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Abstract

We study various functions, principal ideals and annihilators depending on the pro-

jections aa† and a†a for a Moore-Penrose invertible ring element, extending recent work

of O.M. Baksalary and G. Trenkler.
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1 Introduction

Throughout this paper, the symbol R will denote a unital ring (1 will be its unit) with an

involution. Let us recall that an involution in a ring R is a map a 7→ a∗ in R such that

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a, for any a, b ∈ R.

We say that a ∈ R is regular if there exists b ∈ R such that aba = a. It can be proved that

for any a ∈ R, there is at most one a† ∈ R (called the Moore-Penrose inverse of a) such that

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

In [8] it was proved that any complex matrix has a unique Moore-Penrose inverse, however,

let us notice that the proof given therein is valid to guarantee the uniqueness – if the Moore-

Penrose inverse exists – in a ring with involution. If there exists such a† we will say that a is

Moore-Penrose invertible. The subset of R composed of all Moore-Penrose invertible elements

will be denote by R†. We write R−1 for the set of all invertible elements in R. The word

projection will be reserved for an element q of R which is self-adjoint and idempotent, that

is q∗ = q = q2. A ring R is called ∗-reducing if every element a of R obeys the implication

a∗a = 0⇒ a = 0.
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Let x ∈ R and let p ∈ R be an idempotent (p = p2). Then we can write

x = pxp+ px(1− p) + (1− p)xp+ (1− p)x(1− p)

and use the notations

x11 = pxp, x12 = px(1− p), x21 = (1− p)xp, x22 = (1− p)x(1− p).

Every projection p ∈ R induces a matrix representation which preserves the involution in R,

namely x ∈ R can be represented by means of the following matrix:

x =

[
pxp px(1− p)

(1− p)xp (1− p)x(1− p)

]
=

[
x11 x12

x21 x22

]
. (1.1)

The purpose of this paper is to study several ideals involving the projections aa† and a†a,

when a ∈ R†. We shall consider two kinds of ideals. The principal ideals (also called image

ideals) generated by b ∈ R are defined by bR = {bx : x ∈ R} and Rb = {xb : x ∈ R}. The

annihilators (also called kernel ideals) of b ∈ R are defined by b◦ = {x ∈ R : bx = 0} and
◦b = {x ∈ R : xb = 0}. If R is a ring with the unit and p ∈ R, then it is quickly seen that

pRp = {pxp : x ∈ R} is a sub-ring whose unity is p. From now on, for an arbitrary projection

p, we shall denote p = 1− p.
The following elementary lemma will be many times used in the sequel.

Lemma 1.1. Let R be a ring with involution and a ∈ R. Then

(i) a ∈ R† ⇐⇒ a∗ ∈ R†. Furthermore, (a∗)† = (a†)∗.

(ii) If a ∈ R†, then a† ∈ R† and (a†)† = a.

(iii) If a ∈ R†, then a∗a, aa∗ ∈ R† and

(a∗a)† = a†(a∗)†, (aa∗)† = (a∗)†a†, a† = (a∗a)†a∗ = a∗(aa∗)†, a∗ = a†aa∗ = a∗aa†.

(iv) If R is ∗-reducing, then a∗a ∈ R† ⇒ a ∈ R† and aa∗ ∈ R† ⇒ a ∈ R†.

Proof. It is evident that (i)-(iii) hold. We will prove only the first implication of (iv)

since to prove the other one, it is sufficient to make the same argument for a∗ instead of

a. Assume that a∗a ∈ R† and let x = (a∗a)†a∗. Observe that the Moore-Penrose inverse

of a selfadjoint Moore-Penrose invertible element is again self-adjoint, and thus, (a∗a)† is

self-adjoint. Now (ax)∗ =
[
a(a∗a)†a∗

]∗
= a(a∗a)†a∗ = ax; xa = (a∗a)†a∗a is selfadjoint;

xax = (a∗a)†a∗a(a∗a)†a∗ = (a∗a)†a∗ = x. Finally, a∗axa = a∗a(a∗a)†a∗a = a∗a, and since R

is ∗-reducing, we get axa = a. �

A consequence of Lemma 1.1 is that

if x ∈ R† is self-adjoint, then xx† = x†x. (1.2)

For the class of Moore-Penrose invertible elements x ∈ R such that xx† = x†x, the reader

is referred to [3].
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2 Group inverses

Let R be a ring (possibly without an involution). If a ∈ R, then there is at most one x ∈ R

such that

axa = a, xax = x, ax = xa.

When such x exists, we will write x = a# and we will say that x is the group inverse of a and

a is group invertible. The symbol R# will denote the set of all group invertible elements of R.

In this paragraph, let F be a square complex matrix. In [1, p. 10215] it was given a list

of several equivalent conditions (involving the orthogonal projectors FF † and F †F ) for F to

has the group inverse. The proof given therein relies in rank matrix theory and a matrix

decomposition given by Hartwig and Spindelböck [4]. However, as we shall see, many of these

equivalences can be stated in a ring setting, and proved by algebraic reasonings.

We shall use the following result [9, Prop. 8.22], whose proof is included for the convenience

of the reader.

Theorem 2.1. Let R be a unital ring and a ∈ R. Then a is group invertible if and only if

there exist x, y ∈ R such that a2x = a and ya2 = a.

Proof. If a ∈ R# we have a2a# = a = a#a2.

Reciprocally, assume that there exist x, y ∈ R such that a2x = a and ya2 = a. We will

prove yax = a#. First, let us see that ax = ya2x = ya. Now, a(yax) = a(ya)x = a2x2 = ax

and (yax)a = y(ax)a = y2a2 = ya implies that a(yax) = (yax)a. Finally a(yax)a = ya2 = a

and (yax)a(yax) = yayax = yax. �

Obviously, Theorem 2.1 implies that in a commutative ring, group invertibility is the same

as regularity.

Observe that under the hypothesis of Theorem 2.1, one has

a2x = a and ya2 = a ⇒ a# = yax. (2.1)

Let us notice that by Theorem 2.1 one can deduce that for a ∈ R,

a ∈ R# ⇔ aR = a2R and Ra = Ra2.

This latter equivalence can be viewed as a ring version of “for a matrix F ∈ Cn,n, there exists

F# if and only if rank(F 2) = rank(F )” (see [5, Section 4.4]).

It was mentioned in [1, p. 10215] that for a given square complex matrix F , there exists

F# if and only if R(F ) ∩N(F ) = {0}, where R(·) and N(·) denotes, respectively, the column

space and the null space of a matrix. Let us notice that R(F ) ∩ N(F ) = {0} is equivalent

to N(F 2) = N(F ), and in the matrix setting, this last condition is equivalent to rank(F 2) =
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rank(F ). However, the things are more complicated in the ring case: if R is a ring and a ∈ R,

then the following implication is trivial to get

a ∈ R# ⇒ aR ∩ a◦ = {0} and Ra ∩ ◦a = {0}.

