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COMPACTNESS IN L1 OF A VECTOR MEASURE

J.M. CALABUIG, S. LAJARA, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ

Abstract. We study compactness and related topological properties in
the space L1(m) of a Banach space valued measure m when the natural
topologies associated to the convergence of the vector valued integrals
are considered. The resulting topological spaces are shown to be angelic
and the relationship of compactness and equi-integrability is explored.
A natural norming subset of the dual unit ball of L1(m) appears in our
discussion and we study when it is a boundary. The (almost) complete
continuity of the integration operator is analyzed in relation with the
positive Schur property of L1(m). The strong weakly compact generation
of L1(m) is discussed as well.

1. Introduction

In recent years, a remarkable effort has been made in order to improve

the knowledge of the topological properties of the Banach lattices L1(m)

of integrable functions with respect to Banach space valued measures m.

One of the main topological components of these spaces is the so called

τm topology, that provides the information regarding the norm convergence

of the integrals. The so called σ(L1(m),Γ) topology is weaker than the

weak topology and is also relevant for the analysis of the spaces L1(m):

it is the topology of the weak convergence of the integrals. Actually, in

these spaces the most interesting summability properties involve in a certain

sense the convergence of the integrals, and this was in fact the topic that

motivated the original study of integration with respect to vector measures.

The aim of this paper is to prove some fundamental facts regarding compact

sets for these topologies, that can clarify the general theory, and also show

some applications in Banach lattice theory and operator theory. It must be

noted here that the spaces L1(m) represent all the order continuous Banach

lattices with weak unit.

The structure of the paper is the following. After the preliminary Sec-

tion 1, we start in Section 2 the analysis of the topological properties of the

locally convex spaces (L1(m), τm) and (L1(m), σ(L1(m),Γ)), showing that
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these spaces are angelic (Proposition 2.2). Technically, these results will al-

low us to work with the sequential characterization of compactness for these

topologies.

In Section 3 we approach the main question regarding compact sets

in L1(m). In particular, Theorem 3.7 gives a complete characterization of

the relatively τm-compact sets for vector measures of relatively norm com-

pact range as the sets that are bounded and equi-integrable. Proposition 3.5

states that τm-compactness of BL∞(m) when considered as a subset of L1(m)

is equivalent to relative norm compactness of the range of m. We finish

Section 3 with a characterization of σ(L1(m),Γ)-precompact sets (Theo-

rem 3.13).

In Section 4 we analyze when the set Γ of all functionals on L1(m)

with an integral representation given by f  
∫
fh d〈m,x∗〉, x∗ ∈ BX∗ and

h ∈ BL∞(m), defines a boundary (we write X to denote the Banach space in

which m takes values). The property of m having relatively norm compact

range appears again and it is shown that, in this case, Γ is a boundary.

Far from being a technical matter for specialists, this result has some nice

consequences on the structure of L1(m). In Theorem 4.3 we prove that, for

vector measures of relatively norm compact range, the extreme points of

the dual unit ball are included in Γ.

Section 5 will present a detailed discussion of when L1(m) is strongly

weakly compactly generated (shortly SWCG), thus showing some improve-

ments of the known results of weak generation of this space. The positive

Schur property (shortly PSP) of L1(m) implies that this space is SWCG.

By the way, the following new characterization of completely continuous

integration operators Im : L1(m) → X is given: Im is completely continu-

ous if and only if L1(m) has the PSP and m(Σ) is relatively norm compact

(Theorem 5.8). We also prove that L1(m) has the PSP if and only if Im is

almost Dunford-Pettis (Theorem 5.12).

Some papers that are closely connected with our results have appeared

recently. The natural topologies associated to the convergence of the inte-

grals studied here have been analyzed for the case of Lp(m), 1 ≤ p < ∞,

in [37, 38], where some applications on factorization of homogeneous maps

are shown. As a consequence of the analysis of the τm-compactness of the

unit ball in the spaces Lp(m), a generalized Dvoretsky-Rogers type theorem

is proved in [39]. Also related to compactness in L1(m), the properties of

the integration operators fixing a copy of c0 have been intensively studied

in [35].
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Notation. Our topological spaces are Hausdorff and our Banach spaces are

real. By an “operator” between Banach spaces we mean a linear continu-

ous mapping. By a “subspace” of a Banach space we mean a closed linear

subspace. Given a Banach space Y , its norm is denoted by ‖ · ‖Y (or simply

‖ · ‖) if needed explicitly. We write BY to denote the closed unit ball of Y .

The convex (resp. absolutely convex) hull of a set C is denoted by co(C)

(resp. aco(C)), and its closure by co(C) (resp. aco(C)). The topological dual

of Y is denoted by Y ∗ and the evaluation of y∗ ∈ Y ∗ at y ∈ Y is denoted

by either y∗(y), 〈y, y∗〉 or 〈y∗, y〉. A set B ⊆ BY ∗ is said to be norming if

for every y ∈ Y we have ‖y‖ = supy∗∈B |y∗(y)|. In this case, the topology

on Y of pointwise convergence on B, denoted by σ(Y,B), is locally convex,

Hausdorff and weaker than the weak topology of Y .

Spaces of integrable functions with respect to a vector measure.

Throughout the paper, we will assume that X is a Banach space, (Ω,Σ)

is a measurable space and m : Σ → X is a countably additive vector

measure. The characteristic function of a set A ∈ Σ is denoted by 1A.

By a “scalar measure” we mean a real-valued countably additive measure.

For any x∗ ∈ X∗ we write 〈m,x∗〉 to denote the scalar measure given by

〈m,x∗〉(A) := 〈m(A), x∗〉, A ∈ Σ. A Rybakov control measure of m is a

scalar measure of the form µ = |〈m,x∗0〉| (for some x∗0 ∈ BX∗) such that m

is µ-absolutely continuous, i.e. m(A) = 0 whenever µ(A) = 0. Throughout

the paper the symbol µ will denote such a measure (see e.g. [14, p. 268,

Theorem 2] for a proof of its existence).

A measurable function f : Ω → R is said to be m-integrable if it is

integrable with respect to all the scalar measures of the form |〈m,x∗〉|
and, for each A ∈ Σ, there exists an element

∫
A
f dm ∈ X such that

〈
∫
A
f dm, x∗〉 =

∫
A
f d〈m,x∗〉 for every x∗ ∈ X∗. The space L1(m) is de-

fined as the Banach lattice of all (µ-equivalence classes of) m-integrable

functions when the µ-a.e. order and the norm

‖f‖L1(m) := sup
x∗∈BX∗

∫
|f |d|〈m,x∗〉|, f ∈ L1(m),

are considered. L1(m) is an order continuous Banach function space over µ

with weak unit. We will write Im : L1(m)→ X for the integration operator,

that is, the operator given by Im(f) :=
∫

Ω
fdm for all f ∈ L1(m). It is

well-known that L1(m)∗ can be identified with the Köthe dual of L1(m),

defined by

L1(m)× := {h ∈ L1(µ) : hf ∈ L1(µ) for every f ∈ L1(m)}.
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After such identification, the duality between L1(m)∗ and L1(m) is given

by the formula 〈h, f〉 =
∫

Ω
hf dµ.

