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adaptive modulation and coding (AMC) is applied.

With AMC, different modulation and coding schemes

(MCSs) are used to serve different users in order to

maximise the throughput and range. The used MCS de-

pends on the quality of the radio link between the base

station and the user. Data is sent towards users with

a good radio link with a high MCS in order to utilise

the radio resources more efficiently while a low MCS is

used for users with a bad radio link. Using AMC how-

ever has an impact on the cell capacity as the quality

of a radio link varies when users move around; this can

even lead to situations where the cell capacity drops

to a point where there are too little radio resources

to serve all users. AMC and the resulting varying cell

capacity notably has an influence on admission con-

trol (AC). AC is the algorithm that decides whether

new sessions are allowed to a cell or not and bases its

decisions on, amongst others, the cell capacity. The an-

alytical model that is developed in this paper models a

cell with varying capacity caused by user mobility using

a continuous-time Markov chain (CTMC). The cell is

divided into multiple zones, each corresponding to the

area in which data is sent towards users using a cer-

tain MCS and transitions of users between these zones

are considered. The accuracy of the analytical model

is verified by comparing the results obtained with it to

results obtained from simulations that model the user

mobility more realistically. This comparison shows that

the analytical model captures the varying cell capacity

very accurately; only under extreme conditions differ-

ences between the results are noticed.

The developed analytical and simulation models are

then used to investigate the effects of a varying cell ca-

pacity on AC. The analytical and simulation models

are also used to study an optimisation algorithm that

adapts the parameter of the AC algorithm which de-
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termines the amount of resources that are reserved in

order to mitigate the effects of the varying cell capacity.

Updating the parameter of the AC algorithm is done by

reacting to certain triggers that indicate good or bad

performance and adapt the parameters of the AC algo-

rithm accordingly. Results show that using this optimi-

sation algorithm improves the quality of service (QoS)

that is experienced by the users.

1 Introduction

Contemporary wireless networks such as Long Term

Evolution (LTE), the next generation of cellular net-

works, or Worldwide Interoperability for Microwave Ac-

cess (WiMAX), a standard for wireless broadband in-

ternet access, try to optimise performance by employing

adaptive modulation and coding (AMC) [5]. AMC al-

lows different modulation and coding schemes (MCSs)

to be used at different points in time depending on the

signal quality. By using different MCSs data can be sent

to the users at higher or lower bit rates as they move

around in a cell. Since the capacity of a cell is deter-

mined by the number of active users and the through-

put that can be achieved by each of these users, chang-

ing the MCS will cause the cell capacity to vary as the

number of active users changes (sessions are started and

stopped) and as users move around. This varying of the

cell capacity might influence the decisions taken by ad-

mission control (AC), which is the algorithm that de-

cides if a session is admitted to the cell or not. It bases

its decisions on the availability of the resources that are

needed to guarantee the quality of service (QoS) of the

new session and the already accepted sessions. Due to

the time-varying cell capacity, it is for instance possible

that at one point in time there is sufficient capacity to

provide the desired QoS to all users while at another

point in time variations in the cell capacity cause the

cell capacity to drop below the required amount. When

designing AC algorithms it is important to take this

possibility into account.

In this paper we will create an analytical model for

studying the effects of varying cell capacity on AC. We

consider a single cell in which users move around. When

a new session arrives it is subjected to AC which will

decide if the user is admitted to the cell or not. Only

one, real-time, service is considered. Although for our

purposes it is not of great importance which traffic di-

rection is considered, we consider only the downlink

traffic direction. Users that are accepted remain active

for a certain amount of time. In order to maintain a ser-

vice with a fixed bitrate, active users require a varying

number of resources depending on their location in the

cell. The modelling assumptions will then be verified

using simulations that model the mobility of the users

and the session duration more accurately.

The developed models will afterwards be used to

evaluate the performance of a simple AC scheme and

the performance of an AC optimisation algorithm that

adapts the parameters of the AC algorithmin order to

guarantee QoS for existing sessions depending on the

network load in order to obtain better performance.

Analytical models for studying AC in cellular net-

works have already been studied in several papers, but

most of them do not consider the variation of the cell

capacity due to user movement. For example, in [18]

and [10] the efficiency of several AC policies in cellular

networks is studied. An AC algorithm where users re-

questing admission are gradually admitted is suggested

in [6] and an algorithm for finding the optimal thresh-

olds within the class threshold type AC policies is pro-

posed in [20].

An analytical model considering varying cell capac-

ity is described in [8], three AC policies for capacity-

varying networks are discussed in [21] and an AC al-

gorithm that takes into account the mobility of the

users is proposed in [9]. Studying the effects of vary-

ing cell capacity on AC using simulations has already

been done in a number of papers. In [19] an AC scheme

for WiMAX is proposed and its performance is evalu-

ated and [22] studies self-optimisation of an AC scheme

for LTE.

Algorithms that optimise the parameters of radio

resource management (RRM) algorithms have already

been the subject of a number of research papers [17,23,

22,11] and projects such as SOCRATES [3], MONO-

TAS [2] and E3 [1]. These papers and projects how-

ever used simulations instead of analytical models. In-

dustrial lobbies like Next Generation Mobile Networks

(NGMN) [16] promote the development of self-optimis-

ing networks (SONs). The contributions of this paper

are that the mobility assumptions assumed in the ana-

lytical model proposed considering varying cell capacity

are checked using simulations, the cases and the reason

why both models differs are identified and the analyti-

cal model is used to study the performance of a dynamic

AC algorithm proposed.

This paper is structured as follows: Section 2 ex-

plains how AMC influences the cell capacity in wireless

networks. In Section 3 the general modelling assump-

tions as well as the AC and AC optimisation algorithms

that are studied are presented. Section 4 discusses the

analytical model. The simulation model that is used to

validate the mobility and session duration assumptions

made in the analytical model is described in Section 5.

In Section 6 compares and discusses the numerical re-
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sults for different AC policies obtained with both the

analytical and the simulation models. Section 7 con-

cludes this paper and mentions some future work.

