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Abstract

The Generalized Singular Value Decomposition (GSVD) and the lifting technique
combined with the Kronecker product are exploited to find reflexive and anti-
reflexive (with respect to a generalized {k + 1}-reflection matrix P) solutions of
the matrix equation AXB = C. An algorithm is presented for both methods. Its
computational cost is studied and several numerical examples are analyzed.
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1 Introduction

A matrix P € C™*" is called a generalized reflection matrix if P? = I and P* =
P, being P* the conjugate transpose of the matrix P, I the identity matrix of
suitable size, and C™*" the set of all complex matrices of size n x n. A matrix
X € C™" is called reflexive (anti-reflexive) with respect to a generalized
reflection matrix P € C™*™ if PXP = X (PXP = —X).

Centrosymmetric and centroskew matrices A (that satisty A = J,AJ, or
A = —J,AJ,, respectively, where J,, denote the n xn backward identity matrix
having the elements 1 along the southwest-northeast diagonal and with the
remaining elements being zeros) have been widely discussed. This kind of ma-
trices has important applications in engineering problems, information theory,
linear system theory, linear estimation theory, numerical analysis theory, etc.
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[1,13]. Peng and Hu studied the existence of reflexive and anti-reflexive solu-
tions to the matrix equation AX = B over the complex field with respect to a
generalized reflection matrix P giving its solutions, respectively [11]. Recently,
Cvetkovic-ilii¢ investigated the existence of reflexive solutions of the same ma-
trix equation given necessary and sufficient conditions as a first approach to
find more operative conditions [4]. The matrix equation AXB = C'in X has
been studied in different ways. Some authors have searched the general solu-
tion of this problem while others have considered some kind of constraints on
the solution, as for example the symmetry, the positive definiteness, etc. This
kind of matrices is widely used in engineering and scientific computation, in
control theory, etc. Specifically, these matrices are used to solve physical prob-
lems related to the altitude estimation of a level network, electric networks
and also structural analysis of trusses [7,10,12,15,16].

In this work we analyze the matrix equation AX B = C', looking for solutions
X that satisfy the constraint PXP = X for a given matrix P under certain
conditions. Specifically, we will assume that P € C"*" is a Hermitian and
{k + 1}-potent matrix (that is, P**' = P = P*). In this case, P is said to
be a generalized {k + 1}-reflection. Moreover, a matrix X € C™" is called
{P, k + 1} reflexive with respect to the Hermitian and {k + 1}-potent matrix
P if PXP = X and {P,k + 1} anti-reflexive with respect to the Hermitian
and {k + 1}-potent matrix P if PXP = —X. Our main goal is to reduce
the study to only two cases: P2 = P and P3 = P. Actually, the reduction
of the general case P**! = P to those cases is crucial in our work because it
simplifies substantially the problem. Moreover, clearly our results generalize
those given in [12]. On the other hand, there is a relation between {k + 1}-
potent matrices and group inverses, that is P € C"*" is {k + 1}-potent if and
only if P# = P*! for k > 2. This kind of matrices has been widely used
in many topics such as Markov chains, iterative methods, control theory, etc.
[5,6,9,14].

Some notation will be used throughout this paper. For a given matrix M, we
will denote by vec(M) the lifting form of M, that is, the result of writing
M as a column vector formed by ‘stacking’ the columns of M into one long
column vector [8]. For a given column vector z of length r - s, the notation
devec(z,r, s) returns the matrix of size r X s which first column is defined by
the r first elements of x, the second one by the r following elements, and so on
until the s-th column. When M is a square matrix, we will denote by (M)
the spectrum of M.

It is known that the generalized singular value decomposition (GSVD) of a
pair of matrices {M, N}, with M € C™*™ and N € C™*? matrices having the



same number of rows, is given by

M=WSyU;, and  N=WSyVi  with
It O
D D 1
5, — M | 5 = N | (1)
OM ]N
L O - . O -

W e C™™ a nonsingular matrix, Uy, € C"" and Vy € CP*P unitary
matrices, Dy, Dy € C**° matrices containing the strictly positive singu-
lar values of M and N, respectively, I, € CF<k Oy € Cr—k=s)x(n=k=s)
Iy € Clzk=o)x(t=k=s) and On € CH*P+r=1 being t = rank([M N]), k =
t —rank(N), and s = rank(M) 4 rank(N) — ¢ [14].

Next, we quote some known results for further references.

Theorem 1 (Theorem 2.1 [3]) Let P € C"*". Then, the following state-
ments are equivalent:

1. P is {k + 1}-potent.
2. P is diagonalizable and o(P) C {0} Uy, where Q) represents the set of all
the roots of the unity of order k.

The following lemma summarizes some useful properties of the Kronecker
product, denoted by ®, and the ones related to the lifting notation (see [8], p.
412).

Lemma 1 Let A,C € C™", B,D € C"!, E € CP*4, and X,P € C"*".
Then

(a) vec(AXB) = (B* @ A)vec(X).
(b) vec(A+ C) = vec(A) + vec(C).
(c) o(P®P)={ u: A\ pe€ac(P)}
(d) (A2 C)(B® D)=AB®CD.
(e) (A® E)* = A*® E*.

