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Abstract

The task of breast density quantification is becoming increasingly relevant

due to its association with breast cancer risk. In this work, a semi-automated

and a fully-automated tool to assess breast density from full-field digitized mam-

mograms are presented. The first is based on a supervised interactive threshold-

ing procedure for segmenting dense from fatty tissue and is used with a twofold

goal: for assessing mammographic density (MD) in a more objective and ac-

curate way than via visual-based methods and for labeling the mammograms

that are later employed to train the fully-automated tool. Although most au-

tomated methods rely on supervised approaches based on a global labeling of

the mammogram, the proposed method relies on pixel-level labeling, allowing
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better tissue classification and density measurement on a continuous scale. The

fully-automated method presented combines a classification scheme based on

local features and thresholding operations that improve the performance of the

classifier. A dataset of 655 mammograms was used to test the concordance

of both approaches in measuring MD. Three expert radiologists measured MD

in each of the mammograms using the semi-automated tool (DM-Scan). It

was then measured by the fully-automated system and the correlation between

both methods was computed. The relation between MD and breast cancer

was then analyzed using a case-control dataset consisting of 230 mammograms.

The Intraclass Correlation Coefficient (ICC) was used to compute reliability

among raters and between techniques. The results obtained showed an aver-

age ICC=0.922 among raters when using the semi-automated tool, whilst the

average correlation between the semi-automated and automated measures was

ICC=0.838. In the case-control study, the results obtained showed Odds Ratios

(OR) of 1.38 and 1.50 per 10% increase in MD when using the semi-automated

and fully-automated approaches respectively. It can therefore be concluded that

the automated and semi-automated MD assessment present a good correlation.

Both methods also found an association between MD and breast cancer risk,

which warrants the proposed tools for breast cancer risk prediction and clinical

decision making. A full version of the DM-Scan is freely available.

Keywords: Mammographic density, automated density assessment,

computer-aided diagnosis, computer image analysis, breast cancer risk

1. Introduction

Breasts are composed of fibroglandular or dense tissue (FGT) and fatty tis-

sue. On a conventional mammography, FGT appears brighter than fatty tissue,

due to the higher X-ray attenuation of the former. Mammographic density

(MD) is computed as the proportion of FGT in the breast. Some examples of

mammograms of different densities can be seen in Figure 1.

MD is associated with an increased risk of developing breast cancer [1, 2].



This association is more important than almost all other risk factors for the

disease. Women with dense breasts are at four-to-six-fold higher risk than those

with primarily fatty breasts [2, 3, 4].

In addition to the increased risk of developing breast cancer in women with

high MD, high breast density impedes its diagnosis due to the fact that the

high X-ray attenuation of dense tissue can obscure a tumor. This means the

sensitivity of mammography for detecting breast cancer can be significantly

reduced in the case of dense breasts [5]. Retrospective studies have shown

that in current breast cancer screening 10% to 25% of tumors are missed by

radiologists [6, 7] and some of these false negative results can be explained by

higher breast density.

Since the association between mammographic density and an increased risk

of breast cancer was first discovered, several metrics have been proposed to

classify this parameter: Wolfe’s four parenchymal patterns [1, 8], Tabar’s five

patterns [9] and, more recently, Boyd and BI-RADS categories. The Boyd

scale [10] classifies MD in six categories: A:0%, B:1− 10%, C:10− 25%, D:25−

50%, E:50−75% and F:75−100%, while BI-RADS [11] divides density into four

categories: A:0− 25%, B:25− 50%, C:50− 75% and D:75− 100%. However, all

these methods are based on visual analysis of the mammogram and present two

major drawbacks: the subjectiveness of the categorization and the difficulty of

assigning a category when the mammogram is near the boundary between two

categories.

