
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1080/03081087.2011.558843

http://hdl.handle.net/10251/52825

Taylor & Francis

Liu, X.; Wu, S.; Benítez López, J. (2011). On nonsingularity of combinations of two group
invertible matrices and two tripotent matrices. Linear and Multilinear Algebra. 59(12):1409-
1417. doi:10.1080/03081087.2011.558843.



On nonsingularity of combinations of two group

invertible matrices and two tripotent matrices

Xiaoji Liu 1 Shuxia Wu 1 Julio Beńıtez 2∗
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multidisciplinar, Universidad Politécnica de Valencia, Valencia 46022, Spain.

Abstract

Let T1 and T2 be two n× n tripotent matrices and c1, c2 two nonzero complex
numbers. We mainly study the nonsingularity of combinations T = c1T1 + c2T2 −
c3T1T2 of two tripotent matrices T1 and T2, and give some formulae for the inverse
of c1T1 + c2T2 − c3T1T2 under some conditions. Some of these results are given in
terms of group invertible matrices.
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1 Introduction

Let C be the field of complex numbers, and let the symbols C∗ and Cn×n denote the
set of nonzero complex numbers and n × n complex matrices respectively. Moreover,
R(A), N (A) and A∗ stand for the column space, null space and conjugate transpose of
A ∈ Cn×n, respectively. A matrix A ∈ Cn×n is said to be idempotent if A2 = A, and
tripotent if A3 = A.

Recall that A ∈ Cn×n is nonsingular if and only if N (A) = {0}. Also notice that
if T ∈ Cn×n and k is a natural number greater than 1, then T satisfies T k = T if and
only if T is diagonalizable and the spectrum of T is contained in k−1

√
1∪ 0, which have

been proved in [5].

Recently, the nonsingularity of linear combinations of idempotent matrices, projec-
tors, tripotent matrices and k-potent matrices (see, for example, [1, 2, 4, 6, 7]) have

∗Corresponding author.
E-mail: xiaojiliu72@yahoo.com.cn (X. Liu, Tel. +86-0771-3264782), anita623482950@yahoo.com.cn

(S. Wu), jbenitez@mat.upv.es (J. Beńıtez).
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been extensively investigated. In [9], Sarduvan and Özdemir have considered the non-
singularity of linear combinations T = c1T1 + c2T2, where T1, T2 are two commuting
n × n tripotent matrices and c1, c2 ∈ C∗. In [10], Zuo studied the nonsingularity of
combinations c1P + c2Q − c3PQ of two idempotent matrices P and Q, and the same
author generalized the results in [11].

In this paper, we discuss the nonsingularity of combinations c1T1 + c2T2− c3T1T2 of
two tripotent matrices and give some formulae for the inverse of c1T1 + c2T2 − c3T1T2

under some conditions. We point out that the main results of this article are similar
to the ones obtained in [10]. Notice that an idempotent matrix is always a tripotent
matrix, but a tripotent matrix may not be idempotent. Special types of matrices, such
as idempotents, tripotents, etc, are very useful in many contexts and they have been
extensively studied in the literature. For example, quadratic forms with idempotent
matrices are used extensively in statistical theory. So it is worth to stress and spread
these kinds of results.

A matrix A ∈ Cn×n is said to be group invertible if there exists X ∈ Cn×n such
that

AXA = A, XAX = X, AX = XA. (1.1)

See [3, Chapter 4] for more information on this kind of generalized inverse. It can be
proved that the set of matrices X satisfying (1.1) is or empty or a singleton and when
is a singleton, it is customary to denote its unique element by A#. Also, it is known [8,
Exercise 5.10.12] that a matrix A ∈ Cn×n is group invertible if and only if there exist
nonsingular S ∈ Cn×n, C ∈ Cr×r such that A = S(C ⊕ 0)S−1, being r the rank of A.
In this situation, one has A# = S(C−1 ⊕ 0)S−1.

Evidently, if T is a tripotent matrix, then T is group invertible and T# = T . Many
of the results given in this paper will be given in terms of group invertible matrices.

2 Main results

In [10, Corollary 2.6], it had been proved that P − Q is nonsingular if and only if
aP + bQ− cPQ and In − PQ are nonsingular for any two idempotent matrices P,Q ∈
Cn×n, a, b ∈ C∗. In the following theorem, a similar result is established for tripotent
matrices.

Theorem 2.1. Let T1, T2 ∈ Cn×n be two commuting tripotent matrices. Then T1 − T2

is nonsingular if and only if In − T1T2 and T 2
1 + (In − T 2

1 )T2 are nonsingular.

