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Abstract

This paper summarizes the research that has been de-
veloped by the authors for the last six years, concerning
the design of planar wideband antennas for portable
devices. Basic structures combining electric and mag-
netic elements are proposed, which lead to antennas
with large bandwidth. Thus, by using these basic struc-
tures, a polarization diversity antenna, a wideband an-
tenna for DVB-H applications and a wideband MIMO
antenna have been proposed for wireless applications
in mobile terminals. Prototypes of all the antennas have
been fabricated and measured at iTEAM and/or CWC
facilities.

Keywords: Wideband antenna, complementary antenna,
diversity antenna, MIMO antenna, mobile terminals.

1. Introduction

Nowadays there are increased demands for multiple
radio interfaces in wireless devices to cover different
communication services such as LTE (Long-Term Evolu-
tion), UMTS and GSM mobile standards, DVB-H, Radio
Frequency Identification (RFID), Bluetooth, Near-Field
Communications (NFC), WLAN, and mobile WiMAX.

Moreover, the trend in wireless communications is to in-
crease the number of operating frequency bands when,
at the same time, data transmission rate and spectral
efficiency must be improved. Multiple antennas can be
used to cover multiple frequency bands as well as to

provide higher data rate and spectral efficiency. How-
ever, the space available for realizing multiple antennas
is limited.. Thus, implementing multiple antennas into
a small multi-standard device becomes a challenge. One
way to address this problem is to reduce the number of
antenna elements by covering multiple radio interfaces
over a wide frequency range through the use of fre-
guency tunable [1]-[3], multi-band [4]-[6], or wideband
antennas [7]-[9].

This paper presents some proposals of wideband anten-
nas that consist of the combination of a magnetic notch
with different shapes and an electric dipole or mono-
pole as excitation elements. These antennas can be
used as the basis for more complex structures in multi-
standard mobile terminals.

In Section 2, the basic antennas combining a magnetic
notch and an electric dipole/monopole are presented.
Different notch shapes are proposed and the resulting
structures are studied in terms of simulated and/or
measured antenna parameters such as input impedance
and scattering parameters, to show their wideband be-
haviour. Then, these antennas are used as the basis for
more complex structures in mobile terminals. In Section
3, a wideband antenna with polarization diversity is pro-
posed for mobile terminals to cover UMTS (2.1 GHz),
Bluetooth (2.4 GHz), WLAN (2.45 GHz), LTE (1.8-3.8
GHz), and WiMAX (2.3-3.6 GHz) standards. In Section
4, a double-band antenna is proposed to cover DVB-H
and LTE standards, and in Section 5 a wideband an-
tenna for Multiple-Input Multiple-Output (MIMO) appli-
cations is designed. Finally, Section 6 presents the
conclusions of the paper.
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Implementing multiple antennas into a small multi-stan-
dard device becomes a challenge. One way to address
this problem is to reduce the number of antenna ele-
ments by covering multiple radio interfaces over a wide
frequency range through the use of wideband antennas.

2. Basic wideband radiating
structures based on the combination
of electric and magnetic elements

This section presents different proposals of wideband
antennas based on the combination of an electric dipole
and a magnetic slot in a conducting ground plane [10].
Two different slot structures are presented: A notch [11]
and a square-shaped slot [12], whose geometries are
shown in Fig. 1 (figures at the right ends). A wideband
antenna is then obtained by means of creating a sort of
magnetic boundary condition [13] with the combination
of the dipole and the slot. In order to establish this con-
dition, the electric dipole is used as an excitation ele-
ment and is closely spaced (0.5 mm) to the conducting
ground plane, which includes a magnetic slot.

Fig. 1 (a) shows three different antenna structures that
will be compared in terms of the input impedance (real
and imaginary parts separately) and reflection coeffi-
cient. Analysis of the structures will be made using com-
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Figure 1. Basic wideband radiating structures with (a)
a notch (QCA1) and (b) a square-shaped slot (QCA2). An-
tenna structures to be compared with the basic structures
are presented in the same figure.

mercial CST Microwave Studio electromagnetic simula-
tion tool [14]. The compared antennas are a simple elec-
tric dipole (left), a magnetic slot cut into an electric
conductor (middle) and a combination of both (right),
which results in the proposed wideband structure. This
structure behaves similar as a complementary antenna,
so it will be referred as Quasi-Complementary Antenna
1 (QCAT1). Additionally, Fig. 1 (b) presents an electric di-
pole with a magnetic square-shaped slot cut into a con-
ducting ground plane. The antenna is considered to be
an improved structure of that presented in Fig. 1(a) and
it will be referred as Quasi-Complementary Antenna 2
(QCA2). The distance of the electric dipole from the
conducting ground plane is 0.5 mm, as in the notch
case. This structure is compared in the same terms as
the notch structure: to a dipole, to a dipole closely
spaced to an electric conductor, and to a symmetrically
excited square slot. Symmetrical excitation means that
both sources have the same amplitude and phase.