Computer-assisted measurement of breast density has been studied in the

last few years in an attempt to obtain more objective risk assessments. Several

semi-automated methods based on interactive thresholding techniques that com-

pute the percentage of the dense tissue over the segmented breast area have been

proposed [10, 12], as well as some fully-automated methods. Karssemeijer [13]

developed an automated method in which features are calculated from gray level

histograms computed in different regions of approximately equal distances from

the skin line, and then classified using the k-nearest neighbor (k-NN) rule. Saha

et al. [14] describe a method using a scale-based fuzzy connectivity approach.



Klifa [15] et al. present a segmentation technique based on fuzzy clustering to

quantify breast density from MRI data. Oliver et al. [16] suggest an approach

based on gross segmentation and the extraction of texture features of pixels

with similar tissue appearance. This work is continued in [17] in which a Fuzzy

C-Means clustering approach is used for gross segmentation. Muhimmah et

al. [18] use a feature extraction scheme based on a multiresolution histogram.

Heine et al. [19] first perform FGT segmentation using a wavelet high pass filter.

The same group later propose a new measure called variation measure, which

is calculated as the standard deviation of the pixel values within a specific re-

gion of the breast, and find an association between this measure and the risk

of breast cancer [20]. Manduca et al. [21] analyze several textural features of

breast tissue and find that they predict breast cancer risk at the same mag-

nitude as MD. Li et al. [22] propose a method based on a machine learning

approach in which the MD obtained using the semi-automated tool presented

in [10] is used as ground truth. A variety of measurements obtained under 15

thresholding methods are then used as features to learn the model. In general,

segmentation of non-fatty tissue in mammograms appears to be more difficult

than one might think, due to large differences in appearance between differ-

ent parenchymal types [13]. 3D approximations to breast density assessment

have also been addressed [23, 24, 25], but there is no evidence that volumetric

density measurements are more strongly related to breast cancer risk than 2D

measurements [26]. Moreover, very high correlation has been found between

breast density measured from the cranio-caudal(CC) and mediolateral oblique

(MLO) views [27], which suggests that measuring density from a mammography

(a 2D projection of the breast) is an acceptable simplification.

Regardless of the method employed to classify and estimate mammographic

density, this measure is of major importance as it could influence the choice

of alternative screening paradigms, such as shortening the intervals between

mammograms, using other methods such as magnetic resonance imaging (MRI),

or to signal the need for more careful interpretation of the mammogram, such

as double-reading.



This work presents a computer-assisted (semi-automated) and a fully-automated

tool for the assessment of MD (DM-Scan). The aim of the semi-automated tool

is twofold. Firstly, it can be used to assess MD more objectively and accurately

than visually-based methods. Secondly, it is used to label each pixel of the

mammogram in one of two possible classes: dense/fatty. This process, together

with a feature extraction scheme, is later used to train a model to estimate MD

automatically, without human intervention.

In a previous work [28], MD estimates using DM-Scan were compared with

those obtained by visual inspection and by using Cumulus [10, 29]. In this

work, a comparison is made between the concordance of semi-automated and

fully-automated assessment tools in calculating MD, after which the correlation

between MD and breast cancer risk is analyzed.

2. Materials and methods

2.1. Data sets

Two different sets of mammograms, known as DDM (655 mammograms)

and Case-Control (230 mammograms), were used in this study. The DDM

set was used to analyze the concordance of each of the three methods in as-

sessing MD: visual, semi-automated and fully-automated. Unfortunately, no

prospective information related to cancer development was available in this set

of mammograms, so that breast cancer risk could not be analyzed in this case.

For this purpose, the Case-Control set was used instead.

The DDM set consists of 655 mammograms, a subset of those used in the

DDM-Spain project [30, 31]. This was a cross-sectional study which recruited

3,584 women aged 45-68 years at 7 screening centers within the Spanish breast

cancer screening network. Informed consent was obtained from all participants,

who agreed to their left cranio-caudal mammograms (single view) being used

for study purposes. Mammograms from women participants at two screening

centers equipped with full-field digital mammography machines, i.e. a total of



655 mammograms, were used in the study. The devices used in these two centers

were a Hologic-Lorad M-IV and a Siemmens MAMMOMAT NovationDR.

