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The 3D Smith Chart
and Its Practical 
Applications

The mathematical theory of the 3D Smith 
chart1 unifies active and passive micro-
wave circuit design on the surface of a 

Riemann sphere. The reflection coefficient 
plane is mapped stereographically through the 
South Pole on the surface of a unit sphere. As 
a result, the classical 2D Smith chart includ-
ing the passive loads2 is mapped stereographi-
cally into the North hemisphere, while the cir-
cuits with negative resistance (that are outside 
the classical planar Smith chart) are mapped 
into the South one. The East hemisphere is 
the place of inductive circuits, whereas the 
West hemisphere hosts the capacitive circuits. 
Meantime, the Greenwich meridian is the lo-
cus of pure resistive circuits (see Figure 1, 
where the constant resistance r and reactance x 
circles are drawn in blue and red, respectively).

The 3D Smith chart differs from previous 
attempts4 to generalize the planar 2D Smith 
chart in a fundamental way: the way in which 
infinity is treated. The preceding theories 
fail to merge the active and passive worlds 
in a simple and rigorous manner, since they 
propose an empirical solution to map an in-
finite region into a finite surface. These ap-
proaches turned into complicated transform-

ing equations, making the visual and intuitive 
interpretation of microwave problems very 
difficult.

In this article, how the 2D and 3D Smith 
charts deal with the infinite regions are first 
described. Next, the advantages of using the 
3D Smith chart to represent both active and 
passive loads are illustrated with two exam-
ples: the stability circles of an amplifier and 
the impedance of a microwave oscillator.

TREATMENT OF INFINITY IN SMITH 
CHARTS

The infinite region of the normalized im-
pedance or z-plane is due to the open circuit, 
because the magnitude of the input impedance 
grows to infinity as the load tends to an open 
circuit. Since in practical applications, imped-
ances can be found close to the open circuit, it 
is rather uncommon to use the z-plane to per-
form a visual representation of loads.

For the reflection coefficient plane (�-
plane), the infinite region corresponds to the 
load with the same magnitude and opposite 
sign to the characteristic impedance of the 
line (that is the infinite mismatch or z = –1 
in normalized impedance terms). Although it 
denotes a particular active load, this input im-
pedance is important in some practical appli-
cations such as oscillator design. To be able to 
represent the infinite mismatch, practitioners 
can use a planar Smith chart plotted in the 
1/�-plane called negative Smith chart.5 This 
graphical representation gives an important 
role to the infinite mismatch, which is placed 
in its center, but moves the matched load (� = 
0) to infinity. Analogously, the open circuit is 
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s Fig. 1  Representation of the 2D (a) and 3D (b) Smith charts.3

(a) (b)



Maxime Bocher, born in 1867 in Bos-
ton, professor at Harvard University and 
president of the American Mathemati-
cal Society (1908-1910), was the one 
that finalized the theory of inversive 
geometry. The Bocher Memorial Prize is 
awarded for outstanding achievements 
in Mathematics appearing in an Ameri-
can journal,6 and was awarded in 1933 
to Norbert Wiener, who played a major 
role in Information Theory.

Bocher established the theory of the 
direct inversive and indirect inversive 
transformations,7 respectively,

where a, b, c and d are arbitrary complex 
numbers satisfying ad – bc � 0 and z

_ 
is the 

extended complex conjugate of the 
complex variable z. These two transfor-

mations map generalized circles (that is 
circles and infinite lines) into general-
ized circles, keep the magnitude of the 
angles and maintain or reverse their 
orientation. There was a problem with 
these transformations concerning the 
points that were thrown at infinity. In 
his article,8 Bocher maintained his well-
known attitude of seeking for the sim-
plest solution to solve and clarify each 
problem and argued that points thrown 
to infinity by inversive transformations 
should form a single point on the Rie-
mann sphere. In fact, he showed that 
Equations 1 and 2 were always mapping 
lines and circles into circles on the Rie-
mann sphere and forming a group un-
der the composition of functions.

He proposed a practical conception 
of infinite regions and his theory of in-
versive geometry was used by famous 
mathematicians such as Klein, Carathe-
odory and Mandelbrot, and in the arts 
by Escher.

placed in the center of the normalized 
admittance or y-plane, where another 
important load, the short circuit, is 
thrown to infinity.

It can be concluded that all the 
usual 2D planar representations are 
unable to keep these four key im-
pedances (open circuit, short circuit, 
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matched load and infinite mismatch) 
in a bounded region. In fact, all these 
planes extend to infinity, where one 
of the aforementioned key loads is lo-
cated.

