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Abstract 
 
In this paper, we formulate the material requirements planning problem of a first-tier supplier in an 
automobile supply chain through a fuzzy multi-objective decision model which considers three conflictive 
objectives to optimize: minimization of normal, overtime and subcontracted production costs of finished 
goods plus the inventory costs of finished goods, raw materials and components; minimization of idle time; 
minimization of backorder quantities. Lack of knowledge or epistemic uncertainty is considered in the 
demand, available and required capacity data. Integrity conditions for the main decision variables of the 
problem are also considered. For the solution methodology, we use a fuzzy goal programming approach 
where the importance of the relations among the goals is considered fuzzy instead of using a crisp definition 
of goal weights. For illustration purposes, an example based on modifications of real-world industrial 
problems is used. 
 
Keywords: Material requirements planning; uncertainty; fuzzy methods; integer programming. 
 

  
 
 
1 Introduction 
 
In Mula et al. (2006a, b), some of the approaches which predominate in the production planning and control 
field are evaluated, such as material requirements planning, hierarchical production planning (HPP), just-in-
time (JIT) and optimized production technology (OPT), and their pros and cons are stressed. From this 
analysis, the need for new systems which simultaneously consider the planning requirements of materials and 
capacities is concluded, and which enable to model the various uncertainty elements present in all the 
planning phases owing to the complex and dynamic nature of the relations between different supply chain 
members. In such contexts, where planning decisions involve resources and information from different 
supply chain entities, there are two main aspects which the decision maker must face: (1) conflictive 
objectives, which can arise given the nature of the operations (for example, minimization of costs and, 
simultaneously, higher level of customer service) and the supply chain structure, in which aligning the 
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objectives of various participants is generally a complex matter; (2) fuzziness at the aspiration and/or 
epistemic uncertainty levels or lack of knowledge of data (for instance, in demand). Therefore, it is important 
to design models which deal with problems in this area to enable the management of these two types of 
complexity (Torabi and Hassini 2008). A recent historical review of material requirements planning systems 
can be found in Olhager (2013). 

According to Mula et al. (2006b) and Peidro et al. (2009a), the literature provides various planning 
models under uncertainty. Those models defined by analytical approaches (Lee and Billington 1993; Leung 
et al. 2006; Sabri and Beamon 2000), simulation approaches (Chiang and Feng 2007; Hung and Chang 1999; 
Koh 2004; Suwanruji and Enns 2006, Li Sun et al. 2009) or hybrid approaches (based on the integration of 
analytical and simulation models) (Bookbinder et al. 1989; Jung et al. 2004; Lee et al. 2002) represent 
uncertainty in the supply chain based on probability distributions, which are generally based on historic data.  
Normally however, a material requirements planning model operates in an uncertainty scenario in which 
statistical data are not very reliable, or are not even available. It can scarcely admit that the future values of 
certain parameters, like demand and capacity, have a frequentistic nature and are, therefore, likely to be 
treated by a stochastic approach. So when statistical data are not very reliable or are not available, the 
determination-based models of these probability distributions may not be the best option. In this context, 
fuzzy mathematical programming can prove to be an alternative approach to model the different types of 
uncertainty inherent to production planning processes. Two main fuzzy mathematical applications can be 
highlighted, which have been extensively dealt with by the authors of this article. On the one hand, fuzzy 
mathematical programming can be employed to incorporate epistemic uncertainty or lack of knowledge in 
the input parameters to analytical models or fuzziness in their objectives (Mula et al. 2006c; Mula et al. 2007; 
Mula et al. 2008; Peidro et al. 2009b; Peidro et al. 2010b, Mula and Díaz-Madroñero 2012). On the other 
hand, fuzzy optimization can be used as a resolution technique of multiple-objective programming models 
(Peidro et al. 2009a, Torabi and Moghaddam, 2012). The literature contains other approaches to contemplate 
uncertainty in material requirements planning systems, such as fuzzy logic (Grabot et al. 2005; Barba-
Gutiérrez and B. Adenso-Díaz 2008, Guillaume et al. 2011), the stochastic control of inventories (Inderfurth 
2009) or parameterization (Hnaien at al. 2008, Louly et al. 2008, Louly and Dolgui 2012). We refer readers 
to Dolgui et al. (2013) and Aloulou et al. (2013) for additional reviews of uncertainty modeling in material 
requirements planning systems.  

For the purpose of contributing to the state of the art and application of models for production planning 
under uncertainty, this work solves a fuzzy multi-objective decision model for the material requirements 
planning problem in a first-tier supplier of an automobile supply chain. The need for this work arises mainly 
from the difficulty for some firms to properly quantify idle time costs and backorder costs (as required in the 
previous models by Mula et al. 2006c, 2007 and 2008) and to measure these aspects in idle time units and 
delayed product units. Thus, the objectives in conflict to simultaneously optimize are to: (i) minimize 
production (normal, overtime and subcontracting) and inventory costs; (ii) minimize the fuzzy idle time of 
production resources; (iii) minimize fuzzy backorder quantities. The aspiration levels of these three 
objectives can be considered fuzzy in nature because of the incompleteness and/or unavailability of the data 
required throughout the planning horizon, which could be subjectively obtained depending on the planner’s 
experience. In addition, due to the uncertain nature of demand and the flexible characteristic of the available 
and required capacity in a mass customization manufacturing context, both are considered uncertain in terms 
of lack of knowledge or epistemic uncertainty.  