In Fig. 2, the antennas are compared in terms of the
real and imaginary parts of the input impedance. No-
tice that Active Z is determined here as (Z11+Z45), being
Z14 and Z,, the self and mutual port impedance, re-
spectively. Active Z parameter represents a symmetrical
excitation (with same amplitude and phase) of both
sources in the square slot shown in Fig. 1 (b). As it can
be observed in the imaginary part plot in Fig. 2 (b), the
complementary behavior of the electric dipole and the
magnetic slot compensates each other, in terms of ca-
pacitive (magnetic slot) and inductive behavior (electric
dipole), over a wide frequency range. This is the main
reason for the wideband characteristics of the anten-
nas. At the same time, the average value of the real
part of the antenna impedance with the notch in Fig.
2 (a) is approximately 125 Q, in contrast to the mag-
netic slot with 250 Q. Similarly, for the structure with
the square-shaped slot, the same values are approxi-
mately 150 Q and 200 Q.

Fig. 3 represents the reflection coefficient of the an-
tenna structures shown in Fig. 1. For comparison, the
input impedance of a resonant dipole (75 Q approxi-
mately) is chosen as the reference impedance for all the
analyzed structures. As observed, the -6 dB impedance
bandwidth of the antenna with the notch (Fig 3(a)) is
from 2.1 to 5.2 GHz, which represents a 85% relative
bandwidth. For the antenna with the square-shaped
notch (Fig. 3(b)), the -6 dB impedance bandwidth is
from 2.2 GHz to 6.1 GHz, corresponding to a 94 % rel-
ative bandwidth, whereas the -6 dB relative impedance
bandwidth of the isolated dipole is limited to 28.5%.
The symmetrically excited square slot is presented as
the Active S-parameter (S;1+S4;) and since as can be
seen, it operates at a higher frequency band. As ob-
served, the dipole close to the electric conductor with-
out a slot (Fig. 3(b)) is unmatched over the whole
bandwidth.
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Figure 2. Simulated (a) real part and (b) imaginary part of the input impedance of the antenna structures presented

in Fig. 1 (a) (left) and Fig. 1(b) (right).
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Figure 3. Simulated reflection coefficient of the antenna structures presented in Fig. 1: (@) QCAT and (b) QCA2.

For mobile terminals, a typical reference value of -6 dB
in reflection coefficient is considered for impedance
bandwidth [8]. The effect of the length of a mobile
ground plane in the square-shaped notch structure is
compared by simulations in Fig. 3. A typical length of
110 mm is compared to a 23 mm length ground plane.
It is interesting to notice how the length of the conduct-
ing ground plane does not significantly affect the -6 dB
impedance bandwidth of the antenna. This is due to the
fact that the radiating currents in the ground plane are
concentrated around or close to the slot [12].

Recently [15], a new proposal for a basic wideband ra-
diating structure combining electric and magnetic struc-
tures has been made, which consists of simplifying the

antenna structure by means of changing the excitation
element to a monopole, as shown in Fig. 4(a). The
usage of a balun becomes then unnecessary and the
structure becomes simpler.

Fig. 4 (b) presents the measured and simulated reflec-
tion coefficient for the antenna. As it can be shown, the
measured -6 dB impedance bandwidth is from 1.78
GHz to 5.5 GHz for 50 reference impedance, corre-
sponding to a 103% relative bandwidth. Therefore the
relative -6 dB impedance bandwidth has been increased
from 95% using dipole excitation [12] to 103%. The ra-
diation patterns present an omnidirectional behavior
over the whole operating frequency range [15], as is a
desired feature for wireless applications.
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Figure 4. (a) Novel basic antenna combining an electric monopole and a magnetic notch. Dimensions in mm.(b) Meas-
ured and simulated reflection coefficient and comparison to the cases with 90 reference input impedance and without

magnetic slot.

3. Polarization diversity antenna for
mobile terminals

This section proposes the use of the basic wideband an-
tenna based in the combination of an electric dipole and
a magnetic notch proposed in section 2 and shown in
Fig. 1 (a), to design a novel wideband planar antenna
with polarization diversity for mobile terminals [10][11].