The topologies σ(L1(m),Γ) and τm. Given h ∈ L∞(m), letQh : L1(m)→
X be the operator defined by

Qh(f) := Im(fh) =

∫
Ω

fh dm, f ∈ L1(m),

and, for any x∗ ∈ X∗, consider the functional γh,x∗ := x∗ ◦Qh ∈ L1(m)∗, i.e.

〈γh,x∗ , f〉 =

∫
Ω

fh d〈m,x∗〉, f ∈ L1(m).

For every f ∈ L1(m) we have

‖f‖L1(m) = sup
h∈BL∞(m)

‖Qh(f)‖X

(see e.g. [34, Lemma 3.11]), and so the set

Γ := {γh,x∗ : h ∈ BL∞(m), x
∗ ∈ BX∗} ⊆ BL1(m)

is norming. Note that a net (fα) in L1(m) is σ(L1(m),Γ)-convergent to f ∈
L1(m) if and only if for every h ∈ L∞(m) we have∫

Ω

fαh dm→
∫

Ω

fh dm weakly.

The family of seminorms {‖Qh(·)‖X : h ∈ L∞(m)} induces another locally

convex Hausdorff topology on L1(m) which we denote by τm. That is, a

net (fα) in L1(m) is τm-convergent to f ∈ L1(m) if and only if for every

h ∈ L∞(m) we have ∫
Ω

fαh dm→
∫

Ω

fh dm in norm.

Observe that τm is weaker than the norm topology and stronger than

σ(L1(m),Γ). Bearing in mind the density of simple functions in L∞(m),

it is clear that a bounded net (fα) in L1(m) converges to f ∈ L1(m) with

respect to σ(L1(m),Γ) (resp. τm) if and only if for every A ∈ Σ we have∫
A

fα dm→
∫
A

f dm weakly (resp. in norm).

2. Angelicity of τm and σ(L1(m),Γ)

The natural topologies τm and σ(L1(m),Γ) do not coincide in general

with the usual ones –the norm and the weak topologies–, but they share

some properties with them. In this section we analyze the sequential charac-

terization of compactness in the spaces (L1(m), τm) and (L1(m), σ(L1(m),Γ)).

Let us start by recalling some topological notions. Let T be a topological

space. A set A ⊆ T is said to be
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(i) (relatively) countably compact if every sequence in A has a cluster

point in A (resp. in T );

(ii) (relatively) sequentially compact if every sequence in A has a subse-

quence converging to a point in A (resp. in T ).

Following Fremlin’s terminology (see [19, 3.3]), T is said to be angelic if every

relatively countably compact set A ⊆ T satisfies the following properties:

• A is relatively compact;

• for every x ∈ A there is a sequence in A converging to x.

If T is angelic, then for any set A ⊆ T the following equivalences hold:

compact ⇔ countably compact ⇔ sequentially compact

and the same happens for the corresponding “relative” properties, see [19,

3.3]. Of course, all metric spaces are angelic. Beyond the metrizable case,

all Banach spaces equipped with their weak topology are angelic, see [19,

3.10].

The aim of this section is to prove that L1(m) is angelic when endowed

with the topologies σ(L1(m),Γ) and τm. Up to this moment, the main ar-

gument for the use of sequential characterizations of compactness in Lp(m)

spaces, 1 ≤ p < ∞, has been the assumption of metrizability of the spaces

involved (see for instance [38, Corollary 8]). The techniques explained here

can also be extended to the general case of Lp(m) spaces without the metriz-

ability requirement. This could be relevant also for applications; for exam-

ple, in [39], τm-compactness and sequential τm-compactness are treated as

different properties, which seems not to be necessary.

Lemma 2.1. Let x∗ ∈ X∗. Then the identity operator L1(m)→ L1(〈m,x∗〉)
satisfies the following properties:

(i) it is σ(L1(m),Γ)-weak continuous on bounded sets;

(ii) it is σ(L1(m),Γ)-weak continuous on L1(m) whenever |〈m,x∗〉| is a

Rybakov control measure of m.

Proof. (i). Let (fα) be a bounded net in L1(m) which converges to f ∈ L1(m)

with respect to σ(L1(m),Γ). Then we have

(2.1) lim
α

∫
A

fα d〈m,x∗〉 =

∫
A

f d〈m,x∗〉 for every A ∈ Σ.

Since (fα) is bounded in L1(〈m,x∗〉), (2.1) is equivalent to saying that (fα)

is weakly convergent to f in L1(〈m,x∗〉). This proves the first statement.
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(ii). Repeat the argument of (i) without the assumption of boundedness

on (fα) and replace (2.1) by

(2.2) lim
α

∫
Ω

fαh d〈m,x∗〉 =

∫
Ω

fh d〈m,x∗〉 for every h ∈ L∞(m).

Since |〈m,x∗〉| is a Rybakov control measure of m, condition (2.2) is equiv-

alent to saying that (fα) is weakly convergent to f in L1(〈m,x∗〉). �

Proposition 2.2. (L1(m), σ(L1(m),Γ)) and (L1(m), τm) are angelic.

Proof. Since the identity operator i : L1(m) → L1(µ) is one-to-one and

σ(L1(m),Γ)-weak continuous (Lemma 2.1(ii)) and L1(µ) is angelic when

equipped with its weak topology, we can apply the so called “angelic lemma”

[19, 3.3.(2)] to conclude that (L1(m), σ(L1(m),Γ)) is angelic as well. Finally,

since σ(L1(m),Γ) is weaker than τm, another appeal to [19, 3.3.(2)] ensures

that (L1(m), τm) is angelic. �

We state the following straightforward corollary for future reference.

Corollary 2.3. Let C ⊆ L1(m). The following statements are equivalent:

(i) C is (relatively) τm-countably compact.

(ii) C is (relatively) τm-sequentially compact.

(iii) C is (relatively) τm-compact.

A compact topological space is said to be Eberlein (resp. uniform Eber-

lein) if it is homeomorphic to a weakly compact subset of a Banach (resp.

Hilbert) space. For instance, any compact metric space is uniform Eberlein.

A result of Argyros and Farmaki [3] (cf. [20, Corollary 6.47]) states that

every weakly compact subset of the L1 space of a scalar measure is uniform

Eberlein. We next extend that result to the setting of L1 spaces of vector

measures.

Proposition 2.4. Every σ(L1(m),Γ)-compact subset of L1(m) is uniform

Eberlein.

Proof. Let K be a σ(L1(m),Γ)-compact subset of L1(m). Since the identity

operator i : L1(m)→ L1(µ) is σ(L1(m),Γ)-weak continuous (Lemma 2.1(ii))

and one-to-one, its restriction to K is a σ(L1(m),Γ)-weak homeomorphism

between K and i(K). Since every weakly compact subset of L1(µ) is uniform

Eberlein (by the aforementioned result in [3]), i(K) is uniform Eberlein and

so is K. �
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3. τm-compactness and σ(L1(m),Γ)-precompactness

3.1. τm-compactness and equi-integrability. A set C ⊆ L1(m) is called

equi-integrable if for every ε > 0 there is δ > 0 such that ‖f1A‖L1(m) ≤ ε for

every A ∈ Σ with µ(A) ≤ δ and every f ∈ C. The classical Dunford-Pettis

criterion states that a subset of the L1 space of a scalar measure is relatively

weakly compact if and only if it is bounded and equi-integrable (see e.g. [13,

p. 93]). In general:

• Every bounded and equi-integrable subset of L1(m) is relatively

weakly compact, but the converse might fail.

