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Summary 
 

Carbamoyl phosphate synthetase 1 (CPS1), a 1462-residue mitochondrial 

enzyme, catalyzes the entry of ammonia into the urea cycle, which converts 

ammonia, the neurotoxic waste product of protein catabolism, into barely toxic 

urea. The urea cycle inborn error and rare disease CPS1 deficiency (CPS1D) is 

inherited with mendelian autosomal recessive inheritance, being due to CPS1 

gene mutations (>200 mutations reported), and causing life-threatening 

hyperammonemia. 

 

We have produced recombinantly human CPS1 (hCPS1) in a baculovirus/insect 

cell expression system, isolating the enzyme in active and highly purified form, 

in massive amounts. This has allowed enzyme crystallization for structural 

studies by X-ray diffraction (an off-shoot of the present studies). This hCPS1 

production system allows site-directed mutagenesis and enzyme 

characterization as catalyst (activity, kinetics) and as protein (stability, 

aggregation state, domain composition). We have revealed previously 

unexplored traits of hCPS1 such as its domain composition, the ability of 

glycerol to replace the natural and essential CPS1 activator N-acetyl-L-

glutamate (NAG), and the hCPS1 protection (chemical chaperoning) by NAG 

and by its pharmacological analog N-carbamyl-L-glutamate (NCG).  

 

We have exploited this system to explore the effects on the activity, kinetic 

parameters and stability/folding of the enzyme, and to test the disease-causing 

nature, of mutations identified in patients with CPS1 deficiency (CPS1D). 

These results, supplemented with those obtained with other non-clinical 

mutations, have provided novel information on the functions of three non-

catalytic domains of CPS1. 

 

We have introduced three CPS1D-associated mutations and one trivial 

polymorphism in the glutaminase-like domain of CPS1, supporting a stabilizing 

and an activity-enhancing function of this non-catalytic domain. Two mutations 

introduced into the bicarbonate phosphorylation domain have shed light on 

bicarbonate binding and have directly confirmed the importance of this domain 

for NAG binding to the distant (in the sequence) C-terminal CPS1 domain. The 

introduction of 18 CPS1D-associated missense mutations mapping in a 

clinically highly eloquent central non-catalytic domain have proven the disease-

causing nature of most of these mutations while showing that in most of the 

cases they trigger enzyme misfolding and/or destabilization. These results, by 

proving an important role of this domain in the structural integration of the 

multidomain CPS1 protein, have led us to call this domain the Integrating 

Domain. 

 



 

 
 

      

Finally, we have examined the effects of eight CPS1D-associated mutations, of 

one trivial polymorphism and of five non-clinical mutations, all of them 

mapping in the C-terminal domain of the enzyme where NAG binds, whereas 

we have re-analyzed prior results with another four clinical and five non-

clinical mutations affecting this domain. We have largely confirmed the 

pathogenic nature of the clinical mutations, predominantly because of decreased 

activity, in many cases due to hampered NAG binding. A few mutations had 

substantial negative effects on CPS1 stability/folding. Our analysis reveals that 

NAG activation begins with a movement of the final part of the β4-α4 loop of 

the NAG site. Transmission of the activating signal to the phosphorylation 

domains involves helix α4 from this domain and is possibly transmitted by the 

mutually homologous loops 1313-1332 and 778-787 (figures are residue 

numbers) belonging, respectively, to the carbamate and bicarbonate 

phosphorylation domains. These two homologous loops are called from here on 

Signal Transmission Loops.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

      

Resumen 
 

La carbamil fosfato sintetasa 1 (CPS1), una enzima mitocondrial de 1462 

residuos, cataliza la entrada del amonio en el ciclo de la urea, que convierte esta 

neurotoxina derivada del catabolismo de las proteínas en urea, que es mucho 

menos tóxica. El déficit de CPS1 (CPS1D) es un error innato del ciclo de la 

urea, una enfermedad rara con herencia mendeliana autosómica recesiva, que se 

debe a mutaciones en el gen CPS1 (>200 mutaciones descritas) y que cursa con 

hiperamonemia. 

Hemos producido CPS1 humana recombinante (hCPS1) en un sistema de 

expresión de células de insecto y baculovirus, y la hemos aislado en forma 

activa y muy pura y en cantidad elevada. Ello ha permitido la cristalización de 

la enzima para estudios estructurales de difracción de rayos-X (un trabajo 

derivado de esta tesis pero no incluido en ella). Este sistema de producción de 

hCPS1 permite la realización de mutagénesis dirigida y la caracterización de la 

enzima como catalizador (actividad, cinética) y como proteína (estabilidad, 

estado de agregación y composición de dominios). Hemos revelado 

características de la hCPS1 antes no exploradas como es la composición de 

dominios, la capacidad que tiene el glicerol para reemplazar al activador natural 

y esencial de la CPS1, N-acetil-L-glutamato (NAG), y la protección de la 

hCPS1 por NAG y por su análogo farmacológico N-carbamil-L-glutamato 

(NCG) (chaperonas químicas). 

Hemos utilizado este sistema para explorar los efectos en la actividad, los 

parámetros cinéticos y la estabilidad/plegamiento de la enzima, y para 

comprobar la naturaleza patogénica de mutaciones identificadas en pacientes 

con CPS1D. Estos resultados, junto con los obtenidos con otras mutaciones no 

clínicas, han aportado información novedosa sobre tres de los dominios no 

catalíticos de la CPS1. 

Las observaciones realizadas tras introducir en el dominio de tipo glutaminasa 

de la enzima tres mutaciones asociadas a CPS1D y un polimorfismo trivial, 

apoyan la contribución de este dominio no catalítico a la estabilidad y a 

aumentar la actividad de la enzima. Dos mutaciones introducidas en el dominio 

de fosforilación de bicarbonato han arrojado algo de luz sobre el modo de unión 

del bicarbonato (un sustrato). Los resultados de estas mutaciones también han 

confirmado la contribución de este dominio para la unión de NAG, cuyo sitio 

de unión se encuentra en el dominio C-terminal de CPS1, bastante alejado (en 

la secuencia) del dominio de fosforilación de bicarbonato. Además, hemos 

introducido 18 mutaciones de cambio de sentido asociadas a CPS1D, las cuales 

están localizadas en un dominio no catalítico, central y de elevada elocuencia 

clínica. Estos resultados han demostrado la naturaleza patogénica de estas 

mutaciones, ya que en la mayoría de los casos estas mutaciones producen un 

mal plegamiento o/y desestabilización de la enzima. Debido a que estos 

resultados han puesto de manifiesto el importante papel de este dominio en la 



 

 
 

      

integración estructural de la proteína multidominio CPS1, lo hemos llamado 

Dominio Integrador. 

Finalmente, hemos examinado los efectos de ocho mutaciones asociadas a 

CPS1D, de un polimorfismo trivial y de cinco mutaciones no clínicas, todas 

ellas localizadas en el dominio C-terminal de la enzima, donde se une NAG. 

Además, hemos reanalizado resultados anteriores con otras cuatro mutaciones 

clínicas y cinco no clínicas afectando a este dominio. Hemos confirmado el 

carácter patogénico de las mutaciones clínicas, las cuales predominantemente 

causan una disminución en la actividad enzimática, en muchos casos debida a 

que la unión de NAG se encuentra obstaculizada. Unas pocas mutaciones 

mostraron efectos negativos sustanciales en la estabilidad/plegamiento de la 

CPS1. Nuestros análisis revelan que la activación por el NAG empieza con un 

movimiento de la parte final del bucle β4-α4 del sitio de NAG. La transmisión 

de la señal activadora a los dominios de fosforilación implica a la hélice α4 de 

este dominio y posiblemente se transmite a través de los bucles homólogos 

1313-1332 y 778-787 (numeración de los residuos) pertenecientes, 

respectivamente, a los dominios de fosforilación de carbamato y bicarbonato. 

Por ello, hemos llamado a ambos bucles homólogos Bucles de Transmisión de 

la Señal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

      

Resum 
 

La carbamil fosfat sintetasa 1 (CPS1), un enzim mitocondrial de 1462 residus, 

catalitza l'entrada d'amoni en el cicle de la urea, que convertix l'amoni, producte 

neurotòxic del catabolisme de les proteïnes, en urea, una molècula molt poc 

tòxica. El dèficit de CPS1 (CPS1D) és un error innat del cicle de la urea, una 

malaltia rara amb herència mendeliana autosòmica recessiva, que es deu a 

mutacions en el gen CPS1 (>200 mutacions descrites) i que cursa amb 

hiperamonièmia. 

 

Hem produït CPS1 humana recombinant (hCPS1) en un sistema d'expressió de 

cèl·lules d'insecte i baculovirus, i l'hem aïllada en forma activa i molt pura i en 

gran quantitat. Això ha permés la cristal·lització de l'enzim per a estudis 

estructurals amb difracció de raios-X (treball no inclòs en esta tesi). Aquest 

sistema de producció de hCPS1 permet la realització de mutagènesi dirigida i la 

caracterització de l'enzim com a catalitzador (activitat, cinètica) i com a 

proteïna (estabilitat, estat d'agregació i composició de dominis). Hem revelat 

característiques de la hCPS1 no explorades abans com és la composició de 

dominis, la capacitat que té el glicerol per a reemplaçar l'activador natural i 

essencial de CPS1, N-acetil-L-glutamat (NAG), i la protecció de la hCPS1 per 

NAG i pel seu anàleg farmacològic N-carbamil-L-glutamat (NCG) (xaperones 

químiques) . 

 

Hem utilitzat aquest sistema per a explorar els efectes en l'activitat, els 

paràmetres cinètics i l'estabilitat/plegament de l'enzim, i per a comprovar la 

naturalesa patogènica de mutacions identificades en pacients amb CPS1D. 

Aquestos resultats, junt amb els obtinguts amb altres mutacions no clíniques, 

han aportat informació nova sobre tres dels dominis no catalítics de la CPS1. 

 

Les observacions, després d'introduir tres mutacions associades a CPS1D i un 

polimorfisme trivial en el domini tipus glutaminasa de CPS1, recolzen la 

contribució d'aquest domini no catalític a l'estabilitat i a l'optimització de 

l'activitat enzimàtica. Dues mutacions introduïdes en el domini de fosforilació 

de bicarbonat han esclarit el mode d'unió de bicarbonat. Els resultats d'aquestes 

mutacions també han confirmat la contribució d'aquest domini per a la unió de 

NAG, el lloc d'unió de la qual es troba en el domini C-terminal de CPS1, prou 

allunyat (en la seqüència) del domini de fosforilació de bicarbonat. A més, hem 

introduït 18 mutacions de canvi de sentit associades a CPS1D, les quals estan 

localitzades en un domini no catalític, central i d'elevada eloqüència clínica. 

Aquestos resultats han demostrat la naturalesa patogènica d'aquestes mutacions, 

ja que, en la majoria dels casos produïxen un mal plegament o/i 

desestabilització de l'enzim. Pel fet que aquestos resultats han posat de manifest 



 

 
 

      

l'important paper d'aquest domini en la integració estructural de la proteïna 

multidomini CPS1, l'hem anomenat Domini Integrador. 

 

Finalment, hem examinat els efectes de huit mutacions associades a CPS1D, un 

polimorfisme trivial i cinc mutacions no clíniques, totes elles localitzades en el 

domini C-terminal de l'enzim, on s'unix NAG. A més, hem reanalitzat resultats 

anteriors amb altres quatre mutacions clíniques i cinc no clíniques que afecten 

aquest domini. Hem confirmat el caràcter patogènic de les mutacions clíniques, 

les quals predominantment causen una disminució en l'activitat enzimàtica, en 

molts casos pel fet que la unió de NAG es troba obstaculitzada. Unes poques 

mutacions van mostrar efectes negatius substancials en l'estabilitat/plegament 

de CPS1. Les nostres anàlisis revelen que l'activació de NAG comença amb un 

moviment de la part final del bucle β4-α4 del lloc de NAG. La transmissió del 

senyal activadora als dominis de fosforilació involucra l'hèlix α4 d'aquest 

domini i es transmet, possiblement, a través dels bucles homòlegs 1313-1332 i 

778-787 (numeració dels residus), pertanyents, respectivament, als dominis de 

fosforilació de carbamato i bicarbonat. Per això, hem anomenat a ambdós 

bucles homòlegs Bucles de Transmissió del Senyal. 
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Non-standard Abbreviations 

 

3D: Three-dimension 

6xHis or His6-tag: 6 histidine tag 

AcNPV: Autographa californica nuclear polyhedrosis virus  

ALT: Alanine transaminase 

AMPPNP: Adenylyl-imidodiphosphate 

ARG1: Arginase type 1 

ASD: C-Terminal allosteric domain of CPS1 

ASL: Argininosuccinate lyase 

ASS: Argininosuccinate synthetase 

AST: Aspartic transaminase 

ATC: Aspartate transcarbamylase  

attTn7: Target site of the Tn7 transposon 

BPSD: Bicarbonate phosphorylation domain of CPS1 

CAD: Multifunctional polypeptide that catalyzes the initial three steps of 

pyrimidine biosynthesis. It is composed of CPS II, dihydroorotase and aspartate 

transcarbamylase (in this order from N-terminus to C-terminus) 

CP: Carbamoyl-phosphate 

CPS: Carbamoyl-phosphate synthetase  

CPS1: CPS devoted to making urea. It uses ammonia and is NAG-activated 

CPS1D: Deficiency of CPS1 

CPSII: CPS used for making pyrimidines in eukaryotes 

CPSIII: CPS devoted to making urea in fishes. It uses glutamine but it is 

activated by NAG. 

CPSD: Carbamate phosphorylation domain of CPS1 

Chymo: Chymotrypsin 

DHO: Dihydroorotase 

DTT and dithiothreitol: 1,4-dithio-D-threitol   
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II 

 
 

FUM: Fumarase 

G6PDH: glucose-6-phosphate dehydrogenase 

GDH: L-Glutamate dehydrogenase 

GLNase: Glutaminase 
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1.1 Biological context and scope of this thesis 

 

Carbamoyl-phosphate synthetases (CPSs) are complex multidomain enzymes 

[1-3] that catalyse the synthesis of carbamoyl phosphate (CP) from two 

molecules of ATP and one molecule of each bicarbonate and ammonia (Fig. 1). 

Ammonia is used as such by the enzyme that is responsible for initiating the 

urea cycle and which is the subject of this study, CPS1. However, all other 

CPSs use ammonia derived internally from glutamine, an amino acid that is 

hydrolyzed by these other types of CPS. 

 

Search for CPS sequences in the many genomes deposited in sequence 

databases reveals that CPSs are present in virtually all organisms. The wide 

species distribution of CPSs reflects the fact that carbamoyl phosphate (CP) is 

the initial precursor of pyrimidines [4-6] and arginine [6-9]. Arginine is a 

crucial amino acid. It is a key protein component, and a precursor of nitric 

oxide, creatine, polyamines, agmatine and proline (Fig. 1) [10]. Furthermore, in 

some fishes, in amphibians and mammals, arginine has a central role in urea 

production. In these last two types of vertebrates urea is synthesized to get rid 

of ammonia. By catalyzing the entry of ammonia into the urea cycle, CPS1 has 

paramount importance in these organisms for ammonia detoxification [11].  

 

 

 

 

 

 

 

This thesis work deals with human CPS1 and with its deficiency (CPS1D) 

(OMIM #237300; http://www.ncbi.nlm.nih.gov/omim). CPS1D is an autosomal 

recessive inborn error of the urea cycle, which causes hyperammonemia, 

potentially leading to death or mental retardation [12]. More than 200 CPS1D-

associated mutations have been reported in the CPS1 gene (located in 2q34). 

The majority of these mutations are missense changes (Fig. 2). In many cases, 

the disease-causing role of these missense mutations is unproven [12]. This 

situation was recently alleviated when our group reported [13] a 

baculovirus/insect cell expression system that permitted in vitro production of 

rat CPS1, opening the way for accessible site-directed mutagenesis studies with 

this enzyme [14].  

Figure 1. Roles of carbamoyl phosphate 

synthetases. Blue arrows, CPS reaction. 

Black arrows,  metabolic conversions in 

which the indicated molecules are involved. 
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The present work adapts this baculovirus/insect cell expression system to 

endow it with the ability to produce human CPS1. Recombinant human CPS1 is 

produced and characterized here, showing that it has essentially the same 

properties as human CPS1 obtained from its natural source (the liver) [15,16]. 

With the recombinant enzyme we have been able to examine properties of 

human CPS1 that had not been studied previously, such as the domain 

composition of the enzyme. Furthermore, abundant expression of recombinant 

human CPS1 has opened the way to crystallographic studies that are 

culminating in the determination of the crystal structure of the human enzyme 

(collaborative work with other group members not reported here).  

 

In the recent mutational repertory of CPS1D [12] the density of missense 

mutations was found not to be constant along the CPS1 gene and protein. A 

particularly high frequency of missense mutations was identified in a central 

domain of CPS1 having no known function. We have applied here the 

baculovirus/insect cell expression system to investigate by site-directed 

mutagenesis the effects on the functionality and stability of human CPS1 of all 

the missense mutations mapping in this central domain that were reported in 

CPS1D patients. With this approach we aimed at testing the disease-causing 

role of these mutations and also to determine the functions of this central 

domain and to clarify the reasons for the high mutational eloquence in CPS1D.  

 

We also present here a site-directed mutagenesis study of the C-terminal 

domain of human CPS1, a domain called the allosteric domain [1-3] because it 

hosts the site for the essential allosteric activator of the enzyme, N-acetyl-L-

Figure 2. The CPS1 coding sequence split into its different exons (bottom), to show the 

location of the different missense mutations (banners) recently compiled or reported in 

CPS1 deficiency [12]. The figure aims at giving a view of the abundance and 

spreading of the mutations over the entire sequence, rather than to give specific 

information on each mutation (blurred because the figure has been taken from the 

original publication [12], being a part of Fig. 1 of that publication).  
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glutamate (NAG) [13,17]. Our study includes the expression of patient-

identified and of rationally designed mutations as well as the analysis of the 

effects of already studied  mutations mapping in this domain either as a part of 

the present work (Chapter 1 of the Results) or of previous work of other group 

members with recombinant CPS1 from rat [13,14]. This study has not only 

provided insight into disease-causation but also has shed important light into 

the process of NAG activation.  

 

The Results section of this thesis is composed of three chapters corresponding 

to three manuscripts (two of them published, one under review). Since these 

manuscripts have their own introductions, this general introduction will aim at 

providing a broader context for the present work, trying to avoid repetitions and 

redundancies. 

 

 

1.2 The urea cycle and the consequences of its derangements 

 

In vertebrates, ammonia, the final nitrogenous waste product of protein and 

amino acid catabolism, is a strong neurotoxin [18,19] that has to be eliminated 

from the organism. Fishes can do it by direct dilution in the surrounding water. 

Reptiles and birds, generally having limited water access particularly during 

development, convert the waste nitrogen into uric acid, a highly insoluble 

purine derivative that precipitates out of solution. In the case of mammals the 

viviparous foetus is mainly ammonotelic (meaning excretion of ammonia) 

during development, with the mother being in charge of ammonia disposal, 

which in this case occurs by conversion to urea (ureotelism) [20,21]. 

 

Urea [22] is the diamide of carbonic acid, a simple molecule consisting of one 

atom of each carbon and oxygen, of two atoms of nitrogen and four atoms of 

hydrogen. Since the dissociation of amidic hydrogens has very high pK values, 

urea is not an acid at body pH or even at urinary pH. Given the high polarity of 

the O and N atoms and the presence of four hydrogen atoms linked to nitrogen 

atoms, it can be dissolved in water at supramolar concentrations. Consequently, 

urea can be concentrated much in the urine of mammals, which have generally 

enough water availability to prevent its crystallization there. The kidneys have 

developed urea-impermeable tubules. In this way, while most of the water 

filtered in the glomerulus is resorbed later on, the urea is concentrated in the 

urine and becomes the main nitrogenous waste product [23]. Furthermore, 

perhaps because of the non-dissociability of its hydrogens, urea is little toxic, 

and thus it is tolerable to the body at much higher concentration than ammonia 

[24].  
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Krebs, together with Henseleit, proposed eighty three years ago how ammonia 

was converted to urea in mammals, creating the concept of metabolic cycle 

(Fig. 3) [25,26]. The original (as redrawn by Krebs in 1976) and a more recent 

view [27] of this cycle are shown in Fig. 3. 

 

 

 
 

NAGS, NAG synthase; OTC, ornithine transcarbamylase; ASS, argininosuccinate 

synthetase; ASL, argininosuccinate lyase; ARG1, arginase type 1; GLNase, 

glutaminase; GDH, glutamate dehydrogenase; AST, aspartic transaminase; ALT, 

alanine  transaminase; MDH, malate dehydrogenase; LDH, lactate dehydrogenase; 

FUM, fumarase. 
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Carbamoyl-
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+
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Figure  3. Early (left) and present (down) 

views of the urea cycle. The view on the left 

is as originally formulated by Krebs, in a 

drawing of this author in 1976 [26]. The 

view down (courtesy of Drs. Häberle and 

Rubio) of this cycle (orange arrows) includes 

ancillary reactions (other arrows). The 

relation with pyrimidine synthesis is shown 

also. Enzymes and transporters are shown in 

red and boxed.  



                                                         INTRODUCTION 

 

7 

 
 

In mammals, the urea cycle is found in complete form exclusively in 

hepatocytes, excepting the perivenous hepatocytes, which convert the ammonia 

to glutamine instead of to urea [28]. The cycle is split into cytosolic and 

intramitochondrial compartments, with the two initial steps, including the step 

of carbamoyl phosphate synthesis, being localized in the mitochondrial matrix 

(Fig. 3) [7,11].  
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Figure 4. Total liver activities of the different urea cycle enzymes (abbreviated as in 

Fig. 3) given as product synthesis per day for a 1.5 kg liver. Derived from enzyme 

activity data in homogenates of human liver biopsies [29] assayed at optimal pH and 

substrate concentrations. Note the very high activities of OTC and ARG1 (268 and 3528 

mole/day). The arrow indicates urea production per day for an intake of 60 g protein 

per day. Modified from ref. [11]. 

 

Fig. 4 shows the relative activities of the different urea cycle enzymes [29] in 

an entire human liver, given as ability to make urea per day, and compared with 

the need to make urea in an adult consuming a normal diet (containing 60g 

protein day). It can be seen that, in principle, there is considerable functional 

reserve, and that CPS1 is among the three enzymes with the lowest activity 

among all the urea cycle enzymes. Complete absence of any urea cycle enzyme, 

particularly of those catalysing the two initial steps (CPS1 and ornithine 

transcarbamylase), causes hyperammonemia, which, given the neurotoxicity of 

ammonia, soon leads to coma and death [27, 30]. Because of the considerable 

functional reserve (Fig. 4), heterozygous individuals for any urea cycle catalyst 

(except for the X-chromosome-encoded ornithine transcarbamylase) should not 
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present pathology. Furthermore, since the heterozygous mother can take care of 

disposal of the ammonia made by the foetus, the hyperammonemic phenotype 

of individuals with complete deficiency is only manifested after birth, when the 

connection with the mother is lost and the newborn has to cope with the 

challenge to dispose of ammonia to urea using his/her own urea cycle enzymes. 

 

Complete enzyme deficiency, at least of the initial two steps of the urea cycle, 

is therefore constantly associated with neonatal hyperammonemia (called "early 

onset" or "neonatal presentation") and death by approximately 72 hours after 

birth [27,30]. However, given the important functional reserve, patients with 

partial deficiencies caused by low but not zero enzyme levels or by "kinetic" 

enzyme variants having high Km values for the substrates (and also, in the case 

of CPS1, for the essential activator NAG) have in many cases enough enzyme 

activity to cope with the normal burden of ammonia detoxification, presenting 

with hyperammonemia only when the system is overloaded with ammonia, as 

in catabolic situations caused by fever and infections, trauma, surgery, delivery, 

or in peaks of protein intake [30]. In these cases the neonate may not present 

early onset hyperammonemia after birth, having a delayed course that can have 

either a late onset presentation early in life or even much later, when growth 

rate (and thus, protein generation for building the body) decreases, or even in 

adult life. Nevertheless, even in late onset cases the outcome may be equally 

dramatic as in neonatal cases, since hyperammonemic crises can be deadly or 

can cause mental retardation irrespective of the level of residual enzyme 

activity [30].  

 

Although outside the scope of this work, it is important to mention that there 

are effective therapeutic measures [30] that can be applied to patients with urea 

cycle disorders to change the natural course of the disease and even to cure it, 

rendering it essential to apply therapy promptly and aggressively. Our present 

work can be related to the diagnosis and treatment of urea cycle deficiency 

because of the following:  

 

1) Specific disease diagnosis is now based on the detection of genetic lesions 

[12], which are in many cases missense mutations. Characterization of the 

effects of these mutations may not only help decide whether a given missense 

mutation is or is not disease-causing, but can also provide insight on its severity 

and the need to be prepared for treatment in cases in which the presence of a 

given mutation in the foetus is known before delivery. 

 

2) Specific prognostic judgements associated with the approach used in our 

present work can guide therapeutic decisions. For example, the identification of 

highly severe mutations would be an indication for particularly close 
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monitoring of the patient and might help tilt the balance in the direction of, for 

example, enrolling in liver cell therapy (presently an experimental treatment) 

and/or in liver transplantation as soon as possible. 

 

3) Identification of specific traits that could suggest susceptibility to given 

therapies. In the case of CPS1D this is related only, for the moment, to N-

acetyl-L-glutamate (NAG) activation (discussed below), since there is a 

pharmacologic NAG analog and registered orphan drug, N-carbamylglutamate 

[31], that could be tested for efficiency in those patients having CPS1 mutations 

in which the affinity for NAG is decreased, such as those that are the subject of 

Chapter 3 of the Results. 

 

4) Development of CPS1-stabilizing therapies. Pharmacological chaperones for 

treating inborn errors have gained momentum after the discovery that the 

cofactor used by phenylalanine hydroxylase, tetrahydrobiopterin, can be used in 

the therapy of phenylketonuria, having been found to increase the level of the 

enzyme "in vivo" by increasing the stability of the enzyme [32]. As it will be 

shown in Chapter 1 of the Results, we provide here promising findings with 

carbamylglutamate that may herald this approach in the treatment of CPS1D. 

 

In the next two sections we will concentrate on highlighting the biological 

significance of CPS1 as well as to review our knowledge on this enzyme. 

 

 

1.3 Biological significance of CPS1 and of its allosteric regulation by NAG 

  

Human CPS1 is inactive in the absence of NAG [16]. Since rodent studies 

[33,34] indicate that the level of NAG depends on the metabolic situation, 

CPS1 can be considered a true switch for turning the urea cycle on or off 

depending on the availability of NAG.  

 

Why should the urea cycle have such a switch? The most reasonable 

explanation stems from the fact that ammonia is not only a toxin but also an 

essential life component. Although ammonia levels cannot be allowed to be too 

high, because of brain toxicity, they should not be too low either. Ammonia is 

in equilibrium with several non-essential amino acids (such as serine, 

glutamine, asparagine, glutamate and via glutamate with other amino acids) 

[35] and the levels of these amino acids would decrease with the ammonia 

level. Therefore, the activity of the urea cycle cannot be controlled exclusively 

by the availability of ammonia, because this would lead to ammonia depletion, 

and thus to drainage of amino acids and of proteins. NAG is synthesized in the 

same cells and cell compartment (the mitochondrial matrix) where CPS1 is 
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present. It is made by a dedicated enzyme that uses acetyl-CoA and L-glutamate 

[36]. Since NAG has a short t1/2 [37] and NAGS has a high Km value for 

glutamate [36], the NAG levels is a true sensor of the nitrogen load reflected in 

the level of glutamate (Fig. 5).  

Why was acetylglutamate chosen by natural selection for such role instead of 

glutamate? The answer to this question is not clear. The choosing of NAG as 

the CPS1 effector was a relatively recent occurrence, since NAG is a CPS 

activator only in animals. The CPSs from more ancient taxonomic groups 

(including bacteria, archaea and plants) are insensitive to NAG [1-9]. Actually, 

in these organisms NAG is the first committed precursor of ornithine and thus 

of arginine [8,9] (Fig. 6, left panel). Interestingly, as discussed below, the NAG 

site of CPS1 is equivalent to the site of Escherichia coli CPS for IMP [13], a 

purine nucleotide that activates this bacterial CPS [6]. Therefore, at some 

moment in the evolution towards animal arginine biosynthesis all the genes for 

the enzymes that catalyze the conversion of NAG into ornithine were lost, with 

exclusive preservation of NAG synthase, which became exclusively devoted to 

making NAG for the purpose of CPS1 activation (Fig. 6, right panel). 

Simultaneously CPS must have shifted its allosteric activator specificity from 

IMP to NAG losing the ability to be activated by ornithine (another 

characteristic of many bacterial CPSs) [6]. Further evolution also involved an 
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Figure 5. Role of NAG as a safety switch for preventing amino acid and protein depletion. 

For further details see the text. 
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increase in the on/off ratio of activities of the enzyme depending on whether is 

present or is not present, since bacterial CPSs are active in the absence of any 

effectors [6], fish CPSIII (another type of arginine-making CPS considered a 

close predecessor of CPS1) is partially dependent on the presence of NAG [38], 

whereas CPS1 has a complete dependency on this activator [16,39], 

representing an extreme case of allosteric activation [40]. 
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Fig. 7 schematizes the structural traits and Table 1 summarizes the differential 

properties of various types of CPS. In addition to the ability to be activated by 

NAG, CPS1 differs from other types of CPS in its inability to use glutamine as 

substrate, and in its high affinity for ammonia [16,39], approximately 100-fold 

higher than that of the bacterial enzyme [6]. The second of these properties, 

unique to CPS1, is understandable as an adaptive measure because of the major 

role of CPS1 as a detoxifier of ammonia at the concentrations of this metabolite 

that prevail in portal blood. The inability of CPS1 to utilize glutamine is also 

understandable, since in the liver there are two systems that coexist to get rid of 

ammonia [28]: the high capacity but relatively low-affinity system represented 

by the urea cycle, which is present in periportal hepatocytes, and the low 

capacity/high affinity system represented by glutamine synthetase, which is 

found only in perivenous hepatocytes. It makes metabolic sense to get rid of 

ammonia in the two metabolic processes devoted to lowering ammonia levels in 

the blood entering the liver, the urea cycle and the synthesis of glutamine, 

Figure 6. Shift in the function of 

NAG from bacteria and plants (left 

panel), where it is the first 

committed intermediate in arginine 

synthesis, to mammals (right panel), 

where it activates CPS1. Blue 

arrows denote activation and red 

arrows denote feed-back inhibition. 
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ENZYME FUNCTION SUBSTRATE 

ACTIVE  

WITHOUT 

ACTIVATOR? 

ACTIVATOR INHIBITOR 

E. coli 

PYRIMIDINE 

synthesis 

ARGININE synthesis 

Glutamine 

(ammonia) 
YES 

Ornithine 

IMP 
UMP 

CPS I 

Arginine/UREA 

synthesis 

(ureotelic) 

Ammonia NO 
N-Acetyl-L-

glutamate 
--- 

CPS II 
PYRIMIDINE 

synthesis 

Glutamine 

(ammonia) 
YES PRPP UTP 

CPS III 

Arginine/UREA 

synthesis 

(ureosmotic) 

Glutamine 

(ammonia) 
YES 

N-acetyl-L-

glutamate 
--- 

 

particularly since CPS1 has developed a relatively high affinity for ammonia 

when compared with other CPSs.  

 

Table 1. Differential traits of four classical types of CPS 

 

1.4 A brief review of knowledge about CPS1 that is relevant for this work.  

 

1.4.1 Early findings. The discovery of carbamoyl phosphate synthesis was a 

consequence of the efforts to place the urea cycle on sound enzymological 

bases. Krebs and Henseleit reported the cycle on the bases of experiments with 

liver slices in which the influence of several amino acids on the production of 

urea was tested [25]. Only after nearly 20 years Grisolia and Cohen [41] 

Figure 7. The three basic structural types of CPS. CAD stands for the 

multifunctional protein that catalyses the three initial steps of pyrimidine synthesis 

in animals. The abbreviations (in addition to CPS) stand for, GLNase, glutaminase; 

DHO, dihydroorotase; ATC, aspartate transcarbamylase. Based on a drawing in 

[11]. 
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identified the actual enzymatic steps that convert ornithine to citrulline, of 

which the first was shown to depend on ATP and to produce an unstable 

compound that was initially called compound X; this compound, when mixed 

with ornithine and a mitochondrial extract yielded citrulline in an ATP-

independent way. Jones and Lipmann showed that compound X is carbamoyl 

phosphate (CP) [42], and Cohen's group identified NAG as the natural activator 

of the enzyme catalysing the synthesis of CP [43]. These authors also were the 

first to purify CPS1, from frog liver [44]. 

 

1.4.2 Initial work with pure CPSs. Using the pure frog liver enzyme, the CPS1 

reaction was proposed to involve two phosphorylation steps that were reflected 

in two slow partial reactions, one being a bicarbonate-dependent ATPase and 

the other being the synthesis of ATP from CP and ADP [45] (Scheme 1). 

  

3-STEP GLOBAL REACTION

PARTIAL REACTIONS

Bicarbonate-dependent ATPase ATP synthesis

ATP  +  HCO3
- ADP  +  -O-P-O-C-O- Pi +  H2N-C-O- ADP  +  H2N-C-O-P-O-

NH3 ATP
O     O      O     O      

OH O-

O

(carboxyphosphate) (carbamate) (carbamoyl phosphate)

H2O

NH3 + HCO3
-

H2O

Pi + HCO3
-

ATP  +  HCO3
- ADP  +  -O-P-O-C-O-

O     O      

OH
(carboxyphosphate)

H2N-C-O- ADP  +  H2N-C-O-P-O-

ATP
O     O      

O-

O

(carbamate) (carbamoyl phosphate)

 
Scheme 1. Reactional steps of the CPS1 reaction (top) and partial CPS reactions 

(bottom). The partial reactions are aligned vertically with the reactional steps they are 

believed to reflect. Taken from [46]. 

 

Little later it was discovered that bacteria also use CPS for arginine and 

pyrimidine synthesis [47], which was the starting point for extensive studies 

with the bacterial enzyme, mainly led by the group of Alton Meister. For 

brevity, these early data on the bacterial enzyme will not be revised here unless 

they are directly relevant to the present work, sending the reader to a published 

review on bacterial CPS [6]. A procedure was soon reported for purification of 

rat liver CPS1 and it was proposed that NAG activation was allosteric [39], 
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whereas the kinetic mechanism of the enzyme from beef liver was clarified 

[48,49] after the appropriate equations were developed for such a complex 

reaction [50]. In the middle seventies the very high abundance of CPS1 in liver 

mitochondria (10-25% of the mitochondrial matrix protein) was discovered [51] 

(Fig. 8).  

