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Abstract

Nature is nonlinear. The linear description of physical phenomena is useful for
explain observations with the simplest mathematical models, but they are only
accurate for a limited range of input values. In the case of intense acoustics waves,
linear models obviate a wide range of physical phenomena that are necessary for
accurately describe such high-amplitude waves, indispensable for explain other ex-
otic acoustic waves and mandatory for developing new applied techniques based on
nonlinear processes. In this Thesis we study the interactions between nonlinearity
and other basic wave phenomena such as non-classical attenuation, anisotropic
dispersion and periodicity, and diffraction in specific configurations.

First, we present intense strain waves in a chain of cations coupled by realistic
interatomic potentials. Here, the nonlinear ionic interactions and lattice dispersion
lead to the formation of supersonic kinks. These intrinsically-nonlinear localized
dislocations travel long distances without changing its properties and explain the
formation of dark traces in mica crystals. Then, we analyze nonlinear wave pro-
cesses in a system composed of multilayered acoustic media. The rich nonlinear
dynamics of this system is characterized by its strong dispersion. Here, harmonic
generation processes and the relation with its band structure are presented, show-
ing that the nonlinear processes can be enhanced, strongly minimized or simply
modified by tuning the layer parameters. In this way, we show how the dynamics of
intense monochromatic waves and acoustic solitons can be controlled by artificial
layered materials.

In a second part, we include diffraction and analyze four types of singular
beams. First, we study nonlinear beams in two dimensional sonic crystals. In this
system, the inclusion of anisotropic dispersion is tuned for obtain simultaneous
self-collimation for fundamental and second harmonic beams. The conditions for
optimal second harmonic generation are presented. Secondly, we present limited
diffraction beam generation using equispaced axisymmetric diffraction gratings.
The obtained beams are truncated version of zero-th order Bessel beams. Third,
the grating spacing can be modified to achieve focusing, where the generated non-
linear beams presents high gain, around 30 dB, with a focal width which is between
the diffraction limit and the sub-wavelength regime, but with its characteristic high
amplitude side lobes strongly reduced. Finally, we observe that waves diffracted
by spiral-shaped gratings generate high-order Bessel beams, conforming nonlinear
acoustic vortex. The conditions to obtain arbitrary-order Bessel beams by these
passive elements are presented.

Finally, the interplay of nonlinearity and attenuation in biological media is
studied in the context of medical ultrasound. First, a numerical method is de-
veloped. The method solves the constitutive relations for nonlinear acoustics and
the frequency power law attenuation of biological media is modeled as a sum of
relaxation processes. A new technique for reducing numerical dispersion based on



artificial relaxation is included. Second, this method is used to study the harmonic
balance as a function of the power law, showing the role of weak dispersion and
its impact on the efficiency of the harmonic generation in soft-tissues. Finally,
the study concerns the nonlinear behavior of acoustic radiation forces in frequency
power law attenuation media. We present how the interplay between nonlinearity
and the specific frequency power law of biological media can modify the value for
acoustic radiation forces. The relation of the nonlinear acoustic radiation force
with thermal effects are also discussed.

The broad range of nonlinear processes analyzed in this Thesis contributes to
understanding the behavior of intense acoustic waves traveling trough complex
media, while its implications for enhancing existent applied acoustics techniques
are presented.

x



Resumen

La Naturaleza es no lineal. La descripción lineal de los fenómenos f́ısicos es de
gran utilidad para explicar nuestras observaciones con modelos matemáticos sim-
ples, pero éstos sólo son precisos en un limitado rango de validez. En el caso de
onda acústica de alta intensidad, los modelos lineales obvian un amplio rango de
fenómenos f́ısicos que son necesarios para describir con precisión las ondas de gran
amplitud, pero además son necesarios para explicar otros procesos más exóticos
e indispensables para desarrollar nuevas aplicaciones basadas en propagación no
lineal. En esta Tesis, estudiamos las interacciones entre no linealidad y otros proce-
sos complejos como atenuación no-clásica, dispersión anisotrópica y periodicidad,
y difracción en configuraciones espećıficas.

En primer lugar, presentamos ondas de deformación en una cadena de cationes
acoplados por potenciales reaĺısticas. Aqúı, las interacciones no lineales entre
iones, producen la conformación de kinks supersónicos. Estas dislocaciones local-
izadas intŕınsecamente no lineales viajan por la red largas distancias sin variar
sus propiedades, y pueden explicar la formación de trazas en minerales como la
mica. Aumentando la escala del problema, estudiamos los procesos acústicos no
lineales en medios multicapa. La rica dinámica de estos medios está caracterizada
por la fuerte dispersión debido a la periodicidad del sistema. Aqúı, estudiamos los
procesos de generación de harmónicos, mostrando como modificando la estructura
podemos potenciar, minimizar, o simplemente modificar artificialmente la trans-
ferencia de enerǵıa entre las componentes espectrales, y de esta manera controlar
la dinámica de las ondas y solitones en el interior de la estructura.

