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Abstract

In this paper, the robust stability problem of structured linear
systems is analyzed. In order to preserve the structure of the initial
system, the structure of the admissible perturbations is characterized.
Frobenius and infinity matrix norms are used to study the robust
stability of the system affected by different admissible perturbations.
Upper bounds for the perturbations are obtained, which guarantee
that the perturbed system remains stable. Finally, some examples are
shown to illustrate the results.

1 Introduction

Robust stability is an important requirement for analysis and design
of control systems. Usually, robust stability problems appear in the
engineering modeling where it is important to know the behavior of
the system under small perturbations and to ensure that the system
remains stable for the full range of possible perturbations. Efficient
mathematical approach to treat robust stability problems is given in
[1]. A typical question in solving these problems is to determine the
”distance to instability” of a given system under perturbations. Com-
monly, this solution involves the eigenvalues of the coefficient matrix.
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In the last twenty years, this topic was studied by several authors and
some bounds on perturbations guaranteeing the stability of the system
have been obtained. Different methods exist to study the robustness
problem. For instance, the stability radius concept has been used to
study the robust stability of state-space models in [2, 3, 4]. However,
the stability radius concept may be too conservative. The idea to
construct Lyapunov functions to study robust stability has attracted
considerable attention. In this way, some results on robust stability
are given in [5] and in [6] robust stability bounds can be derived and it
has been shown that these bounds are less conservative in most cases
that the existing ones. The robust Schur and Hurwitz stability of the
interval systems are considered in [7] and output feedback stabiliza-
tion conditions and robust stability with respect to the delay time
uncertainty are given in [8].

Usually, the mathematical formulation of a model is given by
means of structured matrices. Then, the robust stability consists in
finding conditions to guarantee desired performances in presence of
structured perturbations. Among the extensive literature on robust
stability we focus on discrete-time system. In [9] sufficient robust sta-
bility conditions is given in terms of linear matrix inequalities (LMI)s,
the idea is to introduce new variables such that the existence of a
parameter dependent Lyapunov function is guaranteed. In the same
way, in [10] a robust stability condition and a new state feedback sta-
bilizability LMI problem based on this condition are provided. More
recently, an improved condition for robust D-stability has been given
in [7].

When a finite-difference method is applied to solve a partial dif-
ferential equation the associated discrete model obtained shows struc-
tured matrices, see [11]. Motivated by the structure of the discrete
approximation and the possibility that the coefficient matrices are
subjected to some perturbations, in this paper, bounds are obtained
assuming only perturbation with a fixed structure. The approach is
based on some properties of the spectrum of tridiagonal matrices. We
will focus on the localization of the eigenvalues of such matrices and
we will intend to exploit the specific structure of the matrix to obtain
bounds whose do not depend on complex calculations. This structural
requirement may seem to bring restrictions to the applicability of this
method, but in fact, similar structure is presented several mathemat-
ical models which have been used and are of potential use in image
processing. For example, Jain, in [12], made use of a semicasual image
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model which uses symmetric tridiagonal matrices.
In the classical approach to study robust stability, it is used the

Lyapunov theory to construct convenient functions and to estimate
the robust stability from each of them. By contrast, our study in the
present paper will be focused on the determination of bounds that can
be calculated directly from the initial coefficient matrices. This fact
is worthwhile to reduce the number of computations in the design of
algorithms for solving engineering problems involving robust control.

The paper is structured as follows. In Section 2 a structured sys-
tem is obtained applying the finite-difference method to a partial dif-
ferential equation. Some concepts and results used in this paper are
introduced. In Section 3 the characteristic polynomial of a tridiago-
nal matrix is analyzed. Next, in the Section 4 the stability problem
is studied when the system is affected by different perturbations and
some results on bounds to assure the stability of the perturbed system
are given.

2 Statement of the problem and pre-

liminary

Consider the second order partial differential equation given by

∂z

∂t
+ F (p)

∂2z

∂x2
+G(p)z = O (1)

where F (p), G(p) are matrices in Rn×n and p = (α, β) ∈ R2 is
an unknown parameter vector. The solution of (1), denoted by z =
z(t, x), depends on p, the spatial variable x ∈ Ω and the time value
t ∈ (0, T ).

