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Av. Los Próceres, Galá, Santo Domingo, Dominican Republic

framirez20@uasd.edu.do

Abstract

In this paper we study conditions to guarantee the nonnegativity of a discrete-
time singular control system. A first approach can be found in the literature
for general systems by using the entire coefficient matrices. Also, the particular
case of matrices of index 1 has been treated by using a block decomposition
and the group-projector of the matrix that gives the singularity to the system.
In order to complete this study, an analysis of the nonnegativity of a singular
control system for matrices having arbitrary index is done by means of the
core-nilpotent decomposition. This technique allows us to reduce the size of the
original matrices improving the results where the entire coefficients are involved.
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1. Introduction

It is well-known that a singular control system is nonnegative when states
and outputs take only nonnegative values for nonnegative initial states and non-
negative controls. Applications of this kind of systems appear in a wide range
of areas such as engineering, management science, economics, social sciences,
biology and medicine, etc. For instance, nonnegative systems are useful in mod-
eling chemical reactors, storage systems, compartmental systems, mechanical
systems, water and atmospheric pollution systems, the Leontief economical sys-
tem, etc. [2, 16, 17].

In [9, 14] a necessary and sufficient condition for a standard linear control
system to be nonnegative is analyzed. This characterization states that all
the matrices of the system are nonnegative. Some other subjects related to
nonnegative systems are robust stability, delays, pointwise completeness, etc.
[3, 15]. However, for singular control systems the theory of nonnegativity is
more complicated and less developed in the literature. Recently, some results on
nonnegativity of singular linear control systems have been obtained in [5, 10, 11]
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under certain conditions on the matrices of the system. In [5], conditions on the
whole matrices are required, while in [10, 11] a block decomposition is used and
some conditions on these blocks are assumed. Moreover, positive N-periodic
singular systems have been studied in [6].

We focus our attention on nonnegativity of singular discrete-time control
systems where the matrix that gives the singularity has index k ≥ 1. In this
sense, we generalize the previous results in [10, 11] where the case k = 1 was
studied. Specifically, we are going to present some applications to control theory
of the theoretical results given in [12]. While in [12] we concentrated our efforts
on matrix aspects, this paper put the stress on the study of nonnegativity in a
singular control systems setting.

This work is organized as follows. In Section 2 we present some previous
results needed in the development of the paper. Later, in Section 3, necessary
and sufficient conditions for a singular control system to be nonnegative are
obtained in terms of some blocks of the matrices of the system.

2. Background and Preliminaries

The solution of a singular control system requires the Drazin inverse of a real
square matrix E. We recall that the smallest nonnegative integer k such that
rank(Ek+1) = rank(Ek) is called the index of E and denoted by ind(E). The
Drazin inverse of E is defined as the only matrix ED satisfying the properties
EDEED = ED, EDE = EED and Ek+1ED = Ek, where k = ind(E) [1, 4].
The special case k = 1 is usually called group inverse and denoted by E#.

It is well known that a square matrix E ∈ R
n×n of index k > 0 can be

written as

E = S

[
C O
O N1

]
S−1 = BE + NE , (1)

where

BE = S

[
C O
O O

]
S−1, NE = S

[
O O
O N1

]
S−1,

S and C nonsingular matrices and N1 a nilpotent matrix of index k. Conse-
quently, BE has index 1 and NE is nilpotent of index k. This expression is
called the core-nilpotent decomposition of the matrix E and it can be found,
for instance, in [4]. This decomposition is a useful tool to study for example
perturbations of the Drazin inverse [7], perturbations in linear systems [8], etc.
It will be used in the analysis presented in this paper.

A matrix E is said to be nonnegative if all its entries are nonnegative and
will be denoted by E ≥ O.

Moreover, for a matrix E ∈ R
n×n, its Drazin projector is defined as the

product EED. Below we present a characterization of the nonnegativity of
Drazin projectors that was given in [12].