En la segunda parte, incluimos difracción y analizamos cuatro tipos de haces
singulares. En primer lugar, analizamos haces ultrasónicos no lineales en cristales
de sonido bidimensionales. En este sistema, las propiedades de anisotroṕıa del
medio son ajustadas para obtener la auto-colimación simultánea del primer y se-
gundo harmónico. Aśı, se obtiene la propagación no difractiva para las dos com-
ponentes. En segundo lugar, presentamos haces de difracción limitada empleando
rejillas de difracción axisimétricas. Por último, demostramos la generación de
haces de Bessel de orden superior mediante estructuras en espiral.

En la última parte, estudiamos la competición entre no linealidad y la aten-
uación y dispersión observable en medios biológicos en el contexto de las aplica-
ciones de biomédicas de los ultrasonidos. En primer lugar desarrollamos un nuevo
método computacional para la dependencia frecuencial en forma de ley de poten-
cia de la absorción caracteŕıstica de los tejidos. Este método en dominio temporal
es usado posteriormente para revisar los procesos básicos no lineales prestando
especial interés en el paper de la dispersión del tejido. Por último, la resolución
de las ecuaciones constitutivas nos permite abordar la descripción no lineal de la
fuerza de radiación acústica producida en tejidos biológicos, y las implicaciones
existentes con la deposición de enerǵıa y transferencia de momento para ondas



ultrasónicas de alta intensidad.

El amplio abanico de procesos no lineales analizados en esta tesis contribuye a
una mejor comprensión de la dinámica de las ondas acústicas de alta intensidad
en medios complejos, donde las implicaciones existentes en cuanto a la mejora de
sus aplicaciones prácticas son puestas de manifiesto.

xii



Resum

La Naturalesa és no lineal. La descripció lineal dels fenòmens f́ısics és de gran util-
itat per a explicar les nostres observacions amb models matemàtics simples, però
aquests sol són precisos en un limitat rang de validesa. En el cas d’ona acústica
d’alta intensitat, els models lineals obvien un ampli rang de fenòmens f́ısics que
són necessaris per a descriure amb precisió les ones de gran amplitud, però a més
són necessaris per a explicar altres processos més exòtics i indispensables per a
desenvolupar noves aplicacions basades en propagació no lineal. En aquesta Tesi,
estudiem les interaccions entre no-linealitat i altres processos complexos com aten-
uació no-clàssica, dispersió anisotròpica i periodicitat, i difracció en configuracions
espećıfiques.

En primer lloc, presentem ones de deformació en una cadena de cations acoblats
per potencials realistes. Aćı, les interaccions no lineals entre ions, produeixen la
conformació de kinks supersònics. Aquestes dislocacions localitzades intŕınsecament
no lineals viatgen per la xarxa llargues distàncies sense variar les seues propietats,
i poden explicar la formació de traces en minerals com la mica. Augmentant
l’escala del problema, estudiem els processos acústics no lineals en mitjans mul-
ticapa. La rica dinàmica d’aquests mitjans es caracteritza per la forta dispersió
a causa de la periodicitat del sistema. Aćı, estudiem els processos de generació
d’harmònics, mostrant com modificant l’estructura podem potenciar, minimitzar,
o simplement modificar artificialment la transferència d’energia entre les compo-
nents espectrals, i d’aquesta manera controlar la dinàmica de les ones i solitons a
l’interior de l’estructura.

En la segona part, incloem difracció i analitzem quatre tipus de feixos singulars.
En primer lloc, analitzem feixos ultrasònics no lineals en cristalls de so bidimen-
sionals. En aquest sistema, les propietats d’anisotropia del medi són ajustades per
a obtenir l’acte-col·limació simultània del primer i segon harmònic. Aix́ı, s’obté
la propagació no difractiva per a les dues components. En segon lloc, presen-
tem feixos de difracció limitada emprant reixetes de difracció axisimètriques. Per
últim, vam demostrar la generació de feixos de Bessel d’ordre superior mitjançant
estructures en espiral. En l’última part, estudiem la competició entre no linealitat
i l’atenuació i dispersió observable en medis biològics en el context de les aplica-
cions biomèdiques dels ultrasons. En primer lloc desenvolupem un nou mètode
computacional per a la dependència freqüencial en forma de llei de potència de
l’absorció caracteŕıstica dels teixits biològics. Aquest mètode en domini temporal
és usat posteriorment per a revisar els processos bàsics no lineals prestant espe-
cial interés en el paper de la dispersió del teixit. Per últim, la resolució de les
equacions constitutives ens permet abordar la descripció no lineal de la força de
radiació acústica prodüıda en teixits biològics, i les implicacions existents amb
la deposició d’energia i transferència de moment per a ones ultrasòniques d’alta
intensitat.



L’ampli ventall de processos no lineals analitzats en aquesta tesi contribueix
a una millor comprensió de la dinàmica de les ones acústiques d’alta intensitat
en medis complexos, on les implicacions existents quant a la millora de les seues
aplicacions practiques són posades de manifest.
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Nonlinear Waves in Lattices

Part I

1





Chapter 1

Localized Nonlinear Waves in
Lattices

Abstract

In this chapter we will study the nonlinear behavior of atomic lat-
tices coupled by realistic potentials. Essentially, in this conservative
system the dispersion is caused by lattice periodicity, where the nonlin-
earity appears at the coupling between oscillators following a Coulomb
type interaction. Thus, strongly supersonic localized waves can be
generated and propagates along the lattice in the form of kinks. With
the aim of study a more realistic physical system, we include a model
accounting for nuclear repulsion effects that modifies the nonlinear in-
teraction for short interatomic distances. In addition, we propose a
substrate potential that modifies the lattice dispersion relation. The
physical parameters are those of the K+ ion lattice in a mica muscovite
layered silicate.
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Chapter 1. Localized nonlinear waves in lattices.

