Contents

<table>
<thead>
<tr>
<th>List of Abbreviations</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The Evolution towards Next-Generation Terrestrial Broadcasting</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Formulation</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Objectives and Thesis Scope</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Thesis Outline and Main Contributions</td>
<td>8</td>
</tr>
<tr>
<td>1.5 List of Publications</td>
<td>12</td>
</tr>
<tr>
<td>2 Multi-RF Technologies in the Next-Generation DTT Systems</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 An overview to data transmission in current DTT systems</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Time Frequency Slicing (TFS)</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1 Concept</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Background</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Channel Bonding (CB)</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Concept</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2 Background</td>
<td>25</td>
</tr>
<tr>
<td>2.5 Network gains with Multi-RF Channel Aggregation</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Inter-RF FI and Advanced Network Planning (ANP)</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>30</td>
</tr>
<tr>
<td>3 Network advantages by multiple RF channel aggregation</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Performance Evaluation of Inter-RF Frequency Interleaving</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1 An Information-Theoretic Approach to Inter-RF Frequency Interleaving</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2 Performance analysis based on physical layer simulations</td>
<td>40</td>
</tr>
</tbody>
</table>
CONTENTS

3.3 Characterization and Modelling of the Coverage Gain in the VHF and UHF bands .. 42
3.3.1 Analysis of the frequency-dependent characteristics of propagation based on models 44
3.3.2 Link budget and coverage definition implications 51
3.3.3 Analysis and modelling of the coverage gain based on outdoor field measurements 54
3.3.4 Analysis of the coverage gain based on indoor field measurements .. 62
3.4 Interference robustness gain .. 64
3.5 Capacity gain by Multi-RF Channel Aggregation 66
3.5.1 Statistical Multiplexing .. 66
3.5.2 Bit-Rate increase with CB 69
3.6 Conclusions .. 71

4 Advanced Network Planning (ANP) with Inter-RF Frequency Interleaving .. 75
4.1 Introduction ... 75
4.2 Conventional Network Planning 76
4.2.1 Pure Multiple Frequency Network (MFN) planning ... 79
4.2.2 Single Frequency Network (SFN) planning 81
4.3 Advanced Network Planning (ANP) Strategies for increased NSE .. 86
4.3.1 Mixed Polarization Network (MPN) 86
4.4 Methodology Considerations .. 90
4.4.1 Network configuration and NSE calculation 90
4.4.2 Limitations of the methodology 93
4.5 NSE Evaluation for Traditional and ANP 94
4.5.1 Pure Multiple Frequency Networks 94
4.5.2 MFNs of SFN Clusters and Large area SFNs 96
4.6 Application of the results to current and next-generation DTT networks .. 99
4.6.1 Applicability to portable and mobile reception 100
4.6.2 Dependency with the number of RF channels 101
4.7 Conclusions .. 102

5 Implementation Aspects of TFS and CB 103
5.1 Introduction ... 103
5.2 Transmitter implementation with TFS 104
5.2.1 FEC and Interleaving .. 105
5.2.2 Frame composition and transmission modes 110
5.2.3 Scheduling operations 111
CONTENTS

5.3 Receiver operation for TFS reception .. 115
 5.3.1 PLL+AGC and synchronization operation 116
 5.3.2 Channel Estimation ... 118
 5.3.3 Operation limitations with single-tuner TFS 120
 5.3.4 Dual tuner approach for TFS operation 122
5.4 Transmitter and receiver implementation with CB 124
5.5 Signalling requirements for TFS and CB 124
5.6 Impacts of TFS and CB on Network Topology and Deployment 128
 5.6.1 Network Topology ... 128
 5.6.2 Coverage Issues .. 130
 5.6.3 Network Deployment with ANP 131
 5.6.4 Legislation and Regulatory Aspects 132
5.7 Conclusions ... 132

6 Conclusions and Future Work ... 135
 6.1 Concluding Remarks ... 135
 6.1.1 Increased frequency diversity 137
 6.1.2 Capacity gains ... 138
 6.1.3 Robustness against interferences and Advanced Network
 Planning (ANP) .. 139
 6.1.4 Implementation Aspects ... 140
 6.1.5 Network Deployment Recommendations 141
 6.2 Future Research Topics .. 141
 6.2.1 MIMO with TFS or CB ... 141
 6.2.2 Layer Division Multiplexing with TFS or CB 142
 6.2.3 TFS in connection with LPLT network topologies 142

A Measurement campaigns details .. 143
 A.1 Outdoor Measurements .. 143
 A.2 Indoor Measurements ... 144

B Physical Layer and Network Planning Simulations 149
 B.1 Physical Layer OFDM-based Simulators 149
 B.2 Network Planning Simulations .. 153

C Propagation Models .. 157
 C.1 ITU-R P.525 Recommendation ... 157
 C.2 ITU-R P.529 Recommendation ... 157
 C.3 ITU-R P.1546 Recommendation 159
 C.4 Other Models and Recommendations 159

References ... 161