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This work presents a method for the realization of gradient index devices for flexural waves in

thin plates. Unlike recent approaches based on phononic crystals, the present approach is based

on the thickness-dependence of the dispersion relation of flexural waves, which is used to create

gradient index devices by means of local variations of the plate’s thickness. Numerical simula-

tions of known circularly symmetrical gradient index lenses have been performed. These simula-

tions have been done using the multilayer multiple scattering method and the results prove their

broadband efficiency and omnidirectional properties. Finally, finite element simulations employ-

ing the full three-dimensional elasticity equations also support the validity of the designed

approach. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893153]

The propagation of flexural waves in thin plates through

periodic arrangements of scatterers or inclusions has been a

hot topic in the last years. The scattering by holes in plates

has been analyzed1–5 and the resulting band structures has

been obtained.6–8 In addition, the control of the propagation

of waves by means of inhomogeneous media, also named

“gradient index” (GRIN) devices, has received a lot of atten-

tion due to the possibility of designing positive9,10 and nega-

tive11–13 refraction devices. GRIN devices consist of a space

region where the physical parameters defining the wave ve-

locity are position-dependent, thus enforcing the wavefront

to follow curved trajectories. These lenses have proved to be

useful for structural testing.14,15

The local-dependence of the physical properties of the

medium can be realized by several ways, but the most used

for both acoustic and elastic waves is based on phononic

crystals. In the long-wavelength limit, these composite can

be characterized by some effective parameters. Varying

locally the parameters of the unit cell, it is possible to change

the effective speed of sound.16–18 In the case of elastic waves

in thin plates, the simplest form of a phononic crystal-based

device consist in creating an array of holes whose radii is

changed according to a specific relationship hole radius-

refractive index.

Although the frequency response of the refractive devi-

ces described above is known to be broadband, the major

drawback is that a GRIN device requires a continuous varia-

tion of the refractive index, which obviously cannot be done

with discrete lattices of holes, since the result will always be

a stepped profile. In practice, the holes must be done small

enough to make this stepped profile as smooth as possible,

but as the frequency of the propagating wave is increased,

the precision requirements become unaffordable.19

However, the local-dependence of the elastic properties

can also be obtained by means of thickness variations. This

approach has been employed by Krylov and Tillman in

2004.20 It is based on the peculiar dispersion relationship of

flexural waves, which depends not only on the material of

the plate but also on its thickness, which is a parameter that

can be easily controlled at almost every scale. The approach

has been extensively applied to carry out experimental inves-

tigations to achieve efficient damping of flexural waves; first,

at the edge of plates21 and then at the center of plates22,23

which consists of designed pits with a layer of absorbing

materials attached in the middle. Following this approach,24

the present authors also designed an insulating device for

flexural waves.

In this Letter, we present a simple manner of creating

GRIN lenses for flexural waves in thin plates based on the

local variation of the plate’s thickness. The tested devices con-

sist of five circularly symmetric GRIN devices well known in

optics (see, e.g., Ref. 25), whose index profiles are imple-

mented in terms of thickness variations. Multiple scattering

simulations of the lenses are also presented based on the solu-

tion of the two-dimensional flexural wave equation, and it is

shown that the behavior is in agreement with the optical ray

equation. Finally, a comparison of the simulation method with

the solution obtained with the three-dimensional (3D) full

elastic wave equation, using a commercial finite element sim-

ulator is presented showing very good agreement with our

prediction.

Fig. 1 shows a schematic view of the gradient index de-

vice analyzed in the present work. The device is defined by a

FIG. 1. Scheme of a circular flexural lens with radius Rs with a radial de-

pendent thickness h(r) to achieve the desired refractive index n(r).
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circular region r�Rs, where the thickness h(r) of the plate is

a function of the radial coordinate. This gradual variation of

the plate’s thickness can be modeled as a gradual variation

of the refractive index, as will be shown below.

