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Abstract

This thesis deals with distributed consensus algorithms for multi-agent networks. The

goal of consensus algorithms is to achieve a consensus for a specific task. In our case

we consider a setting where network agents should meet at a single point. This ren-

dezvous algorithm is well known in literature. We mainly focus on two dimensional

random geometric networks, but one dimensional networks and regular scenarios are

also considered. For the performance study we pay special attention to the convergence

properties and the ability of the agents to reach the consensus point. All tasks carried

out by the nodes are distributed, in other words, there is no need of external agents for

coordinating or deciding. In addition to the consensus algorithms the effect of using

control within these networks is also studied. With these control contributions we try

to improve the overall performance of the system. We will try to control the dynamics

of the nodes and also apply temporal delays to the movement. Finally, we present some

numerical results where we can observe how different settings and parameters affect the

behavior of the whole system.

Keywords: Multi-agent wireless networks, consensus algorithms, constant weights, Metropolis-

Hastings weights, random geometric graphs, control formation, MSE.



Zusammenfassung

Diese Diplomarbeit befasst dich mit verteilten Konsensalgorithmen in Netzwerken mit

mehreren Agenten. Das Ziel dieser Algorithmen ist das Erreichen eines Konsenses für

eine gegebene Aufgabe. In dieser Arbeit beschäftigen wir uns mit Netzwerken, des-

sen bewegliche Agenten sich in einem Punkt des Raumes treffen wollen. Algorithmen,

welche genau diese Aufgabe meistern, werden Rendezvous-Algorithmen genannt und

gehören zu den Konsensalgorithmen. Unser Fokus liegt auf zweidimensionalen geome-

trischen Graphen mit zufälliger Knotenverteilung, wobei auch eindimensionale und re-

guläre Strukturen untersucht werden. Bei der Auswertung der Güte dieser Algorithmen

konzentrieren wir auf die Konvergenzeigenschaften und auf die Erfolgsrate, dass sich

alle Agenten in genau einem Punkt treffen. Im Netzwerk ist keine zentrale Rechenein-

heit vorhanden, somit werden alle Schritte der Algorithmen verteilt von den Agenten

ausgeführt. Des weiteren untersuchen wir Kontrollmethoden wie Lenkung und zeitliche

Verzögerung, welche sicherstellen sollen, dass sich alle Agenten in einem Punkt tref-

fen. Zum Schluss wird der Einfluss der Parameter auf die eingeführten Kontroll- und

Konsensalgorithmen durch diverse Simulationen anschaulich gemacht.



Abstract

Spanish version

En este proyecto contemplamos el desarrollo de nuevos algoritmos de consenso para

redes inalámbricas con múltiples agentes, aśı como, el planteamiento de modificaciones

sobre los mismos con el fin de optimizarlos. El objetivo de los algoritmos de consenso es

conseguir cooperativamente un acuerdo para una determinada tarea. Nos centramos en

redes de dos dimensiones con distribuciones aleatorias de sus nodos, también analizamos

redes unidimensionales y tratamos algunos casos de redes con distribución regular.

Hemos estudiado algoritmos de consenso extráıdos de otros trabajos cient́ıficos, cuyo

rendimiento hemos comparado con otros desarrollados por nosotros mismos. Hemos

llevado un seguimiento especial a las propiedades de convergencia y a la capacidad de

los agentes de reunirse en un punto. Todas las tareas que realizan los agentes son dis-

tribuidas, es decir, no hay ninguna necesidad de que un agente externo intervenga para

coordinar o decidir los movimientos. Además de los algoritmos de consenso, también

hemos analizado el efecto de aplicar control para tratar de mejorar el comportamiento

de las redes. Este proceso de control está justificado por la necesidad de mejorar la

efectividad de los algoritmos de consenso y está dirigido a controlar el movimiento

de los nodos y a la aplicacón de ciertos retardos al mismo. Tras estudiar cuidadosa-

mente los algoritmos de consenso y las modificaciones realizadas sobre ellos, pasamos a

mostrar algunos de los resultados numéricos, gráficas y figuras donde se puede obser-

var como la elección de diferentes inicializaciones o parámetros de entrada afectan al

comportamiento general del sistema.
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1
Introduction

The purpose of this thesis is the design and analysis of consensus algorithms for multi-

agent systems and the creation of control methods for improving the connectivity and

convergence results of them. By multi-agent systems we understand groups of nodes

forming networks. These agents have wireless connectivity which let them exchange

information and besides, they have some computational capabilities and power supply

units so they could accomplish tasks with a certain autonomy. We got inspired by the

works [1–4], they help us to start with the work and to set several goals.

We will present a framework where the algorithms are tested and also the theory back-

ground for understanding how they work. The programming environment chosen is

Matlab both for coding and for testing.

With regard to consensus algorithms, we test in this work three different methods, taken

from other scientific works, which are constant weights [3], Metropolis-Hastings [5] and

rendezvous [4], for then creating new methods which try to improve them and correct

their flaws. These new methods will be called angular weights (for 2D scenarios) and

linear weights (for 1D scenarios).

5



Chapter 1. Introduction 6

The control contributions of the thesis are applied over the consensus algorithms in

order to improve their behavior. Adding delay, control the dynamics or creating fa-

vorable network distributions are some of the ideas. The control improvements will be

tested over the rendezvous algorithm.

The consensus algorithms are distributed applications which seek a cooperative agree-

ment for solving a problem. This thesis will mainly focus on the rendezvous problem,

or in other words, decide a meeting point depending on the states of the agents of the

network under study. This type of algorithms is based on graph and matrix concepts

which will be further presented.

The work is composed of different parts. First a study of the consensus algorithms

with different weight matrices will be done. This study will help to understand and

know better the behavior of the algorithm depending on the different parameters.

The second part will be creating new weights matrices for the consensus algorithms

looking for a better performance than the old. Then the results of these new methods

compared with the old weight matrix will be shown. The last step of the work will be

the application of control modifications in order to improve the features of the consensus

algorithm. Finally the results will show whether the control of the network improves

or not the overall performance.

The thesis is structured as follows:

Chapter 2: This chapter gives a basic introduction to graph theory. Moreover, some

aspects about linear consensus and convergence will be discussed.

Chapter 3: This part of the work deals with the problem statement and the consensus



Chapter 1. Introduction 7

algorithm.

Chapter 4: In this chapter some modifications of the Rendezvous algorithm are pre-

sented.

Chapter 5: The results and graphics appear in this chapter.

Chapter 6: In the last part, conclusions are provided and an outlook for further re-

search is given.

1.1 Motivating Example

As a piece of example, before starting with the theory we will have a look at Fig. 1.1

where what is called Rendezvous in this thesis is described graphically. In Fig. 1.1

Figure 1.1: Rendezvous

Blue arrows: trajectories
Black lines: communication links
1 . . . 5: nodes
R: agreed meeting point

are shown some agents or nodes which can communicate and share state information.

The goal is with this flow of data and without an external agent achieve a cooperative

agreement on where to meet. This agreed position will be called either rendezvous

or consensus point and in the case of the current example is the blue point in the

middle. The nodes will follow different trajectories depending on the weight matrix

design used. The analysis of the weights matrices and their advantages and drawbacks

will be therefore another focus of attention in this work.



2

Prerequisites

This chapter will be used for giving an approach to the different required theoretical

concepts. We will give an insight to graph theory, graph topology and matrix theory.

The different parts of the introduction can be complemented for the interested reader

with the works [6–8] dealing graph theory, the articles [9–12] for matrix theory and

regarding graph topology we suggest [13]. The following chapters of the work will

stand over these basis so we will include some examples for making them easier to

understand.

