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cHospital Cĺınica Benidorm (Unidad de Resonancia Magnética INSCANNER), Spain
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Abstract

There are few fully automated methods for liver segmentation in magnetic reso-

nance images (MRI) despite the benefits of this type of acquisition in comparison

to other radiology techniques such as computed tomography (CT). Motivated by

medical requirements, liver segmentation in MRI has been carried out. For this

purpose, we present a new method for liver segmentation based on the watershed

transform and stochastic partitions. The classical watershed over-segmentation

is reduced using a marker-controlled algorithm. To improve accuracy of selected

contours, the gradient of the original image is successfully enhanced by applying

a new variant of stochastic watershed. Moreover, a final classifier is performed

in order to obtain the final liver mask. Optimal parameters of the method are

tuned using a training dataset and then they are applied to the rest of stud-

ies (17 datasets). The obtained results (a Jaccard coefficient of .91 ± .02) in

comparison to other methods demonstrate that the new variant of stochastic

watershed is a robust tool for automatic segmentation of the liver in MRI.
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1. Introduction

Fully automatic liver segmentation in medical images is currently an un-

solved problem [1]. An accurate liver segmentation has a direct application in

the planning, monitoring, and treatment of different types of pathologies such

as cirrhosis or hepatocellular carcinoma diseases. In these cases, hepatic tissue

anomalies are treated using qualitative comparison, which is related to physician

experience; however, quantitative measures are not widely used. Liver segmen-

tation is the first step to calculate objective measurements and liver/lesion ratios

for decisions regarding treatment and planning for the patient. The segmenta-

tion of internal organs is also essential for image-guided surgery and virtual

reality scenarios for medical training [2, 3, 4, 5, 6]. In addition, the liver seg-

mentation can help in hepatic steatosis quantification because the results of this

segmentation can be correlated to measure fat fractions [7].

In most applications mentioned above, due to the high accuracy required, a

segmentation of the liver is carried out in images with high spatial resolution,

i.e., Computed Tomography (CT) or Magnetic Resonance Images (MRI) [8, 9].

Currently, some efforts are focused on the segmentation of the liver in other

types of images (such as PET or ultrasound images) that are less damaging

for the patient than the CT images and that are cheaper for hospitals than

MRI. However, the low spatial resolution of these images is a disadvantage and,

in some cases, even with manual corrections, the segmentation is not accurate

enough for image-guided surgery or liver volumetry applications that radiolo-

gists or surgeons require [10, 11]. In the literature, there are more segmentation

methods that are applied and validated for CT than for MRI. MRI generally

has more artefact effects and a lower gradient response and is more costly for

hospitals; however, since it is a non-ionizing radiation, it is less damaging for

the patient in comparison with CT. The authors of several studies support the

benefits (or the additional information) of MRI considering it to be a primary

diagnostic imaging modality for liver lesion detection or for measuring hepatic
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steatosis [7, 12, 13, 14, 15, 16]. For example, the segmentation of the liver in

MRI is important in automating liver perfusion analysis, which provides impor-

tant information about the blood supply to the liver [17]. In any case, hepatic

MR certainly is an alternative to CT images for the diagnosis of liver disease of-

fering benefits that make this image technique interesting for clinical purposes.

For this reason it is necessary to advance in the development of methods for

liver segmentation in MRI in a way similar to the advances in CT methods.

The liver segmentation methods found in the state-of-the-art in MRI are

based mainly on level-set methods [17, 18, 19, 20, 21, 22], where the drawbacks

of these algorithms (difficult training, high computational cost, or high user

iteration) are noticeable. Specially, in [18], a level-set method (a fast marching

algorithm) and fuzzy theory are applied in the liver segmentation task, but

the computational cost of this algorithm needs to be improved (as the authors

themselves recognize) and, additionally, non-uniform intensity problems are not

solved. In [19, 20], level-sets and probabilistic maps are used, and a training

process is required with a high user iteration for manual segmentation. In [21],

another level-set method called active contour is applied in T1 MR images of the

liver, and the radiologist’s knowledge is required to define the region of interest.

Finally, in [22], active contours are also applied in T2 MR images, but the results,

though promising, are not accurate in some cases. Other methods based on

graylevel properties (region growing, thresholding, k-means, etc) produce poor

results in images of this type because the great intra-study differences make

difficult the generalization of these algorithms. In [9], authors use a region

growing method combined with threshold techniques and prior knowledge that

requires a training step with manual segmentation.

In the current paper, the performance and the validation of a new liver

segmentation method that is based on the watershed transform and that is ap-

plied to MRI is presented. The goal is to obtain a fully automatic method

that requires less of the clinician’s time, has enough accuracy and robustness

for medical environments, and has a reasonable computational cost. The wa-

tershed transform is a segmentation tool that is based on graylevel and contour
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properties of the image. This tool extends each regional minimum of the im-

age as far as its topography allows. An over-segmentation problem usually

appears due to the large number of regional minima in the image. There have

been improvements in the original watershed transform in order to reduce its

drawbacks. These include using marker-controlled watershed paradigm [23] as

well as hierarchical watershed paradigms such as the waterfall algorithm [24].

It must be specify that here the standard framework of watershed transform

based on the flooding algorithm is adopted despite to there are other alterna-

tive frameworks based on a continuous formulation using topographic distance

[25, 26]; the topological watershed based on discrete geometry tools [27, 28];

graph-based watershed using minimum spanning-tree algorithms [29, 30]; the

power watershed algorithm [31]; the viscous watershed [32]; etc.