The equation of motion describing flexural waves in

thin plates is modeled using the Kirchhoff-Love approxima-

tion in which the vertical displacement W of the plate is

obtained from the Timoshenko plate equation (assuming

monochromatic time dependence of frequency x)

Dr4W � x2qhW ¼ 0; (1)

being D¼Eh3/12(1� �2) the flexural rigidity, q the mass

density, h the thickness of the plate, E the Young modulus,

and � the Poisson ratio. For plane wave propagation with

wave number k, the above equation gives a quadratic disper-

sion relation

k4 ¼ qhx2

D
; (2)

where it is seen that both the phase and group velocities of

the waves are function of the plate’s thickness h. It is

straightforward to obtain the refractive index as a function of

the position-dependent h as24

n r; hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hb

h r; hð Þ

s
; (3)

where hb is the background’s thickness and h(r, h) is the vari-

ation of the thickness in polar coordinates. It has been

assumed that all the other elastic properties of the plate

remain unchanged. Equation (3) describes how the refractive

index increases with decreasing thickness. It is important to

notice that, despite being an intrinsically dispersive medium,

the refractive index does not depend on the frequency of the

wave.

To test this approach, a set of refractive index lenses

with circular symmetry has been studied. Table I shows the

list of these lenses, corresponding to several solutions of the

Luneburg problem with their respective variation of the re-

fractive index.25 The last device corresponds to the elastic

analogue of the optical concentrator previously described for

electromagnetic waves.26 Note that all these lenses have

been defined for optical waves, however, since they are

obtained using the geometrical optics approximation, we

assume that the solutions are also valid for flexural waves.

This assumption has been applied previously for acoustics

waves,27 where the mapping with the electromagnetic waves

is well supported.

Fig. 2(a) shows the variation of the refractive index

along the direction of propagation for each one of the lenses

described in Table I and Fig. 2(b) shows the corresponding

solution for the radius-dependent plate thickness h(r, h)/hb

obtained using Eq. (3). Notice that all the proposed flexural

lenses present a refractive index larger than that of the back-

ground, therefore the thickness will always be smaller than

that of the plate. In other words, all these lenses can be fabri-

cated by gradually decreasing the plate’s thickness.

The simulations have been performed using the one

dimensional multilayer scattering method, described in the

appendix of Ref. 24, where the continuous refractive index

of each lens has been discretized in a number N of concentric

cylindrical layers. The vertical displacement Wn in each

layer satisfies the coordinate-independent flexural wave

equation. Thus, the solution can be expanded as a linear

combination of Bessel and Hankel functions (and their modi-

fied versions), as follows:

Wn ¼
X

q
½Að1Þn;qJqðknrÞ þ Að2Þn;qIqðknrÞ�eiqh

þ
X

q
½Bð1Þn;qHqðknrÞ þ Bð2Þn;qKqðknrÞ�eiqh; (4)

where A
ð1Þ
n;q;A

ð2Þ
n;q;B

ð1Þ
n;q;B

ð2Þ
n;q are the coefficients of the expan-

sion (A for the incoming wave and B for the scattered one)

and kn is the wave-number of the n-th layer. Boundary condi-

tions at each layer are applied as described in Ref. 28, and

TABLE I. Normalized refractive index of several solutions of the Luneburg

problem (first four lenses). Additionally, a Concentrator lens (last lens)

obtained by mapping the electromagnetic regime in the elastic one.

Lens name Refractive index (n)

Luneburg n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� r2
p

Maxwell Fish-Eye n¼ 2/(1þ r2)

90� rotating rn4� 2nþ r¼ 0

Eaton n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=r � 1

p
Concentrator n¼ 1/r
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FIG. 2. Variation of the refractive index (a) and the thickness (b) of the stud-

ied lenses Vs the normalized x-coordinate.
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then the coefficients of the expansion are determined in

terms of the amplitude of the incident field.

