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Email:{pvalderas, pele}@pros.upv.es

Abstract—The amount of elderly people with chronic diseases
is constantly increasing, and current health systems are not able
to provide a proper supervision. Ambient Assisted Living (AAL)
is a new research area that stands for the use of pervasive
and mobile technologies in order to increase the quality of life,
wellbeing and safety of elderly people. In this work, we present
a tool-supported methodology to facilitate the creation of AAL
systems through the use of executable models. AAL services are
specified by executable context-adaptive task models by using
concepts of a high level of abstraction, which facilitate the
participation of medical professionals in the AAL specification.
The task models are then interpreted and executed at runtime
by a software infrastructure that automates the AAL services
as specified. Thus, task models are the only implementation
of the services, making it easy their further evolution after
system deployment. In order to demonstrate the feasibility of
our methodology, we have evaluated it in the development of an
AAL system for assisting the patients of a nursing home.

Index Terms—Ambient Assisting Living, smart environments,
models at runtime, context adaptation;

I. INTRODUCTION

This paper introduces an evolution of the software infras-
tructure presented in [1] in order to support the development
of Ambient Assisting Living (AAL) environments [2]. The
ageing of population is making that the number of citizens
with chronic diseases is increasing, especially among elderly
people. These people require a constant control and super-
vision that traditional public health systems are not able to
provide in a satisfactory way. The advances in the Internet
of Things (IoT), and the progress of mobile devices (smart
phones, tablets, etc.) and wearables (Google glasses, smart
watches, sensors in clothes and body, etc.) allow creating
systems that sense patients’ context in order to take decisions
that adapt system behaviour according to the patients’ needs.

This is the main goal of AAL practices, which stand for the
use of electronic processes and communication as well as mo-
bile technologies in order to support the practice of medicine
and public health. AAL applications include services, products
and concepts to increase the quality of life, wellbeing and
safety of elderly people. The main goal of AAL is to achieve
benefits for the individual (increasing safety and well-being),
the economy (higher effectiveness of limited resources) and
the society (better living standards) [3]. A clear evidence of
the current interest in these topics is the European Ambient

Assisted Living joint Program and all the submitted projects
[4].

AAL environments require self-adaptive systems to auto-
mate AAL services that assist patients when is required in a
non-intrusive way. These systems also need to consider the
patients and medical staff (which will be the end-users of the
system), in the system design in order to properly support
medical guidelines and patients demands. Several works such
as [5][6][7][8] have worked on the automation of tasks and
system adaptation. However, these solutions focus on the
technical challenge of adapting a system by analyzing user
behavior and environment conditions at runtime, paying little
attention to the involvement of end-users from early stages of
development, which is crucial on AAL environments.

To improve these challenges, we evolve the software infras-
tructure presented in [1] to be applied in AAL environments.
This infrastructure was proposed for automating tasks in smart
homes. This paper extends it to successfully automate assisting
services. In addition, we propose a methodology for using
this infrastructure in order to support the development of
these services from the requirement elicitation until their
execution. In order to properly identify the assisting services
required by the end-users, we use User Centered Design
(UCD) techniques such as Personas and scenarios [9]. The
identified services are then described in context-adaptive task
models. Task models facilitate the participation of patients and
medical professionals in their definition and allow describing
the assisting services in a very intuitive manner by using high-
level concepts close to the problem domain.

The tasks models are directly interpreted by a software in-
frastructure at runtime, which executes the described assisting
services in the appropriate context. This allows automating
the services from the very moment in which task models
are defined. Moreover, this facilitates the further evolution
of the services if health conditions of patients change: by
only updating the models, the services are evolved. With this
infrastructure, we can provide patients with a high quality of
assistance. In addition, assisting services can be performed in a
convenient way for patients since they are analyzed by medical
professionals before they are automated by using the task
model. Moreover, assistance is self-adaptive according to con-
text, i.e., the software infrastructure reacts and autonomously
adapts patient assistance according to each context. In order
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to evaluate our approach we have used it to develop an AAL
system that assists the patients of a Nursing Home.

The rest of the paper is organized as follows: Section II
presents the related work. Section III introduce the proposed
methodology to support assisting services from their require-
ments to their execution. Section IV presents the process to
capture the assisting service requirements. Section V describes
the models proposed to specify the needed assisting services.
Section VI presents the software infrastructure that automates
assisting services in a context adaptive way and allows their
evolution after system deployment. Section VII validates the
approach using a case study based evaluation. Section VIII
concludes the paper and proposes further work.

II. RELATED WORK

An AAL scenario is characterized by being connected,
context-adaptive and anticipative. In order to confront the
creation of these environments, AAL systems are usually
structured in three levels [10]: Hardware (sensing, wireless
networks), Middleware (data capture, data safety, IT integra-
tion) and Services (biosignal processing, application-orientated
processes, community services).

A lot of research work has been done in all three levels.
An overview on assisting hardware technology is given in
[11]. It addresses video-monitoring, remote health monitor-
ing, electronic sensors, and equipment such as fall detectors
and door monitors. This technology alone is not enough to
coordinate hardware components in order to provide complex
assisting services. Thus, only panic buttons-based solutions
can be provided.

