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Abstract

The Generalized Singular Value Decomposition (GSVD) and the lifting technique
combined with the Kronecker product are exploited to find reflexive and anti-
reflexive (with respect to a generalized {k + 1}-reflection matrix P ) solutions of
the matrix equation AXB = C. An algorithm is presented for both methods. Its
computational cost is studied and several numerical examples are analyzed.
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1 Introduction

A matrix P ∈ Cn×n is called a generalized reflection matrix if P 2 = I and P ∗ =
P , being P ∗ the conjugate transpose of the matrix P , I the identity matrix of
suitable size, and Cn×n the set of all complex matrices of size n×n. A matrix
X ∈ Cn×n is called reflexive (anti-reflexive) with respect to a generalized
reflection matrix P ∈ Cn×n if PXP = X (PXP = −X).

Centrosymmetric and centroskew matrices A (that satisfy A = JnAJn or
A = −JnAJn, respectively, where Jn denote the n×n backward identity matrix
having the elements 1 along the southwest-northeast diagonal and with the
remaining elements being zeros) have been widely discussed. This kind of ma-
trices has important applications in engineering problems, information theory,
linear system theory, linear estimation theory, numerical analysis theory, etc.
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[1,13]. Peng and Hu studied the existence of reflexive and anti-reflexive solu-
tions to the matrix equation AX = B over the complex field with respect to a
generalized reflection matrix P giving its solutions, respectively [11]. Recently,
Cvetković-iliić investigated the existence of reflexive solutions of the same ma-
trix equation given necessary and sufficient conditions as a first approach to
find more operative conditions [4]. The matrix equation AXB = C in X has
been studied in different ways. Some authors have searched the general solu-
tion of this problem while others have considered some kind of constraints on
the solution, as for example the symmetry, the positive definiteness, etc. This
kind of matrices is widely used in engineering and scientific computation, in
control theory, etc. Specifically, these matrices are used to solve physical prob-
lems related to the altitude estimation of a level network, electric networks
and also structural analysis of trusses [7,10,12,15,16].

In this work we analyze the matrix equation AXB = C, looking for solutions
X that satisfy the constraint PXP = X for a given matrix P under certain
conditions. Specifically, we will assume that P ∈ Cn×n is a Hermitian and
{k + 1}-potent matrix (that is, P k+1 = P = P ∗). In this case, P is said to
be a generalized {k + 1}-reflection. Moreover, a matrix X ∈ Cn×n is called
{P, k + 1} reflexive with respect to the Hermitian and {k + 1}-potent matrix
P if PXP = X and {P, k + 1} anti-reflexive with respect to the Hermitian
and {k + 1}-potent matrix P if PXP = −X. Our main goal is to reduce
the study to only two cases: P 2 = P and P 3 = P . Actually, the reduction
of the general case P k+1 = P to those cases is crucial in our work because it
simplifies substantially the problem. Moreover, clearly our results generalize
those given in [12]. On the other hand, there is a relation between {k + 1}-
potent matrices and group inverses, that is P ∈ Cn×n is {k + 1}-potent if and
only if P# = P k−1 for k ≥ 2. This kind of matrices has been widely used
in many topics such as Markov chains, iterative methods, control theory, etc.
[5,6,9,14].

Some notation will be used throughout this paper. For a given matrix M , we
will denote by vec(M) the lifting form of M , that is, the result of writing
M as a column vector formed by ‘stacking’ the columns of M into one long
column vector [8]. For a given column vector x of length r · s, the notation
devec(x, r, s) returns the matrix of size r × s which first column is defined by
the r first elements of x, the second one by the r following elements, and so on
until the s-th column. When M is a square matrix, we will denote by σ(M)
the spectrum of M .

It is known that the generalized singular value decomposition (GSVD) of a
pair of matrices {M, N}, with M ∈ Cm×n and N ∈ Cm×p matrices having the
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same number of rows, is given by

M = WΣMU∗
M and N = WΣNV ∗

N with

ΣM =



IM

DM

OM

O


, ΣN =



ON

DN

IN

O


,

(1)

W ∈ Cm×m a nonsingular matrix, UM ∈ Cn×n and VN ∈ Cp×p unitary
matrices, DM , DN ∈ Cs×s matrices containing the strictly positive singu-
lar values of M and N , respectively, IM ∈ Ck×k, OM ∈ C(n−k−s)×(n−k−s),

IN ∈ C(t−k−s)×(t−k−s), and ON ∈ Ck×(p+k−t) being t = rank([ M N ]), k =

t− rank(N), and s = rank(M) + rank(N)− t [14].

Next, we quote some known results for further references.

Theorem 1 (Theorem 2.1 [3]) Let P ∈ Cn×n. Then, the following state-
ments are equivalent:

1. P is {k + 1}-potent.
2. P is diagonalizable and σ(P ) ⊆ {0}∪Ωk, where Ωk represents the set of all

the roots of the unity of order k.

The following lemma summarizes some useful properties of the Kronecker
product, denoted by ⊗, and the ones related to the lifting notation (see [8], p.
412).

Lemma 1 Let A, C ∈ Cm×n, B, D ∈ Cn×l, E ∈ Cp×q, and X, P ∈ Cn×n.
Then

(a) vec(AXB) = (B∗ ⊗ A)vec(X).
(b) vec(A + C) = vec(A) + vec(C).
(c) σ(P ⊗ P ) = {λµ : λ, µ ∈ σ(P )}.
(d) (A⊗ C)(B ⊗D) = AB ⊗ CD.
(e) (A⊗ E)∗ = A∗ ⊗ E∗.