The 2D Smith chart is a graphic 
representation of the �-plane, includ-
ing the constant resistance and reac-
tance lines in the z-plane transformed 
by means of the Möbius transformation

ρ =
−
+

(z)
z 1
z 1

(3)

Since Equation 3 is an inversive 
transformation, it maps infinite lines 
in the z-plane in generalized circles in 
the �-plane. All the lines in the z-plane 
extend to infinity and, therefore, all its 
transformed circles pass through � = 1 
(the reflection coefficient of the open-
circuit). An infinite region of the z-
plane is compressed around this point 
(that is an accumulation point), as also 
reveals the singular behavior of the 
transformation between the �-plane 
and the z-plane (that is the reciprocal 
transformation to Equation 3) in this 
particular point. On the other hand, 
the region around the short circuit (� 
= 1) is expanded by the Möbius trans-
formation.

The 2D Smith chart success-
fully compiles in a bounded region 
the unit circle and all of the passive 
loads with the matched load in its 
center. Although the passive loads 
are the more common ones, certain 
applications involve the use of ac-
tive devices, whose impedances can 
be very far from the unit circle (for 
instance in oscillators or negative 
resistance amplifiers, to cite a few). 
Moreover, in other applications, it 
can be interesting to represent both 
active and passive loads simultane-
ously (for example, stability circles 
in amplifiers, representation of the 
impedance of devices whose input 
resistance can be positive or nega-
tive depending on the bias point or 
frequency, or mixed problems in-
volving both active and passive de-
vices). The 2D Smith chart has limi-
tations in these applications, mainly 
because the Möbius transformation 
expands the region occupied by the 
active loads to infinity.

These limitations are successfully 
addressed by the 3D Smith chart. To 
build this graphical representation, 
one must first place the �-plane in the 
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equatorial plane and next perform its 
stereographical projection from the 
South Pole in a Riemann sphere of 
unit radius.1 Proceeding in this way, 
the passive loads will be placed in the 
North hemisphere of the sphere and 
the active loads are located in the South 
hemisphere, packaging all loads in a 
bounded sphere of unit radius without 
resorting to infinity. Moreover, the four 
key loads occupy especially important 
points of the sphere: the matched and 
infinite mismatch loads are placed in 
the North and South Pole, respective-
ly, whereas the West Pole contains the 
open circuit and the East Pole is the 
short circuit (the West and East Pole 
are the poles of the sphere with respect 
to the Greenwich meridian plane, or in 
other words, the points of the sphere 
with maximum and minimum x-coor-
dinate, respectively).

It can also be proven that the same 
representation can be obtained, if 
the impedance plane is placed in the 
Greenwich meridian plane and the ste-
reographic projection to the unit sphere 
is performed from the West Pole. This 
property proves the completeness of the 
3D Smith chart, since both the �-plane 
and the z-plane will be obtained after 
performing the inverse stereographic 
projection in the two main planes cut-
ting the Riemann sphere.

The 3D Smith chart has a wide 
number of properties that can be 
helpful to solve microwave problems 
graphically.1 In fact, it has more prop-
erties than the planar Smith chart due 
to its completeness. The stereographic 
projection is also a conformal mapping, 
thus transforming circles in the 2D 
Smith chart into circles in the surface 
of the 3D Smith chart. In addition, infi-
nite lines in the planar Smith chart are 
mapped into circles in the Riemann 
sphere passing through the South Pole 
(the locus of the infinite mismatch 
load), whereas finite lines are trans-
formed into circle arc sections. The 
same can be stated for circles and lines 
drawn in the impedance and admit-
tance planes. As a result, and similarly 
to the 2D Smith chart, a wide variety 
of microwave problems can be solved 
graphically in this new tool by drawing 
and intersecting circles.

APPLICATION EXAMPLES
In order to work with negative 

impedances, engineers have to ei-
ther use different tricks or face scal-

ing problems, which causes problems 
with the task of handling both active 
and passive microwave on the same 
chart. These problems disappear on 
the 3D Smith chart, where infinity be-
comes a handy issue.

Amplifier Stability Circles
One of the applications that reveal 

the limitations of the planar Smith 
chart and the advantages of the 3D 
Smith chart is the stability analysis 
of microwave amplifiers. To guaran-
tee the stability of the amplifier and 
prevent unexpected oscillations, this 
analysis must be performed over a 
very wide frequency range. At each 
frequency, a stability factor is first com-
puted to determine whether the ampli-
fier is conditionally or unconditionally 
stable.9,10 If the amplifier is condition-
ally stable, it is required to plot both 
the source and load instability regions, 
which define the loads at the input and 
the output of the amplifier that should 
be avoided to prevent a potential oscil-
lation at this particular frequency.