• Every relatively norm compact subset of L1(m) is equi-integrable,

and the converse holds true for bounded sets whenever m is purely

atomic.

• A subset of L1(m) is bounded and equi-integrable if and only if it

is L-weakly compact, i.e. every disjoint sequence in its solid hull is

norm convergent to 0.

See for instance [34, Lemma 2.37] and [26, §3.6]. In this subsection we discuss

the link between equi-integrability and τm-compactness.

The set BL∞(m) is equi-integrable and weakly compact in L1(m). In par-

ticular, BL∞(m) is σ(L1(m),Γ)-closed and so it is τm-closed as well. This set

plays a basic role in the approximation of equi-integrable sets, as the next

lemma shows. The equivalence between (i) and (ii) is well-known (see e.g.

[34, Lemma 2.37]).

Lemma 3.1. Let C ⊆ L1(m). The following statements are equivalent:

(i) C is bounded and equi-integrable.

(ii) For every ε > 0 there is n ∈ N such that

C ⊆ nBL∞(m) + εBL1(m) in L1(m).

(iii) For every ε > 0 there is n ∈ N such that for every x∗ ∈ BX∗ we have

C ⊆ nBL∞(m) + εBL1(〈m,x∗〉) in L1(〈m,x∗〉).

Proof. (i)⇒(ii). Fix ε > 0 and choose δ > 0 such that

(3.1) ‖f1A‖L1(m) ≤ ε for every A ∈ Σ with µ(A) ≤ δ.

Since C is bounded, we can find n ∈ N such that

(3.2) sup
f∈C
‖f‖L1(m) ≤ δn.
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We claim that C ⊆ nBL∞(m) + εBL1(m). Indeed, pick f ∈ C and consider

the set A := {ω ∈ Ω : |f(ω)| ≥ n} ∈ Σ. Since

µ(A)n ≤
∫
A

|f | dµ ≤ ‖f‖L1(µ) ≤ ‖f‖L1(m)

(3.2)

≤ δn,

we get ‖f1A‖L1(m) ≤ ε (by (3.1)). Thus, f = f1Ω\A + f1A ∈ nBL∞(m) +

εBL1(m).

(ii)⇒(iii) is obvious.

(iii)⇒(i). Fix ε > 0 and take n ∈ N as in (ii). For every f ∈ C and

x∗ ∈ BX∗ , we fix gf,x∗ ∈ nBL∞(m) such that∫
Ω

|f − gf,x∗| d|〈m,x∗〉| ≤ ε.

For each f ∈ C and A ∈ Σ, we have

‖f1A‖L1(m) = sup
x∗∈BX∗

∫
A

|f | d|〈m,x∗〉| ≤ sup
x∗∈BX∗

∫
A

|gf,x∗| d|〈m,x∗〉|+ ε ≤

≤ sup
x∗∈BX∗

n|〈m,x∗〉|(A) + ε = n‖m‖(A) + ε,

where ‖m‖ stands for the semivariation of m. This implies that C is bounded

(just take A = Ω) and that

sup
f∈C
‖f1A‖L1(m) ≤ 2ε whenever ‖m‖(A) ≤ ε

n
.

As ε > 0 is arbitrary, C is equi-integrable. �

Lemma 3.2. The following statements hold:

(i) Im is σ(L1(m),Γ)-weak continuous.

(ii) Every σ(L1(m),Γ)-bounded subset of L1(m) is norm bounded.

Proof. (i) follows from the equality 〈γ1Ω,x∗ , f〉 = 〈x∗, Im(f)〉, which is valid

for all f ∈ L1(m) and x∗ ∈ X∗.
(ii). Let C ⊆ L1(m) be a σ(L1(m),Γ)-bounded set. Fix A ∈ Σ. Since the

linear mapping f 7→ f1A is σ(L1(m),Γ)-σ(L1(m),Γ) continuous on L1(m),

the set C1A := {f1A : f ∈ C} is σ(L1(m),Γ)-bounded. From (i) and

the Uniform Boundedness Principle it follows that Im(C1A) = {
∫
A
f dm :

f ∈ C} is bounded. Nikodým’s boundedness theorem (see e.g. [14, p. 14,

Theorem 1]) applied to the family of X-valued measures

A 7→
∫
A

f dm, f ∈ C,

ensures that C is norm bounded. �

Statement (ii) of Lemma 3.2 is equivalent to saying that Γ is w∗-thick,

see [30, Theorem 3.5] (cf. [31, Theorem 1.5]).
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Proposition 3.3. Let C ⊆ L1(m) be τm-compact. Then:

(i) C is bounded and equi-integrable.

(ii) τm, σ(L1(m),Γ) and the weak topology coincide on C.

Proof. (i). Since C is σ(L1(m),Γ)-compact, it is bounded (Lemma 3.2(ii)).

In order to prove that C is equi-integrable it suffices to check that every

sequence (fn) in C admits an equi-integrable subsequence. Let (fnk) be a

τm-convergent subsequence (we apply Corollary 2.3). Since (
∫
A
fnk dm) is

norm convergent for every A ∈ Σ, the Vitali-Hahn-Saks theorem (see e.g.

[14, p. 24, Corollary 10]) applied to the sequence of µ-absolutely continuous

measures A 7→
∫
A
fnk dm yields

lim
µ(A)→0

sup
k∈N

∥∥∥∥∫
A

fnk dm

∥∥∥∥
X

= 0,

which is equivalent to saying that (fnk) is equi-integrable, because

‖f‖L1(m) ≤ 2 sup
A∈Σ

∥∥∥∥∫
A

f dm

∥∥∥∥ for all f ∈ L1(m).

(ii). Since σ(L1(m),Γ) is weaker than τm, both topologies coincide on

the τm-compact set C. On the other hand, C is relatively weakly compact

(by (i)). Since C is σ(L1(m),Γ)-compact, it is also σ(L1(m),Γ)-closed and

so weakly closed. Therefore, the weak topology and σ(L1(m),Γ) coincide on

the weakly compact set C. �

We next characterize when BL∞(m) is τm-compact. To this end, we need

the following known lemma; see e.g. the proof of [28, Lemma 9.1].

Lemma 3.4. BL∞(m) ⊆ 2 aco({1A : A ∈ Σ}) in L1(m).

Proposition 3.5. The following statements are equivalent:

(i) BL∞(m) is τm-compact.

(ii) m(Σ) is relatively norm compact.

Proof. By Lemma 3.4, we have

(3.3) m(Σ) ⊆ Im(BL∞(m)) ⊆ 2 aco(m(Σ)).

Hence (i)⇒(ii) follows at once from the τm-norm continuity of Im.