The paper is organized as follows. In Section 2 the problem is stated and some
first properties on the solutions X and on the given matrix P are established.
Moreover, for the general case k ≥ 2 it is proved that it is enough to study
only the cases k = 1 and k = 2. In Section 3 and Section 4 the {P, 2} reflexive
solutions and the {P, 3} reflexive solutions are found by using the SVD and the
GSVD, respectively, and the lifting technique in both cases. The anti-reflexive
solutions are given directly without proofs after the results corresponding to
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the reflexive ones. Finally, in Section 5, an algorithm to systematize the the-
oretical procedure developed is presented as well as its computational cost
in both cases. Some examples are given to illustrate the results and that the
methods work numerically.

2 Statement of the problem and a first approach

For the given matrices A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l, and P ∈ Cn×n

satisfying P k+1 = P , for some k ∈ N, and P ∗ = P , the main purpose of this
paper is to solve the equation

AXB = C (2)

under the condition
PXP = X (3)

that is, to find {P, k+1} reflexive solutions with respect to the Hermitian and
{k + 1}-potent matrix P of the matrix equation AXB = C.

The anti-reflexive case corresponds to the problem AXB = C with

PXP = −X (4)

and admits a similar treatment.

From Theorem 1 the following result can be stated.

Lemma 2 Let P ∈ Cn×n a Hermitian matrix. Then P is a {k + 1}-potent
matrix if and only if P is idempotent when k is odd or tripotent when k is
even. Consequently, σ(P ) is included in {1, 0} or {1,−1, 0}, respectively.

Proof. The condition P ∗ = P assures that the eigenvalues of P are real
numbers and P is a unitarily diagonalizable matrix. Moreover, from Theorem
1, the property P k+1 = P implies that σ(P ) ⊆ {0} ∪ Ωk. Then, the spectrum
σ(P ) is included in the set {1,−1, 0} and there exists a unitary matrix U ∈
Cn×n such that the matrix P can be written in the form

P = U


I

−I

O

 U∗,

where some of the diagonal blocks may be absent. Thus, it is easy to see that
P 2 = P (when the block −I is absent and k is odd) or P 3 = P (when the
block −I is not absent and k is even). The converse is evident. 2
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Remark 1 Note that when P is a nonsingular matrix, the condition P 3 = P
is equivalent to the simpler condition P 2 = I (studied in [12]) and the condition
P 2 = P is equivalent to the trivial case P = I.

One way to solve the equation (2) under the condition (3) is by means of the
combination of the Kronecker product with the lifting technique. In order to
state a lifting form of the equations AXB = C and PXP = X we will use the
notation vec(M). In fact, both equations can be rewritten in the equivalent
form

vec(AXB) = vec(C), vec(PXP ) = vec(X). (5)

Then, using the Lemma 1 we get

(B∗ ⊗ A)vec(X) = vec(C), (P ∗ ⊗ P )vec(X) = vec(X), (6)

which are two linear equations in the unknown vec(X).

From (6), some additional properties of P can be established.

Proposition 1 Let P ∈ Cn×n a Hermitian matrix (so, there exist a diagonal
matrix D ∈ Cn×n and a unitary matrix U ∈ Cn×n such that P = UDU∗) and
consider the equation (3) in X. The following properties of P and X hold:

(a) The eigenvectors of the matrix P⊗P are the columns of the matrix U⊗U .
(b) If P is a {k + 1}-potent matrix, then σ(P ⊗ P ) ⊆ {1, 0} when k is odd

and σ(P ⊗ P ) ⊆ {1,−1, 0} when k is even.
(c) If 1 /∈ σ(P ⊗ P ), then the equation (3) has not nontrivial solution.
(d) If 1 ∈ σ(P ⊗ P ), then 1 or −1 belong to σ(P ) and the solution of the

equation (3) verifies that vec(X) is an eigenvector of the matrix P ⊗ P
associated with the eigenvalue 1.

Proof. From P = UDU∗ and Lemma 1 we get P ⊗P = (U ⊗U)(D⊗D)(U ⊗
U)∗. So, the statement (a) holds.

The hypothesis that P is a Hermitian and {k+1}-potent matrix gives σ(P ) ⊆
{1, 0} when k is odd and σ(P ) ⊆ {1,−1, 0} when k is even (see Lemma 2).
Using again the Lemma 1, the statement (b) follows directly.

The items (c) and (d) follow as a consequence of applying the lifting form to
the equation (3), which gives (I − P ⊗ P )vec(X) = O. 2

Remark 2 If in the previous proposition we consider the equation (4) instead
of the equation (3), then items (a) and (b) remain invariant while items (c)
and (d) change as follows:

(c’) If −1 /∈ σ(P ⊗ P ), then the equation (4) has only the trivial solution.
(d’) If −1 ∈ σ(P ⊗ P ), then 1 and −1 belong to σ(P ) and the solution of the
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equation (4) verifies that vec(X) is an eigenvector of the matrix P ⊗ P
associated with the eigenvalue −1.

From Lemma 2, the whole analysis of the stated problem under the condition
P k+1 = P for any k ∈ N can be reduced to the study of the problem of finding
X such that AXB = C considering only two cases: P 2 = P and P 3 = P . Next,
we are going to solve these two cases in order to find {P, 2} reflexive solutions
and {P, 3} reflexive solutions, respectively. The anti-reflexive solutions will be
also considered.