2 Varying cell capacity

2.1 Adaptive modulation and coding

In this paper we will consider AMC as it is imple-

mented in LTE, although the same principles also ap-

ply to AMC in other network technologies. LTE defines

15 different MCSs, which are obtained by combining

a number of code rates with 3 modulation schemes:

quadrature phase-shift keying (QPSK), and quadrature

amplitude modulation (QAM) with 16 and 64 states per

symbol.The modulation scheme determines how binary

data (bits) is converted to a signal. The code rate repre-

sents the ratio of information bits to the total amount of

bits (information bits + forward error correction (FEC)

bits) that is used to transmit the data. The lower the

signal quality, the lower the code rate has to be, (i.e.

more FEC bits are needed per information bit) in or-

der to tackle the high number of erroneous bits. An

overview of the MCSs that are used in LTE can be

found in Table 1.

The choice of which MCS is used is based on mea-

surements of the signal quality that are provided by the

user equipment (UE) to the eNodeB (eNB). Based on

the modulation scheme and the code rate, the theoreti-

cal maximum bit rate for each MCS can be calculated.

Using the attenuated Shannon bound [5] the minimum

signal to interference ratio (SIR) that is needed to be

able to use a certain MCS can be determined. The SIR

is the ratio (in the linear domain) of the received signal

strength (S) at the UE of the source eNodeB (SeNB)

to the total strength of the signals of the interfering

neighbouring eNodeBs (NeNBs) (Ii): SIR = S∑
i Ii

. The

higher the SIR, the better the quality of the signal. The

strengths of the received signals S and Ii in turn depend

on a number of factors. First of all there is the power at

which the signals are transmitted. The most dominant

factor in the reduction of the transmitted signal power

is the pathloss. Pathloss is the decreasing of the signal

strength because of spatial dispersion and is linked to

the distance between the transmitter and the receiver.

The received signal strength is also influenced by other

factors like shadow fading and multi-path fading. As the

pathloss has the biggest impact on the received signal

strength and thus also on the SIR, the SIR will espe-

cially depend on the relative distance from the SeNB

and the interfering NeNBs. If we consider a site that is

surrounded by a number of interfering sites, consider-

ing only pathloss, the lines with equal SIR will be cycles

around the SeNB (see Fig. 1).

Fig. 1 Lines of equal interference surrounding a site.

Table 1 The different MCSs used by LTE [4].

# Modulation Bits/symbol Code rate

1 QPSK 2 78/1024

2 QPSK 2 120/1024

3 QPSK 2 193/1024

4 QPSK 2 308/1024

5 QPSK 2 449/1024

6 QPSK 2 602/1024

7 16-QAM 4 378/1024

8 16-QAM 4 490/1024

9 16-QAM 4 616/1024

10 64-QAM 6 466/1024

11 64-QAM 6 567/1024

12 64-QAM 6 666/1024

13 64-QAM 6 772/1024

14 64-QAM 6 873/1024

15 64-QAM 6 948/1024

2.2 Determining the cell capacity

LTE uses orthogonal frequency-division multiple ac-

cess (OFDMA). The frequency domain is divided into

non-overlapping sub-channels of 180 kHz and the time

domain in slots with a duration of 1 ms. These subdivi-

sions of time and frequency are referred to as scheduling

resources (SRs) in this paper. The SRs are distributed

among all ongoing sessions by a scheduling algorithm

which is implemented at the eNB. In this paper we as-

sume a simple scheduler that makes optimal use of the

available resources (i.e. SRs will only be left unused if

there is no data to send). In case there are less SRs
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available than there are required, the scheduler divides

the available SRs among the users, proportional to the

amount of SRs they require. The number of SRs a user

needs depends on its location. This means that when a

user moves around in a cell, the number of SRs that are

needed to send a certain amount of bits towards that

user will change.

The total amount of SRs that are needed for all

active users can be calculated as follows. Suppose rk
is the required bitrate by user k and bk is the amount

of bits that can be sent towards that user in a single

SR. The average number of SRs per second (nk) that

are needed by user k is given by: nk = rk
bk

. The total

amount of SRs that are needed in order to serve all users

is: R =
∑
k nk =

∑
k
rk
bk

. Note that, using the scheduler

described above, the cell capacity can be estimated as

follows. If the required number of SRs per second is

smaller than the available amount of SRs per second

(R < RA), the factor RA
R has been added to take into

account the capacity of unassigned SRs. In this case

each user will be given the bit rate it requires and the

cell capacity is defined as C = RA
R

∑
k rk. If there are

insufficient SRs the scheduler will divide the available

amount of resources among the users, proportionally

to the number of SRs they require. I.e. the amount of

SRs a user k receives will be nk
R RA and therefore the

cell capacity is given by C =
∑
k
RA
R bknk = RA

R

∑
k rk.

So, in either case, the cell capacity is given by: C =
RA
R

∑
k rk.

3 General Model

In order to model that the cell capacity varies depend-

ing on the location of the users we consider a single cell

that is divided into N concentric rings called zones,

where zone 1 is the outermost zone (see Fig. 2). De-

note by ρi the bits transmitted per SR to a user in

zone i (with ρ1 < ρ2 < · · · < ρN ). The cell has RA
SRs available per second and an active user requires a

bitrate of rk = r bits per second to fulfil its QoS re-

quirements. Therefore, the number of SRs per second

that a user needs to achieve its required bitrate r in

zone i is: si = r
ρi

.

For evaluating the performance of the models, two

performance measurements are defined. These are the

total blocking probability (PT ) and the low QoS prob-

ability (PQoS). The total blocking probability is the

probability that a session that arrives is blocked by the

AC. The low QoS probability is the fraction of time

that active users experience a low QoS, i.e. the bitrate

they receive is lower than r.

N. . .1

λ2

µ1

λN

µN−1

Fig. 2 Different zones with transition rates.

3.1 Admission Control Policy

In order to guarantee a minimum QoS (i.e. a minimum

bitrate of r) for the users that are in the system, the

acceptance of new arrivals is controlled by an AC policy.