The partial differential equation is replaced with a discrete ap-
proximation. Both space and time can be discretized by grid with
parameter ∆x, the distance between two adjacent nodes of the grid,
and parameter ∆t, the local distance between adjacent time steps in
the interval (0, T ).

In this case, we approximate the time derivative in (1) with a
forward difference and the space derivative in (1) with the central
difference, we have

∂z

∂t
≈
zk+1,i − zk,i

∆t
,
∂2z

∂x2
≈
zk,i−1 − 2zk,i + zk,i+1

(∆x)2
.
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Taking ∆x = ∆t = 1, F (p) = αI and G(p) = βI, the discretized
problem can be written as

zk+1,i = pzk,i + q(zk,i−1 + zk,i+1)

zk+1 =


p q 0 · · · 0
q p q · · · 0
0 q p · · · 0
...

. . . · · · . . . q
0 0 · · · q p

 zk (2)

where p = 1 + 2α− β and q = −α (see [11] for more information).
Note that (2) is a particular case of the more general linear time

invariant system

xk+1 = An+m(p, q)xk +B(d)uk (3)

where u(k) is the input vector and x(k) is the state vector, with the
parameters in the set P = {(p, q, d) / d 6= 0},

B(d) =

(
O
dIm

)
, (4)

and

An+m(p, q) =

(
An(p, q) AT (q)
A(q) Am(p, q)

)
, (5)

where Ak(p, q) = (aij) is a tridiagonal matrix of size k with aii = p
and ai,i+1 = ai,i−1 = q. And A(q) is a matrix where the only entry
nonzero is the (1, n)-entry, which is equal to q. Moreover, we denote
by M the set of matrices with structure given in (5).

We recall that, a matrix A is stable (also referred to as Schur
stable or convergent) if all its eigenvalues lie in the open unit disk of
the complex plane, that is, ρ(A) < 1, where ρ(·) denote the spectral
radius of a matrix, see [13]. The stability of a dynamic system (3) is
related to the stability of its state coefficient matrix.

Note that the system (3) is a structured system with unknown
parameters. Before studying the robust stability problem we need
to know the parameters to accurate the model. That is, to identify
the unknown parameters uniquely from the response of a considered
experiment. This property is known as identifiability problem. Using
the Markov parameters associated to the structured system with the
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matrices B(d) and An+m(p, q) given by (4) and(5), it is easy to check
that the system is identifiable, see [14].

In this paper we focus our attention on the robustness of the sta-
bility of a perturbed discrete-time system, but the perturbations are
restricted to be structure preserving. In general, in order to preserve
the structure of the initial system it is necessary to know the struc-
ture of the admissible perturbations, and then find a bound of them
to assure the robust stability of the problem. Thus, let the parametric
linear system be

xk+1 = A(ϑ)xk,

where the matrix A(ϑ) belongs to the set M, being ϑ the parametric
vector. This system is robustly stable if all eigenvalues of matrix A(ϑ)
have magnitudes less than one, that is ρ(A(ϑ)) < 1, for all the values
of ϑ in the admissible set of parameters.

Throughout the paper we will use some matrix norms. We re-
call that the infinity matrix norm of a matrix A = (aij) of order
l is the maximum absolute row sum of the matrix, that is ‖A‖∞ =

max
1≤i≤l

(∑l
j=1 |aij |

)
, and the Frobenius matrix norm is given by ‖A‖F =

(trace(ATA))
1
2 .

The robust stability problem is to know the impact on the spec-
trum of matrix A where the matrix is subjected to a perturbation.
It is known that if A and A + ∆A are normal, that is, AA∗ = A∗A,
then there exists a permutation such that ‖Λ− Λ̃‖F ≤ ‖∆A‖F , being
Λ and Λ̃ the diagonal matrices which entries are the eigenvalues of A
and A+ ∆A, respectively (Hoffman-Wielandt Theorem).