But the opposite implication is false: Take the ring composed of integers numbers, i.e. Z. It

is easy to get Z# = {0, 1,−1} and if a ∈ Z \ {0}, then a◦ = ◦a = {0}. However if we assume

that any element of R is Drazin invertible, then it is easy to see that the opposite implication

turns it true. Let us remark that any square matrix has Drazin inverse.

The following result will permit prove several equivalent conditions for the existence of

the group inverse in a ring with involution.

Theorem 2.2. Let R be a ring with involution and a ∈ R#∩R†. Denote p = aa† and q = a†a.

Then pq, qp ∈ R†, (qp)† = aa#, and (pq)† = (aa#)∗.

Proof. Observe that aq = pa = a. So (aa#)(qp) = a#ap = aa† is Hermitian, (qp)(aa#) =

qaa# = a†a is Hermitian, (aa#)(qp)(aa#) = aa†aa# = aa#, and (qp)(aa#)(qp) = a†aqp = qp.

This proves qp ∈ R† and (qp)† = aa#. To finish the proof, let us note that qp ∈ R† ⇔ (qp)∗ ∈
R† and under this situation one has [(qp)†]∗ = [pq]†. �

The following result generalizes the considerations concerning group invertible matrices

given in [1, p. 10215]. The unique assumption is that the ring is unital and has an involution.

Theorem 2.3. Let R be a ring with involution and a ∈ R†. Denote p = aa† and q = a†a.

Then the following are equivalent:

(i) a ∈ R#,

(ii) p+ q − 1 is invertible,

(iii) aR = pqR and Ra = Rpq,

(iv) a∗R = qpR and Ra∗ = Rqp,

(v) p− q − 1 and p− q + 1 are both invertible.

Proof. (i) ⇒ (ii): Since p + q − 1 and aa# + (aa#)∗ − 1 are self-adjoint, it is sufficient to

check (p+ q − 1)(aa# + (aa#)∗ − 1) = 1. Observe that

aa†(aa#)∗ = (aa†)∗(aa#)∗ = (aa#aa†)∗ = aa† (2.2)

and

a†a(aa#)∗ = (a†a)∗(a#a)∗ = (a#aa†a)∗ = (a#a)∗. (2.3)
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Hence

(aa† + a†a− 1)(aa# + (aa#)∗ − 1)

= aa†aa# + a†a2a# − aa# + aa†(aa#)∗ + a†a(aa#)∗ − (aa#)∗ − aa† − a†a+ 1

= 1.

(ii) ⇒ (i): Denote u = p+ q − 1. We have ua = a†a2 and au = a2a†, which implies

a = u−1ua = u−1a†a2 and a = auu−1 = a2a†u−1. (2.4)

Now, by Theorem 2.1 it follows that a is group invertible.

(i) ⇒ (iii): The inclusions pqR ⊆ aR and Rpq ⊆ Ra are trivial. By Theorem 2.2 we get

a = aa#a = (qp)†a = (qp)∗(qp(qp)∗)†a = pq(qpq)†a, which proves aR ⊆ pqR. In addition, we

have a = aaa# = a(qp)† = a((qp)∗qp)†(qp)∗ = a(pqp)†pq, which proves Ra ⊆ Rpq.

(iii) ⇒ (i): We shall use Theorem 2.1 to prove the existence of a#. Since a ∈ aR = pqR

and a ∈ Ra = Rpq, there exist u, v ∈ R such that a = pqu and a = vpq, hence

a = pqu = aa†qu = aa∗(aa∗)†qu = a(vpq)∗(aa∗)†qu

= aqpv∗(aa∗)†qu = a2a†v∗(aa∗)†qu

and

a = vpq = vpa†a = vp(a∗a)†a∗a = vp(a∗a)†(pqu)∗a

= vp(a∗a)†u∗qpa = vp(a∗a)†u∗a†a2.

(iii) ⇔ (iv): It is evident.

(i)⇒ (v): Denote π = aa#. Since p−q−1 and π+π∗−2ππ∗−1 are self-adjoint, to prove

(p− q − 1)−1 = π + π∗ − 2ππ∗ − 1, it is enough to check (p− q − 1)(π + π∗ − 2ππ∗ − 1) = 1.

To this end, we shall use pπ∗ = p, qπ∗ = π∗ (see (2.2) and (2.3)) and pπ = π, qπ = q.

(p− q − 1)(π + π∗ − 2ππ∗ − 1)

= pπ + pπ∗ − 2pππ∗ − p− qπ − qπ∗ + 2qππ∗ + q − π − π∗ + 2ππ∗ + 1

= π + p− 2ππ∗ − p− q − π∗ + 2π∗ + q − π − π∗ + 2ππ∗ + 1 = 1.

Observe that we have proved that for any b ∈ R†, the following holds:

b ∈ R# ⇒ bb† − b†b− 1 ∈ R−1. (2.5)

Furthermore, since (i) ⇔ (ii) has been proved, we can use that for any c ∈ R†

c ∈ R# ⇔ cc† + c†c− 1 ∈ R−1. (2.6)

Since a ∈ R#, from (i) ⇒ (ii), we get aa† + a†a− 1 ∈ R−1. We can apply (2.6) for c = a† to

get a† ∈ R#. Now by (2.5) for b = a† we obtain q − p− 1 ∈ R−1.
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(v)⇒ (i): Denote u = p−q−1 and v = p−q+1. Observe that ua = (p−q−1)a = −a†a2

and av = a(p − q + 1) = a2a†. Thus a = u−1ua = −u−1a†a2 and a = avv−1 = a2a†v−1.

Theorem 2.1 permits assure that a ∈ R#. �

Corollary 2.1. Let R be a ring with involution and a ∈ R† ∩ R#. The following identities

hold:

(i) (aa† + a†a− 1)−1 = aa# + (aa#)∗ − 1,

(ii) a# = (aa† + a†a− 1)−1a†(aa† + a†a− 1)−1,

(iii) a† ∈ R# and (a†)# = (aa† + a†a− 1)−1a(aa† + a†a− 1)−1,

(iv) (aa† − a†a− 1)−1 = aa# + (aa#)∗ − 2aa#(aa#)∗ − 1,

(v) a# = −(p− q − 1)−1a†(p− q + 1)−1,

(vi) (a†)# = (p− q + 1)−1a(q − p+ 1)−1.

Proof. (i) follows from the proof of (i) ⇒ (ii) of Theorem 2.3. (ii) follows from (2.4) and

(2.1). The first part of (iii) follows from (i)⇔ (ii) of Theorem 2.3, and the last part from (ii).