Theorem 2.1. Let E ∈ R
n×n and BE ∈ R

n×n be the matrix of the core-
nilpotent decomposition (1) of E with rank(BE) = r > 0. Then EED ≥ O if
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and only if there exists a permutation matrix P ∈ R
n×n such that the matrix

BE is given by

BE = P




XTY XTY M O
O O O

NXTY NXTY M O


 PT (2)

where diagonal blocks are square, M , N are nonnegative matrices of appropriate
size, T ∈ R

r×r is nonsingular and X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r )
with xi and yj positive column vectors, i, j ∈ {1, . . . , r}, such that Y X = I. In
this case, the group inverse of BE is given by

B#
E = P




XT−1Y XT−1Y M O
O O O

NXT−1Y NXT−1Y M O


 PT . (3)

In addition, under this notation, in [12] it was proved that T ≥ O and T−1 ≥ O
when E ≥ O and ED ≥ O.

This theorem was based on a result by Jain and Tynan [13] which provides a
constructive proof. Following the proof of both theorems, a method to compute
such a matrix BE can be obtained.

On the other hand, we consider the discrete-time singular control system
{

Ex(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(4)

where E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, x(k) ∈ R

n×1, u(k) ∈ R
m×1,

y(k) ∈ R
p×1. Throughout, we suppose that (E,A) is a regular matrix pair, that

is, there exists a scalar α such that det(αE + A) 6= 0. Sometimes it is also said
that the pencil {E,A} is regular. This fact assures the existence and uniqueness
of solution of the system [4]. This system is denoted by (E,A,B,C).

The output vector of the system (E,A,B,C) is given by y(k) = Ĉx(k) where
the state vector is

x(k) = (ÊDÂ)kÊDÊx(0) +

k−1∑

i=0

ÊD(ÊDÂ)k−i−1B̂u(i) −

−

q−1∑

i=0

(I − ÊDÊ)(ÊÂD)iÂDB̂u(k + i),

with q = ind(Ê) > 0, x(0) an initial admissible condition and the matrices

Ê = (αE + A)−1E, Â = (αE + A)−1A, B̂ = (αE + A)−1B, Ĉ = C (5)

satisfy Â = I−αÊ and so ÊÂ = ÂÊ. Note that the original system (E,A,B,C)

is equivalent to the system (Ê, Â, B̂, Ĉ), that is both systems have the same
solutions [4, 14].

We close this section giving a characterization of the nonnegativity of a
discrete-time singular control system. This characterization was presented in
[10] by means of the entire coefficient matrices of the system.
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Theorem 2.2. Let (E,A,B,C) be a discrete-time singular system satisfying
EDE ≥ O and EA = AE. Then the system (E,A,B,C) is nonnegative if and
only if the following conditions hold:

(a) EDA ≥ O,

(b) EDB ≥ O,

(c) CEDE ≥ O,

(d) −(I − EED)(EAD)iADB ≥ O,

(e) −C(I − EED)(EAD)iADB ≥ O,

for each i = 0, 1, . . . , ind(E) − 1.

3. Main results

In this section we analyze, from a different framework (see Theorem 2.2),
the nonnegativity of a discrete-time singular control system (E,A,B,C) whose
matrix E is singular, has index greater than or equal to 1 and has nonnegative
Drazin projector. We focus our attention on the study of the nonnegativity of
such a system by means of Theorem 2.1 where some blocks are used instead of
the entire matrices as in Theorem 2.2.

For the singular control system (E,A,B,C) given in (4), we construct the
equivalent system

{
Êx(k + 1) = Âx(k) + B̂u(k)

y(k) = Ĉx(k)
(6)

where the matrices Ê, Â, B̂ and Ĉ have been given in (5). Moreover, since

ind(Ê) = q, from the core-nilpotent decomposition (1) we get

Ê = B
Ê

+ N
Ê

(7)

and then Â = I − αÊ = I − α(B
Ê

+ N
Ê

) and ÊD = B#

Ê
. Taking into account

this decomposition and the result given in Theorem 2.2 we can analyze the
nonnegativity of the system (Ê, Â, B̂, Ĉ).