(ii)⇒(i). Let (fα) be a net in BL∞(m). Since K := Im(BL∞(m)) ⊆ X is

norm compact (by (3.3) and Mazur’s theorem, [14, p. 51, Theorem 12]), the

product KΣ is compact when equipped with the product topology induced

by the norm topology. Define yα := (
∫
A
fα dm)A∈Σ ∈ KΣ for all α. Since

the net (yα) admits a convergent subnet, we can assume without loss of
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generality that for every A ∈ Σ the limit ν(A) := limα

∫
A
fα dm exists in

the norm topology. Note that for every x∗ ∈ X∗ and A ∈ Σ we have

|〈ν(A), x∗〉| = lim
α

∣∣∣∣∫
A

fα d〈m,x∗〉
∣∣∣∣ ≤ |〈m,x∗〉|(A).

By the Radon-Nikodým theorem for couples of vector measures [29] (cf.

[12, Theorem 3.1]), there is f ∈ BL∞(m) such that ν(A) =
∫
A
f dm for every

A ∈ Σ. Hence f = τm− limα fα. This proves that BL∞(m) is τm-compact. �

A weaker version of the former result can be found in [38, Theorem 10]

in the setting of Lp(m) spaces, 1 ≤ p <∞.

Our next lemma is the “τm-version” of a well-known characterization

of relative weak compactness due to Grothendieck (see e.g. [13, p. 227,

Lemma 2]).

Lemma 3.6. Let C ⊆ L1(m) be a set such that for every ε > 0 there is a

τm-compact set K ⊆ L1(m) such that C ⊆ K+εBL1(m). Then C is relatively

τm-compact.

Proof. For each k ∈ N we choose a τm-compact set Kk ⊆ L1(m) in such a

way that C ⊆ Kk + 1
k
BL1(m). Let (fα) be a net in C. For each α and k ∈ N

we can write fα = fα,k + gα,k, where fα,k ∈ Kk and gα,k ∈ 1
k
BL1(m). Since∏

k∈NKk is compact with the product topology induced by τm, we can find

a sequence (hk) in L1(m) and a subnet of (fα), not relabeled, such that

hk = τm − limα fα,k for all k ∈ N.

Claim 1: For each A ∈ Σ, the net (
∫
A
fα dm) is norm convergent. Indeed,

fix ε > 0 and choose k ∈ N such that 1
k
≤ ε. Now, take α0 such that∥∥∥∥∫

A

fα,k dm−
∫
A

hk dm

∥∥∥∥ ≤ ε for all α ≥ α0.

Then for every α, α′ ≥ α0 we have∥∥∥∥∫
A

fα dm−
∫
A

fα′ dm

∥∥∥∥ ≤ ∥∥∥∥∫
A

gα,k dm

∥∥∥∥+

∥∥∥∥∫
A

fα,k dm−
∫
A

hk dm

∥∥∥∥+

+

∥∥∥∥∫
A

fα′,k dm−
∫
A

hk dm

∥∥∥∥+

∥∥∥∥∫
A

gα′,k dm

∥∥∥∥ ≤
≤ ‖gα,k‖L1(m) + 2ε+ ‖gα′,k‖L1(m) ≤ 4ε.

This shows that the net (
∫
A
fα dm) is norm Cauchy, hence norm convergent.

Write ν(A) := limα

∫
A
fα dm for all A ∈ Σ.

Claim 2: The sequence (hk) is norm convergent in L1(m). Indeed, for

each k ∈ N and A ∈ Σ, we have∥∥∥∥∫
A

fα dm−
∫
A

fα,k dm

∥∥∥∥ ≤ ‖gα,k‖L1(m) ≤
1

k
for all α,
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hence

(3.4)

∥∥∥∥ν(A)−
∫
A

hk dm

∥∥∥∥ ≤ 1

k
.

Therefore

‖hk − hk′‖L1(m) ≤ 2 sup
A∈Σ

∥∥∥∥∫
A

hk dm−
∫
A

hk′ dm

∥∥∥∥ ≤ 1

k
+

1

k′

for every k, k′ ∈ N, which shows that (hk) is Cauchy.

Finally, observe that if h ∈ L1(m) is the limit of (hk), then inequal-

ity (3.4) yields
∫
A
h dm = ν(A) = limα

∫
A
fα dm for all A ∈ Σ, that is,

(fα) converges to h with respect to τm. This shows that C is relatively

τm-compact. �

Theorem 3.7. Let C ⊆ L1(m) and consider the following statements:

(i) C is relatively τm-compact.

(ii) C is bounded and equi-integrable.

Then (i)⇒(ii). If m(Σ) is relatively norm compact, then (i)⇔(ii).

Proof. (i)⇒(ii) follows from Proposition 3.3(i).

Suppose now that m(Σ) is relatively norm compact. Then BL∞(m) is τm-

compact (Proposition 3.5). If C is bounded and equi-integrable, then for

every ε > 0 there is n ∈ N such that C ⊆ nBL∞(m) + εBL1(m) (Lemma 3.1).

An appeal to Lemma 3.6 ensures that C is relatively τm-compact. �

3.2. A Dunford-Pettis type property. Concerning compactness proper-

ties of operators defined on L1(m), the aim of this subsection is to analyze

when they send bounded equi-integrable sets to relatively norm compact

sets. Due to the relation between equi-integrability and weak compactness,

this can be understood as a Dunford-Pettis type property. In particular, we

provide an alternative proof of the following result from [10].

Theorem 3.8 (Curbera). Suppose m has σ-finite variation. Let Y be a

Banach space and T : L1(m)→ Y a weakly compact operator. If C ⊆ L1(m)

is bounded and equi-integrable, then T (C) is relatively norm compact.

Our approach to Theorem 3.8 is based on Proposition 3.9 below and

the Davis-Figiel-Johnson-Pelczynski factorization theorem. Recall first that

a Banach space Y is said to have the Compact Range Property (shortly

CRP) if every Y -valued countably additive measure with σ-finite variation

has relatively norm compact range. For instance, every Banach space with

the Radon-Nikodým property has the CRP. A result of Rybakov (cf. [27,

Corollary 10]) states that Y ∗ has the CRP if and only if Y contains no

subspace isomorphic to `1.
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Proposition 3.9. Suppose m has σ-finite variation. Let Y be a Banach

space with the CRP and let T : L1(m) → Y be an operator. If C ⊆ L1(m)

is bounded and equi-integrable, then T (C) is relatively norm compact.

Proof. In view of Lemma 3.1, it suffices to prove that T (BL∞(m)) is relatively

norm compact. To this end, define a countably additive measure m̃ : Σ→ Y

by m̃(A) := T (1A). By Lemma 3.4, we have T (BL∞(m)) ⊆ 2 aco(m̃(Σ)).

Since m̃ has σ-finite variation and Y has the CRP, the set m̃(Σ) is relatively

norm compact, hence aco(m̃(Σ)) is norm compact (thanks to Mazur’s theo-

rem, see e.g. [14, p. 51, Theorem 12]). It follows that T (BL∞(m)) is relatively

norm compact. �

The appearance of the CRP for that kind of result in somehow un-

avoidable, as we can observe by considering the integration operator of any

Y -valued measure with σ-finite variation:

Corollary 3.10. Let Y be a Banach space. The following statements are

equivalent:

(i) Y has the CRP.

(ii) For every Y -valued countably additive measure ν with σ-finite vari-

ation, the set Iν(BL∞(ν)) is relatively norm compact.

Proof of Theorem 3.8. By the Davis-Figiel-Johnson-Pelczynski factorization

theorem (see e.g. [16, Theorem 13.33]), there exist a reflexive Banach space

Z and operators T1 : L1(m) → Z and T2 : Z → Y such that T = T2 ◦ T1.