Proof. By a suitable simultaneous diagonalization, there exists S ∈ Cn×n such that
T1 = S diag(λ1, . . . , λn)S−1 and T2 = S diag(µ1, . . . , µn)S−1 being {λi}ni=1 and {µi}ni=1,
the sets of eigenvalues of T1 and T2, respectively. Observe that λi, µj ∈ {−1, 0, 1} for
all 1 ≤ i, j ≤ n since T1 and T2 are tripotent. Moreover,

T1 − T2 = S diag(λ1 − µ1, . . . , λn − µn)S−1,

In − T1T2 = S diag(1− λ1µ1, . . . , 1− λnµn)S−1,
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and

T 2
1 + (In − T 2

1 )T2 = S diag(λ2
1 + (1− λ2

1)µ1, . . . , λ
2
n + (1− λ2

n)µn)S−1. (2.1)

Assume that T1 − T2 is nonsingular. Then λi 6= µi for all i ∈ {1, . . . , n}. Hence

(λi, µi) ∈ {(1,−1), (1, 0), (−1, 1), (−1, 0), (0, 1), (0,−1)} for all i = 1, . . . , n.

Easily we have that 1− λiµi 6= 0 and λ2
i + (1− λ2

i )µi 6= 0 for all 1 ≤ i ≤ n. Therefore,
In − T1T2 and T 2

1 + (In − T 2
1 )T2 are nonsingular.

Assume that In − T1T2 and T 2
1 + (In − T 2

1 )T2 are nonsingular. Since In − T1T2 is
nonsingular, then λiµi 6= 1 for all 1 ≤ i ≤ n. If T1 − T2 were singular, then there
would exist j ∈ {1, . . . , n} such that λj = µj . Having in mind that λjµj 6= 1, we would
get λj = µj = 0. But now, λ2

j + (1 − λ2
j )µj = 0, which would yield the singularity of

T 2
1 + (In − T 2

1 )T2.

Remark: Let p : C2 → C be the following complex polynomial:

p(z, w) = a1,0z+a2,0z
2 +a0,1w+a1,1zw+a2,1z

2w+a0,2w
2 +a1,2zw

2 +a2,2z
2w2, (2.2)

where ai,j are complex numbers. We have

p(T1, T2) = S diag(p(λ1, µ1), . . . , p(λn, µn))S−1.

Now, if T 2
1 + (In − T 2

1 )T2 were singular, then by (2.1) there would exist j ∈ {1, . . . , n}
such that

λ2
j + (1− λ2

j )µj = 0. (2.3)

This expression is contradicted by λj = ±1. Therefore, λj = 0 and by using again
(2.3) we get µj = 0. Therefore, p(T1, T2) is singular because p(0, 0) = 0. Hence we can
formulate the following corollary:

Corollary 2.1. Let T1, T2 ∈ Cn×n be two commuting tripotent matrices. If In−T1T2 is
nonsingular and there exists a polynomial as in (2.2) such that p(T1, T2) is nonsingular,
then T1 − T2 is nonsingular.

We weaken the hypotheses of the commutativity and the tripotency in the following
result.

Theorem 2.2. Let T1, T2 ∈ Cn×n be two group invertible matrices such that T2T1T
#
1 =

T1T
#
1 T2. If In − T#

1 T2 is nonsingular and there exists a polynomial p in two noncom-
muting variables such that p(0, 0) = 0 and p(T1, T2) is nonsingular, then T1 − T2 is
nonsingular.

Proof. Let x ∈ N (T1 − T2), i.e., T1x = T2x. Premultiplying by T1T
#
1 we get

T1x = T1T
#
1 T2x. (2.4)
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Premultiplying T1x = T2x by T2T
#
1 and using T2T1T

#
1 = T1T

#
1 T2 yield T1T

#
1 T2x =

T2T
#
1 T2x; but having in mind that T1T

#
1 T2x = T1x = T2x we get

T2T
#
1 T2x = T2x. (2.5)

From (2.4) and (2.5) we have

T1(In − T#
1 T2)x = 0, T2(In − T#

1 T2)x = 0. (2.6)

Since p(0, 0) = 0, there exist two polynomials in noncommuting variables, say p1 and
p2 such that p(T1, T2) = p1(T1, T2)T1 + p2(T1, T2)T2. Thus from (2.6)

p(T1, T2)(In − T#
1 T2)x = (p1(T1, T2)T1 + p2(T1, T2)T2)(In − T#

1 T1)x

= p1(T1, T2)T1(In − T#
1 T2)x+ p2(T1, T2)T2(In − T#

1 T2)x
= 0.

Under the assumption that In − T#
1 T2 and p(T1, T2) are nonsingular, the above com-

putation yields x = 0, which means that T1 − T2 is nonsingular.