The paper is organized as follows. In Section 2 the problem is stated and some
first properties on the solutions X and on the given matrix P are established.
Moreover, for the general case k > 2 it is proved that it is enough to study
only the cases k = 1 and k = 2. In Section 3 and Section 4 the { P, 2} reflexive
solutions and the { P, 3} reflexive solutions are found by using the SVD and the
GSVD, respectively, and the lifting technique in both cases. The anti-reflexive
solutions are given directly without proofs after the results corresponding to



the reflexive ones. Finally, in Section 5, an algorithm to systematize the the-
oretical procedure developed is presented as well as its computational cost
in both cases. Some examples are given to illustrate the results and that the
methods work numerically.

2 Statement of the problem and a first approach

For the given matrices A € C™*" B € C™! C € C™! and P € C™"
satisfying P¥*! = P, for some k € N, and P* = P, the main purpose of this
paper is to solve the equation

AXB=C (2)
under the condition

PXP=X (3)

that is, to find { P, k+ 1} reflexive solutions with respect to the Hermitian and
{k + 1}-potent matrix P of the matrix equation AXB = C.

The anti-reflexive case corresponds to the problem AX B = C with
PXP=-X (4)

and admits a similar treatment.

From Theorem 1 the following result can be stated.

Lemma 2 Let P € C"™ a Hermitian matriz. Then P is a {k + 1}-potent
matriz if and only if P is idempotent when k is odd or tripotent when k is
even. Consequently, o(P) is included in {1,0} or {1,—1,0}, respectively.

Proof. The condition P* = P assures that the eigenvalues of P are real
numbers and P is a unitarily diagonalizable matrix. Moreover, from Theorem
1, the property P**! = P implies that o(P) C {0} U Q. Then, the spectrum
o(P) is included in the set {1,—1,0} and there exists a unitary matrix U €
C™*™ such that the matrix P can be written in the form

where some of the diagonal blocks may be absent. Thus, it is easy to see that
P? = P (when the block —TI is absent and k is odd) or P® = P (when the
block —1 is not absent and k is even). The converse is evident. a



Remark 1 Note that when P is a nonsingular matriz, the condition P? = P
is equivalent to the simpler condition P? = I (studied in [12]) and the condition
P? = P is equivalent to the trivial case P = I.

One way to solve the equation (2) under the condition (3) is by means of the
combination of the Kronecker product with the lifting technique. In order to
state a lifting form of the equations AXB = C' and PXP = X we will use the
notation vec(M). In fact, both equations can be rewritten in the equivalent
form

vec(AX B) = vec(C), vec(PX P) = vec(X). (5)

Then, using the Lemma 1 we get

(B* ®@ A)vec(X) = vec(C), (P* ® P)vec(X) = vec(X), (6)
which are two linear equations in the unknown vec(X).
From (6), some additional properties of P can be established.

Proposition 1 Let P € C**™ a Hermitian matriz (so, there exist a diagonal
matriz D € C*" and a unitary matriz U € C™*" such that P = UDU*) and
consider the equation (3) in X. The following properties of P and X hold:

(a) The eigenvectors of the matriz P® P are the columns of the matriz U QU .

(b) If P is a {k + 1}-potent matriz, then o(P ® P) C {1,0} when k is odd
and o(P ® P) C {1,—1,0} when k is even.

(c) If 1 ¢ o(P ® P), then the equation (3) has not nontrivial solution.

(d) If 1 € (P ® P), then 1 or —1 belong to o(P) and the solution of the
equation (3) verifies that vec(X) is an eigenvector of the matriz P @ P
associated with the eigenvalue 1.

Proof. From P = UDU* and Lemma 1 we get PQ P = (U®U)(D® D)(U®
U)*. So, the statement (a) holds.

The hypothesis that P is a Hermitian and {k+ 1}-potent matrix gives o(P) C
{1,0} when k is odd and o(P) C {1,—1,0} when k is even (see Lemma 2).
Using again the Lemma 1, the statement (b) follows directly.

The items (c) and (d) follow as a consequence of applying the lifting form to
the equation (3), which gives (I — P ® P)vec(X) = O. O

Remark 2 If in the previous proposition we consider the equation (4) instead
of the equation (3), then items (a) and (b) remain invariant while items (c)
and (d) change as follows:

(¢’) If =1 ¢ o(P ® P), then the equation (4) has only the trivial solution.
(d’) If =1 € o(P ® P), then 1 and —1 belong to o(P) and the solution of the



equation (4) verifies that vec(X) is an eigenvector of the matrizx P ® P
associated with the eigenvalue —1.

From Lemma 2, the whole analysis of the stated problem under the condition
Pkl = P for any k € N can be reduced to the study of the problem of finding
X such that AX B = C considering only two cases: P> = P and P? = P. Next,
we are going to solve these two cases in order to find { P, 2} reflexive solutions
and { P, 3} reflexive solutions, respectively. The anti-reflexive solutions will be
also considered.