We begin our discussion by studying the spectrum of a tridiagonal
matrix. For that, in the next section, we relate the characteristic poly-
nomial of tridiagonal matrices with different sizes and we give some
results on stability. These results are useful to study the characteristic
polynomial of a perturbed matrix.

3 Spectrum of tridiagonal matrices

In this section, the eigenvalues of the matrix Ai(p, q) and the eigen-
values of its submatrices Aj(p, q), j = 1, . . . , i are related. We de-
note d0(z) = 1, d1(z) = z − p and dj(z) = det(zI − Aj(p, q)) and

σ(Aj(p, q)) = {λjk, k = 1, . . . , j}, j = 1, . . . i. It is known that the
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collection of these polynomials satisfies the Sturm sequence

dj(z) = dj−1d1(z)− q2dj−2(z). (6)

Moreover, the spectrum of two consecutive submatrices are related as
follows

λj1 < . . . λjk−1 < λj−1k−1 < λjk < . . . < λjj .

Thus, dj(z) and dj−1(z) have not common roots. For more details see
reference [15].

In the next proposition the transmission of the stability for matri-
ces, with the structure given in (5), depending on its size is discussed.
So, if a matrix of size i is stable, any matrix whose size is less than i
will also be stable. If a matrix of size i is not stable any matrix of size
larger than i will not be stable.

Proposition 1.

a) If Ai(p, q) is stable then Aj(p, q) is stable, for all j < i.

b) If Ai(p, q) is not stable then Aj(p, q) is not stable, for all j ≥ i.

Some properties are given in the next proposition.

Proposition 2.

a) d2j(z) = d2j (z)− q2d2j−1(z).
b) The only common root of d2j+1 and d2j−1 is z = p.

c) d2j(z) and d2j−2(z) have not common roots.

Proof. a) We prove this property by induction hypothesis. It is
straightforward for j = 1. Suppose that the property holds on to
j − 1 then, using the Sturm sequence we have

d2j(z) = d2j−1(z)d1(z)− q2d2j−2(z) =

= (d2j−2(z)d1(z)− q2d2j−3(z))d1(z)− q2d2j−2(z)
= d2j−2(z)d

2
1(z)− q2(d2j−2(z) + q2d2j−4(z))− q2d2j−2(z)

= d2j−2(z)(d
2
1(z)− 2q2)− q4d2j−4(z)

= (d2j−1(z)− q2d2j−2(z))(d21(z)− 2q2)− q4(d2j−2(z)− q2d2j−3(z)).
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On the other hand,

d2j (z)− q2d2j−1(z) =

=
(
dj−1(z)d1(z)− q2dj−2(z)

)2 − q2 (dj−2(z)d1(z)− q2dj−3(z))2
= d2j−1(z)d

2
1(z)− 2q2dj−1(z)

(
dj−1 + q2dj−3

)
+ q4d2j−2(z)

−q2d2j−2(z)d21(z) + 2q4dj−2(z)d1(z)dj−3(z)− q6d2j−3(z)
= d2j−1(z)(d

2
1(z)− 2q2)− q2d2j−2(z)(d21(z)− q2)

+2q4dj−3(z)(dj−2d1 − dj−1)− q6d2j−3(z)
= (d2j−1(z)− q2d2j−2(z))(d21(z)− 2q2)− q4(d2j−2(z)− q2d2j−3(z)).

Thus, the property is shown.
b) We observe that d1(p) = 0 and d3(p) = 0. Suppose that

d2j−1(p) = 0, then by (6) p is also root of d2j+1(z). On the other
hand, if a satisfies d2j+1(a) = d2j−1(a) = 0, then d1(a)d2j(a) = 0.
Hence a = p, since d2j(z) and d2j−1(z) have not common roots.

c) Now, we suppose that a satisfies d2j(a) = d2j−2(a) = 0. Then
d1(a)d2j−1(a) = 0. This is a contradiction since d2j(z) and d2j−1(z)
have not common roots. �

4 Robust stability problem

In the following result we establish a bound which preserves the sta-
bility of the perturbed matrix.