8
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2.1 Graph Theory

In a communication network, it is not necessary that all the agents have direct commu-

nication. It is more important if there always exist a communication link between each

pair of nodes of the net. For knowing how a network behaves or copes with possible is-

sues as for instance when a link fails, the mathematical concept of the graph can be used.

A graph is a set of nodes, and a set of edges which represents the connectivity of

the network and the number of possible ways to reach a given agent from any other.

G = (V , E) (2.1)

In the equation (2.1) we see how G is defined containing a set of nodes V and a set of

edges E . The set of nodes V = {1, . . . , I} contains the elements of the graph, whereas

the set of edges E denote which nodes have links between them.

2.1.1 Definitions

• Undirected graph

For simplicity it is assumed that all the nodes can transmit the same power and

thus have the same scope. This permits to use only undirected graphs for describ-

ing the behavior of the networks. Hereafter in this thesis all the graphs refer to

undirected graphs.

An undirected graph has nodes connected by undirected edges. That means that

the edges have no tail nor head, therefore they have no direction and if i can reach

j they can obtain information from each other. In other words:

eij = eji (2.2)
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It is possible to see in Fig. 2.1 an example of undirected graph with V = {1, 2, 3, 4, 5, 6}

and E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 6)}. For instance, in this

case the node 1 is linked with 2 and 3, therefore from 2 and 3 is possible to estab-

lish a two-way communication with node 1 and condition (2.2) is fulfilled. The

Figure 2.1: Undirected graph

same graph will be used along the whole Section 2.1.

• Path

A path is a finite or infinite sequence of edges connecting two nodes. Continuing

with the example, in Fig. 2.2 it is shown a path joining the node 1 with the node 6.

This path contains the edges e1,3 and e3,6. Since we are working with undirected

Figure 2.2: Path

graphs, it is easy to notice that, as condition 2.2 implies, having a path from node

1 to node 6 means that the same path exists from node 6 to node 1.
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• Neighbor set and degree

The neighbor set of a given node i, N (i), contains agents within its range. The

neighbor set for an undirected graph can be defined as

N (i) = {j ∈ V : (j, i) ∈ E} (2.3)

where we see that (2.3) means that the node j belongs to the neighbor set of i if

and only if there is an edge between them.

The number of elements in the neighbor set of i is the degree of node i d(i),

i.e., d(i) = |N (i)|.

In our example Fig. 2.1 the neighbor set of node 1 is N (1) = {2, 3} and its

degree d(1) = 2.

• Connectivity

In graph theory it is said that two nodes are connected if there is at least a path

joining them. Therefore a graph G is connected if there is a path from each node

to all others. In any other case G would be disconnected. Furthermore, for the

case of undirected graphs we can say that if there is a path between each pair of

nodes then the graph is always strongly connected.

Now in Fig. 2.3 there is a comparison between a connected and an unconnected

graph. We can appreciate how in the graph a it is possible to reach from any

node any other, whereas with the graph b this is not possible, i.e., from 1 it is not

feasible to reach 6.
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(a) Connected (b) Unconnected

Figure 2.3: Comparing graphs

2.1.2 Adjacency Matrix

The adjacency matrix A is a way to define a graph G by setting the entries of the matrix

which correspond to connected edges to one and the others to zero. The adjacency

matrix A has I × I entries where I = |V| is the number of nodes of the graph. The

equation (2.4) describes the construction of A.

[A]ij =

 1 if (i, j) ∈ E

0 else
(2.4)

Since the edges are bidirectional, for undirected graphs the adjacency matrix A is al-

ways symmetric.

For a better understanding, let us define the adjacency matrix A of the network of

Fig. 2.4. This graph will help us along Sections 2.1.2 to 2.1.4, and we will support

the theoretical explanation with practical results. Using Fig. 2.4 is easy to define the

corresponding adjacency matrix A. For node 1 there are two links with node 2 and

node 3. This leads to set the entries of the first row of A as follows:

a12 = a13 = 1

a14 = a15 = a16 = a17 = a18 = 0
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Figure 2.4: Undirected graph

There are not self loops, thus aii = 0 for all i. Eventually, the adjacency matrix A is:

[A]ij =



0 1 1 0 0 0 0 0

1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0

0 1 1 0 1 0 0 0

0 0 1 1 0 1 1 0

0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0


By simple visual check it is possible to notice that the matrix is symmetric as expected.

2.1.3 Degree Matrix

The degree matrix D of a graph G is a diagonal matrix containing the number of

neighbors. Again, the dimension is I × I. The entries of the diagonal of this matrix

can be calculated with the sum of the elements of the rows or columns of the adjacency
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matrix and the rest of the elements equal to 0, then the matrix is constructed as in (2.5).

[D]ij =

 N (i) if i = j

0 else
(2.5)

and consequently the degree matrix takes the following structure,

[D]ij =



d(1) 0 · · · 0

0 d(2)
. . .

...

...
. . . . . . 0

0 · · · 0 d(I)


As a piece of example, taking Fig. 2.4 it is possible to obtain the matrix below.

[D]ij =



2 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2


If we now count the number of neighbors of each node we will see that they correspond

to its value on the diagonal, i.e.,

N (1) = D11.
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2.1.4 Laplacian Matrix

The last possible representation of a graph G which is going to be presented is the

Laplacian matrix L, which is a I × I matrix.

For an undirected graph the entries of the Laplacian matrix L are given by

[L]ij =


d(i) if i = j

−1 if i 6= j and (i, j) ∈ E

0 else

It can be also represented as the difference of the degree matrix D and the adjacency

matrix A:

L = D−A. (2.6)

Since the the degree matrix D is diagonal and the adjacency matrix A is symmetric

the result will be a symmetric Laplacian matrix L.

There are some spectral properties of the Laplacian matrix L which shall be mentioned:

• The sum of each row of the Laplacian matrix is zero, therefore the right eigenvector

of L is 1.

L1 = 0.

• For undirected graphs, the Laplacian matrix is positive semi-definite, i.e., for all

x ∈ RI ,

xTLx ≥ 0.

• According to Gershgorin theorem all eigenvalues of L in the complex plane are

located in a closed disk centered at ∆ + 0j with a radius of ∆ = dmax(i), i.e., the

maximum degree of the graph.
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• For undirected graphs the Laplacian matrix is symmetric and has I real eigenval-

ues which can be ordered in ascending order as

0 = λ1 ≤ λ2 ≤ . . . λi ≤ 2∆.

The zero eigenvalue is known as the trivial eigenvalue of L. The second eigenvalue

λ2 needs to be greater than zero for a connected graph. It is known as the alge-

braic connectivity of the network, moreover, it is a measure of performance/speed

of consensus algorithms. It is possible to know the number of components of the

graph which are disconnected because it coincides with the number of 0 eigenval-

ues.

For getting a better understanding of the concepts presented before, it is time

to use Fig. 2.4 and give a practical example. Using (2.6) the resulting matrix L

is:

[L]ij =



2 −1 −1 0 0 0 0 0

−1 3 −1 −1 0 0 0 0

−1 −1 4 −1 −1 0 0 0

0 −1 −1 3 −1 0 0 0

0 0 −1 −1 4 −1 −1 0

0 0 0 0 −1 2 0 −1

0 0 0 0 −1 0 2 −1

0 0 0 0 0 −1 −1 2


Finally, the eigenvalues are obtained

λi = {0, 0.5, 2, 2.1, 3, 4, 4.8, 5.6} for i ∈ [1, 8],

there is only one zero eigenvalue, hence can be concluded that the graph is con-

nected. The algebraic connectivity in this case is λ2 = 0.5.
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2.2 Network Topology

In this Section the random geometric topology will be described following some of the

ideas given in [14], because it is the topology used for the simulations. In Fig. 2.5 it is

possible to see a random geometric graph. A random geometric graph is G = (V , E),

Figure 2.5: Random geometric graph

where I = |V| is the number of nodes which are randomly distributed, in our case, over

the unit square. The maximum length of the edges will be the connectivity radius r or

the range, that means that the maximum Euclidean distance between two connected

nodes i and j will be d(i, j) = r. Then the adjacency matrix of a random geometric

graph is as below:

aij = aji =

 1 if d(i, j) ≤ r,

0 else.