With the marker-controlled algorithm, a set of markers imposes the new

minima, and the number and position of output regions can be controlled and

the over-segmentation problem is reduced. The definition of these markers is

not an easy task for the segmentation of the liver, which is a large organ that

has an enhanced vessel tree that produces high internal gradients. The manual

definition of these markers is inefficient and is not a practical option in clinical

environments due to the potential benefits of the algorithm (such as low user

interaction) decrease [33]. To deal with problems of this kind, the use of a new

variation of the stochastic transform proposed by [34] is carried out in this paper.

This variation is necessary because when the original stochastic transform is

applied in MR images of the liver, it enhances internal edges with respect to the

external edges of the liver, which is not useful for our purpose. The purpose of

the new variant of the stochastic watershed proposed in this work is to obtain a

more significant probability density function of contours by taking into account

the contrast between adjacent regions thanks to a region-based model. Besides

presenting this new version of stochastic watershed, another contribution of

this work is the combination of pre-processing, marker extraction, and post-

processing filters. This makes possible the liver segmentation of 3D studies in

a fully automated and accurate way and with a low computational cost. These
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features convert the method into a usable tool for clinical purposes.

There have been other liver segmentation algorithms where the watershed

transform has been used due to its easy user initialization/interaction, its rea-

sonable computational cost, its intuitiveness, and the accurate results achieved

in other casuistic (type of images, organs, etc). In [35], the watershed trans-

form is combined with neural networks to train and tune watershed parameters

for liver segmentation purposes. This training algorithm requires manual seg-

mentation, and since the method is only used for 2D image segmentation, the

particularities of a 3D volume are not taken into account. In [36], after apply-

ing a pre-processing step, the watershed transform is applied but regions with

similar intensities may be incorrectly merged due to problems of intensity that

are produced by lesions or by illumination that is not uniform.

In our application, the final goal of the segmentation of the liver is to add the

3D model of the liver into a 3D model with other abdominal organs of a patient

previously segmented with own algorithms [37, 38]. This virtual 3D model will

be registered and merged thanks to augmented reality algorithms by using an

image of the patient that will be taken with an external video camera. The

system will be applied in order to place trocars in the patient’s body in which

the minimum accuracy required is approximately 2 centimetres [39].

The rest of the paper is divided into three sections. The first section de-

scribes a technical explanation of the watershed transform, the contribution

of this work, and the final method developed for the liver segmentation. The

second section explains the datasets used, the training procedure, the optimal

parameters, and the results of this new method. The last section describes a

discussion of our conclusions and future work.

2. Image processing methods

Let f be a grayscale image defined as the mapping

f(x) : E→ T , (1)
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where x ∈ E is the pixel position in the support space of pixels E, e.g., for

2D images E ⊂ Z2. In the case of valued discrete images, T = {tmin, tmin +

1, ...tmax} represents the pixel graylevel. Typically, in 8-bit images, tmin = 0

and tmax = 255. Furthermore, let B(x) be a subset of Z2 called flat structuring

element (SE) that is centred at point x with a particular size and shape.

2.1. Watershed transform using markers

The watershed transform is a technique based on mathematical morphology

for image segmentation [40]. From a morphological point of view, the function

f(x) to be segmented, belonging to Z2 × Z, can be seen as a topographic sur-

face: the lighter the gray value of f at point x, the higher the altitude of the

corresponding point {x, f(x)} on the surface. Following this viewpoint, each

regional minimum of f(x) represents a region called catchment basin. The pur-

pose of the watershed transform is to flood these basins in order to increase

the water level. When two neighbouring basins come into contact with each

other, a dam is built at these contact points to prevent the merging between

two different basins. At the end, the union of all complete dams constitute the

watershed lines, which separates the lakes (catchment basins associated to each

minimum). From a practical viewpoint, watershed transform is computed using

fast algorithms based on hierarchical queues [40, 41]. A review of watershed

algorithms can be found in [42]. Typically for image segmentation, the gradient

of the image is considered as the input image for the watershed transform:

f 7→ ρ(f) 7→WS(ρ(f)),

where the image WS(ρ(f)) corresponds to the set of closed contours of the N

segmented regions and ρ(f) is the morphological gradient [43]. The number of

regions N equals the number of minima of the gradient image.

The result of the watershed can be also considered by a dual representation

as an image partition of the support space E into N connected classes Cn ⊂ E,
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denoted Π(WS(ρ(f))), such that

Π(WS(ρ(f))) = {Cn}1≤n≤N ;

with
⋃

1≤n≤N Cn = E and Cp ∩ Cq = ∅,∀p 6= q.

(2)

We notice that it is needed that each arc (watershed line) which separates two

regions (catchment basin) belongs to one of them. It is well known that without

any pre-processing, watershed transform usually leads to an over-segmentation

of the image gradient because of the presence of a great number of regional

minima due to the noise and the different structures present in images of this

type. The classical approach for solving this problem is known as the marker-

controlled watershed [40] which involves a reconstruction by erosion (Rε) [43]

of the gradient image ρ(f) by a marker image m(x):

WS(ρ(f))m(x) = WS(Rε(ρ(f)∧m(x))(m(x))), (3)

where m(x) is a set of prior markers:

m(x) =

 0, if x belongs to a marker,

255, otherwise,
(4)

such that the operation Rε(ρ∧m(x))(m(x)) imposes the new regional minima of

the f gradient, ρ(f), to the pixels set to zero in m(x). Thus, the number of

obtained regions equals now the number of connected components of marker

image m(x).