3 {P, 2} reflexive solutions

In this section we look for {P, 2} reflexive solutions of the problem (2), that
is, to find matrices X ∈ Cn×n such that AXB = C and X = PXP being
P ∈ Cn×n an idempotent and Hermitian matrix.

From Theorem 1 it is clear that if P is an idempotent matrix then σ(P ) ⊆
{0, 1}. Moreover, as P is Hermitian, P is unitarily similar to a diagonal matrix,
that is, there exists a unitary matrix U ∈ Cn×n such that

P = UDU∗ with D =

 Ir O

O O

 (7)

where r = rank(P ).

Therefore, the relation X = PXP can be written as X = UDU∗XUDU∗.
So, we can construct the matrix X̃ = U∗XU , which verifies X̃ = DX̃D. By
splitting the matrix X̃ into appropriate size blocks Xij, 1 ≤ i, j ≤ 2, according
to the matrix blocks in D, the last equality becomes X11 X12

X21 X22

 =

 Ir O

O O


 X11 X12

X21 X22


 Ir O

O O


and after making operations we get

X̃ =

 X11 O

O O

 . (8)

Remark 3 Notice that some blocks of X̃ in (8) may be absent because some
diagonal blocks of D may not be in the diagonal blocks of P . This occurs when
the spectrum of P is a proper subset of {0, 1}. In particular, if X11 is absent
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then the matrix X is null because P = O. The case σ(P ) = {1} is similar to
the case σ(P ) = {0, 1}, which is analyzed below.

By taking into account that X = UX̃U∗, the matrix equation AXB = C
becomes

ÃX̃B̃ = C where Ã = AU and B̃ = U∗B.

By splitting into blocks the matrices Ã and B̃ we have:

Ã =
[
A∗

1 A∗
2

]
and B̃ =

 B1

B2

 (9)

and by substituting into the matrix equation ÃX̃B̃ = C we get

[
A∗

1 A∗
2

]  X11 O

O O


 B1

B2

 = C,

that is

A∗
1X11B1 = C. (10)

Remark 4 Notice that in the anti-reflexive case, a similar reasoning leads to
the trivial solution, which implies that the equation AXB = C will have no
{P, 2} anti-reflexive solutions if C 6= O.

3.1 Using the Singular Value Decomposition (SVD)

By applying the singular value decomposition to the matrices A∗
1 ∈ Cm×r and

B∗
1 ∈ Cl×r we get the form of the solution X. In fact,

A∗
1 = WAΣ1AU∗

A, B∗
1 = WBΣ1BU∗

B, (11)

where WA ∈ Cm×m, WB ∈ Cl×l, UA ∈ Cr×r, and UB ∈ Cr×r are unitary
matrices and

Σ1A =

 D1A O

O O

 , Σ1B =

 D1B O

O O

 , (12)

with D1A ∈ Ca×a and D1B ∈ Cb×b nonsingular diagonal matrices, being a =
rank(A1) and b = rank(B1). Then, the equation (10) becomes

Σ1A(U∗
AX11UB)Σ∗

1B = W−1
A CW−∗

B . (13)
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By splitting into the following blocks

U∗
AX11UB =

 X̄11 X̄12

X̄21 X̄22

 , W−1
A CW−∗

B =

 C11 C12

C21 C22

 , (14)

the equation (13) holds if and only if the blocks C12, C21, and C22 are null and
X̄11 = D−1

1AC11D
−∗
1B .

We obtain the following result as a summary of this reasoning.

Theorem 2 Let A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l. For a Hermitian and
idempotent matrix P ∈ Cn×n, the matrix equations

AXB = C and PXP = X

have solution X ∈ Cn×n if and only if the matrix W−1
A CW−∗

B has the following
form

W−1
A CW−∗

B =

 C11 O

O O


where WA and WB are the unitary matrices appearing in the singular value
decomposition of the matrices A∗

1 and B∗
1 , respectively, and C11 an arbitrary

matrix of size a× b, being a = rank(A1) and b = rank(B1).

In this case the general solution can be expressed as

X = U


UA

 D−1
1AC11D

−∗
1B X̄12

X̄21 X̄22

 U∗
B O

O O

 U∗. (15)

3.2 Applying the lifting technique

By applying the lifting technique to the equation (10) we get

vec(A∗
1X11B1) = vec(C)

and the properties given in Lemma 1 allow to write

(B∗
1 ⊗ A∗

1)vec(X11) = vec(C). (16)

Then, by using generalized inverses (see [2]), we have the following result.
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Theorem 3 Let A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l. For a given Hermitian and
idempotent matrix P ∈ Cn×n, the matrix equations

AXB = C, PXP = X

have solution if and only if any of the following statements holds:

(a) vec(C) ∈ R(B∗
1 ⊗ A∗

1), where R(·) denotes the range of (·), and A1 and
B1 are given in (9).

(b) there exists a {1}-inverse M− of the matrix M = B∗
1 ⊗ A∗

1 such that
vec(C) ∈ N (I −MM−), where N (·) denotes the null space of (·).

Then, the general solution is given by

X = U

 devec(vec(X11), r, r) O

O O

 U∗ (17)

where r = rank(P ) and vec(X11) is obtained by solving (16). In the case (b),

vec(X11) = M−vec(C) + Y −M−MY

with Y an arbitrary matrix.

4 {P, 3} reflexive solutions

In this section we look for {P, 3} reflexive solutions X ∈ Cn×n with respect
to the Hermitian and tripotent matrix P ∈ Cn×n of the matrix equation
AXB = C.