To enable increased safety and wellbeing in a specific
environment, it has to become intelligent with the help of
pervasive devices, which are capable to register changes in the
physical environment and thus actively interact in a process. In
addition, a system that coordinates these devices is required.
In this context, there are a number of research projects focus-
ing on the development of AAL middlewares. For example,
the PERSONA project [12] proposes a middleware platform
for the implementation of semantic assisting services. The
Aware Home [13] project built up a living lab, in which
they tested the users acceptance of technology, building up
a bridging framework for universal device interoperability in
pervasive systems. The mission of I-Living [14] is developing
an assisted-living supportive software infrastructure that allows
disparate technologies, software components, and wireless
devices to work together. Tasks provided in I-Living are such
as activity reminding, health monitoring, personal belonging
localization, emergency detection, and so on. However, the
available services provided by these three projects are closed
and still limited, and they do not provide tools that facilitate
end-users to participate in the definitions of these services.

According to [15], there are three types of assisting ser-
vices: (a) Emergency treatment, which faces situations such
as sudden falls, heard attacks, strokes, panics, etc.; (b) Au-
tonomy enhancement, which allows replacing medical and
social care personnel by appropriate system support such as

a cooking assistance system for people with visual defects;
and (c) Comfort, which covers all areas that do not fall into
the categories (a) and (b) such as social contact assistance,
infotainment assistance, logistic assistance, etc.

Independently from their type, AAL services imply the
execution of a set of tasks in a coordinated way. For instance,
a service that treats a fall may require analyze patient’s
location and state, and people surround them, and alert doctors
or caregivers if a fall emergency is detected; a service for
improving autonomy may require to check the fridge for
essential products and decide to make a shopping order if
needed according to the diet of the users; and a service that
manages comfort may require to graduate the light intensity
and the temperature, close or open blinds and windows, and
play certain music according to the users’ taste.

Note that the above presented AAL approaches provide
little support to define this type of coordination, where tasks
are executed in a specific order depending on environment
conditions, users’ state, or the outputs of previous tasks. The
research fields of task automation and context-awareness play
key roles in order to support these three types of services.
Machine-learning approaches have attempted to deal with the
automation of user routines by automatically inferring them
from past user actions [5][6]. These approaches have done
excellent work by automatically learning from user behavior;
however, assisting services need to be available from the
very beginning deployment of the system and a learning
process is not acceptable [16]. In addition, these approaches
may be intrusive for users because the repeated execution
of an action does not imply that the patients or caregivers
wants this automation. Also, they reproduce the actions that
users have frequently executed in the past and in the same
manner that they were executed. This prevents user tasks from
being carried out in a more efficient and convenient way, i.e.,
including medical professional guidelines, and does not allow
tasks that users did not perform before to be automated.

Context-aware rule-based approaches have made great ad-
vances in introducing context into software systems. To auto-
mate user tasks, they program rules that trigger the sequential
execution of actions when a certain context event is produced
[7][8]. However, these techniques are only appropriate for
automating relatively simple tasks [17]; hence, they usually
require large numbers of rules. If we also consider that these
rules have to be manually programmed [17], the understanding
and maintenance of the system may become very difficult.

In this work, we propose a solution based on executable
task models. The concept of task is intuitive enough to
be understandable by medical professionals and persons re-
sposible of the patients, facilitating their involvement in the
development process; they provide rich expressiveness that
allows us to precisely describe the assisting services that the
system must support to face specific situations; and they can
be automatically interpreted by a software infrastructure from
the initial deployment of the system. Historically, task-oriented
computing uses task modelling to facilitate the interaction
of users with the system. These systems have proven that
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task modelling is effective in several fields such as user
interface modelling [18], assisting end-users in the execution
of tasks [19], etc. These works show the growing usage of
task modelling and its remarkable results and possibilities to
model system behavior. However, none of these works attempt
to describe AAL services. Hence, they provide neither enough
expressiveness to specify them nor enough accuracy to allow
their subsequent automation.

Finally, note that, unlike the above works, our approach
makes a step further for providing an integrated approach, cov-
ering all stages of the development process from requirement
elicitation to service execution. We concretely exploit knowl-
edge gathered by UCD techniques to derive the executable
models that represent the AAL services.

III. METHODOLOGY TO SUPPORT AAL

To achieve the automation of AAL services, we propose
a model-driven development methodology that supports their
development from requirements elicitation to their execution.
The methodology is proposed considering the following main
aspects:

• AAL services must be automated according to specific
medical guidelines and to the requirements provided by
medical professionals and patient responsible persons.
This is essential so that the tasks that are automated
can assist to the patients and medical staff (end-users
of the system) in the best way. If this information is
not taken into account, the AAL services could be very
intrusive for the end-users of the system, bothering them,
interfering in their goals, or even being dangerous. For
instance, according to medical guidelines, a softer room
illumination and relaxing music playing may help to
make patients more relaxed. If these guidelines are not
considered, medical or security staff would be needed
every time an aggressive behaviour is detected. Due to
the medical context, and the imprecise and ambiguous
nature of patient behaviour, it is very difficult for a
system to sense or infer this information [20]. Therefore,
the participation of the corresponding end-users is
absolutely necessary for supporting AAL.