The Case-Control set was formed from all breast cancer cases diagnosed

in women attending the Burjasot screening center in Valencia, where full-field

digital images had been in use for more than 4 years (Senographe 2000D Full

Field Digital Mammography System). Breast cancer cases diagnosed in women

screened at this center between the years 2007 and 2010 and who had attended

screening in the previous round, were included in the study. For each case,

a matched control was randomly chosen among women of similar age (+/- 2

years) screened the same year. Cases and controls with breast implants, surgical

reduction or poor quality mammograms were excluded, so that the final sample

consisted of 112 cases and 119 controls. The study was approved by the CSISP

(Centro Superior de Investigacin en Salud Pblica) Ethics Committee.

2.2. MD assessment concordance

A computer-aided tool (DM-Scan) which computes MD by segmenting dense

and fatty tissue in the mammogram was specifically developed for this project.

The MD of each of the 655 mammograms in the DDM dataset was then assessed

by three raters using this tool. In addition, a second reading of a subset of 150

randomly selected mammograms was performed two months later and both inter

and intra-rater concordance was computed.

The three raters who participated in this study were experienced radiologists.

Raters R1 and R2 had been reading screening mammograms from more than 10

years, with 2 years experience of full digital mammography in the former case

and 6 years of indirect digital mammography in the latter. R3 had been reading

mammograms for 34 years, including 2 years of indirect digital mammographs

and 6 years of full digital mammograms.

The goals in this phase were 1) to provide a tool to reduce the subjectiveness

of the classification process, 2) to obtain mammogram density on a continuous

scale instead of in categories (as in manual classification) and 3) to obtain local

(pixel-level) labeling of the mammograms. 1) and 2) were expected to improve



agreement achieved in manual classification, while 3) was to be used to train a

fully-automated classifier.

In the second phase, the fully-automated classifier was implemented and the

MD of each mammogram in the DDM dataset was estimated. The reproducibil-

ity of the different methods was analyzed by computing the correlation of the

MDs obtained by the semi-automated and automated methods.

2.3. Breast cancer discrimination

A case-control study was conducted to analyze the ability of the proposed

techniques to predict breast cancer. MD was assessed both by a rater using the

semi-automated tool and by the automated system. The area under the receiver

operating characteristic curve (AUC) and Odds Ratios were computed.

2.4. Semi-automated classification

Classification based on visual inspection is susceptible to human error and

subjectivity. Even for experienced radiologists, it is hard to assess mammo-

graphic density objectively and accurately. Some studies show that intraob-

server agreement is about 80%, whilst inter-observer agreement is below 70%

when using this technique [32, 33].

As computer-assisted breast density measurement can help to reduce subjec-

tiveness, we developed a computer-aided diagnostic tool for MD quantification

(DM-Scan). This tool is freely available for noncommercial use at http://dmscan.iti.upv.es.

As opposed to visual inspection methods, in which MD is usually specified as

a category, it provides quantitive MD measurement on a continuous scale. Al-

though qualitative methods have been used in other studies to measure mammo-

graphic density, these techniques involve greater subjectivity and therefore lower

reproducibility. Quantitative methods can minimize such drawbacks. Figure 2

shows an example of a digital mammogram viewed in the DM-Scan screen.

The basic idea of the proposed tool is to identify pixels belonging to back-

ground, fat tissue (FT) and fibroglandular or dense tissue (FGT) by establishing



two thresholds: T1 and T2. MD is then measured as the amount of FGT in

relation to breast size, i.e., MD=FGT/(FGT + FT)100.