(iv) follows from (i) ⇒ (v) of Theorem 2.3. The proof of (v) ⇒ (i) of Theorem 2.3 distills

a = −(p − q − 1)−1a†a2 and a = a2a†(p − q + 1)−1, hence (2.1) permits prove (v). Finally,

(vi) follows from (v). �

There is no simple relation (except when a satisfies some concrete relation, see e.g. [7])

between a# and a†. One can guess that (a#)† = (a†)#. But even in the matrix setting, this

expression is false. Take

A =

[
c s

0 0

]
,

where 0 < c, s < 1 and c2 + s2 = 1. The following equalities can be easily verified:

A† =

[
c 0

s 0

]
, A# =

[
1/c s/c2

0 0

]
, (A†)# =

[
1/c 0

s/c2 0

]
, (A#)† =

[
c3 0

sc2 0

]
.

3 Expressions involving aa† and a†a

In this section, we will study several expressions involving aa† and a†a when a ∈ R† and R

is a ring with involution. The results from this section are the generalization of some of the

results established in [1].

Some facts about projections will be stated here and proved for the sake of completeness.

Lemma 3.1. Let R be a ring with involution, p, q ∈ R be projections and x ∈ R be self-adjoint.
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(i) If pxp ∈ R†, then (pxp)† = p(pxp)† = (pxp)†p,

(ii) If R is a ∗-reducing ring and pqp ∈ R†, then pq ∈ R† and (pqp)(pqp)† = (pq)(pq)†.

Proof. (i): Since pxp is self-adjoint, by (1.2) we have p (pxp)† = p (pxp)(pxp)†(pxp)† = 0,

hence p(pxp)† = (pxp)†. The equality (pxp)† = (pxp)†p can be proved in a similar way.

(ii): Observe that pqp = (pq)(pq)∗ holds. By Lemma 1.1 (iv) we get pq ∈ R†. Now, by

Lemma 1.1 (iii), we have (pqp)(pqp)† = pq(pq)∗ [pq(pq)∗]† = pq(pq)†. �

The following result (interesting in its own) will serve to prove some results.

Theorem 3.1. Let R be a ∗-reducing ring and p, q ∈ R be two projections such that pq p, p qp

are Moore-Penrose invertible. Then p+ q is Moore-Penrose invertible and

(p+ q)(p+ q)† = p+ p qp (p qp )†.

Proof. Let us suppose that the projections p and q are represented by

p =

[
p 0

0 0

]
and q =

[
a b

b∗ d

]
. (3.1)

By hypothesis one has that p− a, d ∈ R†. Since 1− a = (p− a) + (1− p) and p− a, p ∈ R†

(observe that since p is a projection, obviously p ∈ R† and p † = p ) we get 1− a ∈ R†. Let

x =
1

2

(
p+ (p− a)(p− a)†

)
− bd† − d†b∗ + 2d† − dd†. (3.2)

We shall prove that x = (p + q)† by verifying the four conditions of the Moore-Penrose

invertibility. We shall decompose x as in (1.1). Obviously we have

px = x11 + x12 and qx = ax11 + bx21 + ax12 + bx22 + b∗x11 + dx21 + b∗x12 + dx22,

where

x11 =
1

2

(
p+ (p− a)(p− a)†

)
, x12 = −bd†, x21 = −d†b∗, x22 = 2d† − dd†.

By Lemma 3.1 (i)

(p− a)(p− a)†b = (p− pqp)(p− pqp)†pq(1− p)

= −(p(1− q)p)(p(1− q)p)†p(1− q)(1− p) (3.3)

= −(p(1− q))(p(1− q))†p(1− q)(1− p) = b.

Similarly, we can prove that

bdd† = b. (3.4)
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Now, since q is idempotent, we have that b = ab+ bd, so bd† = abd† + b, i.e. b = (p− a)bd†.

Multiplying the last equality with (p− a)† from the left side and using (3.3), we get

(p− a)†b = bd†. (3.5)

Observe that (3.3) in conjunction with (3.5) implies that bd† − b = abd†. Hence by (3.4),

we get

x12 + ax12 + bx22 = −bd† − abd† + b(2d† − dd†) = 0.

Let us remark that since p− a is self-adjoint, then

p− a = (p− a)(p− a)(p− a)† = (p− a)(p− a)† − a(p− a)(p− a)†,

and thus by (3.5), a = a2+bb∗, and the previous computation, we get that bd†b∗ = (1−a)†bb∗ =

(1− a)†(1− a)a = (1− a)†(1− a)− (1− a). Hence,

a− bd†b∗ = 1− (1− a)(1− a)†. (3.6)

Using the last equality, we get

(p+ a)
(
p+ (p− a)(p− a)†

)
= p+ (p− a)(p− a)† + a+ a(p− a)(p− a)†

= 2
[
(p− a)(p− a)† + a

]
= 2

[
p+ bd†b∗

]
.

Thus,

x11 + ax11 + bx21 =
1

2
(p+ a)

(
p+ (p− a)(p− a)†

)
− bd†b∗ = p.

Using (3.3) and the self-adjointness of a we get b∗(p− a)(p− a)† = b∗. Furthermore, since

b = pq(1− p), we trivially get b∗p = b. Now (3.4), yields

b∗x11 + dx21 =
1

2
b∗
(
p+ (p− a)(p− a)†

)
− dd†b∗ = 0.

Since q is self-adjoint, the representation of q given in (3.1) yields that d is self-adjoint, hence

dd† = d†d. In view of d = d2 + b∗b, we have

b∗x12 + dx22 = (d2 − d)d† + 2dd† − d = dd†.

The above computations show that

(p+ q)x = p+ dd†. (3.7)

Thus, (p+ q)x is self-adjoint. Since x, p+ q, and (p+ q)x are self-adjoint, fact (1.2) permits

get that x(p + q) = (p + q)x. By (3.3) and (3.7) we easily have (p + q)x(p + q) = p + q and

x(p+ q)x = x.

Now, since d = (1− p)q(1− p), it is evident that (i) holds. �
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Theorem 3.2. Let R be a ring with involution and a ∈ R†, a 6= 0. Denote p = aa† and

q = a†a.

1. (i) pq = 0⇔ a2 = 0⇔ qp = 0,

(ii) pq ∈ R−1 ⇔ a ∈ R−1 ⇔ qp ∈ R−1,

(iii) pq = 1⇔ a ∈ R−1 ⇔ qp = 1.

2. (i) p+ q = 0 can never happen if char(R) 6= 2,

(ii) p+ q = 1 if and only if a2 = 0 and aR + a∗R = R,

(iii) If R is a ∗-reducing ring and pq p, p qp ∈ R†, then p + q ∈ R−1 if and only if

aR + a∗R = R.

3. (i) p− q = 0 if and only if aR = a∗R,

(ii) p− q = 1 can never happen if char(R) 6= 2,

(iii) p− q ∈ R−1 if and only if aR⊕ a∗R = R.