Proposition 3. Consider the stable matrix An+m(p, q) and a nor-
mal perturbed matrix Ãn+m = An+m(p, q) + ∆A. If ‖∆A‖F < 1 −
ρ(An+m(p, q)), then Ãn+m is also stable.

Proof. Denote ρ = ρ(An+m(p, q)). Using the Hoffman-Wielandt Theo-
rem, there exists a permutation such that ‖Λ−Λ̃‖F ≤ ‖∆A‖F < 1−ρ,
being Λ = diag(λi) and Λ̃ = diag(λ̃i) the diagonal matrices which en-
tries are the eigenvalues of An+m(p, q) and Ãn+m, respectively. Hence,
for all i,

|λ̃i| ≤ |λ̃i − λi|+ |λi| < 1− ρ+ |λi| ≤ 1.

Thus, ρ̃ = ρ(Ãn+m) < 1. �
To illustrate the usefulness of the results of this paper we consider

a practical system.
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Example 1. Consider the heat equation given by

∂z

∂t
− 1

3

∂2z

∂x2
= O (7)

which solution z = z(t, x), depends on the spatial variable x ∈ [0, 3]
and the time value t ∈ (0, T ). In the same way that Section 2 and
considering a control on the last grid node, with d = 1, the discretized
problem is given by

zk+1 = A3(
1

3
,
1

3
)zk +B(1)uk.

Note that the system is stable since ρ = 0.8047 < 1.
We consider the perturbation ∆ =

(
0 10−2 10−2

)
. The perturbed

matrix Ã3 = A3(
1

3
,
1

3
) + ∆A with ∆A = B(1)∆ is a normal matrix.

Moreover, ‖∆A‖F = 0.0141 < 0.1953 = 1 − ρ. Hence, the perturbed
matrix Ã3 is also stable with ρ̃ = 0.6666 < 1.

Next, in order to study the effect of a perturbation on the state co-
efficient matrix of the system (3) we assume that the matrixAn+m(p, q)
is subjected to a perturbation

An+m(p, q)→ Ãn+m = An+m(p, q) +B(d)∆

where ∆ is a structured perturbation matrix defined as

∆ = (∆1 ∆2) , with ∆1 = A(γ), ∆2 = Am(α, β), (8)

where α, β, γ are unknown nonzero parameters.
By choosing different perturbations we can study different struc-

tures for the matrix Ãn+m. We are interested to know if the stability is
preserved under different types of perturbations and to know a bound
for the admissible set of perturbations.

It is well-known, [16], that the spectrum of a matrix Al(p, q) ∈M
is given by

σ(Al(p, q)) =

{
µk(l) = p+ 2qcos

kπ

l + 1
, k = 1, . . . , l

}
. (9)

From now on, we denote ρ = ρ(An+m(p, q)) and ρ̃ = ρ(Ãn+m).
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4.1 Case 1

Consider the discrete-time stable system (3). We want to obtain con-
ditions for robust stability.

In this first case we consider a perturbation ∆ = (∆1 ∆2) given in
(8) such that the new matrix has the following structure

Ãn+m =

(
An(p, q) AT (q)

O Am(p+ dα, q + dβ)

)
. (10)

The characteristic polynomial of Ãn+m is given by

det(zI − Ãn+m) = δm(z)dn(z)

being δ0(z) = 1, δ1(z) = z − p − dα, and δj(z) = det(zI − Aj(p +
dα, q + dβ)), ∀j = 1, . . . ,m.

Let m = 1 be. In the following result we show that the eigenvalues
of the original system are perturbed, except in finite number cases.

Proposition 4. Consider the stable system (3) and the perturbed ma-
trix (10) with m = 1. If λ ∈ σ(An+1(p, q)) then λ /∈ σ(Ãn+1), except

if α is in the set

{
2q

d
cos

kπ

n+ 2
, k = 1, . . . , n+ 1

}
.