Let f ∈ [0, 1] denote the AC threshold that determines

which fraction of resources under which new sessions

are accepted by the AC algorithm. A new session is

accepted if after accepting the session there would still

be more than (1− f)RA SRs available.

Therefore, to decide on the acceptance of a new ses-

sion in zone i, the following decisions are taken:

R+ si

{
≤ fRA session accepted

> fRA session blocked
(1)

Once a user is admitted to the system we assume

that it cannot be removed before its session ends. If

a user makes an outward zone-transition, it can hap-

pen that more SRs than there are available are needed

(R > RA) since users need more SRs in the destination

zone than in the zone where they came from to main-

tain their bitrate. In this case, the scheduler will give

all the users a share of the available SRs that is propor-

tional to the amount they requested, as is mentioned

in Section 2.2. So all users will receive a lower bitrate

than the required r, hence all users will be served with

a lower QoS.

3.2 AC optimisation algorithm

In this paper we will also study the effects of an algo-

rithm (which will be referred to as the AC optimisation

algorithm) that tunes the parameter f of the AC al-

gorithm. The goal of this algorithm is to dynamically

adapt the parameters of the AC algorithm to changes

in the environment. When for instance the load is high

more resources will be reserved for ongoing sessions

while when the load is low, more new sessions will be

admitted to the cell.
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The optimisation algorithm used in this paper will,

at certain time instances, check the current load of the

system. Based on this load the AC optimisation algo-

rithm decides how it will update the parameter f . If, on

the time instances the load is checked, the load is high,

f will be lowered in order to reserve more resources for

ongoing sessions while blocking more new sessions. If on

the other hand the load is considerably low, meaning

that only little resources are in use, f will be raised as

to allow more sessions to the system and have a higher

resource utilisation.

The load is considered to be high when there are

insufficient resources available to serve all sessions that

are admitted to the cell with their required bitrate r,

i.e., when R > RA. The load is considered to be con-

siderably low when the total amount of resources that

are in use is less than a certain fraction g of the frac-

tion f of the resources under which new sessions are

accepted by the AC algorithm, i.e., when R < fgRa.

The fraction g is a system parameter with a predefined

value. The raising and lowering of f is done in discrete,

evenly sized steps denoted by the parameter ∆f . The

parameter f is also bounded by a lower and upper limit,

denoted fm and fM respectively. The number of differ-

ent discrete values that f can take is denoted by nf . If

fm denotes the lower limit of f , the upper limit of f is

fM = fm + (nf − 1)∆f .

The algorithm that decides whether f is raised or

lowered is given by:

R

RA


> 1 f ← max(f −∆f, fm)

< fg f ← min(f +∆f, fM )

otherwise leave f unchanged

(2)

4 Analytical Model

We first present the analytical model for the static AC

policy, later we will present an extension of this model

considering the AC optimisation algorithm.

4.1 Static AC algorithm

We model the proposed system with the static AC pol-

icy using a multidimensional continuous-time Markov

chain (CTMC), where the system state vector is de-

scribed by the N -tuple x = (x1, . . . , xN ), where xi rep-

resents the number of users in zone i. Since the number

of bits that can be transmitted per SR is the highest

for a user in zone N , the maximum number of sessions

M that can be present in the system is determined by

the maximum number of sessions accepted in this zone

when there are no active users in the other zones. The

set of feasible states is thus given by:

W :=

{
x : xi ∈ N;

N∑
i=1

xisN ≤ fRA

}
. (3)

The total number of SRs that are needed per second to

serve all the users at the required bitrate r when the

system is in state x is represented by R(x) =
∑N
i=1 xisi.

For the sake of mathematical tractability we make

the common assumptions that new sessions arrive ac-

cording to a Poisson arrival process with arrival rate

ε and exponentially distributed session durations with

rate γ. Assuming uniformly distributed traffic, if AT is

the total area of the cell and Ai is the area correspond-

ing to zone i (i.e. AT =
∑
iAi), we can consider that

the arrival rate for new sessions in zone i is εi = Ai
AT
ε.

We checked this assumption with simulations for the

random walk mobility model that will be described in

Section 5.

The zone residence time, i.e the time that a user

stays in a certain zone before entering another one, is

also assumed to be exponentially distributed with rate

λi for transitions from zone i to zone i − 1 where i =

2, . . . , N and µi for transitions from zone i to zone i+1

where i = 1, . . . , N − 1 (see Fig. 2). We assume that

the users start their sessions inside the cell and do not

leave the cell until their session is finished.

The function ai(x) denotes whether a session that

arrives in zone i when the system is in state x is ac-
cepted by the AC algorithm or not (ai(x) = 1 means

that the session is accepted and ai(x) = 0 means that

the session is blocked).

Figure 3 shows a CTMC for N = 2 as an example.

The notation has been simplified as ai(x) = ai. This

system has only two zones i = 1, 2 and therefore one

incoming rate µ1 and one outgoing rate λ2. Recall that

M is the maximum number of users that can be ac-

tive in the system. If we define phases as the number of

users in zone i = 2 and levels as the number of users in

zone i = 1, we can study the model as a finite level-de-

pendent quasi-birth-and-death (QBD) process [14] with

M+1 levels where level h (h = 0, . . . ,M) has M+1−h
phases. Therefore we can construct the transition rate

matrix Q with a block-tridiagonal form, see (4). The

first row of blocks corresponds to level h = 0, the sec-

ond row of blocks to level h = 1, etc., where blocks

Qh
1 correspond to transitions between phases in level

h, blocks Qh
0 to transitions from level h to level h + 1

and blocks Qh
2 to transitions from level h to level h−1.
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Fig. 3 Transition diagram of the bi-dimensional model.

Q =



Q0
1 Q0

0 0 0 0 · · ·
Q1

2 Q1
1 Q1

0 0 0 · · ·
0 Q2

2 Q2
1 Q2

0 0 · · ·
. . .

. . .
. . .