 

 

1.4.3 Reactional mechanism. The groups where I have carried out my PhD 

work have contributed much of the significant information about CPS1 

mechanism. Studies by one of my supervisors showed that the frog liver 

enzyme makes an unstable intermediate, called "active CO2" [52], soon shown 

demonstrated also with mammalian CPS1 [53,54], believed to be 

carboxyphosphate [55], while Meister's group showed simultaneously the 

formation of carboxyphosphate with the E. coli enzyme [56]. These two groups 

proved (in the case of Dr. Rubio's group with CPS1) the existence of two 

separate sites for ATP, one for bicarbonate phosphorylation and the other for 

carbamate phosphorylation [52-54,57]. Our laboratory showed that, in the 

absence of ammonia, "active CO2" (carboxyphosphate) was formed 

intraenzymatically and that all the substrates of the reaction were bound to the 

enzyme, with no product release prior to the addition of ammonia [52-55]. The 

properties of the two sites for ATP were characterized [53-55] (Fig. 9). The 

existence of an intraenzymatic reversible reaction between ATP and 

bicarbonate that was much faster than the ATPase partial reaction was proven 

by positional isotopic exchange techniques with the rat liver [55] and the 

bacterial enzymes [59,60]. 

 

 

Figure 8. Abundance, mass and 

mitochondrial localization of CPS1. Left, 

Coomassie staining of SDS-PAGE of 

mouse liver mitochondria. The arrow 

signals the highly abundant 160-kDa 

CPS1 band. Right, rat liver  electron 

micrograph, with CPS1 immunogold 

labeling (black spots), revealing the 

mitochondrial localization of the enzyme . 

SDS-PAGE courtesy of A. García-España 

and V. Rubio. Electron micrograph 

courtesy of Dr. Erwin Knecht (Instituto de 

Investigaciones Citológicas, now Centro 

de Investigación Príncipe Felipe, 

Valencia).  
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1.4.4 Human CPS1. Studies of an American group and of my own group 

[15,16] resulted in the purification and characterization of human CPS1, 

providing the only existing detailed enzymological data on the human enzyme 

until the present work was carried out. These data are summarized in Chapter 1 

of the Results, and, therefore, we will not deal anymore with them here. 

 

1.4.5 NAG activation and domain structure. Studies from my laboratories are 

also responsible for most of the existing knowledge about NAG activation of 

CPS1. Very early on they clarified NAG binding, showing the presence of a 

single NAG site per CPS1 molecule and proving the existence of cross-talk 

between the ATP site that is used to phosphorylate bicarbonate and the NAG 

site [61]. They proved that NAG can be partially replaced as an activator by a 

number of chemically unrelated cryoprotectant agents such as glycerol or 

sucrose [62,63]. They also showed that CPS1 has trace activity in the absence 

of NAG, which is of very low magnitude because of extremely large Km values 

for ATP and for the two ionic activators of the enzyme, K+ and Mg2+ [40]. On 

the basis of these data the proposal [39] that NAG is an allosteric activator of 

CPS1 was confirmed [40]. Evidence for NAG-triggered conformational 

changes was obtained by limited proteolysis studies [46]. A kinetic mechanism 

for NAG activation was proposed [63]. 

 

Studies with the isolated small and large subunits of bacterial CPS had shown 

that the small subunit binds and cleaves the glutamine used in its reaction and 

that the large subunit carries out the entire reaction from ammonia and binds the 

Figure 9. Scheme of CPS1 charged with all its substrates except ammonia, 

summarizing the data derived from Dr. Rubio's laboratory in the early 1980s. No 

data existed at the time on any other physical property of the enzyme except that it 

was a single polypeptide of 160 kDa. Figure reproduced from [58]. 
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Figure 10. Structural model prevailing in the 1990s 

for the 120-kDa moiety of any CPS, folded as a 

pseudohomodimer of its two phosphorylation 

domains (N-terminal, pinkish, bicarbonate 

phosphorylation; more C-terminal, yellow, 

carbamate phosphorylation), with passage of 

unstable intermediates (carboxyphosphate or 

carbamate) from one to the other, in a water-

shielded way. Darker blue, C-terminal allosteric or 

regulatory domain, which hosts the sites for the 

allosteric effectors and which is the subject of 

Chapter 3 of the Results. Light blue, intervening 

domain of previously unknown function which is the 

subject of Chapter 2 of the Results and that we now 

call Integrating domain. 

 

ATPa

+

HOCOO
-

HOCOOPO3
2-

+

ADP

DOMAIN I

40 kDa

ATPb

+

H2NCOO-

H2NCOOPO3
2-

+

ADP

DOMAIN III

40 kDa

NH3

Pi

DOMAIN II   (?)

20 kDa

DOMAIN IV

REGULATORY
20 kDa

effectors [6]. By then, limited proteolysis results of my group [64] and of 

another three groups [65-67] revealed a domain structure of CPS1 that is 

reflected in Fig. 1 of Chapter 1 of the Results. The first fine localization of a 

function in any CPS was provided by our laboratory when it showed by 

photoaffinity labeling of rat CPS1, using N-chloroacetyl-L-[14C]glutamate and 

subsequent limited proteolysis cleavage, that NAG binds in the C-terminal 

domain of CPS1 (a domain of 20 kDa) [17]. Our group also proved that this 

domain of E. coli CPS is used for binding of all its allosteric effectors [68-70], 

an information that found correspondence in similar results for the pyrimidine-

specific CPS from mammals (CPSII) [71]. Since then the C-terminal domain of 

20 kDa of any CPS is known as the allosteric domain.  

 

1.4.6 Cloning and sequencing of CPS1 cDNA and gross enzyme architecture. 

Lusty's group cloning and sequencing in the 1980's of the cDNA for E. coli 

CPS and for rat CPS1 [72-74] opened a new era in CPS studies. The sequence 

revealed that the large subunit of bacterial CPS, of 120 kDa, exhibits internal 

homology indicating that its origin involved gene duplication and tandem 

fusion events [72]. This allowed mapping of some functions in different 

domains. Using these data, the limited proteolysis data mentioned above, 

differential scanning calorimetry results [69] and other data including oxidative 

cleavage [75] and in particular cleavage with FeATP [76], our group proposed 

[68] a model for the large subunit of E.coli CPS and for the equivalent region of 

any other CPS (including CPS1) in which (Fig. 10) this region was folded as a 

pseudohomodimer of two homologous phosphorylation domains of 40 kDa, 

the more N-terminal involved in HCO3
- phosphorylation and the more C-

terminal in the phosphorylation of carbamate [1-3]. Given the reactional 

mechanism, it was inferred that the carboxyphosphate and the carbamate 
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intermediates had to be shielded from water, and, therefore, that the two 

phosphorylation centres had to be connected intraenzymatically, so that either 

the carboxyphosphate or the carbamate would be able to migrate from one to 

the other phosphorylation centre (Fig. 10). 

 

1.4.7 Crystal structure of E. coli CPS. The next large breakthrough in the CPS 

field was the determination, 18 years ago, of the crystal structure of E. coli CPS 

[77,78] (Fig. 11). This is the only CPS for which the structure has been 

determined. Our group got crystals of frog liver CPS [79] but these have never 

provided good-quality diffraction data. Up to now, ten E. coli CPS crystal 

structures of wild-type or mutant forms, in complexes with substrates and 

allosteric effectors, have been reported [Protein data bank (PDB, 

http://www.rcsb.org/pdb/home/home.do) accession numbers: 1T36, 1M6V, 

1KEE, 1C30, 1C3O, 1CS0, 1CE8, 1BXR, 1A9X and 1JDB). All these 

structures contained the activator ornithine bound to them, and therefore they 

Figure 11. E. coli carbamoyl phosphate synthetase structure. Left, detailed structure 

based on PDB 1JBD. Right, tunnel spanning the whole enzyme as drawn in [85], modified 

to locate some clinical mutations studied in [87] (represented as spheres). 

SMALL SUBUNIT

LARGE
SUBUNIT

Allosteric
domain

Nucleotide substrate

Ornithine effector
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most likely correspond exclusively to active CPS forms, providing no insight on 

how a CPS is activated by its effectors. Despite the evolutionary distance 

between E.coli CPS and CPS1, these two types of CPS share 40% sequence 

identity over their entire lengths [74], although in CPS1 the 40-kDa and the 120 

kDa moieties that correspond to the small and large subunits of E. coli CPS are 

fused into a single polypeptide. Therefore, much information from the E. coli 

CPS is of application to CPS1, and thus the main traits of this structure will be 

briefly summarized here. 

 

The structure (Fig. 11, left panel) [77,78] confirmed the domain composition 

that had been proposed for CPS1 as well as the view that the 120-kDa moiety is 

folded as a pseudohomodimer [1]. Each phosphorylation domain presented the 

ATP grasp fold that had been identified in glutathione synthetase [80], D-Ala-

D-Ala ligase [81] and biotin carboxylase [82], a fold that is composed of three 

subdomains. Indeed, the connection between CPS and the biotin carboxylase 

component of biotin-dependent carboxylases such as acetyl-CoA carboxylase 

had been established already by our group, which had shown that biotin 

carboxylase makes the same carboxyphosphate intermediate that is made by 

CPS [83,84]. Also as predicted by our group, the transfer of intermediates 

between both phosphorylation centres in the two phosphorylation domains of 

40 kDa appeared to occur via a water-shielded intramolecular tunnel [85] (Fig. 

11, right panel). Actually, since in the case of bacterial CPS glutamine is the 

source of ammonia, the tunnel extended nearly 100 Å, from the glutaminase 

domain of the small subunit to the bicarbonate phosphorylation centre and from 

there to the carbamate phosphorylation domain at the opposite end of the large 

subunit (Fig. 11, right panel). It was inferred that the ammonia generated from 

the glutamine travels to the bicarbonate phosphorylation site via the first half-

tunnel, to react with the carboxyphosphate that is waiting for it, making the 

carbamate, that then travels to the second active site, where it is phosphorylated 

by a second MgATP molecule, giving carbamoyl phosphate [86]. 

 

Since our group had found that ADP and phosphate are only released when 

ammonia has reacted [52-54], the two phosphorylation sites must have some 

type of interconnection that permits release of their product cargo only when 

carbamoyl phosphate is released. Such coordination was illustrated best by a 

clinical mutant of the carbamate phosphorylation domain that was found in a 

CPS1 deficiency patient and that when introduced at the equivalent conserved 

residue in E.coli CPS abolished reaction at both phosphorylation sites [87]. 

Such mutant appeared to hamper [87] the opening of the B subdomain [88] of 

the carbamate phosphorylation domain, but, interestingly, it also appeared to 

prevent the opening of the B subdomain of the bicarbonate phosphorylation 

domain, indicating that this opening is concerted by as yet unknown 
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mechanisms. Our present work reported in Chapter 2 of the Results suggests 

that this concerted opening is mediated by the intervening domain that links 

both phosphorylation domains (called in this work the Integrating domain). 

 

1.4.8 Crystallographic data on the structure of the C-terminal domain of human 

CPS1, and NAG site delineation. Comparison of the sequences of E. coli CPS 

with those of CPS1 rendered dubious that the allosteric domain of both CPSs 

were structurally similar, because they exhibited in this region quite low 

sequence identity [89,90]. Nevertheless, in agreement with the studies of our 

group [68-70,89,90], the allosteric effectors of E. coli CPS, IMP and UMP, 

were found in the crystal structures of E. coli CPS to bind to the allosteric 

domain [91,92], and ornithine was also found to bind there, although at the 

boundary with the carbamate phosphorylation domain [77,78]. 

 

In 2007 the crystal structure of the allosteric domain of human CPS1 lacking its 

22 more C-terminal residues, produced in vitro in the absence of the remainder 

of the protein, was deposited in the PDB as entry 2YVQ, without comments or 

associated publications, by a structural genomics consortium [93]. This 

structure (Fig. 12) proved that the allosteric domain of CPS1 has nearly an 

identical fold to that of the corresponding domain of E. coli CPS. Our group 

analyzed this structure and identified within it the NAG site [13].  

This domain (Fig. 12) is built up by a central sheet of five parallel β-strands 

surrounded by a bundle of three α-helices on one side and a bundle of two α-

helices on the other side, forming the Rossmann fold seen in proteins of the 

methylglyoxal synthetase family [94]. The site identified in the flexible docking 

studies of my group within this crystal structure fitted the earlier results of the 

group concerning the binding of NAG analogues and the specificity of the 

enzyme for NAG [95], and they also fitted the results of the group's 

Figure 12. Structure of the C-

terminal domain of human CPS1 

(PDB entry 2YVQ), coloured to 

enhance visibility of the structure. 

Secondary elements are labelled. 

The pocket identified in [13] is 

shown in semi-transparent surface 

representation. A modeled NAG 

molecule bound to this pocket [13] 

is shown in sticks representation. 

Taken from [13].  
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photoaffinity labelling studies concerning the site of covalent anchoring of the 

photoactivated NAG analogue [13]. Furthermore, when these studies were 

carried out, the group had set up already the baculovirus/insect cell system for 

rat CPS1 expression, and, therefore, five putative NAG site residues were 

replaced by other residues, confirming the location of this site [13].  

 

The NAG site modeled in this crystal structure (which had no bound ligands) is 

a pocket located between the central β-sheet and two α-helices, and appeared to 

be covered by a three-residue closing lid. The location of the NAG-binding site 

is equivalent to that of the E.coli CPS activator IMP [13] (Fig. 13), indicating a 

common origin for these sites. Many of the residues which build up the 

proposed NAG-binding pocket, are conserved in all NAG-regulated enzymes 

[13].   

 

Chapter 3 of the Results represents a further development of the study of NAG 

binding to this domain, providing strong evidence that the NAG site shifts 

conformation as NAG binds to it, this likely being the initial signal for CPS1 

activation. Elements of the path for cross-talk to the catalytic domains are also 

identified in this third part of our study. 

 

1.4.9 Modelling of the CPS1 structure. The finding [13] that the structure of the 

allosteric domain of CPS1 closely resembles the structure of the allosteric 

domain of E. coli CPS despite the low sequence identity between these two 

domains supported the possibility of modelling with high fidelity the structure 

of the whole CPS1 molecule on the basis of the structure of E. coli CPS, 

Figure 13. Stereo view of the superimposed side chains (thinner sticks) of the 

residues making the IMP site (green carbons) and the proposed NAG site (black 

carbons) in E. coli CPS (PDB 1CE8) and human CPS1 (PDB 2YVQ), respectively, 

with the bound IMP and NAG molecules shown with green and black carbons 

respectively. Taken from [13]. 
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particularly since all other parts of the enzyme exhibit much higher sequence 

identity than the allosteric domain [74,96]. The group of one of my PhD 

advisers obtained such a model [97], which is virtually identical to the model 

produced with a somewhat different approach in collaborative work of my other 

adviser [12]. Both 3D models were obtained from the E.coli homologue bound 

to the non-hydrolysable ATP analogue AMPPNP (PDB file: 1BXR). In the 

present work I will use our internal group model (Fig. 14), using it as the 

context frame on which to judge and rationalize all structural inferences made 

here except those concerning the allosteric domain. Nevertheless, it should be 

remembered that, because of the presence of ornithine bound to the template 

structure used from E. coli, this model should correspond to active CPS1, since 

it is based on the active E. coli structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Structural model [97] of CPS1 used throughout the present PhD work. 

 

1.4.10 CPS1 production. Like most mitochondrial proteins that are encoded by 

nuclear genes [98], CPS1 is synthesized in the cytoplasm as a larger precursor. 

The pre-CPS1, of 1500 amino acids, contains an N-terminal 39-residue signal 

peptide that directs the protein for delivery to the mitochondrial matrix, and 
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which is cleaved off by the matrix-processing peptidase upon translocation [98-

100]. Thus far no mutations have been identified in the region encoding this 

signal peptide [12]. 

  

 

1.5 CPS1 deficiency, the CPS1 gene and its mutations. 

 

CPS1D was first reported in 1964 [101], in a mild (late onset) case. The report 

of the first case of complete deficiency (neonatal presentation) took place 10 

years later [102]. By 1976 six cases of CPS1D had been identified already 

[103]. Diagnosis was based on the finding of hyperammonemia, with low 

citrulline levels and lack of orotate excretion (orotate increases when CP 

accumulates, Fig. 3, bottom panel) [103]. Confirmatory diagnosis depended on 

enzyme activity determination in the liver, obtained by biopsy or during 

necropsy [29,103]. Intestinal biopsy was introduced later [104] as a less 

invasive means of confirmatory diagnosis. These traits, together with increased 

blood glutamine levels, have remained hallmarks of this deficiency for many 

years [105]. CPS1D was soon recognized as a genetic disease of Mendelian 

autosomal inheritance [106]. Indeed, by 1981, excepting liver transplantation, 

the main components of present-day treatment of CPS1D had been established 

already [107], consisting in protein restriction with essential amino acid 

supplementation, prevention of protein catabolism, arginine or citrulline 

supplementation, and the administration of benzoate or phenylacetate 

(nowadays replaced, when administered orally, by phenylbutyrate or by its 

glycerol triester [30,108]) as alternative pathway medications to bypass the urea 

cycle. 

 

With the description in 1981 of NAG synthase deficiency (NAGSD) [109], it 

became clear that the same clinical and biochemical picture was shared by 

CPS1D and NAGSD, with the only distinguishing element being the results of 

the assays of enzyme activity in the liver (or in intestinal mucosa in the case of 

CPS1). The fact that NAGSD can be treated with complete recovery by 

administering orally N-carbamylglutamate as substitutive therapy for the 

missing NAG [30,31] has led to the advocacy for investigating a positive 

response to the administration of carbamylglutamate as a way to differentiate 

clinically between CPS1D and NAG synthase deficiency [110]. Nevertheless, 

this may not be a perfect test for distinction between both deficiencies. Some 

kinetic or low-stability variants of CPS1 might be improved by 

carbamylglutamate because of pharmacologically-assisted saturation of the 

NAG site of CPS1 or by pharmacological chaperone effects of this drug (see 

Chapter 1 of the Results). 
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The sequence of the cDNA for the human CPS1 gene became available more 

than 20 years ago [111]. This opened the way to identification of mutations in 

the CPS1 gene, which simplified confirmatory diagnosis of CPS1D and enabled 

prenatal diagnosis (until then could only possible in foetal liver biopsies[112]). 

Thus, mutation identification is now considered the gold standard for diagnosis 

of CPS1D [27]. Nevertheless, the path to widespread genetic diagnosis of 

CPS1D has been slow, mainly because of the large size of the coding sequence 

(4503 nucleotides, including the stop codon) and the restricted distribution of 

abundant gene expression (only liver and intestinal mucosa, with some 

expression also in the pancreas [51,113]). mRNA-based diagnosis was 

progressively simplified by the use of illegitimate transcription, first in 

immortalised patient's leukocytes [114] or in patient's fibroblasts [115], and, 

more recently on phytohaemagglutinin-stimulated peripheral blood leukocytes 

[116].  

 

The report of the CPS1 gene structure [117-119] opened the way to the use of 

genomic DNA for genetic diagnosis. The gene (OMIM #608307) is localized in 

the long arm of chromosome 2, at 2q34, spanning 201425 nucleotides, with 

start and end coordinates within chromosome 2 at 211342405 and 211543830 

of the plus strand (http://www.genecards.org/cgi-bin/carddisp.pl?gene=CPS1). 

This gene is composed of 38 exons and 37 intervening introns [117-119]. 

Therefore, diagnosis using mRNA is considered less laborious than the use of 

genomic DNA for mutation identification, although this last approach might be 

alleviated in the near future with the generalization of next generation 

sequencing techniques. 

 

Now, after 50 years from the original description of CPS1D, it is clear that the 

disease is quite rare (1:50000-1:300000) [120-122]. The first summary of 

mutations identified in CPS1 patients in 24 years was published in 2011 [12]. 

Together with the mutations reported in two additional publications appearing 

after that paper [116,123], a total number of 243 CPS1D-associated genetic 

changes have been identified, generally with little recurrence of the mutations. 

As shown in Fig. 15, where the percentages of the changes corresponding to 

each type of mutation are represented, more than half of these mutations are 

missense changes. Since nonsense changes as well as most small insertions, 

deletions and splice site aberrations result in enzyme truncation, at least 1/3 of 

all the mutations should result in the lack of CPS1 protein in the liver. In fact, 

this number is even higher because a number of the missense changes also 

cause enzyme destabilization (see the Results section).  
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Figure. 15. Summary of all CPS1 mutations reported to date [12,116,123]   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 16. Density of missense mutations per CPS1 exon. The number of missense 

mutations per exon, normalized per 100 nucleotides, is plotted along the coding 

sequence, with the symbols placed at the middle point of each exon (some exon numbers 

are given). Thin line, all missense mutations. Thick line and large filled triangles, 

missense mutations that do not fall on CpG dinucleotides. Figure modified from [12] to 

include the mutations described in [116,123]. 

59.7%
14.8%

7.8%

7.8%

7.4%

1.2%
0.8% 0.5%

Missense

Small deletions

Splice

Small insertions

Nonsense

Indels

Small duplications

Large deletions

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

0

2

4

6

8

10

12

2

5

8

13
17 20

24

37

35
33

30

CPS1 gene base number

M
is

s
e
n

s
e
 m

u
ta

ti
o

n
s
 /
 e

x
o

n
 (

n
o

rm
a
li
z
e
d

 f
o

r 
1
0
0
 b

a
s
e
s
)



                                                         INTRODUCTION 

 

25 

 
 

The incorporation of the novel missense mutations reported in [116,123] to the 

mutational database summarized in [12] does not alter the conclusion 

formulated in [12] that the density of missense mutations along the gene varies 

with the region. Fig. 16 actualizes Fig. 2B of reference [12], highlighting the 

fact that the distribution of the mutations is highly skewed, particularly when 

the contribution of the CpG mutational hotspots is subtracted, supporting the 

existence of highly eloquent and less eloquent regions in the enzyme.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Residues hosting missense mutations localized in the structural model of 

human CPS1 that has been used here [97]. For clarity, residues have not been 

identified. They are colored as the domain where they map.  
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Fig. 17 illustrates the distribution of the missense mutations in the structural 

model of the protein, giving a 3D-view of the mutations' density in different 

domains of the enzyme. Although the size of the protein and the large number 

of mutations makes impossible a very clear view, it is evident, for example, that 

mutations are rarer towards both ends of the enzyme (in the regions 

corresponding to the small subunit of E. coli CPS and to the allosteric domain) 

than in the regions containing the catalytic machinery or than in the intervening 

domain that links both phosphorylation domains. Actually, this skewed 

distribution of mutations is one of the basis of the present work: to clarify the 

underlying reasons for the variable eloquence of the various regions and in 

particular to clarify the reasons for the high eloquence of this intervening 

domain that, after the present work, is called the Integrating domain (Chapter 2 

of the Results). 

 

 

1.6 Other roles of CPS1 in pathology. 

 

Although not the subject of the present work, it is important to briefly highlight 

that mutation-triggered CPS1 deficiency is not the only mechanism linking 

CPS1 to human pathology and that, therefore, knowledge on CPS1 may also 

have impact on other disease processes. 

 

1.6.1 Secondary hyperammonemia. One of these disease processes are the 

secondary hyperammonemias (the hyperammonemias in which the operation of 

the urea cycle is decreased secondarily to other defects external to that cycle 

[124]) since in many of them impaired CPS1 operation is the reason for the 

hyperammonemia (Fig. 18). This appears to be the case in the 

hyperammonemia of carnitine cycle defects or of fatty acid oxidation defects, in 

which the impaired cellular energy production has been proposed to reduce the 

availability of ATP for CPS1 [124]; in mitochondrial carbonic anhydrase 

deficiency [125], in which bicarbonate may not be produced fast enough to feed 

the cycle at the CPS1 level; and in the hyperammonemias of organic acidemias, 

or due to valproate or, also, to fatty acid oxidation defects, via a mechanism in 

which poor NAG production by NAGS may decrease CPS1 activity [124,126]. 

An important therapeutic consequence of this CPS1-mediated mechanism of the 

secondary hyperammonemia is that carbamylglutamate may be effective in 

treating these hyperammonemias [125,127]. It is also to be noted that carnitine 

administration restored CPS1 expression in an animal model of a carnitine 

uptake defect (juvenile visceral steatosis) that associates with hyperammonemia 

because of decreased expression of urea cycle enzymes [128], suggesting an 

additional mechanism for causation and for treatment of some types of 

secondary hyperammonemia. 
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Figure 18. Possible mechanisms of secondary hyperammonemia due to decreased 

CPS1 activity 

 

A novel aspect recently introduced in the understanding of CPS1 function and 

pathology is the realization that CPS1 is acylated at several lysines by as yet 

unclarified mechanisms that possibly depend on the acyl coenzyme A levels, 

and that it is deacylated by sirtuin 5, with claims and indirect evidences for the 

control of CPS1 (and the urea cycle) activity by the state of acylation [129,130]. 

Indeed, fatty acylation of the CPS1 active center had been reported to greatly 

affect CPS1 activity [131]. Since sirtuins are anti-aging proteins, CPS1 

acylation/deacylation was considered a link between nitrogen metabolism and 

aging [132], whereas in recent work CPS1 glutarylation was considered a key 

component of the secondary hyperammonemia of glutaric acidemia [133]. 

Clearly this is a new field that requires further exploration, and that may be 

addressed experimentally by exploiting our present expression system reported 

in Chapter 1 of the Results. 

 

1.6.2 A CPS1 polymorphism involved in vascular reactivity and in other traits 

related to pathologies. Apart from being involved in primary and secondary 

hyperammonemia, CPS1 has been  involved more recently in other pathological 

processes less clearly connected with deficient activity of the enzyme. In 

particular, the p.Thr1046 form of the CPS1 non-synonymous polymorphism 

(polymorphisms are sequence changes which do not cause evident enzyme 

deficiency) p.Thr1406Asn (designated earlier on as p.Thr1045Asn) was 
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reported [134] to be associated with lower blood concentrations of citrulline 

and higher rates of hepatic veno-occlusive disease and death than the Asn1406 

variant, in adults given high-dose chemotherapy for bone marrow 

transplantation. This polymorphism was associated with pulmonary 

hypertension and decreased plasma arginine and nitric oxide metabolites in 

neonates with respiratory distress [135], and in those developing pulmonary 

hypertension after congenital heart surgery [136], leading to trials for using 

citrulline to prevent or treat these presentations of pulmonary hypertension 

[137,138].  

 

These vascular reactivity phenotypes were rationalized on the basis of 

differences in nitric oxide production that were tentatively related to differences 

in the enzyme activity between the two polymorphs [139], given the fact that 

arginine is a precursor of nitric oxide. However, the effects on activity of the 

p.Thr1406Asn substitution appeared not to be drastic, with reports in crude 

extracts [139] of 20-30% higher activity and with pure recombinant CPS1 of up 

to 1.7-fold lower activity [140] for the Asp form. An activity effect might 

underlie the report of increased frequency of the Asp polymorphism in 

valproate-associated hyperammonemia [141,142], which would be in line with 

a decreased activity of this form of the enzyme [140]. However, a recent 

Japanese study [143] did not find an association between the p.Thr1406Asn 

polymorphism and valproate-induced hyperammonemia, although this last 

study used a pediatric cohort and defined hyperammonemia as ammonia levels 

>200 µM [143], whereas in the largest earlier study finding an association the 

threshold ammonia level was 65 µM [142].  

 

Homozygosity for the CPS1 Thr1406 variant was also associated with an 

increased risk of necrotizing enterocolitis in preterm infants [144]. This disease 

is also believed to be related to nitric oxide. However, this form of the 

polymorphism was reported not to be associated with a decreased level of 

arginine in preterm infants [145], despite the fact that the level of arginine is 

known to be decreased in preterm infants with necrotizing enterocolitis [144].  

 

With the advent of genome-wide association studies of phenotypic characters 

with genetic polymorphisms, the p.Thr1406Asp polymorphism has emerged as 

one of the determinants of the levels of homocysteine [146,147] and of 

homoarginine [148] in normal subjects, of fibrinogen in women [149], of 

creatinine [150] and of the response to albuterol in African-American children 

with severe asthma [151]. The link between these phenotypic traits and CPS1 

function is unknown or at best speculative for now.  
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1.7 Previous in vitro expression and structure-function studies on CPSs.  

 

As already indicated, Chapter 1 of the Results is devoted to the "in vitro" 

production and purification of human CPS1. We will discuss here previous 

attempts of CPS expression. Actually, once having its gene cloned, E. coli CPS 

was easily expressed in E. coli cells, having been the subject of extensive site-

directed mutagenesis studies (see for example [90,152-154]). Given the 

existence of reasonable sequence identity between the different CPSs [96], 

some of these bacterial results have been exploited to interpret the effects of a 

number of CPS1D-associated missense mutations (see for example [155]). In 

fact, work of my group [87] utilized the bacterial enzyme as a surrogate model 

for the human enzyme to explore systematically the impact of clinical 

mutations found in CPS1D on the activity of the enzyme.  

 

An eukaryotic CPS, the arginine-specific yeast enzyme, was expressed 

recombinantly in yeast and was utilized for site-directed mutagenesis studies 

focusing on basic aspects of the enzyme, without making clinical inferences 

[156,157]. Similarly, CPSII, the CPS component of the multienzymatic protein 

CAD was expressed long ago in E. coli in complete form, as its individual 

domains, or as hybrid proteins with E. coli CPS [71,158-160], and it was used 

to study the function of domains or regions of this enzyme or even of individual 

residues [159-160]. These enzymes have not been used as models for 

understanding CPS1D.  

 

Although Chinese and Korean groups claimed long ago recombinant production 

of CPS1 in cultured animal cells [161,162], the first well documented example 

of in vitro recombinant CPS1 expression and purification was provided in 2003 

by Powers-Lee group [163], for the enzyme for the american bullfrog (Rana 

catesbeina), using Schizosaccharomyces pombe as the expression host. 

Apparently large amounts (15 mg/L of yeast culture) of pure enzyme were 

obtained. This enzyme was used for site directed mutagenesis studies focusing 

on the reasons for the ammonia or glutamine specificity of different CPSs, but 

not to explore CPS1 pathology despite the 74% identity between frog and 

human CPS1s [163]. This same system was exploited by the same group to 

generate reasonable amounts (2-3 mg/L of S. pombe culture) of pure active 

human CPS1 [140,165], as reported months before our laboratory published the 

recombinant production of rat CPS1 in baculovirus/insect cells [13]. The S. 

pombe production system was used to study the impact on enzyme functionality 

of the p.Thr1406Asn polymorphism discussed in the previous section, as well a 

to try to clarify the role of the N-terminal region of the enzyme, which was 

deleted [140]; and to clarify the role of two proximate cysteines classically 



INTRODUCTION 

 

30 

 
 

considered essential for CPS1 activity [164]. Intriguingly, no further use has 

been reported of this system to characterize the impact in pathology of the 

mutations found in CPS1D patients. 

 

As already mentioned, in the context of characterizing the site for NAG by site-

directed mutagenesis (an objective that is completed in Chapter 3 of the Results 

of the present PhD dissertation), our group reported in 2009 [13] the production 

of the rat liver enzyme in baculovirus/insect cells. This production system was 

highly effective (10 mg of pure CPS1/L of culture), allowing to prove, by 

exploiting the high identity of rodent and human CPS1, the pathogenetic 

potential of clinical mutations found in CPS1D [14]. Since this system is 

thoroughly discussed in the next section of this introduction and in Chapter 1 of 

the Results, no further discussion of it will be made here. Indeed, Chapter 1 of 

the Results reports the production of the genuine recombinant human enzyme in 

its mature form, and, together with the two chapters following it, describes the 

use of this system to characterize the effects of clinical and experimental 

mutations of human CPS1. 

 

A weakness of all these systems mentioned thus far, including the 

baculovirus/insect cell system, is that they are not able to assess the effects of 

mutations in the non-coding regions of the CPS1 gene, or of mutations that may 

affect the splicing of the gene. Summar's group [165] has developed a tool 

based on the generation of a highly sophisticated bacterial artificial 

chromosome (BAC) that is devised to express CPS1 in SV40-immortalized 

lung fibroblasts. This expression system relies heavily on normal BAC 

replication in bacteria, episomal eukaryotic replication, antibiotic selection in 

eukaryotic cells, and the expression of green fluorescent protein. Because of the 

large size of genomic inserts allowed by BACs this system was reported to 

provide an efficient way to test genetic variants affecting both coding and 

noncoding sequences, being particularly useful for assaying mutations that 

affect RNA processing, thus being suitable to examine mutations' effects on the 

nature or the levels of the mRNA produced. 

 

As a proof of concept, this system was applied [165] to examine the mechanism 

of four putative splicing mutations (two sitting in exonic sequences and the 

other two in intronic sequences) found in CPS1D patients, locating 

experimentally two cryptic splicing sites for the two intronic mutations and 

revealing the role of nonsense-mediated decay by knocking down this process. 

The latter agrees with the previous finding of these authors in a cohort of 26 

CPS1D patients with 52 mutant alleles, that there was evidence in many cases 

of nonsense-mediated decay in those patients carrying nonsense or frameshift 

changes or splicing defects [166]. 
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In summary, we are now endowed with a number of powerful techniques that 

permit investigating the disease-causing impact and the mechanisms of damage 

for any mutation affecting CPS1. The present work deals with one such 

instrument, the use of baculovirus-insect cell expression, to analyze the 

characteristics of the recombinant human enzyme and to investigate the kinetic 

and stability derangements introduced by CPS1D-associated mutations. We will 

deal now with these two experimental approaches utilized here, to provide some 

extra insight on them, since the treatment of these two techniques in the 

manuscripts that constitute the three chapters of the Results is brief. 

 

 

1.8 The baculovirus/insect cell expression system 

 

Baculoviruses are large rod-shaped circular DNA viruses that infect many 

different species of insects [167]. They can infect mammalian cells but they do 

not propagate therein [168]. They are used in protein expression studies because 

they make massive amounts of a single protein (polyhedrin in some types of 

baculoviruses, granulin in other types of viruses of this family), which is used 

as a matrix to include therein mature virions [167,169,170]. This is the so-

called occlusion-derived virus, which favors virus conservation in the external 

environment for extended periods, facilitating viral transmission. The larval 

form of the insect gets infected by eating material such as leaves that are 

contaminated with the occluded virus within the proteinaceous matrix. The 

matrix is dissolved in the gut and the virus is released for infection. The 

infected intestinal cells produce more virions that bud out from the cell, this 

time without being included in a polyhedrin body, infecting other cells. 

 

Baculovirus-based expression systems rely on the introduction of the gene to be 

expressed in the baculoviral genome under the control of a strong late viral 

promoter such as the polyhedrin promoter [171]. Therefore, a recombinant 

virion has to be built where the gene of interest is incorporated appropriately 

into the viral genome. Classically, this was attained by lengthy recombination 

procedures. The recombinant virus was first isolated by a series of plate 

selection steps, and was then used to infect cells or even susceptible larvae, that 

were then homogenized and tested for expression of the introduced gene [172].  