The differences of this research to previous ones are mainly related to the application of a multi-objective 
approach for measuring different aspects of material requirements planning with other measure units rather 
than costs, which has been the traditional approach. This multi-objective approach also establishes fuzzy 
importance relationships among the different objectives instead of crisp relationships based on a weight 
method, which prevents the required weight being defined for each objective. Furthermore, the proposal 
provides a formulation to overcome infeasibility problems, which may arise from the use of equality 
constraints with integrity conditions and fuzzy numbers for the right-hand side. In order to address the 
equality or inequality constraints with the fuzzy numbers of the proposed model, we firstly propose the 
approach by Jiménez (1996) and Jiménez et al. (2007) based on ranking fuzzy numbers which, by using 
fuzzy numbers for uncertain parameters, transforms the initial model into a parametric model with fuzzy 
objectives and crisp constraints. Diaz-Madroñero et al. (2012) show how the approach by Jiménez (1996) and 
Jiménez et al. (2007) works efficiently for fuzzy linear programming problems. Yet for fuzzy integer linear 
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programming problems with equality constraints, where the integrity condition is imposed on the solution, 
the solution involves an unfeasibility problem. To face it, we propose a modified version of the approach of 
Jiménez et al. (2007). Next to solve the fuzzy multi-objective model, we use the approach by Akoz and 
Petrovic (2007), which establishes the relative preferences of goals through fuzzy preference relations. For 
other solution methodologies to solve fuzzy multiple objective approaches, readers are referred to 
Zimmerman (1978), Lai and Hwang (1993), Li et al. (2006), Torabi and Hassini (2008) and Selim and 
Ozkarahan (2008). Other multi-objective applications for production planning may also be found in Noori et 
al. (2008), Peidro et al. (2012) and Mohapatra et al. (2013). 

The rest of this article is arranged as follows: Section 2 formulates a multi-objective model for the 
material requirements planning problem in a first-tier supplier of an automobile supply chain. Section 3 
describes its solution methodology. Section 4 validates the proposed model by using an example based on a 
real-world problem. Section 5 offers conclusions and further research. 

 
 
2 Fuzzy multi-objective model formulation for material requirements planning 

 
2.1 Assumptions and nomenclature 

 
This section formulates the multi-objective model for material requirements planning. This model considers 
the following assumptions: 

 
 A multi-product manufacturing environment. By the term product, we refer to the finished goods, 

components, raw materials and subassemblies structured in a bill of materials.  
 A multi-level production where the subsets of components are assembled independently. 
 A multi-period planning horizon comprising a set of consecutive and integer time periods of the same 

length.  
 The lead time of a product is the number of the consecutive and integer periods required for their 

finalization.  
 The inventory of each product (finished good, raw materials and components) is the available volume 

at the end of a given period. 
 The backlog of the demand of a product at the end of a period is defined as the non-negative 

difference between cumulated demand and the volume of available product. 
 The master production schedule (MPS) which specifies the quantity to produce of each finished good 

in each planning horizon period, and the material requirements planning which provides the net 
requirements of raw materials and components for each planning period, are solved jointly. 

 Programmed receptions are contemplated. 
 Production capacity constraints.  
 Overtime limits.  
 Subcontracted products are assumed to ready exactly when required without lead time changes. 

 Fuzzy right-hand-side numbers for the demand, },,,{
~

4321 ititititit ddddd  , fuzzy technological 

coefficients for required capacity, },,,{
~

4321 iririririr ARARARARRA  and fuzzy technological 

coefficients for available capacity, },,,{
~

4321 rtrtrtrtrt CAPCAPCAPCAPPCA  .  

 
The nomenclature defines the indices, sets of indices, parameters and decision variables (Table 1). 
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Table 1. Nomenclature. 

Sets of Indices 
T   Number of periods in the planning horizon (t = 1…T) 
I   Number of products (i = 1…I) 
J   Number of parent products in the bill of materials (j = 1…J) 
R   Number of resources (r = 1…R) 

Decision Variables Data 
Pit Quantity of product i to be produced during 

period t  itd
~

 
Fuzzy market demand of product i during period t

INVTit Inventory of product i at the end of period t ij Required quantity of i to produce one unit of  
product j Bit Backlog of product i at the end of period t 

Tunrt Undertime hours of resource r during period t LTi Lead time of product i 

Tovrt Overtime hours of resource r during period t ovrt Overtime limits (in terms of percentage of normal 
production) of resource r during period t 

Tsubrt Subcontracting hours of resource r during period t SRit Scheduled receipts of product i during period t   

 
 INVTi0 Inventory of product i during period 0   

Objective Function Cost Coefficients Bi0 Backlog of product i during period 0 

cpit Variable cost of the normal production of a 
finished good unit or the purchase of a unit of raw 
material or component i 

  

ciit Inventory cost of a unit of product i Technological Coefficients 
ctovrt Overtime hour cost of resource r during period t 

irRA
~

 
Fuzzy required time of resource r for one unit of 
production of product i 

csubrt Subcontracting hour cost of resource r during 
period t rtPCA

~ Available capacity of resource r during period t 

 
The model formulation is as follows: 

 

     
  


R

r

T

t
rtrtrtrt

I

i

T

t
itititit TsubcsubTovctovINVTciPcpzMin

1 11 1
1  (1) 


 


I

i

T

t
itBzMin

1 1
2  (2) 


 


R

r

T

t
rtTunzMin

1 1
3  (3) 

 
Subject to 




 
I

j
ititjtjtijtitiitLTtiti dBSRPBINVTSRPINVT

i
1

1,,,1,

~
)(   it (4) 





I

i
rtrtrtrtirit PCATsubTovTunRAP

1

~~
  rt(5) 





I

i
iritrtrt RAPovTov

1

~
 

rt(6) 

0iTB
 

i (7) 

0,,,,, itititititit TsubTovTunBINVTP
 

irt (8) 
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ititit BINVTP ,,
 

it (9) 

 
There are three conflictive objectives to simultaneously optimize: z1 minimizes the total costs over the 

time periods that have been computed. Total costs include: the normal production costs, which consider the 
purchasing costs for raw material and components and the manufacturing costs for finished goods; inventory 
holding costs of finished goods; overtime production costs; and subcontracted production costs of finished 
goods; z2 minimizes deferred demand throughout the planning horizon, expressed in product units; and z3 
minimizes the idle time expressed in time units (hours). The model should minimize the resulting idle time 
by adjusting demand and by minimizing storage costs. 