Since Y has the Radon-Nikodým property, it also has the CRP. Proposi-

tion 3.9 applied to T1 yields the desired conclusion. �

Corollary 3.11. If m has σ-finite variation and Im is weakly compact, then

m(Σ) is relatively norm compact.

Proof. Just apply Theorem 3.8 to Y := X, T := Im and C := BL∞(m). �

There exist vector measures with finite variation and relatively norm

compact range whose integration operator is not weakly compact, like the

Volterra measure for r ∈ {1,∞}, see [34, Example 3.49(iv)].

3.3. σ(L1(m),Γ)-precompactness. We study here precompactness with

respect to the topology σ(L1(m),Γ).

Let Y be a Banach space and B ⊆ BY ∗ a norming set. A set C ⊆ Y is

said to be σ(Y,B)-precompact if every sequence (yn) in C admits a σ(Y,B)-

Cauchy subsequence (ynk), i.e. the sequence (y∗(ynk)) is convergent for every
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y∗ ∈ B. By taking B = BY ∗ we obtain the usual notion of weak precompact-

ness. Clearly, if Y is weakly sequentially complete (shortly WSC), then a set

C ⊆ Y is weakly precompact if and only if it is relatively weakly compact.

On the other hand, Rosenthal’s `1-theorem (see e.g. [16, Theorem 5.37])

states that Y does not contain subspaces isomorphic to `1 if and only if

every bounded subset of Y is weakly precompact.

A classical result due to Dieudonné [15], when applied to our particular

setting, says that a set C ⊆ L1(m) is weakly precompact if and only if

it is bounded and, for every h ∈ L1(m)×, the set hC := {hf : f ∈ C}
is equi-integrable in L1(µ). Theorem 3.13 below shows that if we restrict

our attention to h’s of the form d〈m,x∗〉
dµ

(the Radon-Nikodým derivative

of 〈m,x∗〉 with respect to µ), then we get a characterization of σ(L1(m),Γ)-

precompact subsets of L1(m). This characterization should be compared

with Lemma 3.1 and the statement of Corollary 5.14 (for the convex weakly

compact set K = BL∞(m)).

Lemma 3.12. For every x∗ ∈ X∗ the identity operator L1(m)→ L1(〈m,x∗〉)
maps σ(L1(m),Γ)-Cauchy sequences to weakly convergent sequences.

Proof. Let (fn) be a σ(L1(m),Γ)-Cauchy sequence in L1(m). In particu-

lar, it is σ(L1(m),Γ)-bounded, hence norm bounded (Lemma 3.2(ii)). Now

Lemma 2.1(i) applies to conclude that (fn) is weakly Cauchy, hence weakly

convergent, in the WSC space L1(〈m,x∗〉). �

Theorem 3.13. Let C ⊆ L1(m). The following statements are equivalent:

(i) C is relatively weakly compact in L1(〈m,x∗〉) for every x∗ ∈ X∗.
(ii) For every x∗ ∈ X∗ and every ε > 0 there is n ∈ N such that

C ⊆ nBL∞(m) + εBL1(〈m,x∗〉) in L1(〈m,x∗〉).

(iii) C is bounded in L1(µ) and equi-integrable in L1(〈m,x∗〉) for every

x∗ ∈ X∗.
(iv) C is bounded in L1(µ) and the set d〈m,x∗〉

dµ
C is equi-integrable in L1(µ)

for every x∗ ∈ X∗.
(v) C is σ(L1(m),Γ)-precompact.

Proof. (i)⇒(ii) follows as in Lemma 3.1.

(ii)⇒(iii) and (iii)⇒(iv) are clear.

(iv)⇒(v). Let (fn) be a sequence in C. Since C is relatively weakly com-

pact in L1(µ) (apply the hypothesis to x∗0 ∈ BX∗ such that µ = |〈m,x∗0〉|),
there is a subsequence (fnk) converging in the weak topology of L1(µ). To
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finish the proof of the implication (iv)⇒(v) it suffices to prove the following

claim.

Claim: The sequence (〈γ, fnk〉) converges for every γ ∈ Γ. Indeed, let us

write γ = γh,x∗ for some h ∈ BL∞(m) and x∗ ∈ BX∗ . Let g = d〈m,x∗〉
dµ

∈ L1(µ).

Fix ε > 0. Since by assumption the set gC is equi-integrable in L1(µ), the

same holds for hgC and so there is δ > 0 such that

(3.5) sup
k∈N

∫
A

|fnkhg| dµ ≤ ε

for every A ∈ Σ with µ(A) ≤ δ. For each p ∈ N, set

Zp := {ω ∈ Ω : |g(ω)| ≤ p} ∈ Σ.

Since the sequence (Zp) is increasing and Ω =
⋃
p∈N Zp, we can find p ∈ N

large enough such that µ(Ω \ Zp) ≤ δ, so (3.5) yields

(3.6) sup
k∈N

∫
Ω\Zp
|fnkhg| dµ ≤ ε.

On the other hand, since (fnk) converges weakly in L1(µ) and hg1Zp ∈
L∞(m), there is k0 ∈ N such that

(3.7)

∣∣∣∣∣
∫
Zp

fnkhg dµ−
∫
Zp

fnk′hg dµ

∣∣∣∣∣ ≤ ε for every k, k′ ≥ k0.

By putting together (3.6) and (3.7), we get∣∣〈γh,x∗ , fnk〉 − 〈γh,x∗ , fnk′ 〉∣∣ =

∣∣∣∣∫
Ω

fnkhg dµ−
∫

Ω

fnk′hg dµ

∣∣∣∣ ≤ 3ε

for every k, k′ ≥ k0. This proves the claim.

(v)⇒(i). For every x∗ ∈ X∗ the identity operator L1(m) → L1(〈m,x∗〉)
maps σ(L1(m),Γ)-Cauchy sequences to weakly convergent sequences (Lemma 3.12).

�

4. When is Γ a boundary?

Motivated in part by our previous results, in this section we analyze a

norming type property (being a boundary, see below for the definition) of

the set Γ and its applications to the study of compactness in L1(m). Some

other norming properties of Γ have been discussed in [40].

Curbera [9] and Okada [32] showed that σ(L1(m),Γ) and the weak topol-

ogy coincide on bounded sets whenever L1(m) contains no subspace isomor-

phic to `1. As observed in [32], a result of Lewis (see [23, Corollary 3.3])

implies that every (necessarily bounded) σ(L1(m),Γ)-convergent sequence

in L1(m) is weakly convergent whenever m(Σ) is relatively norm compact,
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but not in general (see [10, Section 6]). But the relative norm compact-

ness of m(Σ) does not imply, in general, that σ(L1(m),Γ) and the weak

topology coincide on bounded sets, see [9, Example 3]. Manjabacas (see [24,

Section 4.7]) discussed this type of questions by using a new approach based

on the notion of boundary, as follows.

Given an arbitrary Banach space Y , a set B ⊆ BY ∗ is called a boundary

(or a James boundary) if for every y ∈ Y there is y∗ ∈ B such that ‖y‖ =

y∗(y). A typical example of boundary is the set ext(BY ∗) of extreme points

of BY ∗ . If B ⊆ BY ∗ is a boundary, the Rainwater-Simons theorem (see e.g.