1.1 Motivation: dynamics of potassium ions in
layered silicates

Many minerals are known by their capability of recording the tracks of charged
particles, and are often used as solid state nuclear track detectors (SSNTDs); a
review of the subject can be found in Refs. (Durrani, 2001; Durrani, 2008).

Among them, mica muscovite has been relevant as it was the second material
and the first natural one where tracks from fission fragments were found (Silk et
al., 1959). Very soon later fossil tracks were also found in mica (Price et al., 1962).
It seems to be one of the most sensitive of natural SSNTD (Fleischer, 2011). Due
to its resistance to heat, it can be used inside a nuclear reactor core for particle
detection. It has also been used in geochronology and to probe the existence of
dark matter (Snowden-Ifft et al., 1995), to find exotic nuclear reactions, decays of
superheavy elements and weakly interacting massive particles (WIMPs) (Durrani,
2001; Durrani, 2008). Micas have also important technological applications due
their dielectric and heat shielding properties. Other uses are as matrixes for films,
monochromators and dispersive crystals.

Silicates are also among the materials considered as engineered barriers for
nuclear waste storage due to its high rate of reaction with heavy ions in low
temperature reconstructive transformations (Alba et al., 2001). This property can
be of importance for the development of advanced structural ceramics (Hong et
al., 2002) and has been related to the existence of nonlinear localized vibrations
related with the ones described in this work (Archilla et al., 2006; Dubinko et al.,
2011).

Tracks of positrons, muons and other particles have been reported (Russell,
1967b; Russell, 1967a; Russell, 1988b; Russell, 1988a) in mica muscovite. Some of
these tracks were identified as produced by positrons resulting from the β+ decay
of 40K. This isotope is relatively abundant in the minerals and can also experience
β−, electron capture and other kind of decays. Most of the tracks, however, cannot
be explained as being produced by charged particles but could have been produced
by some kind of vibrational excitation because, among other properties, the tracks
are along the close-packed lines of the K+ hexagonal layer shown in Fig. 1.1. One
interpretation of these tracks is that they are formed by the localized nonlinear
excitations, sometimes called quodons (Schlößer et al., 1994), whose exact nature
is still not known.

A likely source for the vibrational energy required to initiate a quodon is the
recoil energy of the 40K after β decay, which can be up to 52 eV. In muscovite, there
are about 3 decays per second and cm3, so after many years of the sensitive period,
when tracks recording is possible, there are many possibilities to initiate a quodon.
An experiment was done to shed some light into the relationship between tracks
and quodons (Russell et al., 2007). A mica specimen was irradiated with alpha

4



1.1. Motivation: dynamics of potassium ions in layered silicates

Figure 1.1: Representation of the mica structure from the point of view that emphasizes the
close-packed lines of the K+ hexagonal layer represented by yellow balls. Crystal structure of
muscovite. The circles represent the potassium ions forming the interlayer sheet. The unit cell
includes two silicate layers and two K+ions with parameters a = 5.19Å, b = 9.02Å; c = 20.0 Å;
and β = 95.7o. For a view from the top, see the later Fig. 1.16
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Chapter 1. Localized nonlinear waves in lattices.

particles and the ejection of atoms was detected on the other side, along closed
packed lines. The ejected atoms could not been identified and also sputtering
energies are not known exactly, however from experimental and theoretical studies,
they are known to be in the range of 4-8 eV (Kudriavtsev et al., 2005).

In an attempt to understand this phenomenon, numerical simulations were
conducted in an idealized 1D model where the particles of increasing energy hit
the boundary of the lattice (Dou et al., 2011). This study reports the formation
of a breather and kinks and the ejection of atoms at the opposite boundary of
the sample. However, the model did not intend to use realistic values of the mica
muscovite parameters.

A minimal model of the cation lattice with realistic parameters was proposed
recently (Archilla et al., 2013; Archilla et al., 2014). Only K+ ions were considered
with the actual potassium mass and Coulomb interaction between them. The
interaction with the rest of the lattice was implicitly considered as the force keeping
the ions inside the crystal with the known interatomic distance in muscovite. In
those publications, it was reported the existence of supersonic kinks, which were
easily generated within a wide range of energies and velocities.

However such model is too simplistic because for relatively high ion energies it
results in unrealistically small distances between the ions, of tenths of angstrom.

In this chapter, we develop a dynamical model in which we use the Ziegler-
Biersack-Littmark (ZBL) short-range repulsive potential, introduced in particle
bombardment studies (Biersack et al., 2008). ZBL potential describes the Coulomb
repulsion between nuclei, which is partially screened by the atom electrons and
rapidly decays in few Å. The results for the moving energy-carrying objects in
such potential are similar to those obtained with only pure Coulomb interac-
tion (Archilla et al., 2013; Archilla et al., 2014), namely the supersonic kinks,
traveling without attenuation for long distances, can be produced with arbitrary
energies. But the inter-particle distances in the kinks are limited by physically
reasonable values in our dynamical model. Note that our dynamical model allows
for bond dissociation, which is a necessary condition for the realistic modeling of
the normal energy transport in low-dimensional systems (Savin et al., 2014).