The decision maker has imprecise aspiration levels for each objective function. Symbol “ ” is the 
fuzzified version of “=” and refers to the fuzzification of the aspiration levels related to each objective. 
Accordingly, Eqs. (1), (2) and (3) are fuzzy, and it is necessary for the decision maker to simultaneously 
optimize these conflicting objectives within the framework of imprecise aspiration levels by using a fuzzy 
goal programming (FGP) approach. 

The constraints originally proposed by Mula et al. (2006c, 2007 and 2008) have been extended in this 
proposal and are described as follows: Constraint (4) is the inventory balance equation for all the products. 
These equations take into account the backlogs which behave as negative inventory. It is important to 
highlight the consideration of programmed receptions, SRit, which guarantees the continuity of the production 
plan throughout the successive runs carried out in a given planning horizon. Demand is considered a fuzzy 
number. Constraint (5) establishes the available capacity for normal, overtime and subcontracted production. 
Both required and available capacities are considered fuzzy numbers. Constraint (6) provides the overtime 
limits in terms of a percentage of the normal production working time. A constraint has also been added 
(Constraint 7), which does away with delays during the last planning horizon period (T). The model also 
contemplates the nonnegativity constraints (8) for the decision variables. In this case, we consider 

to be integers, but they could change depending on the real-world problem to which the 

model is applied. A deterministic version of this model would imply all the objective functions (1)-(3) and 

constraints (4)-(9) by considering the itd
~

, irRA
~

 and rtPCA
~

crisp values, as follows: 3

~
itit dd  ; 

3

~
irir ARRA   and 3

~
rtrt CAPPCA  . 

 
3 Solution methodology 
 
3.1 Addressing the constraints with fuzzy numbers according to Jiménez et al. (2007) 
 
In this section, in order to address the equality or inequality relations among the fuzzy numbers of fuzzy 
constraints (4), (5) and (6), we propose the ranking fuzzy numbers approach by Jiménez (1996) and Jiménez 
et al. (2007) by considering trapezoidal fuzzy numbers in a similar manner to that applied in Peidro et al. 
(2010b). Evidently, it would simpler to defuzzify the fuzzy numbers intervening in the constraints from the 
beginning. However in our opinion, this would not be a genuine fuzzy approach, but would just be another 
way of assigning a crisp value to the magnitudes intervening in the problem. Accordingly, Dubois (2011) 
indicates that “the problem with fuzzy set methods extending existing ones is that, more often than not, the 
proposed handling of fuzzy intervals is itself ad hoc or so approximate that the benefit of fuzzification is lost. 
Moreover the thrust of fuzzy interval analysis is to provide information about the uncertainty pervading the 
results of the decision process. Some authors make an unjustified use of defuzzification that erases all 
information of this type. For instance the decision maker is asked for some figures in the form of fuzzy 
intervals so as to account for the difficulty to provide precise ratings, and then these ratings are defuzzified 
right away. Or the fuzzy intervals are propagated through the decision process but the final results are 
defuzzified in order to make the final decision ranking step easier. In such procedures it is not clear why 
fuzzy intervals were used in the first stand. The uncertainty pervading the ratings should play a role in the 
final decision-making process, namely to warn the decision maker when information is not sufficient for 
justifying a clear ranking of alternatives”. 



ititit BINVTP ,,
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Let us consider the following multi-objective linear programming problem with fuzzy parameters in the 
constraints:  
 

Min  1 2 kz z , z , ..., z  

s.t.    0,,...,1,
~~/

~
,

~
 xmibxaRxbANx ii

n                                                       (10) 

The possibility distribution of the fuzzy parameters is assumed to be characterized by fuzzy trapezoidal 
numbers. The expected interval of a fuzzy trapezoidal number (a1,a2,a3,a4), denoted )~(aEI , is calculated as 

follows (Heilpern, 1992): 

     



  432121 2

1
,

2

1
,)~( aaaaEEaEI aa                                                                             (11) 

 

 
We use a fuzzy relation to compare the fuzzy numbers according to (Jiménez, 1996). For any pair of fuzzy 

numbers a  and b , the degree  in which a  is bigger than b  is the following:  

        

2 1

2 1
1 2 2 1

2 1 1 2

1 2

0             if  0

   if 0

1 if  0

a b

a b
a b a b

a b a b

a b

E E

E E
a,b E E ,E E

E E E E

E E

  

 

         


 

                                     (12)     

where 1 2
a bE E  ,  and 1 2

b bE E  ,  are the expected intervals of a  and b . When  ,a b    we can say that 

a  is bigger than, or equal, to b , at least in a degree  and we can represent it by a b  . When 

 , 0.5a b   we can say that a  and b  are indifferent.  

Thus by applying the approach described by Jiménez et al. (2007), the problem (10) is transformed into 
the crisp equivalent parametric problem defined in (13). 

Min  kzzzz ...,,,~
21  

s.t.        1,0,0,,...,1,11 2121   xmiEExEE iiii bbaa  (13)  

where σ represents the degree to which at least all constraints i ia x b  are fulfilled; that is, σ is the feasibility 

degree of a decision x.  