• The AAL services must be context-adaptive. Context
information is essential to be able to execute the assiting
tasks in the opportune situation. Therefore, AAL services
must be described in a context-adaptive way. For instance,
if a health anomaly is detected in a patient when s/he
has fallen, the appropriate nurses or doctors should be
inmediately notified; however, if the patient health is
not in risk, it is enough to notify the nearest available
caregivers.

• The evolution of the AAL services must be facilitated
after system deployment. Some AAL services might
never change; however, most of them will. Patients’
behaviour and health may change over time and the
automated services to support them need to be adapted to
these changes. Otherwise, the system may become useless

and intrusive. Since these types of changes cannot be an-
ticipated at design time, the automation of AAL services
must be performed in such a way that their evolution after
system deployment is facilitated at runtime.

In order to deal with these aspects, the methodology we
propose consists on the following steps (see Figure 1):

• Requirements Elicitation: AAL Service Identification. In
order to capture of medical guidelines and to properly
capture the end-users requirements, we use UCD tec-
niques to facilite the participation of the specific end-
users. We use UCD techniques because they give exten-
sive attention to needs, wants, and limitations of users at
each stage of the development process, which is crucial
in the design of AAL systems. This methodology step
will be further explained in Section IV.

• AAL Service Modelling. This activity consists of mod-
elling the AAL services that must be automated by
the system. An AAL service is a set of tasks that are
habitually performed in a certain context for assisting
patients and medical staff. The following steps must be
followed to specify the identified AAL services:

– Context modelling. Analysts specify the context
properties on which the AAL services depend, create
the necessary rules to infer properties values, and
set the property values that need to be manually
introduced.

– AAL service modelling. Using the context-adaptive
task model, the analysts specify the AAL services
to be automated according to the context previously
specified. Each AAL service consitutes a coordina-
tion of tasks and is specified as a task hierarchy in
which the service represents the highest task in the
hierarchy. Each service needs to be progressively
broken down into simpler tasks until they can be
automatically executed by a pervasive device.

– Modelling validation. The AAL services’ modelling
is validated with the end-users to ensure that the
tasks will be automated according to patients’ needs
and medical guidelines. Thus, following an iterative
process, the service modelling (and if needed the
context modelling), must be refined with the end-
users participation until they agree with the specified
AAL services. It is important to note that, in this
way, the modelling is complemented by both the
knowledge of the system analysts, which contributes
to improving the performance of the identified AAL
services; and the knowledge of the medical pro-
fessionals and persons responsible of the patients’,
which contributes to taking into account the needs
and demands of the end-users. After validating the
service modelling with the end-users, analysts also
validate that the models are correctly formed and
without inconsistencies.

– Device linkage: once the modelling has been vali-
dated, the analysts link each leaf task with a perva-
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Fig. 1. Methodology for supporting AAL Services

sive device that can carry it out. Pervasive devices
can control the objects in the environment (e.g.,
switching lights on, activating the security alarm,
etc.) and sense context information (e.g., detection of
presence, measurement of temperature, etc.). Specif-
ically, we consider a pervasive device to be an
entity that provides a coherent set of functionality
which is described in terms of atomic operations
(or methods). Thus, the linkage between leaf tasks
and the corresponding pervasive device is made in
the task model by indicating the name of the cor-
responding pervasive device and its operation. The
implementation of these devices is out of the scope
of this paper; an approach such as PervML [21][22]
could be used for developing them.

Since the used context-adaptive task models are exe-
cutable models [23], this step finishes the AAL service
development. This also allows that the specified AAL
services can be validated by using prototypes. This would
require that the automation of the specified AAL services
is done in a simulation mode. This mode should allow
analysts to cause context changes and to easily observe
the execution of the services according to context.
This methodology step will be further explained in Sec-
tion III.

• AAL Service Automation. To enable the automation of
the specified AAL services in the opportune context, the
following two steps must be performed:

– Deployment of the system in the target platform. To
deploy the system, analysts install each component
of the software infrastructure in an OSGi server.
We use an OSGi server [24] because it provides
numerous benefits and facilities to make dynamic
updates, to easily reuse components, or to deploy the
system. In addition, the context model and the task
model where the AAL services are specified must be
saved in the folder where OSGi is installed.

– Running the system. To run the system, analysts
start the components installed in OSGi. From this
moment, the context is continuously monitored and
the specified AAL services are automated in the
appropriate context. It is important to note that, since
the models are directly interpreted, they are the only
representation of the AAL services to be automated.
This facilitates their understanding, maintenance and
evolution.

This methodology step will be further explained in Sec-
tion VI.

• Evolution of the AAL services if needed. Medical staff and
patient behaviour as well as patients’ health may change
over time and the AAL services that are automated
may become obsolete or useless. If this happens, the
automated AAL services can be evolved according to
the new requirements. To allow this evolution, evolution
mechanisms are provided. This methodology step will be
further explained in Section VI.

In the next sections we explain how these steps are sup-
ported.