· · · 0 0 QM−1
2 QM−1

1 QM−1
0

· · · 0 0 0 QM
2 QM

1


(4)

Note that the blocks of Q have different sizes for

different levels h. The total size of the transition rate

matrix Q for N = 2 is:

M2
T =

M∑
h=0

M + 1− h =
M2 + 3M + 2

2
.

In the case of N = 3 zones, we can define a layered-

level structure with phases and 2 level layers, where

phases are defined as the number of users in zone i = 3,

low-levels as the number of users in zone i = 2 and

high-levels as the number of users in zone i = 1. The

model is a three-dimensional finite QBD process where

the transition rate matrix Q again follows the structure

of (4). Moreover the block matrices Qh
0 , Qh

1 and Qh
2 are

also constructed with a block-tridiagonal form, see (5),

(6) and (7).

Qh
1 =


Ah,0

1 Ah,0
0 0 · · ·

Ah,1
2 Ah,1

1 Ah,1
0 · · ·

. . .
. . .

. . .

· · · 0 Ah,M−h
2 Ah,M−h

1

 (5)

Qh
0 =


Bh,0

1 0 0 · · ·
Bh,1

2 Bh,1
1 0 · · ·

. . .
. . .

· · · 0 0 Bh,M−h
2

 (6)

Qh
2 =


Ch,0

1 Ch,0
0 0 · · ·

0 Ch,1
1 Ch,1

0 · · ·
. . .

. . .

· · · 0 Ch,M−h
1 Ch,M−h

0

 (7)

Note that the blocks have different sizes for differ-

ent levels h and l. Blocks Ah,l
1 correspond to transi-

tions among phases inside high-level h and low-level l,

blocks Ah,l
0 correspond to transitions from low-level l

to low-level l+1 inside high-level h and blocks Ah,l
2 cor-

respond to transitions from low-level l to low-level l−1

inside high-level h. Blocks Bh,l
1 correspond to transi-

tions from high-level h to high-level h+1 with low-level

l, blocks Bh,l
2 correspond to transitions from high-level

h to high-level h + 1 and from low-level l to low-level

l− 1. Blocks Ch,l
1 correspond to transitions from high-

level h to high-level h− 1 with the same low-level l and

blocks Ch,l
0 correspond to transitions from high-level h

to high-level h−1 and from low-level l to low-level l+1.

For more details see Appendix A. The total size of the

transition rate matrix Q is:

M3
T =

M∑
h1=0

M−h1∑
h2=0

M − h1 + 1− h2 =

=
2M3 + 12M2 + 22M + 12

12
.
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This block design can be generalised to any number

of zones N by constructing matrix blocks inside matrix

blocks with N − 1 different level layers.

To solve the finite QBD Markov process and obtain

the steady state vector π we use the linear level reduc-

tion (LLC) algorithm [13]. Basically, this algorithm has

two stages. First, the state space is reduced by remov-

ing one high-level at each step until there is a Markov

process on the last high-level left. That Markov process

is solved and the stationary vector is constructed in the

second stage by adding back one high-level at each step.

Note that despite the rate matrices being large, their

sparseness makes the computations feasible. The com-

plexity of the algorithm grows with N as the size of the

transition matrix is O(MN ).

Let us denote by Pi the blocking probability for new

arrivals in zone i and the total blocking probability in

the system by PT . Then:

Pi =
∑
x∈W

(1− ai(x))π(x); PT =

∑N
i=1 εiPi
ε

. (8)

Let I(x) denote the indicator function which takes

the value 1 when R(x) > RA.The low QoS probability

is then given by:

PQoS =
∑
x∈W

I(x)π(x). (9)

4.2 AC optimisation algorithm

The system with the AC optimisation algorithm is also

modelled using a multidimensional CTMC. In this case

the system state vector is described by the (N + 1)-

tuple x = (x1, . . . , xN , f). In this system state vector

xi represents the number of users in zone i and f rep-

resents the value of the AC threshold which can take

the values fm, fm +∆f , fm + 2∆f , . . . , fM . The inter-

vals between two optimisations, i.e., the intervals after

which Eq. (2) is checked and the appropriate action is

taken, are considered to be exponentially distributed

with mean 1/η.

As with the static algorithm, the number of bits that

can be transmitted per SR is the highest for a user in

zone N and the maximum number of sessions M in

the system is determined by the maximum number of

sessions accepted in zone N when there are no active

users in the other zones and f = fM , the upper limit

of f . The set of feasible states is thus given by:

W :=

{
x : xi ∈ N,

N∑
i=1

xisN ≤ fMRA;

f ∈ {fm, fm +∆f, . . . , fM}
}
.

We use the same system parameters and make the

same assumptions as when the static AC algorithm is

used.

Again, we can study the model as a finite level-de-

pendent QBD process. In the case of N = 3 zones, the

model is a four dimensional finite QBD process where

the transition rate matrix Q follows the structure of

(4). But in this case, we define a layered-level struc-

ture with phases and 3 level layers, where the phases

are defined as the value of f , low-levels as the number

of users in zone i = 3, medium-levels as the number

of users in zone i = 2 and high-levels as the number

of users in zone i = 1. Thus, the block matrices Qh
0 ,

Qh
1 and Qh

2 also follow the block design defined in (5),

(6) and (7). Moreover, the matrices Ah,m
0 , Ah,m

1 and

Ah,m
2 follow again a block design, as defined in (10),

(11) and (12) respectively, where p = h+m. For more

details see Appendix B.

Ah,m
1 =


Dh,m,0

1 Dh,m,0
0 0 · · ·

Dh,m,1
2 Dh,m,1

1 Dh,m,1
0 · · ·

. . .
. . .

. . .

· · · 0 Dh,m,M−p
2 Dh,m,M−p

1


(10)

Ah,m
0 =


Eh,m,0

1 0 0 · · ·
Eh,m,1

2 Eh,m,1
1 0 · · ·

. . .
. . .