Firstly, a pre-process is applied to condition the image before tissue seg-

mentation is performed. Three main operations are carried out in this phase:

a) contrast and brightness normalization, b) brightness correction according to

breast thickness and c) segmentation of the breast and removal of regions of

no-interest.

a) Contrast and brightness normalization: Contrast can vary signifi-

cantly from one image to another due to differences in the acquisition process

(mainly acquisition device and radiation dose). To ensure that the brightness

values depend as much as possible on tissue density and not on other factors

related to the acquisition process, contrast and brightness normalization is desir-

able. Assuming that minimum and maximum tissue densities are always present

in a mammography (subcutaneous fat and connective tissue respectively), min-

imum and maximum gray-level values should also appear in the histogram.

Based on this idea, a histogram stretching operation can be set to normalize

brightness and contrast. Options to manually modify brightness and contrast

are also available.

b) Brightness correction: X-ray attenuation depends not only on the

density of the irradiated tissue, but also on its thickness. The thicker the tissue

irradiated, the greater the attenuation and, consequently, the brighter the image.

When the mammogram is taken, the breast is compressed between two parallel

flat plates, b) which causes the breast to have a uniform thickness between

the plates. However, towards the edge of the breast, the thickness gradually

decreases. This is a drawback when the goal is to segment dense tissue, since

thicker regions may look like dense tissue and vice versa. In order to avoid this

problem, a brightness correction coefficient ki,j was applied to each pixel pi,j

according to a user-defined parameter α ∈ [0 : 1] as specified below:

ki,j = α+ (1− α)di,j



where di,j is the horizontal distance from pi,j to either the internal border of the

image or the pectoral muscle if present divided by the total distance between

this border and the breast edge at row i, i.e., di,j = 0 when pi,j coincides with

the border of the image, and di,j = 1 when pi,j coincides with the edge of the

breast. A value of α = 1 leaves the image unchanged, while values of 0 ≤ α < 1

attenuate brightness as we approach the internal part of the mammogram. The

lower α is the greater the attenuation.

c) Breast segmentation and removal of unwanted regions: Mammo-

grams usually contain other extraneous objects, such as labels and/or the pec-

toral muscle. Breast segmentation is semi-automatically performed by finding

a threshold value T1 that discriminates between background and object pixels.

The biggest object found is considered to be the breast, while the remainder

are considered regions of no interest and, therefore, removed. Nevertheless, this

process cannot discard objects connected to the breast. To fix this problem, the

user can modify the proposed T1 threshold and also manually invalidate other

regions/objects not detected in the previous process.

Once the image has been preprocessed and the breast has been segmented by

means of T1, a second threshold T2 must be manually set to separate dense and

fat tissue, which means the dense and non-dense or fatty tissue can be measured.

Finally, MD=FGT/(FGT+FT)100 is computed. The segmentation obtained in

this process is also used as a method of supervised pixel labeling, which is used

to train a fully-automated classifier, as explained in the next section.

2.5. Fully-automated classification

The approach used for automated classification is based on a classical super-

vised machine-learning scheme. This approach needs a set of labeled samples

to train a model, which will be used later in the classification stage. When

manual (visual inspection) classification is performed, a global class label (semi-

quantitative classification usually including between four and six categories) is

assigned to each mammogram. In this case, ground truth at pixel level (lo-

cal level) is not available, which prevents the implementation of a supervised



method based on local features to train the classifier. However, when address-

ing MD assessment tasks, methods based only on global features tend to fail

due to high intra-class variability. Our approach takes advantage of the FGT

segmentation performed with DM-Scan to label each breast pixel into one of

the two possible classes (FGT/fatty). This makes it possible to train a model

that can discriminate between both types of tissue. Figure 3 shows a diagram

of the proposed scheme.

In the training phase, local features are extracted from each image in the

training set. For this purpose, a local window of N ×N pixels is shifted along

the breast region and the gray level values are extracted, producing a local

feature vector for each local window. Then, the extracted local feature vectors

are projected into a lower dimensional space by using PCA analysis, and labeled

with the class pertaning to the central pixel of the local window. The optimal

N value for images measuring 1024× 1024 was empirically found to be 31.