From Theorem 1 it is clear that if P is a tripotent matrix then σ(P ) ⊆
{0, 1,−1}. Moreover, as P is Hermitian, P is diagonalizable by a unitary
matrix, that is, there exists a unitary matrix U ∈ Cn×n such that

P = UDU∗ with D =


Iα O O

O −Iβ O

O O O

 (18)

being α + β = rank(P ).

Since X = PXP , we get X = UDU∗XUDU∗. Premultiplying by U∗ and
postmultiplying by U we construct the matrix X̃ = U∗XU that satisfies X̃ =
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DX̃D. By splitting the matrix X̃ into appropriate size blocks Xij, 1 ≤ i, j ≤ 3,
according to the matrix blocks of D, the last equality becomes


X11 X12 X13

X21 X22 X23

X31 X32 X33

 =


Iα O O

O −Iβ O

O O O




X11 X12 X13

X21 X22 X23

X31 X32 X33




Iα O O

O −Iβ O

O O O


and by making operations we get

X̃ =


X11 O O

O X22 O

O O O

 . (19)

Remark 5 Notice that some blocks of X̃ in (19) may be absent because some
diagonal blocks of D may be absent. This happens when σ(P ) is a proper subset
of {0, 1,−1}.

From (6), (18), and (19) a first result on tripotent matrices can be stated.

Theorem 4 Let A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l. If P ∈ Cn×n is a Hermitian
and tripotent matrix, then the solution of the matrix equation system

AXB = C, PXP = X (20)

is given by solving the linear system

(B∗ ⊗ A)(U ⊗ U)vec(X̃) = vec(C)

where U and X̃ have been introduced in (18) and (19), respectively.

Proof. Writing the matrix P in the form (18), the equivalence between the
system (20) and the equation ÃX̃B̃ = C with X̃ in the form (19), where
Ã = AU and B̃ = U∗B is obtained. By applying the lifting technique to the
last equation we get vec(ÃX̃B̃) = vec(C). By using Lemma 1, Ã = AU and
B̃ = U∗B, we arrive to the linear system (B∗ ⊗ A)(U ⊗ U)vec(X̃) = vec(C).
2

On the other hand, by taking into account that X = UX̃U∗, the matrix
equation AXB = C becomes

ÃX̃B̃ = C where Ã = AU and B̃ = U∗B.

10



By partitioning the matrices Ã and B̃ we have:

Ã =
[
A∗

1 A∗
2 A∗

3

]
and B̃ =


B1

B2

B3

 (21)

and by substituting into the matrix equation ÃX̃B̃ = C we obtain

[
A∗

1 A∗
2 A∗

3

]


X11 O O

O X22 O

O O O




B1

B2

B3

 = C.

The corresponding block products lead to the reduced expression

A∗
1X11B1 + A∗

2X22B2 = C. (22)

Remark 6 By a similar treatment for the anti-reflexive case we obtain a sim-
ilar result as in Theorem 4 where the condition PXP = X and the definition
of X̃ must be changed by PXP = −X and

X̃ =


O X12 O

X21 O O

O O O

 ,

respectively. Moreover, in this case, the condition (22) becomes

A∗
1X12B2 + A∗

2X21B1 = C. (23)

From now on, in order to solve the stated problem by using the above sim-
plification we will consider different techniques: the GSVD (when X11 and
X22 are not absent) or the SVD (when one of these blocks is absent as in the
subsection 3.1), and the lifting technique. These two techniques allow to give
the solution in terms of blocks, while the Kronecker properties applied as in
Theorem 4 give the solution in terms of the original matrices.

4.1 Using the GSVD

By applying the generalized singular value decomposition to the pairs of ma-
trices {A∗

1, A
∗
2} and {B∗

1 , B
∗
2}, the form of the solution X is obtained. In fact,

A∗
1 = WAΣ1AU∗

A, A∗
2 = WAΣ2AV ∗

A (24)
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and
B∗

1 = WBΣ1BU∗
B, B∗

2 = WBΣ2BV ∗
B, (25)

where the involved matrices satisfy the conditions given in (1). By substituting
both expressions into the equality (22) we arrive to:

Σ1A(U∗
AX11UB)Σ∗

1B + Σ2A(V ∗
AX22VB)Σ∗

2B = W−1
A CW−∗

B (26)

where the nonsingularity of the matrices WA and W ∗
B has been used. By split-

ting into blocks of suitable sizes the matrices in brackets we get:

U∗
AX11UB =


X̄11 X̄12 X̄13

X̄21 X̄22 X̄23

X̄31 X̄32 X̄33

 , V ∗
AX22VB =


X̄44 X̄45 X̄46

X̄54 X̄55 X̄56

X̄64 X̄65 X̄66


and moreover, we can write:

W−1
A CW−∗

B =



C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44


. (27)

By substituting these last three expressions into (26) and computing the prod-
ucts we obtain:

X̄11 X̄12D1B O O

D1AX̄21 D1AX̄22D1B + D2AX̄55D2B D2AX̄56 O

O X̄65D2B X̄66 O

O O O O


=



C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44


where we have used that Σ1A, Σ2A, Σ1B, and Σ2B are split as in (1).

Consequently, this last equality holds if and only if the blocks

C14, C24, C34, C13, C31, C41, C42, C43, C44

are null matrices of appropriate sizes.

As a summary, we have proved the following result.