· · · 0 0 Eh,m,M−p
2

 (11)

Ah,m
2 =


F h,m,0
1 F h,m,0

0 0 · · ·
0 F h,m,1

1 F h,m,1
0 · · ·

. . .
. . .

· · · 0 F h,m,M−p
1 F h,m,M−p

0


(12)

The matrix Ah,m
1 is a square matrix of size nf (M+

1 − p) × nf (M + 1 − p), the size of Ah,m
0 is nf (M +

1 − p) × nf (M − p) and the size of Ah,m
2 is nf (M +

1 − p) × nf (M + 2 − p). Note that Ah,m
0 and Ah,m

2
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are not square matrices. The total size of the transition

rate matrix Q is:

MA
T =

M∑
h1=0

M−h1∑
h2=0

nf (M − h1 + 1− h2) =

= nf ·
2M3 + 12M2 + 22M + 12

12
.

This block design can be generalised to any number

of zones N by constructing matrix blocks inside matrix

blocks with N different level layers.

The blocking probability Pi for new arrivals in zone

i, the total blocking probability in the system PT and

the low QoS probability PQoS are again given by (8)

and (9).

5 Simulation model

In order to verify the mobility and session duration

modelling assumptions made in the analytical model

and to verify the results obtained with the analytical

model, simulations that model the mobility and the

session duration of the users more realistically are per-

formed. In the simulations, sessions are generated ac-

cording to a Poisson process with arrival rate ε. The

duration of a session is, unlike in the analytical model,

chosen from a log-normal distribution as this distribu-

tion more realistically models the duration of sessions

[12]. The mean of this log-normal distribution is taken

equal to 1/γ and the variance to 1/γ2, i.e. the log-

normal parameters are chosen such that this log-nor-

mal distribution has the same mean and variance as
the exponential distribution considered in the analyt-

ical model. When a session is generated, it is placed

uniformly in the cell and is subjected to AC. If it is ad-

mitted to the cell, it starts moving around. Users move

around according to a random walk mobility model [7].

This means that when a session is started, it chooses a

direction φ (in radians) uniformly distributed in the in-

terval [0, 2π[ and starts moving in the chosen direction

at a fixed velocity v. After the user has travelled over a

fixed distance d, it again chooses a direction and starts

moving in the newly chosen direction. This is repeated

until the session finishes and the user is removed from

the system. When a user reaches the boundary of the

cell, it bounces against the circular edge and continues

its path in the reflection direction. Thus, the residence

time in each zone is not modelled using random distri-

butions. Instead, transitions between zones occur when

a user crosses the border of a zone.

The session blocking probability (PT ) is calculated

by counting the total number of generated sessions and

the number of sessions that are dropped by AC and di-

viding the latter by the former. The low QoS probability

is calculated by recording the time that the system has

a low QoS and dividing it by the total simulation time.

In the simulation model of the AC optimisation al-

gorithm, the optimisation algorithm, when enabled, will

check the load at regular time instances which are mul-

tiples of 1/η. At these time the test of Eq. (2) will be

performed and, if necessary, the appropriate action will

be taken. In contrast to the analytical model, the sim-

ulation model uses fixed optimisation intervals; this is

because fixed-length intervals are more commonly used

in reality than exponentially distributed ones.

6 Results

In this section we present the results of a comparative

study between the analytical and the simulation mod-

els. We also discuss the performance results of the AC

scheme presented in Section 3.1 and the AC optimisa-

tion algorithm presented in Section 3.2. Different sce-

narios were simulated for various settings of the param-

eters. In these simulations the mean session inter-arrival

time (1/ε), mean session duration (1/γ), distance trav-

elled by the users in a single leg of the mobility model

(d) and, in case of the static algorithm, AC threshold

(f) were varied.

In the simulation users move around with a cer-

tain velocity and distance travelled in a single leg of

the mobility model. The rates λi and µi that are used

in the analytical model only depend on those param-

eters and the size of the zones. In order to determine

these transition rates, simulations with only one user

were executed. In these simulations a single user walks

around without starting any sessions. Each time the

user crosses the border of a zone, the event is recorded

and at the end of the simulation, the mean transition

rates are calculated.

6.1 Model parameters

The parameters that are fed into the analytical and

simulation models are based on the evaluation scenar-

ios described in [15]. The carrier frequency fc is chosen

to be 2 GHz, the pathloss model that is associated with

this frequency is L = 37.6 log10(D) + 128.1, where D is

the distance between the eNB and the UE. The oper-

ating bandwidth is 5 MHz which means that there are

25 sub channels of 180 kHz (plus guard band), resulting

in 25000 SRs per second. We model the traffic as a fluid

flow with a bitrate of 128 kbit/s for scenarios involving
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only the static AC algorithm and 256 kbit/s for sce-

narios involving the AC optimisation algorithm. Unless

otherwise indicated, we consider v = 30 km/h, d = 30 m

1/γ = 300 s, 1/ε = 3 s and f = 1. The radii of the

zones can be determined from the maximum bitrates

in the zones. Using the attenuated Shannon bound [5],

the minimum SIR that is needed to achieve the bitrate

corresponding to a MCS can be calculated according to

(13) where βi is the bitrate per Hertz in zone i and α

is the attenuation factor which is 0.6 [5]:

SIRi = 2
βi
α − 1. (13)

Combining this equation with the pathloss model

from [15] mentioned above, not taking noise into ac-

count and assuming that for every direction the inter-

ference comes from a single source at a distance Ds2s

from the SeNB with the same transmit power (PTx) as

the SeNB, an expression for the SIR (in the logarithmic

domain) at a given distance from the SeNB (D) can be

constructed:

SIR = PTx − LS − (PTx − LI) = LI − LS
= 37.6 log10(Ds2s −D) + 128.1

− (37.6 log10(D) + 128.1)

= 37.6 log10

(
Ds2s

D
− 1

) (14)

where LS is the pathloss of the signal and LI the

pathloss of the interference. The site-to-site distance

Ds2s is set to 500 m, this inter-site distance is related

to cells in urban environments. As can be seen from

(14) the SIR at a given distance from the SeNB does

not depend on the transmit power of the eNBs, using

the assumptions made in this paper. From (14) the ra-

dius Di of zone i, given the SIR can be calculated:

Di =
Ds2s

10
SIRi
37.6 + 1

. (15)

By combining (13) and (15) the radius of a zone given

the bitrate of the MCS can be calculated.