From now on, we will assume that ÊÊD ≥ O with rank(B
Ê

) = r > 0. Then

we get that B
Ê

has the form given in Theorem 2.1. Recall that if we add Ê ≥ O

and ÊD ≥ O in Theorem 2.1 then T ≥ O and T−1 ≥ O hold.
In order to study the nonnegativity of the system (Ê, Â, B̂, Ĉ) by means of

Theorem 2.2, we have to analyze firstly condition ÊDÂ ≥ O. Since ÊD = B#

Ê

has the form given in (3) and Â = I − α(B
Ê

+ N
Ê

), we have that

ÊDÂ = B#

Ê
−αB

Ê
B#

Ê
= P




X(T−1 − αI)Y X(T−1 − αI)Y M O
O O O

NX(T−1 − αI)Y NX(T−1 − αI)Y M O


 PT
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provided that B#

Ê
N

Ê
= O. Then, we can conclude that ÊDÂ ≥ O if and only

if X(T−1 − αI)Y ≥ O due to M and N are nonnegative matrices. Using that
Y X = I and X,Y ≥ O we get that the last inequality becomes

T−1 − αI ≥ O (8)

which is equivalent to
αT ≤ I (8′)

if T and T−1 are nonnegative matrices.
Next, we have to analyze the nonnegativity of product ÊDB̂. Again, the

form of ÊD yields

ÊDB̂ = B#

Ê
B̂ = P




XT−1Y XT−1Y M O
O O O

NXT−1Y NXT−1Y M O


 PT B̂.

Partitioning B̂ = P
[

BT
1 BT

2 BT
3

]T
, we have that ÊDB̂ ≥ O if and only if

T−1Y (B1 + MB2) ≥ O, (9)

which is equivalent to
Y (B1 + MB2) ≥ O (9′)

if T and T−1 are nonnegative matrices.
Now, we study condition ĈÊDÊ ≥ O. The equality ÊDÊ = B#

Ê
B

Ê
gives

ĈÊDÊ = ĈP




XY XY M O
O O O

NXY NXY M O


 PT

and partitioning Ĉ =
[

C1 C2 C3

]
PT , we get that ĈÊDÊ ≥ O if and only

if
(C1 + C3N)X ≥ O. (10)

In order to study condition −(I − ÊÊD)(ÊÂD)iÂDB̂ ≥ O, first we have to

obtain the Drazin inverse of matrix Â. In fact, it is well-known that the Drazin
inverse of any square matrix is always expressible as a polynomial in that matrix
[4]. In particular, there is a polynomial p in Â such that

ÂD = p(Â) =

n−1∑

s=0

âsÂ
s,

where the coefficients âs are obtained in [4, Theorem 7.5.1, pp. 130].

Since Â = I − αÊ, the Drazin inverse of Â can be written as

ÂD =

n−1∑

s=0

âsÂ
s =

n−1∑

s=0

âs(I − αÊ)s =

n−1∑

s=0

âs

s∑

j=0

(
s

j

)
(−αÊ)j
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where the Newton binomial formula is used. Thus,

ÂD =

n−1∑

j=0

ajÊ
j

where

aj =

n−1∑

s=j

âs

(
s

j

)
(−α)j , (11)

for j = 0, 1, . . . , n − 1. That is, from the coefficients âs of the polynomial p
obtained in [4], we can get the coefficients aj by means of the relation (11).

Then, using the core-nilpotent decomposition of Ê and the equality B
Ê

N
Ê

=

O, the Drazin inverse of Â has the form

ÂD =
n−1∑

j=0

aj(B
Ê

+ N
Ê

)j = a0I +
n−1∑

j=1

aj(Bj

Ê
+ N j

Ê
).

Substituting this expression in the condition that we are studying we obtain

−(I − B
Ê

B#

Ê
)(B

Ê
+ N

Ê
)i


a0I +

n−1∑

j=1

aj(Bj

Ê
+ N j

Ê
)




i+1

B̂ ≥ O

for all i = 0, 1, . . . , ind(Ê) − 1. Two situations should be distinguished:

• If i = 0 then 
−a0(I − B

Ê
B#

Ê
) −

n−1∑

j=1

ajN
j

Ê


 B̂ ≥ O

and so

−a0




B1 − XY (B1 + MB2)
B2

−NXY (B1 + MB2)


 −

n−1∑

j=1

ajN̄
j

Ê




B1

B2

B3


 ≥ O (12)

where N̄
Ê

= PT N
Ê

P .