 

Luckow et al. [173] developed a faster system for generating recombinant 

viruses. This system, sold as the Bac-to-Bac commercial system [174], has been 

used here. It takes advantage of site-specific transposition by the Tn7 

transposon [175], an unusual mobile DNA segment that inserts itself at high-

frequency into a single specific site in the bacterial chromosome. In the absence 
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of this specific site, called attTn7 in E. coli, Tn7 transposes at low-frequency 

into many different sites. The presence of the attTn7 site endows the 

transposition reaction with specificity and high frequency of transposition. 

 

The Bac-to-Bac system uses the Autographa californica (a moth) nuclear 

polyhedrosis virus (AcNPV) [176]. The heterologous gene is cloned into the 

pFastBac™ (Invitrogen, Carlsbad, CA) plasmid [177], which, in its 

pFastBacHT version (Fig. 19, top right), has at the cloning site a polyhedrin 

promoter (PPH) and introduces a N-terminal His6 tag connected to the cloned 

sequence by a TEV protease cleavage site. This expression cassette ends with a 

SV40 polyadenylation signal to terminate transcription and for adding a polyA 

tail. The left and right arms of the Tn7 transposon flank the cassette. 

pFastBacHT also includes ampicillin and gentamicin resistance genes. 

 

An essential second element in this expression system is the DH10Bac™ E. coli 

strain (Invitrogen Carlsbad, CA) (Fig. 20), which hosts a baculovirus shuttle 

vector (called bacmid bMON14272) with an attTn7 target site where Tn7 will 

be inserted from pFastBac. The bacmid [173,177] hosts a mini-F replicon, 

which is a fragment of the naturally occurring F (fertility or sexual) factor of E. 

coli, that carries all the genes and sites required for replicon maintenance and 

control. This enables the complete baculovirus genome to replicate in E. coli as 

a large and stable low-copy number plasmid. This bacmid includes a kanamycin 

resistance marker for antibiotic selection. Also for selection purposes, the 

attTn7 site is located within the coding sequence for the LacZ α peptide, which, 

when expressed, provides the missing part of LacZ encoded in the bacterial 

chromosome under control of the lac promoter, resulting in blue colonies upon 

IPTG induction if the chromogenic LacZ substrate X-gal is present. However, 

transfer of Tn7 to the attTn7 site disrupts the coding sequence for the LacZ α 

peptide, and the corresponding colonies, although kanamycin resistant, are 

white on agar containing IPTG and X-gal. 

  

Recombinant bacmids are generated by transposing the Tn7 element from a 

pFastBac™ donor plasmid to the attTn7 attachment site on the bacmid. The 

enzyme transposase, required to effect this transfer, is provided in this system 

by another helper plasmid, pMON7124 (Fig. 20). This helper plasmid is carried 

also in the DH10Bac™ strain, providing in trans the Tn7 transposition function 

[178], as well as conferring tetracyclin resistance, thus endowing the cells 

carrying this plasmid with an extra antibiotic selection trait. 

 

The process used for preparation of recombinant CPS1-carrying pFastBac 

plasmid is schematized in Fig. 19 and is summarized in the next paragraphs. 
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Figure 19. CPS1 cloning in pFastBacHT A. The CPS1 insert is in green and the bp 

numbering of it use as 1 the A of the initial ATG of the pre-CPS1 coding sequence. 

Only the restriction sites used here are indicated. The same symbols, acronyms and 

color code are used throughout the figure: PPH, polyhedrin promoter (pink arrow); 

6xHis, 6 histidine tag (purplish box); TEV, Tobacco Etch Virus protease cleavage 

site (light orange box); SV40 polyA, Simian virus 40 polyadenylation signal (yellow 

box); Tn7L and Tn7R, left and right arms of the Tn7 transposon (blue boxes). 

Digestions are represented by scissors. Antibiotic resistance genes are colored grey. 
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The cDNA for mature human CPS1, carried in a plasmid provided by Dr. 

Marshall Summar (plasmid pcDNA3.1-hCPS1; a derivative of the pcDNA3.1 

plasmid from Invitrogen; see Chapter 1 of the Results), was introduced in a 

two-step process, from base 118 to the end of the ORF, in the cloning region of 

a variant of pFastBacHT, called pFastBacHT A [174], between the BamHI and 

EcoRI sites of this cloning region. The A variant of the plasmid was used 

because it was the one that allowed CPS1 gene insertion in frame (there are A, 

B and C versions, with B and C having one and two extra G bases, respectively, 

at the cloning site). This CPS1 cDNA-bearing vector was amplified and isolated 

from suitable E. coli cells (DH5α) by exploiting the ampicillin resistance 

provided by the plasmid. The presence of the insert and the correctness of the 

construction were checked by sequencing.  

 

Similarly, the parental bacmid was propagated in E. coli DHBac10 cells as a 

large plasmid that confers resistance to kanamycin and can complement the 

lacZ deletion present on the chromosome to form colonies that are blue (Lac+) 

in the presence of a chromogenic substrate such as X-gal and the inducer IPTG. 

 

Then (Fig. 20), the isolated plasmid carrying the cDNA for mature human 

CPS1, pFastBacHT A-hCPS1, was used for heat-shock transformation of E. 

coli DHBac10 cells. Transformed cells in which the Tn7 cassette had been 

transferred to the attTn7 site were selected by the white color of the colonies on 

LB agar having IPTG and X-gal. Selection also included gentamicin, 

kanamycin and tetracyclin, to ensure the co-presence of pFastBacHT, the 

bacmid and the helper plasmid. Individual white colonies were inoculated in 

liquid LB medium with these three antibiotics. After overnight growth, the 

bacmid was isolated from the pelleted cells by a modified [174] alkaline-SDS 

miniprep procedure [179] that avoids shearing forces to prevent cleavage of the 

large circular DNA. The presence of the insert in the isolated bacmid was 

checked by PCR, corroborating the expected size of the PCR product by 

agarose electrophoresis.  

 

Although production of the bacmid is an important step in the process towards 

protein expression, it is just a prerequisite that is still far from the final goal, the 

production of the protein product of interest. The path from bacmid to protein 

requires the conversion of the bacmid into a real virus provided with its capsid 

and being capable of infecting cells [173,174]. This is accomplished (Fig. 21) 

by introducing the bacmid via transfection into susceptible cells derived from 

an insect that is sensitive to the virus. Then the cells will produce virus particles 

hosting the gene for the desired protein under the control of the potent promoter 

for the late-expressed (in the viral life cycle) polyhedrin protein. In this way, 

the protein of interest will be produced. 
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Figure 20. Recombinant bacmid generation. bMON14272 elements: attTn7, target site 

of the Tn7 trasposon; mini-F replicon, fragment of the E. coli F factor that enables E. 

coli low-copy number replication; AcNPV, Autographa californica nuclear 

polyhedrosis virus genes; LacZ α, gene for α peptide of LacZ; Ori-pUC, origin of 

replication of the pUC plasmid; Kana, Kanamycin. In pMON7124, Tetra, tetracyclin 

resistance gene; Transposase, genes for the enzymatic machinery for Tn7 transposition. 
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In practice, the process from bacmid to protein expression (Fig. 21) requires 

transfection optimization, the use of cells that grow fast and allow rapid viral 

production, and the production of large viral numbers for generating important 

amounts of the desired protein in relatively large volumes of cell cultures with 

high cell concentrations. The use of continuous insect cell lines that can be 

grown in medium without serum to improve transfection, the use of several 

culture rounds for escalation in the total number of virus particles, the titration 

of the virus produced (in our case using a fluorescent assay [180] rather than the 

classical plate assay [181]), and the optimization of the multiplicity of viral 

infection (number of virus particles used per cell to be infected) and of time of 

harvesting, are considered key factors for successful protein expression [174]. 

 

We have used in all the steps in which animal cells are utilized (Fig. 21) a 

commercial cell line from the moth Spodoptera frugiperda [182] called Sf9 

cells, which are round cells that grow well in plate and in suspension. For 

further methodological detail I will refer here to the instruction booklet [174] of 

the Bac-to-Bac system. Nevertheless, I would like to underline the need to use 

at the transfection step a medium devised for insect cells in the absence of 

proteins (Grace Medium unsupplemented, protein or protein hydrolysate-free) 

[183] and the utilization as transfecting agent the cationic 

liposome/lipocomplex-forming (with DNA) commercial Cellfectin II (Life 

Technologies) [184]. In all other culture steps a protein-containing or serum-

supplemented Grace medium can be utilized, although we have used a 

proprietary (from Gibco-Invitrogen) protein-free and serum-free medium (SF-

900 II SFM [185]), to lower the protein contamination in the final CPS1 

purification step. The use of protein-free medium made essential the addition of 

an anti-shearing polymeric compound, Pluronic F68 (a copolymer of 

polyethylene glycol and polypropylene glycol with an average mass of ~8 kDa; 

obtained from Sigma) to prevent cell breakage because of the orbital shaking. 

Nevertheless, shaking was moderate (120 rpm).     

 

Although secreted proteins expressed in the baculovirus/insect cell expression 

system can be recovered from the medium, this was not the case with CPS1, 

and therefore in the final step (Fig. 21) the cells were separated from the 

medium by centrifugation, and the protein was extracted from the cell pellet by 

gentle breaking of the cells using freezing and thawing in an appropriate buffer. 

 

A property of the presently used baculovirus system is that the initial pFastBac 

plasmid containing the insert encoding the protein can be subjected to standard 

site-directed mutagenesis procedures. The use of site-directed mutagenesis has 

been crucial in the studies reported in this PhD dissertation, and thus we will 

deal with it in the next section of this Introduction.  



                                                         INTRODUCTION 

 

37 

 
 

 

Figure 21. CPS1 production. Western blots of cell extracts (20 µg protein per well) 

were revealed with an anti-rat CPS1 rabbit antiserum (provided by our laboratory) 

followed by luminiscent detection with the anti-rabbit ECL system (GE-Helathcare). 

Coomassie-stained SDS-PAGE was 8% polyacrylamide. St, protein markers. 
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1.9 Site-directed mutagenesis 

 

Site-directed mutagenesis allows the replacement at will of a given residue of a 

protein by any other residue. In this way the role of particular residues and the 

effects of amino acid changes can be assessed [188]. This approach, heralded in 

the late seventies with phage DNA [189], was popularized in the eighties 

through the utilization of several alternative principles [190], including 

phosphorothioate-based approaches [191], as well as "cassette mutagenesis", in 

which a DNA fragment with the desired mutated sequence was introduced by 

restriction enzyme-mediated digestion and ligation of the mutated cassette 

[192]. The advent of the polymerase chain reaction (PCR) [193] led to the 

introduction of much easier PCR-mediated mutagenesis techniques (too 

numerous for discussion here) which use synthetic oligonucleotide primers in 

which the gene sequence has been modified to introduce the desired mutation 

[194].  

 

A potential source of problems of the PCR techniques is the incomplete fidelity 

of the polymerase used [195], leading to the possibility of introducing undesired 

mutations. Although this is not generally a problem in applications of PCR in 

which the bulk product is sequenced, such as the analysis of mutations in 

patient DNA, it is a potential problem in those applications in which a single 

DNA molecule is cloned, such as in PCR-mediated site-directed mutagenesis. 

 

When using a low-fidelity thermostable enzyme, such as the widely utilized 

Taq polymerase (which is fast, highly processive although not optimally 

thermostable, t½ at 95ºC, 40 min) [196] generally several transformed bacterial 

colonies are selected, sequencing the isolated plasmids, which generally gives 

at least one cloned mutant DNA without unwanted mutations. Alternatively, a 

thermostable polymerase having high fidelity (due to the exhibition of 

proofreading exonuclease activity) can be used [195,196] as in the Quickchange 

Site-directed Mutagenesis Kit (Stratagene, La Jolla, CA) used here [197]. This 

kit was chosen because it is easy to use, it is not labor-intensive and it can use 

any double-stranded plasmid. Furthermore, the rather simple mutagenesis 

protocol used with this kit has a reputation of high efficiency. 

 

This kit uses a highly elegant approach to address the problem of selecting for 

the mutant form and against the wild-type gene, by exploiting the selectivity of 

the frequent-cutter (four nucleotide target site) restriction enzyme DpnI for a 

target DNA sequence with a methylated adenine at the cutting site [198]. Since 

PCR does not introduce methylations in the synthesized DNA, this allows 

discrimination between the cell-generated template wild-type DNA and the 

PCR-generated mutated DNA, by incorporating a DpnI digestion step.  
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The rationale behind mutagenesis with this kit is as follows (Fig. 22). Two 

mutagenic forward and reverse oligonucleotides, which are complementary 

between themselves and to the two strands of the gene in the region to be 

mutated (Fig. 22, top) are synthesized and used. They are mutagenic because 

they host the required DNA changes (generally not exceeding three bases for 

simple amino acid replacements). After a high temperature denaturation of the 

plasmid double helix, these primers are hybridized to the plasmid strands by 

lowering the temperature, and then the two strands of the whole circular 

plasmid including the cDNA that encodes the protein to be mutated are copied 

by a high fidelity DNA-directed DNA polymerase that can copy processively 

and highly faithfully relatively large templates. This last goal is attained in this 

kit by using an enzyme mixture called Pfu turbo, which includes Pyrochoccus 

furiosus (an organism that lives at nearly 100ºC) DNA polymerase [199] and a 

thermostable dUTPase added to prevent poisoning of the polymerase reaction 

by dUTP, thus improving PCR performance [200]. The time allocated for 

elongation should be sufficient to complete the copy of the entire plasmid. The 

entire cycle is repeated again 12-18 cycles (a small enough number to minimize 

the probability of introducing unwanted mutations), the mixture is left to 

anneal, DpnI is added to digest the methylated parental DNA, and, after 

completing the digestion, the DNA is used to transform any suitable cell type 

such as DH5α cells, which will seal the staggered nicks in the mutated plasmid.  

 

For application to the mutagenesis of CPS1 expressed in insect cells, we used as 

template for mutagenesis the pFastBac-CPS1 vector (see above and Fig. 22), 

consisting of 9242 bp (including the 4386 bp of the CPS1 insert), and the 

mutagenic primers indicated in the individual chapters of the Results section. 

Instead of using the complete commerical kit, we only utilized the proprietary 

Pfu turbo DNA polymerase/dUTPase mix, utilizing other reagents acquired 

separately. We did not follow strictly the kit recommendation of generating 

primers with a melting temperature >75ºC, utilizing in many cases primers with 

lower melting temperatures. This did not noticeably decrease the efficiency of 

plasmid copying in the elongation step of the cycle used (1-min 95ºC-melting, 

1-min annealing at a temperature appropriate for the plasmids used; 9-min 

elongation at 72º; this process repeated generally only 16 times), despite the 

utilization of an elongation temperature that in some cases exceeded that of 

melting of the plasmid-DNA complex. Possibly during the low-temperature 

annealing step there was enough elongation to increase the melting temperature 

above that used in the proper elongation step. Only in few cases we had to add 

2-4% dimethylsulfoxide (an additive used for long-PCR [201]) for successful 

results. In our hands, the efficiency of this system is close to the manufacturer 

claim of 80% success. We have always sequenced the entire CPS1 gene of the 

mutant plasmid, and we only found very rarely unwanted mutations. 
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Figure 22. Site-directed mutagenesis represented for a starting single plasmid 

molecule. The mutagenic primers used as an example (the sequences at the top and the 

blue and red arrows in the remainder of the figure) are the ones used to introduce the 

p.Asn355Asp mutation (Chapter 1 of the Results section). The vector is shown in full at 

the top, but is schematized as circles in the remainder, coloring green the CPS1 cDNA 

insert and using different color hues for plus and minus DNA strands. Adenine 

methylations (represented by black lines) are non-exact examples used for illustation. 
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1.10  CPS1 activity assays 

CPS1D refers to the existence of too little CPS1 activity to cope with the 

physiological needs of ammonia detoxification. This can be the consequence of 

too little active protein present in the tissue or of normal levels of an abnormal 

form of the enzyme exhibiting low specific activity (or of a combination of the 

two). Therefore, the assay of enzyme activities of the purified enzyme has been 

a key element in the present studies. I will comment here mainly the rationale 

of the enzyme activity determinations used in the present work. 

As already indicated, CPS1 catalyzes the following reaction: 

2ATP + HCO3
- + NH3                            2ADP + Pi + H2NCO2PO3H2 (CP) 

We have chosen here the utilization of optical assays that determine product 

concentration because they are simpler and less labor-intensive than procedures 

based on product isolation, such as chromatography. The choice of measuring 

optically product increase rather than to follow substrate decrease (as it could 

be done, for example, for ATP) is based on the fact that in substrate 

determination-based approaches the readings of the analyte (the substrate) are 

initially very high, decreasing the sensitivity of the assay. It is more sensitive to 

measure a product for which the concentration is essentially zero at the 

beginning of the reaction (initial velocity conditions).  

A point to remember with CPS assays is that carbamoyl phosphate is unstable, 

with a t1/2 of ~40 min at 37ºC and neutral pH [202], but with much faster 

decomposition at acidic and basic pH values [203]. This led us to choose an 

assay based on the continuous conversion of CP to citrulline, using the enzyme 

ornithine transcarbamylase (OTC) in the presence of ornithine. This is a time-

honored approach [41] that was amenable to our laboratory since OTC is 

commercially available (from Sigma) and, furthermore, since we produce from 

E. coli pure recombinant Enterococcus faecalis OTC [204]. 

Although OTC catalyzes a reversible reaction, the equilibrium is highly 

displaced in the direction of citrulline synthesis [205] and, if the reaction is 

carried out in the absence of phosphate and in the presence of a high 

concentration of ornithine (the case in our assays), conversion of CP to 

citrulline is highly favored. The presence of ornithine in the reactional assay is 

not a problem with CPS1, since, in contrast with what is the case with bacterial 

CPS [6], ornithine is not an activator of CPS1. Other advantages of including 

OTC and ornithine in the CPS1 assay are the lack of any requirements for the 

OTC reaction other than the presence of its two substrates [205], and the fact 

NAG, K+,Mg2+ 
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that the immediate conversion of CP to citrulline minimizes the risk of 

decomposition of the CP. Furthermore, with this system the concentration of 

CP is expected to be always be very low, thus approaching the zero product 

concentration requirement of initial velocity assays. 

It would be possible to monitor the CPS1 reaction with OTC coupling by 

measuring phosphate, or by citrulline assay, with stoichiometries of two moles 

of Pi released per mole of citrulline made by the coupled reactions of CPS1 and 

OTC: 

2ATP + HCO3
- + NH3                                  2ADP + Pi +  H2NCO2PO3H2 

 H2NCO2PO3H2 + L-Ornithine                    Pi +  L-Citrulline 

Total reaction: 

2ATP + HCO3
- + NH3 +  L-Ornithine                           2ADP+2Pi + L-Citrulline 

We have chosen to determine citrulline rather than Pi, at the end of a given 

period of assay time. This period can be lengthened in the OTC-coupled assay 

as much as needed, since CP is not decomposed due to its immediate 

conversion to citrulline. By measuring citrulline rather than Pi the total reaction 

is monitored, rather than risking to determine only the partial reaction of ATP 

hydrolysis. It has to be remembered that CP is the final product of the reaction, 

and thus, that it is generated only if all the reactional steps are completed. In 

contrast, Pi would be generated even if no citrulline were made, provided that 

the first step of the CPS1 reaction were operative (Scheme 1, pg. 13). Another 

reason for chosing citrulline is the existence of a highly sensitive color reaction 

for citrulline [29], which is based on the classical Archibald reaction for ureido 

compounds [206]. The sensitivity of this assay is good enough to allow 

monitoring substrate kinetics even at rather low concentrations of substrates 

without deviating too much from the initial velocity condition (permisivity of 

our assays, 25% consumption of the substrate being varied).  

The N-carbamoyl-L-glutamate (NCG) NAG analog used in some of the present 

studies is an ureido compound, and, therefore, it produces color in the 

colorimetric assay for citrulline [206]. Therefore, when we have used NCG, 

particularly for assaying enzyme kinetics for variable NCG concentrations, we 

have utilized an alternative assay based on the continuous determination of 

ADP with pyruvate kinase (PK) and lactate dehydrogenase (LDH) [39]: 

NAG, K+,Mg2+ 

CPS1 

OTC 

NAG, K+, Mg2+ 

CPS1, OTC 
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2ATP + HCO3
- + NH3                                    2ADP + Pi +  H2NCO2PO3H2  (CP) 

2 [ADP + Phosphoenolpyruvate (PEP)                  ATP + Pyruvate] 

2 [Pyruvate + NADH + H+                                      L-Lactate + NAD+]  

Total reaction: 

HCO3
- + NH3 + 2 PEP + 2NADH + 2H+ 

                                                                            Pi + CP + 2 L-Lactate +  2NAD+ 

This assay is based on the fact that the reduced form of NADH, but not the 

oxidized form, NAD+, strongly absorbs light in the near ultraviolet [207] 

(maximum at λ = 340 nm, with a molar extinction coefficient of 6.2 × 103 Mol-1 

cm-1). Provided that there is enough phosphoenolpyruvate, this assay 

regenerates the ATP used, and, therefore, it is also highly appropriate for 

measuring substrate kinetics for ATP. It is true that this assay is not useful with 

highly crude enzyme preparations or when the sample is contaminated with 

other ATP-hydrolyzing activities. Nevertheless, this problem can be aleviated 

in the case of CPS1 activity by determining the NAG-dependent (or NCG-

dependent) ADP production, estimated as the increase in ADP production that 

is triggered by the addition of NAG or NCG. 

In any case, we have used the PK/LDH-coupled assay exclusively with the pure 

enzyme, and, therefore, the presence of spureous ATPases has not been a 

problem, even in the few cases in which we have determined the slow (~10% of 

the rate of the complete activity) bicarbonate-dependent ATPase activity [16]. 

This partial activity (see Scheme 1, pg. 13) is measured in the absence of 

ammonia, and reflects the slow hydrolysis of the carboxyphosphate formed in 

the first step of the reaction.  

In some cases, where many assays had to be carried out in parallel, we adapted 

the 340 nm wavelength assay to a multiwell plate. This enabled us to carry out 

the assay in 200 μl, using less enzyme and performing multiple assays in 

parallel. To standardize the plate assay, we measured the absorbance at 340 nm 

of increasing concentrations of NADH in both a regular spectrophotometer 

using a 1-cm pathlength cuvette and in the multiwell plate, and the results 

N(A/C)G, K+, Mg2+ 
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obtained indicated that the measurements done in the cuvette gave 2-fold higher 

absorbance than those done in 200 μl. We used this correlation for calculations.  

Another continuous assay, in this case based on the reduction of NADP (and 

therefore on the increase in the absorbance at 340 nm) has been utilized when 

needed for determining the partial reaction of ATP synthesis from ADP and 

carbamoyl phosphate which reflects the second phosphorylation step of the 

CPS1 reaction (Scheme 1, pg. 13). The coupling enzymes used are hexokinase 

(HK) and glucose-6-phosphate dehydrogenase (G6PDH) [208], as follows: 

ADP + NH2CO2PO3H2                          ATP + NH2CO2H (→ CO2 + NH3) 

ATP + D-glucose                  ADP + D-glucose-6-phosphate (G6P) 

G6P + NADP+                   NADPH + H+ + 6-phospho-D-glucono-1,5-lactone 

In summary, we have made extensive use of enzyme activity assays. These 

have been generally citrulline assays carried out in test tubes in which the 

citrulline produced was determined after 10-30 min at 37ºC (generally 10 min). 

However, in some cases we have determined ADP or ATP production in 

continuous spectrophotometric assays at 340 nm in 1-ml cuvettes or in 

multiwell plates. 

 
 

1.11 Study goals, contents, involved laboratories, and my role in this work. 

 

The central goals of this work are: 

 

a) To produce recombinant human CPS1 as an experimental platform for 

testing the effects of mutations and of chemical chaperoning on CPS1 

functionality and stability. 

 

b) To investigate the role on the enzyme functionality and stability of the 

intervening domain that links both phosphorylation domains in the CPS1 

sequence, and to clarify the reasons for the high eloquence of this domain in the 

database of missense mutations found in CPS1D patients. 

 

c) To investigate in detail the process of CPS1 activation by NAG by 

examining and analysing the effects of all the clinical mutations reported in the 

C-terminal allosteric domain as well as by analysing the effects of a number of 

experimental mutations introduced on rational bases. 

 

NAG, K+,Mg2+ 

CPS1 

K+, Mg2+ 

HK 

G6PDH 
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d) To assess the disease-causing role of all the mutations reported in patients of 

CPS1D that map in these two domains, and to determine the mechanism of the 

ill-effects of these mutations. 

 

The Results section is composed of the following three publications: 

 

- Chapter 1: 

Díez-Fernández C, Martinez AI, Pekkala S, Barcelona B, Perez-Arellano I, 

Guadalajara A, Summar M, Cervera J, Rubio V. 2013. Molecular 

characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using 

human recombinant CPS1 as a key tool. Hum Mutat. 8:1149-1159. 

 

- Chapter 2: 

Díez-Fernández C, Hu L, Cervera J, Häberle J, Rubio V. 2014. Understanding 

carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly 

purified human enzyme: effects of CPS1 mutations that concentrate in a central 

domain of unknown function. Mol Genet Metab. 112:123-132. 

 

- Chapter 3: 

Díez-Fernández C, Gallego J, Häberle J, Cervera J, Rubio V. Experimental 

studies on the inherited metabolic error carbamoyl phosphate synthetase 1 

deficiency shed light on the mechanism for switching on/off the urea cycle. 

Submitted to Journal of Genetics and Genomics. 

 

I will summarize briefly the contents of these three chapters: 

 

- Chapter 1 largely deals with the expression and production of the human 

enzyme and with the study of its properties. It not only confirms that the 

recombinant enzyme is a genuine representation of the normal liver enzyme, 

but it also studies previously unexplored properties of it, and even investigates 

the potentiality of chemical chaperoning it with NCG. Pilot site directed 

mutagenesis studies are carried out to show the value of this system for 

studying CPS1 deficiency. 

 

- Chapter 2 studies by site-directed mutagenesis the impact of all the CPS1D 

missense mutations described so far affecting a small CPS1 domain of 

unknown function that had been called the UFSD, and that links both 

phosphorylation domains in the enzyme sequence. This domain had been found 

to be clinically highly eloquent despite the fact that it does not host substrate-

binding or catalytic machinery. Our findings support the disease-causing role of 

the mutations reported to affect this domain, highlighting the value of the 

present expression system for ascertaining the disease-causing potential of 
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CPS1D mutations. They reveal this domain's key role for proper enzyme 

folding and for the regulatory cross-talk between NAG and phosphorylation 

sites. Our work has uncovered a paramount integrating role of this domain for 

building and for organizing the highly complex CPS1 architecture, leading us to 

call this domain the “Integrating domain” of CPS1. 

 

- Chaper 3 focuses on understanding CPS1 activation by studying or analyzing 

the impact of all the missense mutations lying on the C-terminal allosteric 

domain that have been found to date in CPS1D patients, as well as the effects of 

other experimental missense mutations affecting residues proposed to be 

involved in NAG binding or NAG activation. The analysis has included, in 

addition to the mutations introduced now, seven clinical and five experimental 

mutations that had been studied already but for which the full significance had 

not been inferred. Our present results and analysis clarify disease causation 

when appropriate, identify functionally important residues, and reveal that 

many of these mutations decrease the affinity of the enzyme for NAG, opening 

the way for NAG saturation therapy with the NAG analog and registered drug 

N-carbamyl-L-glutamate. Furthermore, we identify and delineate using 

molecular dynamics a NAG-triggered conformational change in the β4-α loop 

of the CPS1 C-terminal domain that is most likely the first event in the NAG 

activation process. Thus, we provide the first hint on the mechanism by which 

NAG can control the operation of the urea cycle. 

 

This work has been carried out in three different laboratories: from 01.09.2009 

to 31.12.2011 in the laboratory of Dr. Javier Cervera, in the Centro de 

Investigación Príncipe Felipe until the laboratory was closed; then the work 

continued from 01.01.2012 till the 31.05.2014 in the laboratory of Dr. Vicente 

Rubio, in the Instituto de Biomedicina de Valencia of the CSIC; with a short 

stay (16.11.2012-26.4.2013) in the laboratory of Dr. Johannes Häberle in the 

University Children’s Hospital in Zurich, Switzerland in the collaborative work 

that was a part of the work included in sections 2 and 3 of the Results. 

 

As the results of this work are conveyed in three multiauthor papers, it is 

important to clarify which part of the work is due to myself. My personal work 

includes my central involvement in the writing of the three papers, in the 

analyses conveyed therein, whereas I have been responsible for the entire 

experimental work of Chapters 2 and 3, excepting the molecular dynamics and 

docking studies of Chapter 2 (which were carried out by Dr. José Gallego). In 

the case of Chapter 1 I was responsible for most of the work on human enzyme 

expression, purification and characterization, but I was not responsible for the 

studies on the rat enzyme or on mutant enzyme forms except in the case of the 

p.Asn355Asp mutation, which I studied myself.  
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2.1.1 Abstract: The urea cycle disease carbamoyl-phosphate synthetase 

deficiency (CPS1D) has been associated with many mutations in the CPS1 gene 

[Häberle et al. Hum Mutat 2011; 32:579-589]. The disease-causing potential of 

most of these mutations is unclear. To test the mutations effects, we have 

developed a system for recombinant expression, mutagenesis, and purification 

of human carbamoyl-phosphate synthetase 1 (CPS1), a very large, complex and 

fastidious enzyme. The kinetic and molecular properties of recombinant CPS1 

are essentially the same as for natural human CPS1. Glycerol partially replaces 

the essential activator N-acetyl-L-glutamate (NAG), opening possibilities for 

treating CPS1D due to NAG site defects. The value of our expression system 

for elucidating the effects of mutations is demonstrated with eight clinical CPS1 

mutations. Five of these mutations decreased enzyme stability, two mutations 

drastically hampered catalysis, and one vastly impaired NAG activation. In 

contrast, the polymorphisms p.Thr344Ala and p.Gly1376Ser had no detectable 

effects. Site-limited proteolysis proved the correctness of the working model for 

the human CPS1 domain architecture generally used for rationalizing the 

mutations effects. NAG and its analogue and orphan drug N-carbamoyl-L-

glutamate, protected human CPS1 against proteolytic and thermal inactivation 

in the presence of MgATP, raising hopes of treating CPS1D by chemical 

chaperoning with N-carbamoyl-L-glutamate.  

 

Key words: urea cycle; CPS1 deficiency; hyperammonemia; 

carbamylglutamate 
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2.1.2 Introduction 
 

Carbamoyl-phosphate synthetase 1 (CPS1) deficiency (CPS1D; MIM# 237300) 

is a rare autosomal recessive inborn error of the urea cycle [Häberle et al., 

2011], the cycle that detoxifies the neurotoxin ammonia produced in body 

protein catabolism. Unless promptly treated, the hyperammonemia caused by 

CPS1D can lead to encephalopathy, coma and death or mental retardation 

[Brusilow and Horwich, 2001; Häberle et al., 2012]. The time of onset and 

severity of the presentation appear related to the amount of residual activity of 

the enzyme in the liver [Shih, 1976]. 

 

Human CPS1 (hCPS1), a 1462-amino acid, 160-kDa multidomain 

mitochondrial liver and intestinal enzymatic protein, catalyzes the complex 3-

step reaction that is the first of the urea cycle [Pierson and Brien, 1980; Rubio, 

1993; Rubio et al., 1981, Pekkala et al., 2010]: 
                                   

                                      NAG  

2ATP + NH3+ HCO3
-  →    2ADP +  Pi + CP 

 

(NAG = N-acetyl-L-glutamate; essential activator of CPS1; CP = carbamoyl-

phosphate) 

 

The CPS1 gene (MIM# 608307) spans 120 kb, it maps to 2q35 [Summar et 

al., 1995], comprising 38 exons and 37 introns [Summar et al., 2003]. More 

than 230 genetic lesions have been reported in CPS1D, with little recurrence, 

since most mutations are "private" to individual families [Häberle et al., 2011], 

with about 140 of these mutations being missense changes for which the 

disease-causing role has not been proven in most cases.  

 

In an earlier study [Yefimenko et al., 2005] we attempted to infer the disease-

causing potential of missense mutations found in patients with CPS1D by 

introducing them in recombinantly expressed Escherichia coli CPS, studying 

experimentally the consequences of such introduction on the activity or the 

stability of the purified enzyme. Although useful, this approach had obvious 

drawbacks due to the limited (40%) sequence identity [Nyunoya et al., 1985] 

and the large functional differences between the bacterial and human CPSs. 

These differences include the use and the lack of use by bacterial CPS of, 

respectively, glutamine and NAG [Meister, 1989], while CPS1 cannot use 

glutamine as ammonia donor, utilizing ammonia with high affinity, and it needs 

NAG as an essential allosteric activator without which it is inactive [Rubio et 

al., 1981, 1983a]. In fact, the role of the CPS1 N-terminal 40-kDa region (Fig. 

1A), corresponding to the glutamine-splitting, small subunit of bacterial 
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Figure 1. Domain composition of human CPS1. A: Linear scheme of mature CPS1, 

highlighting four interdomain linkers that are cleaved by the indicated proteases as 

identified in rodent CPS1, with the corresponding fragments masses (in kDa) above them 

[Marshall and Fahien, 1988]. Chymo, chymotrypsin.  Trypsin(2) denotes cleavage after 

scission at the other tryptic site. The bars shaded grey schematize the 40-kDa N-terminal 

and the 120-kDa C-terminal CPS1 moieties that correspond to the small and large 

subunits of E. coli CPS, respectively. Polyclonal rabbit antibodies raised against these 

isolated moieties are called Anti-40 and Anti-120. Functional domains are shown in 

background texture and are identified. Glnase-like corresponds to the Glnase domain of 

bacterial CPS, but has no known function in CPS1. ??, unknown function. A dashed line 

separates two domains composing a proteolytic domain. (continued in the next page)  
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 CPS [Meister, 1989; Nyunoya et al., 1985] is uncertain in CPS1, and thus, the 

impact of hCPS1 mutations affecting this region cannot be inferred from E. coli 

CPS studies. Furthermore, the unique characteristics among CPSs of the NAG 

activation of CPS1 makes difficult to infer from bacterial CPS studies the 

impact of hCPS1 mutations mapping in the C-terminal 20-kDa of this enzyme, 

since this region (the allosteric or regulatory domain, Fig. 1A) hosts the site for 

NAG [Pekkala et al., 2009, Rodríguez-Aparicio et al., 1989] and must generate 

the allosteric signal that shift CPS1 from inactive to active.  