Once the system has been trained, the proposed classification method con-

sists of three stages. Firstly, the breast is automatically segmented from the

background of the mammogram and contrast normalization and brightness cor-

rection is performed. Secondly, each pixel of the mammogram (or a subsampling

if the resolution is too high) is classified using the model learned in the previ-

ous training stage. This yields a hypothesis map (FGT/fatty) for each pixel,

which could be used to compute MD. However, a third final step based on a

thresholding operation is performed to improve the classification.

Breast segmentation is automated by combining automatic thresholding

based on the histogram of the image, followed by a connected-component analy-

sis algorithm that separates the breast structure from background noise. In this

work we used the cranio-caudal (CC) view of the mammogram, in which the

pectoral muscle is either not present or is negligible. This means the pectoral

muscle is not automatically segmented. When using the mediolateral oblique

(MLO) view, manual or automatic segmentation of the pectoral muscle should

be carried out.

Thresholding is performed to remove the dark background by looking at the



position of the highest peak in the histogram. Connected-component labeling

is then applied for blob detection. Finally, the breast region is selected as the

blob with the biggest area.

Contrast normalization and brightness correction is done in the same way

as in the semi-automated approach, described in Section 2.4. In this case, the

α parameter is set to a fixed, empirically calculated value.

In the classification stage, the approach used to extract local feature vectors

from training images is applied to the test image. Each of the feature vectors ex-

tracted are then classified by the k-NN algorithm, which produces a hypothesis

label for each pixel, using the fast approximate nearest neighbor search, based

on kdtrees [34]. The result of the classification stage is a binary map repre-

senting tissue types. MD could be computed from this map, but a thresholding

operation is finally performed to improve the results.

Different thresholding operations are performed on the original image at all

the existing gray level values t. False positives (FPt) and false negatives (FNt)

are computed, in which FPt are pixels classified as FGT with brightness lower

or equal to t, and FNt are pixels classified as fatty with brightness higher than

t. Finally, the optimal threshold t̂ is calculated as

t̂ = argmin
t

(FPt + FNt) (1)

and every point in the image is relabeled as FGT if its gray value is higher than

t̂ orotherwise as fatty, leading to the final MD value as the ratio of FGT over

total breast pixels.

Instead of using the hard classification scheme which labels each pixel in

one of two possible classes (FGT /fatty), a soft or probabilistic classification

can be performed. In this case, the k-NN classifier assigns to each pixel xi,j a

probability P (xi,j) of belonging to the FGT class (and P (fatty|xi,j) is computed

as 1 − P (FGT|xi,j)). The classification stage thus produces a probability map

that represents the likelihood of each pixel belonging to the FGT class. The

optimal threshold t̂ can then be computed using a probabilistic estimation of



the concepts of FPt and FNt as follows:

t̂ = argmin
t

(
∑
i,j

(P (fatty|xi,j)βi,j,t + P (TFG|xi,j)(1− βi,j,t)) (2)

where βi,j,t = 1 if the brightness of xi,j is greater than t and 0 otherwise. In

short, the thresholding operation minimizes the sum of P (FGT|xi,j) for those

pixels with brightness lower than t plus the sum of P (fatty|xi,j) for pixels with

brightness greater than t.

3. Experiments and results

Two sets of experiments were carried out to test the performance of the

proposed system. The first was aimed at testing the agreement level in the

MD calculation when using the semi-automated and fully-automated systems,

using the DDM dataset described in Section 2.1. In the second set, the relation

between MD and the risk of developing breast cancer was analyzed by the Case-

Control dataset (see Section 2.1).

3.1. Semi-automated and fully-automated correlation

In this task, a real ground truth (gold standard) as defined in other clas-

sification problems does not exist, since different experts may differ in their

assessment about what is considered dense and fat tissue.