As a next step towards a more realistic description, we construct explicitly
the interaction with the surrounding atoms, using standard empiric potentials
introduced in molecular dynamics, which give rise to a periodic non-sinusoidal
substrate potential. Supersonic lattice kinks, also called crowdions (Kosevich et
al., 1973), are also easily obtained. They propagate in such potential with a
velocity which is independent of the input and is determined only by the lattice
potential parameters. For the smaller energies, the kink dissipates in phonons,
while for larger energies the excess energy is radiated until reaching the value of
crowdion energy.

The final crowdion energy is approximately 26 eV, which can be provided by
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1.2. Minimal model with realistic potentials

the recoil of isotopes of potassium after radioactive decay and is larger than the
sputtering energy. This ratio of characteristic energies allows to assume that the
tracks found in mica muscovite can be related with the lattice kinks or crowdions.

The literature about kink propagation in lattices with different inter-particle
and on-site potentials is extensive. The most studied and generic model is the
Frenkel-Kontorova (FK) model(Frenkel et al., 1938), see reviews in Refs. (Chaikin
et al., 1995; Braun et al., 1998; Braun et al., 2004). However, most of the kinks
considered in this model are subsonic ones. Supersonic kinks in the systems with
substrate have been found in models with anharmonic intersite coupling (Kosevich
et al., 1973; Milchev, 1990; Savin, 1995; Zolotaryuk et al., 1997). They have the
property than only a discrete set of velocities allows the propagation of kinks
without attenuation. They can be described as multi-kinks or lattice N-solitons
depending on whether the description is done in terms of coordinates, strains
or velocities. The kink with the unique supersonic velocity, propagating in our
dynamical model of the cation layer on a substrate, is a double-kink.

The FK model has also been considered in layered materials, to model, for ex-
ample, the in-plane dynamics of a few-layer graphene, in order to explain molecu-
lar dynamics simulation results for the cross-plane thermal conductance (Ni et al.,
2014). One particular characteristic, found in the kinks studied in the present
work, is extreme discreteness of the kinks, namely only two particles, and for
higher energies, practically only one particle is in motion at a given time. This
discreteness allows the complete understanding in physical terms of the mechanism
that brings about a single velocity of the kink and why the kink is a double-kink.

The Chapter is organized as follows. First we review and extend the results ob-
tained with only the Coulomb interaction, using the sinusoidal waveform proposed
for supersonic kinks in the Fermi-Pasta-Ulam (FPU) lattice (Kosevich, 1993; Ko-
sevich et al., 2004). The sinusoidal waveform is a good description for λ ' 3a,
where λ is a characteristic wavelength of the sinusoidal waveform and a is a lattice
constant, but fails for λ ' 2a, been replaced by an almost triangular waveform,
corresponding to nearly hard-sphere collisions. Afterward we consider the effects
of long-range interactions, with several neighbours, and introduce a short-range
nearest-neighbor ZBL potential. Thereafter, the substrate potential is constructed
and the properties of the single-velocity lattice kinks in the cation layer on the sub-
strate are analyzed with details.

1.2 Minimal model with realistic potentials

1.2.1 Model

We consider as a starting point a one-dimensional (1D) model for the dynamics of
K+ions. Thus, considering nearest-neighbour Coulomb interaction the position,
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Chapter 1. Localized nonlinear waves in lattices.

xn, of each n-th atom is given by

m
∂2xn
∂t2

= − KCe2

(xn+1 − xn)2
+

KCe2

(xn − xn−1)2
, (1.1)

where m is the K+mass, KCe2 is the inter-ion Coulomb electrostatic constant.
With the aim of explore solutions from a more general approach, we can write the
equation in dimensionless form by choosing as unit of distance, a = 5.19 Å(i.e.
the lattice constant or the equilibrium distance between K+ ions; for masses, the
mass of a K+ ion, mK+ = 39.1 amu; for time, τ =

√
mKa3/ke e2 ' 0.2 ps,

where ke is the Coulomb constant and e is the elementary unit of charge. Other
physical units in the system are velocity uV = 2600 m/s, energy uE = 2.77 eV
and frequency 5 THz. Dimensionless speed of sound in this system is c0 =

√
2, or

about 3.700 km/s in physical units.

