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Abstract

The various mechanisms that represent the know-how of decision-makers are ex-
posed to a common weakness, namely, a lack of consistency. To overcome this weak-
ness within AHP (analytic hierarchy process), we propose a framework that enables
balancing consistency and expert judgment. We specifically focus on a linearization
process for streamlining the trade-off between expert reliability and synthetic con-
sistency. An algorithm is developed that can be readily integrated in a suitable DSS
(decision support system). This algorithm follows an iterative feedback process that
achieves an acceptable level of consistency while complying to some degree with ex-
pert preferences. Finally, an application of the framework to a water management
decision-making problem is presented.
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1 Introduction

One of the best established and most modern models of decision-making is
AHP (analytic hierarchy process) [6,10,11]. In AHP, the input format for
decision-makers to express their preferences derives from pair-wise compar-
isons among various elements. Comparisons can be determined by using, for
instance [4], a scale of integers 1-9 to represent opinions ranging from ‘equal im-
portance’ to ‘extreme importance’ [8] (intermediate decimal values are some-
times useful). Homogeneous and reciprocal judgment yields an n × n matrix
A with aii = 1 and aij = 1/aji, i, j = 1, . . . , n. This last property is called
reciprocity and A is said to be a reciprocal matrix. The aim is to assign to each
of n elements, Ei, priority values wi, i = 1, . . . , n, that reflect the emitted
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judgments. If judgments are consistent, the relations between the judgments
aij and the values wi turn out to be aij = wi/wj, i, j = 1, . . . , n, and it
is said that A is a consistent matrix. This is equivalent to aijajk = aik for
i, j, k = 1, . . . , n [1]. As stated by [9,10], the leading eigenvalue and the princi-
pal (Perron) eigenvector of a comparison matrix provides information to deal
with complex decisions, the normalized Perron eigenvector giving the sought
priority vector. In the general case, however, A is not consistent. The hypoth-
esis that the estimates of these values are small perturbations of the ‘right’
values guarantees a small perturbation of the eigenvalues (see, e.g., [12]). Now,
the problem to solve is the eigenvalue problem Aw = λmaxw, where λmax is
the unique largest eigenvalue of A that gives the Perron eigenvector as an
estimate of the priority vector.

As a measurement of inconsistency, Saaty [8] proposed using the consistency
index CI = (λmax − n)/(n − 1) and the consistency ratio CR = CI/RI,
where RI is the so-called average consistency index [8]. If CR < 0.1, the
estimate is accepted; otherwise, a new comparison matrix is solicited until
CR < 0.1. To overcome inconsistency in AHP while still taking into account
expert know-how, the authors propose a model to balance the latter with the
former. Our model incorporates an extended version of the linearization pro-
cedure described in [2], and integrates it along with AHP to produce optimal
comparison matrices.

2 Linearization process and an extension to judgment modification

We first introduce some notation and mathematical tools [2]. Hereinafter,
Mn,m will denote the set of n×m real matrices. If A ∈Mn,m, [A]i,j denotes the
i, j entry of A. M+

n,m ⊂Mn,m is the subset of matrices with positive entries. We
assume that vectors of IRn are columns, and denote 1n = [1 · · · 1]T ∈ IRn. Let
us recall that the Hadamard product, �, in Mn,m is defined as the component-
wise product. The following two mappings are one inverse of the other:

L : M+
n,m →Mn,m, [L(A)]i,j = log([A]i,j);

E : Mn,m →M+
n,m, [E(A)]i,j = e[A]i,j .

Clearly, L(X � Y ) = L(X) + L(Y ), and E(X) + E(Y ) = E(X � Y ) for all
X, Y ∈ M+

n,m. Because of its simplicity, we use the Frobenius norm, ‖A‖F =

[tr(ATA)]1/2, tr(X) and XT being the trace and the transpose of matrix X, re-
spectively. Also, in M+

n,m we define the distance d given by d(A,B) = ‖L(A)−
L(B)‖F . Finally, we define φn : IRn → Mn,n given by [φn(x)]i,j = xi − xj and
Ln = {L(A) : A ∈M+

n,n, A is consistent}.

Theorem 1 [2] Ln = Imφn is a linear subspace of Mn,n of dimension n− 1.