2.2.1 Other Network Topologies

For some cases, special network distributions will be needed. Concretely, in this thesis

we will use a linear distribution for analyzing the behavior of the consensus algorithms

in one dimensional scenarios and also regular grid topologies to study possible improve-

ments on the performance when the nodes are evenly distributed.



3

Consensus Algorithms

In this work one of the main goals is the analysis of consensus algorithms for multi-agent

networked systems, and concretely, their application in Rendezvous problems and con-

trol formation. It is possible to learn more about consensus algorithms for multi-agent

networks in [15].

In networks of agents, consensus means to cooperatively reach an agreement taking

into account diverse interests depending on the state of the agents. Hence, we will use

distributed computation. As a consequence, we can achieve benefits such as higher effi-

ciency or better computational capabilities. The distributed algorithms are widely used

in applications like surveillance, spaced-based interferometers, reconnaissance systems

or distributed re-configurable sensor networks.

18
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3.1 Problem Statement

In this section we will explain the framework of study and the objectives. Let us as-

sume that there is a network with I randomly distributed wireless agents equipped with

memory and computing capabilities. These agents have the same communication range

and know the current state of their neighbors. Therefore the network can be studied

as an undirected graph of I nodes with a random geometric initial state. Moreover, we

will assume the graph to be always initially connected.

Once the scenario is initialized the nodes must cooperatively reach consensus using

a consensus algorithm and a weight matrix W among one of the designs we will present

in Section 3.5. Therefore the nodes will move, and their new positions will be a linear

combination of the positions of the neighbors and themselves.

In most of the cases the objective for us will be achieving Rendezvous, so the aim

with which the weight matrix W will be designed is making the nodes to converge in

a single point. However, we will use control formation as a case of study for improving

the performance (further explanation in Section 4) and then the goal for the weight

matrix W will be making the nodes keep a distance d between them. We recall that

the only available information for them is their current state and the current state of

their neighbors. Hence, the consensus algorithm is launched as a distributed application

because all the nodes decide where to move based on the information they have.

Finally, when the objectives and the scenario are explained, it is important to know

that the main problems we are coping with are the following:

• The movement of the nodes can sometimes lead to the disconnection of the net-

work, having as a result local consensus instead of a unique Rendezvous point.

• Some of the weight designs make the nodes movement too slow making unfeasible
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to converge.

Additionally, in Section 4 some control features will be implemented in order to improve

the performance of the algorithm, and face the mentioned problems. In Section 5 we

will show the actual performance of these modifications and whether they help or not.

At the end we will analyze what happens if the network is regular and not random

geometric, concretely hexagonal and squared grids and, despite we will focus in two

dimensional scenarios, also linear distributions will be studied. For the case of one

dimensional networks we will develop a special algorithm which will be run over regular

and random scenarios.

3.2 Consensus in Discrete -Time and Matrix Theory

Here we will present a framework for analysis of convergence of consensus algorithm for

networks with fixed topology in discrete time following the guidelines stated in [3].

As said we will focus on discrete time consensus algorithm, where k denotes each iter-

ation. Let us define the inputs of the algorithm with ri the position of the agent i at

time 0, where x[0] is the initial inner state vector containing all the agents positions at

time 0:

xi[0] = ri.

Let also the weight matrix W[k] ∈ RI×I be a square matrix with entries wij. Then the

consensus algorithm is as

xi[k] = wii[k]xi[k − 1] +
∑
j∈Ni

wij[k]xj[k − 1], i = 1, . . . , I (3.1)
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Accordingly to (3.1), the information state of each agent is updated as the weighted

sum of its current state and the current states of its neighbors. Thus, there is only com-

munication between first-order neighbors. Note that if the agent is isolated its state

information will remain in the next time step.

Now the discrete time collective dynamics of the network under this algorithm can

be stated as:

x[k] = W[k]x[k − 1]. (3.2)

At this point, and before presenting some important properties of the weight matrix W

we will present its construction. For doing so we will use the simplest design for W, this

is the constant weights approach. We will give a wider and more detailed explanation

in Section 3.5.3.

W = L− αI (3.3)

In the equation (3.3) we see the Laplacian matrix L, presented in Section 2.1.4, the

identity matrix I and finally a new term α which we will call step-size. The value α will

play and important role in the convergence properties as we will explain afterwards in

this section. The step-size needs to be whithin certain boundaries for achieving conver-

gence, in this section we will work with the boundaries for CW which are α ∈ (0, 1
∆

].

We will define some of the properties which the matrix W should have. It must be non-

negative, in other words a matrix where all its entries are positive or equal to 0. Using

the Perron-Frobenius theorem we will discuss some properties of the non-negative ma-

trices. There are three important types of non-negative matrices, such are irreducible,

stochastic and primitive.

• A matrix W is irreducible if its associated graph is connected.

• A non-negative matrix is called row or column stochastic if the sum of its rows or
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columns equals 1.

• Finally an irreducible stochastic matrix is primitive if it has only one eigenvalue

with maximum modulus.

Then the W of the graph G with I nodes, maximum degree ∆ and α ∈ (0, 1
∆

] satisfies

the following properties.

• It is row stochastic non-negative with a trivial eigenvalue 1.

• All its eigenvalues are in the complex unit circle. Note that eigenvalues of W and

L are the same where

λW = 1− αλL,

and using again Gershgorin theorem, all eigenvalues of L are in a closed disk

|s−∆| < ∆ , therefore defining z = 1− s
∆

we have radius |z| ≤ 1 or equivalently,

the eigenvalues of W inside a unit circle.

• If G is connected and 0 < α < 1
∆

, then W is a primitive matrix.

The condition α < 1
∆

is necessary because a larger step-size would lead into having a

non-primitive W matrix.

3.3 Algorithm

Over the scenario described in Section 3.1 and under the conditions explained in Sec-

tion 3.2, the consensus algorithm works in some well differentiated steps.

(i) First, as explained before the nodes are randomly distributed.

(ii) Then the nodes search for their neighbors, this information is for us the adjacency

matrix since it contains the connectivity information.

(iii) When all the information is gathered, it is time to compute the weights wij. They

will eventually determine where the nodes will move.
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(iv) At this step it is already possible to implement the update (3.1) with which it is

possible to compute the new position.

(v) Then it is time for the nodes to move to their new locations.

These steps will repeat until we reach a predefined number of iterations or consensus is

achieved.

3.4 Convergence Conditions

The consensus equation described in (3.1) can also be written in a matrix formulation,

and this way we can explain the convergence conditions which W must fulfill for the

general case with I dimensions,

X[k] = W1→kX[0], (3.4)

where (3.4) represents the collective dynamics similarly to (3.2) but for the I dimen-

sional case, and X[k] and W1→k are defined as below

X[k]=(x1[k] . . .xN [k])T W1→k = W[k]W[k − 1] . . .W[1].

The weight matrix W is chosen so that for any initial position matrix X[0], the state

matrix X[k] converge for k → ∞ and not necessarily to the average vector. This is so

because we only seek consensus and among the weight matrix that we will use, only

some will lead to a final averaged consensus. Since we will not focus on average con-

sensus the interested reader can find more results and information in [16–19].