Theorem 5 Let A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l. For a given Hermitian and
tripotent matrix P ∈ Cn×n, the matrix equations

AXB = C and PXP = X

12



have solution X ∈ Cn×n if and only if

C14, C24, C34, C13, C31, C41, C42, C43, C44

are null blocks of appropriate sizes, where

W−1
A CW−∗

B =



C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44


being WA and WB the nonsingular matrices appearing when applying the GSVD
to the pairs of matrices {A∗

1, A
∗
2} and {B∗

1 , B
∗
2}, respectively (that is, A∗

1 =
WAΣ1AU∗

A, A∗
2 = WAΣ2AV ∗

A and B∗
1 = WBΣ1BU∗

B, B∗
2 = WBΣ2BV ∗

B).

In this case, the general solution can be expressed as

X = U


U−∗

A X1U
−1
B O O

O V −∗
A X2V

−1
B O

O O O

 U∗ (28)

where

X1 =


C11 C12D

−1
1B X̄13

D−1
1AC21 X̄22 X̄23

X̄31 X̄32 X̄33


and

X2 =


X̄44 X̄45 X̄46

X̄54 D−1
2A(C22 −D1AX̄22D1B)D−1

2B D−1
2AC23

X̄64 C32D
−1
2B C33

 ,

being X̄ij arbitrary matrices of suitable sizes.

Remark 7 For the anti-reflexive case, we obtain a similar result as in Theo-
rem 5 where the expression (28) must be changed by

X = U


O U−∗

A X2V
−1
B O

V −∗
A X1U

−1
B O O

O O O

 U∗.
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4.2 Applying the lifting technique

Another way to solve the problem of finding {P, 3} reflexive solutions is the
lifting technique as described before. In fact, by applying this technique to the
equation (22) we get

vec(A∗
1X11B1 + A∗

2X22B2) = vec(C)

and the properties given in Lemma 1 allow to write

vec(A∗
1X11B1) + vec(A∗

2X22B2) = vec(C),

which implies

(B∗
1 ⊗ A∗

1)vec(X11) + (B∗
2 ⊗ A∗

2)vec(X22) = vec(C)

and so [
B∗

1 ⊗ A∗
1 B∗

2 ⊗ A∗
2

]  vec(X11)

vec(X22)

 = vec(C). (29)

Then, by using generalized inverses (see [2]), we have the following result.

Theorem 6 Let A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l. For a given Hermitian and
tripotent matrix P ∈ Cn×n, the matrix equations

AXB = C, PXP = X (30)

have solution if and only if any of the following statements holds:

(a) vec(C) ∈ R
([

B∗
1 ⊗ A∗

1 B∗
2 ⊗ A∗

2

])
, where A1, A2, B1, and B2 are given

in (21).

(b) there exists a {1}-inverse M− of the matrix M =
[
B∗

1 ⊗ A∗
1 B∗

2 ⊗ A∗
2

]
such that vec(C) ∈ N (I −MM−).

Then, the general solution is given by

X = U


devec(vec(X11), α, α) O O

O devec(vec(X22), β, β) O

O O O

 U∗ (31)

where α, β are the sizes indicated in (18), and vec(X11) and vec(X22) are
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obtained by solving (29). In the case (b), vec(X11)

vec(X22)

 = M−vec(C) + Y −M−MY

with Y an arbitrary matrix.

Remark 8 When PXP = −X, we obtain a similar result as in Theorem
6 where A1 and A2 must be interchanged. Moreover, the expression (31) is
changed by

X̃ =


O devec(vec(X12), α, α) O

devec(vec(X21), β, β) O O

O O O

 .

5 Algorithm and Examples

The algorithm below constructs reflexive solutions for the stated problem in
Section 2.

Algorithm

Inputs: A ∈ Cm×n, B ∈ Cn×l, C ∈ Cm×l, P ∈ Cn×n, k ∈ N, and Method.

Outputs: X ∈ Cn×n such that AXB = C and PXP = X.

Step 1 If P = O then go to Step 9.
Step 2 Compute P ∗. If P ∗ 6= P then go to Step 10.
Step 3 If k is odd then

Step 3.1 Compute P 2.
Step 3.2 If P 2 = P then go to Step 5 else go to Step 10.

Step 4 If k is even then
Step 4.1 Compute P 3.
Step 4.2 If P 3 = P then go to Step 5 else go to Step 10.

Step 5 Diagonalize P as P = UDU∗. Then σ(P ⊗ P ) = diag(D ⊗D).
Step 6 If k is odd then

Step 6.1 Compute Ã and B̃ as in (9).
Step 6.2 If ‘Method = SVD’

Step 6.2.1 Decompose (SVD) A∗
1 and B∗

1 as in (11) and (12).
Step 6.2.2 Compute W−1

A CW−∗
B and split it as in (14).

Step 6.2.3 If C12 6= O, C21 6= O or C22 6= O then go to Step 11.
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Step 6.2.4 If C12, C21 and C22 are null matrices then the {P, 2}
reflexive solutions are given by (15). Go to End.

Step 6.3 If ‘Method = Lifting’
Step 6.3.1 If vec(C) /∈ R(B∗

1 ⊗A∗
1) then go to Step 11, else the

general solution is given by (17). Go to End.
Step 7 If k is even then

Step 7.1 Compute Ã and B̃ as in (21).
Step 7.2 If ‘Method = GSVD’

Step 8.2.1 Decompose (GSVD) {A∗
1, A

∗
2} and {B∗

1 , B
∗
2} as in

(24) and (25).
Step 7.2.2 Compute W−1

A CW−∗
B and split it as in (27).