Proof. If λ ∈ σ(An+1(p, q)), then λ /∈ σ(An(p, q)), so dn(λ) 6= 0. On
the other hand, det(zI − Ãn+1) = δ1(z)dn(z) = dn(z)(z − p − dα).
Thus, λ /∈ σ(Ãn+1), except if λ = p+ dα. By (9) it is only true when

α is in the set

{
2q

d
cos

kπ

n+ 2
, k = 1, . . . , n+ 1

}
. �

Example 2. Consider the heat equation (7) given in the Example 1

and the perturbation ∆ = (0 − q dα) =

(
0 − 1

3
− 1

3

)
. Note that,

σ(A(
1

3
,
1

3
)) = {0.8047, 0.3333,−0.138} and σ(Ã3) = {0.6666, 0, 0}.

Moreover, α = −1

3
is not in the set

{
2q

d
cos

kπ

4
, k = 1, 2, 3

}
=

{√
2

3
, 0, −

√
2

3

}
.

Hence the Proposition 4 holds since all eigenvalues of the original
matrix have been perturbed.
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On the other hand, if we consider the control B(d) with d =
√

2,

then ∆ =

(
0 − 1

3
−
√

2

3

)
and σ(Ã3) = {0.6666,−0.138, 0}. We

observe that the eigenvalue −0.138 is also eigenvalue of the original

matrix. In this case, an eigenvalue is not perturbed since α =
1

3

belongs to the set

{
2q

d
cos

kπ

4
, k = 1, 2, 3

}
=

{
1

3
, 0, −1

3

}
.

Next, we give conditions to guarantee the stability of the perturbed
system using Frobenius norm and infinity norm, respectively.

Proposition 5. Consider the stable system (3) and the perturbed ma-

trix (10). If ρ < 1− q and ‖∆2‖2F <
(1− ρ)2 − q2

d2
, then the perturbed

system is stable.

Proof. Note that in this case, ∆A = B(d)(A(−q
d

),∆2).Using ‖∆2‖2F <

(1− ρ)2 − q2

d2
, we obtain

‖∆A‖2F = d2(
q2

d2
+ ‖∆2‖2F ) < (1− ρ)2.

Hence, the condition established in Proposition 3 holds and we have
guaranteed the stability of the perturbed system. �

Proposition 6. Consider the stable system (3) and the perturbed ma-

trix (10). If ‖∆2‖∞ <
1− |µ1(m)|
|d|

, then the perturbed system is sta-

ble.

Proof. In this case σ(Ãn+m) = σ(An(p, q)) ∪ σ(Am(p + dα, q + dβ))
with

σ(Am(p+dα, q+dβ)) =

{
p+ dα+ 2(q + dβ)cos

kπ

m+ 1
, k = 1, . . . ,m

}
.

Since ρ < 1 and from Proposition 1, we have that ρ(An(p, q)) < 1
and ρ(Am(p, q)) < 1. That is, |µk(m)| < 1, k = 1, . . . ,m. Note that,
|µk(m)| − |µ1(m)| ≤ 0. Moreover, since ∆2 is a symmetric triangular
matrix we have

‖∆2‖∞ = |α|+ |2β|.
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Using ‖∆2‖∞ <
1− |µ1(m)|
|d|

, then the eigenvalues ofAm(p+dα, q+dβ)

satisfy∣∣∣∣µk(m) + dα+ 2dβcos
kπ

m+ 1

∣∣∣∣ < |µk(m)|+ |d|‖∆2‖∞ ≤ 1.

�
The following example illustrates the above results.

Example 3. Consider the matrices A3 = A3(
1

6
,−1

3
), B(1) and ∆ =

(0
1

3

1

10
). Then σ(A3) = {−0.3047, 0.1667, 0.6381}, and σ(Ã3) =

{0.5,−0.1667, 0.2667}. Both matrices are stable, since ρ = 0.638 and
ρ̃ = 0.5. It is easy to check that ‖∆2‖F = ‖∆2‖∞ = 0.1 and µ1(1) =

0.2667. And the conditions ρ < 1 − q, ‖∆2‖2F <
(1− ρ)2 − q2

d2
and

‖∆2‖∞ <
1− |µ1(1)|
|d|

are satisfied. This fact is in according to Propo-

sition 5 and Proposition 6.