Eventually, the conditions for ensuring consensus are:

W1 = 1 (3.5)
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∣∣∣∣∣∣∣∣W[k]− 1

I
11T

∣∣∣∣∣∣∣∣
2

< 1 for all k (3.6)

where condition (3.5) has 1 as a right eigenvector of W with associated eigenvalue

1. This condition implies that if consensus is reached the states of the nodes will not

change. And condition (3.6) ensures that the algorithm will be stable if the two norm

of the equation stays below 1 for all the iterations.

For a general case, where we apply the consensus algorithm (3.1) to a connected graph

with I agents and 0 < α < 1
∆

with ∆ the maximum degree of the graph, if W fulfills

condition (3.5) and condition (3.6), then the following properties hold:

• Consensus is reached for all initial states.

• The consensus point is x̃ =
∑

iwixi(0) where the weights wi are positive and∑
iwi = 1.

• If W is double stochastic an averaged consensus is reached and x̃ = (
∑

i xi(0))/I).

3.5 Weight Design

There are different schemes feasible to be applied to the construction of the consen-

sus algorithms weight matrix. They have different properties and performance, being

specially important that not all of them can reach averaged consensus. Regarding to

the performance, the speed of convergence and the ability of staying connected are the

most important and will be shown in Section 5. Furthermore, the weight matrix can be

symmetric or non-symmetric, having this an impact on the way consensus is achieved.

We show here some of the weight matrix designs we have work with.
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3.5.1 Structure and Meaning

A weight matrix with size I × I represents the dynamics of the nodes and determine

the direction of movement in every step of the consensus algorithm. Since the position

and the degree of the nodes will change over the iterations, the weight matrix may also

have different values in every iteration.

Now let us assume that, as explained in Section 3.2 and in Section 3.4, the weight

matrix W is stochastic, at least the sum of the rows is one. This property will be

necessary for the rest of the explanation.

Let us focus now in the node 1 and its corresponding row 1. If w11 is 1, that would

mean that the node will remain in the same position during at least one iteration, that

is because the rest of the w1j would be 0. Consequently, it is easy to notice that the

entries of the weight matrix are wij ∈ [0, 1] where wij = 0 implies that the correspond-

ing node j has no effect over i and wij = 1 implies that node j is the only node affecting i.

Therefore a weight matrix with diagonal entries close to 1 would have a really slow

convergence while the opposite would occur if these entries were close to 0.

In the special case of the weight matrix for control formation, some entries will re-

sult to be negative. It can occur that a node is closer than the agreed distance d with

which the nodes have to be separated, then it is necessary a repulsive force. This is the

effect of the negative entries.

3.5.2 Symmetric and Non-Symmetric Weight Matrices

Getting consensus means that the weight matrix W must be at least row stochastic, as

explained in Section 3.4. Therefore the matrix W must be:
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• If it is non symmetric then it is only row stochastic, all its rows sum up to one

like in condition (3.5) and the system can reach consensus.

• If it is symmetric then all its columns and rows sum up to one. To be column

stochastic implies that the average of the states of the nodes remain unchanged,

1TW = 1T ,

then combining both conditions lets averaged consensus to be achieved.

Attending to these properties, having symmetric matrices is interesting but not neces-

sary if reaching an averaged consensus is not required.

3.5.3 Traditional Designs

• Constant weights

Here we present the first weight matrix approach, the constant weights design

(CW). We construct this matrix as in [3]. It is the simplest design and in it all

edge weights

wij ∀ j 6= i and (i, j) ∈ E

are equal to α. The value of α ∈ (0, 1
∆

) affects the speed of convergence and

high values would increase it, although there is a trade-off with the network

connectivity. Then the entries of WCW are represented as here,

[WCW]ij =


α if i ∈ Nj

1− d(i)α if i = j

0 else

where d(i) is the degree of the node i. The construction of the weight matrix is

alternatively as below,

WCW = I− αL,
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where I is the identity matrix and L is the Laplacian matrix of the graph. We see

from the construction of the weight matrix how the entries of the row are d(i)+1−

d(i) so the sum is always 1. Then the WCW matrix is always row stochastic, and

since the Laplacian of an undirected graph has a symmetric structure, WCW will

be double stochastic. Consequently, this method achieves averaged consensus.

• Metropolis-Hasting weights

The second method presented is the Metropolis-Hastings (MH). We followed the

design presented in the works [5, 20], where is also possible to find more relevant

information about this weight matrix. The most remarkable property is that is the

weight matrix in this thesis with the faster convergence. Analyzing the following

matrix construction,

[WMH]ij =


1

max{di,dj} if i ∈ Nj

1−
∑

i 6=j[WMH]ij if i = j

0 else

is possible to appreciate how here the distribution of the nodes in the network is

taken in consideration. As said, for high values of the entries of the weight matrix

the nodes move faster, but on the other hand this values cannot be over 1
∆

. This

problem is solved in the constant weight matrix by using always the maximum

degree of the whole network, however in the MH case it is used the degree of each

node. This leads to have faster convergence because nodes with lower number of

neighbors will not be penalized in their speed of movement by the node with the

higher degree of the net.

This weight matrix is also symmetric thanks to the method of construction and

since the graph is undirected the neighboring nodes have the same degree no mat-

ter from which side of the edge we would approach. Recall that the self-weights
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are chosen so the sum of the weights at each node is 1. Hence averaged consensus

can be achieved.

• Rendezvous

This weight matrix is constructed following the study made by Carlos H. Caicedo-

Núñez and Miloš Žefran [4]. As it possible to see in (3.7), the scheme is similar

to the constant weight matrix,

WRV = I− α(I− Ã), (3.7)

where the constant α here also affects the convergence speed. For RV α is defined

with the following boundaries:

α ∈ (0, 1)

The design of the adjacency matrix [Ã] is as follows,

[Ã]ij > 0 if [A]ij = 1 (3.8)

such that ∑
i

[Ã]ij = 1 (3.9)

where it is not necessary to have a symmetric structure. Due to (3.8) the WRV

matrix will not necessarily be double stochastic. However the stochasticity is

ensured with (3.9), as a result with WRV is possible to reach consensus. The

direct consequence of this new conditions is that the consensus is not agreed in

the average point.

3.5.4 Novel Design

• Angular weights

The problem of the connectivity encouraged the decision of creating a design
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which would favour the weights wij of the nodes angularly more isolated. For this

new approach the weights are built as the sum of the two smallest angles formed

by the vector i → j for the case of the entry wij. In example (3.10) is easy to

appreciate how the weights [w]ij are computed for the graph in Fig. 3.1.

Figure 3.1: Angular weights

wij ∼
αjk + αlj

2
(3.10)

The process followed for calculating the weights is the next:

(i) Creating a matrix with the vectors between all the connected nodes.

(ii) Using the matrix of the step 1 was possible to create a new matrix for storing

this time the angles between connected nodes.

(iii) Sort the angles and take only the two smallest for each case.

(iv) Eventually, is obtained a matrix I × I with the coefficients for each edge.

This matrix will be called coefficient matrix C. These coefficients sum to 2π

in each row, but are normalized to obtain a row stochastic matrix W.

In Fig. 3.2 and Fig. 3.3 the effect of the new weight design can be appreciated,

it is seen that the trajectory of the nodes is quite different. In the case of the

traditional methods the node i in the middle would move towards the position
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Figure 3.2: Traditional trajectory Figure 3.3: Angles trajectory

where there is a higher concentration of neighbors, while for the angular design

the new position of the node i moves to the more angular isolated neighbor. This

effect leads to avoid the network disconnection.