Step 7.2.3 J := {(1, 4), (2, 4), (3, 4), (1, 3), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}.
Step 7.2.4 If there exists (i, j) ∈ J such that Cij 6= O then go

to Step 11.
Step 7.2.5 If Cij = O for each (i, j) ∈ J then the {P, 3}

reflexive solutions are given by (28). Go to End.
Step 7.3 If ‘Method = Lifting’

Step 7.3.1 If vec(C) /∈ R(M) then go to Step 11, else the
general solution is given by (31). Go to End.

Step 8 Display ‘The solution is X = O when C = O and there is no solution
when C 6= O’. Go to End.

Step 9 Display ‘The matrix P does not satisfy the required hypothesis’.
Go to End.

Step 10 Display ‘There is no solution’.
End

A similar algorithm for the anti-reflexive case can be developed.

An analysis and comparison of the computational cost of the algorithm is
presented for both methods in what follows. The first part of the algorithm
(until Step 5 included) is shared by both methods and it requires a com-
putational cost O(n3). Now, we analyze the Step 6. The part corresponding
to the SVD method requires O(mr2 + lr2) for the SVD decompositions and
O(m2l+ml2) for the Step 6.2.2. In the lifting method the computational cost is
at most of O(mlr2). Then, in case of n � m and n � l, both methods require
a computational cost at most of O(n3). Next, we study the Step 7. The part
corresponding to the GSVD method requires O(m3 +m(α+β) max(m, α+β))
for the GSVD decompositions and O(m2l+ml2) for the Step 7.2.2. The lifting
technique costs about O(ml(α + β)2). So, in case of n � m and n � l, the
cost of both methods is dominated by the first part, that is O(n3).

Next, we illustrate the obtained results with some examples. As we have
shown, it is enough to give examples finding {P, 2} and {P, 3} reflexive solu-
tions.
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Example 1 Consider the matrices

A =


1 1 2

1 1 3

1 1 4

 , B =


1 0 0

0 0 0

0 0 0

 , C =


0.288920346061937 0 0

−0.308655868523851 0 0

−0.906232083109640 0 0


and the Hermitian and idempotent matrix

P =


0.5 0.5 0

0.5 0.5 0

0 0 1

 .

From Theorem 2 and Theorem 3, the {P, 2} reflexive solutions of the matrix
equation AXB = C are, for each α, β ∈ C,

X =


0.7420 0.7420 0.7420α− 0.6462β

0.7420 0.7420 0.2870α− 0.6462β

−0.5976 −0.5976 0.9139α + 0.4060β

 .

Note that we exhibit the results rounded to four decimals and so, the solution
presented is the same for both techniques. However, working with the MATLAB
precision we obtain that ‖AXB−C‖

F
= 1.7953 · 10−15 for the SVD technique

and ‖AXB − C‖
F

= 4.0792 · 10−16 for the lifting technique.