2



We will now use orthogonal projections, to solve approximation problems. Let
pn : Mn,n → Ln be such a projection, and let us assume that IRn is endowed
with the standard inner product, inducing the Euclidean norm, and Mn,n is
endowed with the following inner product: 〈A,B〉 = tr(ATB).

Theorem 2 [2] Let {y1, . . . ,yn−1} be an orthogonal basis of the orthogonal
complement to span{1n}. Then {φn(y1), . . . , φn(yn−1)} is an orthogonal basis
of Ln and ‖φn(yi)‖2F = 2n‖yi‖22 for all i = 1, . . . , n− 1.

Hence, the orthogonal projection of L(A) onto Ln is given by a Fourier ex-
pansion [7].

Theorem 3 [2] Let A and {y1, . . . ,yn−1} an orthogonal basis of the orthog-
onal complement to span{1n}. The orthogonal projection of L(A) onto Ln is
the matrix

1

2n

n−1∑
i=1

tr
(
L(A)Tφn(yi)

)
‖yi‖2F

φn(yi).

Remark 4 Observe that φn(v) = v1T
n − 1nv

T for any v ∈ IRn.

We develop now some results that enable easy calculation of the new consistent
comparison matrix if one (or more) judgments are modified. As a corollary, we
give a fast algorithm to find the closest consistent matrix to a given reciprocal
matrix.

2.1 Consistency retrieval after modifying one pair-wise comparison

Let us suppose that a reciprocal matrix A is obtained from some expert
judgment and the consistent matrix YA = E[pn(L(A))] closest to A is cal-
culated. If the judgment comparing criteria r and s is changed (where r 6= s
and 1 ≤ r, s ≤ n), we obtain another reciprocal matrix B. In other words,
[B]r,s = α[A]r,s and [B]s,r = α−1[A]s,r for some α > 0 and [B]i,j = [A]i,j in the
remaining entries.

The problem we address is how to find the consistent matrix YB = E[pn(L(B))]
closest to B by performing fewer operations than by means of Theorem 3.

The relationship between matrices A and B is

L(B) = L(A) + logα(ere
T
s − ese

T
r ). (1)

Since the orthogonal projection pn is linear,

pn(L(B)) = pn(L(A)) + logα · pn(ere
T
s − ese

T
r ). (2)
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By Theorem 3 we have

pn(ere
T
s − ese

T
r ) =

1

2n

n−1∑
i=1

tr
(
(ere

T
s − ese

T
r )Tφn(yi)

)
‖yi‖22

φn(yi). (3)

Let us simplify tr
(
(ere

T
s − ese

T
r )Tφn(yi)

)
. By using Remark 4, it is obtained

(ere
T
s − ese

T
r )Tφn(yi) = (eT

r yi)es1
T
n − esy

T
i − (eT

s yi)er1
T
n + ery

T
i .

Now, since the trace is a linear mapping we have

tr
(
(ere

T
s − ese

T
r )Tφn(yi)

)
= 2eT

r yi − 2eT
s yi = 2(eT

r − eT
s )yi.

Now, from (3) and Note 4, we have

pn(ere
T
s − ese

T
r ) =

1

n

n−1∑
i=1

(eT
r − eT

s )yi

‖yi‖22
(yi1

T
n − 1ny

T
i ). (4)

Since {1n,y1, . . . ,yn−1} is an orthogonal basis of IRn and ‖1n‖22 = n, we have

er − es =
(eT

r − eT
s )1n

n
1n +

n−1∑
i=1

(eT
r − eT

s )yi

‖yi‖22
yi. (5)

And since eT
r 1n = eT

s 1n = 1, Eq. 5 reduces to er − es =
∑n−1

i=1
(eTr −eTs )yi

‖yi‖22
yi.

Hence (4) leads to

pn(ere
T
s − ese

T
r ) =

1

n

[
(er − es)1

T
n − 1n(er − es)

T
]
. (6)

Now, it can be easily proven that

(er − es)1
T
n − 1n(er − es)

T

= 2(ere
T
s − ese

T
r ) +

∑
j /∈{r,s}

ere
T
j − eje

T
r − ese

T
j + eje

T
s . (7)

From (2), (6), and (7) we obtain

pn(L(B)) = pn(L(A))+

+
logα

n

2(ere
T
s − ese

T
r ) +

∑
j /∈{r,s}

ere
T
j − eje

T
r − ese

T
j + eje

T
s

 ,
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and, finally,

YB = YA�E

 logα

n

2(ere
T
s − ese

T
r ) +

∑
j /∈{r,s}

ere
T
j − eje

T
r − ese

T
j + eje

T
s

 .
We obtain the following result from this last expression.