 

We now exploit our recent success in producing recombinant rodent CPS1 in a 

baculovirus/insect cell system [Pekkala et al., 2009], to develop a similar 

system for recombinant production of pure human CPS1 (rhCPS1). Although 

harboring an N-terminal His-tag to help purification, rhCPS1 is proven here to 

have the same properties and characteristics as CPS1 purified from human liver 

[Pierson and Brien, 1980; Rubio et al. 1981] and the same domain composition 

as the well-studied rodent enzyme [Evans and Balon, 1988; Marshall and 

Fahien, 1988; Powers-Lee and Corina, 1986]. We demonstrate the value of this 

expression system for testing the functional impact of missense mutations found 

in CPS1D, thus helping infer the disease-causing role of these mutations. 

Furthermore, we show that NAG and its analogue and orphan drug N-carbamyl-

L-glutamate (NCG) importantly decrease hCPS1 susceptibility to proteolytic 

attack and thermal inactivation, raising hopes that NCG might be used as a 

 

Fig. 1, cont'd: The two polymorphisms (in italic and grey background) and the eight 

clinical mutations studied here are mapped in the CPS1 polypeptide with banners. B, C 

and D: Top part, fragments generated with trypsin, elastase or chymotrypsin [Marshall 

and Fahien, 1988]. The cleavage points are identified with the ABCD notation used in 

panel A. Each tryptic fragment is called T1-T3, elastase fragments E1-E4 and the 

chymotryptic one C1. Their approximate masses and their reactivity with Anti-40 and 

Anti-120 antibodies are given. The 20 kDa C-terminal fragment is rapidly degraded 

[Marshall and Fahien, 1988] and is shown crossed. Lower parts, SDS-PAGE of 

digested recombinant human CPS1 and, for comparison, of rat liver CPS1, stained with 

Coomassie or by immunoperoxidase with Anti-40 or Anti-120 after western blotting 

(only done with the rat enzyme). Digestions of CPS1 (1.3-2 mg/ml) were at 37º, for 15-

30 min with the indicated protease (4-16 g/ml; pancreatic, from Boheringer 

Mannheim or Sigma) in 35 mM Tris-HCl pH 7.4, 9% glycerol, 1.5 mM DTT, 20 mM 

KCl and 10 mM NAG. The enzyme was preincubated at least 15 min at 37ºC prior to 

the addition of the protease. This addition was considered time zero. Fragments are 

identified in the gels as T1-T3, E1-E4 or C1. Note in (D) that while chymotrypsin 

inactivates rat and human CPS1 (see the plot), there is little decrease (2 kDa) in 

polypeptide mass (top panels), corresponding to the loss of approximately 12 residues 

from the enzyme C-terminus documented earlier for rat CPS1 [Marshall and Fahien, 

1988].  
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chemical chaperone for treating CPS1D due to misfolding-causing mutations. 

The present results have also produced novel information on the significance of 

the N-terminal and C-terminal domains of CPS1. 

 

2.1.3 Patients and methods 
 

2.1.3.1 Patients and CPS1 mutations 

 

The eight missense mutations chosen (Table 1) were reported [Eeds et al., 2006; 

Finckh et al., 1998; Kurokawa et al., 2007; Summar, 1998] in seven CPS1D 

patients with neonatal presentations, implying high disease severity. Patients 4 

and 1 (Table 1) were, respectively, homozygous or compound heterozygous for 

one or two missense mutations, whereas in patients 2 and 6 the mutation was 

detected in mRNA studies that failed to detect a second mutant allele. The other 

three patients (Table 1) carried in one allele a missense mutation and in the 

other a truncation-causing change (nonsense changes in patients 3 and 7; a 

frameshift in patient 5) that, because of the large protein region deleted, should 

cause enzyme inactivation. The PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2) [Adzhubei et al., 2010] and MutPred 

(http://mutpred.mutdb.org) [Li et al., 2009] servers assigned these mutations 

with a high probability of being pathogenic, whereas they made predictions of 

benignity for two polymorphisms causing non-synonymous amino acid 

substitutions [Finckh et al., 1998; Summar et al., 2003] that are studied also 

here as negative controls (Table 1). 

 

All the mutations dealt with here were already included in the locus-specific 

database for CPS1 (http://www.lovd.nl/CPS1). Amino acid conservation (Table 

1) was determined by ClustalW sequence alignment of either CPS1, CPSIII or 

other CPSs from 15, 6 and 270 species, respectively. 

 

2.1.3.2 Recombinant human CPS1 production 

 

Human CPS1 cDNA [Haraguchi et al., 1991] (GenBank entry NM_001875.4), 

was generated from human liver mRNA [Summar et al., 2003] as two 

complementary fragments by two RT-PCR reactions with appropriate primers. 

After sequential incorporation of these fragments into pcDNA3.1 (from 

Invitrogen), the complete CPS1 cDNA was reconstructed within this plasmid 

by exploiting a unique HindIII CPS1 site, yielding pcDNA3.1-hCPS1. Then 

(Supp. Fig. S1) a 3985 bp fragment comprising the CPS1 open reading frame 

(ORF) from base 580 onwards (base 1 is the A of the translation initiation 

codon) was excised from this plasmid by BamHI and EcoRI, and was ligated 
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into pFastBac. The ORF encoding mature CPS1 (lacking the N-terminal 

mitochondrial targeting sequence, bp 1-117) was completed by in-frame 

ligation of a PCR-generated fragment comprising bp 118-579 of the CPS1 

cDNA (primers: Cloning_F and Cloning_R, Supp. Table S1; they incorporate a 

BamHI site for cloning). This yielded pFastBac-CPS1, which encodes mature 

hCPS1 (amino acids 40-1500) preceded N-terminally by the His6-tag 

MSYYHHHHHHDYDIPTTENLYFQGAMDP. Site-directed mutagenesis of 

pFastBac-CPS1 was performed by the overlapping extension method 

Supplementary Figure S1. 

 Diagram schematizing the 

steps of the production of 

recombinant human CPS1. 

The gel (SDS-PAGE, 

Coomassie staining, the 

arrows give the positions of 

protein standards of the 

indicated polypeptide 

masses) illustrates the 

presence of abundant 

soluble CPS1 protein in the 

postcentrifugal supernatant 

of the cell extract (left 

track) and the essential 

homogeneity of the purified 

protein (right track).  
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(Quickchange kit from Stratagene) using the forward and reverse primers given 

in Supp. Table S1. The correctness of the constructs, the presence of the desired 

mutation, and the absence of unwanted mutations, were corroborated by 

sequencing. 

 

For producing rhCPS1 (Supp. Fig. S1), we used the commercial Bac-to-Bac® 

Baculovirus Expression System (Invitrogen), following the manufacturer's 

directions. In short, E. coli Max Efficiency DH10Bac cells (Invitrogen), 

transformed with pFastBac-CPS1, were grown on LB-agar containing 

50/7/10/40/100 g/ml of, respectively, kanamycin/ 

gentamycin/tetracyclin/IPTG/Bluo-Gal. Individual white colonies were 

inoculated into 5-ml LB medium with the same antibiotics, cultured overnight, 

and the bacmid was isolated. The baculovirus was produced by transfecting Sf9 

insect cells with CPS1 cDNA-carrying (proven by PCR) bacmid, using 

Cellfectin/Grace medium (5 hours, 27ºC), followed by 3-day culture (27ºC, six-

well plate) in Sf900 medium (Invitrogen) containing 0.1% Pluronic F-68, 50 

U/ml penicillin and 50 g/ml streptomycin. The culture was centrifuged, and 

the supernatant was used for baculovirus enrichment by infecting with it (1:60 

dilution) a suspension of 1.5x106 Sf9 cells/ml. After 48-hour culturing (27ºC, 

orbital shaking at 125 rpm) and centrifugation, the supernatant was used to 

inoculate (1:50 dilution) a fresh cell suspension for CPS1 production, collecting 

the cells by centrifugation after 3 days of culture as above.  

 

 

2.1.3.3 Enzyme purification 

 

Unless indicated, all steps (Supp. Fig. S1) were at 4ºC. To purify rhCPS1 (wild-

type or mutant forms), the insect cell pellet from a 50-ml culture was suspended 

in 3 ml of a lysis solution [50 mM glycyl-glycine, pH 7.4, 1 mM dithiothreitol 

(DTT), 10% glycerol, 20 mM KCl, 0.1% Triton X-100, 5 μM E-64 protease 

inhibitor and 1% of the protease inhibitor cocktail for His-tagged proteins 

(Sigma product P8849)] and was thawed (melting ice) and frozen (liquid 

nitrogen or dry CO2-acetone mixture) three times. After 10-min centrifugation 

(16,000xg) and supernatant filtration through a 0.22 m membrane, the 

supernatant was applied to a HisTrap HP 1-ml column fitted in an ÄKTA FPLC 

system (GE Healthcare) that was equilibrated with 50 mM glycyl-glycine pH 

7.4, 1 mM DTT, 10 % glycerol, 0.5 M NaCl, and 20 mM imidazole. After a 10-

ml column wash, a 15-ml linear gradient of 20-500 mM imidazole in the same 

solution was applied. The CPS1-containing fractions (monitored by SDS-

PAGE) were pooled, concentrated to 3-5 mg protein/ml by centrifugal 

ultrafiltration (100-kDa cutoff membrane, Amicon Ultra, Millipore), enriched 

with 10% extra glycerol and 1 mM extra DTT, and frozen at -80ºC.  
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Rat liver CPS1, and E. coli-expressed recombinant Enterococcus faecalis 

ornithine transcarbamylase (OTC) [Barcelona-Andrés et al., 2002] were 

purified as reported [Alonso and Rubio, 1983; Marshall and Cohen, 1972].  

 

 

2.1.3.4 Enzyme activity assays 

 

In the standard CPS1 assay, CP was converted to citrulline, which was 

measured colorimetrically [Pekkala et al., 2009]. The enzyme was incubated 10 

min at 37ºC in an assay mixture containing 50 mM glycyl-glycine pH 7.4, 70 

mM KCl, 1 mM DTT, 20 mM MgSO4, 5 mM ATP, 35 mM NH4Cl, 50 mM 

KHCO3, 10 mM NAG, 5 mM L-ornithine and 4 U/ml OTC. When the 

concentration of a substrate was varied, other substrates were kept at the 

concentrations given above (unless indicated), with MgSO4 being in 15 mM 

excess over ATP. 

 

Since NCG yields color in the citrulline assay, when testing the NCG 

concentration-dependence of CPS1 activity, we used a continuous pyruvate 

kinase/lactate dehydrogenase coupled assay in which ADP production was 

monitored as NADH oxidation at 340 nm [Guthorlein and Knappe, 1968]. The 

assay (37ºC) used the same solution as the standard assay except for the lack of 

OTC and ornithine and the inclusion of 2.5 mM phosphoenolpyruvate, 0.25 

mM NADH, 40 g/ml pyruvate kinase and 25 g/ml lactate dehydrogenase. 

 

The kinetic parameters for NAG were identical, within experimental error, in 

this assay and in the standard assay. This NADH oxidation-coupled assay, 

without NH4Cl, was used for measuring the HCO3
--dependent ATPase partial 

reaction of CPS1. For measurement of the partial reaction of ATP synthesis 

from CP and ADP, an NADP reduction-coupled assay [Yefimenko et al., 2005] 

was used, monitoring the absorbance at 340 nm in a mixture at 37ºC containing 

50 mM glycylglycine pH 7.4, 0.1 M KCl, 15 mM MgSO4, 15 mM glucose, 

0.5mM ADP, 5 mM CP, 10 mM NAG, 1 mM NADP, 1 mM DTT, 0.1 mg/ml 

hexokinase and 25 g/ml glucose-6-phosphate dehydrogenase. One CPS1 unit 

produces per minute 1 mol citrulline or 2 mol ADP. The program GraphPad 

Prism (GraphPad Software, San Diego, California) was used for curve fitting.  

 

2.1.3.5 Other techniques 

 

SDS-PAGE [Laemmli, 1970] was performed in 8% polyacrylamide gels, with 

Coomassie staining or, for cell extracts, by western blotting/immunostaining 

(ECL system, GE Healthcare), utilizing an anti-rat liver CPS1 first antibody 
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[Alonso et al., 1989]. Western blots of rat liver CPS1 protease digests (Fig. 1) 

were stained with immunoperoxidase [Alonso et al., 1989] using as first 

antibodies rabbit antisera against the electrophoretically separated [Amero et 

al., 1994] N-terminal 40-kDa or C-terminal 120-kDa moieties of rat liver CPS1 

(produced by limited elastase digestion [Marshall and Fahien, 1988]). Protein 

was determined according to [Bradford, 1976] using bovine serum albumin as 

standard. 
 

Supplementary. Table S1. Synthetic oligonucleotides used in cloning and 

site-directed mutagenesis 

Name/ 

mutation 
Direction Sequence 5´- 3´ 

Cloning_F Forward CGCATGGATCCGTCTGTCAAGGCACAGACAa 

Cloning_R Reverse TTTATTTGGATCCACAAAATCCACAGGa 

p.T344A Forward CTATGCCTTGGACAACGCTCTCCCTGCTGGCb 

p.T344A Reverse GCCAGCAGGGAGAGCGTTGTCCAAGGCATAGb 

p.N355D Forward CACTTTTTGTGGATGTCAACGATCb 

p.N355D Reverse GATCGTTGACATCCACAAAAAGTGb 

p.Y389C Forward CAATAGACACTGAGTGCCTGTTTGATTCCb 

p.Y389C Reverse GAATCAAACAGGCACTCAGTGTCTATTGGb 

p.L390R Forward CAATAGACACTGAGTACCGGTTTGATTCCb 

p.L390R Reverse GAATCAAACCGGTACTCAGTGTCTATTGGb 

p.A438P Forward CCATTGGTCAGCCTGGAGAATTTGb 

p.A438P Reverse GTAATCAAATTCTCCAGGCTGACCAATGGACb 

p.T544M Forward CATTATGGCTATGGAAGACAGGCAGCTGb 

p.T544M Reverse CTGCCTGTCTTCCATAGCCATAATGGACb 

p.G1376S Forward CCAAGATTCCTTAGTGTGGCTGAACAATTACb 

p.G1376S Reverse GTAATTGTTCAGCCACACTAAGGAATCTTGGCCb 

p.A1378T Forward CCTTGGTGTGACTGAACAATTACb 

p.A1378T Reverse GTAATTGTTCAGTCACACCAAGGAATCb 

p.L1381S Forward CTTGGTGTGGCTGAACAATCACACAATGAAGGTTTCAAGb 

p.L1381S Reverse GAAACCTTCATTGTGTGATTGTTCAGCCACACCAAGGb 

p.T1443A Forward CTTCCCAACAACAACGCTAAATTTGTCb 

p.T1443A Reverse GGACAAATTTAGCGTTGTTGTTGGGAAGb 
aUnderlining marks the BamH1 restriction sites  
bBold type indicate base substitutions to introduce the desired mutation.  
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2.1.4 Results and Discussion 
 

 

2.1.4.1 Producing human CPS1 in a baculovirus/insect cell system 

 

In the liver, CPS1 is produced as a precursor that is matured by cleavage of its 

N-terminal 38-39 amino acids upon entry to the mitochondria [Ryall et al., 

1985]. We cloned for recombinant expression the cDNA for human liver CPS1 

without the N-terminal 39 codons, which were replaced by a 28-codon N-

terminal His6-tag. This allowed testing the effects of the mutations on the 

mature form of the enzyme (the functional one in vivo). The tag simplified and 

speeded CPS1 purification, what is important, given the instability of 

mammalian CPS1 [Raijman and Jones, 1976] and its sensitivity to proteolytic 

attack [Guadalajara et al., 1983]. The CPS1 expressed here carries the more 

frequent Thr form of the p.Thr1406Asn polymorphism (rs1047891, Ensemble 

database; allelic frequencies of T/N forms, 0.7/0.3) that has been associated 

with increased frequency of some vascular pathologies possibly related to 

decreased citrulline levels and nitric oxide production (see for example 

[Pearson et al., 2001]).  

 

The procedure used (Supp. Fig. S1), optimized for highest rhCPS1 production, 

had as important elements the use of insect cells cultured for two weeks after 

unfreezing, and the infection of the cells with a nominal virus-to-cell ratio of 2 

in the final CPS1-production step, leaving 72 hours the infected cells in culture 

(27ºC, orbital shaking, 125 rev/min), in either 50 or 200 ml of medium, before 

cell harvesting. Purification was possible weeks after harvesting by freezing 

cells pellets at -80ºC. 

 

Prior studies with liver-purified hCPS1  [Pierson and Brien, 1980; Rubio et al., 

1981] and even more extensive studies with rat liver CPS1 [Alonso et al., 1992; 

Guadalajara et al., 1983; Guthöhrlein and Knappe, 1968; Marshall and Fahien, 

1985, 1988; Raijman and Jones, 1976] showed that mammalian CPS1 is highly 

instable, requiring precautions to avoid oxidation, proteolytic cleavage and 

inactivation of unknown cause but preventable by glycerol. Taking into account 

these factors, we used for cell extract preparation and in subsequent steps a 

neutral medium at 4ºC containing 10% glycerol, 1 mM DTT and a very 

extensive protease inhibitor cocktail, using a fast 3-step purification protocol 

consisting of cell disruption by freeze-thawing in 0.1% Triton X-100-containing 

CPS1-protecting solution, centrifugal clarification and 0.22 m-pore membrane 

filtration, and a final step of fast Ni-affinity column chromatography with 

imidazole gradient elution. 
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rhCPS1, which represented 10% of the soluble cell protein (Supp. Fig. S1, left 

track of the gel), was largely soluble (not illustrated) and yielded after the 

column chromatography step 15 mg per L of cell culture, of highly active 

(Table 2), homogeneous and pure enzyme as shown by the finding in SDS-

PAGE of a single band migrating as expected for its sequence-deduced mass 

(163.9 kDa). (Supp. Fig. S1, right track of the gel). 

 

Table 2. Comparison of the activity, the apparent Km values for the 

substrates and the Ka values for N-acetyl-L-glutamate (NAG) or for its 

analog N-carbamyl-L-glutamate (NCG), for recombinant or natural 

human CPS1 

 

Source 
Activity 

U/mg 

Apparent Km or Ka value (mM) 

ATP HCO3
- NH4

+ NAG NCG 

Recombinanta 1.1 0.5 4.0 1.0 0.14 2.0 

Liverb 1.5 1.1 6.7 0.8 0.10 - 

Liverc 1.5 0.3 2.2 1.3 0.15 2.0 
aPresent work. 
bPierson and Brien, 1980. 
cRubio et al., 1981.  

 

 

2.1.4.2 Recombinant human CPS1 represents well the natural liver enzyme 

 

It was important to ascertain that rhCPS1 closely represents in all its properties 

natural hCPS, particularly since, to minimize enzyme inactivation, the N-

terminal His6-tag was not removed. Similarly to liver CPS1, rhCPS1 has an 

essential requirement for NAG (Fig. 2A). Its specific activity (Table 2) is 

similar to that reported for liver-isolated human CPS1 [Pierson and Brien, 1980; 

Rubio et al., 1981]. Apparent Km values for ATP, HCO3
- and NH4

+, and the Ka 

for NAG and for the drug analogue of NAG, NCG, are also within published 

value ranges for natural hCPS1 (Table 2 and Fig. 2) [Pierson and Brien, 1980; 

Rubio et al., 1981].  

 

rhCPS1 also presents the same oligomeric state as liver-derived hCPS [Rubio et 

al., 1981]. Gel exclusion chromatography experiments (Fig. 3A) reveal highly 

similar peaks and estimated masses for the natural human enzyme and for 

rhCPS1: in both cases the apparent mass exceeds by <30% that of the 

monomer, indicating that the enzyme consists of monomers in rapid 

equilibrium with dimers, with strong predominance of the monomers. 
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2.1.4.3 Glycerol partially replaces NAG in the activation of human CPS1. 

  

We also investigated potentially crucial traits of hCPS1 that had not been 

amenable to investigation until now. Thus, we show here (Fig. 3B, right panel) 

that hrCPS1 is activated by glycerol in the absence of NAG, whereas in the 

presence of NAG is inhibited by increasing concentrations of glycerol. Similar 

observations had been made with rat liver CPS1 (Fig. 2B, left panel and 

[Britton et al., 1981; Rubio et al., 1983b]). The substantial activation attained 

with glycerol and the fact that this polyol appears to activate CPS1 without 

specifically binding to the NAG site [Rubio et al., 1983b] make conceivable the 

possibility of developing treatments for CPS1D patients with a damaged NAG 

site, in which CPS1 could be activated by compounds that do not bind to the 

NAG site.   

 

 

2.1.4.4 Limited proteolysis reveals the hCPS1 domain organization. 

 

The domain composition of hCPS1 had not been made amenable to 

investigation until now. The structure of E. coli CPS [Thoden et al., 1997] had 

revealed a multidomain organization that was anticipated [Rubio, 1993] by the 

Figure 2. Dependence of CPS1 activity on the concentrations of NAG and 

bicarbonate for non-mutated (WT) CPS1 and for the indicated mutant forms. The 

curves fitted to the data are hyperbolae for the kinetic constants given in Table 3. The 

insets expand the curves for the mutants, to demonstrate the hyperbolic kinetics 

despite the decreased activity. A: NAG varied. In the case of the p.Thr544Met mutant 

the concentration of bicarbonate was fixed at 0.5 M. B: bicarbonate varied. 
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 results of limited proteolysis and of other studies with rodent and E. coli CPSs 

[Cervera et al., 1993; Evans and Balon, 1988; Marshall and Fahien, 1988; 

Powers-Lee and Corina, 1986; Rodríguez-Aparicio et al., 1989; Rubio et al., 

1991]. Limited proteolysis studies with rodent CPS1 revealed four points of 

preferential proteolytic cleavage that appear to correspond to exposed 

the use of a Superdex 200HR (10/300) column mounted on an Äkta fast protein liquid 

chromatography system, at a flow rate of 0.5 ml/min, the application of 0.02 ml of a 3 

mg/ml solution of human recombinant CPS1 or appropriate amounts of protein 

standards, and the continuous monitoring of the optical absorption at 280 nm. Protein 

standards for this panel were (masses are given in parenthesis, in kDa) bovine 

pancreatic ribonuclease A (13.7), bovine serum albumin (66.4), yeast alcohol 

dehydrogenase dimer (73.4) and tetramer (146.8), β-amylase (223.8) and ferritin (440). 

B: Effects of the addition of glycerol on CPS1 activity in the presence or in the absence 

of 10 mM NAG as indicated (closed and open circles, respectively).  Velocities, 

measured as ADP production, are expressed as a percentage of the velocity in the 

presence of 10 mM NAG and in the absence of glycerol. Left and right panels, results 

with the rat liver enzyme and with the recombinant human enzyme, respectively.    

 

Figure 3. Recombinant human CPS1 

replicates the natural enzyme in the 

oligomeric state and the ability to be 

activated and inhibited by glycerol. A: 

Gel exclusion chromatography analysis. 

The upper lines are the semilogarithmic 

plots of the masses of marker proteins 

(closed circles) versus their elution 

volumes. Peaks of CPS1 activity (left 

panel, open symbols) or of CPS1 protein 

(peak in the right panel) are shown 

below them. The mass of CPS1, 

estimated by interpolation, is shown 

above a vertical line emerging from the 

peak. Left panel, results with the enzyme 

purified from human liver [Rubio et al., 

1981], using a conventional 0.9  56 cm 

column of Sephadex G-200 run at 23ºC. 

For further details, including the list and 

masses of standards used, see [Rubio et 

al., 1981]. Right panel, present results 

with the recombinant human enzyme 

under essentially the same conditions as 

those in [Rubio et al., 1981] except for  



RESULTS. Chapter 1 

 

64 

 
 

sequences linking adjacent globular domains, and which are differentially 

cleaved by elastase, trypsin and chymotrypsin [Powers-Lee and Corina, 1986; 

Marshall and Cohen, 1988] (Fig. 1). We observed limited tryptic or elastase 

digestion patterns with hrCPS1 that fully comply with the reported 

fragmentation patterns for rat liver CPS1 (Figs. 1B and C)  [Marshall and 

Fahien, 1988; Powers-Lee and Corina, 1986]. These findings support the 

existence of the same domain organization and architecture in human and rat 

CPS1, also supporting the similarity of this architecture with that of E. coli CPS 

[Rubio et al., 1991; Thoden et al., 1997]. Interestingly, as with rat liver CPS1 

[Marshall and Fahien, 1988], chymotrypsin inactivated rhCPS1 (Fig. 1D, plot) 

while decreasing very little CPS1 polypeptide size (Fig. 1D, gels), in agreement 

with prior experiments with rat liver CPS1 that showed that the enzyme is 

cleaved very close to its C-terminus [Marshall and Fahien, 1988]. 

 

 

2.1.4.5 Testing the effects of clinical CPS1D mutations on enzyme 

functionality 

 

The present results show that the properties of rhCPS1 mirror those of natural 

CPS1, supporting the use of rhCPS1 for testing the impact of clinical mutations 

on enzyme function and stability. We demonstrate this use here with eight 

missense mutations found in seven neonatal CPS1D patients (Table 1 and Fig. 

1A) [Eeds et al., 2006; Finckh et al., 1998; Kurokawa et al., 2007; Summar, 

1998] and with two trivial polymorphisms (Table 1 and Fig. 1A) [Finckh et al., 

1998; Summar et al., 2003]. Of these ten amino acid substitutions, two map in 

the bicarbonate phosphorylation domain (a catalytic domain) and are therefore 

likely to hamper activity. The other eight changes were selected because they 

map in CPS1 regions of unclear or unique function for which bacterial CPS 

would not be a good model. Thus, four of them map in the Glnase-like 

subdomain and another four in the C-terminal domain (Fig. 1A). In any case, E. 

coli CPS would not have been an optimal model for nine of these amino acid 

substitutions, since only one affected residue is strictly conserved in all CPSs 

(Table 1). 

 

As expected, the polymorphisms p.Thr344Ala (c.1030A>G) and p.Gly1376Ser 

(c.4126G>A), mapping respectively in the Glnase-like and the NAG-binding 

domains (Fig. 1A), caused no negative effects on enzyme production (Fig. 4A),  
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activity (Fig. 4C), kinetic parameters for each substrate or for NAG (Table 3), 

or on thermal stability (Fig. 4D). In contrast, two clinical mutations affecting 

respectively these same regions, p.Leu390Arg (c.1169T>G) and p.Leu1381Ser 

Figure 4. Production and properties of 

the enzyme forms with the amino acid 

substitutions studied here. A:  SDS-

PAGE (8% polyacrylamide, 

Coomassie staining) of purified human 

recombinant CPS1, either wild-type 

(WT) or carrying the indicated 

mutations. Polymorphisms are shown 

in italic script and underlined. St, 

protein markers with masses indicated 

on the side. B: Western blot of cell 

extracts (20 g protein per well) of 

Sf9 cells infected with baculoviruses 

encoding either wild-type human CPS1 

or its p.Leu390Arg or p.Leu1381Ser 

mutants. A polyclonal rabbit antiserum 

against rat liver CPS1 was used for 

immunostaining. C: Enzyme activity 

(standard assay conditions) of the 

purified wild-type or mutant human 

CPS1 forms. The bars for the wild-type 

enzyme, for the two polymorphisms 

and for the forms carrying clinical 

mutations are filled in white, 

checkerboard and black, respectively. 

Error bars give standard errors. D: 

Thermal stability of wild-type 

recombinant CPS1, and of the forms 

carrying either the polymorphisms (in 

italic and underlined), or the indicated 

clinical mutations. The enzyme, at 0.5-

1 mg/ml in a solution of 50 mM glycyl-

glycine pH 7.4, 20 mM KCl an 20% 

glycerol, was heated 15 min at the 

indicated temperature, then rapidly 

cooled to 0ºC, and its activity 

determined immediately at 37ºC. The 

horizontal dashed line marks 50% 

inactivation, whereas the vertical 

dashed lines cross the X-axis at the 

temperature at which 50% inactivation 

occurs for each enzyme form. 
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(c.4142T>C) (Fig. 1A), were clearly disease-causing, since they induced strong 

CPS1 instability as revealed by western blotting of insect cell extracts that 

showed (Fig. 4B) proteolytic digestion bands instead of the clear-cut CPS1 

band observed with the wild-type enzyme. Indeed, these two mutations, which 

replace hydrophobic residues (residues of hydrophobic nature are found at these 

positions in all known CPS sequences, Table 1) by polar residues of larger 

(p.Leu390Arg) or smaller (p.Leu1381Ser) size, were predicted by the MutPred 

server to be associated with loss of stability (Table 1). The other six mutations 

studied (Table 1) were sufficiently stable to allow purification (Fig. 4A). The 

p.Ala438Pro (c.1313G>C) and p.Thr544Met (c.1631C>T) mutations, which 

affect the bicarbonate-phosphorylation domain, and the p.Thr1443Ala 

(c.4327A>G)  mutation, which affects the C-terminal domain, greatly decreased 

enzyme activity, to undetectable or nearly undetectable values (Fig. 4C), clearly 

indicating that they are disease-causing. Although having no detectable activity 

in the assay for the complete reaction (detection limit, 1% of the activity of 

wild-type rhCPS1), the p.Ala438Pro mutant catalyzed the partial reaction of 

ATP synthesis from ADP and CP (not shown) that is the reversal of the final 

step of the CPS1 reaction (a three-step reaction: 1- bicarbonate 

phosphorylation; 2- carbamate production from carboxyphosphate and 

ammonia; and 3- carbamate phosphorylation) but, as expected from the domain 

that is affected by the mutation, it failed to catalyze the bicarbonate-dependent 

ATPase partial reaction that reflects the bicarbonate phosphorylation step 

[Metzenberg et al., 1958; Rubio et al. 1981].  

 

The large decrease in the activity of the p.Thr544Met mutant was shown to be 

due (Table 3 and Fig. 2) to the combination of a 60-fold increase in the 

apparent Km for bicarbonate, a 20-fold increase in the Ka for NAG and a 4-

fold respective decrease and increase in the apparent Vmax and Km for ammonia. 

Except the increase in the Ka
NAG, these kinetic aberrations stem from the fact 

that this mutation affects a domain that catalyzes the initial two steps of the 

reaction, involving as substrates ATP, bicarbonate (step 1) and ammonia (step 

2) [Rubio 1993; Thoden et al., 1997]. The increased Ka
NAG cannot be attributed 

to direct changes in the NAG site, which sits on another enzyme domain 

[Rodríguez-Aparicio et al. 1989], but to the hampering of the cross-talk 

between the bicarbonate phosphorylation domain and the NAG binding domain 

that results in a large increase in affinity for NAG when both ATP and 

bicarbonate are bound [Alonso and Rubio, 1983]. 

 

The decrease in enzyme activity caused by the p.Thr1443Ala mutation, (Fig. 

4C) is accounted by a nearly 200-fold increase in the Ka
NAG and by a nearly 10-

fold decrease in the apparent Vmax (Table 3 and Fig. 2A). The localization of the 

NAG-binding domain justifies these effects if the mutation hampers NAG 
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binding and the transmission of the regulatory signal from the NAG site to both 

phosphorylation domains. Indeed, the two partial reactions of the enzyme, 

which reflect the two phosphorylation steps, were undetectable in this mutant 

(results not shown). 

 

The other three mutations examined here, p.Asn355Asp (c.1063A>G) and 

p.Tyr389Cys (c.1166A>G) which affect the Glnase-like domain and coexist in 

patient 1, and p.Ala1378Thr (c.4132G>A), which maps on the NAG-binding 

domain, appear to have too little an effect on enzyme activity or on kinetic 

parameters to justify the neonatal deficiency (Fig. 4C, Table 3).  The largest 

changes observed with these mutations were a 4-fold decrease in Vmax and a 

nearly 3-fold increase in the Ka for NAG, occuring with the p.Asn355Asp 

mutation (Table 3). However, thermal inactivation assays (Fig. 4D) revealed 

that these mutations substantially decreased the thermal stability of rhCPS1, 

particularly p.Asn355Asp, which lowered 11ºC the mid-inactivation 

temperature. In contrast, the temperature dependence of enzyme inactivation 

was identical for the two polymorphisms and for the wild-type enzyme (Fig. 

4D). The combined effects of the decrease in Vmax and the modest increase in 

Ka
NAG with the p.Asn355Asp mutant, together with the decreased enzyme 

stability, may result in enzyme deficiency. This may also be the case with the 

p.Tyr389Cys mutation, which decreased 40% enzyme activity (Fig. 4C) and 

caused a substantial, although less drastic effect on thermal inactivation. 

Finally, with p.Ala1378Thr, the deficiency could be due to the combination of 

the decreased stability and a twofold increase in apparent Km for ATP (Table 3). 

The fact that these last two mutations are, respectively, only one and three 

positions away from Leu390 and Leu1381, two residues for which their 

p.Leu390Arg and p.Leu1381Ser mutations were found to cause dramatic loss of 

enzyme stability (see above), lends further support to the view that these 

mutations may hamper sufficiently enzyme stability "in vivo" to cause enzyme 

deficiency. 

 

 

2.1.4.6 Influence of the substrates and of NAG on the resistance of human 

CPS1 to proteolytic or thermal inactivation 

 

From all of the above, enzyme destabilization appears a crucial element in the 

causation of CPS1D with five of the eight missense mutations studied here 

(p.Asn355Asp, p.Tyr389Cys, p.Leu390Arg, p.Ala1378Thr and p.Leu1381Ser). 

Therefore, enzyme stabilization by ligands acting as chemical chaperones could 

be a useful future treatment of CPS1D. Similarly to the observation that 

chaperoning of phenylalanine hydroxylase by its essential cofactor 

tetrahydrobiopterin is clinically useful in phenylketonuria [Erlandsen et al., 
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2004], the CPS1 substrates and particularly the CPS1 allosteric activator NAG 

and its pharmacological deacylase-resistant analog and orphan drug NCG could 

afford some protection of CPS1. We tested the effects of these ligands on the 

sensitivity of rhCPS1 to proteolytic inactivation by elastase. These experiments 

are based on previous data on the sensitivity of the rodent liver enzyme to 

elastase and on the effects on that sensitivity of enzyme ligands [Evans & 

Balon, 1988; Guadalajara et al., 1983; Marshall & Fahien, 1988; Powers-Lee & 

Corina, 1986]. Figs. 5 A and B reveal a strong influence of NAG and NCG on 

elastase inactivation of rhCPS1. Whereas these two compounds alone 

accelerated rhCPS1 inactivation in this system (Fig. 5A), when they were added 

together with MgATP, the enzyme became nearly entirely protected against 

even very large elastase concentrations (Fig. 5B). MgATP alone did not cause 

such large protection. Similarly, the combination of MgATP and NAG or 

MgATP and NCG was highly effective in protecting the enzyme from thermal 

inactivation (Fig. 5C). In this case MgATP also substantially protected the 

enzyme, although the highest degree of protection was attained with MgATP 

together with NAG or NCG. We also showed in these experiments that glycerol 

at a concentration (20%) at which it causes maximal NAG-independent CPS1 

activation (Fig. 3D) also protected substantially the enzyme from thermal 

inactivation (Fig. 5C). Interestingly, the protecting effects of NAG/MgATP, 

NCG/MgATP, MgATP and glycerol were also patent when a mutant 

(p.Ala1378Thr) exhibiting reduced thermal stability was studied (Fig. 5D). 