Finally, some other important features are that this design is non symmetric,

thus only row stochastic, and what is more, the transmission of state informa-

tion is the same as with the other weight designs since only the node position is

required. The main drawback of the angular weights is the computational cost.

• Modifications of angular weights

– Symmetric angular weights

It is possible to symmetrice the angular weight design by means of the coef-

ficient matrix C. The process is as in (3.11).

Csym =
C + CT

2
(3.11)

When the weight matrix is created from these new symmetric coefficients

the result is a symmetric matrix and therefore double stochastic.

– Distance-Angular weights

In this case two different coefficient matrices are used in order to include the

effect of the distance. Let us Cang be the angular coefficients and Cdist be the

distance coefficients. Then Cdist is created dividing the matrix D containing
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the distance between every pair of nodes by the maximum distance. Finally

C is the multiplication element by element of Cang and Cdist.

• Line weights

This is a special case of matrix which has been developed for one dimensional

scenarios. As said, we will mainly focus on two dimension random scenarios, nev-

ertheless we will also study some special distributions such as regular grids and

both regular and random one dimensional scenarios.

For the design of this new weight matrix we have exploited a characteristic which

only one dimensional scenarios have, all the agents will be contained in a line and

there will always be two nodes, one at each side, which will define the limits of

the node distribution. Therefore the idea is shrink the set of nodes starting from

the boundaries and keeping the nodes in the middle fixed. To be more precise,

the value of the weights will be as below,

[WL]ij =


1

max{di,dj} if i ∈ Nj and i ∈ B(G)

1−
∑

i 6=j[WL]ij if i = j

0 else

where B(G) represents the nodes on the boundary of G, or in other words, the

nodes which only have neighbors on one side.

Analyzing the structure of the weight matrix, we realize that (3.5) is fulfilled

and so will be stochastic. Condition (3.6) is also accomplished, thus the weight

matrix will be stable.
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We expect that this procedure will let us avoid the disconnection of the network

and achieve consensus in a point near but not by its own nature the average.



4

Modifications of Rendezvous

In this chapter, we present some modifications for the RV consensus method. The

objective of these changes is to improve the rate of success reaching rendezvous and

the convergence properties, or in other words, make the nodes meet faster and ensure

that all nodes meet at one point. To achieve these goals, several extensions have been

developed. For instance controlling the dynamics, adding delays or reorganizing the

network before starting the consensus algorithms.

33
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4.1 Relaying

The first modification is based on relaying information. The idea came in response of

the need of obtaining a larger connectivity in order to increase the probability of achiev-

ing rendezvous. Relaying creates virtual edges between so far not connected nodes and

therefore increases the connectivity. Hence, each node gains more knowledge of the

environment and this prevents the agents to move to positions that cause the graph to

get disconnected. Another option is to introduce a delay before moving to gather more

information, which is discussed in the next section.

Because of relaying the adjacency matrix will change, but strictly speaking this new

adjacency matrix will not model the real graph because some edges will appear as a con-

sequence of the relaying. Therefore, the adjacency matrix is virtual and is constructed

as,

Av =

{(
N∑
k=1

Ak

)
> 0

}
− I (4.1)

where Av is the virtual adjacency matrix and N is the maximum delay. The operator

used in (4.1) is defined as

{M > 0}ij =

 1 if [M]ij > 0

0 else.

The meaning of ijth entry of
N∑
k=1

Ak

is the number of different paths from i to j when we can hop at most k times. For

understanding why we need the sum in (4.1), we illustrate with a simple example in

Fig. 4.1. We see all the possible paths for N = 2. If we do not use the sum, node

1 cannot reach 2 and therefore there is no path between them. This is because Ak

represents the number of possible ways to reach a node from any other when we hop
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strictly k times. In our example it is obvious that, for k = 2 it is impossible to go from

the red node to the blue and stay, it can only reach its initial position and the green

node. So the solution is to sum up as in (4.1) and to make it more clear the structure

of A and A2 for the example in Fig. 4.1 is the next.

A =


0 1 0

1 0 1

0 1 0

 A2 =


1 0 1

0 2 0

1 0 1


It is evident that for the graph in Fig. 4.1 the equation (4.1) produces a fully con-

nected virtual adjacency matrix when k ≥ 2.

We have seen that the zero pattern of Av will be different from A for k > 1, and

since there will be more edges, which is equal to less zeros in Av than in A, we obtain

a higher connectivity.

In order to apply relaying it is necessary to move only every certain number of it-

erations. As a result the agents can exchange state information with second or higher

order neighbors and decide a more precise movement because they have more informa-

tion. As a consequence, all neighbors have to wait for the message of node i before they

can move, and this is time consuming. Moreover, in each iteration all |N (i)| neighbors

have to additionally spread the position of node i. Therefore the communication load

increases significantly (
1 + |N (i)|

1

)
.

Despite the drawbacks, it is important to notice that every k first iteration, when the

nodes do not move, are necessary for computing (4.1). The reason why we say that the

movement will be more accurate is because the RV weight matrix will be created using

the zero pattern of Av, which we recall that contains more non-zero entries. Eventually
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Figure 4.1: Feasible paths

everything reduces to the idea of having more information for taking better decisions.

The relaying effect is seen in Fig. 4.2. It is seen that the final consequence of re-

laying is the appearance of a virtual connectivity range rv which is rv ≤ 2r, where r is

the connectivity range. We see that rv cannot be 2r in random geometric topologies

because this would need an infinite number of nodes at a distance equal to the connec-

tivity range. However, in the case of some regular network topologies, this condition in

fulfilled, therefore rv = 2r. In Fig. 4.3 we see a non-regular and a regular distribution

where the connectivity range for each node is ri = r for all i. We see that node 1 can

not reach the node 5 because the neighbor node in its direction is at a distance smaller

than the connectivity range in Fig. 4.3(a). Therefore, despite node 5 is at a distance 2r

from 1 it cannot be reached. In the other example illustrated in 4.3(b) all nodes at a

distance 2r from 1 can be reached, since all the neighbor nodes are distributed at the

same distance r from 1.

The performance of the relaying is considered in Section 5. We expect to keep the

networks connected and achieve consensus in one point more often than with the raw

RV algorithm.
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(a) Before relaying (b) After relaying

Figure 4.2: Relaying

(a) Non-regular distribution (b) Regular distribution

Figure 4.3: Relaying
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4.2 Delay

The second modification introduces a delay in the movement in order to virtually in-

crease the connectivity before making a movement. This approach is slightly different

from our relaying method. The delay provides us with extra time that can be used

for exchanging more information like in the relaying case, but this time we simply let

consensus algorithm run more iterations without letting the nodes move. Since the

graph remains constant during the delay, running consensus algorithm d times within

the delay, is equivalent to compute the weight matrix to the power of d and apply it

once. The update equation for our delaying method, with k as iteration from which we

start to apply delay, yields

X[k] =

 WdX[k − 1] if k − dbk
d
c = 0

X[k − 1] else,
(4.2)

where

Wd = Wk−d→k = W[k − d] . . .W[k − 1]W[k],

and also,

Wd = W[k − d]d or Wd = W[k]d,

because the weight matrix does not change while we apply the delay. For instance, if we

start from k = 1 and d = 3, we will not update the position until the iteration number

4 being (4.2) as follows

X[k + d] = WdX[k],

X[4] = W3X[1],

and therefore the nodes will not move before that, and consequently during these iter-

ations no component can get disconnected if at k = 1 was not. Note that (4.2) can be
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written also as follows

X[4] = W3X[2],

because X[1] = X[2], since the nodes do not move during the two first iterations.