Finally, as α =
1

10
6= −2

3
cos

kπ

4
, with k = 1, 2, 3, all the eigen-

values of A3(
1

6
,−1

3
) have been perturbed as established in Proposition

4.

4.2 Case 2

We consider the discrete-time system (3) with a perturbation ∆ =
(∆1 ∆2) given in (8) such that the perturbed matrix has the following
structure

Ãn+m =

(
An(p, q) AT (q)
A(q) Am(p+ dα, q + dβ)

)
. (11)

In order to analyze the eigenvalues of this matrix (11) we give a
relationship between the characteristic polynomial of An+m(p, q) and
Ãn+m.

Proposition 7. Consider the matrix Ãn+m given in (11). Then

det(zI − Ãn+m) = δm(z)dn(z)− q2δm−1(z)dn−1(z).
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Proof. Using −dα = δ1(z)− d1(z) we obtain

det(zI − Ãn+m) =

= dn(z)

∣∣∣∣zI −Am(p+ dα, q + dβ)− q2 adj(zI −An(p, q))

dn(z)

∣∣∣∣
= dn(z)(

dn+1(z)− dαdn(z)

dn(z)
|zI −Am−1(p+ dα, q + dβ)|

−(q + dβ)2 |zI −Am−2(p+ dα, q + dβ)|)
= (dn+1(z)− dαdn(z))δm−1(z)− (q + dβ)2δm−2(z)dn(z)

= dn(z)δm(z) + δm−1(z)(dn+1(z)− dn(z)d1(z)).

Thus, from (6) det(zI − Ãn+m) = δm(z)dn(z)− q2δm−1(z)dn−1(z). �
In the following result we consider the perturbed system with m =

1 and we give the relationship between the eigenvalues of the original
system with the eigenvalues of the perturbed one.

Proposition 8. Consider the stable system (3) and the perturbed ma-
trix (11) with m = 1. If λ ∈ σ(An+1(p, q)) then λ /∈ σ(Ãn+1).

Proof. Using the result obtained in Proposition 7 we have

det(zI − Ãn+1) = δ1(z)dn(z)− q2dn−1(z)
= dn(z)(z − p)− q2dn−1(z)− dαdn(z)

= dn+1(z)− dαdn(z).

If λ is an eigenvalue of the matrix An+1(p, q), then det(λI − Ãn+1) =
−dαdn(λ) 6= 0, since two consecutive submatrices have not common
eigenvalues. Thus, λ /∈ σ(Ãn+1). �

To guarantee the stability of the perturbed system when the per-
turbed matrix is given by (11), using Proposition 3, we have the fol-
lowing result, which proof is straightforward.

Proposition 9. Consider the stable system (3) and the matrix (11).

If ‖∆2‖F <
1− ρ
|d|

, then the perturbed system is stable.

The following example illustrates the above results.

Example 4. Consider the matrices A3(
1

6
,−1

3
) and B(1) given in

Example 3. Now consider the perturbation ∆ = (0 0
1

10
). Then

σ(Ã3) = {0.666,−0.282, 0.216}. Note that all the eigenvalues have been
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perturbed as established in Proposition 8. Moreover, the matrix Ã3 is
stable, since ρ̃ < 1. This fact is in according to Proposition 9, since

0.1 = ‖∆2‖F <
1− ρ
|d|

= 1− 0.638.

5 Conclusions

A structured system obtained applying the finite-difference method to
a partial differential equation is considered. This system is a struc-
tured system with unknown parameters, where the state coefficient
matrix is tridiagonal. Robust stability of the state coefficient matrix
affected by different perturbations is studied using the Frobenius and
infinity matrix norms. Results on the characteristic polynomial and
eigenvalues of the matrices involved in the problem are developed to
assure the robustness of stability. Some robust sufficient stability con-
ditions for structured discrete-time system are presented in terms of
the initial parameters of the model. It is interesting that, in contrast
to the bounds given by other authors, the determination of bound
given in this paper does not depend on complex calculations. This
bound can be calculated directly from the initial coefficient matrices.
This means it can be used for the design of algorithms for solving
engineering problems where robust control is critical.
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