Remark. Let T1, T2 ∈ Cn×n be group invertible and r the rank of T1. If T1T2 = T2T1,
then by writing T1 = S(C ⊕ 0)S−1, where S ∈ Cn×n and C ∈ Cr×r are nonsingular we
get that T2 can be written as T2 = S(D ⊕ E)S−1, where CD = DC and D ∈ Cr×r.
Hence, T1T

#
1 T2 = S(D ⊕ 0)S−1 = T2T1T

#
1 . However, observe that the condition

T1T
#
1 T2 = T2T1T

#
1 is more general than T1T2 = T2T1 (it is enough to consider the case

when T1 is nonsingular and T1T2 6= T2T1).

Assume in this paragraph that T1, T2 ∈ Cn×n are two commuting group invertible
matrices. Now, if we use the condition T 2

1 T2 = T 2
2 T1, then we can give some kind of the

converse of Theorem 2.2. From T 2
1 T2 = T 2

2 T1 and T1T2 = T2T1, we have (T1−T2)T1T2 =
0, hence the invertibility of T1 − T2 leads to T1T2 = 0. Thus, c1T1 + c2T2 − c3T1T2 =
c1T1 + c2T2, and we will give the explicit expression of (c1T1 + c2T2)−1 in terms of
(T1 − T2)−1 under mild conditions.

Theorem 2.3. Let T1, T2 ∈ Cn×n be two group invertible matrices and c1, c2 ∈ C∗. If
T2T1 = 0 and T1 − T2 is nonsingular. Then c1T1 + c2T2 is nonsingular and

(c1T1 + c2T2)−1 = [(c−1
1 + c−1

2 )T1T
#
1 − c

−1
2 In](T1 − T2)−1.

Proof. It follows from the following computations:

(c1T1 + c2T2)
[
(c−1

1 + c−1
2 )T1T

#
1 − c

−1
2 In

]
=

=
(
1 + c1c

−1
2

)
T1 − c1c−1

2 T1 +
(
c2c
−1
1 + 1

)
T2T1T

#
1 − T2 = T1 − T2.
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Remark. In Theorem 2.3, the situation c1 + c2 = 0 is trivial and it does not need the
hypothesis T2T1 = 0.

In [10], it was showed that for two idempotent matrices P ,Q ∈ Cn×n, and a, b ∈ C∗,
one has that matrix aP + bQ− (a+ b)PQ is nonsingular if and only if Cn = R(P (In−
Q))⊕R((In−P )Q) if and only if Cn = N (P (In−Q))⊕N ((In−P )Q). We give similar
results in the following theorem.

Theorem 2.4. Let T1, T2 ∈ Cn×n be two matrices and c1, c2, r1, r2 ∈ C. If c1T1 +
c2T2 + (r1c1 + r2c2)T1T2 is nonsingular, then we have

N [T1(In + r1T2)] ∩N [(In + r2T1)T2] = 0, (2.7)

and
R(T1(In + r1T2)) +R((In + r2T1)T2) = Cn. (2.8)

Proof. Denote α = r1c1 + r2c2. Let x ∈ N (T1(In + r1T2)) ∩ N ((In + r2T1)T2). Since
T1(In + r1T2)x = 0 and (In + r2T1)T2x = 0, we have

[c1T1 + c2T2 + αT1T2]x = (c1T1 + c2T2 + r1c1T1T2 + r2c2T1T2)x
= c1T1(In + r1T2)x+ c2(In + r2T1)T2x = 0.

The nonsingularity of c1T1 + c2T2 + αT1T2 leads to x = 0. Hence (2.7) holds.

Since c1T1 + c2T2 +αT1T2 is nonsingular, then c1T ∗1 + c2T
∗
2 +αT ∗2 T

∗
1 is nonsingular.

Applying the first part of the proof we have

N (T ∗2 (In + r2T
∗
1 )) ∩N ((In + r1T

∗
2 )T ∗1 ) = 0. (2.9)

Recalling that [N (X∗)]⊥ = R(X) holds for any matrix X, by taking perp in (2.9) we
get that (2.8) holds.

In the following result, it is given an expression of the inverse of c1T1+c2T2−c3T1T2

under some condition.