[16, Theorem 3.134]) states that every norm bounded σ(Y,B)-convergent

sequence in Y is weakly convergent. More generally, a striking result of

Pfitzner [36] states that, ifB ⊆ BY ∗ is a boundary, then every norm bounded

σ(Y,B)-compact subset of Y is weakly compact. This was previously known

in particular classes of Banach spaces like, for instance, weakly compactly

generated (shortly WCG) spaces, cf. [6, Corollary 2.2].

Thus, Manjabacas (see [24, Proposition 4.38]) showed that Γ is a bound-

ary whenever m(Σ) is relatively norm compact. This has also been proved

(without using that terminology) in [33, Lemma 3.3]. The aim of this section

is to improve Manjabacas’ result by showing that, in fact, the relative norm

compactness of m(Σ) implies that Γ ⊇ ext(BL1(m)∗) (Theorem 4.3 below).

Given any f ∈ L1(m), we consider the mapping Mf : BL∞(m) → X

defined by

Mf (h) := Im(fh) =

∫
Ω

fh dm.

Lemma 4.1. Let f ∈ L1(m). Then:

(i) Mf is τm-norm continuous.

(ii) Mf is σ(L1(m),Γ)-weak continuous.

Proof. Both statements are clear whenever f is a simple function. In the

general case, let (fn) be a sequence of simple functions such that ‖fn −
f‖L1(m) → 0. Then (Mfn) converges to Mf uniformly on BL∞(m), hence Mf

is τm-norm continuous and σ(L1(m),Γ)-weak continuous. �

Part (i) of the following corollary appears in [33, Lemma 3.3].

Corollary 4.2. Suppose m(Σ) is relatively norm compact. Then:

(i) For every f ∈ L1(m) the set Im(fBL∞(m)) is norm compact.

(ii) Γ is a boundary.

Proof. (i). Bearing in mind that BL∞(m) is τm-compact (because m(Σ) is

relatively norm compact, see Proposition 3.5) and the τm-norm continuity
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of Mf (Lemma 4.1(i)), we deduce that Mf (BL∞(m)) = Im(fBL∞(m)) is norm

compact.

Now, (ii) follows from (i) and the equality

‖f‖L1(m) = sup
h∈BL∞(m)

‖Im(fh)‖,

which is valid for all f ∈ L1(m) (see e.g. [34, Lemma 3.11]). �

The proof of the next result is based on ideas from [18, Theorem 3.9].

Theorem 4.3. Suppose m(Σ) is relatively norm compact. Then:

(i) Γ is w∗-compact.

(ii) ext(BL1(m)∗) ⊆ Γ.

Proof. We have BL1(m)∗ = co(Γ)
w∗

by the Hahn-Banach separation theorem

(bear in mind that Γ is norming and symmetric). Thus, the “converse” of

the Krein-Milman theorem (see e.g. [16, Theorem 3.66]) yields the inclusion

ext(BL1(m)∗) ⊆ Γ
w∗

.

Hence (ii) follows immediately from (i). To prove (i), let us consider the

mapping

Φ : BL∞(m) ×BX∗ → L1(m)∗, Φ(h, x∗) := γh,x∗ .

We shall check that Φ is continuous when L1(m)∗ is equipped with its w∗-

topology and the set P := BL∞(m) × BX∗ is equipped with the product

topology T induced by τm and the w∗-topology of X∗. Since m(Σ) is rel-

atively norm compact, BL∞(m) is τm-compact (Proposition 3.5) and so P

is T-compact. Therefore, statement (i) will follow at once from the T-w∗

continuity of Φ.

Let (hα, x
∗
α) be a net in P which T-converges to some (h, x∗) ∈ P . In

order to prove that Φ(hα, x
∗
α)→ Φ(h, x∗) in the w∗-topology, fix f ∈ L1(m)

and set

xα := Im(fhα) =

∫
Ω

fhα dm ∈ X for every α.

Since the set {xα} is relatively norm compact (by Corollary 4.2(i)), and

(x∗α) is a bounded net which w∗-converges to x∗, we have

(4.1) |γhα,x∗α(f)− x∗(xα)| = |x∗α(xα)− x∗(xα)| → 0.

On the other hand, as a consequence of Lemma 4.1(i) we also have

(4.2) x∗(xα) =

∫
Ω

fhα d〈m,x∗〉 →
∫

Ω

fh d〈m,x∗〉 = γh,x∗(f).

From (4.1) and (4.2) it follows that |γhα,x∗α(f)−γh,x∗(f)| → 0. As f ∈ L1(m)

is arbitrary, we conclude that Φ(hα, x
∗
α)→ Φ(h, x∗) in the w∗-topology. �
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Remark 4.4. In another direction, it is worth mentioning that if X is a

Banach lattice and m is positive (meaning that m(A) ≥ 0 for all A ∈ Σ),

then Γ is a boundary. Indeed, in this case the norm of any f ∈ L1(m) can

be computed as

‖f‖L1(m) =
∥∥∥∫

Ω

|f | dm
∥∥∥
X

(see e.g. [34, Lemma 3.13]).

We finish this section by pointing out two specialized versions of Theo-

rem 3.13 when Γ is assumed to be a boundary.

Corollary 4.5. Suppose Γ is a boundary. Then a subset of L1(m) is weakly

precompact if and only if it is relatively weakly compact in L1(〈m,x∗〉) for

every x∗ ∈ X∗.

Proof. Bearing in mind Lemma 3.2(ii), the Rainwater-Simons theorem (see

e.g. [16, Theorem 3.134]) implies that the identity mapping on L1(m) is

σ(L1(m),Γ)-weak sequentially continuous, and so every σ(L1(m),Γ)-Cauchy

sequence in L1(m) is weakly Cauchy. The result now follows from Theo-

rem 3.13. �

Corollary 4.6. Suppose L1(m) is WSC and Γ is a boundary. Then a subset

of L1(m) is relatively weakly compact if and only if it is relatively weakly

compact in L1(〈m,x∗〉) for every x∗ ∈ X∗.

In general, the assumption that Γ is a boundary cannot be removed from

the previous statements. Indeed, in [10, Section 6] there is an example of

an `2-valued measure m and a σ(L1(m),Γ)-null sequence in L1(m) which

is equivalent to the usual basis of `1 (and so it does not have any weakly

Cauchy subsequence).

5. When is L1(m) a SWCG space?

It is well-known that the space L1(m) is WCG (see [8, Theorem 2], cf.

[34, Theorem 3.7]). As an application of the results obtained before, in

this section we analyze the property of being strongly weakly compactly

generated (defined below), that does not hold for all spaces L1(m). By the

way, we will prove some new results regarding the integration operator, after

introducing the so called positive Schur property for Banach lattices in our

discussion.

Following [41], a Banach space Y is called strongly weakly compactly

generated (shortly SWCG) if there is a weakly compact set K ⊂ Y such

that for every weakly compact set L ⊂ Y and every ε > 0 there is n ∈ N
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such that L ⊂ nK+εBY (in this case, we say that K strongly generates Y ).

Every SWCG space is both WCG and WSC [41] (cf. [20, Theorem 6.38]).