 

In the matrix of liver mitochondria, where CPS1 is localized, MgATP is likely 

to be abundant under most circumstances, but NAG may not, particularly under 

conditions of protein restriction as when a urea cycle deficiency is suspected. 

Therefore, under these circumstances the administration of NCG might help 

protect the enzyme from thermal inactivation or from proteolytic degradation. 

Therefore, studies on the effects of NCG on CPS1 stability “in vivo” are 

warranted. Indeed, a genetically demonstrated CPS1D patient has been 

documented to respond to NCG administration [Williams et al., 2010].   

 

 

2.1.4.7 Final comments 

 

rhCPS1 is shown here to mirror the natural human enzyme or the rat liver 

enzyme in all aspects analyzed, including substrate and activator kinetics, 

oligomeric form, domain composition, sensitivity to proteases and protection  
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Figure 5. Effects of ligands on the inactivation of rhCPS1 by elastase or by 

heating. When indicated, NAG, NCG and ATP were added, at 10 mM 

concentrations. When ATP was added, MgSO4 was also added at a concentration 

of 20 mM. Incubations were terminated by dilution in the continuous enzyme 

activity assay, monitoring ADP production at 37ºC. Results are given as 

percentages of the activity not having undergone the corresponding proteolytic or 

heating treatment. A and B: Digestions of rhCPS1 with respective elastase 

concentrations of 10 g/ml or 50 g/ml. Other conditions were as in Fig. 1D.  C 

and D: Thermal inactivation of the wild-type or the p.Ala1378Thr mutant forms of 

rhCPS1 (both used at 0.1 mg/ml concentrations) after 15-min incubation at the 

indicated temperatures in a solution of 50 mM glycyl-glycine pH 7.4, 20 mM KCl, 

1 mM DTT with the indicated ligands or with 20% glycerol. 
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thereof  by ligands, and ability of glycerol to replace NAG as a CPS1 activator. 

Our confirmation that the domain organization is that reported for other CPSs 

supports the present structural rationalizations of the effects of missense 

changes in CPS1 [Häberle et al., 2011; Martínez et al., 2010]. Since 

recombinant production of hCPS1 permits the introduction of amino acid 

changes at will, the way is now open for testing the functional impact of 

missense mutations found in CPS1D. It would be desirable to compare the 

present system and even to complement it with the one using 

Schyzosaccharomyces pombe as the expression host of hCPS1 [Ahuja and 

Powers-Lee, 2008]. Although data on this system are very limited, the 

simultaneous use of both expression systems may prove desirable for 

maximizing the number of clinical mutants that can be tested. After all, both 

expression systems are heterologous with respect to hCPS1 and therefore the 

possibility cannot be excluded that some mutant forms can be expressed in one 

system but not in the other. 

 

With the present system, clear-cut correlations between given missense 

mutations and specific molecular phenotypes can be established, hopefully 

shedding light on the degree of severity of different mutations. Indeed, the lack 

of detectable effects of the two polymorphisms studied here, and the severity of 

the effects demonstrated for six of the eight mutations analyzed, clearly indicate 

that the experimental studies with rhCPS1 mutants expressed “in vitro” identify 

disease-causing mutations. Even with the two mutations that caused the less 

drastic effects, they triggered some negative changes on enzyme activity and/or 

stability that were not observed with the two polymorphisms. In any case, the 

extension of the present pilot study to larger series of clinical CPS1D mutations 

should permit deeper ascertaining of the sensitivity of our approach to identify 

disease-causing mutations and for estimating their actual severity. 

 

Our results shed also light on the role of the Glnase-like domain of CPS1 and 

on the reasons for its preservation despite the fact that CPS1 does not use 

glutamine [Rubio et al., 1981]. The observations that the amino acid 

substitutions p.Asn355Asp and p.Tyr398Cys, mapping in the Glnase-like 

domain of CPS1 (Fig. 1A), do not inactivate CPS1 or cause dramatic changes in 

Km values for the substrates (Table 3), agrees with the general belief that this 

domain is not directly involved in the enzyme reaction. However, these 

mutations, as well as another two mutations (p.S123F and p.H337R) introduced 

previously in the N-terminal region of rat CPS1 [Pekkala et al., 2010] resulted 

in 40-75% reduction in enzyme activity (see for the present mutations Fig. 4C). 

These results also agree with a study [Ahuja and Powers-Lee, 2008] in which 

hCPS1 lacking the entire N-terminal region exhibited a 700-fold reduction in 

enzyme activity, although the very drastic change of deleting 25% of the 
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protein molecule may render difficult the interpretation of this extreme degree 

of inactivation. In any case, the changes revealed by our present studies and by 

earlier studies with single amino acid substitutions affecting this CPS1 domain 

clearly support an activating role of this N-terminal region on CP synthesis, 

which is catalyzed by the C-terminal moiety of the enzyme [Cervera et al., 

1993; Rubio, 1993]. Such activation appears reminiscent of the one caused by 

the small subunit of E. coli CPS on the catalysis by the large subunit of the 

reaction from ammonia  [Meister, 1989]. The Glnase-like domain also stabilizes 

the enzyme, since the p.Leu390Arg, p.Asn355Asp and p.Tyr389Cys mutations 

decrease CPS1 stability. Again this role is reminiscent of the strong 

stabilization triggered in E. coli CPS upon association of the small and large 

subunits [Cervera et al., 1993]. The activation of CP synthesis, and the 

enhanced enzyme stability, may be sufficiently important advantages to warrant 

retention of the N-terminal region in CPS1. 

 

Our present findings also shed light on the roles of the C-terminal domain. We 

localized "in silico" the NAG site in the crystal structure of this domain 

[Pekkala et al., 2009], providing as experimental support for this localization 

the results of photoaffinity labelling with N-chloroacetyl-L-glutamate and of 

site-directed mutagenesis of rat liver CPS1 [Pekkala et al., 2009]. We now 

provide even more direct proof for such localization with hCPS1, the enzyme 

for which the crystal structure of the C-terminal domain was determined. Thus, 

among all the mutations studied here, the one mapping closest to the proposed 

NAG site, p.Thr1443Ala, produces by far the most drastic decrease in the 

apparent affinity for NAG (two orders of magnitude decrease) (Table 3). In our 

proposed NAG binding site [Pekkala et al., 2009], Thr1443 is close to the 

bound activator, adjacent to a residue of the NAG site and to one of the three lid 

residues that cover the bound NAG molecule (Supp. Fig. S2). The importance 

of Thr1443 for effector regulation of CPS1 is highlighted also by the 

observation that phosphorylation of the equivalent residue in hamster CPSII (a 

component of CAD, the trifunctional enzyme involved in pyrimidine 

biosynthesis), Ser1406 [Simmer et al., 1990], hampers CPSII allosteric 

regulation by its negative effector UTP [Carrey et al., 1985]. As NAG in CPS1, 

UTP binds to the C-terminal domain of CPSII [Liu et al. 1994].  

 

The present data also evidence that the C-terminal domain is an important 

determinant for CPS1 stability, since two mutations mapping in this domain, 

p.Ala1378Thr and p.Leu1381Ser, which affect the inner face of a helix from the 

outer layer of the αβα sandwich conforming this domain (Supp. Fig. S2), 

substantially or very drastically destabilized the enzyme. This important impact 

on enzyme stability clearly supports a high degree of integration of the C-

terminal domain in the CPS1 architecture. Thus, despite the multidomain 
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character of CPS1, the architecture of this enzyme would appear to be highly 

cooperative, explaining the influence of NAG binding on events that occur far 

away from the C-terminal domain, such as the activation of both 

phosphorylation domains [Rubio et al., 1983a].  

 

Supplementary Figure S2. Location in the structure of the C-terminal domain of the 

amino acids whose substitutions are studied here. The protein is in ribbon 

representation. Bound NAG [Pekkala et al., 2009] and the amino acids that are 

replaced are represented in spheres and are labeled whereas the NAG site lid residues 

W1410, F1445 and K1444 are shown in sticks representation. Green and red labeling 

correspond, respectively, to the polymorphism and to clinical mutations. NAG, and the 

amino acids forming the NAG site lid, are labeled in black. In NAG and in the 

highlighted residues, C, N and O atoms are colored yellow, blue and red, respectively. 

This figure was prepared with PyMOL (http://www.pymol.org). 
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2.2.1 Abstract: Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is 

an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In 

the first large repertory of mutations found in CPS1D, a small CPS1 domain of 

unknown function (called the UFSD) was found to host missense changes with 

high frequency, despite the fact that this domain does not host substrate-binding 

or catalytic machinery. We investigate here by in vitro expression studies using 

baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, 

as well as the disease-causing roles and pathogenic mechanisms of the 

mutations affecting this domain. All but three of the 18 missense changes found 

thus far mapping in this domain in CPS1D patients drastically decreased the 

yield of pure CPS1, mainly because of decreased enzyme solubility, strongly 

suggesting misfolding as a major determinant of the mutations negative effects. 

In addition, the majority of the mutations also decreased from modestly to very 

drastically the specific activity of the fraction of the enzyme that remained 

soluble and that could be purified, apparently because they decreased Vmax. 

Substantial although not dramatic increases in Km values for the substrates or 

for N-acetyl-L-glutamate were observed for only five mutations. Similarly, 

important thermal stability decreases were observed for three mutations. The 

results indicate a disease-causing role for all the mutations, due in most cases to 

the combined effects of the low enzyme level and the decreased activity. Our 

data strongly support the value of the present expression system for ascertaining 

the disease-causing potential of CPS1 mutations, provided that the CPS1 yield 

is monitored. The observed effects of the mutations have been rationalized on 

the basis of an existing structural model of CPS1. This model shows that the 

UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, 

plays a key integrating role for creating the CPS1 multidomain architecture 

leading us to propose here a denomination of "Integrating Domain" for this 

CPS1 region. The majority of these 18 mutations distort the interaction of this 

domain with other CPS1 domains, in many cases by causing improper folding 

of structural elements of the Integrating Domain that play key roles in these 

interactions.  

 

Key words: urea cycle diseases; CPS1 deficiency; hyperammonemia; inborn 

errors; CPS 1 structure; site-directed mutagenesis 
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2.2.2 Introduction 
 

Primary CPS1 deficiency (CPS1D; MIM #237300), a recessively inherited urea 

cycle disease leading to frequently fatal hyperammonemia [1,2], is due to 

mutations in the CPS1 gene. This gene, located in 2q35 [3] and being composed 

of 38 exons and 37 introns [4-6], with 4,500 coding nucleotides, encodes a 

1500-residue proenzyme [7] that is synthesized in hepatocytes and enterocytes 

[8,9], and which, upon internalization to the mitochondrial matrix, yields after 

cleavage of its N-terminal 38 amino acids, the mature 1,462-amino acid 

multidomain (Fig. 1A) CPS1 protein [10-12] [E.C. 6.3.4.16]. 

 

CPS1 catalyzes the first step of the urea cycle (2ATP + NH3 + HCO3
- 2ADP 

+ HPO4
2- + NH2CO2PO3

2-) [13], converting ammonia to carbamoyl phosphate 

(CP), a compound that is utilized by ornithine transcarbamylase (OTC) to make 

citrulline in the second reaction of the urea cycle. The three-step CPS1 reaction 

(Fig. 1B) includes two analogous ATP-dependent phosphorylations, of 

bicarbonate and carbamate, and an intervening step of carbamate synthesis from 

carboxyphosphate and ammonia [13]. To be active, CPS1 requires the presence 

of an essential allosteric activator, N-acetyl-L-glutamate (NAG) [10,14,15], 

made by NAG synthase from glutamate and acetyl-coenzyme A [16]. The rate 

of NAG synthesis heavily depends on glutamate concentration [17], and 

therefore NAG represents a switch for CPS1 activity, which is turned off when 

glutamate levels decrease, thus preventing excessive nitrogen draining by the 

urea cycle from an already low amino acid pool [18,19]. NAG activation is a 

unique property of CPS1 (and to a lesser extent of the piscine CPS1 homologue 

CPSIII) [20], not being shared by other CPSs, all of which are active in the 

absence of effectors and are insensitive to NAG [13,21,22]. NAG activation 

involves a functionally crucial cross-talk between NAG and phosphorylation 

sites. Thus, NAG vastly increases the apparent affinity of CPS1 for ATP and 

for its ionic activators K+ and Mg2+ [15] and, conversely, ATP, K+ and Mg2+ 

greatly increase CPS1 affinity for NAG [23]. 

 

The complexities of the CPS1 reaction and regulation are backed by a 

sophisticated multidomain protein machinery [13], that is still imperfectly 

characterized, since the crystal structure of CPS1 has not been determined 

(except for its 15 kDa C-terminal domain, representing only 10% of the 

entire molecule) [24,25]. Nevertheless, a number of approaches including the 

use of limited proteolysis [26] support a domain composition for CPS1 that 

mirrors that of Escherichia coli CPS, the only CPS for which the structure is 

known [27], notwithstanding the fact that these two enzymes have very 

important differences [13,21]. These differences include the chain composition 

(a single chain in CPS1; two subunits in E. coli CPS), the already indicated  
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Figure 1. Domain composition, function and architecture of CPS1. (A) Schematic 

linear representation in the CPS1 polypeptide of the different domains. The grey-

shaded background bars schematize the 40-kDa N-terminal and the 120-kDa C-

terminal moieties of the enzyme that correspond to the small and large subunits of 

E. coli CPS, respectively. The colored bars represent the different (cont'd next page) 
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Fig. 1, cont'd: CPS1 domains as defined from sequence alignment with E. coli CPS. 

Their approximate masses, in kDa, and the domain start/end residue numbers are 

given, respectively, above and below each domain. The N-terminal mitochondrial 

targeting peptide that is removed upon internalization in the organelle is not 

represented. The domains are defined by their function (when known; ?, function 

unknown), showing below each of them the corresponding acronym (ISD, GSD, BPSD, 

UFSD, CPSD and ASD) as defined in [2]. (B) Reactional steps of the CPS1 reaction, 

shown under the domain catalyzing it, colored as the domain. The thick empty 

horizontal black arrow denotes the migration of carbamate from the bicarbonate 

phosphorylation site to the carbamate phosphorylation site. (C) Stereo view of 

structural model of C trace of human CPS1 [42]. Each domain is colored differently 

and labeled in the same color. In the UFSD, the spheres mark the residues (numbered) 

hosting extremely drastic (red) or less drastic (blue) mutations found in CPS1D 

patients. Both ATP molecules and essential K+ ions are placed in their sites by 

superimposition of the E. coli CPS structure (Protein Databank file 1BXR; [48]). (D) 

Relations of the UFSD with other domains. Two views of the domain (cartoon 

representation, in yellow) are shown, highlighting the residues hosting the mutations 

(red and blue spheres as above) illustrating that the mutations cluster at the regions of 

contact with the other domains (labeled). Only the parts of these other domains that 

contact the UFSD are shown, in surface representation, colored as in (A). In the right 

panel the ISD is shown as transparent surface to allow visualization of Ala949, which 

is clamped between the ISD, the GSD and the BPSD.  

 

differences in the requirement for NAG, and the fact that CPS1 uses ammonia 

with high efficiency and cannot utilize glutamine as an ammonia source, 

whereas bacterial CPS uses ammonia poorly but utilizes glutamine as an 

internal ammonia source. The small subunit of the bacterial enzyme binds and 

cleaves the glutamine, channeling the resulting ammonia to the large subunit, 

where the entire carbamoyl phosphate synthesis reaction from ammonia takes 

place [21]. 

 

As already mentioned, limited proteolysis and other studies support the 

similarity in domain composition and function of bacterial CPS and CPS1 (Fig. 

1A). These studies evidenced [13,26,28] that CPS1 is composed of N- and C-

terminal moieties of, respectively, 40 and 120 kDa, that correspond to the 

small and large subunits of E. coli CPS [12]. Since CPS1 uses no glutamine 

[10], no functions for the N-terminal 40-kDa moiety are known other than 

possibly some enzyme stabilization and activation [26,29]. In contrast, the 120 

kDa moiety is known to host the catalytic and NAG-regulatory machinery 

[13,21], being composed of two 60-kDa halves, each one of them consisting of 

an N-terminal 45-kDa phosphorylation domain followed by a 15 kDa domain 
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[13]. Both phosphorylation domains are homologous [12]. The one in the N-

half phosphorylates bicarbonate and the other in the C-half phosphorylates 

carbamate (Fig. 1B) [30,31]. The C-terminal 15-kDa domain (residues 1354-

1500) of the C-half (the C-terminal domain of the enzyme) binds NAG and is 

crucial for activation, having been called the allosteric domain (ASD) 

[25,26,32], not hosting substrate sites or catalytic machinery. The other 15 

kDa domain (precise mass, 17.7 kDa; residues 822-973) connects both 

phosphorylation domains and its function is unclear since it has no substrate 

sites or catalytic components, having been called unknown function subdomain 

(UFSD) [26]. Interestingly, the UFSD has been found to host missense 

mutations in CPS1D patients (Fig. 1C,D) with rather high frequency [2], 

suggesting an important and until now unclear role of this domain.  

 

CPS1D has been associated with a relatively large number of different, 

generally "private" mutations, which occur in single families with very little 

recurrence [2]. Many of the >130 missense mutations reported in CPS1D 

remain to be proven responsible for the deficiency. The fact that they appear to 

be distributed non-homogeneously among the different gene exons even after 

correcting for the presence of CpG islands, suggests that some enzyme regions 

have a more important role on enzyme stability, folding or functionality than 

other regions, and that, therefore, mutations falling on these more important 

regions have higher repercussion than those falling in less critical regions of the 

protein. The UFSD domain, particularly its C-terminal half, may be such an 

important region since the relative occurrence of missense mutations 

(normalized per 100 nucleotides) in exons 22 and 23, which encode most of the 

C-terminal half of the UFSD and which have no CpG islands, approximately 

doubles the relative frequency of these mutations for the entire coding sequence 

of the enzyme (p<0.01; 2 test) [2]. 

 

We exploit here our recent ability to produce pure mature human CPS1, either 

wild-type or with the desired mutations, in a baculovirus/insect cell system 

[26], to examine the disease-causing potential of all known UFSD missense 

mutations (n=18) found in CPS1D patients [2,4,33-37] and to clarify the role 

and importance of the UFSD. When expression was possible, we studied the 

properties of the purified mutant enzyme forms, comparing them with wild-type 

human CPS1. Our findings support the disease-causing role of the mutations 

reported to affect the UFSD, revealing a key role of the UFSD for proper 

enzyme folding and for the regulatory cross-talk between NAG and 

phosphorylation sites. 
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2.2.3 Materials and Methods  
 

2.2.3.1 Patients and CPS1 Mutations 

 

Table 1 lists 18 amino acid substitutions found in patients with CPS1D, which 

are localized in the UFSD, giving some detail on the type of the clinical 

presentation in the patients carrying these mutations. Seventeen of the 

mutations were reported already [2,4,33-37], whereas one (mutation 13) is a 

novel change identified by one of us (J.H.) in a late onset CPS1D patient. We 

also report a patient with a neonatal presentation carrying an already reported 

mutation (p.Asp914His), a mutation for which there was no clinical information 

on the previously reported patient. In contrast, the new patient was known to 

have a neonatal presentation, indicating that the mutation was probably severe. 

The missense mutations in these two new patients were initially identified by 

mRNA studies in phytohemagglutinin-stimulated lymphocytes and then were 

confirmed by studies on genomic DNA as previously reported [37]. Samples 

were obtained with full informed consent of those entitled to give it, to perform 

molecular genetic diagnostics for clinical purposes. The PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/) [38] and MutPred 

(http://mutpred.mutdb.org/) servers [39] were used to assess in silico the 

disease-causing potential of the different mutations. Amino-acid conservation 

was determined by ClustalW sequence alignment of either CPS1, CPSIII or 

other CPSs from 14, 6 and 24 species, respectively.  

 

 

2.2.3.2 Production of CPS1 carrying the desired mutation 

 

The indicated mutations were introduced into pFastBac-CPS1 [26] using the 

overlapping extension method (Quickchange kit from Stratagene) and the 

forward and reverse primers given in Supp. Table S1. The correctness of the 

constructs, the presence of the desired mutation, and the absence of unwanted 

mutations were corroborated by sequencing. 

  

Human mature liver CPS1, either wild-type or carrying the desired mutation, 

with the N-terminal mitochondrial targeting sequence replaced by the 28-

residue N-terminal His6-tag, MSYYHHHHHHDYDIPTTENLYFQGAMDP, 

was expressed in a baculovirus/insect cell system and purified as previously 

described [26]. The same purification procedure (cell centrifugation, cell lysis, 

centrifugal clarification of the extract, Ni-affinity chromatography and 

centrifugal ultrafiltrative concentration [26]) was used for wild-type CPS1 and 

for the mutant enzyme forms. Protein in the final enzyme preparation was 

determined according to Bradford [40]. The CPS1 yield was determined from 
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Table S1. Synthetic oligonucleotides used for site-directed mutagenesis 

Mutation Direction Sequence 5'-3'
a
 

 
p.L843S Forward CTTAGAAAAGAGTCGTCTGAACC 

p.L843S Reverse GGTTCAGACGACTCTTTTCTAAG  

p.R850C Forward CCAAGCAGCACGTGTATCTATGCCATTG 

p.R850C Reverse CAATGGCATAGATACACGTGCTGCTTGG 

p.R850H Forward GAACCAAGCAGCACGCATATCTATGCCATTG 

p.R850H Reverse CAATGGCATAGATATGCGTGCTGCTTGGTTC 

p.T871P Forward GATTGAGAAGCTCCCATACATTG 

p.T871P Reverse CAATGTATGGGAGCTTCTCAATC 

p.K875E Forward GCTCACATACATTGACGAGTGGTTTTTG 

p.K875E Reverse CAAAAACCACTCGTCAATGTATGTGAGC 

p.G911E Forward CAAAGGAGATTGAGTTCTC 

p.G911E Reverse GAGAACTCAATCTCCTTTG 

p.G911V Forward CAAAGGAGATTGTGTTCTC 

p.G911V Reverse GAGAACACAATCTCCTTTG 

p.S913L Forward GATTGGGTTCTTAGATAA 

p.S913L Reverse TTATCTAAGAACCCAATC 

p.D914H Forward GGGTTCTCACATAAGCAGATTTC 

p.D914H Reverse GAAATCTGCTTATGTGAGAACCC  

p.D914G Forward GGGTTCTCAGGTAAGCAGATTTC 

p.D914G Reverse GAAATCTGCTTACCTGAGAACCC 

p.S918P Forward GATAAGCAGATTCCAAAATGCC 

p.S918P Reverse GGCATTTTGGAATCTGCTTATC 

p.R932T Forward CAGACAAGGGAGCTGACGTTAAAG 

p.R932T Reverse CTTTAACGTCAGCTCCCTTGTCTG 

p.I937N Forward GTTAAAGAAAAACAACCACCC 

p.I937N Reverse GGGTGGTTGTTTTTCTTTAAC 

p.A949T Forward GATACACTGGCTACAGAATAC 

p.A949T Reverse GTATTCTGTAGCCAGTGTATC 

p.L958P Forward AAACTATCCCTATGTTACCTAC 

p.L958P Reverse GTAGGTAACATAGGGATAGTTT 

p.Y959C Forward CAAACTATCTCTGTGTTACCTAC 

p.Y959C Reverse GTAGGTAACACAGAGATAGTTTG 

p.Y962C Forward CTATGTTACCTGCAATGGTC 

p.Y962C Reverse GACCATTGCAGGTAACATAG 

p.G964D Forward GTTACCTACAATGATCAGGAGC 

p.G964D Reverse GCTCCTGATCATTGTAGGTAAC 
aBold type indicates base substitutions to introduce the desired mutation 

 

the total amount of protein in the enzyme preparation and the fraction of the 

protein corresponding to pure CPS1. The latter fraction was determined 

densitometrically from the band of approximately 163 kDa observed in 

Coomassie-stained 8% polyacrylamide gels after SDS-PAGE [41]. For this 
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purpose, stained gel images were collected with a Fujifilm LAS-3000 Imager 

using transmitted white light, and the fraction of the protein migrating in the 

CPS1 band of 163 kDa was determined with the Multi Gauge quantification 

software (from Fuji Film).   

 

 

2.2.3.3 Enzyme activity assays 

 

CPS1 activity was assayed at 37ºC as carbamoyl phosphate production, 

monitored as citrulline by using OTC [26]. The standard assay mixture 

contained 50 mM glycyl-glycine pH 7.4, 70 mM KCl, 1 mM dithiothreitol, 20 

mM MgSO4, 5 mM ATP, 35 mM NH4Cl, 50 mM KHCO3, 10 mM NAG, 5 mM 

L-ornithine and 4 U/ml OTC. Specific activities refer to the pure enzyme 

(determined densitometrically, see section 2.2). When the concentration of a 

substrate was varied, other substrates were kept at the concentrations given 

above, with MgSO4 being in 20 mM excess over ATP. Data for variable 

substrate or NAG concentration were fitted to hyperbolae using the GraphPad 

Prism program (GraphPad Software, San Diego, CA). One enzyme unit makes 

1 mol citrulline per minute. Specific activities refer to pure CPS1, estimated 

by densitometry (see above). 

  

 

2.2.3.4 Other assays 

 

The thermal stability of CPS1 was monitored by incubating for 15 min at the 

specified temperature 0.5 mg protein/ml of the indicated CPS1 form (either 

wild-type or mutant), in a solution containing 50 mM glycyl-glycine pH 7.4, 2 

mM dithiothreitol, 10% glycerol, 0.5 M NaCl and 20 mM imidazole. At the end 

of the incubation the solution was rapidly cooled at 0°C and enzyme activity 

was determined immediately in the standard assay at 37ºC. 

 

Western blotting was carried out after SDS-PAGE (section 2.2) as reported [26] 

using immunoluminiscent detection (Super Signal West Pico Chemiluminiscent 

Substrate, Thermo Scientific). 

 

The previously reported [42] atomic structure model of CPS1 (based on the 

experimental crystal structure of E. coli CPS) was kindly provided by B. 

Barcelona (Instituto de Biomedicina de Valencia) and is used here for structural 

analysis of the mutations effects. Pymol (DeLano Scientific; 

http://www.pymol.org) was used for visual analysis, for structural 

superimposition and for depicting protein structures.  
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2.2.4 Results 
 

2.2.4.1 CPS1D mutations that affect the UFSD 

 

Table 1 summarizes the 17 already reported [2,4,33-37] mutations reported in 

CPS1D patients that affect the UFSD, plus one more mutation (#13) falling in 

this domain which is reported here in a late onset patient. Thirteen of these 

mutations were found in patients with neonatal or with very severe 

presentations and thus might be expected to have drastic negative effects on 

CPS1 level or activity. Only mutations 4, 13, 14, 16 and 17 were found 

exclusively in late onset patients or in patients without appropriate clinical 

information to judge about their severity. The fact that two mutations affecting 

the same residue were reported for Arg850, Gly911 and Asp914, three residues 

that are invariant among all CPSs, strongly supports a damaging role of the 

corresponding six mutations (p.Arg850Cys, p.Arg850His, p.Gly911Glu, 

p.Gly911Val, p.Asp914His, and p.Asp914Gly), in agreement with the 

predictions of the Polyphen-2 and MutPred servers (Table 1). In another patient 

with a neonatal presentation, the p.Leu843Ser and p.Lys875Glu mutations, both 

mapping in the UFSD, coexisted in the same allele [4]. Of these, the 

p.Leu843Ser mutation appears more likely to be disease-causing, because of the 

high conservation of Leu843 and because Polyphen-2 and MutPred give 

p.Leu843Ser a higher degree of probability and a higher score for having a 

damaging role than they do for p.Lys875Glu. The high residue conservation 

and the Polyphen-2 and MutPred server predictions also support the disease-

causing nature of the p.Arg932Thr and p.Leu958Pro mutations, found in 

another two patients with neonatal presentations, whereas a disease-causing role 

appears less certain for the p.Ser913Leu, p.Ser918Pro and p.Gly964Asp 

mutations, found in other neonatal patients, since the residues affected are less 

conserved and the Polyphen-2 and MutPred servers are non-unanimous in 

anticipating a disease-causing role (Table 1). The lack of unanimity in the 

predictions by both servers is possible, since they do not utilize the same traits 

[38,39] for assessing the disease-causing role of a given mutation. 

 

The mutations p.Thr871Pro, p.Ile937Asn, p.Ala949Thr, p.Tyr959Cys and 

p.Tyr962Cys, reported in CPS1D patients with late presentations or with 

unreported presentation but with patient survival (suggesting less severe 

phenotype), affect invariant or virtually invariant residues and give high 

probability scores for being damaging in the Polyphen-2 and MutPred servers. 

Since the p.Ala949Thr mutation coexists with a null allele (p.Tyr89*) in the 

patient [2], it cannot abolish enzyme activity since otherwise the patient would 

have had a neonatal presentation. In principle, the same can be said for the 

p.Ile937Asn mutation, given the fact that the other CPS1 allele found in the 
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same patient corresponds to a very severe splice site aberration that should lead 

to exon 27 skipping, with frameshift and truncation. Since in this patient the 

CPS1 allele hosting the p.Ile937Asn mutation also hosts a second missense 

change, p.Gly401Arg (Table 1), this second change cannot be expected to be 

highly deleterious either. In contrast, a drastic effect is likely for the 

p.Thr871Pro mutation since it coexists in the patient with the expectedly mild 

mutation (given the mildness of the substitution), p.Glu1194Asp [37].  

 

 

2.2.4.2 UFSD mutations negatively influence the yield of CPS1 

 

We previously used the baculovirus/insect cell system utilized here for 

producing twenty CPS1 forms carrying different missense changes identified in 

CPS1D patients and spread all over the CPS1 protein except the UFSD [26,43]. 

We also reported [25] the effects of another five non-CPS1D-associated but 

functionally important mutations affecting the C-terminal domain (ASD). 

Furthermore, in unpublished studies, we have monitored the effects of ten more 

mutations (nine in the ASD) of which five had been identified in patients. Only 

three among these 35 experimentally tested mutations compromised drastically 

recombinant CPS1 production ([26], and data not shown). The present UFSD 

mutations yield an entirely different picture (Fig. 2A). Recombinant production 

of CPS1 protein was virtually abolished by six mutations and it was decreased 

85-95% and ~75% by five and four mutations, respectively. Only for three of 

the eighteen mutations studied here (p.Arg850Cys, p.Arg850His and 

p.Ala949Thr) the yield of pure CPS1 was comparable to that of the wild-type 

enzyme. Interestingly, each one of the two mutations found in the same allele of 

one patient, p.Leu843Ser and p.Lys875Glu (Table 1), reduced the yield of 

CPS1 by nearly 90% (Fig. 2A), raising the possibility that their joint presence 

in the same protein molecule might reduce further CPS1 production. 

 

The low yields observed with most mutants appear to be due to poor CPS1 

polypeptide production and to gross misfolding. Thus, SDS-PAGE of the pellet 

(Fig. 2B, P) and the supernatant (Fig. 2B, S) obtained by centrifugation of the 

initial cell extract not only revealed for most mutants decreased CPS1 levels, 

but also showed that the CPS1 present tended to appear in the precipitate. 

Furthermore, a multiplicity of bands of lower molecular weight than complete 

CPS1, corresponding to CPS1 degradation products, were revealed by western 

blotting in the precipitates of these low-yield mutants (Fig. 2C). 

 

In summary, the majority of the mutations found in CPS1D patients that affect 

the UFSD appear to disturb CPS1 folding and to enhance CPS1 degradation. 

The drastic decrease in enzyme production should be disease-causing at least 
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Figure 2. Effects of UFSD 

domain mutations on CPS1 

production. WT, wild-type 

recombinant enzyme. 

Mutations are represented in 

single-letter code. 

Arrowheads signal the 

position of the CPS1 band. 

(A) Yield of pure CPS1 

protein (total protein × CPS1 

purity determined 

densitometrically from 

Coomassie-stained SDS) per 

liter of cell culture, relative to 

the mean yield of pure wild-

type CPS1 (2.7 mg/L cell 

culture). (B) Distribution of 

protein between the insoluble, 

P, and the soluble, S, 

fractions of the initial 

extracts of cells expressing 

the wild-type enzyme or the 

indicated mutants, analyzed 

by SDS-PAGE and 

Coomassie staining. The 

samples applied to each track 

correspond to identical 

volumes of original cell 

extract. (C) Western blotting 

and CPS1 immunostaining in 

the precipitates from the cell 

extracts for the indicated 

enzyme forms. (D, E) 

Coomassie-stained SDS-

PAGE of the preparations 

obtained after purification of 

the wild-type and the different 

mutant enzyme forms as 

indicated. St, protein 

markers, with masses, in kDa, 

indicated at the side.  

 

for the seven mutations that reduce enzyme production by >90% (p.Thr871Pro, 

p.Gly911Glu, p.Gly911Val, p.Asp914His, p.Asp914Gly, p.Ser918Pro and 

p.Gly964Asp; Fig. 2A). Indeed, six of these mutations were found in patients 



RESULTS. Chapter 2 

 

92 

 
 

with neonatal or very severe presentations, and the other mutation 

(p.Thr871Pro), although found in a late onset patient, coexisted with an 

expectedly mild second allele and is likely to have by itself a severe effect 

(Table 1). On the other hand, the two mutations found in late onset patients that 

were anticipated to be mild (see section 3.1), p.Ala949Thr and p.Ile937Asn, 

were associated with substantial or normal yield of CPS1 (Fig. 2A).  

 

 

2.2.4.3 Eight UFSD mutations strongly impair CPS1 activity 

 

Although with most mutations little soluble CPS1 was produced, we always 

carried out the complete CPS1 purification protocol, observing by SDS-PAGE 

of the final preparation, with all the mutants (Figs. 2D,E), a 163 kDa-band 

corresponding to soluble CPS1 (confirmed by western blotting, data not 

shown). However, the purity of CPS1 decreased with the yield, being <10% of 

the protein (densitometric estimation) for the mutants with the lowest yield 

(Figs. 2D,E). Despite the presence of the CPS1 band, CPS1 activity was very 

low in the final preparations of the mutants p.Thr871Pro, p.Gly911Glu, 

p.Gly911Val, p.Asp914His, p.Asp914Gly, p.Ser918Pro, p.Leu958Pro and 

p.Gly964Asp. The estimated specific activity of pure soluble CPS1 was ≤6% of 

wild-type for six of these mutations and ≤12% for the other two (Fig. 3A). 