2.2. Stochastic watershed transform

An appropriate marker definition is essential to obtain a good segmenta-

tion result with the marker-controlled watershed. In the stochastic watershed a

different strategy is followed due to a stochastic procedure when markers are ran-

domly generated [34]. This arbitrary choice is compensated by the M marked-

controlled watershed realizations of the algorithm in which non-significant fluc-

tuations are filtered out by the stochastic procedure.
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More precisely, stochastic watershed is based on applying the marker-contro-

lled watershed M times to the gradient of the input image, but the markers

change randomly in each iteration. Let {mj(x)}Mj=1 be M sets of N random

markers, and let WSj = WS(ρ(f))mj(x) be the j-th output image of the marker-

controlled watershed imposed by mj(x). Using this approach, a probability

density function of the contours of the image can be obtained with the Parzen

method [44] as follows:

pdf(x) =
1

M

M∑
j=0

WSj(x) ∗ G(x; s), (5)

where G(x; s) represents typically a Gaussian kernel of variance s2 (in our case,

s = 3) and mean m̄ (m̄ = 0), that is defined as:

G(x; s) =
1

2πs2
e−(

‖x‖2

2s2
). (6)

Besides the pairs of parameters (M, N), the other variable that can affect the

final result of the stochastic watershed algorithm is the procedure for generating

the random markers. In the case of random uniform markers, as introduced

in [45], the probability density function of contours can be explicitly computed

without using M simulation of markers and corresponding watershed transforms.

2.2.1. Procedure for generating random markers

In the basic formulation of stochastic watershed, a uniform distribution in

the whole image is used in the marker definition process. Let us consider the

problem of liver segmentation tackled in this paper.

Differences in liver regions between adjacent slices are limited and this is

the rationale behind our propagative approach of 2D segmentation. If a good

segmentation in one slice is obtained, the resulting mask can be dilated and the

perimeter of this dilation can be considered as external marker for the adjacent

image (on axial axis) with the certain that all the liver regions will be inside

of this external marker. It will help to eliminate adjacent structures close to

the liver and with similar graylevel. The random markers (or internal markers)

will be generated with a uniform distribution under the constraint that they
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will be inside of the region defined by the previous mask (Fig. 1a). Thus it

is guaranteed that the most of the markers will belong to liver regions and

the stochastic watershed will not enhance edges of other structures, because no

marker will be inside of them.

In the method proposed in this paper, another strategy for generating ran-

dom markers is also considered in the last marker-controlled watershed applied

which will produce the final mask of the liver. The bounding box of the pre-

vious mask is divided into a uniform grid, and a random marker is calculated

in each region of this grid (Fig. 1b). If the mask is not active (pixels set to

zero) in a region of the grid, no marker is generated. This generation procedure

will be called as stratified random marker generation. The under-segmentation

of neighbourhood regions with similar graylevel is reduced with this variation

because markers are better distributed but internal boundaries can be enhanced

with this second strategy (because the arbitrary choice is biased). For this rea-

son a uniform-distributed random markers is used first in the generation of the

pdf(x) as it will be explained in section 2.4 and a stratified random markers is

used finally in the last iteration of the algorithm when internal gradients are

less enhanced.

Both strategies proposed in this paper (uniform and stratified random marker

distribution) were applied on the previous mask. The different procedures from

the original stochastic watershed [34] were also considered, but the novel pro-

cedures proposed in this work are better adapted to the liver segmentation

problem.

2.2.2. Probabilistic partitions from stochastic watershed (PPSW)

A new paradigm of the stochastic watershed is introduced here to produce

a more reliable density of contours. This new stochastic watershed version is

needed because using classical stochastic watershed, the liver contour is rela-

tively well defined (Fig. 2c), but the internal boundaries are also enhanced

on account of hepatic tree or illumination differences. This is justified since

the probability density function (Eq. 5) is extracted directly from the gradi-
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a) b)

Figure 1: a) Uniform-distributed random markers. b) Stratified random markers (red) and

grid zones in which no internal marker is calculated (green).

ent image, which not only contains useful information about the liver edges.

This is the reason why the stochastic watershed is not enough selective for the

liver segmentation purpose. In order to remove high internal gradients and to

keep the external boundaries of the liver enhanced enough, we initially consider

the approach suggested in [34] to compute a gradient-like function defined by a

trade-off (a convex combination) between the initial gradient and the probability

density of contours, i.e.,

h̄i(x) = αρ(f)i(x) + (1− α) pdfi(x) (7)

where typically α = 0.5. However, as can be observed in Fig. 2d, the internal

boundaries are still enhanced (with high internal boundaries belonging to ad-

jacent regions with poor contrast). Therefore, a new model based on regional

graylevel properties for reducing internal gradients, and keeping the liver edges

enhanced, is introduced in the stochastic procedure. The idea is based on the

evidence that internal gradients of the original image are not as enhanced as

the stochastic watershed produces, so if this regional information of internal

gradients can be added to the stochastic watershed procedure, the probability

density function will enhance liver edges for segmentation purpose.

According to our approach, pdfi(x) gives for each pixel x the probability

density estimated from the gradient image which only measures the local energy

of the contours. We initially need to calculate from the pdfi(x) a watershed
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a) b)

c) d)

Figure 2: a) Original image. b) Original image gradient. c) Probability density function of

image contours (pdfi(x)) with M=20 and N=15. d) Probabilistic gradient as proposed in [34],

hi(x).

transform to obtain an image partition denoted Πi, i.e.,

pdfi(x) 7→WS(pdfi)(x) 7→ Πi = Π(WS(pdfi))

Each n-connected class Ci,n of the partition Πi is then valued with the mean

intensity of pixels belonging to this class from the initial image fi in order to

construct a “mosaic image”, denoted pi(x), and formally defined as

pi(x) = {µCi,n(fi) : x ∈ Ci,n} (8)

where µCi,n(fi) = 1/|Ci,n|
∑

y∈Ci,n fi(y) is the average of pixel values of slice

fi in the connected class Ci,n. The morphological gradient of this mean-based

simplified model of the image can be interpreted as the regional edgeness energy

associated to the probability density function of contours pdfi(x), i.e.,

Eregionali (x) = ρ(pi(x))
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After normalizing this energy to the interval [0, 1] both terms can be multiplied,

which leads to a regional-adjusted probability density of contours

p̃dfi(x) = pdfi(x) · Eregionali (x) (9)

Nevertheless, we have observed that the results can still be improved by

introducing the regional edgeness energy term in each of the M realizations

of the stochastic watershed. That is, by integrating the gradient of the mean-

based simplified model of each realization instead of directly the watershed lines.