Theorem 5 Let A ∈M+
n,n and let YA be the consistent matrix closest to A. If

B is defined by (1) and YB is the consistent matrix closest to B, then [YB]r,s =
α2/n[YA]r,s, [YB]s,r = α−2/n[YA]s,r; if j /∈ {r, s}, then [YB]r,j = α1/n[YA]r,j,
[YB]j,r = α−1/n[YA]j,r, [YB]s,j = α−1/n[YA]s,j, [YB]j,s = α1/n[YA]j,s; and in the
remaining cases, [YB]i,j = [YA]i,j.

Using the Hadamard product, Theorem 5 can be rewritten in a more compact
form.

Theorem 6 Let A ∈ M+
n,n and let YA be the consistent matrix closest to A.

If B is defined by (1) and YB is the consistent matrix closest to B, then

YB = YA � (xyT),

where x = [x1 · · · xn]T, y = [y1 · · · yn], xr = ys = α1/n, xs = yr = α−1/n,
and xi = yi when i /∈ {r, s}.

2.2 Fast computation of the consistent matrix closest to a reciprocal matrix

Although Theorem 3 enables finding the closest consistent matrix to a given
reciprocal matrix, we now present a very fast calculation algorithm. Let us
remark that reciprocity of the involved matrices is not necessary in Theorems 5
and 6; however, the procedure we present here, which directly implements
the calculations described in Theorems 5 and 6, is valid only for reciprocal
matrices. We write the algorithm using MatLab language.

The idea of the algorithm is the following: to start with the matrix in Mn×n
all of whose components are 1, and then, step by step, to modify this starting
matrix and use Theorem 6.

function [w,X] = aprox(A)

[n,m] = size(A);

if n == m

w = ones(n,1);

for i=1:n

for j=i+1:n

w(i)=w(i)*A(i,j)^(1/n);
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w(j)=w(j)*A(i,j)^(-1/n);

end

end

X = w*(w.^(-1))’;

else error(’Matrix must be square’)

end

In this file, the input is a reciprocal matrix A, and the output is the closest
consistent matrix to A, denoted by X, and the vector w such that

X =


w1

...

wn


[
w−11 · · · w−1n

]
.

3 An integrated model for achieving consistency in AHP

In this section we develop an iterative process to streamline the trade-off
between expert know-how and synthetic consistency from the results of the
previous section.

After having stated the problem by clearly defining the top-bottom hierarchi-
cal structure of objectives, criteria and alternatives, an AHP-based, real-world,
decision-making process starts by collecting expert information. The results
are compiled and the entries of the criteria and alternative comparison ma-
trices represent the knowledge of the experts. Let’s take a look at any one of
these comparison matrices.

Such a matrix will almost certainly be non-consistent, and with non-negligible
probability it will not have an acceptable consistency ratio CR, according
to Saaty’s criterion. The linearization process can now be used to build a
consistent matrix. The new matrix may be considered by the expert(s) to
partially reflect their opinions and, perhaps, they will choose to modify some of
the matrix entries. Shifting one or more entries of the matrix while preserving
reciprocity will produce an inconsistent matrix, and a similar process can
again be undergone in an attempt to reach a reasonable trade-off between
consistency and expert know-how compliance. Obtaining a new consistent
matrix from another matrix obtained by shifting one or more entries of a
consistent matrix is developed in a straightforward manner by following the
process of the linearization-extension described in the previous paragraph.

The following pseudo-code contains the whole process through an iterative
dialog between the expert(s) and the consistency points of view:
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Fig. 1. MatLab GUI for an AHP decision support system

0. Matrix construction by using expert judgment.
a. Matrix passes consistency test: accept matrix.
b. Matrix fails consistency test: continue with the following process.

1. Construction of the closest consistent matrix using linearization.
2. Expert assessment to evaluate changes produced by linearization.

a. Expert agreement: accept matrix.
b. Expert decides to change: apply the following linearization-extension.