In these cases, the performance is not derived from the error rate, but from

the concordance correlation among raters, which determines the degree of re-

producibility of the measurement technique. With this purpose, intra and inter

raters correlation using computer-aided (semi-automated) assessment, as well as

correlation between fully-automated and semi-automated assessment has been

computed using the Intraclass Correlation Coefficient (ICC) . The oneway ap-

proximation, as described in [35], has been employed.

In these cases, the performance is not derived from the error rate, but from

the concordance correlation among raters, which determines the degree of re-

producibility of the measurement technique. With this purpose, the intra- and



inter-rater correlation was calculated using computer-aided (semi-automated)

assessment, as well as the correlation between fully-automated and semi-automated

assessment, using the Intraclass Correlation Coefficient (ICC) . The oneway

approximation, as described in [35], was employed. Preliminary experiments

were carried out to test the behavior of Equations 1 and 2 in the proposed

classification scheme. The best results were obtained with Equation 1 (hard

classification), and the results shown below correspond to this approach.

Tables 1 and 2 show, respectively, the inter and intra-rater ICC obtained

when using DM-Scan in semi-automated mode. The extent of dispersion be-

tween raters is shown in Figure 4 by means of Bland-Altman plots. Horizontal

lines are plotted indicating the limits of agreement (mean and mean ± 1.96 SD).

These correlations are very good and significantly outperform the concor-

dance obtained in visual inspection reported in previous works [31, 36, 37].

Once MD assessment by means of DM-Scan had been performed and ana-

lyzed, a fully-automated classifier was implemented as described in Section 2.5.

The FGT segmentation of rater R2 was used as ground truth to train the sys-

tem. The optimal values of the different parameters were empirically found

to be: local window size=31, number of principal components=8, α=0.7 and

K=11. A 10-fold cross-validation approach was employed to assess the MD of

the 655 mammograms.

Table 3 shows the ICC comparing the fully-automated and the semi-automated

(DM-Scan) methods for each rater. Figure 5 shows the Bland-Altman plot be-

tween R2 and the automated classification.

As can be seen in Tables 1 and 2, radiologists are reported to disagree on

classifications, even if intra-observer agreement is analyzed (average ICC=0.92),

so that a higher agreement between a human and an automated classifier cannot

be expected. The reported ICC=0.838 between R2 (used to train the system)

and the automatic classifier can therefore be considered a good result.



3.2. Breast cancer prediction

In the second set of experiments, MD was used as a test variable to determine

the risk of developing breast cancer. Both the relation of semi-automated and

fully-automated MD assessment with breast cancer risk were analyzed. The

CaseControl dataset was used to test both approaches, whilst R2s DDM dataset

was employed in these experiments to train the automated system. Firstly, the

MD mean values for Cases and Controls were computed in both methods. Then,

the area under the Receiver Operating Characteristic curve (AUC) and the Odds

Ratios (OR), adjusted by age, were used to compare the semi-automated and the

fully-automated approaches. OR and its 95% confidence interval were estimated

using unconditional logistic models.

The mean MD obtained for Controls and Cases is shown in Table 4. As

expected, MD is higher in Cases, which corroborates the existence of a relation

between MD and breast cancer. However, a slight underestimation and a lower

MD range is detected in the automated mode. This is due to some low con-

trast images present in the Case-Control dataset, which means MD is generally

underrated in the automated system.

Table 5 shows the AUC obtained for semi-automated and fully-automated

MD quantification. Both methods show a subtle but significant correlation with

breast cancer risk, which suggests that MD can help to predict this disease.

The results are very similar for both approaches, which demonstrates that the

proposed automated method could be used instead of the traditional manual or

semi-automated methods to estimate MD and predict breast cancer.

Table 6 shows the OR obtained at different cutpoints, with the first quartile

used as reference. It can be observed that cancer risk increases with MD (average

OR increase of 1.38 and 1.50 per 10% increase in MD for the semiautomated

and fully-automated methods, respectively). In general, as in the AUC study,

the behavior of both methods is very similar, although the automated approach

gives wider confidence intervals in the last quartile.