Ideally, 15 zones should be considered, each corre-

sponding to a single MCS. Since using all 15 different

MCSs would produce too much computational over-

head, the cell was instead divided in 3 zones with equal

areas (i.e. the size of each zone is 1
3 of the size of the

cell), where the ρi of each zone is calculated considering

the zones that correspond to the different MCSs. The

cell border itself coincides with the circle on which the

SIR is 0 dB. As the 0 dB border is in the middle between

the SeNB and a NeNB, this border lies on Ds2s

2 = 250 m

and it is inside the zone that corresponds to MCS 10.

The number of bits per SR that is used in each of these

zones is the weighted average number of bits per SR of

the areas that overlap with the 3 different zones.

For the AC optimisation algorithm ∆f is set to 0.1

and fm and fM are set to 0.5 and 1 respectively. This

means that the value of f can take the values 0.5, 0.6,

0.7, 0.8, 0.9 and 1. The mean optimisation interval 1/η

is set to 60 s. The value of the optimisation threshold

g is set to 0.8.

A summary of all the model parameters is given in

Table 2.

Table 2 A summary of the model parameters

Parameter Symbol Value

Site-to-site distance Ds2s 500 m

Available resources RA 2500 SR/s

Carrier frequency fc 2 GHz

Operating bandwidth fBW 5 MHz

Attenuation factor α 0.6

Traffic source rate r 128 kbit/s

256 kbit/s

Mean session duration 1/γ 300 s

Mean session i/a time 1/ε 3 s

AC threshold f 1

Optimisation threshold g 0.8

Minimum AC threshold fm 0.5

Maximum AC threshold fM 1

AC threshold step ∆f 0.1

User velocity v 30 km/h

Mobility distance d 30 m

Mean optimisation interval 1/η 60 s

Radius zone 1 D1 250 m

Relative area zone 1 a1 33 %

Bits/SR zone 1 ρ1 154.81

Radius zone 2 D2 204.12 m

Relative area zone 2 a2 33 %

Bits/SR zone 2 ρ2 349.87

Radius zone 3 D3 144.33 m

Relative area zone 3 a3 33 %

Bits/SR zone 3 ρ3 466.59

6.2 Numerical results

In this section numerical results obtained with both

the analytical and simulation models are presented and

compared. All simulation results have been obtained

by running 10 simulations per point. Fig. 4 shows the

blocking probabilities PT while varying the session in-

ter-arrival time (1/ε). The results of the analytical

model are represented using a solid line while the re-

sults of the simulations are represented using crosses.
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Increasing the mean inter-arrival time will cause the

blocking probability PT to decrease. When the mean

inter-arrival time is low, more sessions will be started

in a shorter amount of time. As there are only a fixed

number of resources available, this will cause more ses-

sions to be blocked by the system resulting in a higher

blocking probability. As can be seen in Fig. 4, the re-

sults obtained with the analytical model and the simu-

lations are very similar.

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14

B
lo
ck

in
g
p
ro

b
a
b
il
it
y

Session inter-arrival time (s)

Analytical

Simulation

Fig. 4 Blocking probabilities for various mean session inter-
arrival times.

Also the low QoS probability PQoS obtained with

the analytical model and with the simulations are very

similar as can be seen in Fig. 5. As with the blocking

probabilities, the QoS is worse when the session inter-

arrival time is low than when the session inter-arrival

time is high. The reason that the probability of a low

QoS is higher when the session inter-arrival time is low

is a consequence of the varying cell capacity: as the AC
threshold f is set to 1 in these results, the system will be

filled up until all SRs are used, implying that whenever

the variations in the cell capacity cause more resources

to be needed, the system will no longer be able to fulfil

the QoS needs of the users.

Fig. 6 shows the total blocking probability when

the mean session duration is varied. When sessions are

longer (high 1/γ) more sessions will be blocked as ac-

cepted sessions will be active in the system (and thus

require resources) for a longer time. For the same reason

the low QoS probabilities are higher when the session

duration is longer as can be seen in Fig. 7. As with the

case in which the mean inter-arrival time is varied, the

results of the analytical model and the simulations are

very similar in both figures.

Fig. 8 shows the same as Fig. 6 but this time the

blocking probabilities of the individual zones are shown

instead of the blocking probability for the entire cell

(the legend does not discriminate between the analyti-

cal and the simulation model for presentation purposes,
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Fig. 5 Low QoS probability for various mean session inter-
arrival times.
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Fig. 6 Blocking probabilities for various mean session dura-
tions.
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Fig. 7 Low QoS probabilities for various mean session dura-
tions.

but again the lines correspond to the results of the an-

alytical model and the crosses to the results of the sim-

ulation model). As can be seen in this figure the ana-

lytical and simulation results for the individual zones

again match very accurately, meaning that the analyt-

ical model is also accurate for the individual zones and

not only for the entire cell.
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Fig. 8 Low QoS probabilities in the individual zones for var-
ious mean session durations.