Formally, we have

pdfregionali (x) =
1

M

M∑
j=0

ρ(pi,j(x)) ∗ G(x; s),

where pi,j(x) is the mosaic image of realization j obtained as:

pi,j(x) = {µCi,j,n(fi) : x ∈ Ci,j,n}

from the connected classes Ci,j,n of the partition Πi,j obtained from:

Πi,j = Πi (WSj(hi))

Finally, the probabilistic edgeness function for slice i is defined as the image:

ei(x) = 0.5ρ(f)(x) + 0.5 pdfregionali (x). (10)

We note that, using the initial probability density function of contours

pdfi(x), each boundary of the output image WSj has the same weight during

stochastic integration, Fig. 3a. With the first proposed modification p̃dfi(x),

the boundaries associated to a low contrasted regions (internal zones of the liver)

are less enhanced since their weights are associated to the contrast. However,

the effect is still more notable in the case of the final probabilistic edgeness

function ei(x), see Fig. 3c and Fig. 3d.

2.3. Segmentation algorithm for initial slice

The first processed slice must undergo a special processing. It is important

to carry out a precise segmentation of this first slice because its result will
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a) b)

c) d)

Figure 3: a) Probability density function of image contours (pdfi(x)) with N=20. b) Proba-

bilistic gradient as proposed in [34], hi(x). c) Regional edgeness energy term, pdfregionali (x).

d) Final probabilistic edgeness introduced in this paper, ei(x).

be expanded to adjacent slice in order to calculate parameters as explained

in section 2.2.1. Manual segmentation is an option for this first slice, but an

automatic process based on the marker-controlled watershed has been developed

in our case, which is summarized in Fig. 4.

In this initial 2D slice of the 3D image, the liver should appear as large

as possible and with a homogeneous graylevel. This slice could be selected

manually although in this paper an automatic process to this selection based

on the previous assumption on liver features is proposed. First, the graylevel

histogram of all the voxels of the whole study is calculated. If the pixels near

to zero are excluded, the maximum of the histogram is associated to the liver

regions because the liver is the largest organ in the abdominal cavity. Finally,

the slice with more pixels whose graylevel is equal to this maximum is selected as

the initial slice of the study. With this procedure, in all the processed datasets
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the initial slice selected was appropriate and fulfilled initial restrictions (the liver

appears as large as possible and with homogeneous graylevel).

Initial slice, 

f0

Internal 

markers
Gradient image

Set of markers

Marker-controlled 

Watershed

Segmented 

image, Mask0 

External 

markers

Area opening 

filter 

g1

g2mint mext

m(x)

Figure 4: Diagram block of the segmentation procedure of the first slice in the study.

Let f0 be the initial 2D slice to be segment and the goal is obtained a

set of markers and a reasonable enhanced gradient for applying the marker-

controlled watershed transform. The purpose of the first step is to obtain a

well-defined gradient of the liver. If the gradient is calculated on the original

slice, i.e., g0 = ρ(f0), our algorithm does not produce the required accuracy in

many cases (Fig. 5b). For this reason, an area opening filter is applied to the

original slice, resulting in g1 = γλ(f0) [43]. This filter reduces the noise and local

bright structures (vessels) while the boundaries of the liver are preserved (Fig.

5c).parameter λ of this filter corresponds to the area measure. Local bright

structures (in our case vessels) with lower area than λ will be integrated into

local background structures (in our case, liver tissue). The gradient is calculated

on the filtered image, g2 = ρ(g1), producing an image where the contour of the

liver appears more enhanced and less noisy than in g0 (Fig. 5d).

In the next step, before applying the marker-controlled watershed transform,

the set of markers is calculated using the output image of the area opening filter
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a) b)

c) d)

Figure 5: a) Original slice, f0. b) Gradient image of original slice, g0. c) Area opening filtered

image, g1. d) Gradient of area opening filter output, g2.

as the input of the process. The marker definition not only requires internal

markers (that mark the object of interest) but also external markers that are

used to constrain the growth of the regions. In this first slice, an external marker

image mext is obtained as the boundary of the patient’s abdomen as previously

was proposed in [46].

Internal marker image (mint) is obtained from the output image of the area

opening filter, g1 applying some anatomical restrictions. First, it is sure that

the liver will appear on the right part of the image and it will be inside of

external marker image, so a sub-image can be calculated (Fig. 6a), g2. It is well

known that the liver is a structure with higher intensities than other structures

in MR images (T1 or T2 weighting) as skin, air or bones. If the accumulated

histogram in the complement of this sub-image is calculated, a threshold can be

obtained when the 50% of the pixels are accumulated, to obtain the graylevels

belonging to the liver. The pixels with a graylevel smaller than this threshold
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are removed, obtaining image g3 (Fig. 6b).