Proof. (1.i): If aa†a†a = 0, then 0 = a†(aa†a†a)a† = (a†aa†)(a†aa†) = (a†)2. Denote

b = a†. We get a2 = b†b† = (b∗b)†b∗b∗(bb∗)† = (b∗b)†(b2)∗(bb∗)† = 0. If a2 = 0, then

pq = aa†a†a = a(a∗a)†a∗a∗(aa∗)†a = 0. The remaining equivalence of (1.i) is trivial.

(1.ii): If pq ∈ R−1, then there exists b ∈ R such that aa†a†ab = 1 and baa†a†a = 1. Now,

a† = a†(aa†a†ab) = a†a†ab, thus 1 = aa†a†ab = aa†. Similarly, a† = (baa†a†a)a† = baa†a†,

hence 1 = baa†a†a = a†a. If a ∈ R−1, then it is trivial a† = a−1, thus pq = 1. The remaining

equivalence of (1.ii) can be proved by taking adjoint.

(1.iii) follows from (1.ii).

(2.i): If aa† + a†a = 0, then 0 = a†(aa† + a†a) = a† + a†a†a. Thus, 0 = (a† + a†a†a)a† =

2a†a†. Since char(R) 6= 2, then a†a† = 0. Substituting it into 0 = a† + a†a†a leads to a† = 0,

which cannot happen in view of the hypotheses.

(2.ii): Assume p+ q = 1. Premultiplying by p leads to pq = 0, and by (1.i) we get a2 = 0.

Since 1 = p+ q = aa† + a∗(aa∗)†a ∈ aR + a∗R, then R = aR + a∗R.

Assume a2 = 0 and R = aR + a∗R. To prove p + q = 1, by [3, Th. 5], it is sufficient to

prove aR ⊥ a∗R. In fact, if y, z ∈ R, then (ay)∗(a∗z) = y∗(a2)∗z = 0.

(2.iii): If p + q is invertible, then there exists y ∈ R such that (p + q)y = 1, hence

1 = aa†y + a∗(aa∗)†ay ∈ aR + a∗R, which shows R = aR + a∗R.

If aR + a∗R = R, then there exists u, v ∈ R such that 1 = au+ a∗v. Hence

1 = au+ a∗v = aa†au+ a†aa∗v = pau+ qa∗v.

From this, we get p = pau+ pqa∗v, hence 1 = p− pqa∗v+ qa∗v = p+ p qa∗v. By Theorem 3.1

and Lemma 3.1 we have

(p+ q)(p+ q)† =
[
p+ p qp (p qp )†

]
[p+ p qa∗v] = p+ p qa∗v = 1. (3.8)
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Since p + q is self-adjoint, then (p + q)† is also self-adjoint, and thus from (3.8) we get

(p+ q)†(p+ q) = 1. Therefore, p+ q ∈ R−1.

(3.i): Assume aa† = a†a. The equalities a = aa†a = a†aa = a∗(aa∗)†a2 imply aR ⊆ a∗R.

Now, a∗ = a†aa∗ = aa†a∗ yields a∗R ⊆ aR.

Assume aR = a∗R. Since p ∈ aR = a∗R, there exists u ∈ R such that p = a∗u. So,

qp = a†aa∗u = a∗u = p. Since q ∈ a∗R = aR, there exists v ∈ R such that q = av. So,

pq = aa†av = av = q. Now, p = qp = (pq)∗ = q∗ = q.

(3.ii): Assume that p − q = 1. By [3, Th. 3] and [3, Cor. 4(ii)] we get that there exists

an idempotent h ∈ R such that ha = a, ha∗ = 0 and 2 = h + h∗. Squaring the last equality

yields 4 = h + h∗ + hh∗ + h∗h, and thus, 2 = hh∗ + h∗h = h(2 − h) + (2 − h)h = 2h. We

deduce that h = 1, which contradicts ha∗ = 0 and a 6= 0.

(3.iii) See [3, Th. 3]. �

Let us recall that the elements a ∈ R† such that aa† − a†a = 0 was also studied in [2,

Th. 2.1] (the setting of this paper is a C∗-algebra, but the proof of [2, Th. 2.1] works in a ring

with involution). Also, further characterizations of the invertibility of aa† − a†a were given

in [3, Th. 3].

Remark 3.1. The hypothesis “R is ∗-reducing” in item (2.iii) of the former theorem cannot

be removed as the following example shows. Let R = Z/4Z and a = [1]. Trivially, aR+a∗R =

R and aa† + a†a = [2] is not invertible in R (because [2][2] = [0]). Observe that this latter

equality implies also that R is not ∗-reducing.

The following result extends [1, Th. 4].

Theorem 3.3. Let R be a ring with involution and a ∈ R†, a 6= 0. Denote p = aa† and

q = a†a.

1. (i) If R is a ∗-reducing ring, then pqp = 0⇔ a2 = 0⇔ qpq = 0,

(ii) pqp ∈ R−1 ⇔ a ∈ R−1 ⇔ qpq ∈ R−1,

(iii) pqp = 1⇔ a ∈ R−1 ⇔ qpq = 1,

(iv) If R is a ∗-reducing ring, then pqp is idempotent ⇔ pq = qp⇔ qpq is idempotent.

2. (i) 1− pq = 0⇔ a ∈ R−1 ⇔ 1− qp = 0,

(ii) 1− pq = 1⇔ a2 = 0⇔ 1− qp = 1,

(iii) 1− pq ∈ R−1 ⇔ pq p ∈ (pRp)−1.

(iv) If pq p, p qp ∈ R†, then 1− pq ∈ R−1 ⇔ aR ∩ a∗R = {0},

(v) If R is a ∗-reducing ring, then 1− pq is idempotent ⇔ pq = qp.

3. (i) pq − qp = 1 can never happen,

(ii) pq − qp ∈ R−1 ⇔ a ∈ R# and aR⊕ a∗R = R,
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(iii) pq − qp is idempotent ⇔ pq = qp.

4. (i) If char(R) 6= 2, then pq + qp = 0 if and only if a2 = 0,

(ii) pq + qp = 1 can never happen,

(iii) If R is a ∗-reducing ring and pq p, p qp ∈ R†, then pq + qp ∈ R−1 if and only if

a ∈ R# and aR + a∗R = R,

(iv) If char(R) 6= 2, then pq + qp is idempotent if and only if a2 = 0.

5. (i) p+ q − pq = 0 can never happen,

(ii) If R is a ∗-reducing ring and pq p, p qp ∈ R†, then p + q − pq = 1 if and only if

pq = qp and aR + a∗R = R,

(iii) If R is a ∗-reducing ring and pq p, p qp ∈ R†, then p+ q − pq ∈ R−1 if and only if

aR + a∗R = R,

(iv) If R is ∗-reducing, then p+ q − pq is idempotent if and only if pq = qp.

Proof. (1.i): If a2 = 0, then Theorem 3.2 (1.i) yields pq = qp = 0.

