternative in leakage control. Even though in this specific case, the economic aspects

remain the most important factors, a clear upsurge of other aspects can be observed.

A clear interpretation can be inferred taking into account the location of the study,

namely, that economic conditions clearly prevail over other criteria. Nevertheless, it

can also be stated that water supply managers and authorities should, accordingly,
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shift direction from purely economic policies towards new policies that include social

and environmental dimensions.

The main objective of the paper is to provide an optimisation method for comparison

matrix prioritisation. The 7 × 7 criteria matrix in Table 1 is used to exemplify the

approach. For the sake of simplicity only two alternatives are considered. In effect,

reciprocal 2 × 2 matrices are always consistent, so the alternative matrices did not

need consistency improvement. Nevertheless, considering a wider range of alternatives

is straightforward, and the same consistency improvement method could be applied to

all the alternative matrices.

Finally, the proposed method can be easily applied or extended to the challenging

case of group decision making [24, 37]. Various approaches can be devised. One could

consider individual comparison matrices, then obtain the matrix of the geometric mean

of the expert judgments and apply the process described in this paper to this matrix.

Another alternative could be the individual application of the process to the expert

matrices and, finally, the use some type of voting system to produce the final priority

vector. Another approach could minimise some aggregate value of distances between

individual matrices and the matrix J(x)xT , where x is the sought priority vector.

Another possibility worth exploring would compute interval bounds for the expert

judgment and then include these bounds into the optimisation problem as constraints

to be satisfied. In the case of many decision makers, various voting systems could be

considered with different purposes, such as eliminating outliers, aggregating values,

etc.
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[33] Beńıtez J, Delgado-Galván X, Gutiérrez JA, Izquierdo J. Balancing consistency

and expert judgment in AHP. Math. Comput. Model. 54 (2011) 1785-1790.
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