Example 2 Consider the random matrices

A =



0.5828 0.2091 0.4154 0.2140 0.6833 0.4514 0.6085 0.0841 0.1210 0.2319

0.4235 0.3798 0.3050 0.6435 0.2126 0.0439 0.0158 0.4544 0.4508 0.2393

0.5155 0.7833 0.8744 0.3200 0.8392 0.0272 0.0164 0.4418 0.7159 0.0498

0.3340 0.6808 0.0150 0.9601 0.6288 0.3127 0.1901 0.3533 0.8928 0.0784

0.4329 0.4611 0.7680 0.7266 0.1338 0.0129 0.5869 0.1536 0.2731 0.6408

0.2259 0.5678 0.9708 0.4120 0.2071 0.3840 0.0576 0.6756 0.2548 0.1909

0.5798 0.7942 0.9901 0.7446 0.6072 0.6831 0.3676 0.6992 0.8656 0.8439

0.7604 0.0592 0.7889 0.2679 0.6299 0.0928 0.6315 0.7275 0.2324 0.1739

0.5298 0.6029 0.4387 0.4399 0.3705 0.0353 0.7176 0.4784 0.8049 0.1708

0.6405 0.0503 0.4983 0.9334 0.5751 0.6124 0.6927 0.5548 0.9084 0.9943



,
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B =



0.4398 0.9342 0.1370 0.4225 0.2974 0.3759 0.1939 0.6273 0.7165 0.1146

0.3400 0.2644 0.8188 0.8560 0.0492 0.0099 0.9048 0.6991 0.5113 0.6649

0.3142 0.1603 0.4302 0.4902 0.6932 0.4199 0.5692 0.3972 0.7764 0.3654

0.3651 0.8729 0.8903 0.8159 0.6501 0.7537 0.6318 0.4136 0.4893 0.1400

0.3932 0.2379 0.7349 0.4608 0.9830 0.7939 0.2344 0.6552 0.1859 0.5668

0.5915 0.6458 0.6873 0.4574 0.5527 0.9200 0.5488 0.8376 0.7006 0.8230

0.1197 0.9669 0.3461 0.4507 0.4001 0.8447 0.9316 0.3716 0.9827 0.6739

0.0381 0.6649 0.1660 0.4122 0.1988 0.3678 0.3352 0.4253 0.8066 0.9994

0.4586 0.8704 0.1556 0.9016 0.6252 0.6208 0.6555 0.5947 0.7036 0.9616

0.8699 0.0099 0.1911 0.0056 0.7334 0.7313 0.3919 0.5657 0.4850 0.0589



,

C =



0.2333 0.1042 0.8555 0.4361 0.6314 0.6509 0.3687 0.3442 −0.1395 0.3309

0.3684 0.1645 1.3506 0.6885 0.9968 1.0276 0.5820 0.5434 −0.2202 0.5224

0.8056 0.3598 2.9535 1.5056 2.1797 2.2471 1.2727 1.1883 −0.4815 1.1425

0.4719 0.2107 1.7300 0.8819 1.2768 1.3162 0.7455 0.6961 −0.2820 0.6692

0.5642 0.2520 2.0687 1.0545 1.5267 1.5739 0.8914 0.8323 −0.3372 0.8002

1.0121 0.4521 3.7109 1.8917 2.7387 2.8234 1.5990 1.4931 −0.6050 1.4355

1.0740 0.4797 3.9376 2.0072 2.9060 2.9959 1.6967 1.5843 −0.6419 1.5232

0.5346 0.2388 1.9600 0.9991 1.4465 1.4913 0.8446 0.7886 −0.3195 0.7582

0.5545 0.2477 2.0331 1.0364 1.5005 1.5469 0.8761 0.8181 −0.3315 0.7865

0.4845 0.2164 1.7764 0.9055 1.3110 1.3515 0.7654 0.7147 −0.2896 0.6872



,

and the Hermitian and idempotent matrix

P =



0.8168 −0.1573 0.0074 −0.0460 −0.1325 0.0516 0.0735 −0.0785 0.2277 0.1977

−0.1573 0.2110 0.1248 0.1844 0.0324 0.0318 0.1786 0.2018 −0.0348 0.1276

0.0074 0.1248 0.5859 −0.1944 0.0845 0.1101 −0.0397 0.3559 0.2038 −0.0117

−0.0460 0.1844 −0.1944 0.4375 0.1472 0.0913 0.3016 −0.0446 −0.0502 0.2161

−0.1325 0.0324 0.0845 0.1472 0.5766 0.3141 −0.0121 −0.1969 0.2244 −0.0936

0.0516 0.0318 0.1101 0.0913 0.3141 0.2008 0.0327 −0.0693 0.1783 0.0032

0.0735 0.1786 −0.0397 0.3016 −0.0121 0.0327 0.2746 0.1027 −0.0297 0.2381

−0.0785 0.2018 0.3559 −0.0446 −0.1969 −0.0693 0.1027 0.4218 −0.0309 0.1152

0.2277 −0.0348 0.2038 −0.0502 0.2244 0.1783 −0.0297 −0.0309 0.2377 −0.0071

0.1977 0.1276 −0.0117 0.2161 −0.0936 0.0032 0.2381 0.1152 −0.0071 0.2372



.
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Now, the matrix

X =



1.1686 −0.2756 0.5163 −0.9468 −1.5349 −0.6638 −0.1943 0.7513 −0.0701 0.2196

−0.7661 0.1807 −0.3384 0.6207 1.0062 0.4352 0.1274 −0.4925 0.0460 −0.1440

−0.9853 0.2324 −0.4353 0.7983 1.2941 0.5597 0.1639 −0.6335 0.0591 −0.1852

−0.2002 0.0472 −0.0884 0.1622 0.2629 0.1137 0.0333 −0.1287 0.0120 −0.0376

−0.3172 0.0748 −0.1401 0.2570 0.4166 0.1802 0.0527 −0.2039 0.0190 −0.0596

−0.1548 0.0365 −0.0684 0.1254 0.2033 0.0879 0.0257 −0.0995 0.0093 −0.0291

−0.2546 0.0601 −0.1125 0.2063 0.3345 0.1447 0.0424 −0.1637 0.0153 −0.0479

−0.9489 0.2238 −0.4192 0.7688 1.2463 0.5390 0.1578 −0.6101 0.0569 −0.1783

0.0530 −0.0125 0.0234 −0.0429 −0.0696 −0.0301 −0.0088 0.0341 −0.0032 0.0100

−0.0519 0.0122 −0.0229 0.0420 0.0681 0.0295 0.0086 −0.0333 0.0031 −0.0097



is a {P, 2} reflexive solution. Again, we exhibit the results rounded to four
decimals and the solution presented is as well the same for both techniques.
However, working with the MATLAB precision we obtain that ‖AXB−C‖

F
=

8.0855 · 10−15 for the SVD technique and ‖AXB − C‖
F

= 3.5463 · 10−15 for
the lifting technique.

Example 3 Consider the matrices

A =



1 1 1 1

1 1 1 2

1 1 1 3

1 1 1 4


, B =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, C =



2 1 0 0

2 1 0 0

2 1 0 0

2 1 0 0


,

and the Hermitian and tripotent matrix

P =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


.
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Now, the {P, 3} reflexive solutions are

X =



2− 1.4142α 1− β 1− β 0

0.7071α 0.5(β + γ) 0.5(β − γ) 0

0.7071α 0.5(β − γ) 0.5(β + γ) 0

0 0 0 0


for each α, β, γ ∈ C.

Here, working with the MATLAB precision, ‖AXB − C‖
F

= 1.1254 · 10−15

for the GSVD technique and ‖AXB − C‖
F

= 8.8818 · 10−16 for the lifting
technique.