Typical examples of spaces in this class are the reflexive spaces, separable

spaces with the Schur property and the L1 space of any scalar measure. For

more information on SWCG spaces and related classes of Banach spaces,

we refer the reader to [20, Section 6.4] and [17, 21, 22, 25].

We stress that, being a Banach lattice, L1(m) is WSC if and only if it

does not contain subspaces isomorphic to c0 (see e.g. [1, Theorem 4.60]).

Curbera proved in [8, Theorem 3] that L1(m) is WSC whenever X does not

contain subspaces isomorphic to c0 (cf. [35]).

The following well-known general construction will be helpful to exhibit

concrete examples.

Remark 5.1. Let X be a Banach space having an unconditional Schauder

basis (en). Fix a sequence (αn) of strictly positive real numbers such that the

series
∑

n αnen is unconditionally convergent. Define a countably additive

measure m : P(N)→ X by m(A) :=
∑

n∈A αnen. Then:

(i) m is purely atomic.

(ii) m has relatively norm compact range.

(iii) m has finite variation if and only if
∑

n αnen is absolutely convergent.

(iv) Im is an order isomorphism between L1(m) and X.

Example 5.2. c0 is an L1 space of a vector measure which is not WSC,

hence it is not SWCG.

Example 5.3. Mercourakis and Stamati [25] constructed a subspace of

L1[0, 1] having unconditional Schauder basis which is not SWCG. This is

an L1 space of a vector measure which is WSC (because L1[0, 1] is WSC)

but non-SWCG.

Example 5.4. `2(`1) is an L1 space of a vector measure which is WSC

(because it is the `2-sum of countably many WSC spaces) but does not

embed isomorphically into any SWCG space (see [22, Corollary 2.29]).

The previous examples of non-SWCG spaces are based on vector mea-

sures taking values in non-SWCG spaces. Thus, one might wonder whether

L1(m) is SWCG whenever X is. It turns out that this is not the case even

for reflexive X.

Example 5.5. `2(L1[0, 1]) is the L1 space of some `2-valued measure, see

[4, Example 3.7]. This space is WSC and does not embed isomorphically

into any SWCG space (see [22, Corollary 2.29]).
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5.1. The positive Schur property in L1(m). A Banach lattice is said to

have the positive Schur property (shortly PSP) if every weakly null sequence

of positive vectors is norm null. For instance, the L1 space of any scalar mea-

sure has the PSP. This property is equivalent to saying that every relatively

weakly compact set is L-weakly compact. Therefore, L1(m) has the PSP

if and only if every weakly compact subset of L1(m) is equi-integrable. The

reader can find information about these concepts and their relations in [34,

Remark 2.40] and the references therein.

Proposition 5.6. If L1(m) has the PSP, then it is SWCG.

Proof. The set K := BL∞(m) ⊆ L1(m) is weakly compact and strongly gen-

erates L1(m). Indeed, if L ⊆ L1(m) is weakly compact, then it is bounded

and equi-integrable (according to the comments above), and so for every

ε > 0 there is n ∈ N such that L ⊆ nK + εBL1(m) (Lemma 3.1). �

Similarly, bearing in mind Propositions 3.3 and 3.5, we have the following

“strong generation” property with respect to the topology τm:

Remark 5.7. Suppose m(Σ) is relatively norm compact. Then BL∞(m) is a

τm-compact subset of L1(m) such that for every τm-compact set L ⊆ L1(m)

there is n ∈ N such that L ⊆ nBL∞(m) + εBL1(m).

It was pointed out in [10, Claim 1] that L1(m) has the PSP whenever

X has the Schur property. As we show in Theorem 5.8 below, this is a con-

sequence of the complete continuity of Im when X has the Schur property.

Recall that an operator between Banach spaces is called completely contin-

uous (or Dunford-Pettis) if it maps weakly convergent sequences to norm

convergent ones. The complete continuity of Im has strong consequences on

the structure of L1(m). Under some assumptions on X (namely, that X∗ has

the Radon-Nikodým property), it is known that if Im is completely contin-

uous, then m has finite variation and L1(m) is order isomorphic to L1(|m|)
(via the identity mapping), see [5] (cf. [33, Theorem 1.2] for the particular

case in which X is also assumed to have an unconditional Schauder basis).

Theorem 5.8. The following statements are equivalent:

(i) Im is completely continuous.

(ii) L1(m) has the PSP and m(Σ) is relatively norm compact.

Proof. Observe first that (i) is equivalent to

(i’) the identity mapping on L1(m) is weak-τm sequentially continuous,
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because a sequence (fn) in L1(m) is weakly convergent to f ∈ L1(m) if and

only if (fn1A) is weakly convergent to f1A for every A ∈ Σ.

(i’)⇒(ii). If C ⊆ L1(m) is weakly compact, then it is weakly sequentially

compact and so the assumption implies that C is τm-sequentially compact,

hence equi-integrable (see the proof of Proposition 3.3). Therefore, L1(m)

has the PSP.

On the other hand, it is well-known that m(Σ) is relatively norm compact

whenever Im is completely continuous; see e.g. [34, p. 153]. (This fact can

also be deduced by combining (i’) and Proposition 3.5.)

(ii)⇒(i). Theorem 3.7 and (ii) ensure us that a subset of L1(m) is rel-

atively τm-compact if and only if it is relatively weakly compact. By con-

sidering the topology σ(L1(m),Γ), which is weaker than both τm and the

weak topology, it follows at once that a subset of L1(m) is τm-compact if

and only if it is weakly compact. Therefore, Im maps weakly compact sets

to norm compact sets. �

Example 5.9. Let m be the L1[0, 1]-valued measure defined by m(A) := 1A

for every Borel set A ⊆ [0, 1]. Then L1(m) = L1[0, 1] has the PSP, but the

range of m is not relatively norm compact.

It was known that L1(m) is WSC whenever Im is completely continu-

ous, [11, Theorem 3.6] (cf. [7, second proof of Theorem 2.2] and [35, The-

orem 1.1]). The following consequence of Proposition 5.6 and Theorem 5.8

improves that result:

Corollary 5.10. If Im is completely continuous, then L1(m) is SWCG.

Remark 5.11. A Banach space Y has the Dunford-Pettis property if every

weakly compact operator from Y to another Banach space is completely

continuous. For instance, any L1 space of a scalar measure satisfies this

property, as well as any C(K) space of a compact topological space K.

Within the setting of L1 spaces of vector measures, Curbera [10] applied

Theorem 3.8 to deduce that if m has σ-finite variation and L1(m) has the

PSP, then it has the Dunford-Pettis property. The converse does not hold

in general, as c0 is order isomorphic to the L1 space of a c0-valued vector

measure with finite variation (Remark 5.1).

We finish this subsection by characterizing the PSP of L1(m) in terms

of Im. An operator from a Banach lattice to a Banach space is called almost

Dunford-Pettis if it maps weakly null disjoint sequences to norm null ones

or, equivalently, if it maps weakly null positive sequences to norm null ones,

see [2, Theorem 2.2].
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Theorem 5.12. The following statements are equivalent:

(i) L1(m) has the PSP.

(ii) Im is almost Dunford-Pettis.