3 {P,2} reflexive solutions

In this section we look for {P,2} reflexive solutions of the problem (2), that
is, to find matrices X € C"*" such that AXB = C and X = PXP being
P € C™™ an idempotent and Hermitian matrix.

From Theorem 1 it is clear that if P is an idempotent matrix then o(P) C
{0,1}. Moreover, as P is Hermitian, P is unitarily similar to a diagonal matrix,
that is, there exists a unitary matrix U € C"*" such that

I, O
P=UDU*  with D= (7)
00

where r = rank(P).

Therefore, the relation X = PXP can be written as X = UDU*XUDU*.
So, we can construct the matrix X = U*XU, which verifies X = DXD. By
splitting the matrix X into appropriate size blocks Xi;, 1 <1,j <2, according
to the matrix blocks in D, the last equality becomes

X11 Xio I, O | Xu X | |1, O

Xo1 Xoo 00 Xo1 Xoo OO0

and after making operations we get

~ X11 O
X = . (8)
O 0

Remark 3 Notice that some blocks of X in (8) may be absent because some
diagonal blocks of D may not be in the diagonal blocks of P. This occurs when
the spectrum of P is a proper subset of {0,1}. In particular, if X11 is absent



then the matriz X is null because P = O. The case o(P) = {1} is similar to
the case o(P) ={0,1}, which is analyzed below.

By taking into account that X = UXU*, the matrix equation AXB = C
becomes

AXB=C where A= AU and B=U*B.

By splitting into blocks the matrices A and B we have:

) _ |p
A=lagaz]  aa B- (9)
B,

and by substituting into the matrix equation AXB = C we get

Xll O Bl
O O] | B
that is
ATXHBI - C <]-O>

Remark 4 Notice that in the anti-reflexive case, a similar reasoning leads to
the trivial solution, which implies that the equation AXB = C will have no
{P,2} anti-reflexive solutions if C # O.

3.1 Using the Singular Value Decomposition (SVD)

By applying the singular value decomposition to the matrices A7 € C™*" and
B; € C*" we get the form of the solution X. In fact,

A} =WaXiaUy, B = WgXipUp, (11)

where W, € C™™, W € C*', Uy € C*", and Ug € C™" are unitary
matrices and

D4 O Dig O
Sa=| 470, D= T, (12)
O O O O

with Di4 € C*** and Dy € C*** nonsingular diagonal matrices, being a =
rank(A;) and b = rank(B;). Then, the equation (10) becomes

AU X1 Up)Sip = WilCWg™. (13)



By splitting into the following blocks

X X Cy C
UiXuUg= |72 witewgt=| "R (14)
X21 X22 C121 022

the equation (13) holds if and only if the blocks C1a, Co1, and Cys are null and
X11 - ijcllng

We obtain the following result as a summary of this reasoning.

Theorem 2 Let A €¢ C™", B € C™, C € C™!. For a Hermitian and
idempotent matriz P € C™*™, the matrix equations

AXB=C and PXP=X

have solution X € C™" if and only if the matriz W *CWg* has the following
form

Ci O
O O

WilCWg* =

where W4 and Wpg are the unitary matrices appearing in the singular value
decomposition of the matrices A} and By, respectively, and Cy; an arbitrary
matriz of size a X b, being a = rank(A;) and b = rank(By).

In this case the general solution can be expressed as

DyiCuDy: X
Us 1A _11 1B _12 U; O
X - U X21 X22 U* (15>

O @)

3.2 Applying the lifting technique

By applying the lifting technique to the equation (10) we get
vec(A] X1 By) = vec(C)
and the properties given in Lemma 1 allow to write
(B} ® A})vec(X11) = vec(C). (16)

Then, by using generalized inverses (see [2]), we have the following result.



Theorem 3 Let A € C™*", B € C"*', C' € C™*!. For a given Hermitian and
idempotent matriz P € C™*", the matriz equations

AXB =C, PXP=X
have solution if and only if any of the following statements holds:

(a) vec(C) € R(By ® A}), where R(-) denotes the range of (-), and A, and
By are given in (9).

(b) there exists a {1}-inverse M~ of the matric M = B} ® A} such that
vec(C) e N(I — MM~), where N(-) denotes the null space of (-).

Then, the general solution is given by

Y_u devec(vec(X1y),7,7) O o (17)
O @)

where r = rank(P) and vec(X11) is obtained by solving (16). In the case (b),
vec(Xy11) = M vec(C)+Y — M~ MY

with Y an arbitrary matriz.

4 {P,3} reflexive solutions

In this section we look for {P, 3} reflexive solutions X € C™™ with respect
to the Hermitian and tripotent matrix P € C"*" of the matrix equation
AXB =C.

From Theorem 1 it is clear that if P is a tripotent matrix then o(P) C
{0,1, —1}. Moreover, as P is Hermitian, P is diagonalizable by a unitary
matrix, that is, there exists a unitary matrix U € C™*" such that

I, 00
P=UDU*  with D=|0-I;0 (18)
O 00

being o + = rank(P).