Theorem 2.5. Let T1, T2 ∈ Cn×n be two nonzero tripotent matrices such that T 2
1 T2 =

T 2
2 T1 and c1, c2 ∈ C∗, c3 ∈ C. Assume that T1 or T2 are nonsingular. If (c1 +c2)2 = c23,

then c1T1 + c2T2 − c3T1T2 or c1T1 + c2T2 + c3T1T2 is singular. If (c1 + c2)2 6= c23, then
c1T1 + c2T2 − c3T1T2 is nonsingular; and in this case,

(i) If T1 is nonsingular, then

[(c1 + c2)2 − c23](c1T1 + c2T2 − c3T1T2)−1

= (c1 + c2)T1 + c3T
2
2 + c−1

1 c2c3(T 2
2 − T1T2) + c−1

1 c23(T2 − T1T
2
2 )

+c−1
1 (c22 + c1c2 − c23)(T1 − T1T

2
2 ). (2.10)

(ii) If T2 is nonsingular, then

[(c1 + c2)2 − c23](c1T1 + c2T2 − c3T1T2)−1

= (c1 + c2)T2 − c3(2T 2
1 − T2T1) + c−1

2 (c21 + c1c2 − c23)(T2 − T2T
2
1 ). (2.11)
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Proof. We split the proof depending if T1 or T2 is nonsingular.

(i) Let us assume that T1 is nonsingular. First, let us prove the first part of the
Theorem. The nonsingularity of T1 implies T 2

1 = In, hence T 2
1 T2 = T 2

2 T1 reduces to
T 2

2 T1 = T2. Since T2 is tripotent, there exists a nonsingular S ∈ Cn×n such that

T2 = S

(
A 0
0 0

)
S−1, A ∈ Cr×r,

being r the rank of T2. Since A is nonsingular and T 3
2 = T2, then A2 = Ir. Let us write

T1 = S

(
B C
D E

)
S−1, B ∈ Cr×r.

From T 2
2 T1 = T2 we conclude B = A and C = 0. Therefore

T1 = S

(
A 0
D E

)
S−1 (2.12)

and

c1T1 + c2T2 − c3T1T2 = S

(
(c1 + c2)A− c3Ir 0
c1D − c3DA c1E

)
S−1. (2.13)

Since T 2
1 = In, we obtain that E is nonsingular and E2 = In−r. From (2.13) we get

that c1T1 + c2T2 − c3T1T2 is nonsingular if and only if (c1 + c2)A− c3Ir is nonsingular
(recall that the first row in the block matrix appearing in (2.13) must be present, since
otherwise, T2 = 0).

Since we have

[(c1 + c2)A− c3Ir] [(c1 + c2)A+ c3Ir] =
[
(c1 + c2)2 − c23

]
Ir, (2.14)

we get that if (c1 + c2)2− c23 = 0, then (c1 + c2)A− c3Ir or (c1 + c2)A+ c3Ir is singular,
which in view of (2.13) we get that c1T1 + c2T2 − c3T1T2 or c1T1 + c2T2 + c3T1T2 is
singular.

Now, let us prove the second part of the Theorem, i.e., we shall prove (2.10) for
any c1, c2 ∈ C∗ satisfying (c1 + c2)2 6= c23. From (2.14) we get that (c1 + c2)2 − c23 6= 0
leads to the nonsingularity of (c1 + c2)A− c3Ir and

[(c1 + c2)A− c3Ir]−1 =
1

(c1 + c2)2 − c23
[(c1 + c2)A+ c3Ir] .

Since T 2
1 = In, we have T−1

1 = T1 and from (2.12) we have

T−1
1 = S

(
A 0

−EDA E

)
S−1, (2.15)

from them we can conclude that D = −EDA, i.e., −DA = ED.
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If c1, c2 ∈ C∗ satisfy (c1 + c2)2 6= c23, then by using (2.13)

(c1T1 + c2T2 − c3T1T2)−1

= S

(
[(c1 + c2)A− c3Ir]−1 0

−c−1
1 E(c1D − c3DA)[(c1 + c2)A− c3Ir]−1 c−1

1 E

)
S−1

= S

(
[(c1 + c2)2 − c23]−1[(c1 + c2)A+ c3Ir] 0

−c−1
1 E(c1D − c3DA)[(c1 + c2)2 − c23]−1[(c1 + c2)A+ c3Ir] c−1

1 E

)
S−1.

Hence

[(c1 + c2)2 − c23](c1T1 + c2T2 − c3T1T2)−1

= (c1 + c2)S
(

A 0
−EDA E

)
S−1 + c3S

(
Ir 0
0 0

)
S−1 + c−1

1 c2c3S

(
0 0
ED 0

)
S−1

+c−1
1 c23S

(
0 0

EDA 0

)
S−1 + c−1

1 (c22 + c1c2 − c23)S
(

0 0
0 E

)
S−1. (2.16)

On the other hand, we have

T 2
2 = S

(
Ir 0
0 0

)
S−1, (2.17)

T 2
2 − T1T2 = S

(
0 0
ED 0

)
S−1, (2.18)

T2 − T1T
2
2 = S

(
0 0

EDA 0

)
S−1, (2.19)

T1 − T1T
2
2 = S

(
0 0
0 E

)
S−1. (2.20)

From (2.16)-(2.20), we get that (2.10) holds.