IV. AAL SERVICE REQUIREMENT’ ELICITATION

In order to capture the requirements for automated services,
we use UCD techniques. AAL services can be defined for
specific patients that suffer from very concrete disabilities or
for a group of patients that share a same profile. Therefore,
the elicitation process is based on the description of personas
and technological scenarios. Their conjunct use increases the
ability to identify problems and exceptional cases [25] and to
envisage the system to be [26].

Personas are descriptive models of system-to-be users based
on behavioural data, derived from patterns observed during
interviews, with the aim of representing the diversity of
observed motivations, behaviours, and mental models [27].
Examples can be found in Figure 2.

In the context of AAL, a Persona may represent a single
patient with specific needs, a group of patients that share same
needs, or a medical profile (a doctor, a nurse, a caregiver, etc.).
In the case of being either a group of patients or a medical
profile, they are personified through a fictitious character that
represent them. For the former, the character has the needs that
are shared by all of them; for the latter, the character represents
the professional skills that are shared by all the people of
this profile. This facilitates a shared understanding of who the
patients and medical professionals are, and what they need or
can provide in order to make decisions about AAL services. In
addition, Personas provide a powerful tool for communicating
between computer analyst and medical professionals in order
to develop and evaluate AAL services. Figure 2 shows two
examples of Persona. The first one, Maria, represent a patient
with senile dementia; the second one, Sabrina, represent an
experienced caregiver.

Personas are complemented with technological scenarios
that illustrate how they interact with the system. Technological
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MariaM·MSenileMDementiaMPatient

78MyearsMold
Description

SheMhasMbeenMinMtheMnursingMhomeMforMthreeMmonth
andMisMaffectedMbyMsenileMdementiaGM
SheMhasMproblemsMwithMmemoryMandMdisorientationGM
SheMisMnotMunderMspecificMmonitoringMbecauseMsheMhaveM
neverMtriedMtoMescapeGMSheMcanMwalkMthoughMtheMrecent
assessmentMmadeMbyMtheMphysiotherapistMgivesMsome
balanceMproblemsGMSheMmovesMbyMtheMsustainMofMthe
handrailsMorMbyMusingMtheMstickGWishes

MariaMwantsMtoMremainMindependentMevenMifMsheMisMinMtheMnursing
homeGMSheMwouldMlikeMtoMbeMableMtoMmoveMinMtheMcentreMwithout
theMhelpMofMoperatorsKMseeMherMfamilyMmoreMoftenMandMdoMmore
recreationalMactivitiesG

SabrinaM·MExperiencedMCaregiver
4FMyearsMold Description

SheMMhasMbeenMworkingMasMaMcaregiverMinMtheMnursingMhome
forM5MyearsMassistingMtheMguestsMinMallMtheirMdailyMactivitiesG

Wishes

SheMwouldMlikeMtoMhaveMmoreMtimeMforMknowingMbetterMherMguestsGM
SheMwouldMworkMinMaMmoreMfriendlyMstructureKMinMwhichMguests
areMfreeMtoMmoveMinMandMoutG

Problems
SheMlikesMtheMsocialMsideMofMherMworkGMSheMcomplaintsMshe
hasMnotMtimeMforMestablishingMgoodMrelationshipsMandMto
knowMguestsGMTheMnightMturnMisMtheMmostMdifficultMsinceMsheM
isMaloneMforM8MhoursMwithM36MguestsGMSheMthinksMtheM
computerMisMtooMdifficultMtoMuseG

Technical Scenario:
MariaMisMleavingMtheMrestorationMroomMandMgoesMupstairsMinMorderMto
reachMherMprivateMroomMbutMwhenMsheMisMonMtheMstaircaseKMsheMfallsG
TheMcameraMidentifiesMtheMeventMandMsendsMwarningMsignalsMto
caregiversMindicatingMthatMsomeoneMhasMfallenMdownMinMtheMstaircaseM
betweenMtheMsecondMandMthirdMfloorsGMSabrinaMisMavailableMandMcloseM
toMtheMfallMlocationKMthereforeKMsheMreceivesMthisMnotificationMandM
notifiesMthatMsheMisMtakingMtheMeventMinMaccountGMSabrinaMreachesMMariaM
andMevaluatesMherMstateGMMariaMisMactiveMandMsheMtalksMandMreasonsM
perfectlyKMsheMisMafraidMbutMsheMisMnotMinMpainMforMtheMhitGMSabrinaM
rapidlyMunderstandsMthatMallMisMOKMandMsheMindicatesMthatMtheM
emergencyMisMoffGMMariaMisMhelpedMtoMstandMandMtoMreturnMinMherMroomGM
AtMtheMendMofMtheirMturnKMMSabrinaMandMGiannaMhaveMtoMwriteMtheMreportM
forMtheMnextMturnMcolleaguesGMTheyMturnMonMtheirMcomputerMandMfindManM
automaticMreportMwithMallMdataMrelativeMtoMtheMeventGMCamerasKMaudioM
andMRFIDMsensorsMhaveMcollaboratedMtoMcollectMdataMandMtoMcompileM

Fig. 2. Example of personas en technical scenario

Scenarios are short narrative stories that represent Personas
in their context, supported by the envisaged technology (see
Figure 2). Many techniques can be profitable for envisioning
system functionalities and services; examples are: internal
meetings, brainstorming, focus groups and scenarios. The
output of these techniques are the technological scenarios that
concretely describe the behaviour of services as experienced
by specific, though fictional, users. Stories help the design
teams in negotiating a shared representation of the domain
and hence a more effective collaborative elicitation of re-
quirements. In this work, scenarios describe how the system
interact with patients and medical professionals when specific
situations occur. For instance, the scenario presented in the

bottom side of Figure 2 explain how the system must act when
a patient fall is detected.