Although the automated method presents a slightly lower predictive value

than the semi-automated one at the highest cut point, the OR per 10% increase



is higher in the former, which suggests that the automated method could also

be used to estimate breast cancer risk and consequently could be used in clinical

decision making.

4. Discussion

A semi-automated and a fully-automated method of measuring breast den-

sity are proposed here. In the first case, MD is based on the selection of an ex-

perienced radiologists threshold, which segments dense from fatty tissue. This

allows MD measurement to be made on a continuous scale, in contrast with

traditional visual-based methods, which divide MD into categories. Moreover,

semi-automated segmentation of dense tissue is employed to label the mammo-

grams used later to train the automatic system. A computer tool (DM-Scan)

was developed for this purpose and is now freely available for non-commercial

use at http://dmscan.iti.upv.es.

Using a dataset of 655 mammograms, we found a high inter-rater correlation

in semi-automated MD assessment (average ICC=0.922). Furthermore, the cor-

relation between rater R2, using the semi-automated system, and the automated

system (trained by R2) was ICC=0.838. Although this correlation is slightly

lower than intra-R2 correlation (ICC=0.938), it is still high, which suggests

that the proposed automated method could be a valid option for measuring

MD, particularly when a large number of mammograms must be processed.

In a second set of experiments carried out on 230 mammograms (a casec-

ontrol dataset), we found that both the automated and the semi-automated

estimate of MD were associated to a similar extent with breast cancer (OR per

10% increase in MD: 1.38 and 1.50 for semi-automated and automated modes,

respectively). These results confirm that risk assessment protocols can take ad-

vantage of the proposed MD measurement methods to improve the estimation

of breast cancer risk. More accurate risk prediction would help in better clinical

decision making as regards screening frequency and screening test selection.

Although the automated method achieves a slightly better performance in



average cases, there is a notable drop in OR in patients with high breast den-

sity (greater than 30%), due to some misclassifications in this group. Some of

these errors could be due to the automated method being trained with mam-

mograms from the DDM set, while the test images used in this experiment

were from the Case-Control set. The images in the latter set were acquired

by a Senographe 2000D (which was not used to acquire the DDM set) and

its mammograms present bright levels very different from those in the DDM

set. Although brightness and contrast normalization algorithms were applied,

some images had not been correctly preprocessed, which adversely affected the

classification stage.

The behavior of both approaches is in general comparable. The semi-automated

method is suitable for analyzing small numbers of mammograms. However,

when processing large numbers, as in screening programs, the advantages of

using an automated system are obvious. Radiologists soon tire when analyzing

large numbers of images and the accuracy and objectivity of the measurement

process can be affected, besides which using human processors is more expensive.

The evidence we found that automated MD is associated with breast cancer risk

could warrant the use of this tool in a clinical setting for risk prediction and

clinical decision making.

However, a number of issues should be addressed in future work in order to

improve the accuracy of automated density measurement and cancer risk pre-

diction, including brightness and contrast normalization issues by more accurate

methods of finding histogram limits.

It has also been mentioned that the agreement between a human expert

(rater) and the automated system is slightly lower than that among individual

raters. This could be due to some manual processes (brightness correction and

removal of pectoral muscle) not being addressed in the automated approach.

Brightness correction, (parameter α explained in Section 2.4) was fixed at

a constant value of 0.9 in the automated method. This value is adequate in

most cases, but could introduce a significant error in MD measurement. During

the acquisition process, breast compression and the distance between the plates



containing the breast can be stored as metadata in the image file and could be

used to estimate breast thickness [38] and, consequently, an adaptive value of

parameter α.

