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The radiation of sound by a periodically corrugated rigid piston is explored using theoretical and

numerical approaches and compared with the radiation of flat rigid piston. The depth and the

period of the corrugation are considered to be comparable with the wavelength in the surrounding

fluid. Radiation enhancement is predicted due to cavity resonances and coherent diffraction. In

addition, broad regions of low radiation efficiency are observed. Both effects could have an impact

in acoustic transducers technology, either to increase the piston radiated power or to create a source

of evanescent acoustic waves. The possibilities offered by this strategy in the nonlinear acoustic

regime are also briefly discussed. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4748868]

The radiation of acoustic waves is used in a wide range

of different applications ranging from biomedical ones to

non-destructive testing. In any of these systems, the trans-

ducer is a crucial element. The performance of such a system

is often limited by the transducer acoustic radiation proper-

ties. In addition, the behavior of an acoustic transducer is

influenced by many factors, being its mechanical construc-

tion the most direct one.1

Nowadays, the piston radiator is maybe the most impor-

tant radiation source in ultrasonics and its radiation proper-

ties constitute a classical-physics problem. However, besides

the great advancement in transducer arrays and beam steer-

ing,2,3 piezo-composite materials,4 capacitive micro-

machined transducers,5 and matching layers,6 very little has

been done concerning the radiating surface of the transducer.

On the other hand, recent advances in the study of peri-

odically corrugated surfaces and perforated plates, mainly

motivated from interesting results from optics, have shown

exotic properties that could be used for modifying the

propagation of elasto-acoustic waves. Most of these studies

concentrate on the transmission and reflection properties of

perforated/corrugated plates, as a direct translation of sys-

tems being studied in optics.7 Resonant corrugated panels

have been also considered for sound insulation purposes.8

However, no study has been done considering how a corru-

gated surface will affect the radiation of acoustic waves in a

transducer, despite its technological relevance.

In this letter, we present a theoretical and numerical

study on the effect of a rigid periodically corrugated surface

in the radiation of acoustic waves compared with the classi-

cal rigid piston. The depth and the period of the corrugation

have the same order of magnitude than the wavelength in the

fluid. Coherent diffraction and cavity resonances give rise to

both radiation enhancement and radiation inhibition depend-

ing on the geometrical properties of the corrugation.

Given a fluid of density q and sound speed c, we con-

sider a perfectly rigid surface vibrating at a frequency x with

velocity v0 as depicted in Figs. 1(a) and 1(b). Solving the

two-dimensional problem by means of the finite element

method (Comsol Multiphysics) for a flat and a corrugated

piston of the same size D ¼ 9:6k (k ¼ 2pc=x), the latter

having only ten cavities (Nc ¼ 10), we obtain the fields

depicted in Figs. 2(a) and 2(b). The color scale represents the

time-averaged quadratic sound pressure jpj2 in normalized

units. Although both pistons are radiating with the same ve-

locity amplitude v0, the radiation enhancement provided by

the corrugation is evident. More information can be obtained

by looking at the normalized pressure level (NPL) along the

z direction across the pistons radiation axis (Fig. 2(c)). The

pressure level is normalized by the maximum provided by

the flat transducer. The classical result of the flat transducer,

i.e., an oscillating nearfield reaching a maximum at z=D � 3

before decaying into the farfield, clearly contrasts with the

behavior of the corrugated piston. The maximum NPL of the

corrugated piston is right at its face, 15 dB above the flat pis-

ton maximum. As z/D increases, the NPL radiated by the

corrugated piston strongly decreases but it stops oscillating

and starts to maintain a monotonic decay 6 dB above the flat

piston curve.

In order to understand this radiation enhancement and

explore some other effects, we developed two-and three-

dimensional models following the formulation described in

FIG. 1. Diagrams showing the geometry and the relevant variables and con-

stants of the problem for (a) flat rigid piston and (b) for a periodically corru-

gated rigid piston. The radiated sound power is labeled as P0 and P for

each case.
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Ref. 9 for infinitely periodic structures. The sound pressure

inside the cavity is expanded in terms of their eigenmodes

/m;nðrkÞ (rk ¼ ðx; yÞ) for perfectly rigid boundaries as

pc ¼
X
m;n

/m;nðrkÞwm;nðzÞ ; (1)

where

wmnðzÞ ¼ ½aþmneiqmnðzþhÞ þ a�mne�iqmnz� ; (2)

qmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 � Q2

mn

q
, and a6

mn corresponds to the wave

amplitude coefficients. On the other hand, the sound pressure

in the fluid surrounding the piston can be expanded as

pG ¼
X

G

bGexpðiðGrk � qGðzþ hÞÞÞ : (3)

The reciprocal lattice vector G depends on the array geome-

try and leads to qG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 � jGj2

q
. Then, imposing

boundary conditions of fixed velocity v0 at z¼�h in the cav-

ity, continuity of pressure at the apertures entry, and continu-

ity of velocity at z¼ 0 yield a linear system of equations to

be solved for a6
mn and bG. Thus, the radiated sound power P

in terms of bG is given by

P ¼ 1

8p2xq

X
G

Re qGf gjbGj2 : (4)

As the corrugated piston is considered to be infinitely peri-

odic, the radiation efficiency r ¼ P=P0 is calculated consid-

ering an infinite flat piston whose radiated power is given by

P0 ¼ qcjv0j2=8p2. In addition, to allow a direct comparison

with the finite element method, the radiated power has

been calculated by integrating the time averaged intensity

Iz ¼ 1
2

Re pv�z
� �

(� means complex conjugate) right at the pis-

ton surface with and without corrugation.