In the �-plane, and therefore in 
the 2D Smith chart, the boundary be-
tween stability and instability regions 
are circles. The center and radius of 
the source and load stability circles 
can be easily computed from the S-
parameters of the transistor (or, in 
general, the active circuit providing 
the amplification).9,10 In most cases, 
however, one or both circles include 
active loads, thus being placed partial-
ly outside of the 2D Smith chart. In 
a wide frequency range, this problem 
generates visualization problems in 
2D, due to the scaling required to be 
able to plot the entire stability circles, 
identify the problematic regions and 
look for a possible solution.

The 3D Smith chart does not require 
any type of scaling, since all the active 
and passive loads are successfully repre-
sented in a bounded surface. Moreover, 
and due to properties of the stereo-
graphic projection, the stability circles 
in the planar Smith chart transform into 
circles in the Riemann sphere.

To illustrate these concepts, the 
stability of a Motorola transistor, with 
S-parameters given in Table 1, has 
been analyzed at 100 MHz. Figure 
2 depicts the source (in green) and 
load (in magenta) stability circles of 
this conditionally stable transistor in 
both the 2D and 3D Smith charts. To 
visualize the complete circles, the �-
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plane must be scaled in the 2D rep-
resentation. This scaling reduces the 
2D Smith chart, thus making it more 
difficult to get a visual insight of the 
problem even for a single frequency.

The instability regions in the 3D 
Smith chart correspond to the loads 
in the surface of the sphere delimited 
by the stability circles and not contain-
ing the North Pole. It can be easily 
seen that the output instability is due 
to sources with low and moderate im-
pedance magnitude, and inductive or 
slightly capacitive character. The input 
or load instability, on the other hand, 
can be caused by inductive passive 
loads with a high quality factor Q. Us-

ing this information, the engineer can 
add elements into the amplifier circuit 
to move the source and load instability 
circles to the South hemisphere.

Oscillator Design
To obtain an oscillator at a speci-

fied frequency, the microwave active 
circuit must be designed to provide 
an infinite reflection coefficient at 
such a frequency. This requires mov-
ing to infinity in the reflection plane, 
thus being useless in a planar Smith 
chart representation. To solve this 
type of problem graphically, two so-
lutions are normally considered: (i) 
using a 1/�-plane or negative Smith 
chart representation5 or (ii) plot the 
conjugate impedance of some cir-
cuits10 in the 2D Smith chart. Both 
solutions require combining two dif-
ferent types of planar representa-
tions to plot the loads.

The 3D Smith chart allows solving 
this type of problem graphically using a 
unique visual representation, since the 
infinite mismatch point is placed in a 
bounded and finite position: the South 
Pole of the unit sphere. The engineer’s 
task therefore consists of designing the 
circuit to put the impedance in the 
South Pole at the oscillation frequency.

Figure 3 shows the 2D and 3D 
Smith chart representation of the input 
impedance (in black) of a microwave os-
cillator at 1 GHz based on an Infineon 
BFP 640 bipolar transistor designed in 
the literature.10 The 2D Smith chart is 
incapable of plotting the impedance of 
the oscillator close to the resonant fre-
quency, whereas it can be successfully 
plotted in the 3D Smith chart without 
using a different type of representation. 
These examples show the practical use 
of the 3D Smith chart. 

TABLE I
S-PARAMETERS OF A MOTOROLA 2N667A BIPOLAR TRANSISTOR 

(BIAS POINT: VCE=15 V, IC=25 MA)

Frequency 
(GHz)

S11

� � �            �

S21

� � �                 �

S12

� � �                 �

S22

� � �                 �

0.1 0.60 –76 38.6 141 0.01 55 0.83 –20

0.5 0.67 –158 12.7 95 0.02 40 0.50 –27

1 0.68 –178 6.6 77 0.03 53 0.46 –32

2 0.69 162 3.4 54 0.05 54 0.47 –50

3 0.69 146 1.3 31 0.07 55 0.53 –70

4 0.69 131 1.7 11 0.09 51 0.57 –89

5 0.69 114 1.4 –9 0.12 44 0.62 –106

6 0.69 98 1.1 –28 0.15 33 0.68 –122

s Fig. 2  Representation in the 2D (a) and 3D 
(b) Smith charts of the stability circles of a Mo-
torola 2N667A bipolar transistor at 100 MHz.

(a)

(b)
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