Since pqp = (pq)(qp) = (pq)(pq)∗, then 0 = pqp implies 0 = pq, and Theorem 3.2 (i) leads

to a2 = 0. Similarly, since qpq = (qp)(qp)∗, then qpq = 0 implies a2 = 0.

(1.ii) and (1.iii): If pqp ∈ R−1, there exists b ∈ R such that pqpb = bpqp = 1. Now,

a† = a†pqpb = a†qpb, which implies 1 = pqpb = aa†qpb = aa† = p. Hence, 1 = pqpb = qb,

which by premultiplying by a leads to a = aqb = ab, hence 1 = qb = a†ab = a†a. Since

1 = aa† = a†a, then a ∈ R−1. Similarly, we can prove qpq ∈ R−1 ⇒ a ∈ R−1. The

implications a ∈ R−1 ⇒ pqp = 1 and a ∈ R−1 ⇒ qpq = 1 are evident.

(1.iv): Assume that pqp is idempotent. Since pqp qp = pq(1 − p)qp = pqp − (pqp)2 = 0

and pqp qp = (pqp )(pqp )∗, then pqp = 0, hence pq = pqp. By taking ∗ we get qp = pqp,

and therefore, pq = qp. The proof of (qpq)2 = qpq ⇒ pq = qp is similar. The remaining

implications are evident.

(2.i) and (2.ii): They follow from Theorem 3.2, items (iii) and (i).

(2.iii): Observe that

1− pq = p+ p − pqp− pqp = pq p− pqp + p . (3.9)

If 1− pq ∈ R−1, then there exists x ∈ R such that (1− pq)x = 1 = x(1− pq). Using (3.9)

we get 1 = (pq p− pqp + p )x. If the last equality is pre-multiplied by p and post-multiplied

by p, then one obtains 0 = p xp. Pre-multiplying and post-multiplying by p the equality

1 = (pq p− pqp + p )x and using 0 = p xp lead to p = (pq p)(pxp). Using 1 = x(1− pq) and a

similar technique we get (pxp)(pq p) = p. Hence, pq p ∈ (pRp)−1.

If pq p ∈ (pRp)−1, then there exists x ∈ R such that (pq p)(pxp) = (pxp)(pq p) = p. The

equalities (1− pq)(pxp+ pxpqp + p ) = 1 and (pxp+ pxpqp + p )(1− pq) = 1 are now easy to

prove.
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(2.iv): By Theorem 3.1 we have (p + q )(p + q )† = p + pq p(pq p)†. By item (iii) of this

theorem and Theorem 3.1 we have 1− pq ∈ R−1 ⇔ p + q ∈ R−1.

Assume 1− pq ∈ R−1. If y ∈ aR∩ a∗R, there exist u, v ∈ R such that y = au = a∗v. Now

py = y and qy = y. Since pq p is self-adjoint, then pq p commutes with its Moore-Penrose

inverse, and y = py = (pq p)†pq py = 0.

Let aR∩a∗R = {0}. If z = p−pq p(pq p)†, then obviously, z ∈ aR and pz = z. By Lemma

3.1 (ii) we get zpq = 0, and by taking ∗ and considering that z is self-adjoint, we obtain

q pz = 0, i.e. qz = z, which leads z = a†az = a∗(aa∗)†az. Thus, z ∈ aR ∩ a∗R = {0}.
(2.v): A straightforward computation shows that 1 − pq is idempotent if and only if

pqpq = pq. If pqpq = pq, then it is easy to see that (pqp)(pqp) = pqp, and by item (1.iv) of

this theorem we get pq = qp. Reciprocally, if pq = qp, evidently we have pqpq = pq.

(3.i): Pre-multiplying and post-multiplying pq − qp = 1 by p lead to p = 0. Thus

0 = pa = a, which contradicts the hypotheses.

(3.ii): Let us observe that

(p+ q − 1)(q − p) = pq − qp. (3.10)

Assume that a ∈ R# and aR⊕a∗R = R. By Theorem 2.3 and Theorem 3.2 (3.iii) we have

p+ q − 1, p− q ∈ R−1. Expression (3.10) permits assure that pq − qp ∈ R−1.

Assume that pq − qp ∈ R−1. From (3.10) there exists x ∈ R such that

(p+ q − 1)(q − p)x = 1 and x(p+ q − 1)(q − p) = 1. (3.11)

To prove p + q − 1 ∈ R−1, in view of the first equality of (3.11) it is sufficient to prove

(q−p)x(p+q−1) = 1. In fact: Since (p−q)(pq−qp) = pq−pqp−qpq+qp = (pq−qp)(q−p),
we get x(p− q) = (q− p)x. Thus, (q− p)x(p+ q− 1) = x(p− q)(p+ q− 1) = x(pq− qp) = 1,

which implies p + q − 1 ∈ R−1. Observe that this last computation and the second equality

of (3.11) prove q − p ∈ R−1. Since p+ q − 1, p− q ∈ R−1, by Theorem 2.3 and Theorem 3.2

(3.iii) we get a ∈ R# and aR⊕ a∗R = R.

(3.iii): A straightforward computation shows that pq − qp is idempotent if and only if

pqpq − pqp− qpq + qpqp = pq − qp. (3.12)

If pq = qp, then obviously pq − qp is idempotent. If pq − qp is idempotent, then by pre-

multiplying and post-multiplying (3.12) by p one gets pqpqp = pq and pqpqp = 2pqp − qp,
respectively. Therefore, 2pqp = pq + qp. Again, by pre-multiplying and post-multiplying the

last equality by p, we get pq = qp.

(4.i): Assume pq + qp = 0. By pre- and post-multiplying pq + qp = 0 by p, one gets

pq + pqp = 0 = pqp + qp, hence pq = qp. Inserting this last equality into pq + qp = 0 and

using 2 ∈ R−1 lead to pq = 0. Theorem 3.2 (i) allows to deduce a2 = 0. The reciprocal is

evident by using again Theorem 3.2 (i).
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(4.ii): Assume pq + qp = 1. By pre- and post-multiplying pq + qp = 1 by p, we have

2pqp = p and by pre- and post-multiplying pq + qp = 1 by q, we get 2qpq = q. Now,

pq = p(2qpq) = (2pqp)q = p2 = p. Using again 2pqp = p leads to 2p = p, which yields p = 0.

Thus a = 0, which is unfeasible.

(4.iii): By Theorem 2.3 and Theorem 3.2 (2.iii) we have a ∈ R# ⇔ p + q − 1 ∈ R−1 and

aR + a∗R = R⇔ p+ q ∈ R−1. Furthermore, let us observe that (p+ q − 1)(p+ q) = pq + qp.

Hence we have proved
[
a ∈ R# and aR + a∗R = R

]
⇒ pq + qp ∈ R−1.