In a second step, in order to remove internal structures (vessels, gallbladder,

lesions, etc.) the 10% of lightest and darkest pixels of g3 are deleted and the

image is binarized (Fig. 6c). The geodesic distance is calculated and the pixel

with the maximum graylevel value is selected as input marker (Fig. 6c, in green).

a) b) c)

Figure 6: a) sub-image inside the external marker, mext (red). b) sub-image after applying

the threshold of the accumulated histogram. c) binarized sub-image after removing the 10%

of highest and darkest pixels (the circle in green is the final internal marker selected as the

maximun of the geodesic distance).

For watershed segmentation, the final marker image m(x) is given by the

union of the internal and the external markers:

m(x) = mext(x) ∪mint(x). (11)

Finally, with this marker imagem(x), the marker-controlled watershed trans-

form is applied to image gradient g2 (Fig. 7a). Therefore, the output image of

the segmentation process of f0 is obtained as:

Mask0(x) = WS(g2(x))m(x) (12)

The mask of the liver at this slice is just Mask0 (Fig. 7b).

2.4. Main segmentation algorithm

After the segmentation of the first slice, the different steps presented in Fig. 8

are followed to segment the liver into the rest of the slices of the 3D volume. The

current slice and the mask of the previous slice are required as input information.

The mask of the initial slice is calculated as was just explained.
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a) b)

Figure 7: a) Gradient g2 and set of markers (red) m(x) for initial slice. b) Result of marker-

controlled watershed transform, Mask0.

The goal of the different steps of the process is the same as for the first slice:

to obtain an appropriate set of markers and a well-defined image to be flooded

by the watershed. The algorithm takes advantage of intrinsic parameters of the

MR images: the homogeneity in graylevel between neighbouring pixels and the

relative co-location of the liver between adjacent slices.

The disadvantages of using directly the marker-controlled watershed trans-

form and the stochastic watershed transform were discussed in Section 1. The

algorithm explained for the initial slice not always works correctly in all the

images. For that reason, a new paradigm of stochastic watershed introduced in

section 2.2.2 is used.

Let fi be the i-th slice of the whole study, i ∈ {−Rn, ...,−1, 1, ...Rk} and

let Q = Rn + Rk + 1 be the number of the slices of the study. Moreover, let

Maski−1 be the liver mask of the previously segmented image on the axial axis.

First, an area opening filter is applied, then the gradient of the output image

of this slice is calculated, in order to obtain a liver contour image that is more

enhanced and less noisy, i.e.,

hi = ρ (γλ(fi)) .

The new version of the stochastic watershed explained in section 2.2.2 is used to

reduced internal gradients. The external marker image mi
ext of each slice corre-

sponds to the external perimeter of a dilation of Maski−1 as it was explained

in the section 2.2.1, i.e.,

mi
ext = δB1⊕B1

(Maski−1)− δB1
(Maski−1).
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Figure 8: Block diagram of main algorithm.

With this external marker image mi
ext and M uniform-distributed realizations

of N random markers mi
intj

, it is obtained mi
j = mi

intj
∪mi

ext. These markers

are used to calculate the pdfregionali (x) of the image contours of slice i and

consequently the probabilistic edgeness function, ei(x) defined in Eq. 10.

In the next stage, a final marker-controlled watershed transform is applied to

the probabilistic edgeness function. The external marker image is computed as

in the previous step: mi
ext = δB1⊕B1(Maski−1)− δB1(Maski−1). The internal

marker image mi
int is calculated with a stratified random markers procedure

(7 × 7 grid) using the previous result mask, Maski−1 as it was explained in

section 2.2.1. In each region of the grid, an internal random marker is obtained

in order to have at least one marker per liver region, which is essential when the

liver is broken into several parts (Fig. 1b). A final set of markers is obtained

18



by the union of both images: mi(x) = mi
ext(x)∪mi

int(x). Then, a final marker-

controlled watershed is applied to obtain a final partition of slice i:

Π∗i (x) = WS(ei(x))mi(x) (13)

At this point, the problem of high internal gradients and the under-segmentation

produced if the liver is divided in various regions are solved. However the prob-

lem of illumination is only partially solved with the area opening filter (reducing

light objects). Hence, a post-processing algorithm is applied to finally correct

potential minor segmentation errors.

2.4.1. Post-processing Classifier

Let us consider as initial image the mean-valued mosaic image of the parti-

tion associated to Π∗i (x) as it was defined in Eq. 8,

Π∗i (x) 7→ p∗i (x).

In this mosaic image, the regions belonging to the liver will typically have

similar intensity values (under the assumption that the graylevel intensities of

the liver have a relatively low variance). However, due to illumination problems,

regions belonging to the liver with different graylevel might appear (and the

graylevel variance of the liver regions might increase). Therefore, a threshold

in the p∗i (x) image is not enough to obtain the final mask of the liver. For

this reason, a more sophisticated algorithm is needed to minimize the graylevel

variance of the regions belonging to the liver while it maximizes the graylevel

variance between these regions and external regions that are not liver. This

algorithm is detailed in Algorithm 1:

Algorithm 1 Intra-region variance correction

fai = Rδp∗i (δB2 (p∗i ))

fbi = Rεfai
(εB3(fai))

fci = p∗i − fbi

This algorithm has 3 steps: The reconstruction by dilation will reduce light

local zones and the reconstruction by erosion will darken local zones with dark
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neighbour zones (typically these zones are in the external boundary of the liver).

The result of this algorithm is shown in Fig. 9b. An intensity-based classifier is

then applied to the image fci(x) as follows

fdi(x) =



1, if fci(x) ∈ [t1, t2],

1, if fci(x) ∈ [tL, t1], [t2, tU ]

& OV > 50%,

0, otherwise.