Since X = PXP, we get X = UDU*XUDU". Premultiplying by U* and
postmultiplying by U we construct the matrix X = U*XU that satisfies X =



DXD. By splitting the matrix X into appropriate size blocks Xij, 1<, <3,
according to the matrix blocks of D, the last equality becomes

X1 Xi2 Xis I, O O X1 X2 Xi3 I, O O
Xo1 Xop Xoz | = | O _IB O Xo1 Xog Xo3 O _]6 O
X31 X3p X33 O 0 O X31 X3 X33 O 0 O

and by making operations we get

Xy O O
X=|0 Xp0]|. (19)
O 0 O

Remark 5 Notice that some blocks of X in (19) may be absent because some
diagonal blocks of D may be absent. This happens when o(P) is a proper subset

of {0,1,—1}.
From (6), (18), and (19) a first result on tripotent matrices can be stated.

Theorem 4 Let A € C™*", B € C™!, C € C™*!. If P € C™" is a Hermitian
and tripotent matriz, then the solution of the matrix equation system

AXB=C, PXP=X (20)

1s given by solving the linear system

(B*® A)(U @ U)vec(X) = vec(C)
where U and X have been introduced in (18) and (19), respectively.

Proof. Writing the matrix P in the form (18), the equivalence between the
system (20) and the equation AXB = C with X in the form (19), where
A = AU and B = U*B is obtained. By applying the lifting technique to the
last equation we get vec(AX B) = vec(C). By using Lemma 1, A = AU and
B = U*B, we arrive to the linear system (B* @ A)(U ® U)vec(X) = vec(C).
O

On the other hand, by taking into account that X = UXU*, the matrix
equation AX B = C becomes

AXB=C where A= AU and B=U*B.

10



By partitioning the matrices A and B we have:

A= {A; A; A;] and B=|B, (21)

and by substituting into the matrix equation AXB = C' we obtain

Xn O O] | B
[A’{ A A;} O XpO| |By|=C.
O O O||Bs
The corresponding block products lead to the reduced expression
A1 X11B1 + A5 X9 By = C. (22)

Remark 6 By a similar treatment for the anti-reflexive case we obtain a sim-
ilar result as in Theorem 4 where the condition PXP = X and the definition
of X must be changed by PXP = —X and

O X0
X = X21 O O ’
O O O

respectively. Moreover, in this case, the condition (22) becomes

ATX13By + AL X0 By = C. (23)

From now on, in order to solve the stated problem by using the above sim-
plification we will consider different techniques: the GSVD (when Xj; and
Xoy are not absent) or the SVD (when one of these blocks is absent as in the
subsection 3.1), and the lifting technique. These two techniques allow to give
the solution in terms of blocks, while the Kronecker properties applied as in
Theorem 4 give the solution in terms of the original matrices.

4.1 Using the GSVD

By applying the generalized singular value decomposition to the pairs of ma-
trices { A3, A5} and {Bj, B;}, the form of the solution X is obtained. In fact,

AT = WaSWUs, AL = WaSea Vi (24)

11



and

B} = Wg¥1pUp, B; = WgXapVi, (25)
where the involved matrices satisfy the conditions given in (1). By substituting
both expressions into the equality (22) we arrive to:

SiA(UsX11Up)Si g + Soa(ViXVp)Xip = Wil CW5* (26)

where the nonsingularity of the matrices W4 and W} has been used. By split-
ting into blocks of suitable sizes the matrices in brackets we get:

Xll XIZ XIS X44 X45 X46
UZXHUB = Xgl XQQ ng ) VXXZQVB = X54 X55 XSG
X?)l X32 X33 X64 X65 XGG

and moreover, we can write:

Cn1 Crz2 C13 Cuy
Ca1 Cyy Cys C

WoCW st — 21 &2 Cos G | (27)
Cs1 O3z Cs3 Oy

_041 C(42 043 C'44_

By substituting these last three expressions into (26) and computing the prod-
ucts we obtain:

X X12Dip 0 0| [CuCnyou]
D1aX91 D1aX22Dip + D2aXs5Dap DonXsg O | Ca1 O O Oy
O XesDap Xes O - Cs1 Cs2 C33 Oy
O @) O O] |Cn Cyp Cy Cu |

where we have used that 314, Ya4, 315, and Yyp are split as in (1).
Consequently, this last equality holds if and only if the blocks
Cha, Cas, C34, C13, C31, Cy1, Cyz, Cuz, Cay
are null matrices of appropriate sizes.
As a summary, we have proved the following result.

Theorem 5 Let A € C™*", B € C"*!, C' € C™*!. For a given Hermitian and
tripotent matriz P € C"*", the matriz equations

AXB=C and PXP=X

12



have solution X € C™™ if and only if
Cha, Cayg, C34, C13, C31, Cy1, Cyz, Cuz, Cuy

are null blocks of appropriate sizes, where

Oy Chs Ciy Oy |
O Cas Ca Cos
C{31 C{32 C'33 C'34
| Ciy Cis Ciy Cug |

WilCwg* =

being W4 and Wy the nonsingular matrices appearing when applying the GSVD
to the pairs of matrices {Af, A5} and {Bf, B}, respectively (that is, A =
WaSqaUs, A5 = WaSoaVi and Bf = WeXigU},, By = WXapVy).