Assume that pq+qp ∈ R−1 and let us define x = (p+q)(pq+qp)−1. Since (pq+qp)(p+q) =

(p+q)(pq+qp) we have (p+q)(pq+qp)−1 = (pq+qp)−1(p+q). From (p+q−1)(p+q) = pq+qp

we get (p+ q − 1)x = 1. Now

x(p+ q − 1) = (p+ q)(pq + qp)−1(p+ q − 1) = (pq + qp)−1(p+ q)(p+ q − 1) = 1;

which yields p+ q − 1 ∈ R−1. If we define y = (pq + qp)−1(p+ q − 1), then similarly we can

prove (p+ q)y = y(p+ q) = 1.

(4.iv): We shall prove pq + qp is idempotent if and only if pq + qp = 0, which in view of

item (4.i), will prove this item. Obviously, the implication pq+ qp = 0⇒ (pq+ qp)2 = pq+ qp

is evident. Let us prove the opposite one: Since p (pq + qp)p = 0, p (pq + qp)2p = p qpqp

and the idempotency of pq + qp we get 0 = p qpqp = (p qp)(p qp)∗. Hence 0 = p qp, or

equivalently, qp = pqp. By inverting the roles of p and q we have pq = qpq. Now, (pq+qp)2 =

pqpq + pqp+ qpq + qpqp = 2pq + 2qp, which in view of the idempotency of pq + qp, leads to

pq + qp = 0.

(5.i): If p+ q = pq, by pre-multiplying by p, we get p = 0, which implies a = 0.

(5.ii): If p+ q − pq = 1, by post-multiplying by p, then we get qp = pqp, which by taking

∗ leads to pq = pqp, therefore pq = qp. Also 1 = p(1 − q) + q ∈ aR + a∗R, which entails

R = aR + a∗R.

Assume that pq = qp and R = aR + a∗R. The last hypothesis, in view of Theorem

3.2 (2.iii) is equivalent to p + q ∈ R−1. It is easy to see that from pq = qp we can get

(p+ q)(p+ q − pq − 1) = 0, which in conjunction with p+ q ∈ R−1 yields p+ q − pq − 1 = 0.

(5.iii): If p+q−pq ∈ R−1, there exists x ∈ R such that 1 = (p+q−pq)x = p(x−qx)+qx ∈
aR + a∗R, hence R = aR + a∗R.

If R = aR + a∗R, then by Theorem 3.2 2. (iii), p + q ∈ R−1. Now, by (1.2), Theorem

3.1, and by denoting u = (p qp )†, we get p qp u = up qp = p (these two last relations express

that p qp is invertible in pRp and u is the inverse of p qp in such subring), or equivalently,

p qu = uqp = p . Let us remark two simple things: u ∈ pRp and p+ q − pq = p+ p q. Now,

it is easy to prove (p+ p q)(p− uqp+ u) = (p− uqp+ u)(p+ p q) = 1.

(5.iv): A straightforward computation shows that p + q − pq is idempotent if and only

if pqpq + qp = qpq + pqp. Hence, if pq = qp, then obviously p + q − pq is idempotent. If

pqpq + qp = qpq + pqp, by pre- and post-multiplying by p one gets 0 = p qpqp = p qp(p qp)∗,
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hence 0 = p qp, or equivalently, qp = pqp. By taking ∗ we get pq = pqp. Thus, pq = qp. �

The following results extends [1, Th. 3].

Theorem 3.4. Let R be a unital ring with involution and a ∈ R†, a 6= 0. Denote p = aa†

and q = a†a.

1. (i) pq is a projection if and only if pq = qp.

(ii) If char(R) 6= 2, then p+ q is a projection if and only if a2 = 0.

(iii) If char(R) 6= 2, then p− q is a projection if and only if ap = a.

2. (i) p q is a projection if and only if pq = qp.

(ii) If char(R) 6= 2, then p + q is a projection if and only if ap = a.

(iii) p− q is a projection if and only a2 = 0.

3. (i) pq is a projection if and only if pq = qp.

(ii) If char(R) 6= 2, then p+ q is a projection if and only if a = qa.

(iii) If char(R) 6= 2, then p−q is a projection if and only if pq = qp and aR+a∗R = R.

4. (i) p q is a projection if and only if pq = qp.

(ii) If char(R) 6= 2, then p +q is a projection if and only if pq = qp and aR+a∗R = R.

(iii) If char(R) 6= 2, then p − q is a projection if and only if a = qa.

Proof. To prove items (i), it is enough to observe that any of the following conditions:

(pq)∗ = pq, (p q)∗ = p q, (pq )∗ = pq , (p q )∗ = p q is equivalent to pq = qp.

(1.ii): It follows from Theorem 3.3 (4.i).

(1.iii): Obviously p− q is a projection if and only if 2q = pq + qp.

If 2q = pq + qp, then by pre-multiplying by p one gets pq = pqp, which by taking ∗ leads

to pq = qp. Using again 2q = pq + qp gets q = qp, which by premultiplying by a leads to

a = ap.

Assume ap = a. If we multiply the last equality by a† from the left side, we get qp = q.

Now we use Lemma 1.1 to get pa† = pa∗(aa∗)† = (ap)∗(aa∗)† = a∗(aa∗)† = a†, which by

post-multiplying by a yields pq = q. Obviously, we have 2q = pq + qp.

(2.ii): It follows from (p + q)2− (p + q) = p q+ qp = 2q− pq− qp and the proof of (1.iii).

(2.iii): Observe that (p− q)2 − (p− q) = pq + qp. Hence, Theorem 3.3 (4.i) leads to p− q
is a projection if and only if a2 = 0.

(3.ii): First observe that p+ q is a projection if and only if 2p = pq+ qp. If 2p = pq+ qp,

by pre-multiplying by q we get qp = qpq, which by taking ∗ yields pq = qpq. Hence pq = qp

which implies that p = qp. Thus, a = qa.

If a = qa, then p = aa† = qaa† = qp. By taking adjoint of the last equality, we get

pq = qp = p, hence 2p = pq + qp.
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(3.iii): We have

(p− q )2 − (p− q ) = 2− 2p− 2q + pq + qp. (3.13)

If p− q is a projection, then by pre- and post-multiplying 2 + pq + qp = 2p+ 2q by p we

obtain pq = qp. Also, we have 1 = 2 · 2−1 = p(2 − q)2−1 + q(2 − p)2−1 ∈ aR + a∗R. Hence,

R = aR + a∗R.

Assume that pq = qp and aR+ a∗R = R. We shall use [6, Cor. 3.8] to prove p+ q ∈ R−1.