(14)

Thresholds [tL, tU , t1, t2] are obtained empirically in the training dataset and

OV > 50% means that one of the regions between [tL, t1] or [t2, tU ] will be

added to the mask of the liver if the overlap with the mask of the adjacent slice

is more than 50%.

a) b)

Figure 9: a) p∗i (x) and p∗i+1(x) images. b) fci and fci+1 images (in red, fdi and fdi+1

contours).

Finally, the mask that is selected as liver is filtered with the Fourier co-

efficient technique [47] as previously proposed in [9] to smooth the contour,
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obtaining the final mask of the liver for slice i, Maski(x).

According to our datasets, a criterion for stopping our algorithm is selected.

The algorithm ends when the overlap with the adjacent liver mask is inferior

to 50% or when the mask area is inferior to 3.5 cm2. If the inter-slice distance

decreases, the overlap percentage could be more restrictive.

3. Results

3.1. Dataset information and training procedure

The segmentation method presented in this paper has been evaluated in 17

contrast-enhanced MR studies from Hospital Cĺınica Benidorm. Table 1 sum-

marizes the technical parameters of all datasets and pathological information.

The x/y/z parameter is the voxel spacing; the w/h/slices are the number of

pixels of the series. The last five series (ID 12-16) were acquired with a Philips

Achieva machine (3.0 Tesla), the other datasets with a GE Signa HDX machine

(1.5 Tesla). The series with ID: 0-11 were a dynamic sequence acquired when

the artery or vein received the contrast agent and the series with ID: 12-16 were

a late sequence; that is, they were used to observe the elimination of contrast

in lesions.

Dataset 0 was used for tuning the algorithm. This dataset has a combina-

tion of the most common problems that are presents in the other studies. Fig.

10 shows some images of this initial dataset where these problems are observ-

able: the vessel enhancement (Fig. 10c), neighbourhood structures with similar

graylevel to the liver (Fig. 10a,b), the inter-slice non-uniform illumination (Fig.

10c), and liver visualization into several parts (Fig. 10d).

All the parameters of our method were adjusted with this initial dataset.

Empirically, these parameters were changed and different coefficients were cal-

culated. For this purpose, a manual segmentation of this training dataset was

carried out by radiologist experts. The final parameters are stored when the

coefficients are good enough, and then the rest of datasets are segmented with
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Table 1: Technical and pathological information of the different datasets

ID x/y-z (w/h) Pathological information

(mm) x slices

0(train.) 0.93-3 512x76 Healthy

1-7(test) [0.78-1.9, 512x59-120 Healthy

0.88-3]

8(test) 0.86-2 512x104 Metastasis, seg. I

9(test) 0.82-2 512x104 Hepatocellular carcinoma, left lobe

10(test) 0.85-1.9 512x107 multiple metastasis

11(test) 0.88-2 512x88 Metastasis, right lobe

12(test) 0.71-2.5 528x80 Hepatocel. carcinoma, 2 lesions seg. VIII

13(test) 0.64-2.5 640x80 Metastasis, seg. V, IVa, VIII

14(test) 0.71-2.5 528x80 Focal nodular hyperplasia, seg. VII, VIII

15(test) 0.71-2.5 528x80 Liver hemangioma

16(test) 0.71-2.5 528x80 Metastasis, seg. V

these parameters. The coefficients and the manual segmentation protocol are

the same used in the test dataset.

3.2. Test Dataset and final parameters

The performance of our segmentation method was evaluated comparing the

automatic liver mask produced by our algorithm with a manual segmentation

carried out by four experts (each expert segmented four different series). More-

over, two series of the dataset were selected to be segmented by all them in order

to calculate the Inter-expert Cross Correlation coefficient (ICC), obtaining an

ICC = 0.622. This result proves the goodness of this manual segmentation
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a) b)

c) d)

Figure 10: Different problems of the training dataset

because a value greater than 0.61 is considered to be sufficient in order to state

that personal differences between the manual segmentation of the experts are

not relevant [48].

The coefficients used for the algorithm validation were the Jaccard index and

the Hausdorff distance. These coefficients are the most significant for volume

comparison and they give complementary information [49, 50]. Additionally, the

Dice Coefficient (DC) is provided for literature comparison (although it provides

similar information to Jaccard index). If X is the reference mask and Y is the

resulting mask of our segmentation method, these coefficients are defined as:

JC = |X∩Y |
|X∪Y |

DC = 2∗|X∩Y |
|X|+|Y |

(15)
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The Hausdorff distance is defined as Eq. 16.

dH = max

{
sup
x∈X

inf
y∈Y

dEuclid(x, y), sup
y∈Y

inf
x∈X

dEuclid(x, y)

}
, (16)

where dEuclid is the Euclidean distance and (x,y) are two points of both contours

(X,Y): the manual and the automatic segmentation. A JC = 1, (or a DC = 1)

or a dH = 0 means that the segmentation is perfect.

The selected parameters (Table 2) were calculated empirically as the optimal

parameters for a training dataset and applied to the other studies. The value of

λ is associated with the minimum area of the liver to be detected and with the

internal vessels that the area opening filter integrates in the background. If λ

increases, vessel contrast is reduced but minimum area to be detected increases.

The structuring element used to obtain the external markers is related to the

inter-slice distance (a greater distance produces more discontinuities between

adjacent slices, so a greater dilation is required to select the liver safely).

The pair of stochastic watershed parameters (M, N) were chosen based on

the experience of [34] and heuristic tests in our training dataset (Fig. 12 and 11).

With few realizations (M = 20), the pdf(x) (and the pdfregional(x)) converges

to a stable image (Fig. 11a). The parameter M can be increased (M = 100) but

the improvement of the results is not significant in this case and computational

cost increases considerably (Fig. 11c). The parameter N has a relation to M .