Ideally, if the we have a connected graph G and d→∞ then (4.2) is as below

Xcons = W∞X,

and Xcons is a point where all the nodes would converge in just one movement if the

speed of movement is not constrained. Furthermore, if the weight matrix design is

double stochastic,

Xcons = X̃,

where X̃ is the averaged sum of the initial positions. The drawback is of course that

d → ∞ is practically infeasible. Hence the goal is to find a suitable d for making the

network converge and at the same time a small d is preferable because we will be adding

a smaller delay.

Computing the consensus matrix many times before moving creates a smoothing ef-

fect on the matrix, in other words it reduces the differences between the weights and

creates a virtual range augmentation because it changes the zero pattern of the weight

matrix by adding non-zero entries in positions which correspond to unconnected nodes.

This reduces the chance for the network of being disconnected because the virtual

weight matrix is created as if the nodes knew the position of more neighbors.

In the following we briefly compare and analyze the differences between the relaying

and delaying approach. The first thing we should recall is that with relaying we do not

do any processing while we relay state information, at the same time, with delaying we
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(a) Without thresholding (b) With thresholding

Figure 4.4: Thresholding

continuously process and share data with the neighbors. Hence, the first modification

affects the adjacency matrix, whereas the second changes the weight matrix. Neverthe-

less, both have similar effects, they modify the zero pattern of A and W, respectively,

and in both cases the number of zero entries in the matrix is reduced. For both methods

of course the network stays connected if the nodes do not move. The last important

consideration is that we expect the delay method to work better, because it not only

applies a delay for gathering more information, but also evolves the weight matrix to a

more advance state.

4.3 Thresholding

This modification changes the perspective from which the connectivity problem has

been addressed before. The motivation behind this method is that slower nodes should

decrease the chance of getting disconnected. Hence, we will study the effect of constrain-

ing the traveled distance and thus speed. Fig. 4.4 illustrates the expected behavior. It

shows how in this case limiting the traveled distance reduces the negative effect which

areas with a relatively large number of nodes produces. In this specific scenario the

central node 2 moves faster towards the area with more nodes because the overall at-

traction they cause is bigger than the isolated node 1, whereas node 1 moves slower

because only has the node 2 under its scope. We see in Fig. 4.4(b) that node 2 stays
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within the scope of 1 when thresholding is applied. In Fig. 4.4(a), however, we do not

control the traveled distance and the graph gets disconnected.

First of all, we need to assign threshold value, which we denote t. Then we apply

the following steps,

• We start conventional consensus algorithm using the RV method. So we obtain

WRV and compute the new position for every node.

• Next we calculate the Euclidean distance walked by each node. The Euclidean

distance for a two dimensional scenario is as in Fig. 4.5, where pi and qi are the

initial and final positions respectively for node i. The distance node i travels will

be equal to

dE = ||qi − pi||2,

where both pi and qi are defined by their x and y coordinates since we work within

a 2D scenario. Therefore dE is the Euclidean distance covered by node i. More

information about the definition used for the Euclidean distance can be found

in [21].

• Finally we compare with the threshold t and if

[dE]i > t,

then node i would travel further than the threshold distance t, and is therefore

forced to move only distance t at maximum in the same direction.

• Once all the nodes have computed their new positions meeting the criteria, they

can move.

It is clear that this modification will have a negative effect on the convergence properties

because we are limiting the speed of the nodes. Nevertheless, we expect that in the end
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Figure 4.5: Distance travelled by node i in one iteration

it will help to keep the network connected.

4.4 Dispersion

The last modification does not apply control or changes of the Rendezvous algorithm

like the others, but a new algorithm prior rendezvous is applied to the network in order

to get a more even distribution of the nodes. This formation control algorithm is based

on ideas presented in [1,22–26]. In [27] information about flocking, another interesting

application, which make a cluster of nodes move in the same direction with the same

speed, can be found. We will not develop any algorithm for flocking in this work, how-

ever it could be an interesting topic for a further extension.

For the construction of the dispersion algorithm we use a symmetric matrix containing

the Euclidean distance between the nodes. Obviously, the diagonal elements are zero

since it bears the distance between a node and itself. Hereafter we call this matrix

DF and impose the zero pattern of A, i.e., we set the entries of DF corresponding to

nodes that are not connected to zero. Then we choose a distance d as the aim of the
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separation between neighboring nodes. The consensus weight matrix for dispersion is

W′ = DF − d11T + dI,

where the diagonal contains zeros. To guarantee the row stochastic property, we add a

diagonal matrix which makes the sum of the row 1,

W = W′ + (I− diag(W′1)).

If we analyze the structure of the weight matrix we notice that it contains negative

entries. These entries correspond to the nodes which are closer than d and therefore

need a repulsive effect in order to reach the objective distance between them. This is

not enough to avoid clustering as we will explain in more detail later in this section.

Fig. 4.6 shows how a regularly distributed network may look. We can see how the

nodes keep a distance which is or tends to d. Ideally all of the nodes are equally spaced

because the goal is a regular network distribution.

The dispersion method cope with some issues which make the system unstable or lead

to unsatisfactory results. We describe the solutions we have implemented here:

• Oscillations: Having an inappropriate or too large speed of convergence provokes

undesired oscillations which makes consensus unreachable. As explained in Sec-

tion 3.5.1, large diagonal entries cause a slow movement of the nodes. Therefore,

before adding the values to the diagonal for making the W matrix stochastic, we

divide the W′ matrix by a constant c > 1.

W =
1

c
W′ + (I− 1

c
diag(W′1))
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• Range: The connectivity range affects the formation of the network. Having a

large connectivity range provokes a grouping of nodes in clusters of approximate

radius d. The reason why this occurs with high values of connectivity range

is because the nodes in the middle of the network pull nodes on the boundary

towards them. These nodes on the boundary try to be at a distance d to the

nodes in the middle but on the way they drag other nodes which were in the

middle. The result are the above mention clusters of nodes. This effect can be

counteracted by setting a connectivity range similar to the separation objective

d.

• Stucked nodes: Sometimes nodes which are too close and surrounded by many

others have difficulties for reaching the separation d. This problem has been

addressed by boosting the negative entries of the weight matrix. This means that

the nodes are forced to move further and we expect that this will also help to

separate the clusters of nodes which may appear in the different scenarios due to

the random nature of the initial graph topology.

• Exceeding the limits: Finally we consider the case when nodes try to cross the

boundary of the prescribed area of the network. This is very likely for dispersion

since it has an spreading effect. Two approaches how to handle this phenomenon

are described in the following.

The first approach is making the coordinate which steps out of the frame

to change its value to the maximum possible. The effect can be seen in Fig. 4.7,

where the coordinate x is going out of bounds, but instead we keep the coordinate

y and fix x to be the maximum possible value.

The second approach is assuming that we have a solid surface, so the node

will bounce. This means that the node will continue its way by only changing the

sign of direction in the axis which is reaching the limit, as can be seen in Fig. 4.8.
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Figure 4.6: Network after dispersion

Figure 4.7: Limiting
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Figure 4.8: Bounce

In Section 5 we will see the performance of RV and AW in networks where we applied

formation control algorithm. RV will present poor results whereas AW achieves an

outstanding successful rate.



5

Simulation Results

In this chapter we show the results of the simulations obtained. The objective is first to

compare the different weight matrices, and then to check how the proposed modifica-

tions affect the performance. Then we will test the behavior of the consensus algorithms

under special circumstances like regular networks or one dimensional scenarios.

47



Chapter 5. Simulation Results 48

5.1 Simulation Setup

Before showing the results we explain the settings used. Some of the parameters change

along the different simulations because they depend on the needs or they are used for

checking how their variation affect the performance. These are for instance the step-size

α, the number of agents I, the number of iterations k or the communication range r.