It should also be noted that a hard classification scheme was used, assuming

that each pixel can only belong to one of the two possible classes. In preliminary

experiments, better concordance was found between semi-automated and fully

automated assessment when using hard classification. However the relation be-

tween MD and breast cancer risk was not tested with a soft or probabilistic

classification scheme, in which each pixel has an associated probability of be-

longing to each class. Future experiments should take these probabilities into

account to test whether a probabilistic approach could improve breast cancer

risk prediction.

The influence of the pectoral muscle was considered to be insignificant in the

cranio-caudal (CC) view used in this study. However, here again more accurate

measurements could be obtained if it were to be supressed using algorithms

for automatic pectoral muscle removall [39, 40]. If mediolateral oblique (MLO)

views are used instead of CC, then automatic pectoral muscle supression is

mandatory. Also, improvements in contrast normalization should be addressed

to avoid underestimating MD in low contrast images. Finally, other parameters

could be explored that take into account not only the relative density but also

the shape and the distribution of FGT in the breast [20, 22] or texture features

from the mammogram [21].

In conclusion, our work shows that the semi-automated and fully-automated

methods presented here showed a reasonable agreement and had substantial dis-

criminative power to predict subsequent breast cancer development. The fully

automated method will facilitate the incorporation of mammographic density

assessment in clinical and screening practices. It can also be expected to facil-

itate the study of the evolution of breast density with time, as recent studies

suggest that this evolution is even more informative as regards the risk of breast

cancer [41, 42].
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Table 1: Inter-rater ICC with their 95 % confidence intervals for semi-automated estimation.

Raters ICC [CI 95 %]

R1 R2 0.922 [0.910 0.933]

R1 R3 0.928 [0.916 0.938]

R2 R3 0.916 [0.902 0.927]

Mean 0.922 [0.909 0.933]

Table 2: Intra-rater ICC with their 95 % confidence intervals for semi-automated estimation.

Rater ICC [CI 95 %]

R1 0.935 [0.911 0.952]

R2 0.938 [0.915 0.955]

R3 0.900 [0.863 0.926]

Mean 0.924 [0.896 0.944]

Table 3: ICC with their 95 % confidence intervals for fully-automated estimation.

Rater ICC [CI 95 %]

R1 0.800 [0.771 0.826]

R2 0.838 [0.814 0.860]

R3 0.785 [0.754 0.813]

Mean 0.794 [0.764 0.821]



Table 4: Mean MD for Controls and Cases in semi-automated and fully-automated methods

Mean Controls Mean Cases P-value

Semi-automated 16.8 [14.4-19.2] 20.9 [18.1-23.6] 0.026

Automated 16.6 [15.05-18.1] 18.6 [17.1-20.1] 0.061

Table 5: AUC for the different markers analyzed

Marker AUC [CI 95 %]

MDsemi 0.613 [0.539-0.687]

MDauto 0.602 [0.530-0.672]

Table 6: Odds ratios obtained at different cutpoints

Cutpoint Control/Case OR 95% CI P-value

Semi-automated

< 10 37/21 1.00

10-19.9 31/26 1.89 0.94-3.82 0.074

20-29.9 26/32 2.56 1.15-5.69 0.021

≥ 30 25/32 2.87 1.29-6.39 0.010

Per 10% increase 1.38 1.11-1.71 0.003

Automated

< 10 36/22 1.00

10-19.9 32/25 2.56 1.19-5.49 0.016

20-29.9 25/33 3.50 1.45-8.45 0.005

≥ 30 26/31 2.55 0.81-8.03 0.109

Per 10% increase 1.50 1.07-2.10 0.019



Figure 1: Breast composed of fatty tissue (top), dense and fatty tissue (middle) and mainly

dense tissue (bottom)



Figure 2: Example of FGT segmentation in DM-Scan
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Figure 3: Scheme of the automated process.



Figure 4: Bland-Altman plot for raters R1-R2 (top), R1-R3 (medium) and R2-R3 (bottom)

using DM-Scan



Figure 5: Bland-Altman plot for automated classification and semi-automated classification

(rater R1) with Case-Control dataset