3. Automatic construction of a new consistent matrix by following the proce-
dure described in Section 2.

4. Go to 2 until completion.

This process has been implemented in a tool developed in MatLab. Figure
1 shows the GUI (guided user interface) containing the problem elements.
Various methods for consistency improvements may be selected - including
the method presented in this paper. The matrix the user has selected is shown
in the lower-center part of the GUI. The final decision is accessed by using the
buttons in the lower right-hand area.

This tool has been used to develop the decision-making process described in
the paragraph below.
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4 Application to leakage policy in a water distribution system

We consider here one of the problems that poses a great challenge to water
supply managers: the minimization of water loss. Great sums of money are
devoted annually to this aim worldwide. We consider a problem with only two
management alternatives for leakage control. Active leakage control (ALC) in-
volves taking actions in distribution systems to identify and repair not reported
leaks. Passive leakage control (PLC) boils down to just repairing reported or
evident leaks [5].

The criteria used to decide on the alternatives are multiple, but decision-
makers should be concerned with the tangible and quantitative factors, such as
cost, in engineering selection problems; as well as the intangible and qualitative
factors, such as environmental and social impacts [3]. We consider the following
criteria:

C1: planning development cost and its implementation;
C2: damage to property and other service networks;
C3: effects (cost or compensations) of supply disruptions;
C4: inconveniences caused by closed or restricted streets;
C5: water extractions (benefits for aquifers, wetlands, or rivers);
C6: construction of tanks and reservoirs (environmental and recreational im-

pacts);
C7: CO2 emissions (related to energy used in pumping stations).

We use here the point of view of the management department of a supply
company - OOAPAS (Public Water Company) in Morelia, Michoacán (Mex-
ico). Upon evaluation using the 9-point Saaty scale, the matrix A in Table 1
was produced.

Table 1
Matrix of criteria, A

C1 C2 C3 C4 C5 C6 C7

C1 1 7 9 5 7 5 3

C2 1/7 1 5 9 5 7 5

C3 1/9 1/5 1 7 3 7 3

C4 1/5 1/9 1/7 1 7 5 5

C5 1/7 1/5 1/3 1/7 1 9 7

C6 1/5 1/7 1/7 1/5 1/9 1 5

C7 1/3 1/5 1/3 1/5 1/7 1/5 1

This matrix is positive, homogeneous and reciprocal, yet inconsistent. Since
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λmax ' 10.56, CI ' 0.5948, and CR ' 44.06%, consistency of this matrix is
inadmissible.

The process described in Section 3 was launched. The final consensus between
consistency and expertise is given in Table 2.

Table 2
Trade-off between consistency and expert judgment

C1 C2 C3 C4 C5 C6 C7

C1 1 1.28 1.17 1.77 2.12 4.49 9.89

C2 0.78 1 0.92 1.39 1.66 3.52 7.74

C3 0.85 1.09 1 1.51 1.81 3.83 8.42

C4 0.57 0.72 0.66 1 1.20 2.54 5.59

C5 0.47 0.60 0.55 0.83 1 2.16 4.66

C6 0.22 0.28 0.26 0.39 0.47 1 2.20

C7 0.10 0.13 0.12 0.18 0.22 0.45 1

The Perron eigenvector providing the priority vector, normalized so that 1T
7 w =

1, is Z = [0.25, 0.20, 0.21, 0.14, 0.12, 0.06, 0.02]T. Thus, greater importance
is placed on criterion C1 closely followed by C3 and C2.

5 Conclusions

In this paper, by extending a linearization process already published by the
authors [2], and describing an efficient implementation for the calculations, an
algorithm is developed that follows an iterative feedback process and achieves
an acceptable level of consistency while complying to some degree with expert
preferences.

Our ultimate objective was to devise a method and then integrate it into a
suitable DSS tool. This method would help practitioners build comparison
matrices that both rely on their judgment and are efficient and reliable in
deriving priorities.

An application to a real decision-making problem in water management has
been presented. The study enhances the relevance of the economic aspects,
showing the leading role in the decision played by planning development im-
plementation and costs. The interesting aspect regarding the application of
AHP is indeed the inclusion of social and environmental costs in decision-
making.
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