3.1. Antenna geometry

The antenna consists of two orthogonally oriented basic
radiating elements combining a dipole and a notch, that
will be referred again as Quasi-Complementary Antenna
1 and 2 (QCA 1 and QCAZ2). As observed, they are lo-
cated at the separate ends of a mobile ground plane. The
geometry of the antenna structure together with its di-
mensions is presented in Fig. 5. Thickness of the ground
plane is 0.8 mm to make the structure more robust.
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Figure 5. Polarization diversity antenna with two orthog-
onal quasi-complementary antennas. Dimension are in mm.

A prototype of the proposed antenna structure was fab-
ricated [Fig. 6(a)] together with a wideband tapered mi-
crostripline balun [Fig. 6(b)] to excite the antennas. The
feeding of the prototype antenna has been optimized by
simulations taking into account the relative dielectric con-
stant of the substrate (¢,=2.2) used in the balun and the

dipole. In addition, the slot length has been optimized to
match the increased electric length of the dipole (com-
pare to Fig. 1) affected by the substrate and the thickness
of the ground plane.

TOP VIEW

BOTTOM VIEW

40
(a) (b)

Figure 6. (a) Polarization diversity antenna prototype (top
view, side view and bottom view); (b) Balun topology.

3.2. Results

In Fig. 7, the measured S-parameters and total efficiency
are presented. As observed, both antennas have approxi-
mately a -6 dB impedance bandwidth that ranges from
1.8 to 4.6 GHz, corresponding to a 87.5% relative band-
width. At the same time, the measured coupling coeffi-
cient (S,4) at the operating bandwidth is less than -18 dB.

When comparing the measured Sq4 to the simulated one
in Fig. 3(a), it can be noticed that the size of the mobile
ground plane does not have significant effect on the rel-
ative bandwidth of the antenna structure. The matching
of the QCA 2 can be observed to be slightly different to
that of QCA 1 due to the effect of the different orienta-
tion of the antenna within the ground plane. The shift in
the center frequency, compared to the simulated results
in Fig. 3(a), is caused by the increased electric length of
the dipole and the slot.
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Figure 7. Measured S-parameters and total efficiency
of QCA 1 and QCA 2 shown in Fig. 5.

Furthermore, the measured total efficiency shown in Fig. 7
for both antennas is between -0.3 and -3.5 dB (average -
0.95 dB) within the studied -6 dB impedance bandwidth.
The total efficiency is measured by terminating the passive
antenna element with a standard 50 Q-load. The measure-
ments are done with the commercial Satimo Starlab an-
tenna measurement system at University of Oulu [16].

A basic wideband antenna based in the combination of
an electric dipole and a magnetic notch proposed in sec-
tion 2 is used to design a novel wideband planar antenna
with polarization diversity for mobile terminals.

Measured radiation patterns of the antenna prototype
are presented at 2 and 4 GHz in Fig. 8. The method to
measure radiation patterns is the same as that used for
the total efficiency. The maximum radiated field, depend-
ing on the cut, the frequency, and the measured an-
tenna, is between 0.1 and 4.5 dB. It can be noticed that
the amplitude of the radiated fields varies between the
cuts at the two measured frequencies.

Fig. 9 shows the envelope correlation between QCA 1
and QCA 2 calculated from measured S-parameters by
using (1) [17]. The formula assumes that the radio chan-
nel is uniformly distributed.
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As it can be observed in Fig. 9, the envelope correlation
is less than 0.01 over the studied -6 dB impedance band-
width. This small correlation was expected because of the
orthogonal antenna orientations. In the same figure, the
effective diversity gain (EDG) is presented based on (2).
The diversity gain is calculated by using a selection com-
bining criteria with maximum apparent diversity gain at
1% outage rate [17]. In the calculations, the relation be-
tween the complex cross-correlation coefficient and en-
velope correlation coefficient p, is |p|2~pe [18]. Finally,
the EDG is calculated by multiplying the diversity gain
with the radiation efficiency (e, of the most efficient
QCA element.

EDG=e, 10/ 1-|p[? 2)

[t can be notice the EDG is more than 8.0 dB over
the -6 dB bandwidth. This is expected because of the
small envelope correlation and high radiation efficiency.
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Figure 9. Measured envelope correlation and effective
diversity gain.