A homogeneous infinite aluminum plate with E¼ 78.97

(GPa), q¼ 2700 (kg/m3), and �¼ 0.33 has been considered

for the simulations. The normalized thickness of the plate is

hb/Rs¼ 0.0167. It is important to note in Fig. 2(a) that in

some cases the thickness tends to zero as we approach the

center of the lens. To avoid this singularity, a minimum

thickness is established as hmin(r)/hb¼ 0.2 � 10�3 which is

small enough to be neglected. Each lens was discretized in

N¼ 100 layers. Our numerical simulations demonstrate that

this discretization is a good approximation within the range

of wavelengths used.

Fig. 3 shows the real part of the displacement W(r, h)

for the different type of lenses listed in Table I when a field

with kRs¼ 8.3p (k/Rs¼ 0.24) is excited in the plate. Here,

k¼ 2p/k and k is obtained from the dispersion equation (2).

Then, panel (a) shows a Luneburg Lens in which a plane

wave is focused at the border of the device, panel (b) shows

a Maxwell Fish-Eye, in this case a point source is excited at

the border of the lens and it is focused at the opposite point.

Panel (c) shows a 90� rotating lens, where the incident plane

wave is symmetrically redirected along the perpendicular

direction of propagation, similarly as the Eaton lens shown

in panel (d), where the wave is directed backwards this time.

The concentrator shown in panel (e) is identical to the pho-

tonic black hole studied by Narimanov and Kildishev26

which was also tested for acoustic waves.27 As expected, the

elastic counterpart exhibits similar behavior.

FIG. 3. Real part of the displacement W(r, h) produced by a plane ((a), (c)–(e)) or cylindrical (b) wave impinging a Luneburg (a), Maxwell (b), 90� rotating

(c), Eaton (d), and concentrator (e) lens at kRs¼ 8.3p. Color scale is the same as in Fig. 5.

FIG. 4. Scattering cross-section produced by the 90� rotating lens (a) and

the Eaton lens (b).

FIG. 5. Real part of the displacement W(r, h) produced by a plane wave im-

pinging a Luneburg lens. Simulations done with a commercial FEM simula-

tor using the 3D elastic theory (a) and a the 1D multilayer simulator (b).
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As a parameter used to prove the broadband efficiency

of the method to control the refractive index with the thick-

ness, we have used the scattering cross section (SCS) defined

at the far-field as

rðk; hÞ � lim
r!1
j
ffiffi
r
p

Wscðr; hÞj; (5)

where Wsc(rh) is the displacement of the scattered wave. The

SCS has been calculated from h � [�p, p] and for a wide

range of normalized wave-numbers (kRs � [5, 40]). Fig.

4(a), on one hand, shows r for the 90� rotating lens. Note

how it increases in the near of h¼6p/2 and becomes narrow

when the normalized wave-number increases. By the other

hand, Fig. 4(b) shows r for the Eaton lens. In this case, it

increases in the near of h¼6p and also narrows with

increasing normalized wave-number.

Finally, in order to test the flexural wave approximation,

a numerical experiment employing the full 3D elastic equa-

tions, has been realized with a commercial finite element

simulator. Fig. 5 shows the real part of the displacement

W(r, h, t) resulting when a plane wave impinges the

Luneburg lens. Fig. 5(a) shows the results obtained from the

commercial simulator and Fig. 5(b) the result given by our

simulator based on the Timoshenko plate equation (1). Both

results are very similar and show the expected behavior pro-

duced by a Luneburg Lens. Note that the result obtained by

the commercial simulator is slightly distorted due to the diffi-

culty of achieving zero reflectance on the boundary of the

elastic plate. Moreover, it is a full 3D elastic simulation.

In summary, we have studied five different refractive

lenses for flexural waves in thin plates. Their corresponding re-

fractive index has been designed by adjusting locally the plate

thickness. The results obtained confirm the expected behavior

of the five lenses analyzed and support the refractive index

model employed. It has also been demonstrated their broad-

band performance. We expect that our numerical demonstra-

tion of the reported flexural lenses will stimulate future

experimental work looking for their practical realization.
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