If an equality type constraint is i ia x b  , given that 0 5i . ia x b   and 0 5i . ia x b  mean indifference, it could 

be represented by two inequalities, 2/a b  and 2/a b  , where represents the degree to which equality is 

fulfilled. Thus, similarly to what was done in (13), the fuzzy equality constraint: i ia x b  could be 

transformed into two equivalent crisp constraints: 


 2 1 2 11 1 1 0 0 1
2 2 2 2

i i i ia a b bE E x E E , i ,...,m, x , ,
                       

 

 1 2 1 21 1 1 0 0 1
2 2 2 2

i i i ia a b bE E x E E , i ,...,m, x , ,
                       

                                                 (14) 

where  represents the degree to which the equality is fulfilled. 
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Consequently, by applying this approach to the previously defined fuzzy multi-objective model for 
material requirements planning, and by considering trapezoidal fuzzy numbers for the uncertain parameters, 
we obtain the following parametric model in which parameter σ represents the degree of fulfillment of the 
fuzzy constraints (4), (5) and (6). 
 
Eq. (1)-(3) 
 
Subject to 
  




 
I

j
itjtjtijtitiitLTtiti BSRPBINVTSRPINVT

i
1

1,,,1, )(
 

 
22

1
22

4321 itititit dddd 






 






 

it (15) 




 
I

j
itjtjtijtitiitLTtiti BSRPBINVTSRPINVT

i
1

1,,,1, )(
 

 
22

1
22

2143 itititit dddd 






 






 it (16)

 



















 







 




I

i
rtrtrt

iriririr
it TsubTovTun

ARARARAR
P

1

4321

22
1

22


 

 22
1

22
4321 rtrtrtrt CAPCAPCAPCAP 







 






 rt (17) 



















 







 




I

i
rtrtrt

iriririr
it TsubTovTun

ARARARAR
P

1

2143

22
1

22



 

 22
1

22
2143 rtrtrtrt CAPCAPCAPCAP 







 






 rt (18) 

  





 




 
 2

1
2

4321

1

iriririr
I

i
itrtrt

ARARARAR
PovTov 

 rt (19) 

 
and Eq. (7)-(9) 
 
 
3.2 Modified approach of Jiménez et al. (2007) for equality constraints 
 
Diaz-Madroñero et al. (2012) show that the approach by Jiménez et al. (2007) applied to fuzzy integer linear 
programming problems, where the integrity condition is imposed on the solution, can present an unfeasibility 
problem of the solution. Here it happens because the right-hand side of Constraints (15) and (16) are equal 
fractional values, while the left-hand side of these constraints must be integer values, which could be 
infeasible for certain σ values. To face this, we propose substituting the right-hand-side terms of the 
constraints (15-18) for the corresponding closest integer values. Therefore, we have to add new auxiliary 
decision variables to ensure that the right-hand side of the constraints (15-18) can be transformed into integer 
and fractional values in order to achieve the closest integer values. The previous model is modified as 
follows: 
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Eq. (1)-(3), and 

 
 


I

i

T

t

ABS
it

ABS
it ddzMin

1 1
4 21  (20) 

 
Subject to 
 

22
1

22
11 4321 ititititDEC

it
INT
it

dddd
dd








 





 it (21) 

22
1

22
22 2143 ititititDEC

it
INT
it

dddd
dd








 





 it (22) 




 
I

j

INT
ititjtjtijtitiitLTtiti dBSRPBINVTSRPINVT

i
1

1,,,1, 1)(  it (23) 




 
I

j

INT
ititjtjtijtitiitLTtiti dBSRPBINVTSRPINVT

i
1

1,,,1, 2)(  it (24) 

ABS
it

DEC
it dd 11   it (25) 

ABS
it

DEC
it dd 11   it (26) 

ABS
it

DEC
it dd 22   it (27) 

ABS
it

DEC
it dd 22   it (28) 

,02,1 INT
it

INT
it dd integer it (29) 

5.02,1 ABS
it

ABS
it dd  it (30) 

02,1 ABS
it

ABS
it dd  it (31) 

And Eq. (7)-(9) 
Eq. (17)-(19) 
 

where the right-hand side coefficients of Constraints (15) and (16) are represented by the sum of an 
integer variable and a real variable. Thus, the right-hand-side coefficient of Constraint (15) is the equivalent 

to the sum of INT
itd1 and DEC

itd1 . The same applies to Constraint (16) and INT
itd 2 and DEC

itd2 . Then, the 

right-hand-side coefficients of Constraints (15) and (16) are replaced with these integer variables in 

Constraints (23) and (24). Hence, DEC
itd1 and DEC

itd2 represent the deviation from the original values in 

Constraints (15) and (16) to the integer values in Constraints (23) and (24), and will be lower than 1. These 
deviations are expressed in a linear form of absolute value in Constraints (25-28) by incorporating variables

ABS
itd1 and ABS

itd 2 . Finally, the total sum of the absolute value of these deviations is added as a new objective 

function, z4, to be minimized.  
 
 
3.3 Fuzzy goal programming as a solution method 
 
The fuzzy aspiration levels of each objective must be established by bearing in mind the decision maker’s 
preferences. Nonetheless, and to help determine them, parameter σ or the degree that the constraints are 
fulfilled can be taken into account. The set of all the solutions which the constraints fulfil by at least one σ 
degree can be represented by  xF . By assuming that, for example, the minimum degree of fulfilment that 

the decision maker is willing to admit is σ =0.1, from this point, several values are given to parameter σ; for 
example σ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (32) 
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By considering kz  and kz  as the lower and upper limits for the fuzzy goals provided by the decision 

maker (DM), the fuzzy aspiration levels of each objective can be modelled by the fuzzy sets whose 
membership function is the following: 

 





















kk

kkk

kk

kk

kk

k

zzif

zzzif
zz

zz

zzif

0

1



 (33)

 