V. AAL SERVICE MODELLING

Once personas and scenarios are defined, the AAL services
to be automated must be identified and modelled from the
obtained requirements. According to the complexity of the
system, the modelling can be done manually by directly
analysing the requirements, or it could be done by using some
type of transformation technique such as the one presented in
[28], which is based on the definition of intermediate goals.

The modelling of the AAL services is performed by specify-
ing two models: a context model (which specifies the context
on which the services to be automated depend), and a context-
adaptive task model (which describes the tasks that must be
carried out for each service according to the context described
in the context model).

The context model represents the context relevant for the
AAL services so they can be executed in a non-intrusive
way. Specifically, the model represents information regarding
Patients, Medical Staff, Locations, Environment Properties,
Policies, Temporal Properties, Services and Events. The model
is specified in the Ontology Web Language (OWL)[29], which
is an ontology markup language W3C standard that greatly fa-
cilitates knowledge automated reasoning and inference. Thus,
the classes of the ontology are defined as OWL classes,
their relationships as OWL object properties, their attritutes as
datatype properties, and the context specific to the system is
defined as OWL individuals. For specifying the context model,
we use Protégé [30], which is a free open source ontology
editor. A context model example created using Protege is
shown in Figure 3. From left to right, this model shows some
context classes (such as Patient, Caregiver, Location, Environ-
mentProperty. etc.), some relationships among these classes
(such as locatedIn and isRelatedWith), some data properties of
the classes (such as email and id), and some individuals (such
as RestorationRoom and RestorationRoom NoiseLevel). This
model contains the following types of context information:

• Manually introduced, such as the personal information of
the patients and caregivers. This information is introduced
by the analysts.

• Automatically captured, such as locations and health
parameters of patients. This information is captured by
the context manager that will be explained in the next
section.

• Automatically inferred, such as healthAnomaly, which is
set to true when a health parameter is outside the normal
values. This information is automatically set by inference
rules created in the ontology.

Using the context model, the task model describes context-
adaptive AAL services precisely and at a high level of abstrac-
tion. As an example, Figure 4 shows the modelling of the AAL
service that supports the scenario of patient falls. The root
task of the hierarchy represents the service and is associated
to a context situation, which indicates the context conditions
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Fig. 3. Context Model Example

Fig. 4. Service modelling using the context-adaptive task model: dealing with a fall AAL service
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whose fulfilment starts the execution of the service (PA-
TIENT.situation=alone AND PATIENT.falldown=true). The
root task is broken down into simpler tasks (Capture current
state, Active emergency, Measure health indicator, Alert staff,
Report the incidence). An intermediate task must be broken
down until the leaf tasks can be executed by an available
pervasive device. Each leaf task must be related to a per-
vasive device that can carry out the task. For instance, the
active emergency task is associated to a pervasive device that
interacts with the emergency system to turn it on. This relation
is established by simply indicating the device identifier.

If the tasks of the same parent are related to each other, they
are carried out in a sequential order according to the indicated
temporal relationships. These relationships may depend on
context. Thus, in the example, the current state is captured at
the same time (which is indicated by the temporal relationship
|=|) that the emergency is activated and the health indicator
are measured; after that (temporal relationship >>) the staff
is alerted; and finally, the incident is reported when the
emergency is deactivated (temporal relationship with a context
condition indicated between brackets >>[]>>).

In addition, a task can have a context precondition (repre-
sented between brackets before its name), which defines the
context conditions that must be fulfilled so that the task is
performed (e.g., the notify nurses and doctors task is only
executed if HealthAnomaly is true). If the tasks of the same
parent are not related to each other, only the first task whose
context precondition is satisfied is executed. For instance, if the
Notify nurses and doctors is executed its sibling tasks Notify
caregivers is not.

For user-intensive systems, ontology classes can be used in
the context conditions instead of individuals. The condition
is satisfied when it is satisfied for one of the individuals of
the used class. For instance, the Dealing with a fall AAL
service has to be executed for every patient. As shown in
Figure 4, instead of specifying the same AAL service for each
patient, we specified the service once and used the situation
and falldown context properties of the PATIENT class in its
context situation, indicating by using capital letters that it is
an ontology class and not an individual. Thus, the context
condition has to be checked for every individual of the Patient
class and is activated if any patient fulfils the condition.

For facilitating the specification of the task model, we
developed a graphical editor using the Eclipse platform, and
the EMF and GMF plugins. By using this editor, the model can
be graphically edited as shown in Figure 4. These descriptions
are stored in XMI (XML Metadata Interchange), which is
machine-interpretable at runtime.