• If i > 0 then

−N i

Ê


−a0I +

n−1∑

j=1

aj(Bj

Ê
+ N j

Ê
)




i+1

B̂ ≥ O

and so

−


a0I +

n−1∑

j=1

ajN̄
j

Ê




i+1

N̄ i

Ê




B1

B2

B3


 ≥ O. (13)
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The last condition to be studied is −Ĉ(I − ÊÊD)(ÊÂD)iÂDB̂ ≥ O, which

also involves the Drazin inverse of matrix Â. As before, a similar analysis leads
to:

• If i = 0 then

−a0 (C1B1 − (C1 + C3N)XY (B1 + MB2) + C2B2)

−

n−1∑

j=1

aj

[
C1 C2 C3

]
N̄ j

Ê




B1

B2

B3


 ≥ O. (14)

• If i > 0 then

−
[

C1 C2 C3

]

a0I +

n−1∑

j=1

ajN̄
j

Ê




i+1

N̄ i

Ê




B1

B2

B3


 ≥ O. (15)

The following result summarizes all this analysis.

Theorem 3.1. Let (E,A,B,C) be a discrete-time singular system with Ê de-

fined as in (5) having index q ≥ 1 and satisfying ÊÊD ≥ O. Then the system
(E,A,B,C) is nonnegative if and only if conditions (8)-(10) and (12)-(15) hold.

Proof. Systems (E,A,B,C) and (Ê, Â, B̂, Ĉ) have the same solutions. So, we
apply Theorem 2.2 to the last one to study their nonnegativity.

From expressions (3) and Â = I − αÊ, we have derived that condition (a)

in Theorem 2.2 is equivalent to T−1 − αI ≥ O. Next, partitioning B̂ and Ĉ
adequately, we obtain the equivalence between conditions (b) and (c) in The-
orem 2.2 and T−1Y (B1 + MB2) ≥ O and (C1 + C3N)X ≥ O, respectively.
Expressions (12) and (13) are necessary and sufficient conditions to condition
(d) in Theorem 2.2 for the cases i = 0 and i > 0, respectively. Analogously,
condition (e) is obtained to be equivalent to expressions (14) and (15). �

This theorem gives a characterization of the nonnegativity of discrete-time
singular control systems with coefficient matrix Ê having index greater than or
equal to 1. In this sense, this result complements the one obtained in [11] for

matrices of index 1. In this case, if Ê has index 1, then N
Ê

= O, the conditions
(13) and (15) are absent and (12) and (14) are simplified as follows:

−a0




B1 − XY (B1 + MB2)
B2

−NXY (B1 + MB2)


 ≥ O (16)

and
−a0 (C1B1 − (C1 + C3N)XY (B1 + MB2) + C2B2) ≥ O. (17)

So, we have the following corollary.
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Corollary 3.2. Let (E,A,B,C) be a discrete-time singular system with Ê de-

fined as in (5) having index 1 and satisfying ÊÊ# ≥ O. Then system (E,A,B,C)
is nonnegative if and only if conditions (8)-(10), (16) and (17) hold.

Remark 1. Assuming that both matrices Ê and ÊD are nonnegative in The-
orem 3.1, we can conclude that the system (E,A,B,C) is nonnegative if and
only if conditions (8 ′), (9 ′), (10) and (12)-(15) hold.

Notice that, in general, these results allow us to work with matrices of smaller
sizes than the original ones in the analysis of the nonnegativity of a discrete-time
singular system.

As we have seen, the computation of the matrix ÂD consists on finding
the coefficients of certain polynomial. However, we can simplify this process by
choosing adequately the value of α to be used in (5). In what follows, we discuss
how to find the best (more convenient) α.

Clearly, we can find infinite α’s such that the matrix I−αB
Ê

is nonsingular.
Moreover, there are also infinite values of α for which the matrix αE + A is
nonsingular. Hence, we can choose a value of α satisfying both conditions
simultaneously. For that α, the matrix Â = I − αÊ becomes Â = (I − αB

Ê
) −

αN
Ê

, which corresponds to the core-nilpotent decomposition of Â and then

ÂD = (I − αB
Ê

)−1. This fact simplifies the study of the two last conditions of
Theorem 2.2 for the nonnegativity of the system (E,A,B,C). Those conditions
can be rewritten as follows:

(d′) −(I − B
Ê

B#

Ê
)((B

Ê
+ N

Ê
)(I − αB

Ê
)−1)i(I − αB

Ê
)−1B̂ ≥ O,

(e′) −Ĉ(I − B
Ê

B#

Ê
)((B

Ê
+ N

Ê
)(I − αB

Ê
)−1)i(I − αB

Ê
)−1B̂ ≥ O,

for all i = 0, 1, . . . , ind(Ê) − 1.