 
After determining the fuzzy aspiration levels for the objectives, it is important to highlight that the objective 
function (33) adopts the approach by Akoz and Petrovic (2007), which establishes imprecise priority 
relations between the goals rather than using weights to represent the relative importance of the goals. We 
adopt this approach for two reasons: (1) the relation between the weights and solutions is not always as 
expected. According to Jones (2011), “we have to point out that the relation between the changes in weights 
and the changes in decision space is not smooth. Especially in the linear case where the solution jumps from 
one extreme point of the feasible set to another. So small change in weights may lead to a large change in 
decisions space. Similarly large change in weights can lead to no change in decisions space because they can 
be insufficient to move to a new extreme point”; (2) determination of the weights are not easy in many cases. 
The approach by Akoz and Petrovic (2007) establishes the relative preferences of the goals through the fuzzy 

preference relations of type:  lkR ,
~

1  “k-th goal is slightly more important than l-th goal”;  lkR ,
~

2 “k-th goal 

is moderately more important than l-th goal” or  lkR ,
~

3  “k-th goal is significantly more important than l-th 

goal”. The membership functions corresponding to these linguistic terms are given in (34)-(36), respectively. 
 

 








101

01,1
,

~
1

lk

lklk

lkR if

if




  (34) 

 

  11,
2

1
,

~
2




 lk
lk

lkR
  (35) 

 

 








10

010
,

~
3

lklk

lk

lkR if

if




  (36) 

 
In order to incorporate the DM’s preference structure, we built a GP model in which the objectives are the 
aspiration levels’ achievement and the imprecise preferences’ fulfilment. Thus, following Aköz and Petrovic 
(2007), we propose an achievement function that is a convex combination of goal achievement and the 
fulfilment of the fuzzy binary relations. Therefore, the following GP model with fuzzy hierarchies is 
formulated: 

 

Max   
















 

 

K

k

K

l
lkRkl

K

k
k b

1 1
),(

~

1

1    

s.t.   
 

 kk 1  

 kk  0  
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     1,
~

~
,

~
11

1
RlkRandballfor kllkRlk     

     2,
~

~
,

~
1

2

1
2

RlkRandballfor kllkR
lk 
 

 

     3,
~

~
,

~
1

3
RlkRandballfor kllkRlk    

   11
,

~  kllkR
ballfor  

   10
,

~  kllkR
ballfor  

 bax   
  0x  

      1,0      (37) 

    
where Klkbkl ,...,1,,  are binary variables, taking a value of 1 if an importance relation is defined 

between goals k and l, k  denotes the membership function of the kth objective and 
),(

~
lkR

  corresponds to 

the fuzzy priority relation between objectives k and l. (0 < is a parameter which allows to obtain 
different solutions, which are more or less balanced between goals achievement ( and the fulfilment of 
the preference relations (. As decreasesthe relative preference relations gain more importance and, 
consequently, more solutions that satisfy them are obtained. 

In our problem, we have established a relation of type 1

~
R   between the objective of minimizing the sum 

of integer deviations, z4, and the minimization of total costs, z1; a relation of type 1

~
R  between z4, and the 

objective of minimizing backorder units, z2; and a relation of type 3

~
R

 
between z1 and the objective of 

minimizing total idle time, z3, as well as between z2 and z3. These relations can be established in a particular 
manner in each context. By giving values to σ  (see (32)), different models can be obtained whose solutions 
for the different parameter λ values offers the decision maker a set of solutions from which to choose 
according to his/her preferences. 

The equivalent formulation based on the previous approach of our model in section 3.2 is presented as 
follows: 
 

            
3,2

~
3,1

~
2,4

~
1,4

~4321
3311

1
RRRR

Max    (38) 

11   (39) 

12   (40) 

13   (41) 

14   (42) 

)1,4(
~14

1
1

R
   (43) 

)2,4(
~24

1
1

R
   (44) 

)3,1(
~31

3R
   (45) 

)3,2(
~32

3R
   (46) 

  1
1,4

~
1


R

  (47) 

  1
2,4

~
1


R

  (48) 

1
)3,1(

~
3


R

  (49) 
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1
)3,2(

~
3


R

  (50) 

0
)1,4(

~
1


R

  (51) 

0
)2,4(

~
1


R

  (52) 

0
)3,1(

~
3


R

  (53) 

0
)3,2(

~
3


R

  (54)  

 
Eq. (7)-(9), (17)-(19) and (21)-(31). 
 
 
4 Application to a first-tier supplier of an automobile supply chain 
 
This section uses an example based on Mula et al. (2006c, 2007 and 2008) to validate and evaluate the results 
of our proposal. It is based on a representative finished good or part, dubbed as RPN, of a first-tier supplier of 
the automobile sector. The fuzzy market demand of part RPN for each weekly period is provided in Table 9: 
dit3 is considered to be the market demand information received by the firm; dit1 is obtained by decreasing the 
value of dit3 by 25%; dit2 is obtained by decreasing the value of dit3 by 20%; and dit4 is obtained by increasing 
the value of dit3 by 10%.  

Figure 1 schematically depicts the list of RPN materials, where αij is represented with black boxes and 
corresponds to the units of child product i needed to produce one unit of parent product j. 

Lead time is considered null for part RPN. The lead times for its components are indicated in Table 10. 
Lead times are composed of the supplier’s production time, transport time and safety time. As the intention is 
to consider a weekly planning period, it is necessary to convert lead times into weeks by considering weeks 
of 5 working days and by approaching values of entire weeks in accordance with the firm’s criterion. The 
costs employed for this problem are approximate and are determined based on the consultations made to the 
firm, which is the object of the application. For confidentiality reasons, these costs are distorted, although a 
relation among them is maintained. The production unit costs of part RPN and the acquisition unit costs (cpit) 
of the components that form it are provided in Table 6. The unit costs for maintaining inventories (ciit) are 
assumed to be 10% of the product value each week. 