A high value of N produces many interior regions (Fig. 12c), which is very

useful for segmenting a large number of different regions. However, if the goal

is the segmentation of the liver tissue (a large organ), the optimal parameter

N should be a low value. After different experiments, N = 15 is applied to

all the datasets to ensure the selection of all the liver regions (even if there are

not connected (Fig. 12a). If parameters N or M decrease, problems related to

gradients definitions could appear as it is appreciated in Fig. 11b and 12b.

The pair of parameters presented in table 2 are very robust against the type

of image (only restrictions of size or resolution would be important) for this

reason it can be considered as constant values.
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Table 2: Parameters and optimal values

Filter Parameters

Area opening filter λ = 0.72 cm2

Dilation for external markers B1: Circular SE, size = 6.8 cm2

N 15

M 20

b) a)

c)

Figure 11: pdf(x) using different values of parameter M (N = 15): a) M=5, b) M=20, c)

M=100.

In the case of the structuring elements B2 and B3 were selected for reducing

bright and dark objects in the final step of our algorithm. Classifier thresholds

were selected with the normalized histogram analysis of a set of images, fci ,
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a) b)

c)

Figure 12: pdf(x) using different values of parameter N (M = 20): a) N=5, b) N=15, c)

N=100.

belonging to different series (some of them are shown in Fig. 15c). This strategy

to learn the optimal parameter is justified by the fact that graylevel intensities

have a tendency to change between datasets. The global histogram of this set

of images is depicted in Fig. 13. Areas between t1 and t2 fit with liver zones.

The areas outside these thresholds cannot always be considered as liver but it

is sure that the zones between [t1,tL] and [t2,tU ] are in the external part of

the liver tissue. For this reason, an overlap criterion is used to decide if each

of these regions belongs to the liver or not. If it has a 50% overlap with the

previous segmented mask it is considered as liver, otherwise it is labelled as

background. Table 3 summarizes the final thresholds of our algorithm applied

in all the datasets processed.
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Using the values of tables 2 and 3, the segmentation was carried out in the

17 datasets (training and test datasets) by the method proposed in this paper.

Table 3: Parameters and optimal values of the post-processing step.

Reconstruction by dilation B2: Circular SE, size = 10.7 cm2

Reconstruction by erosion B3: Circular SE, size = 24 cm2

Classifier Thresholds

(t1 − t2) [100-160] Liver

(tL − t1, t2 − tU ) [70-100,160-190] Overlap criteria

(0− tL, tU − 255) [0-70,190-255] Not Liver

Figure 13: Normalized histogram of the set of images for obtaining optimal thresholds

.

The values of the validation coefficients are presented in Table 4. All the

results were calculated on an Intel core i5 @ 2.80 GHz, with a RAM of 2 GHz

and Windows 7 (32 bits). The computational cost was about 7 seconds per slice

so 7-12 minutes are needed for the segmentation of one dataset.

Fig. 14 shows the segmentation of some initial slices applying the algo-

rithm explained in section 2.3 to different datasets. Several intermediate im-

ages of healthy datasets for the process explained in section 2.4 are shown in
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Table 4: Coefficients results

Dataset JC DC dH (mm.)

Training(ID:0) 0.9 0.95 37.19

Healthy(ID:1-8) 0.9± 0.02 0.95± 0.01 31.61± 4.9

Unhealthy(ID:9-16) 0.91± 0.03 0.96± 0.02 35.56± 4.9

Total(ID:0-16) 0.91± 0.02 0.95± 0.01 33.58± 6.1

Fig. 15: the output of the area opening filter (γλ(fi)), the probabilistic edge-

ness function(ei(x)), the illumination-corrected image (fci), the initial image

(fi) and the final mask of the liver (Maski) (in red), and the 3D liver model

obtained for some studies. Fig. 16 shows the resulting segmentation of some

images applying the algorithm explained in section 2.4 to different unhealthy

datasets.

Figure 14: First original slice and segmented mask (in red) for different studies.
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a) b) c) d) e)

Figure 15: a) Area opening filter output, γλ(fi). b) the probabilistic edgeness function(ei(x)).

c) Corrected image by illumination, fci . d) original image and final mask (fi, Maski). e) 3D

results of some datasets.

4. Discussion and Conclusions

This paper presents a new fully automatic method for liver segmentation in

MR images for clinical use. First, a new input image of the watershed transform

(instead of the classical gradient) was calculated with a new variant of the

original stochastic watershed in order to obtain a probabilistic edgeness function

more robust and less noisy than the original gradient. A final marker-controlled

watershed was calculated with a set of markers to obtain a final partition (or
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Figure 16: original image and final mask from unhealthy datasets.

”mosaic image”) of the liver. Finally, based on the liver graylevel properties and

the inter-slice co-location of this organ, a classifier was implemented to obtain

the final mask.

The datasets used for the validation were from healthy and unhealthy pa-

tients with different properties (spacing, scale, machine, or pathologies). With

these considerations, a JC of 0.91± 0.02 (or a DC of 0.95± 0.01) and the Haus-

dorff distance of 33.58(6.1) mm. demonstrate the accuracy and the robustness

(low standard deviation of the coefficient) of the method proposed in this paper.