More details about the context model, and the task model
and its editor can be found in [23].

VI. AAL SERVICE AUTOMATION AND EVOLUTION

In order to automate the AAL services as specified in the
models and facilitate service evolution after system deploy-
ment, we have used the software infrastructure presented in
[1]. This infrastructure, which is shown in Figure 5, directly

interprets the context model and the task model at runtime to
automate the AAL services as described. This infrastructure
is built on top of the pervasive devices used to sense context
changes and to perform the leaf tasks of the AAL services
specified in the models.

The software infrastructure is composed by the following
components (see Figure 5): mechanisms for managing the
models at runtime, a context manager, and an automation
engine.

Mechanisms for managing the models at runtime.
In order to manage the context model and the task
model at runtime, we have designed and implemented
Ontology-based Context model management mechanisms
(OCean) and Model-based User Task management mecha-
nisms (MUTate). These mechanisms can be downloaded from
http://www.pros.upv.es/art/.

• OCean: The context on which the behaviour patterns
depend is specified in the context model as OWL individ-
uals. Thus, in order to manage these individuals, a set of
Ontology-based Context model management mechanisms
(OCean) is needed. OCean allows, for instance, updating
the individuals of the context model, creating a new
individual (e.g., the idealTemperature individual of the
Preference ontology class), and reading its properties or
modifying them when needed. We have extended OCean
to support the checking of context conditions in user-
intensive services. In this way, when an ontology class
(represented in capital letters) is used in a condition, the
condition is considered as satisfied when it is satisfied for
one of the individuals of the class.

• MUTate: In order to support the management of the task
model, a set of Model-Based User Task management
mechanisms (MUTate) is needed. MUTate allows, for
instance, searching for an AAL service that have to be
executed, obtaining its related context situation, adding
new tasks to an AAL service, and creating an AAL
service.

OCean and MUTate provide access to the models by using
the same vocabulary defined in the context ontology and
the task model, respectively. It is important to note that, in
this way, they provide high-level abstraction mechanisms that
facilitate the interaction with the models without the need to
stop the system. Both, OCean and MUTate are needed in order
to achieve the automation and evolution of the specified AAL
services.

The context manager monitors the pervasive sensors install
in the environment to detect and process context changes. The
context manager also updates the context model according
to the detected context changes. The context manager uses
OCean to perform this update at runtime.

The automation engine, named MAtE (Model-based Au-
tomation Engine), is in charge of automating the AAL services
in the opportune context by interpreting the models at runtime
using MUTate. To automate an AAL service, MAtE executes
its system tasks by taking into account the current context,
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their relationships and their refinements. Each system task is
executed by MAtE using the pervasive service related to it.

A. The Software Infrastructure in Execution

The software infrastructure executes the AAL services as
described in the task model by performing the following steps
(see Figure 5):

1) Detect context changes: A context change is physically
detected by a sensor. The context manager monitors
all the sensors to check context changes (step 1.1 in
Figure 5). For instance, the context manager monitors
periodically the location of patients and whether or not
a fall is detected. When a change is detected (e.g., a
patient has fallen down) the context manager updates the
context model using OCean (step 1.2 in Figure 5) and
notifies the automation engine about the context change
(step 1.3 in Figure 5).

2) Interpret context situations: After receiving the noti-
fication of a context change, the engine analyzes the
context situations of the AAL services specified in the
task model to check if any of them depend on the context
change. Then, by making use of the context manager,
the engine checks if any of those context situations are
fulfilled. For instance, when the context manager notifies
the engine that a user has fallen down, the engine gets
the context situation that depends on this aspect, such
as the one shown in Figure 4. If the fallen user is also
alone, then the context situation of this AAL service is
satisfied.

3) Execute the AAL services: The engine executes the
AAL services whose context situation is satisfied. The
engine uses the context manager to check the context
conditions. To execute each AAL service, the engine

executes its leaf tasks according to their refinements,
their context conditions in the current context, and their
temporal relationships. For instance, when the context
situation of the AAL service focused on detecting falls
(see Figure 4) is satisfied, the engine captures the current
state, activates the emergency, and measures the health
indicators by using the corresponding pervasive devices.
Next, the rest of tasks are executed according to the task
plan defined in the task model (see Figure 4).

If the requirements of the AAL services change over time,
OCean and MUTate can be used to modify the models
at runtime to perform the required evolutions. Using these
mechanims, the services can be evolved by using concepts
of high-level of abstraction such as user tasks, patient, or
context situations. For instance, in order to make sure that
an automated service executes one task instead of another,
analysts just need to replace the corresponding task; in order
to change the order in which tasks must be executed, analysts
just need to modify temporal relationships; in order to change
the situations in which services must be executed, analysts just
need to change a context condition.

In addition, models are decoupled from the implementation
of pervasive devices since the models just use identifiers to
reference these services. This also facilitates the evolution of
the assisting services since they are independent of pervasive
technologies and internal implementation aspects.

B. Implementation Details

The context manager and the automation engine are im-
plemented in Java/OSGi technology and are run in an OSGi
server together with the pervasive devices.