Assuming that the mutation-induced misfolding causes similar decreases in the 

production of soluble CPS1 protein in insect cells and in the liver, the low 

yields (Fig. 2A), combined with the decreased activities (Fig. 3A), lead to an 

expectation of very low residual activities in the liver (<1% of normal for 

homozygosity) for any of these eight mutant forms. The low residual activity 

further supports the disease-causing nature of these mutations and agrees with 

their observation in neonatal or very severely affected patients (Table 1). Only 

the p.Thr871Pro mutation was observed in a late onset patient, but, as already 

indicated, the second allele in this patient was expectedly mild (p.Glu1194Asp). 

 

 

2.2.4.4 Activity and stability changes with another eight UFSD mutations 

 

Eight of the ten mutations not dealt with in section 3.3 generally were 

associated with less drastic but substantial decreases in specific activity, and/or 

with decreased thermal stability of the enzyme (Fig. 3). Among these 

mutations, p.Ile937Asn caused the largest specific activity decrease (~90% 

decrease) (Fig. 3A), which combined with the observed 75% reduction in yield 

(Fig. 2A), would result (making the already indicated assumption that the yield 

in insect cells grossly corresponds to the yield in the liver) in 3% residual 

activity for homozygosity, supporting disease-causation. Nevertheless, the role 
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of the other mutation found in the same allele (Table 1), p.Gly401Arg, remains 

to be determined, although this mutation maps in the CPS1 N-terminal region 

of unknown function (Fig. 1) which hosts few CPS1D mutations [2], and it is 

predicted by Polyphen-2 and MutPred as benign or as having little probability 

of being disease-causing (not shown). 

 

Figure 3. Enzyme 

activity (A) and 

thermal stability (B, C) 

of wild-type or mutant 

forms of CPS1. The 

activity per mg of pure 

CPS1 is expressed 

relative to the 

corresponding activity 

of the pure wild-type 

enzyme (2.3 U/mg). 

(B,C) Fraction (as 

percentage) of the 

activity remaining for 

the indicated enzyme 

form after 15-min 

heating either at 46ºC 

(B) or at the indicated 

temperatures (C). 
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In the other case (Table 1) in which the same allele carried two missense 

mutations, p.Leu843Ser and p.Lys875Glu, the first of these mutations 

decreased activity by 70% (Fig. 3A) and both mutations reduced ~90% the 

yield of CPS1, leading to the assumption of a liver activity of 3% of normal 

for a null second allele (the case in the patient carrying these mutations [2]). 

This estimate might be optimistic considering the already mentioned possibility 

that the joint presence of both mutations in the same CPS1 polypeptide chain 

could reduce even further proper folding and CPS1 production, and also 

because the p.Lys875Glu mutation substantially decreased CPS1 thermal 

stability (Fig. 3B). In summary, the data for this patient appear to account fully 

for its neonatal presentation. 

 

Decreased thermal stability appears a major determinant of the effects of the 

p.Ala949Thr and p.Tyr959Cys mutations (Figs. 3B,C), being the only important 

aberration observed for the first of these two mutations. Thus, p.Ala949Thr was 

not associated with decreased yield (Fig. 2A) or with a large specific activity 

decrease (Fig. 3A), but it lowered the half-inactivation temperature of the 

enzyme by 8ºC (Fig. 3C), bringing it down to nearly 40ºC, which is close to 

the physiological body temperature, leading to the expectation of an important 

reduction in enzyme half-life and thus of enzyme level in the tissue. 

Nevertheless, some residual activity should be expected, agreeing with the late 

onset presentation in the patient carrying this mutation (the other allele carried a 

null mutation, Table 1). A similar degree of reduction in thermal stability was 

also observed for the p.Tyr959Cys mutation (Fig. 3B,C). However, in this case 

the mutation also decreased importantly CPS1 yield (by 75%; Fig. 2A) and 

specific activity (by 70%; Fig. 3A), with the resultant final activity in the tissue 

possibly being decreased further by the accelerated thermal inactivation. The 

late onset presentation in this patient (Table 1) could be due to the residual 

activity from this mutation, together with that resulting from the mutation 

carried in the second CPS1 allele (p.Pro1462Arg), which is not inactivating 

(our own unpublished data). 

 

Although the p.Tyr962Cys mutation only reduced 50% the specific activity of 

the soluble enzyme (Fig. 3A) without substantially decreasing thermal stability 

(Fig. 3B), it decreased 75% CPS1 yield (Fig. 2A). The combination of these 

two detrimental effects might result in an activity in the tissue of ~6% of 

normal, provided that the second CPS1 allele found in the patient carrying this 

mutation (p.Ile632Arg; #17, Table 1), which affects the bicarbonate 

phosphorylation domain, is inactivating. This residual activity would explain 

that patient #17 is alive. 
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The patients with the p.Ser913Leu or p.Arg932Thr mutations had neonatal 

presentations (Table 1) that must reflect a cumulative effect of modest to drastic 

but not extreme changes in yield or specific activity of CPS1 caused by these 

mutations. Thus, the p.Ser913Leu mutation decreased CPS1 yield and specific 

activity, respectively, to 20% and 30% of normal, and the p.Arg932Thr 

mutation caused respective decreases to ~12% and 40% of normal (Figs. 2A 

and 3A). A residual liver activity of 3% of normal is conceivable for both 

mutations, if they coexist in the patients with null second CPS1 alleles. 

 

 

2.2.4.5 Km effects are the major changes associated with mutations 

affecting Arg850 

 

Changes in yield (Fig. 2A), specific activity (Fig. 3A) or thermal stability (Fig. 

3B) cannot account for the neonatal presentations observed in the two patients 

that carried mutations affecting Arg850, since for the p.Arg850His and 

p.Arg850Cys mutations thermal stability was essentially normal and the yields 

and specific activities were at least 50% and 25% of normal, respectively. 

However, since the specific activity assay used here utilizes saturating (for the 

wild-type enzyme) substrate concentrations, there might be room for Km or Ka 

effects that could have negative consequences on enzyme activity at the 

generally low substrate concentrations present in the tissue [44,45]. This is 

certainly the case for the p.Arg850Cys mutation, which exhibits 5-fold and 

3-fold increases in the Km values for ATP and bicarbonate, respectively, and, 

even more importantly, a 18-fold increase in the Ka value for NAG (Fig. 4A-

C,E,G). Similarly, in the case of the p.Arg850His mutation the Km for ATP and 

the Ka for NAG were increased 3-fold and 10-fold, respectively (Fig. 4A,B,F). 

Although these kinetic constant changes are not large enough to decrease 

importantly the activity observed in the standard assay, they can lead to drastic 

reductions in the CPS1 activity in vivo, since, for example, NAG may be far 

from saturating even for the wild-type enzyme [17-19,44,45], and thus, much 

less saturating for these mutant enzyme forms. 

 

Among the ten UFSD mutants in which CPS1 yield and activity permitted 

kinetic analysis (Figs. 4A-D), substantial Km or Ka changes were rarely 

observed. In addition to the already indicated changes in the two mutants of 

Arg850, the p.Ile937Asn mutation modestly increased the Ka value for NAG 

(Fig. 4A) and the Km for ammonia (Figs. 4D,H), and the p.Leu843Ser and 

p.Ser913Leu mutations increased the Ka for NAG (Fig. 4A). It is interesting 

that the Ka for NAG was increased in all cases that exhibited a kinetic change, 

suggesting a role of the UFSD in the cross-talk known to exist between the 

NAG site and the catalytic machinery of the enzyme [15,23]. In summary, 
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while Km or Ka changes do not appear to play a paramount role in decreasing 

enzyme  activity  with  most  UFSD  mutants,  they certainly do so with the two 

mutations affecting Arg850, for which they appear major determinants of the 

severe deficiency observed in the patients carrying these mutations. 

Figure 4.  Effects 

of UFSD 

mutations on the 

Km values of 

CPS1 for its three 

substrates and on 

the Ka value for 

NAG. (A-D) 

Histograms 

illustrating the 

changes in Km or 

Ka values for the 

indicated CPS1 

mutants and 

substrates or 

NAG, relative to 

the corresponding 

values for the 

wild-type enzyme. 

The curves on the 

right panels (E-H) 

illustrate the 

dependency of the 

reaction velocity 

on the 

concentration of 

each substrate or 

NAG for the wild-

type enzyme or 

for the indicated 

mutants. 
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2.2.4.6 UFSD mutations generally decrease Vmax of the enzyme 

 

With those mutations in which kinetic analysis was possible, it was observed 

that, except in the case of p.Lys875Glu, the mutations modestly decreased Vmax 

(Fig. 5A) in a proportion that was similar to the decrease in specific activity 

(Fig. 3A). This was to be expected if the mutations affect mainly kcat without 

producing very large Km effects, since the standard activity assay utilizes 

saturating (for the wild-type enzyme) concentrations of the substrates and of 

NAG. A plot of specific activity versus Vmax (Fig. 5B) could be reasonably 

adjusted to linear regression passing through zero. This suggests that the very 

low activity of the mutants that were very little expressed and that, therefore, 

were not amenable to kinetic analysis, could be due to a Vmax effect. Thus, the 

UFSD domain appears to influence the rate at which the enzyme catalyzes its 

complex, three-step reaction.   

  
  

Figure 5. Influence of UFSD mutations on Vmax values for CPS1 activity. (A) 

Changes in Vmax values for the different mutants, as a fraction of the value for wild-

type CPS1. (B) Plot of the specific activity for each mutant as a function of the Vmax 

for this same mutant. Relative values with respect to wild-type are given for both 

parameters. The regression line goes virtually through zero and gives a value of 

r2=0.842. 
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2.2.5 Discussion 
 

The present results validate the baculovirus/insect cell expression system [46] 

for monitoring the consequences of CPS1D mutations. Such system is already 

the standard for the same task in Gaucher's disease [47,48] and has been used 

with other diseases [49-52]. It associates the abundant expression and 

possibility of purification that characterizes E. coli expression, with a high 

compatibility with human proteins, which frequently cannot be expressed in 

bacteria [46]. In the case of Gaucher's disease, the large experience 

(exemplified in [47, 48]) attests the concordance of the results in this expression 

system with the clinical phenotype. This concordance was prospectively proven 

with two polymorphisms of methylenetetrahydrofolate reductase [50], since the 

one (p.Ala222Val) shown to have negative effects on the enzyme when using 

baculovirus/insect cells, was later on proven by epidemiological and genome-

wide association studies to be linked to increased plasma homocysteine levels 

[53]. Our experience with CPS1 also supports the faithfulness of this system in 

revealing the impact of CPS1 mutations. Thus, in our prior studies [26] two 

CPS1 polymorphisms believed to be trivial had no substantial effect on any 

CPS1 trait investigated (activity, stability, kinetic constants, gross estimation of 

yield), whereas two mutations affecting a catalytic domain and used as positive 

controls were strongly detrimental. Furthermore, the results with three CPS1D-

associated mutations affecting the glutaminase-like subdomain (GSD) (Fig. 1A) 

of unknown function and of three additional mutations affecting the allosteric 

domain (ASD, Fig. 1A) accounted for disease-causation because of impaired 

activity, stability or NAG activation. These results, which followed earlier pilot 

studies using baculovirus/insect cell-expressed rat CPS1 (a surrogate of human 

CPS1) [43], are extended now with those for 18 mutations affecting the UFSD. 

 

The present results confirm that the seventeen mutations reported earlier 

[2,4,33-37] and the one described here that affect the UFSD of CPS1 in patients 

with CPS1D are disease-causing. The observed effects of the mutations on the 

production, activity, thermal stability and kinetic constants of the recombinant 

enzyme match in most cases the severity of the clinical presentation. Our data 

illustrate in one case the fact that each one of two missense changes in the same 

allele (p.Leu843Ser and p.Lys875Glu) has a detrimental effect on the enzyme, 

raising the possibility that their combined presence in the same protein 

molecule could be even more detrimental.  

 

A clear conclusion of our studies is that, at least for this domain and with this 

eukaryotic expression system, the determination of the yield of CPS1 protein is 

a key element in judging the disease-causing role of each mutation. We clearly 

show that the abolition or the drastic decrease of CPS1 production is a crucial 
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mechanism of disease production by many missense mutations affecting the 

UFSD. Our findings point to decreased efficiency of proper folding as a key 

determinant of the poor production of the soluble protein. Although there are 

few in vitro expression studies for CPS1 [25,26,29,43], our prior investigations 

with 35 missense mutations mapping in other domains (with a predominance of 

mutations affecting the C-terminal ASD) do not highlight poor CPS1 

production as a key determining element of the effects of the mutations 

affecting these other protein regions, since only with 10% of the mutations 

was CPS1 production hampered or abolished. It therefore appears that a 

decrease in the efficiency of proper CPS1 folding is a characteristic and 

remarkable trait of CPS1D-associated mutations affecting the UFSD. Such trait 

may be the reason for the prominence of this domain in CPS1D, where 

missense mutations have been found in relatively high density [2]. 

 

The central position in the enzyme architecture and the intimate relations of the 

UFSD with other CPS1 domains [2,27,42] may account for the particular 

impact of the mutations affecting this domain on CPS1 folding. In the existing 

structural CPS1 models [2,42] based on the E. coli CPS structure [27], the 

UFSD makes very extensive contacts with both phosphorylation domains and, 

to a lesser extent, with the N-terminal moiety of the enzyme (the small subunit-

like region) (Figs. 1C,D). This L-shaped domain (Fig. S1A) which embraces 

between its two arms the C subdomain of the bicarbonate phosphorylation 

domain (Fig. S1D), is sandwiched between the small subunit-like N-terminal 

moiety and the carbamate phosphorylation domain, two domains that lie 

respectively on top and below the plane defined by this L (Fig. 1D, right panel). 

Therefore, mutation-triggered UFSD misfolding can be expected to result in 

distorted relations between these other protein domains. The CPS1D-associated 

mutations affecting this domain cluster in the regions of interaction of the 

UFSD with other domains rather than in the exposed regions (Fig. 1D) that are 

involved in intermolecular interactions [27]. Therefore, the distribution of the 

mutations does not support the possibility of an increase in the interactions 

between the UFSDs of different enzyme molecules as the cause for the 

decreased solubility observed with many of these mutants. This agrees with our 

observation with E. coli CPS that the UFSD is not involved in dimer formation 

[54], and with our finding that human CPS1 exists mainly as monomers 

[10,26].  

 

A detailed structural rationalization of the effects of the mutations studied here 

is included as Supplementary material. In summary, our results highlight a 

paramount integrating role of the UFSD for building the highly complex CPS1 

architecture, revealing the key organizing function of this domain, and 

exemplifying the importance of this core structural element despite its lack of 
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substrate binding and catalytic machinery. Interestingly, a recent in silico study 

already proposed for this domain a key structural role in CPS1 [55]. On the 

basis of such key function of this domain, which is conserved in all forms of 

CPS (including the archaeal types, in which the C-terminal moiety is split into 

two complementary regions encoded by different genes), we would propose to 

call it in the future the "Integrating Domain" of CPS1. Our data fully account 

for the important representation of this domain in the database of missense 

mutations found in CPS1D [2], revealing that the main effects of the mutations 

in this domain are to negatively affect global CPS1 folding and architecture. 

We also document for some mutations and propose for other mutations that 

they have effects of greater or lower magnitude on the Vmax of the enzyme. This 

effect could be due to gross defects on domain architecture, that, for example, 

could block the conduit of the activating allosteric NAG signal, or the tunnel 

[27] through which intermediates must flow between both phosphorylation 

centers; or it could derive from more subtle changes such as the hampering of 

the concerted opening [56,57] of the B subdomains of both phosphorylation 

domains to allow product release. Indeed, mutations in the UFSD could be in 

the signaling path between both phosphorylation centers since the UFSD 

contacts the B domain of the carbamate phosphorylation domain, which is 

believed to trigger the concerted opening [57], and it also contacts the active 

site of the bicarbonate phosphorylation domain, which is to be opened (Fig. 

1D). Similarly, the UFSD appears to be involved in the cross-talk between the 

NAG site and the catalytic centers, since some UFSD mutations increase the Ka 

for NAG. Full understanding of this involvement will have to await the 

determination of the structural mechanism of NAG activation of CPS1. 

 

 

2.2.6 Supplementary material 
 

Structural rationalization of the mutations effects. 

 

Among the 18 mutations studied here, five affect four residues at the free end of 

one arm of the L-shaped UFSD, nine map at the other end of this arm, at the 

vertex of the L, and the remaining four mutations affect the distal half of the 

other arm (Fig. S1A). The core structure of the arm that hosts the larger number 

of mutations is folded in E. coli CPS [27] and is predicted to be folded in the 

structural models of CPS1 [2, 42] as two four-helix bundles connected by a 

long helix that participates in both bundles. Five mutations affecting four 

residues map in the more N-terminal four-helix bundle (Fig. S1A,B). Of these, 

three (p.Leu843Ser, p.Thr871Pro and p.Lys875Glu) likely compromise bundle 

folding. The other two mutations (p.Arg850Cys and p.Arg850His) affect a 

protruding residue that interacts with the active center K+ loop of the adjacent 
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Supplementary Figure S1. 

Mapping of the clinical 

mutations of the UFSD 

domain in the structural 

model of CPS1. The figures 

are in cartoon representation. 

Residues that host clinical 

mutations are shown either as 

red (drastic) or blue spheres 

(less drastic), or detailing the 

side-chains (in blue-colored 

sticks). Residues are labeled 

in single letter code. CPS1 

domains and secondary 

structure elements of the 

UFSD are   labeled   (from   

N-   to  C-terminus, α1 to α7; 

and β1 to β2). (A) Mapping of 

the mutations in the 

structural model of the 

isolated UFSD.  

 (B-D) Details of the three regions of the UFSD 

that host clinical mutations, illustrating their 

relations with elements of the neighboring 

domains. In (C) the broken lines mark the ion 

pair network involving Asp914, Arg932 and 

Tyr962 that is lost when any of these three 

residues is mutated 
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bicarbonate phosphorylation domain, which sits next to this bundle (Fig. S1B), 

increasing the Km value for ATP and, in the most drastic of the two mutations, 

for bicarbonate, without importantly hampering enzyme folding. This part of 

the UFSD may be involved in the as yet structurally unclarified cross-talk 

known to exist between this ATP site and the NAG site in the ASD [15, 23], 

because both mutations affecting Arg850 as well as another mutation in this 

four-helix bundle, p.Leu843Ser, substantially increased the Ka for NAG. 

 

Six of the nine mutations at the vertex of the L (Fig. S1A,C) most likely affect 

the proper folding of the second four-helix bundle, with one (p.Ser918Pro) 

simply breaking a helix, and the other five hampering the gluing of the helices 

into the bundle either by disturbing an interhelical hydrophobic nest (the case 

for p.Ile937Asn), or by abolishing an ion pair network (the case for 

p.Asp914Gly/His, p.Arg932Thr and p.Tyr962Cys; Fig. S1C). The importance 

of the interaction of this bundle with the adjacent bicarbonate and carbamate 

phosphorylation domains is made patent by the important effects of the 

mutations p.Gly911Glu, p.Gly911Val, and p.Ser913Leu (Figs. 2A and 3A of 

the main text), which should disturb the interactions with two approximately 

parallel helices, each one from a neighboring domain. The fact that the 

p.Ser913Leu and p.Ile937Asn mutations increase the Ka for NAG (Fig. 4A of 

the main text) suggests that they are in the as yet unidentified route by which 

the cross-talk between the NAG site in the ASD and the catalytic machinery of 

the enzyme takes place.  

 

The remaining four mutations affect the other arm of the L (Fig. S1A), a C-

terminal β hairpin stem-loop terminated in a string that folds back towards the β 

strands. This hairpin is inserted as a gluing, extended element, between the 

interaction domain (ISD) and the glutaminase-like domains (GSD) of the small 

subunit-like N-terminal region (Fig. 1A of the main text) and the respective C 

and A subdomains of the bicarbonate phosphorylation and the carbamate 

phosphorylation domains (Fig. 1D of the main text, and Fig. S1D). This part of 

the UFSD is so integrated structurally with the other domains that its two β 

strands and its final string extend the central β sheet of the carbamate 

phosphorylation A subdomain, conforming with it nearly a β barrel that 

encircles one helix of this A subdomain (Fig. S1D). Two of these mutations 

should either break (p.Leu958Pro) or displace (p.Tyr959Cys) the β strand that 

continues the A subdomain β sheet, whereas another mutation falls in the C-

terminal string (p.Gly964Asp) at a point where this string glues together the 

ISD and the already mentioned helix of the C subdomain of the bicarbonate 

phosphorylation domain. The extremely drastic effects of the p.Leu958Pro and 

p.Gly964Asp mutations (Figs. 2A and 3A, main text) attest to the structural 

importance of this region for proper CPS1 domain architecture. The 
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p.Ala949Thr mutation affects a residue at the tip of the hairpin loop which was 

reported in previous modeling studies of the UFSD [55] to interact with 

Arg172, belonging to the ISD. Actually, this residue is clamped between the 

ISD, the GSD, and elements of the C subdomain of the bicarbonate 

phosphorylation domain (Fig. S1D). The major negative effect of this mutation 

was on the thermal stability of the enzyme (Figs. 3B,C, main text). The other 

mutation having a similar impact on thermal stability (p.Tyr959Cys) affects a 

nearby residue that is also involved in interactions with the ISD and with the 

same structural elements of the bicarbonate phosphorylation domain, 

suggesting that this region and these domain-domain interactions have 

particular importance for ensuring good enzyme stability. In fact, the only other 

mutation (p.Lys875Glu) shown here to affect importantly enzyme stability also 

interacts with the ISD (not shown), supporting our previous conclusion [26] that 

one major function of the ISD is to increase CPS1 stability.  
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2.3.1 Abstract: Carbamoyl phosphate synthetase 1 (CPS1) deficiency 

(CPS1D) is an inborn error of the urea cycle having autosomal (2q34) recessive 

inheritance that can cause hyperammonemia and neonatal death or mental 

retardation. We have analyzed the effects on CPS1 activity, kinetic parameters 

and enzyme stability of missense mutations reported in patients with CPS1 

deficiency that map in the 20-kDa C-terminal domain of the enzyme. This 

domain turns on or off the enzyme depending on whether the essential allosteric 

activator of CPS1, N-acetyl-L-glutamate (NAG), is bound or is not bound to it. 

To carry out the present studies we have exploited a novel system that allows 

the expression in vitro and the purification of human CPS1, thus permitting 

site-directed mutagenesis. These studies have clarified disease causation by 

individual mutations, identifying functionally important residues, and revealing 

that a number of mutations decrease the affinity of the enzyme for NAG. This 

last observation raises the possibility of using in these patients NAG site 

saturation therapy with the NAG analog and registered drug N-carbamyl-L-

glutamate. Furthermore, these data, together with additional present and prior 

site-directed mutagenesis data for other residues mapping in this domain, 

suggest an NAG-triggered conformational change in the β4-4 loop of the C-

terminal domain of this enzyme. This change might be an early event in the 

NAG activation process. Restrained molecular dynamics simulations based on 

the observed mutations effects are consistent with this proposal, providing 

further backing for this structurally plausible signaling mechanism by which 

NAG could trigger urea cycle activation via CPS1.  

 

 

Key words: Urea cycle diseases, inborn errors, hyperammonemia, site-directed 

mutagenesis; restrained molecular dynamics; allosteric regulation; carbamoyl 

phosphate synthetase 1; enzyme. 
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2.3.2 Introduction 
 

Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D; OMIM 

#237300), a recessively inherited autosomal (2q34) (McReynolds et al., 1981) 

inborn error of the urea cycle (Freeman et al., 1964; Gelehrter and Snodgrass, 

1974), has an estimated incidence of 1/50000 to 1/300000 (Uchino et al., 1998; 

Summar et al., 2013). CPS1 is the entry point of ammonia, the nitrogenous 

waste product of protein catabolism, into the urea cycle (Fig. 1A). Therefore, 

CPS1 deficiency causes pure hyperammonemia (Häberle and Rubio, 2014), 

leading to encephalopathy and even death (Brusilow and Horwich, 2001), and 

to depletion of downstream urea cycle intermediates, particularly of citrulline 

(Häberle and Rubio, 2014).  

 

A large repertory of mutations affecting the CPS1 gene has been compiled from 

patients with CPS1D (Häberle et al., 2011). Over 50% of these mutations are 

missense changes spreading over the entire 1462-residue mature CPS1 

polypeptide (Nyunoya et al., 1985; Haraguchi et al., 1991). The CPS1 gene 

(OMIM #608307; 201,425 nucleotides; start/end chromosome 2 coordinates, 

211,342,405/211,543,830, plus strand, http://www.genecards.org/cgi-

bin/carddisp.pl?gene=CPS1) encompasses 4500 coding nucleotides over 38 

exons (Funghini et al., 2003; Häberle et al., 2003; Summar et al., 2003). It may 

be difficult to ascertain the responsibility of a given CPS1 missense mutation in 

causing CPS1D, particularly for mutations mapping outside the two catalytic 

domains of the enzyme (the two phosphorylation domains, Fig. 1B) which bind 

the substrates and catalyze the three-step CPS reaction (Alonso et al., 1992; 

Alonso and Rubio, 1995).  

 

Our present work deals with the analysis of the effects of CPS1D-associated 

mutations (called also from here on clinical mutations) that affect a non-

catalytic domain of human CPS1, the C-terminal domain of 20 kDa (Häberle et 

al., 2011). This domain is called the allosteric domain (abbreviated ASD) (Fig. 

1B) because it binds N-acetyl-L-glutamate (NAG) (Rodríguez-Aparicio et al., 

1989; Pekkala et al., 2009), the essential allosteric activator of CPS1. Without 

NAG, CPS1 is inactive (Rubio et al., 1981, 1983), possibly reflecting the need 

to stop catalysis by the enzyme (Shigesada et al., 1978; Stewart and Walser, 

1980) before ammonia levels are too low (Fig. 1A). Too much decrease in the 

ammonia level would lead to depletion of ammonia-derived amino acids such 

as glycine, glutamate and glutamine (Bender, 2011), and possibly to protein 

catabolism. NAG is a proper effector of the CPS1 switch because its levels 

reflect the nitrogen burden manifested in the glutamate level (Fig. 1A). This is 

so because NAG has a short half-life (Morita et al., 1982) and it is made from 
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glutamate by an enzyme (NAG synthase) exhibiting a high Km for glutamate 

(Sonoda and Tatibana, 1983).  

 

Figure 1. The CPS1-NAG switch for urea cycle control. (A) Simplified view of the 

urea cycle to highlight its control at the level of CPS1. The double arrows denote 

bidirectional fluxes between the elements that are linked. Enzymes are boxed and 

abbreviated as follows: NAGS, NAG synthase; OTC, ornithine transcarbamylase; 

ASS, argininosuccinate synthetase; ASL, argininosuccinate lyase; and ARG1, 

arginase 1. ORNT 1, ornithine/citrulline antiporter. For simplicity, not all products 

of the different reactions are indicated. The intramitochondrial part of the cycle, 

which is where the switch mechanism operates, is highlighted.(Cont'd next page) 
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To explore the effects of ASD-mapping missense clinical mutations 

(abbreviated ASD clinical mutations) we utilize a novel system for production 

and mutagenesis of recombinant CPS1 that uses baculovirus and insect cells 

(Díez-Fernández et al., 2013). We had already applied this system to analyze 

the effects of some ASD missense mutations (Pekkala et al., 2010; Díez-

Fernández et al., 2013). We now extend this analysis to all the reported ASD 

clinical mutations, as well as to some mutations designed to test the role of the 

ASD (Fig. 1B, vertical lines, and Table 1). Analysis of the effects of these 

mutations has helped assess disease causality, opening the way to improved 

genetic counselling and even to individualized therapy. Furthermore, we now 

shed some light on the as yet unclarified NAG activation process, and we define 

better the NAG site. We had previously localized this site (Fig. 1C) (Pekkala et 

al., 2009) by photoaffinity labeling and by in silico docking in the deposited 

(but unpublished) crystal structure of the isolated human ASD free from NAG 

 

Fig. 1, cont'd: (B) Scheme of the mature CPS1 polypeptide (N-terminal mitochondrial 

targeting sequence removed), indicating its two moieties (top) that are homologous to 

the small and large subunits of E. coli CPS, the two halves of the large moiety (middle), 

and the domain composition (lower bar) with domain names above, domain boundaries 

given as residue numbers, and domain functions shown below (“??” means unknown 

function), including the domain localization of the three steps of the CPS1 reaction. The 

blue arrow indicates carbamate migration between both phosphorylation domains, a 

process that is unlikely to involve the integrating domain (Thoden et al., 1999). Vertical 

lines towards the C-end map CPS1D missense mutations and rationally-designed 

mutations analyzed here (listed in Table 1). The longer lines indicate that two different 

mutations affect the same residue. (C) Stereo view of the crystallographic structure of 

the allosteric domain with NAG bound as previously modeled (Pekkala et al., 2009). 

Spheres and explicitly shown amino acid side-chains mark residues hosting missense 

mutations that are discussed here, being identified by labeling (italics, residues hosting 

CPS1D-associated mutations; residues underlined are those hosting mutations studied 

experimentally here). They are colored red if the mutation decreases stability, blue if it 

increases the Ka
NAG, purple if it causes inactivation or strong kcat reduction; and orange 

for little or no effect. The R1453:D1322 ion pair is illustrated with a dotted line. Some 

ASD secondary structure elements (including the β4-4 loop) are labeled. The Cα trace 

is shown in black and NAG in sticks and colored (C, N and O atoms, yellow, blue and 

red, respectively). The indicated loops belonging to both phosphorylation domains from 

the superimposed structural model of human CPS1 (Martínez et al., 2010) are shown 

colored, with the side-chain of D1322 in sticks. (D) Hydrophobic nucleus hosting the 

three CPS1D-associated ASD mutations that destabilized CPS1. The residues forming 

this nucleus are labeled and their hydrocarbon side chains are shown in sticks 

representation and colored grey, except the three residues that host the destabilizing 

mutations, which are labeled with larger font in red, while their side-chains are colored 

yellow. Secondary structure elements are shown in cartoon representation and are also 

labeled. Figure prepared from PDB file 2YVQ. 
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(Protein Databank file 2YVQ; Xie et al., 2007). We now have found that some 

ASD mutations have effects not expected in the previously proposed NAG site. 

With the help of molecular dynamics (MD), applying restraints based on the 

site-directed mutagenesis results, we now propose a refined NAG site structure 

where a conformational change in the β4-α4 loop could be the initial signal in 

NAG activation.  

 

 

2.3.3 Results 
 

2.3.3.1 Clinical ASD domain mutations studied 

 

The twelve reported (Häberle et al., 2011) CPS1D-associated missense 

mutations mapping in the ASD are listed in Table 1A. All of them affect 

residues that are invariant or highly conserved in NAG-sensitive CPSs. Except 

for two mutations (R1371L and Y1491H), they were given unanimous 

predictions of being likely to have negative effects by two widely used 

pathogenicity prediction servers, Polyphen-2 and MutPred (Adzhubei et al., 

2010; Li et al., 2009) (Table 1A).  

 

Table 1A highlights in bold-face the clinical mutations that were studied 

experimentally here. The study begun with the expression and purification of 

each mutant form (Fig. 2A). For all purified mutants we determined the activity 

in a standard assay, the thermal stability (Fig. 2B), and the kinetic parameters 

for ATP, ammonia, bicarbonate and NAG (see Materials and Methods). All the 

velocities (Figs. 2C and 2D) are referred to one mg of the purified protein. All 

the mutants exhibited hyperbolic kinetics for the substrates and for NAG. 

Unless indicated, the kinetic parameters for the substrates were similar to those 

of wild-type CPS1 (Díez-Fernández et al., 2013). The kinetic parameters for 

NAG, relative to those for the pure recombinant wild-type enzyme (Díez-

Fernández et al., 2013), are shown in Figs. 2D and 2E. 

 

2.3.3.2 Impact of the clinical mutations on enzyme stability 

 

Unlike the case for clinical mutations mapping in the integrating domain (Díez 

Fernández et al., 2014), which drastically reduced CPS1 production in the 

present expression system, none of the five ASD clinical mutations tested here, 

(R1371L, T1391M, L1398V, P1439L and P1462R; in bold type in Table 1A) 

decreased importantly CPS1 production or purification (Fig. 2A). Only with the 

L1398V mutation there was some reduction (50%) of enzyme production and, 

correspondingly, of the purity of the final enzyme preparation (Fig. 2A). 

Nevertheless, the enzyme form carrying this mutation exhibited a decrease of 
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5 ºC in its thermal stability (Fig. 2B), relative to wild-type CPS1, suggesting 

that L1398V might cause deficiency by speeding CPS1 inactivation. Another 

two ASD mutations, A1378T and L1381S, were previously found to cause, 

respectively, thermal destabilization and abolition of CPS1 expression because 

of degradation (Díez-Fernández et al., 2013) (Table 1A). Interestingly, the 

A1378T, L1381S and L1398V mutations map  in the very crowded and highly 

hydrophobic patch between the central β sheet and the 3 layer of the domain 

(Fig. 1D) [the ASD is folded as an 3β52 sandwich (Fig. 1C) where strands 

and helices alternate, beginning with β1)]. 

 

2.3.3.3 Effects of clinical ASD mutations on CPS1 activity and on the 

kinetic parameters for NAG 

 

The R1371L, T1391M, L1398V and P1462R mutations decreased ≥80% the 

specific activity (the activity per mg of pure CPS1) of the enzyme, determined 

using a substrate-rich and NAG-rich enzyme activity assay (Fig. 2C). Of these 

mutations, P1462R caused nearly complete (97%) inactivation. Previously, the 

clinical mutations R1453W and R1453Q were found to inactivate the otherwise 

apparently well folded mutant CPS1 (Table 1A), whereas T1443A and Y1491H 

decreased by 20-fold and 4-fold, respectively, the specific activity of the 

enzyme (Pekkala et al., 2010; Díez-Fernández et al., 2013). Thus, eight among 

the twelve reported ASD clinical mutations (Häberle et al., 2011) importantly 

decrease enzyme specific activity. Of the patients carrying these activity-

decreasing mutations, those for which the clinical condition was known 

presented severe deficiency (Table 1A).  

 

The study of the NAG activation kinetics of the purified mutant proteins (Figs. 

2D and 2E) revealed that the R1371L and T1391M mutations increase by two 

orders of magnitude the NAG concentration required for half-maximal 

activation of CPS1 (Ka
NAG). The P1439L mutation also increased Ka

NAG by 15-

fold. These important decreases in the affinity of the enzyme for NAG should 

account for the clinical deficiency, given the NAG levels prevailing in the liver  

(Tuchman and Holzknecht, 1990). The same should be the case for the T1443A 

and Y1491H clinical mutations, which had been found earlier (Pekkala et al., 

2010; Díez-Fernández et al. 2013) to increase Ka
NAG 160-fold and 50-fold, 

respectively (Table 1A). Overall, in five out of the twelve ASD clinical 

mutations the Ka
NAG was importantly increased. 