In this case, the general solution can be expressed as

Uxug! O O

X=U O  VixVilo|U (28)
O O O
where
Cyi CuDig Xis
Xi=| D0y Xy Xog
X1 Xg X
and
Xu Xus Xus
Xo = | X5y D34 (Cas — D1aX22D15)Dsgg D34 Cos |
Xea C2 D55 Css

being X;; arbitrary matrices of suitable sizes.

Remark 7 For the anti-reflexive case, we obtain a similar result as in Theo-
rem 5 where the expression (28) must be changed by

O U Vit O
X=U|vyxUugt o O|U-
0] O O

13



4.2 Applying the lifting technique

Another way to solve the problem of finding {P,3} reflexive solutions is the
lifting technique as described before. In fact, by applying this technique to the
equation (22) we get

vec(AT X711 By + A5 X909 By) = vec(C)
and the properties given in Lemma 1 allow to write
vec(A] X11B1) + vec(A5 X990 By) = vec(C),
which implies
(By @ A)vec(X11) + (B; @ Aj)vec(Xag) = vec(C)

and so
vec(X11)

= vec(C). (29)
VeC(X22)

B; ® At B;@A;}

Then, by using generalized inverses (see [2]), we have the following result.

Theorem 6 Let A € C™*", B € C*!, C' € C™!. For a given Hermitian and
tripotent matriz P € C"*", the matriz equations

AXB=C, PXP=X (30)

have solution if and only if any of the following statements holds:

(a) vec(C) € R ([Bi‘ ® Al B ® A;D, where Ay, As, By, and By are given
in (21).

(b) there erxists a {1}-inverse M~ of the matriv M = | Bf ® A% B @ A}
such that vec(C) € N(I — MM™).

Then, the general solution is given by

devec(vec(Xiy), o, @) @) @)
X=U 0] devec(vec(Xa),3,8) O | U” (31)
@) @) @)

where a, [ are the sizes indicated in (18), and vec(Xi1) and vec(Xaa) are

14



obtained by solving (29). In the case (b),

VeC(XH)
vec(Xa2)

=M vec(C)+Y — M~ MY

with Y an arbitrary matriz.

Remark 8 When PXP = —X, we obtain a similar result as in Theorem
6 where Ay and Ay must be interchanged. Moreover, the expression (31) is
changed by

O devec(vec(Xi2), o, ) O
X = devec(vec(Xa1), 3, 5) O O
@) @) @)

5 Algorithm and Examples

The algorithm below constructs reflexive solutions for the stated problem in
Section 2.

ALGORITHM
Inputs: A € C™" B e C, C e C™ P e C™, keN, and Method.
Outputs: X € C™" such that AXB =(C and PXP = X.

Step 11f P = O then go to Step 9.
Step 2 Compute P*. If P* £ P then go to Step 10.
Step 3 If k is odd then
Step 3.1 Compute P2,
Step 3.2 If P?2 = P then go to Step 5 else go to Step 10.
Step 4 If k is even then
Step 4.1 Compute P3.
Step 4.2 If P2 = P then go to Step 5 else go to Step 10.
Step 5 Diagonalize P as P = UDU*. Then o(P ® P) = diag(D ® D).
Step 6 If k is odd then
Step 6.1 Compute A and B as in (9).
Step 6.2 If ‘Method = SVD’
Step 6.2.1 Decompose (SVD) A} and B as in (11) and (12).
Step 6.2.2 Compute W 'CW5* and split it as in (14).
Step 6.2.31f C1o # O, Coy # O or Cyy # O then go to Step 11.

15



Step 6.2.4 1f Cha, Co1 and Cyy are null matrices then the { P, 2}
reflexive solutions are given by (15). Go to End.
Step 6.3 If ‘Method = Lifting’
Step 6.3.11f vec(C') ¢ R(B; ® A}) then go to Step 11, else the
general solution is given by (17). Go to End.
Step 71If k is even then
Step 7.1 Compute A and B as in (21).
Step 7.2 1f ‘Method = GSVD’
Step 8.2.1 Decompose (GSVD) {Aj, A5} and {B], B3} as in
(24) and (25).
Step 7.2.2 Compute W 'CW5* and split it as in (27).
Step 7.2.3J = {(1,4), (2,4), (3,4), (1,3), (3, 1), (4, 1), (4,2), (4,3), (4,4)}.
Step 7.2.4 If there exists (4, j) € J such that C;; # O then go
to Step 11.
Step 7.2.51If C;; = O for each (i,5) € J then the {P,3}
reflexive solutions are given by (28). Go to End.
Step 7.3 If ‘Method = Lifting’
Step 7.3.1 If vec(C) ¢ R(M) then go to Step 11, else the
general solution is given by (31). Go to End.
Step 8 Display ‘The solution is X = O when C' = O and there is no solution
when C' # O’. Go to End.
Step 9 Display ‘The matrix P does not satisfy the required hypothesis’.
Go to End.
Step 10 Display ‘There is no solution’.
End

A similar algorithm for the anti-reflexive case can be developed.