Table 11 provides the time required (in hours) to produce one unit of product i in resource r, 

},,,{
~

4321 iririririr ARARARARRA   , in the fuzzy sense. In this case, resource r is considered the 

assembly line. The fuzzy capacity available on the assembly line hours per week is indicated in 

},,,{
~

4321 rtrtrtrtrt CAPCAPCAPCAPPCA  . Besides, Table 11 provides the costs of each subcontracting 

hour on the assembly line, csubrt, and of each overtime hour, ctovrt. 
The firm can employ these overtime hours or can resort to external subcontracts sporadically when 

needed. This problem contemplates overtime lines of 5% of normal production. Overtime costs (ctovrt) are 
1.5 times normal production time. Subcontracting costs (csubrt) are 1.2 times extra production time. 

Let us assume that there are no delays in the demand of part RPN at the beginning of the planning 
horizon. To go about this, programmed deliveries, RPit, of RPN of 356 units for the first period and of 1,102 
units for the second planning period are contemplated. 

The assumptions to carry out the computational experiment are summarized as follows: 
 The study considers a representative finished good called RPN (Representative Part Number) 

assembled by a first-tier supplier of an automobile maker. 
 Decision variables, Pit, INVTit and Bit are considered integer.  
 A 6-monthly planning horizon with weekly period planning has been considered. 
 Only the finished good RPN has external demand.  
 Firm orders from the automobile maker cannot be rejected, although a backlog for the finished good 

RPN is considered.  
 The firm uses safety lead times, assumed as constant values, for some of the components to be 

supplied to them. 
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 A single productive resource restricts production: the assembly line.   
The proposed model has been done in the MPL language, V4.2. The resolution has been carried out with 

optimisation solver Gurobi 5.0.0. The input data and the model solution values were processed with a 
Microsoft Access database (2010). The experiment was run on a PC with a 2.80 GHz processor and 6 GB of 
RAM. 

4.1 Evaluation of results  

In this section, the results obtained by the multi-objective decision model for material requirements planning 
and the methodology of the proposed solution are validated and evaluated. Table 2 provides the upper and 
lower limits set arbitrarily for each objective.  

Table 2. Limits for each objective. 

 1000000 

 400000 

 600 

 0 

 100 

 0 

 30 

 0 

 
The values of objectives z1, z2 and z3 corresponding to the minimization of total costs, backlogged 

demand and idle time, respectively, for different feasibility degrees and various  are provided in Tables 3, 4 
and 5. Table 6 shows the sum of the achievement degrees obtained for all the fuzzy goals and Table 7 offers 
the sum of the fulfilment degrees of the imprecise relative importance relations among them for different 
combinations of σ and λ. As seen in Table 6, higher sums of goal fulfilment degrees are obtained with higher 
λ and lower σ values. As the σ value increases, the sum of the fulfilment degrees of fuzzy goals reduces. 
Likewise, the sum of the fulfillment degrees lowers if the λ value falls. In this case, the fuzzy relative 
importance of the goals is more weighted, and higher values for the sum of the fulfilment degrees of the 
imprecise relative importance relations among the objectives are obtained (Table 7). Accordingly, and as we 
can see in Table 3, the results obtained for the approach proposed for z1 are better for low  and σ values, and 
a better solution is achieved for =0.1 and σ=0.1. As the feasibility degree and parameter σ rise, the z1 value 
increases to reach the maximum for =0.9 and σ=1. As in z1, z2 increases as parameter σ rises. Nevertheless, 
according to Table 4, z2 remains invariable in relation to parameter  for the feasibility degrees between 0.1 
and 0.4, and also between 0.6 and 1, and the highest σ=1 value is obtained. Moreover, the values acquired for 
z3 are lower for high  and low σ values, with a minimum for =0.9 and σ=0.1, and a maximum for , 
between 0.1 and 0.5, and the sum of σ (Table 5). It is worth remembering that, as previously mentioned, 
when it comes to defining the priority relations of the goals, they become more important when total costs are 
obtained along with shorter backlogged demand than shorter idle times. When comparing the results with 
those obtained by the deterministic fuzzy goal programming model, solved by the approach of Aköz and 
Petrovic (2007), this new material requirements planning proposal provides a better set of solutions in terms 
of production and inventory costs, and backlogged demand. Specifically, the deterministic model generates a 
total cost of €629,539 with 136 units of backlogs and 100 idle time hours when =0.1 (see Table 8). All the 
proposed models always provided the best total costs and backlogged demand values, while similar values 
ranging from =0.1 to =0.5 and better values ranging from =0.7 to =0.9 are generated for idle time. 
Likewise, more flexibility is provided to the DM when addressing the model solution, which helps establish 
different priority relations among the objectives considered. It depends on the DM’s criteria to decide which 

1z

1z

2z

2z

3z

3z

4z

4z
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combination of parameters better fulfils his/her requirements. Thus from a DM point of view, and according 
to the risk level, we can choose among risky solutions with  σ ≤0.5, average or neutral solutions with σ =0.5, 
and conservative solutions which are not willing to admit high risks for σ ≥0.5. The DM also has the 
possibility of adjusting the solutions obtained by modifying the values of  to highlight the priority 
relationships among the objectives. For instance, and from Table 3, if we adopt a neutral risk level (σ =0.5) 
and the desire to obtain the lowest values of the total costs combined with the lowest value of backorders, a 
value of λ=0.3 is selected. However if a neutral DM wishes to reduce the idle time with priority, a value of 
λ=0.9 ise chosen despite the higher total costs and backorders.  