4. Dual-band antenna for DVB-H and
LTE applications in portable devices

In this section, a radiating structure based on the QCA
presented in Fig. 1(a) is used to design a dual-band an-
tenna for portable devices. In this case, the basic radiat-
ing structure consists of the combination of a radiating
monopole and a notch in a planar ground plane. By using
two monopoles with different lengths, two different op-
erating frequency bands are created in a portable device
by exciting different current distributions in the radiating
ground plane [19] .

4.1. Antenna geometry

Fig. 10 (a) presents the structure and dimensions of the
planar radiating ground plane. The dimensions of the
ground plane are designed to correspond approximately
to those of a mini-laptop, large PDA (Personal Digital As-
sistant) or a tablet. The radiating ground plane is excited
by two monopoles, of 90 mm (Monopole 1) and 34 mm
in length (Monopole 2), which act as coupling elements.
Moreover, two complementary slots (measuring 90 and
26 mm in length, respectively) are implemented orthog-
onally to the corresponding monopoles into the radiating
ground plane. The height of both monopoles from the
ground plane is 5 mm, corresponding to 0.008-0.05A,
depending on the frequency. The positions of the slots
in the ground plane were optimized using CST Mi-
crowave Studio [14], to cover DVB-H, GSM850 and
GSM900 frequency bands with Monopole 1, and
GSM 1800, UMTS, LTE and 2.4 GHz bands with Mono-
pole 2 . Alternatively, the monopole can be implemented
to the side of the ground plane to make the structure
coplanar.

The prototype of the fabricated antenna is shown in Fig.
10(b), where both monopoles are supported by a small
piece of white foam (g, = 1). As observed, the slot asso-
ciated to Monopole 2 in Fig. 10 (a) is hidden by one of
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E . & vy y
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215 -
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Figure 10. (a) Planar radiating ground plane with monopoles of two different lengths as coupling elements. The gray
color is metal, whereas the white color is air. Dimensions are in mm. (b) Prototype of the antenna.
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the pieces.

4.2. Results

The simulated and measured reflection coefficient and
measured maximum gain of Monopole 1 are represented
in Fig. 11 (a). The measured total gain in the DVB-H band
is approximately -5 dBi at 474 MHz and -4 dBi at 858 MHz.
The maximum gain is 5-10 dB higher than the minimum
requirements of the DVB-H standard and, thus, exceed-
ingly satisfies the standard, as presented in the figure. The
impedance matching at 474 MHz is -1.8 dB, which also
satisfies the standard, based on studies presented in [20].

Apart from the DVB-H standard (474-858 MHz), the
GSM850 and GSM900 bands can be covered within the -
6 dB impedance bandwidth with Monopole 1. The relative
-6 dB bandwidth of Monopole 1 is 57%. Additionally, the
measured isolation between Monopoles 1 and 2 is higher

than 25 dB over the whole operating bandwidth.

Fig. 11 (b) presents the measured and simulated reflec-
tion coefficient for Monopole 2. The measured -6 dB im-
pedance bandwidth ranges from 1.53 to 3.0 GHz and
the simulations predicted the same bandwidth with a
slightly better matching. The measured relative band-
width in the case of Monopole 2 is 65%. The measured
isolation over the operating bandwidth is once again over
25 dB, as in the lower frequency band. As previously, the
case with the slot in the ground plane is compared with
the case without the slot. As shown, matching is dramat-
ically improved in this case as well. Fig. 11(b) presents
also the measured total efficiency of Monopole 2. As it
can be observed, the total efficiency is more than -3 dB
over the operating impedance bandwidth, and the aver-
age is -1.81 dB.
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Figure 11. Measured and simulated S-parameters (a) for Monopole 1, with measured maximum gain and (b) for Mono-
pole 2, with measured total efficiency. Simulated S-parameters are compared with the case without slot.
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By adding two basic radiating elements formed by the
combination of a dipole and a square-shaped notch to
the opposite ends of the mobile ground plane, an effi-
cient MIMO antenna structure with high isolation and
low correlation can be created.

The measured radiation patterns of Monopole 1 at 500
and 900 MHz are presented in Fig.12 (a) and Fig.12 (b),
respectively. As it can be noticed, the radiation patterns
at the measured frequencies do not show very deep
nulls, so the propagated signal can be easily received
from all directions. The maximum gain at 500 MHz is -
2.3 dBi, which is approximately the same in every cut.
The radiation pattern can be observed as being dipole-
like. The maximum 3.2 dBi gain at 900 MHz can be
found in the YZ plane. It is also notable that the radiation
pattern at 900 MHz corresponds well with the radiation
of a monopole on a ground plane.