For us α is the step-size. It defines how fast the nodes can move and therefore affects

the speed of convergence, α stays always within the limits described in Sections 3.2 and

3.4. The number of agents I, the number of iterations k, with special attention to the

maximum number of iterations kmax, or the communication range r, are used for tuning

the algorithm and testing which are the best settings depending on the objectives. Let

us define r as the maximum reachable Euclidean distance, following again the definition

in the work [21], this yields that the maximum distance d which can be covered is

d = |x2 + y2| ≤ r,

where x and y are the distance covered in each coordinate. The communication range

is decided using the equation,

r = c

√
A

I − 1
,

where A is the area of the frame, I is the number of nodes and c is a constant which

determines the communication scope of the agents. In most of the simulations the num-

ber of scenarios used are 1000, however sometimes will vary. We use a large number

of random scenarios for averaging and achieving more realistic results. In some subsec-

tions we will provide a table with the parameters used.

Other parameters are fixed, in order to unify all the results as much as possible. The

area under study is always A = [0, 1]× [0, 1]. Furthermore, the initial graph is random

geometric and always connected at the beginning but in the cases of control formation
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and the study of regular matrices. In control formation having initially unconnected

graphs helps, indeed, for studying if these graphs can get connected.

The mean-squared-error (MSE) is defined as the mean-squared distance of the agents

to the average position. The average position is calculated as the sum of the positions

of all the nodes and then dividing by the number of nodes, and repeating for each

iteration. The process for calculating the MSE starts with the average squared error

(ASE) [14],

ASE[k] =
1

I

∑
i

|xi[k]− s̄[k]|2, (5.1)

where s̄[k] is the average position at iteration k, and then using the equation (5.1) the

MSE is as follows

MSE[k] =
1

CI

∑
c

∑
i

|xci[k]− s̄c[k]|2,

where C is the number of scenarios. Therefore the MSE we use is also averaged by the

number of scenarios in order to gain accuracy.

5.2 Comparing Weight Matrices

All along this section we are going to explain the results obtained for every different

weight matrix design. Furthermore, we will compare the trajectories of the nodes for

different weight matrix designs and over the same scenarios, highlighting the differences.

The settings used in this section are shown in Table 5.1.

Parameter Value

I 100
kmax 150
r 0.24

No. of scenarios 1000

Table 5.1: Parameters Section 5.2
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5.2.1 MSE Performance

In this section, we will use the mean-squared error (MSE) for measuring which weight

matrix is better. With the MSE it is possible to check not only if a method converges

faster, but also which method is achieving consensus with higher probability because it

will result in a lower average MSE. To be more clear, if for the last iteration the nor-

malized number of neighbors is 1 then the network is fully connected and the consensus

can be achieved.

In Fig. 5.1 and Fig. 5.2 we see two plots. The first with the evolution of the MSE

over the iterations for the four studied weight matrices and the second with the nor-

malized number of neighbors over the iterations.

Now let us focus on Fig. 5.1, where are shown all the scenarios, regardless of whether

the graphs are connected. We see how AW outperforms the other methods both in con-

vergence speed and in MSE performance. Among the traditional methods rendezvous

is the best because it achieves consensus with a higher probability but MH converges

faster. With respect to the number of neighbors, Fig. 5.1 shows a high dependence of

the MSE improvement on the number of neighbors.

Fig. 5.2 is similar to Fig. 5.1 but for only connected scenarios, or in other words, sce-

narios with which in the end we can reach consensus. It is possible to see that only RV

and AW can achieve consensus. For the case of RV only a few scenarios converge and

we can observe some artifacts in the number of neighbors plot due to this circumstance.

Comparing RV and AW we can see that initially RV converges faster but eventually

AW achieves better MSE results.
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Figure 5.2: Averaged mean squared error over connected scenarios
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5.2.2 Average Distance Traveled

This section gives some hints about why AW has a better performance. And one possi-

ble reason lies in the initial speed of the nodes. First we will study the average traveled

distance in general and then moving on to the average distance between nodes. The av-

eraged travelled distance is the sum of distance the nodes move divided by the number

of nodes while the average distance between nodes is the sum of the distance between

each pair of connected nodes divided by the number of nodes time the number of edges.

Let us start with the average traveled distance, note that we again distinguish all

the scenarios and connected scenarios in Fig. 5.3 and Fig. 5.4. In Fig. 5.3 we can re-

alize how AW has a different behavior than the other methods. AW starts with slow

movements and increases the speed as long as the connectivity increases. This helps

to preserve the structure of the network and avoids early disconnection. On the other

hand MH and RV start fast and the isolated nodes get often disconnected. Regarding

CW the performance is relatively poor and, despite the slow speed of movement, the

network suffers from disconnection. Fig. 5.4 shows again similar results than Fig. 5.3

but for connected scenarios. Again, since only a few scenarios converge for RV, we see

some artifacts.

The second approach is the evolution of the distance between nodes. This time only

RV and AW are analyzed. In Fig. 5.5 we have considered all the scenarios and also

the distance between nodes which may not have and edge between them, while Fig. 5.6

show the distance between nodes which are connected. We can see how the distance

between nodes with RV is reduced faster, whereas for AW at the beginning this distance

stays almost constant. In Fig. 5.5 there is a saturation effect for RV when measuring

the distance between all nodes because there are more scenarios which can not reach

consensus. In Fig. 5.6 for the same reason irregular peaks appear for RV between con-
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Figure 5.3: Average traveled distance over connected scenarios
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Figure 5.4: Average traveled distance over all the scenarios

nected nodes. Fig. 5.5 and Fig. 5.6 support the idea which states that slow initial

movement helps to stay connected.
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5.2.3 Trajectories

Now we are going to analyze how different weight matrices provoke different trajectories

of the nodes even when the scenario is the same. We will show first the trajectories for

the graph in Fig. 5.7. Fig. 5.8, Fig. 5.9 and Fig. 5.10 show clearly how the traditional
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Figure 5.7: Network under study

methods tend to converge locally when the connectivity is not high enough. In contrast,

in Fig. 5.11 AW keeps the nodes connected and they eventually reach consensus. In

Fig. 5.12(a) and Fig. 5.12(b) a comparison between RV (in red) and AW (in green)

is depicted. In Fig. 5.12(b) we have made a zoom to see in more detail what occurs

in a specific region of the network. For the RV nodes on the upper left corner having

more neighbors in their area provoke disconnection with the rest of the network in a

few iterations. However, for AW, since the weights are computed with the angles, the

structure is preserved and the consensus is achieved. In Fig. 5.13 and Fig. 5.14 are

displayed the number of graph elements and its position for the network in Fig. 5.12(a).

It is a simple way to check how RV gets 3 local consensus points while AW achieves

the objective of general consensus, because the graph elements let us know whether the
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Figure 5.8: CW trajectory
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Figure 5.9: MH trajectory
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Figure 5.10: RV trajectory
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Figure 5.11: AW trajectory
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network is fully connected or not. The graph elements are the number of independent

clusters of nodes that we obtain after running a consensus algorithm over a network for

k iterations. Therefore if we only have one graph element the network is fully connected.

If we have more than one graph element means that the network is unconnected and

the consensus can only be achieved locally. We recall that for this section the networks

are initially connected, thus they only have one graph element at the first iteration.
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Figure 5.12: Comparison between RV and AW

5.2.4 One Dimensional Scenarios

In this section we will present some results obtained by applying RV and the line weights

design over one dimensional scenarios. The creation of a new weight matrix was moti-

vated as an effort for getting better performance than with the classic RV. The setup

used can be seen in Table 5.2.

First we compare the number of graph elements in Fig. 5.15 and Fig. 5.16, or in other

words if the networks stay connected. In Section 2.1.4 was explained in more detail.