Using OSGi, the context manager can listen to the changes
produced in the services to detect context changes and can
also inform the engine when a change is detected. To execute
a task, the engine searches for the pervasive device associated
to the task in the OSGi server by using its service registry.
Then, the engine executes the corresponding device method
by using the Java Reflection capabilities.

To manage the task model at runtime, MUTate uses the
EMF Model Query plugin that allows a system to work with
any model by querying its structure at runtime. To manage
the context repository at runtime, OCean uses the OWL API
2.1.1, which provides facilities for creating, examining, and
modifying an OWL model; and the Pellet reasoner 1.5.2.,
which allows the OWL model to be queried. More technical
details can be found in [31].

VII. VALIDATION OF THE PROPOSAL

Following the guidelines provided in [32], we have devel-
oped a case-study based evaluation where the automations
needed for the ACube research project were created. ACube is
a project founded by the local government of the Autonomous
Province of Trento in Italy. ACube aims at designing an
automated user intensive system to be deployed in nursing
homes as a support to medical and assistance staff.
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Using the proposed methodology, we designed and devel-
oped an automated system for a specific nursing home subject
of study in the ACube project. The main goal of the system
was to automate AAL services that were usually performed
by medical and assistance staff is to help them to make their
work more efficiently in order to enhance their quality of
work and the quality of life of their patients. By automating
AAL services, the tasks of medical and assistance staff can
be greatly reduced freeing them so that they can spend more
time with their patients. In addition, the tasks that medical and
assistance staff perform can be improved to be more efficient
because the tasks can be previously analysed and also can be
carry out even when none caregiver is present.

According to the methodology requirements (see Section
III), we evaluated the following research questions:

1) Does the approach facilitate end-users participation in
the AAL service design to take into account medical
professional guidelines and the specific requirements
from medical professionals and patients?

2) Does the approach correctly automate the specified AAL
services in a context-adaptive way?

3) Does the approach allow the automated AAL services
to be evolved after system deployment?

We now summarize the results of this evaluation. More
details can be found in [31].

A. Evaluating End-Users’ Participation

Our approach makes use of design models at runtime. It
provides a task model that describes the AAL services by
using concepts of a high-level of abstraction that are close to
the domain and to end-users’ knowledge (concepts such as
task, preference, location, patient, etc.). This helps end-users
to participate in the service description since it allows them to
focus on the main concepts (the abstractions) without being
confused by low-level details [33].

The ACube consortium had a multidisciplinary nature, in-
volving software engineers, sociologists and analysts, and it
is characterized by the presence of professionals representing
end-users directly engaged in design activities. For developing
the case study, we interact with some of these professionals
which were responsible of analysing the requirements for the
AAL services.

After describing the personas and their scenarios, we anal-
ysed them and designed the AAL services that the system
should automate for supporting each one of the scenarios.

We then discussed the designed task models with the
professionals in charged to include medical guidelines and
validate the tasks with them. To deal with these discussions, we
briefly explained the main concepts of the task model and the
behaviour of two AAL services. Then, we checked the model
comprehension using a short oral questionnaire that asked
questions such as: how many tasks will be executed in this
service?; when will this service be activated?; which is the next
task that will be executed?. These questions make the users
reason about the model, which is a recommended technique
to evaluate the understanding of a model [34]. We found that

the task model is very useful in discussing and validating the
AAL services to be automated since it was very intuitive for
them after explaining a couple of examples. If something was
not specified the way the professionals considered suitable, we
refined the model to fulfil their requirements. We repeated this
process until the professionals agreed with the specification.
This allowed us to describe the AAL services by taking into
account the medical guidelines and requirements provided by
the professionals.

Figure 4 shows the final specification of the AAL service to
support patient falls. These tasks can be described as follows:
the service is activated when it is detected that a patient falls
and none of the caregivers or medical staff is around. When
this happens, the system captures the current context state,
activates the emergency state and measures the health of the
patient. Then, the system alerts either the medical staff if the
patient health is critical or the nearest caregivers if the patient
is fine. Finally, when the emergency is under control, a report
about the incidence is created and sent to the involved staff
so that they can validate it.

B. Evaluating AAL Service Automation in a Context Adapta-
tive way

To execute the described AAL services in a context-
adaptive way, the task model describes each AAL service
as a coordination of tasks that are performed in the opportune
context, i.e., in a context-adaptive way. In addition, in order
to be aware of the current context and to be able to automate
the AAL services accordingly, the software infrastructure pro-
vides a context manager. It dynamically manages the context
changes produced at runtime by using the context repository.

To validate the context adaptation, we put the system into
operation to automate the described AAL services after the
task models were validated with the end-users. We used a
device simulator and an Equinox distribution (which is the
OSGi implementation of Eclipse) running in the PC. To
support the functionality needed to execute the described
AAL services, we developed the required simulated pervasive
devices (a total of 17 different pervasive devices). See [31] for
more details about these devices.

We then evaluated the feasibility of our software infras-
tructure. Using the running system, we passed the JUnit tests
developed to check that the specified AAL services were
correctly automated as specified in the models. Since the
automation of the AAL services are triggered as a response to
context changes, we caused these context changes by changing
the state of the sensors using the simulator. We changed the
state of the sensors simulating the scenarios of the requirement
elicitation phase. For instance, to enable the Dealing with a
Fall AAL service, we simulate that a patient fell down when
she was alone. This makes the context situation of the AAL
service fulfil (see Figure 4).