 
Table 3. Sets of solutions for objective z1 

z1 (€) 
λ 

0.1 0.3 0.5 0.7 0.9 

Degree of  
feasibility 

 (σ) 

0.1 409977.07 410690.98 410309.75 415236.52 453237.57 
0.2 420075.39 420716.90 420626.60 425339.47 466752.17 
0.3 432078.30 431285.42 430999.42 437712.35 480887.85 
0.4 443341.59 441317.79 441235.70 449031.56 498139.43 
0.5 443341.59 441317.79 452328.53 461416.78 503640.45 
0.6 465572.81 464285.08 463371.49 472726.27 500684.98 
0.7 479093.97 477382.23 476206.88 484123.26 520762.39 
0.8 491483.11 491490.58 491483.39 496452.15 514011.82 
0.9 508504.39 508509.79 508503.00 509627.93 524004.16 
1 528556.23 528559.34 528556.23 523391.14 526541.72 

 
Table 4. Sets of solutions for objective z2 

z2 (units) 
λ 

0.1 0.3 0.5 0.7 0.9 

Degree of  
feasibility 

 (σ) 

0.1 0 0 0 0 0 
0.2 0 0 0 0 0 
0.3 0 0 0 0 0 
0.4 0 0 0 0 0 
0.5 0 0 6 6 6 
0.6 17 17 17 17 17 
0.7 28 28 28 28 28 
0.8 40 40 40 40 40 
0.9 51 51 51 51 51 
1 62 62 62 62 62 

 
Table 5. Sets of solutions for objective z3 

z3 (h) 
λ 

0.1 0.3 0.5 0.7 0.9 

Degree of  
feasibility 

 (σ) 

0.1 100 100 100 19.3428 8.8729 
0.2 100 100 100 23.4474 11.1883
0.3 100 100 100 25.6059 14.1337 
0.4 100 100 100 28.1450 16.3566
0.5 100 100 100 30.9560 21.2139 
0.6 100 100 100 33.9746 26.7915
0.7 100 100 100 37.1922 29.0000 
0.8 100 100 100 40.5806 35.8611
0.9 100 100 100 44.2554 40.0833 
1 100 100 100 48.7103 46.7522
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Table 6. Sets of solutions for the sum of the fulfilment degrees for all the fuzzy goals 
 

 
λ 

0.1 0.3 0.5 0.7 0.9 

Degree of  
feasibility 

 (σ) 

0.1 2.7900 2.7888 2.7895 3.5878 3.6292 
0.2 2.7565 2.7555 2.7556 3.5133 3.5669 
0.3 2.7665 2.7679 2.7683 3.5011 3.5438 
0.4 2.7378 2.7411 2.7413 3.4468 3.4829 
0.5 2.7378 2.7411 2.7028 3.3781 3.4051 
0.6 2.6524 2.6545 2.6560 3.3007 3.3259 
0.7 2.6015 2.6044 2.6063 3.2212 3.2421 
0.8 2.5909 2.5908 2.5909 3.1768 3.1947 
0.9 2.5275 2.5275 2.5275 3.0831 3.1008 
1 2.4324 2.4324 2.4324 2.9539 2.9682 

 
Table 7. Sets of solutions for the sum of the fulfilment degrees of the imprecise relative importance relations 

among objectives 
 

 
λ 

0.1 0.3 0.5 0.7 0.9 

Degree of  
feasibility 

 (σ) 

0.1 3.6133 3.6133 3.6133 2.0002 1.7908 
0.2 3.5800 3.5800 3.5800 2.0489 1.8038 
0.3 3.6400 3.6400 3.6400 2.1521 1.9227 
0.4 3.6200 3.6200 3.6200 2.1829 1.9471 
0.5 3.6200 3.6200 3.6000 2.2191 2.0243 
0.6 3.5800 3.5800 3.5800 2.2595 2.1158 
0.7 3.5600 3.5600 3.5600 2.3038 2.1453 
0.8 3.6200 3.6200 3.6200 2.4316 2.3372 
0.9 3.5867 3.5867 3.5867 2.4718 2.3883 

 
Table 8. Sets of solutions for deterministic fuzzy goal programming 

 

 
λ 

0.1 0.3 0.5 0.7 0.9 
z1 (€) 629539.22 629547.32 629544.85 600178.67 600175.62 

z2 (units) 136 136 136 136 136 
z3 (h) 100 100 100 100 33.3626 

 
1.3908 1.3908 1.3908 2.1059 2.1061

 
1.3908 1.3908 1.3908 0.1072 0.1070 
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5 Conclusions  

This paper has addressed the material requirements planning problem under uncertainty in parameters such as 
demand, required capacity and available capacity through a fuzzy multi-objective decision model. We have 
shown the real necessity of multi-objective models given the difficulty for firms to define production 
parameters, such as backlog costs or idle time costs, which usually appear in traditional uni-objective 
material requirements planning models. For the purpose of solving the multi-objective model, we propose a 
solution methodology based on FGP. 

The solution methodology firstly addresses the fuzzy parameters in constraints according to the Ranking 
Fuzzy Numbers Approach by Jiménez (1996) and Jiménez et al. (2007). This approach is improved in order 
to be feasibly applied to integer programmes with equality constraints. Next the FGP approach by Aköz and 
Petrovic (2007), based on establishing the fuzzy importance relations among objectives, is proposed in order 
to obtain a set of solutions to the problem. This proposal is applied in a real-world problem of a first-tier 
supplier of an automobile maker. It is proved that in relation to the alternative mixed integer linear 
programming model, this FGP model can achieve better performance in terms of minimizing the total 
production and inventory costs and backorder levels without considerably increasing the levels of idle time 
and computational efficiency. Thus, the validity of our model has been demonstrated by comparing its results 
with those obtained by the deterministic fuzzy goal programming model, solved by the approach of Aköz and 
Petrovic (2007) by using a numerical example inspired in Mula et al. (2006c, 2007 and 2008) related to the 
automobile industry. This new model presented better performance given the reduction in production and 
inventory costs of about 34.88% and of 100% for backlogged demands (for a balance between goal 
achievements of λ=1, and a degree of feasibility of σ=1). Idle time presents similar values, or even better 
ones, for λ ≥ 0.7 and for each degree of feasibility. 