6.3 Deviations between the analytical model and the

simulations

Although the results obtained with the analytical and

simulation models fit very well, there are occasions

where there are deviations between both models. One

of the cases in which the results of the analytical model

and the simulations differ is when the distances trav-

elled by the users in a single leg of the random walk

mobility model (d) are either very short or very long

in comparison to the radii of the zones. An example of

this can be seen in Fig. 9. In this figure, the distance is
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Fig. 9 The blocking probabilities for various distances trav-
elled by the users.

varied between 1 m and 512 m (note that the cell radius

is 250 m). As can be seen in this figure, the differences

between the results obtained from the analytical model

and the simulations are similar when the distance d

lies between 10 m and 100 m. When d is either shorter

or longer the deviations between both models become

bigger. In the case of short d, this deviation is because

users that are close to the border of a zone will cross

the border of the zone many times while users that are

further away from the border will most likely already

have finished their session before they make a transi-

tion because the short distance causes them to remain

at nearly the same location. In the case of long d, this

means that the distance that is travelled by the users

is bigger than the radii of the zones and that the users

will cross the zones more than once before choosing a

new direction. This in turn has as a consequence that

the time between entering a zone and leaving it again is

bounded by the minimum and maximum distances that

can be travelled in a zone in a straight line, divided by

the velocity of the users. The time between entering and

leaving a zone thus can no longer be either very long or

very short as users will travel in a straight line through

the zone and will not be able to change direction within

a zone. This will have an influence on the distribution

of the transition times. Figure 10 shows the distribution

of the time users spend in zone 2 before going to zone

1. The times are measured in simulations where the

distance travelled in a single leg are respectively 1 m,

32 m and 512 m. The plots also contain the probability

density function (PDF) of the exponential distribution

that is used in the analytical model to model the time

that a user stays in that zone. As can be seen in the

figures, the distribution of the times resembles the ex-

ponential distribution best when the travelled distance

is around 30 m.

6.4 Analysis of the AC algorithm

In this section we briefly evaluate the AC algorithm

that was used in this paper using the developed analyt-

ical and simulation models. Fig. 11 shows the blocking

probabilities for various values of the AC threshold f .

As can be seen in this figure the blocking probability

decreases as the AC threshold increases. When the AC

threshold increases, more sessions will be allowed to the

cell, causing the blocking probability to decrease.
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Fig. 11 Blocking probabilities for various AC thresholds f .
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Fig. 10 Distribution of the time spent in zone 2.

When looking at the low QoS probability in Fig. 12

the QoS remains good until f reaches a value of more

than 80 %. When f is higher than this value, the varying

cell capacity causes the cell capacity to drop below the

required capacity resulting in a low QoS. This shows

the effects of the time-varying cell capacity on the QoS

experienced by the active users.
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Fig. 12 Low QoS probabilities for various AC thresholds f .

6.5 Analysis of the AC optimisation algorithm

In this section we use both the analytical and simula-

tion models to examine the performance of the AC op-

timisation algorithm. For this study, the blocking prob-

ability and low QoS probability are plotted against dif-

ferent values of the session duration. The results ob-

tained with the AC optimisation algorithm are then

compared against results obtained with the static algo-

rithm for various values of the AC threshold f in or-

der to assess the benefits of an optimisation algorithm

relative to a static one. The values of f that are con-

sidered for the static algorithm are the values that can

be assigned to f by the optimisation algorithm, i.e.,

f ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Fig. 13 shows the blocking probability for both the

AC optimisation algorithm and the static algorithm for

various values of f . The slope of the blocking probabil-

ity curve obtained with the AC optimisation algorithm

is steeper than the slopes of the blocking probability

curves of the static algorithm for short session dura-

tions. For long session durations the slope of the block-

ing probability curve obtained with the AC optimisa-

tion algorithm is flatter than the slope of the blocking

probability curves obtained with the static algorithm.
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Fig. 13 Blocking probabilities for the AC optimisation algo-
rithm.

When looking at the low QoS probability shown in

Fig. 14 the AC optimisation algorithms even shows a

more aberrant behaviour: in contrast to the static al-

gorithm for which the low QoS probability rises as the

session duration becomes longer, the bad QoS probabil-

ity of the AC optimisation algorithm has a maximum at

a mean session duration of 120 s and decreases again for

longer session durations. The reason for the maximum

around a session duration of 120 s is that in case the ses-

sion duration is relatively short, high loads are unlikely

and the optimisation algorithm will raise the threshold

f to a high value. In the rare cases that the load does

become too high (i.e. R > RA), it will take the AC op-

timisation algorithm longer to react to this situation as

the threshold f should be lowered starting from a high

value while when the load is higher, the threshold will

already have a lower value and the algorithm will react
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swifter. When looking at the session inter-arrival time

instead of the session duration (Fig. 15) a similar kind

of behaviour can be observed. The trend in this plots is

however reversed as long inter-arrival times mean that

the load is lower while a high session duration means

that the load is higher.
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Fig. 14 Low QoS probabilities for various session duration
for the AC optimisation algorithm.
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Fig. 15 Low QoS probabilities for various inter-arrival time
for the AC optimisation algorithm.

The benefits of using an optimisation algorithm can

also be seen in Figs. 13, 14 and 15: the blocking prob-

ability and low QoS probability are low regardless of

the system parameters like the session duration or the

session inter-arrival time. For instance, in Fig. 14, the

low QoS probability of the adaptive algorithm stays low

for high session durations in contrast to the static al-

gorithm with f = 0.9 or f = 1 while for low session

durations the blocking probability is low for both the

optimisation algorithm and the static algorithm with

f = 0.9, 1. Meanwhile, the blocking probabilty for the

static algorithm for lower values of f is much higher

than that of the optimisation algorithm.

7 Conclusions

In this paper an analytical model that models the time-

varying cell capacity of cellular networks in general and

LTE networks in particular was described. The cell ca-

pacity in these systems changes over time as the MCS

that is used to send data to the users is changed de-

pending on the signal quality. User movement causes

the signal quality and thus the MCS to change over

time. The time-varying cell capacity in this paper is

modelled by dividing a cell in multiple concentric zones

in which a certain bitrate can be achieved when sending

data to the users in that zone. By assuming that the

times between users changing from one zone to another

are distributed according to an exponential distribution

and the session duration is exponentially distributed,

the system can be modelled using a CTMC. In order

to verify these assumptions, results obtained with the

analytical model in various scenarios were compared to

simulation results that were obtained from a simulator

that models the user mobility and the session dura-

tion more realistically. Results show that the analytical

model captures the user mobility very accurately and

that the assumption of exponentially distributed ses-

sion duration is also accurate. The developed models

were also used to investigate the performance of a sim-

ple AC scheme and that of an algorithm that optimises

the parameter of this AC scheme. The results obtained

from this study show that using an algorithm that op-

timises the parameters of the AC algorithm has better

performance than using fixed parameters. The analyt-

ical model can further be used to study the impact of

a varying cell capacity on the QoS experienced by the

user and for system design issues such as resource di-

mensioning.