A simple computation proves (p+ q)(p+ q − 3
2pq)(p+ q) = p+ q, hence p+ q is regular. Let

x ∈ pR∩q(1−p)R. From x ∈ pR we get px = x, while from x ∈ q(1−p)R and pq = qp we get

px = 0. Therefore pR∩ q(1− p)R = {0}. Now, pick any y ∈ p◦ ∩ q◦. Since y ∈ R = aR+ a∗R,

there exist b, c ∈ R such that y = ab + a∗c. Combining this last equality with py = 0 and

pa = a leads to

0 = ab+ pa∗c. (3.14)

By y = ab+ a∗c, qy = 0, and qa∗ = a∗ we get

0 = qab+ a∗c. (3.15)

Thus, (3.14), (3.15), pq = qp, and pa = a yield

y = ab+ a∗c = −pa∗c+ a∗c = (1− p)a∗c = (p− 1)qab = q(p− 1)ab = 0,

i.e. p◦ ∩ q◦ = {0}. From Corollary 3.8 [6] we get p + q ∈ R−1. Let us remind that we have

proved (p+ q)(p+ q − 3
2pq)(p+ q) = p+ q, which entails (p+ q)(p+ q − 3

2pq) = 1. By doing

elementary algebra (let us recall that we can use pq = qp) we get p + q − pq = 1. By (3.13)

we obtain that p− q is a projection.

(4.ii): A straightforward computation show that (p +q )2−(p +q ) = 2−2p−2q+pq+qp.

Now the proof follows from (3.13) and the proof of (3.iii).

(4.iii): Trivially we have that p − q is a projection if and only if 2p = pq + qp. Now, the

proof follows from the proof of (3.ii). �

If we assume that a ∈ R#, then some conditions of Theorem 3.4 can be written in a

simpler form:

Theorem 3.5. Let R be a unital ring with involution and a ∈ R† ∩ R#, a 6= 0. Denote

p = aa† and q = a†a. Then ap = a⇔ p = q ⇔ qa = a.

Proof. Obviously p = q implies ap = a and qa = a.

Assume ap = a. As we have shown in the proof of Theorem 3.4 (1.iii), we can deduce

pq = qp = q. By Theorem 2.2, we have aa# = q, and Corollary 2.1 (i) yields (observe that

we use (2q − 1)2 = 1)

p+ q − 1 = (aa# + (aa#)∗ − 1)−1 = (2q − 1)−1 = 2q − 1.

Thus, p = q. The proof of qa = a⇒ p = q is similar. �
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Remark 3.2. If the ring is Cn,n and if F ∈ Cn,n satisfies F 2F † = F (this equality is the

matrix version of ap = a), then it is evident that R(F ) = R(F 2), and this set equality is

equivalent to the existence of F#. On the other hand, if F ∈ Cn,n satisfies F †F 2 = F , then

N(F ) = N(F 2), and this implies again that F# exists. Therefore, Theorem 3.5 proves that

F 2F † = F ⇒ FF † = F †F and F †F 2 = F ⇒ FF † = F †F . A matrix F such that FF † = F †F

is called EP-matrix.

Theorem 3.6. Let R be a ring with involution and a ∈ R†, a 6= 0. Denote p = aa† and

q = a†a. Then

(i) (p− q)R = (aR + a∗R) ∩ (a◦ + (a∗)◦).

(ii) (pq − qp)R ∈ [aR + a∗R] ∩ [aR + a◦] ∩ [a∗R + (a∗)◦] ∩ [a◦ + (a∗)◦].

Proof. It will be useful recall the following formulas easy to prove

a◦ = q◦ = (1− q)R, (a∗)◦ = p◦ = (1− p)R, pR = aR, qR = a∗R. (3.16)

(i ⊆): Let x ∈ (p−q)R. There exists u ∈ R such that x = (p−q)u. Evidently, x ∈ aR+a∗R

and x = (1− p)(−u) + (1− q)u ∈ (1− p)R + (1− q)R.

(i ⊇): Let x ∈ (aR + a∗R) ∩ (a◦ + (a∗)◦). There exist u, v ∈ R, y ∈ a◦ and z ∈ (a∗)◦ such

that x = au+ a∗v = y + z. Since y ∈ a◦ we get qy = 0. Since z ∈ (a∗)0 we get pz = 0. Since

au− z = y − a∗v, then x = aa†au+ a†aa∗v = p(au− z)− q(y − a∗v) ∈ (p− q)R.

(ii ⊆): Let x ∈ R. Obviously, (pq − qp)x ∈ pR + qR = aR + a∗R. Moreover, (pq − qp)x =

p(qx−x) + (1− q)px ∈ pR+ (1− q)R = aR+ a◦ and (pq− qp)x = q(x− px) + (1− p)q(−x) ∈
qR+(1−p)R = a∗R+(a∗)◦. Finally, by (i), (pq−qp)x = (1−p)q(−x)+(1−q)px+(p−q)(−x) ∈
(1− p)R + (1− q)R + (p− q)R ⊆ a◦ + (a∗)◦.

(ii ⊇): Let x, y, u, v, z, w, s, t ∈ R such that

px+ qy = pu+ v = qz + w = s+ t, qv = pw = qs = pt = 0. (3.17)

We will prove px+ qy ∈ (pq− qp)R. From (3.17) we have px+pqy = pqz and qpx+ qy = qpu.

Hence,

px+ qy = pqz − pqy + qpu− qpx = pqθ − qpψ,

where θ = qz − qy and ψ = px− pu. Let us define η = v − s and µ = t− w, which by (3.17)

we get qη = pµ = 0. Furthermore, by (3.17) we have

θ + η = qz − qy + v − s = px− w + t− pu = ψ + µ.

All these computations prove px+ qy = pq(θ + η)− qp(ψ + µ) ∈ (pq − qp)R. �
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Remark 3.3. In [1], the authors gave expressions for the range space of several matrices

depending on FF† and F†F. We shall show by examples that some of these relations do not

hold in arbitrary rings with an involution. In what follows R will be a ring with involution,

a ∈ R†, and p = aa†, q = a†a.

The equality pqR = aR ∩ (a◦ + (a∗)◦) is not true in general. Let R be commutative and

take a ∈ R−1. Obviously , a◦ = (a∗)◦ = {0} and p = q = 1.

The equalities (p+q)R = aR+a∗R and (pq+qp)R = (aR+a∗R)+(aR+a◦)+(a∗R+(a∗)◦)

do not hold in an arbitrary ring. To see this, it is sufficient take R = Z and a = 1.

In next result we shall extend some equalities of Theorem 5 of [1] involving kernel ideals.

We shall introduce the notion of positivity in rings with involution (this notion is borrowed

from the C∗-algebra theory). Let R be a ring with involution. An element x ∈ R is said to

be positive (denoted by 0 ≤ x) if exists k ∈ R such that x = kk∗. We write x ≤ y if and only

if 0 ≤ y − x. In other words,

x ≤ y ⇐⇒ ∃k ∈ R : y − x = kk∗. (3.18)

It is evident that the usual order in Z coincides with (3.18) and this order is antisymmetric.

Also, by Corollary 5.4 of [10], it follows that the relation (3.18) defined in any C∗-algebra is

antisymmetric. But in general this is not the case.