 

The large decrease in the observed enzyme activity caused by the P1462R 

mutation was largely due to decreased velocity at saturation of NAG (V[NAG]=∞; 
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 Mutations studied experimentally here are highlighted in bold-type. CPSIII is the 

piscine form of CPS, which is partially dependent on NAG (Hong et al., 1994). The 

severity of the clinical mutations is based on the clinical presentation, being graded as 

severe for neonatal presentations and/or death. P1411L was considered mild because it 

coexisted with a null second CPS1 allele (Q478*) and yet the deficiency had a late 

clinical onset indicating substantial residual CPS1 activity. No clinical information was 

available for the patient with the R1371L mutation, and, therefore, its severity is 

unknown. The patient carrying the P1462R mutation is alive, but it is uncertain whether 

this is due to a mild effect of this mutation or to residual activity associated with its 

second CPS1 allele, which was the missense change Y959C. The patient carrying the 

Table 1. CPS1 allosteric domain mutations either found in CPS1 deficiency 

patients or designed to test functional features, and their effects. 
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Y1491H mutation had a late onset presentation, but the second allele was not identified, 

and therefore the possibility cannot be excluded that the residual activity was due to a 

non-diagnosed mild second allele. When reporting their occurrence in the various 

CPSs, amino acids are in low case when found with low frequency. Variable denotes 

the occurrence at a given position, in the indicated groups of CPSs, of >4 types of 

amino acids with no constant chemical characteristics (polar, apolar, charged, etc.). 

PolyPhen-2 grades the probability of a damaging effect of an amino-acid substitution, 

from higher to lower, as Probably damaging, Possibly damaging, and Benign. MutPred 

gives a g score corresponding to the probability that a given amino-acid substitution 

was deleterious/disease-associated. For further details, see Materials and Methods. 

 
aTranslation of the cDNA reference sequence NM_001875.4 (GenBank). Nucleotide 

136 in this sequence is considered +1, since it is the A of the translation initiation 

codon. 
bWhen the contact was used as a restraint for model generation, it is specified. 
cHäberle et al., 2011. 
dEeds et al., 2006. 
eDíez-Fernández et al., 2013. 
fSummar 1998. 
gUnkown when originally reported. New data gathered on the patient. 
hPekkala et al., 2010. 
iNot present in previous docking model (Pekkala et al., 2009). 
jThis residue belongs to the carbamate phosphorylation domain. It is shown here 

because of the belief that it plays a key role in the transmission of the allosteric signal 

(see text). 
kPekkala et al., 2009. 
lNAG site lid residue and H-bond to NAG -COO- in previous docking model (Pekkala 

et al., 2009). 
mNAG site lid residue in previous docking model (Pekkala et al., 2009). 

 

 

Fig. 2D), whereas the Ka
NAG remained essentially normal (Fig. 2E). Substrate 

kinetics for this mutant were normal for all substrates (not shown) except for 

ATP. Thus, the apparent Km
ATP was increased ~10-fold (Fig. 2F), which should 

not substantially decrease enzyme activity in our ATP-rich standard assay, but 

which may contribute to the deficiency in vivo. Given the lack of substrate-

binding or catalytic machinery in the ASD, the decreased V[NAG]=∞ with normal 

affinity for NAG observed for the P1462R mutant indicates that bound NAG 

elicits a poorer activation in this mutant than in wild-type CPS1. Thus, the 

transmission of the NAG signal to the catalytic domains appears to be 

hampered. This may also be the reason for the inactivation caused by the ASD 

clinical mutations R1453W and R1453Q (Pekkala et al., 2009, 2010). 
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Figure 2. Legend 

on the top of the 

opposite page. 
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2.3.3.4 The effects of ASD mutations shed further light on signal 

transmission and NAG binding  

 

We got insight on the mechanism of signal transmission from the ASD to the 

catalytic domains by introducing the non-clinical (that is, designed on rational 

bases) D1322L mutation (Table 1B; this part of the table lists rationally 

designed mutations, with those studied experimentally here highlighted in bold-

type). D1322 is a carbamate phosphorylation domain residue that is ion-paired 

to R1453 (Fig. 1C), judged from the structural model of the complete CPS1 

molecule (Martínez et al., 2010) [this model is based on the structure of 

Escherichia coli CPS, the only CPS molecule that has been structurally 

characterized in its entirety (Thoden et al., 1999); E.coli CPS is not activated by 

NAG and is active in the absence of effectors (Meister, 1989)]. If, as proposed 

above, R1453Q and R1453W inactivate CPS1 by abolishing transmission of the 

NAG signal to the catalytic domains, the D1322L mutation should also be 

inactivating. This was indeed the effect observed (Table 1B). Although the 

mutant was soluble and was expressed as abundantly as the wild-type enzyme 

and purified similarly (Fig. 3A), its activity was <1% of that of wild-type CPS1 

(Fig. 3B).  

 

We also examined the correctness of the previously proposed NAG site (Fig. 

1C) (Pekkala et al., 2009) in the light of the effects of clinical mutations studied 

here or reported recently (Pekkala et al., 2010; Díez-Fernández et al. 2013), and 

by introducing four additional non-clinical mutations designed to test specific 

Figure 2. Production, stability, activity and kinetic properties of wild-type and CPS1D-

associated mutant CPS1 forms. (A) SDS-PAGE (8% polyacrylamide, Coomassie 

staining) of purified human recombinant CPS1, either wild-type (WT) or carrying the 

indicated mutations. St, protein markers (PageRuler Prestained Protein Ladder, from 

Thermo Scientific), with masses indicated in kDa. The arrowhead signals the position of 

the CPS1 band. (B) Inactivation upon 15-min heating at the indicated temperatures of 

recombinant human CPS1, either wild-type or carrying the indicated mutations. For 

clarity, a single line was fitted to the highly similar in terms of stability R1371L, 

T1391M, P1439L and P1462R mutants. The horizontal dashed line marks 50% 

inactivation, whereas the vertical dashed lines cross the X-axis at the temperature at 

which 50% inactivation occurs for the corresponding enzyme form. (C-E) Effects of 

CPS1D-associated ASD mutations on enzyme activity (C), apparent Vmax (D), Ka
NAG  (E), 

and ATP substrate kinetics (F). For details on the assays see Materials and Methods. 

The activities and Vmax values were always referred to 1 mg of protein. Results are given 

as fractions of the corresponding mean values for wild-type CPS1 (Fernández-Díez et 

al., 2013). In (F), the curves are hyperbolae fitted with GraphPad Prism (GraphPad 

Software, San Diego, California). The value of 1 was the velocity extrapolated at infinite 

concentration of ATP for the wild-type enzyme.  
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traits of the site (Table 1B, in bold-type; and Fig. 3). The large effects on Ka
NAG 

of the N1437D, N1440D, and T1394A mutations as well as of the presently 

studied R1371L and T1391M clinical mutations (Fig. 2E) were consistent with 

 

Figure 3. Production, activity and kinetic properties of ASD mutant forms 

not identified in CPS1D. (A) SDS-PAGE (8% polyacrylamide, Coomassie 

staining) of the wild type enzyme (WT) and of the indicated mutants. St, protein 

markers (PageRuler Prestained Protein Ladder, from Thermo Scientific), with 

masses indicated in kDa. The arrowheads signal the position of the CPS1 

band. (B-D) Effects of the ASD mutations tested on enzyme activity (B), 

apparent Vmax (C), and Ka for NAG (D). Other details are as in Fig. 2.  
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the previously predicted interactions of R1371, T1391, T1394, N1437 and 

N1440 with NAG (Pekkala et al., 2009) (Fig. 4A). The 15-fold increase in the 

Ka
NAG triggered by the P1439L clinical mutation (Fig. 2E) can be accounted by 

changes in the conformation of the β4-4 loop (composed of residues 1438-

1445), to which P1439 belongs, since this loop is an important part of the 

proposed NAG site (Figs. 1C and 4A). The localization of the NAG site was 

further supported by the results obtained here with the N1449A mutant (Fig. 

3A). This mutant exhibited a 10-fold increase in the Ka
NAG (Fig. 3D), 

compatible with a predicted hydrogen bond between the N1449 side-chain and 

the NAG -carboxylate (Fig. 1C). However, surprisingly, the W1410A, 

K1444A and F1445A mutations (Fig. 3A), which would alter residues forming 

a lid in the putative NAG site in our previous model (Fig. 1C), did not trigger 

important changes in specific activity or in NAG activation kinetics (Figs. 3B-D 

and Table 1B). Furthermore, the T1443A clinical mutation was reported to 

increase Ka
NAG 160-fold (Table 1B) (Díez-Fernández et al., 2013), suggesting 

a strong interaction between the side-chain of T1443 and the bound NAG 

molecule. Such interaction was absent in our previous model for NAG binding 

(Pekkala et al., 2009) (Fig. 1C), which is based on the experimental crystal 

structure of the NAG-free ASD (Xie et al., 2007). In this structure, the side 

chain of T1443 is far from the NAG site (Figs. 1C and 4A). Altogether, these 

observations suggested that in the NAG-bound form of the ASD, the final part 

of the β4-4 loop  changed its conformation relative to the NAG-free form (Xie 

et al., 2007), placing the side chain of T1433 near NAG and altering the 

location of the neighbouring W1410, K1444 and F1445 residues, which would 

fail to interact with the ligand (Fig. 4B).  

 

 

2.3.3.5 Modeling of the NAG site 

 

To build a refined model of the NAG site of CPS1 that was consistent with the 

mutagenesis analyses, we used restrained molecular dynamics (MD) 

simulations of the CPS-NAG complex. The restraints were based on the Ka
NAG 

variations induced by the ASD mutations (Table 1) as well as on protein-NAG 

contacts deduced from previous analyses (Pekkala et al., 2009) (see Materials 

and Methods for the restraints applied and for details on the approach used). 

The MD simulations used as a starting point the experimental ASD structure 

[protein databank (PDB; www.rcsb.org) file 2YVQ] (Xie et al., 2007) together 

with the coordinates of the NAG molecule previously obtained by unrestrained 

docking (Pekkala et al., 2009). In the energy-minimized model resulting from 

the MD simulations the position of the NAG molecule was very similar to that 

proposed previously (compare Figs. 4A and 4B). The γ-COO- group of NAG 

interacts with the side chains of R1371 and T1394 in the more exposed region 
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of the binding site. The NAG N atom forms a hydrogen bond with T1391, and 

one oxygen of the -COO- group is hydrogen-bonded by the side-chains of 

N1440 and N1449. At the floor of the site, the acetamido methyl group of NAG 

is surrounded by the L1363, I1423 and I1452 hydrophobic residues (Fig. 4C), 

whereas the acetamido carbonyl establishes a hydrogen-bonding interaction 

with N1437 (Fig. 4A). The most important variation with respect to the 

previous model was a change in the conformation of the β4-α4 loop (Figs. 4A-

D), brought about by a NAG-T1443 hydrogen-bonding MD restraint based on 

the effect of the T1443A mutation (Table 1). As a result, the side chain of 

T1443 is turned inwards and forms a hydrogen bond with the other -COO- 

oxygen of NAG, whereas the side chains of the neighbouring K1444 and F1445 

residues, which blocked entry to the empty binding site in the crystallographic 

structure of the isolated domain, are oriented outwards (Fig. 4D). These 

changes agree with the limited effect on NAG activation of the K1444A and 

F1445A mutations (Table 1). 

 

To evaluate the new model of the ASD-NAG complex, we removed the NAG 

molecule and performed unrestrained docking calculations with GOLD 

(Verdonk et al., 2003). These calculations yielded total convergence (100%) of 

the NAG docked poses (20 of 20 solutions with root mean square 

conformational deviations, r.m.s.d. ≤ 0.3 Å) (Fig. 4C). These poses generated 

by docking were very close to the energy-minimized conformation obtained by 

restrained MD (average r.m.s.d. 0.57 Å). Furthermore, the docking scores were 

1.39 times superior (63.2 ± 0.5 vs. 45.5 ± 2.4) to those obtained for our previous 

model with the same methodology and scoring function (Pekkala et al., 2009). 

 

 

2.3.4 Discussion  
 

The present and earlier experimental results (Pekkala et al., 2010; Díez-

Fernández et al., 2013 and 2014) corroborate the value of the baculovirus/insect 

cell system used here for assessing the effects of CPS1D missense mutations. In 

the case of the ASD, only for one of the twelve reported clinical mutations 

(Häberle et al., 2011), P1411L, the expression studies could not ascertain the 

disease causality of the mutation (Table 1A) (Pekkala et al., 2010). Three ASD 

clinical mutations destabilized CPS1 and eight hampered or abolished enzyme 

activity (Table 1A). Therefore, decreased specific activity is a frequent 

consequence of ASD clinical mutations. In line with the presence of the NAG 

site in the ASD, a reduced affinity for NAG is also a common consequence of 

these mutations (five of the twelve clinical ASD mutations). The three clinical 

mutations that inactivated the enzyme or that decreased its activity without 
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increasing Ka
NAG may do so by blocking or hampering transmission of the NAG 

activating signal. NAG activation of CPS is both a V and a K allosteric process 

in which Vmax is increased and the Km for ATP is decreased (Rubio et al., 1983). 

This possibly explains the increase in Km
ATP associated to the inadequate NAG 

activation proposed for the near-inactivating P1462R mutation. 

 

In addition to being valuable for making genotype-phenotype correlations, the 

present expression/mutagenesis system could help guide therapy. Patients 

carrying "kinetic" mutations causing increases in Ka
NAG could benefit from N-

carbamyl-L-glutamate (NCG) administration. This deacylase-resistant NAG 

analog (Rubio and Grisolia, 1981) and registered drug could artificially help 

saturate the NAG site of these mutants. Furthermore, NCG stabilizes CPS1 

(Díez-Fernández et al., 2013), opening the way to testing whether NCG might 

be beneficial for patients with mutations causing CPS1 destabilization. These 

mutations can also be identified with the present system (Díez-Fernández et al., 

2014), although in the case of the ASD only few clinical mutations cause 

substantial destabilization. Nevertheless, these mutations reveal that the ASD 

contributes to CPS1 stability. Such contribution was already detected for the 

corresponding domain of E. coli CPS when the deletion of this domain was 

found to lower the denaturation temperature of the enzyme (Cervera et al., 

1993). The clustering of clinical destabilizing mutations in the hydrophobic 

patch between the central β sheet and the 3 layer of the ASD (Fig. 1D) 

suggests a particularly important contribution of this region to proper ASD and 

CPS1 folding.  

 

Our analysis provides some interesting information on CPS1 activation by 

NAG. In particular, a refined model has been built that is consistent with the 

effects on Ka
NAG of all available mutations. The more salient difference between 

this model and the structure of the NAG-free crystal structure of the ASD is a 

conformational change in the final part of the β4-α4 loop to accommodate NAG 

(Figs. 4A-D). The side-chains of F1445 and T1443 are those exhibiting the 

largest displacements (Figs. 4C and 4D), respectively pointing towards the 

NAG site and away from it in the NAG-free crystal form, and the reverse in the 

NAG-bound form (Fig. 4D). The interaction of T1443 and the lack of 

interaction of F1445 with NAG would explain the respective effect and absence 

of effect on Ka
NAG of the corresponding alanine mutations. This movement 

could importantly alter the relations of the NAG site with the adjacent (Figs. 1C 

and 4E) carbamate phosphorylation domain, acting as an on/off switch for this 

catalytic domain, thus possibly being the first event in the NAG activation 

process. 
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Figure 4. The NAG site, proposed 

NAG-triggered changes, and the ASD 

surface involved in the interactions 

with the carbamate phosphorylation 

domain. NAG binding to CPS1 as 

previously proposed (A) and as 

inferred here (B) on the basis of the 

analysis of all the existing site-directed 

mutagenesis data and restrained 

molecular dynamics (MD) simulations. 

(Cont'd on top of opposite page. 
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Contacts between the ASD and the carbamate phosphorylation domain 

mediated by helix 4 and strand β5 are observed in E. coli CPS (Thoden et al., 

1999) and, correspondingly, in the structural model for the entire CPS1 

(Martínez et al., 2010) (Figs. 1C and 4E). The present results suggest that these 

contacts may be essential for stabilizing the NAG-activated conformation of the 

carbamate phosphorylation domain. Since P1462 is immediately upstream of β5 

(Fig. 4E), the P1462R mutation may cause near-inactivation by altering the 

position of strand β5 relative to the carbamate phosphorylation domain. R1453 

belongs to helix 4 (Fig. 4E), and the mutations at R1453, as well as the 

mutation of D1322, the ion-pair partner of R1453 across the interdomain divide 

(Fig. 1C), may cause inactivation because the abolition of the ion pair would 

also disturb the ASD-carbamate phosphorylation domain interaction. Actually, 

D1322 belongs to a loop that is sandwiched between the ASD and another loop 

(residues 778-787) from the bicarbonate phosphorylation domain (Fig. 1C). 

Therefore, the NAG activating signal might also propagate via this conduit to 

the bicarbonate phosphorylation domain. In any case, further progress towards 

clarification of the path of the activating signal from the ASD to both catalytic 

domains may require the determination of CPS1 structures in NAG-free and 

NAG-bound forms.  

 

Figure 4 (cont'd). Some relevant residues whose participation in the site was tested by 

site-directed mutagenesis are shown in sticks representation, with hydrogen bonding to 

NAG illustrated with broken lines. (C) Stereo view of unrestrained docking of NAG to 

the hCPS1 protein structure obtained by restrained MD simulation. The 20 NAG 

binding poses (sticks with gray-colored carbon atoms) show 100% convergence. The 

amino acids side chains proposed to surround the NAG molecule are shown in thin 

sticks representation, in blue in the conformation resulting from restrained MD, 

superimposed on the conformation (in black) observed in the crystal structure of the 

NAG-free site (PDB file 2YVQ). (D) Stereo view of the superimposition of the NAG site 

in its empty form observed in the crystal structure of the isolated ASD (grey; PDB file 

2YVQ) and in the NAG bound form modelled here by restrained MD (yellow). NAG and 

some amino acid side-chains are shown in sticks representation and are labelled. Some 

secondary structure elements are shown in cartoon representation and are also 

labeled. (E) The ASD (experimental NAG-free form, PDB 2YVQ) as seen from the 

carbamate phosphorylation domain, with cyan coloring of the regions involved in the 

interactions with this last domain. Residues involved in the interactions were identified 

in the CPS1 structure model (Martínez et al., 2010) using the PISA server (Krissinel 

and Henrick, 2007) at http://www.ebi.ac.uk/pdbe/prot_int/pistart.html. Several 

secondary structure elements including helix 4, and the residues marked as red dots 

are labeled. The NAG site is identified by the bound activator. 
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2.3.5 Materials and Methods 
 

2.3.5.1 Human CPS1 production 

 

Pure recombinant human mature liver CPS1 (CPS1) production with an N-

terminal His6-tag, and site-directed mutagenesis of the pFastBac-CPS1 vector 

encoding the enzyme to yield the desired human CPS1 mutant forms were 

performed as previously described (Díez-Fernández et al., 2013) using for the 

mutations appropriate oligonucleotides (Table 2). The same purification 

procedure (cell centrifugation, lysis, centrifugal clarification, Ni-affinity 

chromatography and centrifugal ultrafiltrative concentration) proved 

appropriate for wild type and mutant enzyme forms. Purity was monitored by 

SDS-PAGE (8% polyacrylamide gels) (Laemmli, 1978) and Coomassie 

staining. Protein was determined according to Bradford (1976).  

 

Table S1. Synthetic oligonucleotides used in site-directed mutagenesis 

p.D1322L 
Forward CCCCGGTTGAGGGATGCTCTCCCCATTCTGAG 

Reverse CTCAGAATGGGGAGAGCATCCCTCAACCGGGG 

p.R1371L 
Forward CCAGCAATCATTCCTGCCAAGAT 

Reverse ATCTTGGCAGGAATGATTGCTGG 

p.T1391M 
Forward GCTGTTTGCCATGGAAGCCACATC  

Reverse GATGTGGCTTCCATGGCAAACAGC  

p.L1398V 
Forward CCACATCAGACTGGGTCAACGCC  

Reverse GGCGTTGACCCAGTCTGATGTGG  

p.W1410A 
Forward CACCCCAGTGGCAGCGCCGTCTCAAGAAGG 

Reverse CCTTCTTGAGACGGCGCTGCCACTGGGGTGGC 

p.P1439L 
Forward GTGATTAACCTTCTCAACAACAACAC 

Reverse GTGTTGTTGTTGAGAAGGTTAATCAC  

p.K1444A 
Forward CAACAACACTGCATTTGTCCATGATAATTATG 

Reverse CATAATTATCATGGACAAATGCAGTGTTGTTG 

p.F1445A 
Forward CAACAACAACACTAAAGCTGTCCATGATAATTATG   

Reverse CATAATTATCATGGACAGCTTTAGTGTTGTTGTTG    

p.N1449A 
Forward CTAAATTTGTCCATGATGCTTATGTGATTCGGAGG    

Reverse CCTCCGAATCACATAAGCATCATGGACAAATTTAG 

p.P1462R 
Forward GTGGAATCCGTCTCCTCACTAATTTTC  

Reverse GAAAATTAGTGAGGAGACGGATTCCAC 
aBold type indicates base substitutions to introduce the desired mutation 
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2.3.5.2 CPS1 activity assays 

 

Activity was determined at 37 ºC by monitoring carbamoyl phosphate 

production as citrulline (Nuzum and Snodgrass, 1976) in a 10-min ornithine 

transcarbamylase-coupled assay (Díez-Fernández et al., 2013). The standard 

assay mixture contained 50 mM glycyl-glycine pH 7.4, 70 mM KCl, 1 mM 

dithiothreitol, 20 mM MgSO4, 5 mM ATP/5mM MgCl2, 35 mM NH4Cl, 50 mM 

KHCO3, 10 mM NAG, 5 mM L-ornithine and 4 U/ml ornithine 

transcarbamylase. One enzyme unit makes 10 mol citrulline in the 10-min 

assay. Substrate kinetics and NAG activation kinetics were studied by varying 

the concentration of one substrate or of NAG while other assay components 

were kept fixed at the concentrations used in the standard reaction mixture. 

ATP was added as an equimolar mixture with MgCl2. Therefore, since 20 mM 

MgSO4 was present in the reaction mixture, Mg2+ was always in 20 mM excess 

over ATP. Kinetic data were fitted to hyperbolae using the GraphPad Prism 

program (GraphPad Software, San Diego, CA). Values for activity and for 

V[NAG]=∞ are referred to 1 mg of protein, thus being specific activities. These 

values and Ka
NAG values are the means±SE for at least three replicate estimates. 

To better compare the magnitude of the changes in the activity and the kinetic 

constants with those reported previously, the values for these constants and for 

their standard errors have been normalized by dividing them by the 

corresponding mean values for the same parameters for wild-type CPS1 

(tabulated in Díez-Fernández et al., 2013). 

 

To monitor the thermal stability of CPS1 mutants, 0.5 mg/ml of the indicated 

enzyme form in 50 mM glycyl-glycine pH 7.4, 10% glycerol, 0.5 M NaCl, 30 

mM imidazole and 2 mM dithiothreitol were incubated 15 min at the indicated 

temperature. Then, the mixtures were rapidly cooled at 0°C and enzyme activity 

was determined immediately in the standard assay at 37ºC. Data are means±SE 

for at least duplicate assays. 

 

 

2.3.5.3 Restrained molecular dynamics (MD) and docking calculations 

 

We first used MD simulations with restraints based on the Ka
NAG variations 

induced by CPS mutations (Table 1) and on the contacts obtained in previous 

unrestrained docking runs (Pekkala et al., 2009) (see below). The calculations 

used as a starting point the PDB structure of the human CPS C-terminal domain 

(PDB file 2YVQ) (Xie et al., 2007) together with the coordinates of the NAG 

molecule previously obtained by docking and energy minimization (Pekkala et 

al., 2009). The 1415GQNPS1419 sequence missing in the crystallographic 

structure was modelled with MOE (CCG Inc.) using a method based on PDB 
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searches. The potential energy of the initial system was progressively 

minimized before subjecting the CPS-NAG complex to two MD runs of 200 ps 

and 100 ps, respectively, at 300 K. During these runs, a soft positional restraint 

was applied to all protein atoms except those of β1-α1, β2-α2, β3 and β4-α4 

residues close to the NAG binding site. The temperature of the system was 

slowly reduced to 0 K during the second half of each run, and NAG soft 

positional restraints were applied in the first simulation but eliminated in the 

second run. The following five hydrogen-bonding restraints were applied 

during the simulations, based on mutant Ka
NAG increments equal or greater than 

50-fold in Table 1 and the corresponding hydrogen-bonding contacts observed 

in unrestrained docking analyses (Pekkala et al., 2009): O NAG-HNη
R1371, 

HNNAG-Oγ
T1391, O NAG-HOγ

T1394, OAc
NAG-HNδ

N1437 and O NAG-HNδ
N1440. 

An additional O NAG-HOγ
T1443 restraint was imposed on the remaining 

O  atom of NAG on the basis of the 160-fold increase in Ka
NAG detected for 

the T1443A mutant (Table 1). Throughout these calculations we used the ff10 

force field of AMBER 8.0 (Case et al., 2005), and a generalized Born model for 

simulating an aqueous environment. The final coordinates of the hCPS-NAG 

complex were generated by minimizing the potential energy of the last MD 

snapshot. This model was evaluated by means of unrestrained docking 

calculations. These were carried out using the GOLD package (version 5.2) 

(Verdonk et al., 2003) with the GoldScore fitness function, as in the previous 

calculations (Pekkala et al., 2009).  

 

 

2.3.5.4 Other techniques 

 

The experimental crystal structure of the ASD (PDB file 2YVQ) (Xie et al., 

2007) and the corresponding models for the NAG-bound form (Pekkala et al., 

2009; and the present work) and the E. coli CPS structure-based CPS1 model 

(Martínez et al., 2010) have been used for analysis, superimpositions, and for 

structural representations, using Pymol (DeLano Scientific; 

http://www.pymol.org). Amino acid conservation was determined by ClustalW 

sequence alignment (Larkin et al., 2007) of either CPS1, CPSIII or other CPSs 

from 14, 6 and 26 species, respectively. The PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2010) and MutPred 

(http://mutpred.mutdb.org/) (Li et al., 2009) servers were used to assess in silico 

the disease-causing potential of the clinical mutations.  

 

 

 

 

 



RESULTS. Chapter 3 

 

129 

 

 

2.3.6 Acknowledgements 
 

We thank Belén Barcelona (IBV-CSIC, Valencia) for the structural model of 

the complete enzyme and for help with Fig. 4D. This work was supported by 

grants from the Fundación Alicia Koplowitz, the Valencian 

(PrometeoII/2014/029 to V.R.) and Spanish governments (BFU2011-30407 to 

V.R. and BFU2012-30770 to J.G.), and the Swiss National Science Foundation 

(grant 310030_127184), to J.H. C.D-F. was a FPU fellow of the Spanish 

Government and received from that Government a bursary for short-time work 

in Zurich. The original mutation analysis of some CPS1D patients was kindly 

supported by Orphan Europe. This support does not involve any conflict of 

interest. 

 

 

2.3.7 References 
 

Adzhubei, I.A., Schmidt, S., Peshkin,  L., Ramensky, V.E., Gerasimova, A., 

Bork,  P., Kondrashov, A.S. Sunyaev, S.R., 2010. A method and server for 

predicting damaging missense mutations. Nat. Methods 7, 248-249. 

Alonso, E., Cervera, J., Garcia-Espana, A., Bendala, E., Rubio, V., 1992. 

Oxidative inactivation of carbamoyl phosphate synthetase (ammonia). 

Mechanism and sites of oxidation, degradation of the oxidized enzyme, and 

inactivation by glycerol, EDTA, and thiol protecting agents. J. Biol. Chem. 

267, 4524–4532. 

Alonso, E., Rubio, V., 1995. Affinity cleavage of carbamoyl-phosphate 

synthetase I localizes regions of the enzyme interacting with the molecule of 

ATP that phosphorylates carbamate. Eur. J. Biochem. 229, 377–384. 

Bender, D.A., 2012. Amino acid metabolism. 3rd edition. Wiley-Blackwell, 

Oxford. 

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye 

binding. Anal. Biochem. 72, 248-254. 

Brusilow, S.W., Horwich, A.L., 2001. Urea cycle enzymes. In: Scriver CR, 

Beaudet AL, Sly WS, Valle D, editors; Child B, Kinzler KW, Vogelstein B, 

associated editors. The Metabolic and Molecular Bases of Inherited Disease, 

8e. New York: McGraw-Hill. Vol 2, p 1909-1963. 

Case, D.A., Cheatham T.E. III, Darden, T., Gohlke, H., Luo, R., Merz, K.M. Jr., 

Onufriev, A., Simmerling, C., Wang, B., Woods, R., 2005. The Amber 

biomolecular simulation programs. J. Computat. Chem. 26, 1668-1688 

Cervera, J., Conejero-Lara, F., Ruiz-Sanz, J., Galisteo, M.L., Mateo, P.L., 

Lusty, C.J., Rubio, V., 1993. The influence of effectors and subunit 



RESULTS. Chapter 3 

 

130 

 
 

interactions on Escherichia coli carbamoyl-phosphate synthetase studied by 

differential scanning calorimetry. J. Biol. Chem. 268, 12504-12511. 

Díez-Fernández, C., Hu, L., Cervera, J., Häberle, J., Rubio, V., 2014. 

Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using 

the recombinantly purified human enzyme: effects of CPS1 mutations that 

concentrate in a central domain of unknown function. Mol. Genet. Metab. 

112, 123-132. 

Díez-Fernández, C., Martínez, A.I., Pekkala, S., Barcelona, B., Pérez-Arellano, 

I., Guadalajara, A.M., Summar, M., Cervera, J., Rubio, V., 2013. Molecular 

characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using 

human recombinant CPS1 as a key tool. Hum. Mutat. 34, 1149-1159. 

Eeds, A.M., Hall, L.D., Yadav, M., Willis, A., Summar, S., Putnam, A., Barr, 

F., Summar, M.L., 2006.The frequent observation of evidence for nonsense-

mediated decay in RNA from patients with carbamyl phosphate synthetase I 

deficiency. Mol. Genet. Metab. 89, 80-86. 

Freeman, J.M., Nicholson, J.F., Masland, W.S., Rowland, L.P., Carter, S., 

Curnen, E.C., 1964. Ammonia intoxication due to a defect in urea synthesis. 

J. Pediat. 65, 1039-1040. 

Funghini, S., Donati, M.A., Pasquini, E., Zammarchi, E., Morrone, A., 2003. 

Structural organization of the human carbamyl phosphate synthetase I gene 

(CPS1) and identification of two novel genetic lesions. Hum. Mutat. 22, 

340-341. 

Gelehrter, T.D., Snodgrass, P.J., 1974. Lethal neonatal deficiency of carbamyl 

phosphate synthetase. N. Engl. J. Med. 290, 430-433. 

Häberle, J., Rubio, V., 2014. Chapter 4: Hyperammonemia and related 

disorders. In Blau N, Duran R, Gibson KM, Blaskovics M, Dionisi-Vici C, 

editors. Physician’s Guide to the diagnosis, treatment and follow-up of 

Inherited Metabolic Diseases, Springer-Verlag Heidelberg, pp. 67-72. 

Häberle, J., Schmidt, E., Pauli, S., Rapp, B., Christensen, E., Wermuth, B., 

Koch, H.G., 2003. Gene structure of human carbamylphosphate synthetase 1 

and novel mutations in patients with neonatal onset. Hum. Mutat, 21, 444. 

Häberle, J., Shschelochkov, O.A., Wand, J., Katsonis, P., Hall, L., Reiss, S., 

Eeds, A., Willis, A., Yadav, M., Summar, S., Consortium TUCD, Lichtarge, 

O., Rubio, V., Wong, L.J., Summar, M., 2011. Molecular defects in human 

carbamoyl phosphate synthetase I: Mutational spectrum, diagnostic and 

protein structure considerations. Hum. Mutat. 32, 579-589. 

Haraguchi, Y., Uchino, T., Takiguchi, M., Endo, F., Mori, M., Matsuda, I., 

1991. Cloning and sequence of a cDNA encoding human carbamyl 

phosphate synthetase I: molecular analysis of hyperammonemia. Gene 107, 

335-340. 

Hong, J., Salo, W.L., Lusty, C.J., Anderson, P.M., 1994. Carbamyl phosphate 

synthetase III, an evolutionary intermediate in the transition between 



RESULTS. Chapter 3 

 

131 

 

 

glutamine-dependent and ammonia-dependent carbamyl phosphate 

synthetases. J. Mol. Biol. 243, 131-140. 

Krissinel, E., Henrick, K., 2007. Inference of macromolecular assemblies from 

crystalline state. J. Mol. Biol. 372, 774-797. 

Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of 

the head of bacteriophage T4. Nature 227, 680-685. 

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., 

McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., 

Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. Clustal W and Clustal X 

version 2.0. Bioinformatics 23, 2947-2948. 

Li, B., Krishnan, V.G., Mort, M.E., Xin, F., Kamati,  K.K., Cooper, D.N., 

Mooney, S.D., Radivojac, P., 2009. Automated interference of molecular 

mechanisms of disease from amino acid substitutions. Bioinformatics 25, 

2744-2750. 

Martínez, A.I., Pérez-Arellano, I., Pekkala, S., Barcelona, B., Cervera, J., 2010. 

Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 

1 deficiency. Mol. Genet. Metab. 101, 311-323. 

McReynolds, J.W, Crowley, B., Mahoney, M.J., Rosenberg, L.E., 1981. 

Autosomal recessive inheritance of human mitochondrial carbamyl 

phosphate synthetase deficiency. Am. J. Hum. Genet. 33, 345-353. 

Meister, A., 1989. Mechanism and regulation of the glutamine-dependent 

carbamyl phosphate synthetase of Escherichia coli. Adv. Enzymol. Relat. 

Areas Mol. Biol. 62, 315-374. 

Morita, T., Mori, M., Tatibana, M., 1982. Regulation of N-acetyl-L-glutamate 

degradation in mammalian liver. J. Biochem. 91, 563-569. 

Nuzum, C.T., Snodgrass, P.J., 1976. Multiple assays of the five urea cycle 

enzymes in human liver homogenates. In Grisolia S, Báguena R, Mayor F, 

editors. The Urea Cycle. John Wiley and Sons, New York pp. 325-349. 

Nyunoya, H., Broglie, K.E., Widgren, E.E., Lusty, C.J., 1985. Characterization 

and derivation of the gene coding for mitochondrial carbamyl phosphate 

synthetase I of rat. J. Biol. Chem. 260, 9346–9356. 