Before analyzing the phenomena, it is appropriate to test

the consistency of the results among the different methods.

Figure 3(a) shows the radiation efficiency as a function of

h=k for a corrugation having h=a ¼ 1:71 and a hole filling

fraction f¼ 0.3 calculated by the modal model (2D and 3D,

the latter for a square array of circular perforations) and

the finite element method (Nc ¼ 15; 30). The agreement

between the calculations demonstrates the suitability of r
for the analysis. The effect of the finite piston size is particu-

larly distinguishable at the rightmost dip, near the radiation

enhancement peak.

Abrupt changes of r delimit low and near zero radiation

efficiency regions, whose position is closely linked to the

well known cavity resonances at h=k ¼ ð2nþ 1Þ=4 for inte-

ger n. However, the closer the resonances are to the k ¼ a
point (h=k ¼ 1:71) the larger the shift toward lower frequen-

cies, in agreement with previous results reported for perfo-

rated plates.10–13

To further clarify how the cavity resonances modify the

radiation characteristics of the piston, Fig. 3(b) depicts the

magnitude and the phase of vz right at the aperture entrance

(z¼ 0). The abrupt phase changes from p to �p explain the

dips in r and are localized near to a velocity maximum. The

resonant origin of the velocity maxima is clear, in addition to

FIG. 2. Time averaged quadratic pressure field (jpj2 in normalized units) of

a flat (a) and (b) a corrugated piston having ten cavities (Nc ¼ 10), d¼ 0.3 a,

and h¼ 0.71 a at a k¼ 0.9 (c) NPL in (dB) along z/D at the radiation axis.

FIG. 3. (a) Radiation efficiency r in (dB) of a corrugated piston with propor-

tions h/a¼ 1.71 and a hole filling fraction f¼ 0.3 calculated using different

models (see labels) as a function of h=k. (b) Magnitude (solid curve, left ver-

tical axis) and phase (dashed curve, right vertical axis) of the average veloc-

ity at the aperture entrance calculated with the two-dimensional modal

expansion as a function of h=k.
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the important contribution of the array period to the 10 fold

enhancement in vz at the high frequency peak. This is the

mechanism that allows the radiation enhancement, i.e., a

large increment in the particle velocity right at the piston sur-

face. Of course, solely the magnitude of vz does not explain

everything, because it interferes with the v0 velocity of the

piston rigid surface outside the cavity.

The next step is to observe how these radiation features

vary with the geometrical parameters, which is represented

in Fig. 4 calculated using our three dimensional modal

model. By changing the h/a ratio and keeping f¼ 0.3, we

obtain Fig. 4(a). As r is now plotted as a function of a=k, the

spikes vary their position. The existence of the radiation

enhancement peak depends strongly on h/a. If the grooves

are shallow enough, no radiation enhancement can be

observed. This is in agreement with the analytical results

reported in Ref. 14, where it has been shown that the array

itself does not lead to any transmission enhancement without

the fundamental contribution of the cavity resonances.

The hole filling fraction f mostly influences the low radi-

ation region, as can be seen from Fig. 4(b). The two radiation

minima get close together as f increases and reach eventually

r < �20 dB before being fused in a broad minimum for

f¼ 0.64. However, this drastic drop in the radiation effi-

ciency does not imply a decrease in the pressure amplitude

at the corrugated piston surface. Figure 5(a) shows r as a

function of a=k calculated using our three-dimensional

model and the finite element method. Although for a low f
both theories agreed well, the finite size of the piston plays a

role for high f and low radiation efficiencies cannot be

reached even for Nc ¼ 30. Despite the disagreement between

the calculations methods, �20 dB in radiation efficiency can

still be distinguished from the pressure level fields of Figs.

5(b) and 5(d) for a ¼ 0:62k. The pressure in the corrugated

piston is concentrated at the corrugations and cannot be radi-

ated. These radiation minima may be suitable for nearfield

material inspection strategies using a corrugated piston as an

evanescent acoustic source.

In our calculations, we did not include losses in the

fluid. In practical implementations of this strategy for modu-

lating the radiation, it will certainly constitute an important

point to be considered. However, as far as the holes remain

with a moderate depth to aperture size ratio h/d, losses

should not affect the observation of the reported results nei-

ther in air nor in water. It is worth mentioning that due to the

resonant features of the corrugated piston, the overall field

maximum will be located right in front of the transducer (see

Fig. 2(c)) and not far away as in flat pistons. Due to this, it

would be interesting to test the effect of the corrugations in

the nonlinear regime, where even for moderate amplitude the

non linearities should appear already at the piston surface

and thus, affect the whole radiation properties we have

reported here and presumably differ from the classic piston

behavior in the nonlinear regime.
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FIG. 4. Radiation efficiency r in (dB) as a function of a=k of a corrugated

piston (a) having f¼ 0.1 for different h/a ratios and (b) for fixed h/a¼ 0.71

and different hole filling fractions f.

FIG. 5. (a) Radiation efficiency r in (dB) as a function of a=k for a corruga-

tion having h/a¼ 0.71 and f¼ 0.52 calculated for infinite and finite pistons.

The arrow shows the point at which the fields in (b) and (c) have been calcu-

lated. Normalized pressure level fields in (dB) for a (b) corrugated and (c)

flat piston at a ¼ 0:62k.
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