(ii) Assume that T2 is nonsingular. First, let us prove the first part of the Theorem.
As in (i), but now interchanging the roles of T1 and T2, we can write

T1 = S

(
A 0
0 0

)
S−1, T2 = S

(
A 0
D E

)
S−1, A ∈ Cr×r,

being r the rank of T1. Since T 2
2 = In we have A2 = Ir and E2 = In−r. The difference

from (i) is

c1T1 + c2T2 ± c3T1T2 = S

(
(c1 + c2)A± c3Ir 0

c2D c2E

)
S−1. (2.21)

As in (i), if (c1 + c2)2 = c23, by (2.14) and (2.21), one has that c1T1 + c2T2 + c3T1T2

or c1T1 + c2T2 − c3T1T2 is singular.
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Now, we shall prove (2.11) for any c1, c2 ∈ C∗ satisfying (c1 + c2)2 6= c23. By using
(2.21) one has

(c1T1 + c2T2 − c3T1T2)−1

= S

(
[(c1 + c2)A− c3Ir]−1 0

−ED[(c1 + c2)A− c3Ir]−1 c−1
2 E

)
S−1

= S

(
[(c1 + c2)2 − c23]−1[(c1 + c2)A+ c3Ir] 0

−ED[(c1 + c2)2 − c23]−1[(c1 + c2)A+ c3Ir] c−1
2 E

)
S−1.

Hence

[(c1 + c2)2 − c23](c1T1 + c2T2 − c3T1T2)−1

= S

(
(c1 + c2)A+ c3Ir 0

−ED[(c1 + c2)A+ c3Ir] c−1
2 [(c1 + c2)2 − c23]E

)
S−1

= (c1 + c2)S
(

A 0
−EDA E

)
S−1 + S

(
c3Ir 0
−c3ED c−1

2 (c21 + c1c2 − c23)E

)
S−1

= (c1 + c2)T2 + c3S

(
Ir 0
−ED 0

)
S−1 + c−1

2 (c21 + c1c2 − c23)S
(

0 0
0 E

)
S−1.

On the other hand, we easily have

2T 2
1 − T2T1 = S

(
Ir 0
ED 0

)
S−1 and T2 − T2T

2
1 = S

(
0 0
0 E

)
S−1.

The proof is completed.

If c3 = 0, then we have the following corollary.

Corollary 2.2. [4, Theorem 3.1] Let T1, T2 ∈ Cn×n be two nonzero tripotent matrices
such that T 2

1 T2 = T 2
2 T1 and c1, c2 ∈ C∗. If T1 or T2 are nonsingular, then c1T1 + c2T2

is nonsingular if and only if c1 + c2 6= 0. In this case,
(i) If T1 is nonsingular, then

(c1 + c2)(c1T1 + c2T2)−1 = T1 + c2c
−1
1 T1(In − T 2

2 ).

(ii) If T2 is nonsingular, then

(c1 + c2)(c1T1 + c2T2)−1 = T2 + c2c
−1
1 T2(In − T 2

1 ).

The following theorem shows that the nonsingularity of c1T1 + c2T2− c3T1T2 is also
related to the nonsingularity of the same combination of T 2

1 T2 and T 2
2 T1 or T2T

2
1 and

T1T
2
2 .

Theorem 2.6. Let T1, T2 ∈ Cn×n be two tripotent matrices and any c1, c2 ∈ C∗. The
following statements are equivalent:

(i) c1T
2
2 T1 + c2T

2
1 T2 − c3T 2

2 T1T2 is nonsingular.
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(ii) c1T1T
2
2 + c2T2T

2
1 − c3T1T2T

2
1 is nonsingular.

(iii) c1T1 + c2T2 − c3T1T2 and In − T 2
1 − T 2

2 are nonsingular.

Proof. The results follow quite easily from the equalities

(In − T 2
1 − T 2

2 )(c1T1 + c2T2 − c3T1T2) = −(c1T 2
2 T1 + c2T

2
1 T2 − c3T 2

2 T1T2)

and

(c1T1 + c2T2 − c3T1T2)(In − T 2
1 − T 2

2 ) = −(c1T1T
2
2 + c2T2T

2
1 − c3T1T2T

2
1 ).
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