Example 4 As before, for the random matrices

A =



0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537 0.3420 0.3704 0.5226

0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.5936 0.2897 0.7027 0.8801

0.9218 0.0579 0.2722 0.8462 0.8318 0.3028 0.4966 0.3412 0.5466 0.1730

0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.8998 0.5341 0.4449 0.9797

0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.8216 0.7271 0.6946 0.2714

0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449 0.3093 0.6213 0.2523

0.9355 0.1389 0.4451 0.8381 0.3046 0.3784 0.8180 0.8385 0.7948 0.8757

0.9169 0.2028 0.9318 0.0196 0.1897 0.8600 0.6602 0.5681 0.9568 0.7373



,

B =



0.1365 0.5828 0.2091 0.4154 0.2140 0.6833 0.4514

0.0118 0.4235 0.3798 0.3050 0.6435 0.2126 0.0439

0.8939 0.5155 0.7833 0.8744 0.3200 0.8392 0.0272

0.1991 0.3340 0.6808 0.0150 0.9601 0.6288 0.3127

0.2987 0.4329 0.4611 0.7680 0.7266 0.1338 0.0129

0.6614 0.2259 0.5678 0.9708 0.4120 0.2071 0.3840

0.2844 0.5798 0.7942 0.9901 0.7446 0.6072 0.6831

0.4692 0.7604 0.0592 0.7889 0.2679 0.6299 0.0928

0.0648 0.5298 0.6029 0.4387 0.4399 0.3705 0.0353

0.9883 0.6405 0.0503 0.4983 0.9334 0.5751 0.6124



,
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C =



1.4478 0.9400 2.2716 0.8773 1.6894 2.3220 1.5612

1.8992 1.3869 2.8472 1.3636 2.1633 2.8669 1.6062

1.1724 0.6586 1.9750 0.2172 1.0931 2.5130 1.8356

1.5764 1.0632 2.4714 0.8199 1.7904 2.8025 1.8403

1.4621 0.9341 2.1214 1.5195 2.1737 1.3448 0.6762

1.4792 1.0831 2.1849 1.0146 1.6160 2.4034 1.4099

1.7878 1.3211 2.6720 1.2667 2.1843 3.0792 2.2203

1.0587 0.7952 1.6485 0.5918 1.2886 1.8156 0.9326



,

and

P =



−0.1608 −0.2824 −0.7414 −0.1340 −0.2457 −0.2101 −0.1258 −0.0051 −0.2264 −0.3330

−0.2824 0.9313 −0.1804 −0.0326 −0.0598 −0.0511 −0.0306 −0.0012 −0.0551 −0.0810

−0.7414 −0.1804 0.5265 −0.0856 −0.1569 −0.1342 −0.0804 −0.0033 −0.1446 −0.2127

−0.1340 −0.0326 −0.0856 −0.8333 0.3057 0.2613 0.1565 0.0063 0.2817 0.0449

−0.2457 −0.0598 −0.1569 0.3057 −0.4394 0.4793 0.2871 0.0116 0.5166 0.0823

−0.2101 −0.0511 −0.1342 0.2613 0.4793 −0.5902 0.2455 0.0100 0.4417 0.0704

−0.1258 −0.0306 −0.0804 0.1565 0.2871 0.2455 −0.8530 0.0060 0.2646 0.0422

−0.0051 −0.0012 −0.0033 0.0063 0.0116 0.0100 0.0060 −0.9998 0.0107 0.0017

−0.2264 −0.0551 −0.1446 0.2817 0.5166 0.4417 0.2646 0.0107 −0.5239 0.0759

−0.3330 −0.0810 −0.2127 0.0449 0.0823 0.0704 0.0422 0.0017 0.0759 −0.0574



,

the matrix

X =



0.1764 −0.5966 −0.6825 1.1554 −2.4395 0.9344 0.0475 0.7460 0.4751 −0.2111

−0.6394 0.3682 0.3367 0.4406 −0.3009 0.4775 0.1614 0.1875 0.3852 0.0946

−0.4470 0.2424 0.1213 0.7731 −1.4937 0.6519 0.0633 0.4778 0.3628 −0.1027

−0.1253 0.1638 0.1589 1.3121 −2.2482 1.2247 0.7551 0.6690 0.2171 0.0289

−1.1893 0.0670 −0.3214 1.2953 −2.6149 1.1899 −0.3600 0.9324 0.7773 −0.3960

−1.2833 −0.0075 −0.4449 1.2588 −2.3965 0.8802 −0.1246 1.7775 0.5869 −0.4633

0.7953 0.3760 0.7324 −0.4978 1.4190 −0.4448 0.3523 −1.1224 −0.3169 0.4545

−0.8159 −0.1911 −0.5120 1.2313 −1.2150 0.4958 0.2129 1.0018 −0.5118 −0.3786

0.9629 0.5626 1.0189 −2.2368 4.3739 −1.7882 0.0238 −1.9852 −0.7891 0.5987

−0.2976 0.1054 0.0286 0.5841 −1.0623 0.5054 0.0630 0.3508 0.2956 −0.0591


is a {P, 3} reflexive solution. With the MATLAB precision we obtain ‖AXB−
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C‖
F

= 5.7935 · 10−15 for the GSVD technique and ‖AXB − C‖
F

= 4.3470 ·
10−15 for the lifting technique.

The algorithms were implemented in MATLAB, version 7.1., and used to test
the results on several numerical experiments. In all of them we obtain error
bounds about O(10−15) in both methods when matrices have larger sizes and
for smaller sizes the lifting technique can be improved to O(10−16). Next, in
Table 1 we summarize some of the obtained numerical results.

Example Lifting SVD GSVD

1 10−16 10−15 –

2 10−15 10−15 –

3 10−16 – 10−15

4 10−15 – 10−15

Table 1
Error bounds for the numerical experiments: ‖AXB − C‖F

These experiments show that the algorithm implemented works well for nu-
merical examples.
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