An analysis and comparison of the computational cost of the algorithm is
presented for both methods in what follows. The first part of the algorithm
(until Step 5 included) is shared by both methods and it requires a com-
putational cost O(n3). Now, we analyze the Step 6. The part corresponding
to the SVD method requires O(mr? + Ir?) for the SVD decompositions and
O(m?l+ml?) for the Step 6.2.2. In the lifting method the computational cost is
at most of O(mlir?). Then, in case of n > m and n > [, both methods require
a computational cost at most of O(n?). Next, we study the Step 7. The part
corresponding to the GSVD method requires O(m3+m(a+ 3) max(m, a+3))
for the GSVD decompositions and O(m?l+ml?) for the Step 7.2.2. The lifting
technique costs about O(ml(a + 3)?). So, in case of n > m and n > [, the
cost of both methods is dominated by the first part, that is O(n?).

Next, we illustrate the obtained results with some examples. As we have
shown, it is enough to give examples finding { P, 2} and {P, 3} reflexive solu-
tions.
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Example 1 Consider the matrices

112 100 0.288920346061937 0 0
A=1113], B=1000], C = | —0.308655868523851 0 0
114 000 —0.906232083109640 0 0

and the Hermitian and idempotent matrix

05050
P=105050
0 01

From Theorem 2 and Theorem 3, the {P,2} reflexive solutions of the matric
equation AXB = C are, for each o, 5 € C,

0.7420  0.7420 0.7420c — 0.646203
X = 0.7420  0.7420 0.2870cc — 0.646203
—0.5976 —0.5976 0.9139« + 0.406003

Note that we exhibit the results rounded to four decimals and so, the solution
presented is the same for both techniques. However, working with the MATLAB
precision we obtain that |AX B —C||, = 1.7953 - 10715 for the SVD technique
and ||AXB — C||, = 4.0792 - 1076 for the lifting technique.

Example 2 Consider the random matrices

-0.5828 0.2091 0.4154 0.2140 0.6833 0.4514 0.6085 0.0841 0.1210 0.2319
0.4235 0.3798 0.3050 0.6435 0.2126 0.0439 0.0158 0.4544 0.4508 0.2393
0.5155 0.7833 0.8744 0.3200 0.8392 0.0272 0.0164 0.4418 0.7159 0.0498
0.3340 0.6808 0.0150 0.9601 0.6288 0.3127 0.1901 0.3533 0.8928 0.0784
0.4329 0.4611 0.7680 0.7266 0.1338 0.0129 0.5869 0.1536 0.2731 0.6408
0.2259 0.5678 0.9708 0.4120 0.2071 0.3840 0.0576 0.6756 0.2548 0.1909
0.5798 0.7942 0.9901 0.7446 0.6072 0.6831 0.3676 0.6992 0.8656 0.8439
0.7604 0.0592 0.7889 0.2679 0.6299 0.0928 0.6315 0.7275 0.2324 0.1739
0.5298 0.6029 0.4387 0.4399 0.3705 0.0353 0.7176 0.4784 0.8049 0.1708
0.6405 0.0503 0.4983 0.9334 0.5751 0.6124 0.6927 0.5548 0.9084 0.9943
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and

_0.4398 0.9342 0.1370 0.4225 0.2974 0.3759 0.1939 0.6273 0.7165 0.1146
0.3400 0.2644 0.8188 0.8560 0.0492 0.0099 0.9048 0.6991 0.5113 0.6649
0.3142 0.1603 0.4302 0.4902 0.6932 0.4199 0.5692 0.3972 0.7764 0.3654
0.3651 0.8729 0.8903 0.8159 0.6501 0.7537 0.6318 0.4136 0.4893 0.1400
0.3932 0.2379 0.7349 0.4608 0.9830 0.7939 0.2344 0.6552 0.1859 0.5668
0.5915 0.6458 0.6873 0.4574 0.5527 0.9200 0.5488 0.8376 0.7006 0.8230
0.1197 0.9669 0.3461 0.4507 0.4001 0.8447 0.9316 0.3716 0.9827 0.6739
0.0381 0.6649 0.1660 0.4122 0.1988 0.3678 0.3352 0.4253 0.8066 0.9994
0.4586 0.8704 0.1556 0.9016 0.6252 0.6208 0.6555 0.5947 0.7036 0.9616
0.8699 0.0099 0.1911 0.0056 0.7334 0.7313 0.3919 0.5657 0.4850 0.0589

the Hermitian and idempotent matrix

18

-0.2333 0.1042 0.8555 0.4361 0.6314 0.6509 0.3687 0.3442 —0.1395 0.3309-
0.3684 0.1645 1.3506 0.6885 0.9968 1.0276 0.5820 0.5434 —0.2202 0.5224
0.8056 0.3598 2.9535 1.5056 2.1797 2.2471 1.2727 1.1883 —0.4815 1.1425
0.4719 0.2107 1.7300 0.8819 1.2768 1.3162 0.7455 0.6961 —0.2820 0.6692
0.5642 0.2520 2.0687 1.0545 1.5267 1.5739 0.8914 0.8323 —0.3372 0.8002
1.0121 0.4521 3.7109 1.8917 2.7387 2.8234 1.5990 1.4931 —0.6050 1.4355
1.0740 0.4797 3.9376 2.0072 2.9060 2.9959 1.6967 1.5843 —0.6419 1.5232
0.5346 0.2388 1.9600 0.9991 1.4465 1.4913 0.8446 0.7886 —0.3195 0.7582
0.5545 0.2477 2.0331 1.0364 1.5005 1.5469 0.8761 0.8181 —0.3315 0.7865
0.4845 0.2164 1.7764 0.9055 1.3110 1.3515 0.7654 0.7147 —0.2896 0.6872