In the same way, we simulated the rest of the scenarios of
the case study and executed the prepared JUnit tests. For all
of them, we checked that they were executed as specified in
the models.
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Furthermore, we evaluated the system performance. Models
are manipulated at runtime by OCean and MUTate. Therefore,
these operations have to be efficient enough so that the
system response is not drastically affected. In order to measure
the system response, we quantified the temporal cost of the
operation done with randomly generated large models. We
used a laptop intel core i7-4600U, 2.70GHz and 8GB of
RAM, with Windows 8.1 end Eclipse Modelling Kepler 32
bits. We used the context model presented in Section V and
an empty task model to be randomly populated by means of
an iterative process. The context model was populated with
100 new context individuals in each iteration, while the task
model was populated with one new AAL service whose task
structure formed a binary tree, varying the depth and width of
the first level of the tree each iteration.

For each iteration, we tested all the model operations 20
times and calculated the average temporal cost of each one. As
an example, the operation of OCean with the highest temporal
cost was the operation to get a specific context individual,
which took less than 0.2 milliseconds for 6000 individuals.
The temporal cost of the MUTate model operations with
the highest cost are the operations for getting, updating, and
deleting a task. These costs are very similar since all of them
run the same query to obtain the corresponding task. Even with
a model population of 45612 tasks, these model operations
provided a fast response (less than 8 milliseconds). Therefore,
the results show that the response time is not drastically
affected when models with a high number of instances are
used.

C. Evaluating AAL Service Evolution after System Deploy-
ment

To automate the described AAL services in such a way that
their evolution after system deployment is facilitated, the
automation engine directly interprets the task model at run-
time. The model is machine-processable and precise enough
to be executed. Therefore, when a context change is detected
by the context manager, it informs the engine. The engine
then reads the AAL service information from the task model
and executes the corresponding pervasive services according
to context. With this strategy, the task model is the only

representation of the AAL services to be automated. This
allows them to be adapted by simply updating the model. As
soon as it is changed to evolve the AAL services, the changes
are also taken into account by the engine.

To validate this runtime evolution, we changed the task
model using OCean and MUTate to perform the following
types of updates: add, delete and modify tasks; modify context
situations, task order, context preconditions, temporal relation-
ships, etc.

After each update, we simulated the fulfilment of the context
situations of the AAL services and applied the JUnit tests
again to check that the tasks were correctly executed according
to the performed evolution. For instance, Figure 6 shows an
example of these evolutions. It shows how the Dealing with a
Fall AAL service has been modified to be executed regardless
if the patient is alone or not. In addition, it has been added
the Notify medical staff task that is executed when there is
medical staff in the same location of the patient; if so, the
doctors or nurses are notified about the patient state since they
can look after the patient straightaway. If there is not medical
staff in the same location, then the system follows the same
plan that was specified in the previous version (if any health
anomaly is detected, then the appropriate doctors or nurses are
notified; otherwise, the closer available caregivers are notified).
For each performed evolution, we applied again the JUnit tests
checking that all the AAL services were correctly executed.

VIII. CONCLUSIONS AND FURTHER WORK

In this work, we have presented and evaluated a model-
driven approach that achieves the automation of services
for improving AAL. These AAL services are represented
in high-level abstraction context-adaptive task models that
are executable, i.e., they are directly executed by a software
infrastructure that automates the AAL services as specified in
the models. This considerably facilitates the further evolution
of the AAL services by directly changing the models (i.e.,
at the modelling level) at runtime, which is one of the top
challenges in software evolution research [35]. As soon as the
models are changed to evolve the AAL services, the changes
are also taken into account by the automation engine.

86

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



As further work, we plan to develop an end-user tool that al-
lows medical professionals to create and evolve AAL services
by their own. This tool will provide medical professionals with
intuitive user interfaces that let them describe assisting services
by using their own knowledge and concepts. Then, a model-
to-model transformation will be applied in order to generate
context-adaptive task models. As a previous experience in the
development of this type of tools we developed an end-user
tool [36] focused on the adaptation of smart home systems.
This tool allows home inhabitants to create and evolve the
routine tasks that they want to have automated. Our goal is
to reuse all this experience to create a similar tool focused on
AAL environments.
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[30] N. F. Noy, M. Crubézy, R. W. Fergerson, H. Knublauch, S. W. Tu,
J. Vendetti, M. A. Musen et al., “Protege-2000: an open-source ontology-
development and knowledge-acquisition environment,” in AMIA Annu
Symp Proc, vol. 953, 2003, p. 953.

[31] E. Serral, “Automating routine tasks in smart environments. a context-
aware model-driven approach,” Ph.D. dissertation, Technical University
of Valencia, DSIC, 2011.
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[36] E. Serral, F. Pérez, P. Valderas, and V. Pelechano, “An end-user tool for
adapting home automation to user behaviour at runtime,” UCAmI’10,
pp. 201–210, 2010.

87

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