Thus, defining un as the displacement with respect to the equilibrium position
normalized to the lattice constant, witch can be expressed as xn = a(n+ un), the
dimensionless motion equations become

∂2un
∂t2

= − 1

(1 + un+1 − un)
2 +

1

(1 + un − un−1)
2 , (1.2)

which describes the chain of ions coupled to their nearest neighbours by electro-
static Coulomb potential. Note hereinafter t will be dimensionless time.

n

u
n
 = x

n
{ nana

+ + + + + + + + +

Figure 1.2: Scheme of the one dimensional model of the K+ ion layer

1.2.2 FPU equivalent lattice

For small amplitudes, the potentials in Eq. (1.2) can be expanded in a series, using
that 1/(1 + y)2 ' 1− 2y + 3y2 − 4 y3 . . . . Retaining cubic and smaller terms, we
obtain

∂2un
∂t2

= c20 [(un+1 + un−1 − 2un)

−3/2 (un+1 − un)
2

+ 3/2 (un − un−1)
2

+2 (un+1 − un)
3 − 2 (un − un−1)

3
+ . . . ], (1.3)
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1.2. Minimal model with realistic potentials

which are the α-β FPU equations of motion. We would like to emphasize that
the α-β FPU Eq. (1.3) describes the Coulomb lattice (1.2) only in the small-
and intermediate-amplitude limit and is not applicable to this lattice in the large-
amplitude limit, see Fig. 1.9 and the subsection devoted to the triangular waveform
below.

1.2.3 Dispersion relations

Linearization Eq. (1.2), i.e. setting α = β = 0 in Eq. (1.3), the equation of motion
is reduced to the well-known discrete linear wave equation

∂2un
∂t2

= c20 (un+1 + un−1 − 2un) , (1.4)

where c0, the speed of sound, is the long wavelength phonon velocity. Note that
in our scaling c0 =

√
2. A phonon corresponds to small amplitude particle dis-

placements of the form un = exp (i (qn− ωt)), with q and ω being the phonon
wave number and frequency respectively. The dispersion relation and velocities
are well known, we include them here for comparison with. Thus, the the phonon
dispersion equation in normalized units reads

ω2 = 4c20 sin2 q

2
with q =

2πm

N
and m = 1, 2, . . . , N. (1.5)

Then, phase and group velocity are expressed for the lattice as

cp =
ω

q
= 2c0

∣∣∣∣ sin q
2

q

∣∣∣∣ ,
cg =

∂ω

∂q
= c0

∣∣∣cos
q

2

∣∣∣ . (1.6)

Thus, those well known relations dispersion of the linear lattice and its group
and phase velocity velocity are plotted for the positive first Brillouin zone in Fig.
1.3. The maximum frequency corresponding to the mode with the wave number
q = π is ωM = 2c0. In the limit of long wavelengths, both velocities are equal
to the speed of sound c0, which is also the maximum value. Note that the group
velocity becomes zero at the top of the phonon band q = π.

The maximum frequency in physical units is about 2.2 THz which is larger
than the one obtained with molecular dynamics and neutron spectroscopy of about
1.6 THz (Collins et al., 1993; Wada et al., 1991; Chaplot et al., 2002). This is
understandable given the simplicity of our model taking into account just one
type of atom compared with the complexity of real mica, but it is within the
same range of values. Note that the predicted speed of sound in physical units,
c0 = 3690.2 m/s, is similar to that found in Ref. (Brudeylins et al., 1995) of
3400-3700 m/s.
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Figure 1.3: Left: Dispersion relation for the linearized Coulomb lattice. Right: Phase speed
and group velocity for linearized Coulomb lattice. In the limit of long wavelengths, both give
the sound velocity, which can be compared with the values of 3.4–3.7 km/s obtained in Ref.
(Brudeylins et al., 1995)

Also note that, in contrast with the repulsive character of the full Coulomb
interaction, this linearized equation is attractive, i.e. if the distance un+1 − un
increases, the force on the particle un is positive. The reason for it is the decreasing
nature of the Coulomb force: when the distance with the particle in front increases
the repulsion weakens and the repulsion from the particle behind becomes larger
pushing the particle n forward.

1.3 Tail analysis

Different types of nonlinear localized solutions are supported by the Coulomb
lattice. Although these solutions are large enough to be intrinsically nonlinear,
they also have tails of small amplitude which abide the linear equation. Tails
cannot exist by themselves but depends on the existence of the nonlinear solution,
however its study gives information about the parent excitation. We obtain first
the tail properties and later we consider the fully nonlinear solutions. Tails are
obtained with the linear system, therefore their properties are common to any
system with the same linearization. However, they only give the conditions that
the tails have to fulfill. The properties of existence of the nonlinear excitation,
its velocity, amplitude and other characteristics have to be worked out with the
whole nonlinear system.

Consider a nonlinear localized moving excitation, travelling with velocity V .
We also assume that its amplitude decays exponentially far away enough from the
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Figure 1.4: Numerical example of two nonlinear localized waves travelling at different velocities
and leaving a phonon tail. (Top) profiles obtained at fixed time. (Bottom) logarithmic represen-
tation showing that front and back tails exist with different decay length. Despite the type of
the excitation and its nonlinear features, the tail analysis predict the relation between the parent
velocity and its localization, i.e. Vi(Λi).

center. Tails are well described by the expression

un = exp (−ξ (n− V t)) exp (i (qn− ωt)) , (1.7)

where |ξ| is the localization parameter and its inverse Λ = 1/|ξ| the decay length.
This equation is valid for n > V t if ξ > 0 and it corresponds to the front tail of the
structure, where for n < V t if ξ < 0 corresponding to the back tail. The limit case
ξ = 0 corresponds to extended phonons. Figure 1.4 shows an example were two
localized waves are numerically obtained presenting different tails and velocities.