Pekkala, S., Martínez, A.I., Barcelona, B., Gallego, J., Bendala, E., Yefimenko, 

I., Rubio, V., Cervera, J., 2009. Structural insight on the control of urea 

synthesis: identification of the binding site for N-acetyl-L-glutamate, the 

essential allosteric activator of mitochondrial carbamoyl phosphate 

synthetase. Biochem. J. 424, 211–220. 

Pekkala, S., Martínez, A.I., Barcelona, B., Yefimenko, I., Finckh, U., Rubio, V., 

Cervera, J., 2010. Understanding carbamoyl-phosphate synthetase 1 (CPS1) 

deficiency by using expression studies and structure-based analysis. Hum. 

Mutat. 31, 801-808. 

Rodriguez-Aparicio, L.B., Guadalajara, A.M., Rubio, V., 1989. Physical 

location of the site for N-acetyl-L-glutamate, the allosteric activator of 



RESULTS. Chapter 3 

 

132 

 
 

carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal 

domain. Biochemistry 28, 3070-3074. 

Rubio, V., Britton, H.G., Grisolia, S., 1983. Mitochondrial carbamoyl 

phosphate synthetase activity in the absence of N-acetyl-L-glutamate. 

Mechanism of activation by this cofactor. Eur. J. Biochem. 134, 337-343. 

Rubio, V., Grisolía, S., 1981. Treating urea cycle defects. Nature 292, 496. 

Rubio, V., Ramponi, G., Grisolia, S., 1981. Carbamoyl phosphate synthetase I 

of human liver. Purification, some properties and immunological cross-

reactivity with the rat liver enzyme. Biochim. Biophys. Acta. 659, 150-160. 

Shigesada, K., Aoyagi, K., Tatibana, M., 1978. Role of acetylglutamate in 

ureotelism. Variations in acetylglutamate level and its possible significance 

in control of urea synthesis in mammalian liver. Eur. J. Biochem. 85, 385-

391.  

Sonoda, T., Tatibana, M., 1983. Purification of N-acetyl-L-glutamate 

synthetase from rat liver mitochondria and substrate and activator specificity 

of the enzyme. J. Biol. Chem. 258, 9839-9844. 

Stewart, P.M., Walser, M., 1980. Short term regulation of ureagenesis. J. Biol. 

Chem.  255, 5270-5280. 

Summar, M.L., 1998. Molecular genetic research into carbamoyl-phosphate 

synthase I: molecular defects and linkage markers. J. Inherit. Metab. Dis. 21 

Suppl 1, 30-39. 

Summar, M.L., Hall, L.D., Eeds, A.M., Hutcheson, H.B., Kuo, A.N., Willis, 

A.S., Rubio, V., Arvin, M.K., Schofield, J.P., Dawson, E.P., 2003. 

Characterization of genomic structure and polymorphisms in the human 

carbamyl phosphate synthetase I gene. Gene 311, 51-57. 

Summar, M.L., Koelker, S., Freedenberg, D., Le Mons, C., Häberle, J., Lee, 

H.S., Kirmse, B., European Registry and Network for Intoxication Type 

Metabolic Diseases (E-IMD). http://www.e-imd.org/en/index.phtml; 

Members of the Urea Cycle Disorders Consortium (UCDC). 

http://rarediseasesnetwork.epi.usf.edu/ucdc/, 2013. The incidence of urea 

cycle disorders. Mol. Genet. Metab. 110, 179-180. 

Thoden, J.B., Raushel, F.M, Benning, M.M., Rayment, I., Holden, H.M., 1999. 

The structure of carbamoyl phosphate synthetase determined to 2.1 Å 

resolution. Acta Crystallogr. D. Biol. Crystallogr. 55, 8-24. 

Tuchman, M., Holzknecht, R.A., 1990. N-acetylglutamate content in liver and 

gut of normal and fasted mice, normal human livers, and livers of 

individuals with carbamyl phosphate synthetase or ornithine 

transcarbamylase deficiency. Pediatr. Res. 27, 408-412. 

Uchino, T., Endo, F., Matsuda, I., 1998. Neurodevelopmental outcome of long-

term therapy of urea cycle disorders in Japan. J. Inherit. Metab. Dis. 21 

Suppl. 1, 151-159. 



RESULTS. Chapter 3 

 

133 

 

 

Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., Taylor, R.D., 2003. 

Improved protein-ligand docking using GOLD. Proteins 52, 609-623. 

Xie, Y., Ihsanawati, K., Kishishita, S., Murayama, K., Takemoto, C., Shirozu, 

M., 2007. RIKEN Structural Genomics/Proteomics Initiative. Crystal 

structure of MGS domain of carbamoyl-phosphate synthetase from Homo 

sapiens. Protein DataBank file 2YVQ, http://www.rcsb.org/pdb. 

  



RESULTS. Chapter 3 

 

134 

 
 

 

 

 

 

 

 

 



DISCUSSION 

 

135 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.   Discussion 

  



DISCUSSION 

 

136 

 
 

  



DISCUSSION 

 

137 

 

 

Since the main body of this PhD dissertation consists of three publications 

having their independent discussions, in this global discussion we will try to 

avoid as much as possible repetition of topics already discussed, dealing with a 

limited number of relevant and untreated issues. 

 

A point that we have not addressed in the Results section concerns the bases of 

the reported impact on vascular pathology of a widespread polymorphism, 

p.Thr1406Asn, that maps in the allosteric domain of the human enzyme [134-

139]. We have worked here with the most frequent form of this polymorphism, 

the threonine variant (rs1047891, Ensemble database; allelic frequencies of 

Thr/Asn forms, 0.7/0.3; 

http://www.ensembl.org/Homo_sapiens/Variation/Explore?db=core;r=2:210675

283-210676283;v=rs1047891;vdb=variation;vf=823866), since Powers-Lee’s 

group, using the S. pombe-expressed enzyme, only reported minor effects of the 

p.Thr1406Asn substitution: ~20% decrease in kcat and 1.2-fold, 1.7-fold and 

1.5-fold increases in the values for the Km
ATP, Km

ammonia and Ka
NAG, respectively 

[140]. Given the modesty of these changes and the large amount of extra time 

and effort needed, we decided to set aside the idea of introducing all the 

presently studied mutations in one and the other allelic forms of the enzyme for 

this polymorphism. 

 

Another question not dealt with in the Results section is the path that led us to 

utilize the baculovirus/insect cell system for expression of CPS1. We needed a 

system capable of producing large amounts of the pure human protein and that 

allowed mutations to be introduced at will. These requirements were essential 

for proper characterization of the enzyme activity and, where necessary, of the 

partial activities of the enzyme (much less active than the complete reaction). It 

was also convenient to have a highly pure enzyme preparation for determining 

the kinetic parameters of even very poorly active enzyme mutants. In addition, 

it was anticipated that a robust system was needed to be able to isolate the tiny 

fraction of the enzyme that might be anticipated to be soluble with some of the 

mutants. Another goal of these studies was crystallographic, which was also 

expected to require large amounts of highly pure protein even with the 

miniaturization and automation of present-day crystallographic techniques. 

 

Early attempts of recombinant expression in our group were carried out in Dr. 

Cervera's laboratory using cloned mature rat CPS1. E. coli, the methanol-

consuming yeast Pichia pastoris and human embryonic kidney 293T 

(HEK293T) cells were used without real success, since the expression levels of 

soluble protein were always low (unpublished results). The finding by Powers-

Lee [163] that the recombinant mature CPS1 from Rana catesbeiana could be 

expressed in Schizosaccharomyces pombe led the group of Dr. Cervera to begin 
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the process of attempting this expression in S. pombe, simultaneously with an 

attempt of using baculovirus and insect cells. The latter cells appeared 

promising: their animal nature, the strength of the promoters used and the 

reputation of having an excellent folding machinery (see for example 

http://www.embl.de/pepcore/pepcore_services/cloning/choice_expression_syste

ms) made them good (although expensive and time-consuming) candidates for 

expressing animal CPS1. Good results were obtained with this system before 

the S. pombe system was ready in our hands, and this led us to adopt 

exclusively the baculovirus/insect cell expression system.  

 

We feel that the utilization of this expression system has been rewarding 

concerning the understanding of the disease-causing role of CPS1D-associated 

mutations. Up to now our group has analyzed, either using the rat [14] or 

human recombinant CPS1 (Chapters 1-3 of the Results), 40 clinical missense 

mutations and 2 polymorphisms. While our studies proved minor or no 

differences relative to the wild-type in activity or stability of the two 

polymorphic forms, most of the clinical mutations studied revealed a disease-

causing role either because of gross misfolding, important reduction in enzyme 

stability, inactivation of the enzyme without evidence for misfolding, reduced 

kcat, or reduced apparent affinity for a substrate or for the essential CPS1 

activator NAG. In some cases several of these effects coexisted for the same 

mutant as for many mutations of the integrating domain (Chapter 2 of the 

Results). For these mutants highly decreased amounts of soluble enzyme were 

produced, indicating an unfavorable partitioning of the mutant enzyme between 

the well-folded and misfolded forms during the folding process. However, our 

observations showed also that the soluble, apparently well-folded fraction of the 

enzyme exhibited in many cases important kinetic aberrations.  

 

In any case, the overwhelming evidence extracted from our experiments is that 

most of the mutations reported in patients with CPS1D [12] that have been 

examined here were associated with important aberrations detected "in vitro", 

clearly indicating a disease-causing role. This evidence challenges our initial 

proposal that missense mutations found in patients are uncertain to have a 

disease-causing role. Since most reported missense mutations that we have 

examined "in vitro" are pathogenic, it is likely that the vast majority of all the 

mutations in the patient database are pathogenic. Indeed, evidence against their 

being polymorphisms (at least frequent polymorphisms) is growing with the 

growth of human genomes and exomes being analyzed, since otherwise it 

would be increasingly possible that they are found in homozygosis in some of 

the persons that have been fully sequenced already (see for example 

http://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=Graphics&list_uids=1

373). Nevertheless, this tentative conclusion should be nuanced by the fact that 
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only two non-catalytic domains and a small selection of mutations in other 

domains has been studied "in vitro" thus far. Dr. Rubio's laboratory, in 

collaboration with Dr. Häberle, are continuing studies in other CPS1 domains to 

try to substantiate or refute this provisional conclusion. In any case, predictions 

based on in vitro results must be prudent, given the still unknown elements that 

may be behind some still rare but nevertheless real cases of variability in the 

clinical presentation associated with the same mutant alleles, as reported for 

two splicing mutations in two cases of CPS1 deficiency [209].  

 

Apart from testing the disease-causing role of CPS1D mutations, the 

baculovirus/insect cell expression system used here enabled us to deepen into 

our understanding of the roles of CPS1 domains and of CPS1 activation by 

NAG. For example, although we have studied few mutations affecting the ~40 

kDa N-terminal region of unknown function of CPS1 (Chapter 1 of the 

Results), the results with those mutations studied here fit the lack of catalytic or 

substrate and NAG-binding function of this region. In contrast, a clear function 

of this region on enzyme stabilization and on activation of catalysis (kcat effect) 

has been documented here. The stabilizing role of this region recalls the strong 

stabilization triggered in E. coli CPS upon association of the small and large 

subunits of this bacterial enzyme [69]. The activating role of this region is also 

supported by prior studies of our laboratory [14] with the rat liver enzyme, in 

which the mutations p.Ser123Phe and p.His337Arg were found to importantly 

reduce kcat without affecting the apparent affinities for the substrates or for 

NAG. This activating role is supported also by the previous finding of Powers-

Lee’s group [140] that the removal of the entire N-terminal region of the human 

enzyme decreased 700-fold enzyme activity. With E. coli CPS it had been 

found that the occupation of the glutamine site in the small subunit of the 

enzyme (which corresponds to the N-terminal region of CPS1) activates 

catalysis by the large subunit [6], an effect that might be reminiscent of the N-

terminal region-dependent activation observed with CPS1. In summary, our 

present findings and prior observations of our laboratory and of Powers-Lee's 

group clearly exclude an absolute requirement of the N-terminal region for 

catalysis, but they provide strong reasons (stability and activation) for the 

retention by CPS1 of this N-terminal region despite the loss of the glutaminase 

activity associated to this region in all CPSs except CPS1 [1-3]. In any case, 

more experiments are required to further substantiate the role in CPS1 of the 

most N-terminal domain of this N-terminal region, since the glutaminase 

activity-attenuating function reported for this domain in the glutamine-utilizing 

CPSII [160] cannot operate in CPS1, which lacks glutaminase activity.  

 

Concerning the phosphorylation domains of CPS1, our site-directed 

mutagenesis studies have been restricted to two mutations in the bicarbonate 
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phosphorylation domain. The reason for not exploring more these two 

homologous domains is the fact that, given the identity of function of these 

domains with the corresponding domains of other CPSs [1-3], less novel 

information could be gathered from mutations mapping in these domains. 

Actually, there is a long history of mutational studies with substitutions in these 

domains of other CPSs, particularly of E. coli CPS [92,153,154,210-213]. 

Furthermore, since these domains closely resemble biotin carboxylase [82], an 

enzyme component that also catalyzes bicarbonate phosphorylation [83,84], the 

mutations introduced into this last enzyme [214,215] also provided information 

on the functions of the corresponding residues of CPS1. 

 

In any case, of the two mutations affecting the bicarbonate phosphorylation 

domain of human CPS1 that were introduced in the present studies (Chapter 1 

of the Results), p.Ala438Pro inactivated the enzyme and p.Thr544Met had 

paramount effects on the apparent Km value for bicarbonate (~60-fold increase) 

and on the Ka value for NAG (~25-fold increase),  whereas the Vmax was 

decreased ~five-fold and the Km
ATP was increased ~4-fold. These results 

suggest a primary affectation of the site for bicarbonate with a secondary effect 

on the affinity for NAG stemming from the cross-talk between the bicarbonate 

phosphorylation site and the NAG site [40,61]. Interestingly, in pioneer work 

[87], our group introduced in E.coli CPS the p.Ala126Met mutation, aiming at 

replicating in this bacterial enzyme the p.Thr544Met mutation of human CPS1. 

The observed effects were similar to those found here with the human enzyme: 

the Km values for bicarbonate and for ATP were increased 15-fold and 4-fold, 

respectively, and the Vmax was decreased, in that case 15-fold. Furthermore, 

ornithine activation of the bicarbonate phosphorylation step was hampered 

(tested at a single concentration of ornithine), an effect that may be reminiscent 

of the negative effect of p.Thr544Met on the activation by NAG of human 

CPS1.  

 

These findings with the p.Thr544Met and p.Ala126Met respective mutations of 

human and E. coli CPSs provide strong support for the utilization of E. coli 

CPS as a surrogate of human CPS1. Nevertheless, they clearly show that the 

effects of placing the same amino acid residue at a given location in the 

sequence may differ quantitatively depending on whether the enzyme is human 

CPS1 or bacterial CPS. In this work no other phosphorylation domains 

mutations have been examined for their effects on both the human and the 

bacterial enzymes. However, our group introduced [14] in rat CPS1 the human 

clinical mutations affecting the bicarbonate phosphorylation domain 

p.Thr471Asn, p.Gln678Pro and p.Pro774Leu, whereas the mutations 

corresponding to the last two of these mutations, p.Gln262Pro and p.Pro360Leu 

were introduced into the bacterial enzyme [87], studying their effects. Of these 
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mutations p.Gln678Pro and its bacterial counterpart p.Gln262Pro had as their 

major effects the dramatic destabilization of the corresponding enzymes. 

Human mutation p.Pro774Leu and the bacterial counterpart p.Pro360Leu 

dramatically decreased enzyme activity, in the first case not permitting activity 

detection, whereas in the second the detection was possible but it was heavily 

dependent on the presence of the activator ornithine. With the bacterial enzyme 

it was concluded [87] that the equilibrium between the inactive and active 

conformations of the enzyme that is displaced by ornithine towards the active 

form was heavily displaced in the mutant in the direction of the inactive 

conformation. Given the fact that CPS1 is much less active in the absence of the 

activator NAG than the E. coli enzyme in the absence of ornithine, the lack of 

activity of the rat enzyme with the mutation p.Pro774Leu might stem from a 

similar displacement of the equilibrium of the mutant CPS1 towards the 

inactive form. It is interesting that the p.Thr471Asn mutation also caused in the 

rat enzyme a large decrease in the affinity for NAG, highlighting the 

importance of the bicarbonate phosphorylation domain in the process of CPS1 

activation by NAG, leading to propose that for this mutant the cross-talk 

between the phosphorylation site of the bicarbonate phosphorylation domain 

and the NAG binding site in the C-terminal domain of CPS1 is hampered. 

Therefore, the findings concerning mutants of the bicarbonate phosphorylation 

domain of CPS1 not only stress the expected role of this domain in bicarbonate 

binding and phosphorylation, but they also show the importance of this domain 

for ensuring a good affinity of the enzyme for NAG and good NAG activation. 

In addition, the comparison of the results with the corresponding mutations in 

the bacterial and rat enzymes further supports the value of the bacterial enzyme 

as a model of human CPS1, while highlighting that quantitative differences 

should be expected even for qualitatively similar effects with one and the other 

enzyme. 

 

Concerning the carbamate phosphorylation domain, we have not introduced any 

mutation mapping therein in rat or human CPS1. However, our group 

introduced in E. coli CPS [87] three mutations, p.Val640Arg, p.Arg675Leu and 

p.Ser789Pro, that are the counterparts of the human CPS1 mutations affecting 

the carbamate phosphorylation domain p.Ile1054Arg, p.Arg1089Leu and 

p.Ser1203Pro. Of these E. coli CPS mutations, p.Ser789Pro selectively 

abolished catalysis of the carbamate phosphorylation step, whereas the other 

two mutations drastically decreased the activity for this step, also decreasing the 

affinity for the nucleotide and for carbamate (monitored as affinity for 

carbamoyl phosphate). Studies of the two partial reactions of the enzyme that 

reflect the individual steps of bicarbonate phosphorylation and carbamate 

phosphorylation showed that the p.Val640Arg mutation (and, by inference, the 

human CPS1 p.Ile1054Arg mutation) dramatically slows both phosphorylation 
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steps, leading to the conclusion [87] that this mutation, by primarily hampering 

the opening of the carbamate phosphorylation site to allow product release and 

nucleotide binding, also hampers the opening of the bicarbonate 

phosphorylation site. This supports the view (based on earlier mechanistic 

studies of the CPS1 reaction [52-55]) that this opening of both phosphorylation 

sites is a concerted process occurring simultaneously at both nucleotide sites. 

The effects of the p.Arg675Leu mutation (and of p.Arg1089Leu of human 

CPS1) points to selective near-abolition of catalysis at the carbamate 

phosphorylation site, whereas the effects of the p.Ser789Pro (and thus of 

p.Arg1089Leu of human CPS1) mutation were attributed to disturbance of the 

K+ loop of the bicarbonate phosphorylation domain, a loop that is considered 

essential for activity [77].  

 

The only mutations affecting the carbamate phosphorylation domain that were 

studied directly on the recombinant human enzyme were the p.Cys1327Ala and 

p.Cys1337Ala mutations [164], two cysteine residues that change strongly their 

accessibility and even their ability to form an intramolecular disulfide bridge 

depending on whether NAG is bound or is not bound to the enzyme [213,214].  

The p.Cys1327Ala mutation decreased 5-fold catalytic efficiency but it 

increased 7-fold the apparent affinity for NAG. This mutation was proposed to 

decrease protection of the enzyme against oxidative insults [164], something 

that could also apply to the p.Cys1327Arg mutation reported in a patient with 

CPS1D [12]. Nevertheless, the inactivating effect of the oxidation of these 

cysteines might be due to their cross-linking by a disulfide bridge [216,217], 

which probably compromises NAG activation of the enzyme (see below). 

 

Given the extensive treatment and discussion in Chapter 2 of the Results of the 

numerous mutations introduced into the Integrating domain, we will make little 

mention here of this domain. As it might have been anticipated from the central 

location of this domain, which makes extensive contacts with both 

phosphorylation domains and which also contacts the N-terminal region of the 

enzyme (see Chapter 2 of the Results), a strong integrating and stabilizing 

function has been detected for this domain. Nevertheless, although misfolding 

and/or destabilization are the major effects of mutations falling on this domain, 

being the reason for the prominence of this domain in the mutational landscape 

of CPS1D patients [12], decreased Vmax and even decreased apparent affinity 

for NAG and ATP have been observed with some of the mutations mapping 

therein. These observations suggest that this domain may be involved directly 

or indirectly in the cross-talk between the NAG site and the catalytic centers 

and in the concerting of the opening of both active centers in the two 

phosphorylation domains [87, 88]. Furthermore, this domain contacts the active 

site of the bicarbonate phosphorylation domain, which is to be opened [88].   
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Similarly, we have dealt extensively in Chapter 3 of the Results with the 20 

kDa C-terminal domain and thus we will make little mention of it here. This 

domain is known to harbor the binding sites for effectors in different CPSs 

[13,17,68-71,89-92]. The relatively low frequency of mutations mapping in this 

domain that cause misfolding possibly account for the lack of particular 

prominence of this domain in the clinical mutation landscape [12]. However, 

the frequency among the mutations affecting this domain of those that decrease 

the affinity for NAG endow this domain with particular therapeutic potential, 

rendering these mutations good candidates for using N-carbamylglutamate 

(NCG) for helping saturate in these cases the NAG site. It has to be 

remembered that, given the protein restriction that is generally applied to 

patients with urea cycle disorders [27,30], NAG levels might be low in these 

treated patients even if ammonia levels were increased. If this were the case, 

patients carrying NAG site-affecting mutations would be negatively affected by 

the low NAG levels, and in these cases NCG might be highly beneficial. 

Actually, it is to be considered whether mutations that do not affect the NAG 

site but that nevertheless increase the Ka for NAG because of the cross-talk 

between phosphorylation and allosteric domains might also benefit from NCG 

saturation therapy. 
 

An important inference resulting from the present studies concerns the 

mechanism of NAG activation of CPS1. Clearly, a movement in the β4-4 loop 

belonging to the NAG site but being at the interface with the carbamate 

phosphorylation domain appears to be a key early event in the process of 

activation (Chapter 3 of the Results and Fig. 23). A loop of the carbamate 

phosphorylation domain (residues 1318-1332) and an interacting surface of the 

allosteric domain have also been identified here as key elements in the 

transmission of the allosteric signal from this last domain to the carbamate 

phosphorylation domain. Interestingly, Cys1327 belongs to the 1318-1332 loop, 

explaining why the trapping of this loop in an inappropriate conformation due 

to disulfide bridge formation with the nearby Cys1337 might prevent activation, 

causing loss of enzyme activity [216,217]. Interestingly, a loop (residues 778-

787) of the homologous bicarbonate phosphorylation domain has been 

proposed here (Chapter 3 of the Results) as the potential receiver of the 

allosteric signal in that phosphorylation domain, with passage of the signal via 

the 1318-1332 loop of the carbamate phosphorylation domain. Clearly, we do 

not know the details of this signal transmission process, but we have identified 

some crucial elements involved in such transmission. From our data and the 

structural model for human CPS1 it can be anticipated that NAG has long-range  
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effects, with propagation of a movement in the peripheral allosteric domain  to 

both phosphorylation centers. Given the mutual homology of both 

phosphorylation domains [1,74,77], the 1318-1332 and the 778-787 loops are 

homologous loops. Thus, these two loops may be expected to have similar 

interactions with other elements of the phosphorylation domain to which each 

loop belongs. Judged from the E. coli CPS structure [77], these two loops 

contact in both phosphorylation domains with the K+ loop and with other 

elements of the nucleotide site that are key elements of the catalytic machinery 

of these domains. This gives further credence to the view that similar NAG-

Figure 23. Graphic scheme of the CPS1/NAG switch for urea cycle control. 

Structural model of human CPS1 [97] in transparent surface representation, 

with the allosteric domain in cartoon representation and shown in the NAG-

free form (gray, PDB 2YVQ) and in the modelled NAG- and ADP-bound form 

(in yellow). The bound NAG molecule and the side chains of Thr1443 and 

Arg1453 (not labelled for clarity) are shown in sticks representation. Solid 

blue arrows indicate the proposed allosteric signal transmission path, whereas 

the broken arrow indicates the β4-4 loop movement. Transmission loops are 

shown in backbone string representation and are labeled. Black empty arrows 

schematize the path of carbamate from the bicaronate phosphorylation site to 

the carbamate phosphorylation site. Green and brown denote one and the 

other phosphorylation domains. A mini urea cycle is included to symbolize the 

cycle-controlling role of the CPS1 step 
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triggered conformational changes in these two homologous loops could have 

similar effects on the corresponding phosphorylation domains. Thus, the 1318-

1332 and the 778-787 loops can be called signal transmission loops (Fig. 23). 

Since they are also found in E. coli CPS [77], they may transmit the allosteric 

signals that operate in other CPSs. The identification of these two loops paves 

the way for further site-directed mutagenesis studies for exploration of the 

signal transmission process within the catalytic parts of the enzyme molecule. 

 

Despite all the above, a picture in which the cross-talk between the NAG site 

and both phosphorylation domains occurs exclusively via the 1318-1332 and 

the 778-787 loops may be oversimplistic, given the 50-fold increase in Ka
NAG 

and ~4-fold decrease in kcat 
 caused by the p.Tyr1491His mutation [14]. This 

mutation maps nine residues upstream from the C-terminus, in a region that 

when digested in rat liver CPS1 resulted in a very important decrease in the  

 

Figure 24. Model of the most C-terminal part of the allosteric domain (in grey) and its 

modelled (on the basis of the E. coli CPS structure) relations with both catalytic 

domains (green and orange, in surface representation of the relevant parts of these 

domains) [97]. The side chains of the residues reported to be mutated in patients with 

CPS1D, T471 and Y1491 [12], are shown in blue sticks, with blue dots representation 

of its Van der Waals sphere to highlight their clamping between both phosphorylation 

domains. Note the long grey string that connects this residue to the remainder of the 

allosteric domain (not shown) to suggest that the catalytic domains may exert traction 

on this domain if, because of conformational changes, they move away from it, 

bringing with them the clamped Y1491. 

 



DISCUSSION 

 

146 

 
 

affinity for NAG [66]. It appears highly unlikely that this region, not 

represented in the crystal structure of the allosteric domain of human CPS1 

[93], directly participates in the NAG site. If similar to E. coli CPS [77], this C-

terminal part of the enzyme would project away from the allosteric domain 

body, sitting on both phosphorylation domains, with the phenolic ring of 

Tyr1491 sandwiched between them (Fig. 24). In this respect, the already 

discussed bicarbonate phosphorylation domain mutation p.Thr471Asn [12] 

affects a residue that in the structure of E. coli CPS (Thr56) belongs to a 

hydrophobic cluster that also includes Val1065, the bacterial counterpart of 

human CPS1 Tyr1491. Since, as mentioned above, the p.Thr471Asn mutation 

dramatically decreased the affinity for NAG of rat CPS1 [14], this hydrophobic 

cluster appears a clear candidate to being involved in the passage of signals 

between the bicarbonate phosphorylation domain and the enzyme C-terminus. 

In this respect it is worth remembering that NAG binding studies [61] revealed 

a strong increase in CPS1 affinity for NAG when ATP was added. Thus, ATP 

binding to the phosphorylation domains enhances NAG binding by the 

allosteric domain. Perhaps, if the C-terminal region of CPS1 anchors the 

allosteric domain on both phosphorylation domains as in E. coli CPS, this 

region could transmit signals to the core of the allosteric domain by pulling 

from it if ATP binding alters the relative disposition of the catalytic domains 

with respect to the allosteric domain. 

 

 Summarizing all our work, we have provided a relatively easy instrumental 

system for testing effects of amino acid mutation and perhaps also of amino 

acid posttranslational modifications on the catalytic and controlling functions of 

CPS1. This system, by providing very large amounts of pure human CPS1, has 

opened the way to determining the crystal structure of human CPS1, a feat that 

is presently at reach. Thus, in collaboration with my work, other group 

members (Luis Mariano Polo and Sergio de Cima) have succeeded in obtaining 

well-diffracting crystals of CPS1 grown in the presence and in the absence of 

mixtures of NAG, ADP and Mg2+ (Fig. 25). Determination of these crystal 

structures is likely to provide a highly detailed description of the process of 

NAG activation, helping answer many unclarified questions on CPS1 (for 

example, which is the reason for the high affinity of CPS1 for ammonia). I will 

be an author in the expected manuscript reporting the anticipated structural 

findings, but for reasons of time and since I will not be the main author, this 

manuscript could not be included into the present PhD dissertation. 

 

I would like to end this discussion by highlighting the future potential of the 

application of the present system to human CPS1. It may help determine the 

role of posttranslational modifications on CPS1 function and via CPS1, on urea 

cycle control. As already mentioned in the Introduction, proteomics studies are 
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expanding our view of the modifications observed in the whole human and 

animal proteome, and CPS1 has not escaped this trend, actually having been 

signalled by a number of studies [129-133] as the subject of changes having 

potentially high impact on urea cycle control and even linked to aging [129] 

and to secondary hyperammonemia [130]. Although the structure of CPS1 will 

eventually provide a reference frame for judging the potential impact of these 

modifications on human CPS1 activity and control, it would be essential to 

analyze each amino acid change in a clean system like the one used here to 

express CPS1. In a first approximation, this could be done by making amino 

acid replacements that could mimic the posttranslational modifications 

Figure 25. Left, crystals of human CPS1 without (top) and 

with (down) NAG and ADP. Right, illustration of the 

diffraction pattern (NAG/ADP form, up to 2.6 Å resolution).  



DISCUSSION 

 

148 

 
 

(similarly to the substitution of phosphorylated serines by aspartate or 

glutamate) or even by exploiting new procedures for inserting in the sequence 

abnormal amino acids [218]. The long-term aim would be to reconstitute in 

vitro the whole posttranslational modifying/demodifying system, or to 

coexpress in the insect cells other elements of the modifying machinery.  

 

In addition, our work has opened a way for future personalized treatment of 

CPS1D patients. In the case of phenylketonuria, a clinically useful achievement 

was the observation of phenylalanine hydroxylase stabilization by chaperoning 

by its essential cofactor tetrahydrobiopterin [32]. Likewise, in this work we 

proved the stabilization of CPS1 by its substrates and activators NAG and NCG 

(Chapter 1 of Results). However, the possibility of finding more efficient 

pharmacological chaperones can be now approached thanks to our expression 

system, and these could eventually be used to treat CPS1D patients with 

unstabilizing mutations. In the same way, as above mentioned, CPS1D patients 

with NAG site-affecting mutations and with mutations outside the NAG-

binding domain but which are involved in the cross-talk between 

phosphorylation and allosteric domains could benefit from the commercially-

available NCG saturation therapy. However, some mutations might totally 

hamper binding of activating molecules in the NAG-binding site. In these cases, 

other activating molecules could be tested, that, like glycerol, (Chapter 1 of 

Results) activate CPS1 to some extent by unknown mechanisms that do not 

appear to involve the NAG site. As a matter of fact, this new research line has 

already been started as part of my postdoctoral work supervised by Dr. Häberle.  
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1. Recombinant human CPS1 is efficiently produced in a commercial 

baculovirus/insect cell system. The recombinant enzyme mimics 

natural CPS1 in its kinetic and molecular properties and in needing 

the essential activator N-acetyl-L-glutamate (NAG) although 

cryoprotectants can partially replace NAG. 

 

2. Limited proteolysis showed that recombinat CPS1 has the same 

domain composition as other CPSs, with interdomain hinges at 40 

kDa and 20 kDa from the enzyme N-terminus and C-terminus, 

respectively.  

 

3. This CPS1 production system is effective for testing the effects on 

the enzyme of the missense mutations found in patients with CPS1 

deficiency (CPS1D). For patients with informative genotypes 

generally there was agreement between the severity of the effects in 

vitro and the seriousness of the patient phenotype. Lack of any in 

vitro effect of two trivial polymorphisms confirmed the high value 

of this system for discriminating between disease-causing and non-

causing sequence variants of CPS1. 

 

4. A disease-causing role has been proven for the majority of the 

missense mutations identified in CPS1D patients that were tested 

with this system. Some mutations caused gross misfolding or 

markedly decreased enzyme stability, and/or they inactivated the 

enzyme or triggered kinetic aberrations such as decreased apparent 

kcat or decreased apparent affinity for one or the other of the three 

substrates or for the activator NAG.  

 

5. The effects of the tested CPS1D mutations that mapped in the N-

terminal 40-kDa region agree with the view that this region, dispite 

having become catalytically inactive, has been preserved in CPS1 

because of its stabilizing and enzyme-activating actions. 

 

6. The effects of the tested mutations mapping in the bicarbonate 

phosphorylation domain (the more N-terminal domain of the 120-

kDa C-terminal moiety of CPS1) affected bicarbonate binding 

and/or catalysis, but they also decreased the affinity for NAG, 

confirming the existence of cross-talk between the bicarbonate 

phosphorylation domain and the NAG-binding domain. 
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7. A small central domain of previously unknown function that is 

intercalated between both phosphorylation domains is concluded to 

have high mutational eloquence in CPS1D because its mutations 

frequently cause enzyme misfolding. Thus, this domain plays a 

paramount integrating role in the multidomain enzyme architecture, 

and it is called from here on the "Integrating Domain". 

 

8. The low mutational eloquence in CPS1D of the C-terminal domain 

is possibly due to the fact that mutations mapping in this domain 

rarely destabilize importantly or cause gross misfolding of CPS1. 

Some of these mutations inactivate the soluble enzyme and most of 

them decrease enzyme activity, with many mutations strongly 

decreasing the affinity for NAG. Thus, the negative effects of most 

of these mutations are largely due to interference with NAG binding 

or to hampered transmission of the activating signal to the 

phosphorylation domains of the enzyme. 

 

9. A mechanism for NAG activation based on the observation of the 

effects of missense mutations is proposed in which NAG triggers a 

movement of the β4-α4 loop of the C-terminal domain that 

drastically alters the interactions of this loop with the carbamate 

phosphorylation domain. Signal transmission involves Arg1453 

from helix α4 and Asp1322 from the 1318-1332 loop of the 

carbamate phosphorylation domain. This loop, and the homologous 

778-787 loop of the bicarbonate phosphorylation domain, are called 

here the signal transmission loops because they interact with the 

active centers of both phosphorylation domains and are proposed 

here to be the mediators of NAG activation. 
 

10. The NAG analogue and orphan drug N-carbamyl-L-glutamate 

(NCG) is proposed to be potentially useful in the treatment of CPS1 

deficiency due to mutations that decrease the affinity for NAG 

(saturation therapy) and of those that decrease enzyme stability 

(pharmacological chaperoning) since in the presence of ATP, NCG 

is found here to stabilize CPS1.  
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