0.8168 —0.1573 0.0074 —0.0460 —0.1325 0.0516 0.0735 —0.0785 0.2277 0.1977-
—0.1573 0.2110 0.1248 0.1844 0.0324 0.0318 0.1786 0.2018 —0.0348 0.1276
0.0074 0.1248 0.5859 —0.1944 0.0845 0.1101 —0.0397 0.3559 0.2038 —0.0117
—0.0460 0.1844 —0.1944 0.4375 0.1472 0.0913 0.3016 —0.0446 —0.0502 0.2161
—0.1325 0.0324 0.0845 0.1472 0.5766 0.3141 —0.0121 —0.1969 0.2244 —0.0936
0.0516 0.0318 0.1101 0.0913 0.3141 0.2008 0.0327 —0.0693 0.1783 0.0032
0.0735 0.1786 —0.0397 0.3016 —0.0121 0.0327 0.2746 0.1027 —0.0297 0.2381
—0.0785 0.2018 0.3559 —0.0446 —0.1969 —0.0693 0.1027 0.4218 —0.0309 0.1152
0.2277 —0.0348 0.2038 —0.0502 0.2244 0.1783 —0.0297 —0.0309 0.2377 —0.0071
0.1977 0.1276 —0.0117 0.2161 —0.0936 0.0032 0.2381 0.1152 —0.0071

0.2372



the matrix

Now,

—0.7661 0.1807 —0.3384
0.2324 —0.4353
0.0472 —0.0884
0.0748 —0.1401
0.0365 —0.0684
0.0601 —0.1125

0.2238 —0.4192

0.6207
0.7983
0.1622
0.2570
0.1254
0.2063
0.7688

1.0062 0.4352
1.2941  0.5597
0.2629 0.1137
0.4166 0.1802
0.0879
0.1447
0.5390

—0.9853
—0.2002
—0.3172
—0.1548
—0.2546
—0.9489

0.2033
0.3345
1.2463

—0.0519 0.0122 —-0.0229 0.0420 0.0681

0.1274 —0.4925
0.1639 —0.6335
0.0333 —0.1287
0.0527 —0.2039
0.0257 —0.0995
0.0424 —0.1637
0.1578 —0.6101

1.1686 —0.2756 0.5163 —0.9468 —1.5349 —0.6638 —0.1943 0.7513 —0.0701 0.2196

0.0460 —0.1440
0.0591 —0.1852
0.0120 —0.0376
0.0190 —0.0596
0.0093 —0.0291
0.0153 —0.0479
0.0569 —0.1783

0.0530 —0.0125 0.0234 —0.0429 —0.0696 —0.0301 —0.0088 0.0341 —0.0032 0.0100
0.0295 0.0086 —0.0333 0.0031 —0.0097

is a {P,2} reflexive solution. Again, we exhibit the results rounded to four
decimals and the solution presented is as well the same for both techniques.
However, working with the MATLAB precision we obtain that || AXB—C/||,. =
8.0855 - 107 for the SVD technique and ||[AXB — C||, = 3.5463 - 107*° for

the lifting technique.

Example 3 Consider the matrices

(1111] 1000]
1112 0100
A= . B= . C=
1113 0000
(1114] 10000]

and the Hermitian and tripotent matrix

(1000]
0010
0100

10000]
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(2100]
2100
2100

12100




Now, the {P,3} reflexive solutions are

(0141420 1-8 1-8 0
07071 0.5(3 +7) 0.5(8 —7) 0
07071 0.5(8 — ) 0.5(8 + ) 0

0 0 0 0

for each o, 3,~ € C.

Here, working with the MATLAB precision, ||AXB — C||, = 1.1254 - 1071%
for the GSVD technique and ||[AXB — C||, = 8.8818 - 10716 for the lifting

technique.

Example 4 As before, for the random matrices

-0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537 0.3420 0.3704 0.5226
0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.5936 0.2897 0.7027 0.8801
0.9218 0.0579 0.2722 0.8462 0.8318 0.3028 0.4966 0.3412 0.5466 0.1730
0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.8998 0.5341 0.4449 0.9797
0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.8216 0.7271 0.6946 0.2714
0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449 0.3093 0.6213 0.2523
0.9355 0.1389 0.4451 0.8381 0.3046 0.3784 0.8180 0.8385 0.7948 0.8757
0.9169 0.2028 0.9318 0.0196 0.1897 0.8600 0.6602 0.5681 0.9568 0.7373