Since the tail amplitude is by definition small, it satisfies the linear equation
Eq. (1.4). Using that un+1 = exp(−ξ + iq)un, un−1 = exp(ξ − iq)un and u̇n =
(ξV − iω)un, substitution of (1.7) in (1.4) yields the following two equations:

ξ2V 2 − ω2 = 2c20(cosh(ξ) cos(q)− 1)

ξV ω = c20 sinh(ξ) sin(q) . (1.8)

As there are two equation with four unknowns, we can express two of them as
ω and V as functions of the other two ξ and q. First, the frequency ω is given by:

ω = cosh(ξ/2)2c0 sin(q/2) = cosh(ξ/2)ωphonons . (1.9)
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Figure 1.5: Comparison of the numerical (circles) and theoretical (continuous line) decay
lengths as a function of the velocity for a localized wave (kink). Dimensionless units

Note that Eq. (1.9) reduces to the phonon dispersion equation when there is no
localization, i.e. ξ → 0.

The velocity of the tail of the hypothetical localized wave is given by:

V =
sinh(ξ/2)

ξ/2
c0 cos(q/2) =

sinh(ξ/2)

ξ/2
cg . (1.10)

The relationship between the decay length Λ = 1/|ξ| and V given by the
equation above is in excellent agreement with the numerical results, as can be
seen in Fig. 1.5. Note that both sinh(ξ/2)/(ξ/2) and cosh(ξ/2) are larger than the
unity and also monotonically increasing functions in |ξ|, which means that the tails
oscillate and move faster than the phonons. Except for the degenerate case ξ = 0,
which corresponds to no localization and no tail, i.e., to phonons. Essentially, the
conclusion that arise for the tail analysis states that localized travelling waves,
either solitons or kinks, with tails following Eq. (1.7) are supersonic, where its
velocity depends on the localization. Also note this analysis was developed with the
linearized discrete wave equation and does not depend of the specific nonlinearity
of the coupling. Is thus generic for many systems of coupled oscillators. However,
for studying the specific features of localized nonlinear travelling waves in the
Coulomb lattice the nonlinear terms can not be neglected.
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Figure 1.6: (a) Profile and evolution of a single kink for initial amplitude A0 = 1.05. (b)
Excitation of multikinks for initial amplitude A0 = 2.5 where two kinks with different velocities
are observed. (c,d) Detail of the corresponding displacements at t = 200 scaled units. A tail of
phonons is left behind the localized travelling nonlinear waves.

1.4 Supersonic ultra-discrete kinks

1.4.1 First supersonic kinks and multi-kinks

We propose the study of kink solutions in the lattice. Essentially, a kink is a non-
linear localized wave that connects and divide two phases of the domain. Kinks can
be stationary or propagating. We find that the simplified proposed model for the
repulsive lattice is extremely well suited for propagation ultra-discrete supersonic
kinks and multi-kinks. Due to the analytical analysis of the kink characteristics
will be somehow restricted, a numerical integration of the complete set of equa-
tions of motion has been used to explore the full nonlinear features of the lattice.
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Chapter 1. Localized nonlinear waves in lattices.

The numerical evaluation of the Eq. (1.2) retaining the exact form of the
Coulomb type interaction is trivial using centered finite differences with a “leap-
frog” time marching scheme. Thus, for one-dimensional lattices of N < 1000
elements and the integration times considered on this Chapter, the temporal step
required can be small enough to achieve convergence and the error due to numerical
dispersion can be controlled for all simulations.

Thus, the boundary conditions for the simulations are set to fix at rest the first
and last atoms of the chain, i.e. those conditions implicitly includes the effects of
the other atoms of the mica crystal in the simplest way, forcing the central part
of the chain to remain at rest. Then, a excitation is forced in one extreme of the
chain. As a first example, as in Ref. (Kosevich et al., 2004), the first particle in the
chain is forced to move sinusoidally during half a period, with an amplitude A0, so
that the initial and final positions are both zero (more details of this waveform will
be given in following sections). Increasing the amplitude of the perturbation A0

the velocity of the kink increases, and eventually, two, three, and any number of
kinks are produced, travelling one after the other. The dependency of the velocity
and number of kinks with the initial amplitude is shown in Fig. (1.6) for one (a,
c) and for two (b, d) kinks.

1.4.2 Test solution

In order to obtain the properties of the full nonlinear system it is convenient to
introduce a new variable, the deformation from the equilibrium position or strain
vn = un − un−1, the equations above can be written as:

∂2vn
∂t2

= 2Fn − Fn+1 − Fn−1; with Fn =
1

(1 + vn)
2 , (1.11)

where vn = 0 corresponds to the unperturbed lattice. The boundary conditions
assume fixed particles at the ends of the lattice. Kinks are produced numerically
by applying at the chain boundary a half-wave perturbation, which is a sinusoidal
displacement during half of a period, starting and finishing at the equilibrium
position (Archilla et al., 2013; Kosevich et al., 2004). In order to describe a kink
traveling to the right, the following ansatz was introduced as in Refs. (Kosevich,
1993; Kosevich et al., 2004):

vn = −A
2

(1 + cos (qn− ωt)) if − π ≤ qn− ωt < π, (1.12)

and vn = 0 otherwise, where A is the kink strain amplitude. The bonds are al-
ways compressed so vn is negative with a minimum value of −A, corresponding
to the maximum compression of the bond. For analogy, we use the usual wave
terminology, so φn = ωt− q n is the phase; q is the wave number; ω is the angular
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Figure 1.7: Spatial profile at fixed time for kinks represented in displacement (un) and strains
vn = un−un−1. Circles and triangles are numerical results and the continuous lines are obtained
from Eq. (1.12) with magic wave number q ' 2π/3 (top), when basically two particles are moving
at a given time, and with q ' π (bottom) for the amplitude A close to 1, when basically one
particle is moving at a given time. Scaled units are equal to the lattice unit.
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frequency; T is the period; λ = 2π/q is the wavelength. The sinusoidal waveform
with q = 2π/3, being an exact solution for the FPU lattice(Kosevich, 1993; Kose-
vich et al., 2004), is not an exact solution for the Coulomb lattice but is a good
approximation for intermediate values of the amplitude A and provides very useful
framework for understanding the relative phases of the particles and the behavior
of the kink.

Figure 1.7 (top) compares the result of the numerical simulation for displace-
ments and strains, with the corresponding analytical expressions derived from
Eq. (1.12), for the intermediate value of the amplitude A = 0.55 and wave number
q ' 2π/3. The analytical expression fits very well the numerical data. Fig-
ure 1.7 (bottom) pictures a kink with wavenumber q = π. There are not enough
particles to compare with the analytical form, but the main properties of the latter
are valid.

For the dimensionless wave number q = 2π/λ, with λ an integer, Eq. (1.12)
represents a solution where basically λ bonds and λ − 1 particles (the kink core)
are in motion, while the others remain at rest.

We will use the term active to describe related states of the different magni-
tudes. The active particles or coordinates at a given time or time interval (or
phase or phase interval) are those for which un is changing, the active bonds are
those for which vn 6= 0, i.e., they are the compressed ones. For a particle, the time
interval is active when it is moving, and for a bond - when it is compressed.

If the dimensionless wavelength λ is between two integers m1 and m2, the
number of active bonds oscillates between m1 and m2 and the number of active
oscillating particles is between m1 − 1 and m2 − 1.

Of particular interest in this work will be λ = 3, with q = 2π/3, which is called
the magic wave number (Kosevich et al., 2004), and λ = 2, with q = π, which will
be referred to as the π-mode. These two values are extreme cases of localization,
with q = π being the limit when only one particle is moving at a given time.

1.4.3 Rotating wave approximation

The velocities of the kinks can be analytically obtained using the rotating wave
approximation (RWA), which consists in an approximation of the Fourier series
up to the first harmonic (Archilla et al., 2013). When we substitute (1.12) in the
equation of motion (1.11), nonlinearity generates multiple frequencies. The RWA
approximation states that nonlinear contributions higher than second harmonics
can be neglected. This implies that the force terms can be approximated by
their first-order Fourier expansions, as Fn = a0 + a1 cos(qn − ωt). On the other
hand, the left hand side of Eq. (1.11) gives, after substitution of Eq. (1.12),
v̈n = (A/2)ω2 cos(qn − ωt) which is equal to the first harmonic term of the right
hand side. The zero-harmonic cancels out due to the dependency of the right hand
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Figure 1.8: Kink velocity versus minimal interparticle distance R = 1−A, calculated numeri-
cally (crosses) and analytically from Eq.(1.15) with wave number q = 2π/3 (upper dotted-dashed
line) and q = π (lower dotted-dashed line). Scaled units are the lattice constant for distances
and 2.6 km/s for velocities.

side on Fn. The first harmonic of Fn is given by:

a1 =
1

π

∫ π

−π

cos(θ)dθ

(1− A
2 −

A
2 cos(θ))2

. (1.13)

For A < 1 we obtain

a1 =
A

(1−A)3/2
. (1.14)

Therefore, substituting v̈n and Fn = a0 + a1 cos(qn − ωt) in Eq. (1.11), is
straightforward to obtain the frequency as a function of the amplitude A:

ω =
1

(1−A)
3/4

2c0 sin (q/2) , (1.15)

and the velocity as:

V =
1

(1−A)
3/4

c0
sin (q/2)

(q/2)
. (1.16)

Kinks are therefore supersonic. These magnitudes are equal to the correspond-
ing ones for phonons, multiplied by a amplitude factor 1/(1−A)3/4: in the small
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Figure 1.9: Temporal variation of the strain vn = un − un−1 for different amplitudes. As
the amplitude A increases, the shape becomes almost triangular, corresponding to almost hard-
spheres collisions. The amplitude A is given in lattice units and the scaled time unit is 2 ps.

amplitude (A→ 0) and long wavelength (q → 0) limit, V tends to the sound speed
c0.