7.1 Future work

The analytical that was developed in this paper can

be further extended with handovers to and from neigh-

bouring cells. This can be done by considering transi-

tions to and from the outermost zones coming from and

going to outside the cell. The model can also be used

to investigate the influence of the varying cell capacity

on other AC schemes and for evaluating the ability of

other AC optimisation algorithms to deal with these

variations.

A Static AC algorithm

In this appendix the matrices of the system with the static AC
algorithm where N = 3 are described. The whole analytical
model for this case is described in Section 4.1. Remember that
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the function ai(x) denotes whether a session that arrives in
zone i when the system is in state x is accepted by the AC
algorithm or not, ai(x) = 1 means that the session is accepted
and ai(x) = 0 means that the session is blocked. The notation
has been simplified as ai(x) = ai. The block matrices that
were not described in Section 4.1 are listed below. In these
matrices p = h+ l and the values of δi equal the opposite of
the sum of the other elements of the same row to make the
elements of each row of the transition rate matrix Q sum to
0.

A
h,l
1 =


δ0 a3ε3 0 0 · · ·
γ δ1 a3ε3 0 · · ·
0 2γ δ2 a3ε3 · · ·

. . .
. . .

. . .

· · · 0 0 (M − p)γ δM−p


where the size of A

h,l
1 is (M + 1 − p) × (M + 1 − p).

A
h,l
0 =


a2ε2 0 0 · · ·
λ3 a2ε2 0 · · ·
0 2λ3 a2ε2 · · ·

. . .
. . .

· · · 0 0 (M − p)λ3


where the size of A

h,l
0 is (M + 1 − p) × (M − p).

A
h,l
2 =


lγ lµ2 0 0 · · ·
0 lγ lµ2 0 · · ·

. . .
. . .

. . .

· · · 0 0 lγ lµ2


where the size of A

h,l
2 is (M + 1 − p) × (M + 2 − p).

B
h,l
1 =


a1ε1 0 0 · · ·

0 a1ε1 0 · · ·
. . .

. . .

· · · 0 0 a1ε1
· · · 0 0 0

 (16)

where the size of B
h,l
1 is (M + 1 − p) × (M − p).

The matrix B
h,l
2 is a diagonal matrix where the values

of the diagonal are equal to lλ2 and its size is (M + 1 − p) ×
(M + 1 − p).

C
h,l
1 =


hγ 0 0 · · ·
0 hγ 0 · · ·

. . .
. . .

· · · 0 hγ 0

 (17)

where the size of C
h,l
1 is (M + 1 − p) × (M + 2 − p).

The matrix C
h,l
0 is a diagonal matrix where the values of

the diagonal are equal to hµ1 and its size is (M + 1 − p) ×
(M + 1 − p).

B AC optimisation algorithm

When the AC optimisation algorithm described in Section
3.2 is considered, the analytical model has one more level
and hence one more block level than the analytical model for
the static AC algorithm with the same number of zones N ,
see Section 4.2. The functions t1(x) and t2(x) denote whether
the parameter f must be changed or not when the system is in
state x according to the AC optimisation algorithm in Eq. (2).
t1(x) = 1 and t2(x) = 0 means that the parameter f must be
increased, t1(x) = 0 and t2(x) = 1 means that the parameter
f must be decreased and t1(x) = 0 and t2(x) = 0 means
that f does not change. Note that t1(x) and t2(x) cannot
be 1 at the same time. The notation has been simplified as
t1(x) = t1 and t2(x) = t2. Remember that nf is the number of
the different discrete values that f can take and the intervals
after which the optimisation is performed are exponentially
distributed with mean 1/η. Also remember that p = h + m.
The block matrices for N = 3 that were not described in
Section 4.2 are listed below. Again, the values of δi equal the
opposite of the sum of the other elements on the same row to
make the elements of each row of the transition rate matrix
Q sum to 0.

D
h,m,l
1 =


δ0 t1η 0 0 · · ·
t2η δ1 t1η 0 · · ·
0 t2η δ2 t1η · · ·

. . .
. . .

. . .

· · · 0 0 t2η δnf


where the size of D

h,m,l
1 is nf × nf . Note that D

h,m,l
1 does

not depend on the levels, i.e. it is equal for all the (h,m, l)
levels.

The matrices D
h,m,l
0 , D

h,m,l
2 , E

h,m,l
1 , E

h,m,l
2 , F

h,m,l
1

and F
h,m,l
0 are diagonal matrices with size nf × nf ; the val-

ues on the diagonal are a3ε3, lγ, a2ε2, lλ3, mγ and mµ2 re-
spectively.

B
h,m
1 =



a1ε1 0 0 · · ·
0 a1ε1 0 · · ·

. . .
. . .

· · · 0 0 a1ε1
· · · 0 0 0

· · ·
...

...
...

· · · 0 0 0


where the number of rows with all elements 0 is nf and the

size of B
h,m
1 is (nf (M + 1 − p)) × (nf (M − p)).

The Matrix B
h,m
2 is a diagonal matrix where the values

of the diagonal are mλ2 and its size is (nf (M + 1 − p)) ×
(nf (M + 1 − p)).

C
h,m
1 =


hγ 0 0 0 0 · · · 0
0 hγ 0 0 0 · · · 0

. . .
. . .

. . .
. . .

· · · 0 hγ 0 0 · · · 0
· · · 0 0 hγ 0 · · · 0


where the number of columns with all elements 0 is nf and

the total size of C
h,m
1 is (nf (M + 1 − p)) × (nf (M + 2 − p)).

The matrix C
h,m
0 is a diagonal matrix where the values of

the diagonal are hµ1 and its size is (nf (M+1−p))×(nf (M+
1 − p)).
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