Fig. 5.15 shows how RV is affected by the number of neighbors and the range, while in

Fig. 5.16 it is possible to see how line weights achieve consensus for all the scenarios

under these settings.
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Figure 5.14: AW histogram

Parameter Value

I 50-100
kmax 200
r 0.16− 0.24

No. of scenarios 100

Table 5.2: Parameters Section 5.2.4

In Fig. 5.17 we compare the speed of convergence of RV and line weights. Whereas

line weights is better in terms of consensus rate, we can see how RV has a faster con-

vergence.

5.3 Modifications Of Rendezvous

This section deals with the modifications implemented over the RV algorithm. These

modifications are controlling some aspects of the algorithm such as the distance trav-

eled or the frequency of movement. The settings for this section are in Table 5.3. In

Parameter Value

I 100
kmax 150
r 0.24

No. of scenarios 1000

Table 5.3: Parameters Section 5.3
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Figure 5.15: Number of graph elements depending on the connectivity range and the
number of nodes
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Figure 5.17: Convergence speed of RV and line weights

Fig. 5.18 and Fig. 5.19 we compare the evolution of the MSE over 100 iterations of the

different modifications. It is clear that for both only connected scenarios and all the

scenarios the delayed versions are giving a great performance. On the other side, the

methods which add a constraint in the distance traveled are even counter-productive.

For the delayed versions not only the MSE is good but also the convergence is faster

and also the speed with which the number of neighbors grow.

Regarding the distance traveled, we have decided to show only the threshold method

because the delayed versions converge faster and in a reduced number of steps. We

see in Fig. 5.20 and Fig. 5.21, that plotting only connected scenarios does not vary the

distance traveled but the curve for all the scenarios is smoother because few scenarios

converge for the threshold modification.

In Fig. 5.22 appear the percentage of networks achieving rendezvous, as expected the

AW and the delayed versions of RV are getting the best results.
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Figure 5.18: Mean-squared error over all the scenarios
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Figure 5.22: Succesful rendezvous

5.3.1 Dispersion

In this section we will discuss the advantages of using dispersion before running the

rendezvous algorithm. Despite it is one of the suggested modifications, a different sec-

tion is used due to its particularities. In first place we need to prove that dispersion is

worthy and then in which range because the network we obtain after the dispersion can

have different distance d between the nodes. Hence, in this section we analyze which

values of d are useful for our consensus purpose.

The settings used are the same that for the rest of the section, with the exception

of the connectivity range, which is used as a variable with the values r = {0.16, 0.24}.

Before showing the results, in Fig. 5.3.1 we see the effect of dispersion over a ran-

dom geometric graph. It may help to better understand the purpose of applying the

dispersion. Using dispersion gives advantages or drawbacks depending, as we can see

in Fig. 5.24 and Fig. 5.25, on the chosen separation distance d. The method used for
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Figure 5.23: Graph dispersion
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Figure 5.24: Mean-squared error compared to RV

comparing with the raw RV is subtracting the MSE value and the number of graph

elements obtained for the raw RV method to all the other sets of results with different

dispersion distances, thus if the result is negative the dispersion helped otherwise was

counter-productive. In both figures we can see the same tendency, when the distance

chosen is to high we have a negative maximum because the nodes are spread too far

from each other. On the other hand, if we choose d too small the problem is that the

dispersion creates many different swarms disconnected. Therefore we have a trade-off

and d must be selected taking into account these two constraints.
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Figure 5.25: Number of graph elements compared to RV

5.4 Regular Matrices

To conclude our study of the consensus algorithms we are going to analyze the behavior

over regular networks. In particular, in 1D space and over grids for the 2D case. In

this section the definition of the connectivity range is changed, now we define it as the

initial distance among nodes times a constant c ∈ [1, 3]. We will use 2 different sets

of parameters, one for 1D and other for 2D. Considering that we use regular scenarios,

it is not necessary to average because there is no need to counteract the effect of any

random assets.

In this whole section we will focus on if the network stays connected, therefore we

will plot the number graph elements after a number of iterations sufficient to get con-

sensus. As explained in Section 2.2.4, having more than one graph element means that

the network has suffered from disconnection.
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Parameter Value

I 4-100
kmax 200
r c× d

Table 5.4: Parameters Section 5.4.1

5.4.1 One Dimensional Scenarios

The algorithms used for this special case are RV and line weights. As explained in

Section 3.5.5 the line method is an approach specially designed for the one dimensional

environment. We developed it because for 1D scenarios the AW presents issues since

the angles are always 0 or 180 grades.

We will plot the number of graph elements depending on different settings. The values

for the settings we will use are in Table 5.4.

In Fig. 5.26 we have the results for RV over a 1D scenario. We see how when we

have a large number of agents and a small connectivity range the connectivity of the

network is affected, ant thus the number of graph elements is bigger. It is possible to

appreciate how the number of agents affects more than the connectivity range for RV

in 1D.

Now let us focus on the line weights we specifically designed for 1D. Line weights

outperform RV since the graph elements are 1 for every setting. This can be seen in

Fig. 5.27.
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Figure 5.26: Rendezvous weights
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Figure 5.27: Line weights
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Parameter Value

I 50-100
kmax 100
r c× d

Table 5.5: Parameters Section 5.4.2

5.4.2 Two Dimensional Scenarios

We test in this section RV and AW, since in previous sections they have proved to be

the most effective algorithms for reaching consensus. We seek in this section, as in the

section before, whether regular graphs stay connected or not under certain settings.

The settings used are in Table 5.5.

Now the results for the RV algorithm are shown in Fig. 5.28. When we have a low

number of agents and a high connectivity range we achieve the best results, however

what is indeed interesting is that the connectivity range affects more than the number

of nodes. Only with high connectivity ranges is possible to reach the objective of having

one graph element. This contrast with the 1D case where the number of agents affects

more than the connectivity range.

The results for the AW show a clear result, for regular networks as long as the initial

graph is connected consensus is always achieved. In Fig. 5.29 is possible to appreciate

how for all the values of range and number of nodes the number of graph elements is

always one.
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Figure 5.28: Number of graph elements depending on the connectivity range and the
number of nodes
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6
Conclusions and Outlook

This thesis is meant to be an analysis of distributed consensus algorithm applied over

multi-agent networks. The objective was studying the rendezvous problem, but other

distributed applications such the network formation control were dealt with.

Since the networks can be defined as graphs, it was necessary to revise related the-

ory and also some network topology and matrix theory aspects.

Once the theory basis were settled, we moved into the consensus algorithm design.

First we declare the parameters, objectives and assumptions under which we would

work for then discussing three weight matrix designs from other scientific works. After

noticing their weak points we tried to develop two new weight matrices which would

improve the convergence and successful convergence rate of the consensus algorithm.

The next step was introducing some control capabilities in our programs for study-

ing how they would affect the overall performance of the system. In this moment was

necessary to create a new consensus algorithm with different conditions in order to

adapt it to the control formation problem.

70
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After presenting the main theoretical and design aspects of the consensus algorithm

we started showing some of the results obtained during our research. All the four

weight designs were compared, for then showing the improvements obtained by apply-

ing modifications to the RV algorithm. To conclude that section we brought some of

the results obtained for regular networks both in 1D and 2D.

In the future a more detailed theoretical analysis of the consensus algorithm under dif-

ferent conditions can be carried out for explaining the behavior of the different solutions

here presented. A good theoretical analysis could therefore lead to the development of

better designs which would face the issues we found in this work. A deeper analysis on

the formation control and dispersion is of a great interest, not only for consensus pur-

poses, but also for exploration or monitoring applications due to the great possibilities

these methods give for generating a controlled enlargement of the networks.
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