Proof. (i)⇒(ii) is clear. In order to prove (ii)⇒(i), we first check that (ii)

implies that L1(m) is WSC. Indeed, if L1(m) is not WSC, then it contains

a sublattice which is order isomorphic to c0 (see e.g. [1, Theorem 4.60]).

Now, following the proof of [7, Theorem 2.2] (cf. [35, Theorem 1.1]), one

can find a c0-sequence (fn) in L1(m) such that fn ≥ 0 for all n ∈ N and Im

is an isomorphism when restricted to span(fn). This contradicts (ii), and so

L1(m) is WSC.

Let C ⊆ L1(m) be any relatively weakly compact set. We shall prove

that C is L-weakly compact. The solid hull

Sol(C) = {g ∈ L1(m) : |g| ≤ |f | for some f ∈ C}

is relatively weakly compact, thanks to the weak sequential completeness

of L1(m) (see e.g. [1, Theorems 4.39 and 4.60]). Let (fn) be a disjoint se-

quence in Sol(C). Since Sol(C) is relatively weakly compact and the fn’s

are pairwise disjoint, (fn) is weakly null. Since Im is almost Dunford-Pettis

and each sequence of the form (fn1A), where A ∈ Σ, is weakly null and

disjoint, we conclude that (fn) is τm-convergent to 0. In particular, (fn) is

equi-integrable (Proposition 3.3). From this fact and the disjointness of (fn)

it follows that ‖fn‖ → 0. This proves that C is L-weakly compact.

Therefore, every relatively weakly compact subset of L1(m) is L-weakly

compact, that is, L1(m) has the PSP. The proof is over. �

5.2. A characterization of L1(m) spaces which are SWCG. We fin-

ish this section by giving a characterization of SWCG spaces of integrable

functions with respect to a vector measure. For each h ∈ L1(m)∗ = L1(m)×,

we can consider the scalar measure µh := h dµ given by µh(A) :=
∫
A
h dµ

for all A ∈ Σ, so that the identity mapping defines an operator from L1(m)

to L1(µh) with norm ≤ 1.

Proposition 5.13. Let K ⊆ L1(m) be a convex weakly compact set, L ⊆
L1(m) and ε > 0. The following statements are equivalent:

(i) L ⊆ K + εBL1(m).

(ii) There is a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that, for every

h ∈ ∆,

L ⊆ K + εBL1(µh) in L1(µh).
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Proof. (i)⇒(ii) is clear by taking ∆ = BL1(m)∗ .

(ii)⇒(i). Our proof is by contradiction. Suppose there is f ∈ L such that

f 6∈ K+εBL1(m). Since K+εBL1(m) is convex and closed, the Hahn-Banach

separation theorem ensures the existence of φ ∈ L1(m)∗ with norm one such

that

(5.1) 〈φ, f〉 > sup
g∈K+εBL1(m)

〈φ, g〉 = sup
g∈K
〈φ, g〉+ ε.

Let T denote the Mackey topology on L1(m)∗, that is, the topology of

uniform convergence on weakly compact subsets of L1(m). Then C
w∗

= C
T

for every convex set C ⊆ L1(m)∗ (see e.g. [16, Theorem 3.45]). In particular,

we have

BL1(m)∗ = ∆
w∗

= ∆
T
.

This equality and (5.1) imply that there is h ∈ ∆ such that

(5.2) 〈h, f〉 > sup
g∈K
〈h, g〉+ ε.

Since L ⊆ K+εBL1(µh) in the space L1(µh), we can write f = g+u for some

g ∈ K and u ∈ L1(µh) with ‖u‖L1(µh) ≤ ε. But inequality (5.2) implies that∫
Ω
f dµh >

∫
Ω
g dµh + ε, hence

∫
Ω
u dµh > ε, a contradiction. �

Corollary 5.14. Let K ⊆ L1(m) be a convex weakly compact set. The

following statements are equivalent:

(i) K strongly generates L1(m).

(ii) For every weakly compact set L ⊆ L1(m) and every ε > 0 there exist

n ∈ N and a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that

L ⊆ nK + εBL1(µh) in L1(µh)

for every h ∈ ∆.

(iii) There exists a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that, for every

weakly compact set L ⊆ L1(m) and every ε > 0, there is n ∈ N such

that

L ⊆ nK + εBL1(µh) in L1(µh)

for every h ∈ ∆.

Proof. The implications (i)⇒(iii) and (iii)⇒(ii) are clear (just take ∆ =

BL1(m)∗). Proposition 5.13 yields (ii)⇒(i). �

Remark 5.15. In particular, we might apply the previous criterion by

choosing the convex w∗-dense set ∆ = co(Γ). Under the identification of
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L1(m)∗ and L1(m)×, Γ is precisely the set{
h
d〈m,x∗〉
dµ

: h ∈ BL∞(m), x
∗ ∈ BX∗

}
,

where d〈m,x∗〉
dµ

denotes the Radon-Nikodým derivative of 〈m,x∗〉 with respect

to µ.
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Mathématiques de la SMC, 26, Springer, New York, 2008.

[21] K.K. Kampoukos and S.K. Mercourakis, A new class of weakly count-

ably determined Banach spaces, Fund. Math. 208 (2010), no. 2, 155–

171.

[22] K.K. Kampoukos and S.K. Mercourakis, On a certain class of Kσδ
Banach spaces, Topology Appl. 160 (2013), no. 9, 1045–1060.

[23] D.R. Lewis, Conditional weak compactness in certain inductive tensor

products, Math. Ann. 201 (1973), 201–209.

[24] G. Manjabacas, Topologies associated to norming sets in Banach

spaces, Ph.D. Thesis (Spanish), Universidad de Murcia, 1998. Available

at http://webs.um.es/beca/dissertationstudents.html.

[25] S. Mercourakis and E. Stamati, A new class of weakly K-analytic Ba-

nach spaces, Comment. Math. Univ. Carolin. 47 (2006), no. 2, 291–312.

[26] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag,

Berlin, 1991.

[27] K. Musia l, The weak Radon-Nikodým property in Banach spaces, Stu-

dia Math. 64 (1979), no. 2, 151–173.



COMPACTNESS IN L1 OF A VECTOR MEASURE 25

[28] K. Musia l, Topics in the theory of Pettis integration, Rend. Istit. Mat.

Univ. Trieste 23 (1991), no. 1, 177–262.

[29] K. Musia l, A Radon-Nikodým theorem for the Bartle-Dunford-Schwartz

integral, Atti Sem. Mat. Fis. Univ. Modena 41 (1993), no. 1, 227–233.

[30] O. Nygaard, Boundedness and surjectivity in normed spaces, Int. J.

Math. Math. Sci. 32 (2002), no. 3, 149–165.

[31] O. Nygaard, Thick sets in Banach spaces and their properties, Quaest.

Math. 29 (2006), no. 1, 59–72.

[32] S. Okada, The dual space of L1(µ) for a vector measure µ, J. Math.

Anal. Appl. 177 (1993), no. 2, 583–599.

[33] S. Okada, W.J. Ricker, and L. Rodŕıguez-Piazza, Operator ideal proper-
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[38] P. Rueda and E.A. Sánchez-Pérez, Compactness in spaces of p-

integrable functions with respect to a vector measure, to appear in

Topol. Meth. Nonlin. Anal.
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