If a high overlap coefficients and a high Hausdorff distance are obtained,

this means that in general a good segmentation is carried out in all the images

and some particular problem in some images can produce this high Hausdorff

distance. The causes of obtaining a high value of overlap (good segmentation)

while a high distance value may be these two: the misclassification is produced in

cranial or caudal images and the error propagation is stopped by the algorithm
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when it stops, Fig. 17, or if the misclassification is produced in central images,

errors are not spread to adjacent slices. To discover the correct cause of this

discrepancy a test was carried out and 10% of caudal and cranial segmented

slices were eliminated and the coefficients were calculated. The results in this

new scenario for Hausdorff distance and for Jaccard coefficient improved by

50% and by 25% respectively. So the conclusion is the high value of Hausdorff

distance had the origin in caudal/cranial images and the worst segmentation is

produced in cranial and caudal images. One option to solve these problems is

to use additional seed points that can be added manually by the user and that

can help to improve the results in these images.

Five of the datasets were acquired in a 3 Teslas MR machine and the others

in a 1.5 Teslas MR machine. Table 1 shows that the group of unhealthy pa-

tients (where the five 3T studies are included) presents more accurate results

despite of being pathological cases and it is probably due to the improvements

of MRI hardware. Therefore, it is expected that MRI hardware improvements

will improve segmentation results.

(a) (b)

Figure 17: misclassification: (a) caudal image. (b) cranial image.

Our results were compared with the results of others authors in order to

establish our conclusions and future lines of work.

In [1], several methods of liver segmentation are presented and evaluated.

These methods have been validated with 10 CT datasets whose spatial resolution

is higher than the MRI datasets used in this work. So, the results presented

in this paper cannot be compared in a direct manner with the results of these

authors but initial conclusions can be extracted from this comparison. In the

31



automatic methods, seven authors have a JC in the range (0.91-0.87.5), only two

of them have a JC higher than 0.92, and one author obtains a JC smaller than

0.8. Other coefficients have a similar variability. The main drawbacks of the

method that obtained the best results in [1] is that it needed more than 100 liver

shapes for the training process and besides that a semi-automatic (and manual)

iteration was required in the training step. In general, a high computational

cost was required in these methods [15-45 minutes per dataset]. In the iterative

methods, JC is better than in the automatic ones but a high computational cost

and a hard training or initialization is required.

About MRI methods (table 5), in the fully automatic algorithms only healthy

patients were used for the method validation (or fat livers in two cases), i.e,

patients with tumors were not used [20, 9, 35, 22]. Besides that, two of them used

few images for validation [35, 22] and other two used only a type of coefficient

for the validation procedure [20, 9] so a direct comparison with our results

is difficult. The runtime of these methods was higher than our method in

all the cases. In general, overlap measurements (JC and DC) were better in

our method. Regarding to the other three MRI methods presented in table

5, manual initialization was required [17, 21] or few images and qualitative

measurements were provided for validating the algorithms [19]. Only one author

in table 5 provided overlap (JC or DC) and distance coefficients but few images

were used for the validation of this method [22]. Summarizing, to accurately

validate a segmentation algorithm both coefficients (dH and overlap, i.e, JC

or DC) should be calculated [49], so although some authors presented a better

Hausdorff distance than our method, we cannot conclude that the accuracy is

better. If the high level of automation of our method is taken into account, we

can state that our results are promising. A Jaccard coefficient of 0.91± 0.02 (or

DC of .95± .01) is better than the results obtained by the majority of authors

in the studies mentioned above.

The algorithm presented in this paper could be applied directly in the 3D

data instead of following a 2D strategy (slice by slice) but some problems have

been detected in that case. On the one hand, using the 2D strategy, the external
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Table 5: Results of other authors and main features of their methods. By default runtime

is given in minutes per dataset and No. datasets is the number of 3D datasets used in the

validation of each method (2D means that only several 2D images were used).

Ref. JC/DC dH (mm.) Runtime No. datasets User-interaction

ours JC =0.905(0.027) 33.58(6.1) 7-11 8 healthy fully autom.

DC =0.95(0.015) 7 s/image and 9 unhealthy

[19] - - - 3 images (2D) manual segment.

for train. procedure

[17] - - 8 s/image 12 healthy initializat. by seeds

low manual work

[20] DC = 0.94(0.02) - - 20 fat liver fully autom.

DC = 0.89(0.06) and 20 healthy

[9] - 13.51(7.59) 11.22(2.78) 10 fat liver fully autom.

20.35(8.66) 15.37(4.96) and 20 healthy train. requirements

[22] DC = 0.92(0.02) 12.74(3.7) 14 s/image 6 healthy (2D) fully autom.

[35] JC = 0.94 - - 115 healthy (2D) automatic

marker definition is computed as the dilation of the previous segmented mask

and the main problem only consists on obtaining an accurate segmentation in

the first image. Fig. 14 shows as our algorithm segment the first image with

enough accuracy, so the markers chosen with this 2D strategy contribute to the

good performance of our algorithm. On the other hand, if the same algorithm

is applied to the 3D data, the 3D marker definition for the background is more

complicated. Fig. 18 shows two cases where adjacent structures are misclassified

as liver due to the poor gradient between adjacent organs and where the use of

patient’s skin is used as external marker. However, if the segmentation is carried
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out slice by slice, the external marker is extracted from previous segmented slices

where these organs are separated from the liver. When the algorithm segments

these problematic slices, the external marker position (a dilation of the previous

mask) achieves that the stochastic procedure enhances this poor gradient and

improves the performance of the 3D approach.

Figure 18: Results in some datasets where a 3D variation of our method is applied

Our segmentation algorithm fulfils the accuracy objective for trocar place-

ment in laparoscopic surgery (the accuracy required for minimally invasive

surgery in the insertion of trocars [51]).
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Celada, Aorta segmentation using the watershed algorithm for an aug-

mented reality system in laparoscopic surgery, in: 18th IEEE International

Conference on Image Processing, 2011, pp. 2649 –2652.
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