Corollary 3.3. Let (E,A,B,C) be a discrete-time singular system with Ê =

B
Ê

+ N
Ê

defined as in (5) having index q ≥ 1, satisfying ÊÊD ≥ O and
I − αB

Ê
is nonsingular. Then the system (E,A,B,C) is nonnegative if and

only if conditions (a)-(c) in Theorem 2.2 and (d ′)-(e ′) hold.

Moreover, these conditions (d′) and (e′) can be considerably simplified when
the spectral radius of B

Ê
is less than 1 because, in this case, the von Neumann

expression states that

(I − αB
Ê

)−1 =

∞∑

j=0

αjBj

Ê
.

Substituting this expression in the inequalities (d′) and (e′) they can be ex-
pressed in terms of matrices of smaller sizes as:

(18) XY (B1 + MB2) − B1 ≥ O

(19) −B2 ≥ O
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(20) NXY (B1 + MB2) − B3 ≥ O

(21) −N i

Ê
B̂ ≥ O

(22) C1(XY (B1 + MB2) − B1) − C2B2 − C3(NXY (B1 + MB2) − B3) ≥ O

(23) −ĈN i

Ê
B̂ ≥ O.

for all i = 0, 1, . . . , ind(Ê) − 1.
Summarizing we have the following result.

Theorem 3.4. Let (E,A,B,C) be a discrete-time singular system. Let α be a

complex such that Ê = B
Ê

+ N
Ê

defined as in (5) has index q ≥ 1, satisfies

ÊÊD ≥ O, I −αB
Ê

is nonsingular and the spectral radius of B
Ê

is less than 1.
Then the system (E,A,B,C) is nonnegative if and only if conditions (8)-(10)
and (18)-(23) hold.

Proof. Conditions (8)-(10) have been shown in Theorem 3.1. Using the facts

that B
Ê

N
Ê

= O and B
Ê

B#

Ê
B

Ê
= B

Ê
, if we substitute the von Neumann ex-

pression given before in the inequalities (d′) and (e′), a simple computation
allows us to derive conditions (18)-(23). �

We illustrate the results with an example.

Example 3.1. Let Ê = B
Ê

+ N
Ê

where

B
Ê

=




1 0 1 1 13 16 0 0 0
2 0 2 2 26 32 0 0 0
3 0 2 2 27 34 0 0 0
3 0 2 2 27 34 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
26 0 19 19 254 318 0 0 0
35 0 26 26 347 434 0 0 0
43 0 37 37 487 604 0 0 0




=




XTY XTY M O
O O O

NXTY NXTY M O




with

N =




1 2 3 4
2 3 4 5
9 8 2 4


 M =




1 2
3 4
5 6
7 8


 T =

[
1 2
3 4

]

X =




1 0
2 0
0 1
0 1


 Y =

[
1 0 0 0
0 0 1/2 1/2

]
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and

N
Ê

=




0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




.

Let B̂ =
[

0 −1 0 0 0 0 0 0 0
]T

and let Â = I − αÊ with α ∈ R.

Then, system (Ê, Â, B̂, I) satisfies that ind(Ê) = 4 and ÊÊD ≥ O, so we can
apply Theorems 3.1 or 3.4 to study its nonnegativity.

Firstly, we have to analyze conditions (8)-(10) (see Theorems 3.1 and 3.4).
If we choose α ≤ −2 then T−1 − αI ≥ O holds. Notice that, in this case, we
have worked with a 2×2 matrix instead of the 9×9 original one. It can be easily
checked that conditions (9) and (10) are satisfied. Moreover, choosing α ≤ −2

and α 6= −5−
√

33
4

, the matrix Â is nonsingular. Then, Theorem 3.4. assures
the nonnegativity of the system since simple computations show that conditions
(18)-(23) are satisfied.
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