20

-0.1365 0.5828 0.2091 0.4154 0.2140 0.6833 0.4514-
0.0118 0.4235 0.3798 0.3050 0.6435 0.2126 0.0439
0.8939 0.5155 0.7833 0.8744 0.3200 0.8392 0.0272
0.1991 0.3340 0.6808 0.0150 0.9601 0.6288 0.3127
0.2987 0.4329 0.4611 0.7680 0.7266 0.1338 0.0129
0.6614 0.2259 0.5678 0.9708 0.4120 0.2071 0.3840
0.2844 0.5798 0.7942 0.9901 0.7446 0.6072 0.6831
0.4692 0.7604 0.0592 0.7889 0.2679 0.6299 0.0928
0.0648 0.5298 0.6029 0.4387 0.4399 0.3705 0.0353
0.9883 0.6405 0.0503 0.4983 0.9334 0.5751 0.6124




and

—0.2457 —0.0598 —0.1569
—0.2101 —0.0511 —0.1342
—0.1258 —0.0306 —0.0804
—0.0051 —0.0012 —0.0033
—0.2264 —0.0551 —0.1446
—0.3330 —0.0810 —0.2127

the matrix

0.1764 —0.5966 —0.6825
—-0.6394 0.3682 0.3367
—0.4470 0.2424 0.1213
—0.1253 0.1638 0.1589
—1.1893 0.0670 —0.3214
—1.2833 —0.0075 —0.4449

—0.8159 —0.1911 —0.5120
0.9629 0.5626
—0.2976 0.1054 0.0286

0.7953 0.3760 0.7324 —

1.0189 —

_1.4478 0.9400 2.2716 0.8773 1.6894 2.3220 1.5612_
1.8992 1.3869 2.8472 1.3636 2.1633 2.8669 1.6062
1.1724 0.6586 1.9750 0.2172 1.0931 2.5130 1.8356
1.5764 1.0632 2.4714 0.8199 1.7904 2.8025 1.8403
1.4621 0.9341 2.1214 1.5195 2.1737 1.3448 0.6762
1.4792 1.0831 2.1849 1.0146 1.6160 2.4034 1.4099
1.7878 1.3211 2.6720 1.2667 2.1843 3.0792 2.2203
1.0587 0.7952 1.6485 0.5918 1.2886 1.8156 0.9326

0.8333 0.3057 0.2613
0.3057 —0.4394 0.4793
0.2613 0.4793 —0.5902
0.1565 0.2871 0.2455
0.0063
0.2817
0.0449

0.0116 0.0100
0.5166 0.4417
0.0823 0.0704

1.1554 —2.4395 0.9344
0.4406 —0.3009 0.4775
0.7731 —1.4937 0.6519
1.3121 —2.2482 1.2247
1.2953 —2.6149
1.2588 —2.3965 0.8802
0.4978 1.4190 —0.4448
1.2313 —1.2150 0.4958
2.2368 4.3739 —1.7882

0.5841 —1.0623 0.5054

1.1899

0.1565 0.0063 0.2817
0.2871 0.0116 0.5166
0.2455 0.0100 0.4417
—0.8530 0.0060 0.2646
0.0060 —0.9998 0.0107
0.2646 0.0107 —0.5239

0.0422 0.0017 0.0759 —

—0.1608 —0.2824 —0.7414 —0.1340 —0.2457 —0.2101 —0.1258 —0.0051 —0.2264 —0.3330_
—0.2824 0.9313 —0.1804 —0.0326 —0.0598 —0.0511 —0.0306 —0.0012 —0.0551 —0.0810
—0.7414 —0.1804 0.5265 —0.0856 —0.1569 —0.1342 —0.0804 —0.0033 —0.1446 —0.2127
—0.1340 —0.0326 —0.0856 —

0.0449
0.0823
0.0704
0.0422
0.0017
0.0759
0.0574

0.0475 0.7460 0.4751 —0.2111

0.1614 0.1875 0.3852

0.0633 0.4778 0.3628 —

0.7551 0.6690 0.2171

—0.3600 0.9324 0.7773 —
1.7775  0.5869 —

—0.1246
0.3523 —1.1224 —0.3169
0.2129
0.0238 —1.9852 —0.7891

0.0630 0.3508 0.2956 —

is a { P, 3} reflexive solution. With the MATLAB precision we obtain |AX B—
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1.0018 —0.5118 —

0.0946
0.1027
0.0289
0.3960
0.4633
0.4545
0.3786
0.5987
0.0591




C|l, = 5.7935 - 107 for the GSVD technique and ||[AX B — C||,, = 4.3470 -
1071 for the lifting technique.

The algorithms were implemented in MATLAB, version 7.1., and used to test
the results on several numerical experiments. In all of them we obtain error
bounds about O(107'°) in both methods when matrices have larger sizes and
for smaller sizes the lifting technique can be improved to O(1071%). Next, in
Table 1 we summarize some of the obtained numerical results.

Example | Lifting | SVD | GSVD
1 10716 | 10715 -
2 10715 [ 1071 —
3 10-16 - 10~15
4 10° 107

Table 1
Error bounds for the numerical experiments: [|[AXB — C/|,.

These experiments show that the algorithm implemented works well for nu-
merical examples.
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