Theorem 3.7. Let R be a ring with involution, a ∈ R† and p = aa†, q = a†a. Then

(i) (p− q)◦ = [aR ∩ a∗R] + [a◦ ∩ (a∗)◦].

(ii) If R is *-reducing and the relation (3.18) is antisymmetric, then (p+ q)◦ = a◦ ∩ (a∗)◦.

(iii) If R is *-reducing and the relation (3.18) is antisymmetric, then (pq + qp)◦ = [aR ∩
a◦] + [a∗R ∩ (a∗)◦] + [a◦ ∩ (a∗)◦].

(iv) (pq − qp)◦ = [aR ∩ a∗R] + [aR ∩ a◦] + [a∗R ∩ (a∗)◦] + [a◦ ∩ (a∗)◦].

Proof. We will use (3.16).

(i ⊆): Let x ∈ (p− q)◦, i.e., px = qx. We decompose x as x = px+ (1−p)x. Now, observe

that px ∈ pR, px = qx ∈ qR, (1− p)x ∈ (1− p)R, and (1− p)x = (1− q)x ∈ (1− q)R.

(i ⊇): Let x ∈ aR ∩ a∗R and y ∈ a◦ ∩ (a∗)◦. We have to prove that x + y ∈ (p − q)◦.
We have x = au = a∗v for some u, v ∈ R, and ay = a∗y = 0. Now px = pau = au = x;

qx = qa∗v = a∗v = x, py = aa†y = 0, and qy = 0. These calculations prove (p−q)(x+y) = 0.

(ii): Obviously, a◦ ∩ (a∗)◦ ⊆ (p + q)◦. To prove the opposite inclusion, pick x ∈ R such

that px+qx = 0. We get x∗px+x∗qx = 0. Furthermore, x∗px and x∗qx are positive elements

because x∗px = (px)∗(px) and x∗qx = (qx)∗(qx). Hence 0 ≤ x∗px and x∗px ≤ x∗px+x∗qx =

0. Since the relation (3.18) is antisymmetric, then x∗px = 0. Hence (px)∗(px) = 0. Since R

is *-reducing we get px = 0. Analogously, qx = 0 holds. Therefore, x ∈ p◦ ∩ q◦.
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(iii ⊆): Let x ∈ (pq + qp)◦. Notice that (p + q)(p + q − 1)x = (pq + qp)x = 0, hence

(p+q−1)x ∈ (p+q)◦. By item (ii) we get (p+q−1)x ∈ a◦∩(a∗)◦, and thus, 0 = a(p+q−1)x =

apx and 0 = a∗(p+ q − 1)x = a∗qx. The decomposition x = px+ qx+ (1− p− q)x permits

prove the required inclusion because px ∈ aR∩a◦; qx ∈ a∗∩(a∗)◦ and (1−p−q)x ∈ a◦∩(a∗)◦.

(iii ⊇): Let x = au + a∗v + w, where u, v, w ∈ R satisfy a(au) = 0, a∗(a∗v) = 0,

and aw = a∗w = 0. Then pqau = 0; qpau = 0; pqa∗v = pa∗v = a(a∗a)†(a∗)2v = 0;

qpa∗v = qaa†a∗v = qa(a∗a)†(a∗)2v = 0; pqw = 0 and qpw = 0. All these computations prove

(pq + qp)x = 0.

(iv ⊆): Let x ∈ (pq−qp)◦ and denote u = pqx = qpx. We shall see that the decomposition

x = u + (px − u) + (qx − u) + (x + u − px − qx) permits prove the inclusion. Observe that

u = pqx = qpx ∈ aR ∩ a∗R. In addition, px− u ∈ aR ∩ a◦ since

px− u = p(x− qx) ∈ pR, a(px− u) = apx− aqpx = apx− apx = 0.

Similarly, qx− u ∈ a∗R ∩ (a∗)◦ because

qx− u = q(x− px) ∈ qR, a∗(qx− u) = a∗qx− a∗pqu = a∗qx− a∗qx = 0.

Finally, x+ u− px− qx ∈ a◦ ∩ (a∗)◦ because x+ u− px− qx = (1− q)x+ (u− px) ∈ a◦ and

x+ u− px− qx = (1− p)x+ (u− qx) ∈ (a∗)◦.

(iv ⊇): By (i), it is sufficient to prove [aR∩a◦]+[a∗R∩(a∗)◦] ⊂ (pq−qp)◦. Let x ∈ R satisfy

ax = 0 and x = au for some u ∈ R. Now, pqx = pa†ax = 0 and qpx = qpau = qau = qx = 0,

so aR ∩ a◦ ⊂ (pq − qp)◦.
Let y ∈ R satisfy a∗y = 0 and let y = a∗v for some v ∈ R. Now, pqy = pqa∗v = pa∗v =

py = a(a∗a)†a∗y = 0 and y ∈ (a∗)◦ = p◦ ⊆ (qp)◦. Thus, a∗R ∩ (a∗)◦ ⊂ (pq − qp)◦. �

If we do not assume that (3.18) is antisymmetric, we need impose another condition in

order that items (ii) and (iii) of Theorem 3.7 hold.

Theorem 3.8. Let R be a ring with involution and ∗-reducing, a ∈ R† and p = aa†, q = a†a.

If pq p, p qp ∈ R†, then

(i) (p+ q)◦ = a◦ ∩ (a∗)◦.

(ii) (pq + qp)◦ = [aR ∩ a◦] + [a∗R ∩ (a∗)◦] + [a◦ ∩ (a∗)◦].

Proof. By (3.16), to prove (i), it is sufficient to prove (p+q)◦ = p◦∩q◦. Since p◦∩q◦ ⊆ (p+q)◦

is evident, we will only prove the opposite inclusion. Pick x ∈ (p+q)◦. By Theorem 3.1 we get

px+ p qp (p qp )†x = 0, which by premultiplying by p leads to px = 0. By inverting the roles

of p, q we get qx = 0. The proof of (ii) is the same as the corresponding item in Theorem 3.7.

�
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Remark 3.4. The equalities

(p+ q)◦ = a◦ ∩ (a∗)◦ and (pq + qp)◦ ⊂ (aR ∩ a◦) + (a∗R ∩ (a∗)◦) + (a◦ ∩ (a∗)◦)

do not hold in an arbitrary ring: take R = Z/4Z and a = [1]. Evidently, p = q = [1], and

[2] ∈ (p+ q)◦ = (pq + qp)◦, and however a◦ = (a∗)◦ = {[0]}.

Remark 3.5. In [1] the authors gave an expression for the null space of (FF†)(F†F) in

terms of the range space and the null space of F and F∗, when F is a square complex matrix.

We shall see that the corresponding ring version does not hold. More precisely, the relation

(pq)◦ = a∗R + [a◦ ∩ (a∗)◦] is not generally true when a ∈ R†, p = aa†, q = a†a, and R is a

ring with an involution. To see this, it is enough to take R = Z and a = 1.
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