Fig.12 (c) and Fig.12 (d) depict the measured radiation
patterns of Monopole 2 at 1.70 and 2.75 GHz, respec-
tively. A 3.9 dBi maximum gain at 1.7 GHz can be ob-
served at the intersection of the XY and YZ planes, while
a 4.1 dBi maximum at 2.75 GHz can be found in the XY
plane. It is also notable that the radiation patterns at both
measured frequencies have no deep nulls. The same was
observed with Monopole 1 in the lower frequency band.

5. Wideband MIMO antenna for
mobile terminals

This section presents the use of the QCA basic structure
shown in Fig. 1(b) to design a wideband planar MIMO
antenna for mobile terminals [12].

5.1. Antenna geometry

By adding two basic radiating elements formed by the
combination of a dipole and a square-shaped notch to
the opposite ends of the mobile ground plane, an effi-
cient MIMO antenna structure with high isolation and
low correlation can be created. The geometry of the

MIMO antenna is shown in Fig. 13.

Fig. 14 shows the prototype of the MIMO antenna using
a wideband tapered microstripline balun. The relative di-
electric constant of the substrate used in the balun is
€,=2.2. The balun was optimized by simulations, by tak-
ing into account the combined effect of the slot and the
thickness of the ground plane [12].
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Figure 13. MIMO prototype antenna with two QCA
basic structures at both end of the ground plane. Dimen-
sions are in mm.

5.2. Results

The simulated and measured S-parameters and the total
efficiency of the antenna prototype are shown in Fig. 15.
It can be observed that the measured relative -6 dB im-
pedance bandwidth (Sy) is 95%, ranging from 2.0 to
5.6 GHz. The measured S, at the same bandwidth is
less than -19 dB. The results are well correlated with the
numerical results presented in Fig. 3(b). The measured
total efficiency is between -2.3 and -0.1 dB, having an
average of -0.85 dB within the -6 dB impedance band-
width. The total efficiency is measured by terminating
the other antenna element with a standard 50 Q load.
Fig. 16 presents the measured radiation patterns of the
QCA 2 element in terms of the total gain at 2 and 5
GHz. It can be observed that the antenna radiation pat-
terns do not have deep nulls at any of the both frequen-
cies, which is desired in mobile applications. Especially
at 2 GHz, the radiation pattern is almost isotropic, which
agrees with the radiation of a complementary antenna.
The maximum total gains are 2.8 dBi and 5.7 dBi at 2

(@)

(b) (c)

Figure 14. Picture of the MIMO antenna prototype: (a) Upper view; (b) Bottom view. The ground plane of the tapered

microstrip line balun is presented in (c).
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Figure 16. Measured radiation patterns of QCA 2 at (a)
2 GHz and (b) 5 GHz in terms of total gain (dBi).
GHz
and
5 GHz, respectively.

In Fig. 17, the measured envelope correlation and MIMO
multiplexing efficiency [21] are shown. The envelope cor-
relation as a function of frequency is calculated by using
S-parameters [17], as in Section 3. This formula assumes
a uniformly distributed radio channel. Additionally, port

Figure 17. SMeasured envelope correlation and MIMO
multiplexing efficiency of the antenna shown in Fig. 14.

2 is terminated with a 50 load when port 1 is excited,
and the antenna system is a lossless structure [22]. The
antenna system proposed in this letter exhibits high total
efficiency with good impedance matching and low mu-
tual coupling. Thus, the lossless formulation can be used
to calculate the envelope correlation [21]. As observed,
the measured envelope correlation is less than 0.04, and
the measured MIMO efficiency is better than 90% over
the whole bandwidth.

6. Conclusions

Simple designs of wideband antennas based on the use
of an electric conductor (inductive behaviour) close to a
magnetic slot cut into a conducting ground plane (ca-
pacitive behaviour) have been presented. A notch and a
square-shaped slot in combination to an electric dipole
or monopole have been proposed as simple wideband
structures. Complex wideband antennas have been then
proposed for mobile terminals based on the use of these
simple wideband antennas. Thus, a wideband antenna
with polarization diversity for UMTS, Bluetooth, WLAN,
LTE and WiMAX standards, a dual-band antenna for
DVB-H and LTE standards, and a wideband antenna for
MIMO applications have been designed. Prototypes of
all the antennas have been fabricated and real measure-
ments performed, which show the suitability of the pro-
posed basic structures to implement more complex
wideband antennas for multi-standard portable devices.
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