This new material requirements planning proposal provides a better set of solutions in terms of production 
and inventory costs, and backlogged demand. Specifically, the deterministic model generates a total cost of 
€629,539 with 136 units of backlogs and 100 idle time hours when =0.1 (see Table 8). All the proposed 
models always provided the best total costs and backlogged demand values, while similar values ranging 
from =0.1 to =0.5 and better values ranging from =0.7 to =0.9 are generated for idle time. Likewise, 
more flexibility is provided to the DM when addressing the model solution, which helps establish different 
priority relations among the objectives considered. It depends on the DM’s criteria to decide which 
combination of parameters better fulfils his/her requirements. 

Furthermore, our proposal implies more modelling complexity time, but it provides more flexibility to the 
DM to help obtain a fuzzy solution that matches his/her preferences. 

The advantages of this proposal are related to: (1) modelling and establishing priorities for production 
objectives, which are traditionally measured through costs estimated, which proves difficult for firms; (2) the 
application and improvement of a ranking fuzzy numbers approach to an integer programme with equality 
constraints; and (3) the opportunity of determining, in terms of parameter σ, the value of the minimum 
fulfilment of the constraints, and in terms of parameter λ, the degrees of the maximum fulfilment of the fuzzy 
goals and the maximum fulfilment of the fuzzy importance relations among the goals considered. 

As regards the limitations of this proposal, we describe them through further research proposals: (1) 
developing a decision support system to systemize model configuration and running; (2) exploring the effect 
of the size of the decision variables for the deviation variables proposed in this work; and (3) using 
metaheuristics for improving the efficiency of the solution methodology as a forthcoming work.  

For components, the firm has no data, no required capacity and no available capacity of its suppliers to 
produce all the components supplied. The firm can only do a bill of explosion of materials in its production 
planning process without performing mid-term capacity planning. Nonetheless, a study of its suppliers’ 
capacities and restrictions is an interesting line for future research which could help cut the supply times 
contemplated and, therefore, costs throughout the supply chain. 

Finally, the material requirements planning system is the central core of our model. Alternative JIT 
optimization models can be found in Alfieri and Matta (2012). Our fuzzy goal programming approach could 
also be investigated and compared for these JIT optimization models as a further research work. In general 
terms, some relevant changes could be related to the calculation of the inventory balance equation and to the 
introduction of constraints to calculate kanban cards (Lage and Godinho, 2010).  
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Annex 

Table 9. RPN demand per period. 

T dit1 dit2 dit3 dit4 

1 609 643 813 893 

2 702 741 936 1030 

3 582 614 777 854 

4 322 340 430 472 

5 483 510 645 708 

6 377 398 503 552 

7 0 0 0 0 

8 0 0 0 0 

9 207 219 278 305 

10 873 922 1166 1282 

11 0 0 0 0 

12 0 0 0 0 

13 1420 1499 1894 2082 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 1339 1413 1786 1964 

18 0 0 0 0 

19 0 0 0 0 

20 0 0 0 0 

21 1195 1261 1594 1752 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 0 

25 0 0 0 0 

26 0 0 0 0 

27 0 0 0 0 

28 0 0 0 0 

29 0 0 0 0 

30 0 0 0 0 
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Table 10. Lead times, production/acquisition costs, inventory costs and initial inventories. 

I LTi cpit ciit INVTi0 

1 0 6.34 5.3919 0

2 1 6.1 0.61 891 

3 3 0.0096 0.001 13032 

4 3 0,03 0,003 13832

5 2 0,187 0,0187 9249 

6 2 0,0478 0,0048 4306 

7 2 0,1156 0,0116 1244

8 3 0,012 0,0012 50050 

9 2 0.0321 0.0032 10543 

10 2 0.0291 0.0029 13078

11 2 0.0987 0.0099 1931 

12 1 2.087 0.2087 1348 

13 3 0.0135 0.0014 2166

14 2 0.0508 0.0051 4992 

15 2 0.0539 0.0054 4797 

16 2 0.0099 0.001 8654

17 2 0.0307 0.0031 9464 

18 2 0.0244 0.0024 17726 

19 2 0.0539 0.0054 3632

20 1 0.0377 0.0038 100672 

21 2 0.0311 0.0031 10018 

22 1 0.0252 0.0025 5275

23 0 14 1.4 0 

24 1 0.0016 0.0002 2685951 

25 0 0.1006 0.0101 15739

26 0 0,5285 0,0528 3906 

27 0 0,5713 0,0571 476 

28 0 6,632 0,6632 258

29 0 5,5214 0,5521 421 

30 3 0,0177 0,0018 34826 

31 2 2,89 0,289 355

32 1 0.6819 0.0682 321 

33 1 0.6571 0.0657 598 

34 1 1.773 0.1773 709

35 1 0.222 0.0222 1186 

36 1 0.222 0.0222 357 
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I LTi cpit ciit INVTi0 

37 0 0.001 0.0001 0 

38 0 0.001 0.0001 0 

39 0 0.001 0.0001 0 

40 0 2.29 0.229 0 

41 1 2.1576 0.2158 1356 

42 3 0.1449 0.0145 16606 

43 2 0.001 0.0001 38402 

44 1 0.001 0.0001 989891 

45 2 0.042 0.0042 13772 

46 2 0.0409 0.0041 3380 
 

Table 11. Fuzzy required and available capacities (hours), subcontracted and overtime costs (€/hour). 

r 
 

i ARrt1 ARrt3 ARrt3 ARrt4 CAPrt1 CAPrt2 CAPrt3 CAPrt4 csubrt ctovrt 

1 1 0.003889 0.008889 0.01389 0.023889 0.98 2.17 3.36 12.04 821.64 684.72 

 

 

 

 



 

 

 

Fig. 1. Schem
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