In Ref. (Archilla et al., 2013) it was shown that the magic wave number repre-
sents a good agreement between the ansatz and simulations. However this agree-
ment fails at the kink amplitudes A approaching unity, when the minimal inter-
particle distance in the kink (in lattice units) R = 1−A diminishes and the q = π
brings about a much better fit as can be seen in Fig. 1.8. The conclusion is that the
magic wave number is a suitable approximation for an intermediate range of am-
plitudes in the Coulomb lattice, in contrast to the FPU chain where it is valid for
all amplitudes(Kosevich, 1993; Kosevich et al., 2004), and that q actually changes
continuously with the amplitude in the Coulomb lattice. The complementary ap-
proach is to use Eq. (1.15) to find the values of the wave number q, with respect
to the amplitude A or the velocity V . This will be shown in Fig. 1.14, where it
can be appreciated that the magic wave number is a satisfactory solution only for
the intermediate values of kink velocity in the Coulomb lattice.

1.4.4 Triangular waveform

For the higher amplitudes, with A close to 1, the waveform deviates from the
sinusoidal one given by Eq. (1.12) and approaches instead the triangular waveform,
which is shown in Fig. 1.9. The almost straight lines in such waveform mean that
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the velocity is almost constant except during a very short interaction time. The
system behavior is very similar to that of the hard-spheres model.

This waveform is also another way of looking at the mode q = π. In this mode
only one particle is moving at a given time, which means that there are no forces on
the particle acting from its neighbours (because it moves at constant velocity and
those forces would accelerate it). Strictly speaking, the mode q = π and an exact
triangular waveform are unattainable because of the electrostatic Coulomb forces
acting on the particles. However, if the energy of the particle is large with respect
to the change in the potential during a large part of the path between collisions,
the particle will move almost free during most of the time between collisions.

The triangular waveform has been described as the high-energy limit for the
Lennard-Jones interatomic potential (Friesecke et al., 2002) and has been ob-
served experimentally in a system of repelling magnets (Molerón et al., 2014).
It is worth mentioning that the triangular waveform can also be related with
strongly-stretched bonds in the high-energy limit in the potentials allowing for
bond dissociation, like the Lennard-Jones potential. The strongly-stretched bonds
result in finite (normal) thermal conductivity in one-dimensional systems with
such interatomic potentials (Savin et al., 2014).

1.4.5 Analytical results

Sinusoidal waveform and mode with q = 2π/3

Some analytical results can be obtained in this model, see also (Kosevich et al.,
2004). Let us consider the wavenumber q = 2π/3 and choose t = 0 for the time for
which φn = q n−ωt = 0 at n = 0 after a change of the origin of n and t, but keep
the notation n for generality. If we consider the time interval ∆t: −T/6 ≤ t < T/6,
there are three active strains: vn+1, vn and vn−1. At the end of the interval, that is
at t = T/6, vn−1 becomes zero and vn+2 starts being perturbed, so all the indexes
n of the particles will change in a unity.

During ∆t, un′ = 0 for n′ ≥ n + 1, un and un+1 are changing but un−1 has
already attained the value 3A/2, its final constant value as can be checked by
direct sum of 1.12 for q = 2π/3. Also, un′ = 3A/2 for n′ < n− 1, their final value
after the kink has passed over them as seen in Fig. 1.7. The active coordinates
are therefore un = −vn+1 and un−1 = −vn + vn+1, i.e. the mode q = 2π/3 states
that essentially two particles are moving at same time and there are tree active
bounds.
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After some algebra we get

un =
A

2
+
A

2
cos (φn + 2π/3)

un−1 = A− A

2
cos (φn − 2π/3) . (1.17)

We can obtain immediately the kink kinetic energy as K = 1
2 u̇

2
n+ 1

2 u̇
2
n−1, which

results in

K =
ω2A2

8

(
1 +

1

2
cos (2φn)

)
, (1.18)

with maximum value

KM =
π2

12
V 2A2 . (1.19)

The potential energy, with respect to the equilibrium state, is given by:

U =
1

1 + vn−1
+

1

1 + vn
+

1

1 + vn+1
− 3 . (1.20)

By substitution, it can be seen that the maximum potential energy corre-
sponds to the bond n at its maximum compression, i.e., with φn = 0, while the
bonds n − 1, n + 1 have a phase difference of ±2π/3 with a strain un−1,n+1 =
−A/2 (1 + cos (±2π/3)) = −A/4. Therefore the maximum energy becomes:

UM =
1

1−A
+

2

1−A/4
− 3 . (1.21)

There is also a minimum potential energy which corresponds to the limit,
in which only two bonds are different from zero with phases ±π/3 and strain
vn = −3A/4. The minimum energy becomes

Um =
2A

1− 3A/4
− 2 . (1.22)

Therefore the kink for the mode q = 2π/3 has always some compression energy
Um above the ground state.
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1.4. Supersonic ultra-discrete kinks
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Figure 1.10: Maximum potential energies of the kinks in the Coulomb potential versus minimal
interparticle distance in lattice units R = 1 − A (for amplitude A close to 1). The analytical
results are very similar for the waveforms with q = π and q = 2π/3, as the maximum potential
energy of the kink depends mainly on the minimal separation between particles R. The values
of the dimension units are the lattice unit and 2.77 eV respectively.
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Figure 1.11: Maximum kinetic energies of the kinks in the Coulomb potential versus minimal
interparticle distance in lattice units R = 1−A (for amplitude A close to 1). It can be seen that
the kink with wavenumber π is better described by a triangular waveform than by a sinusoidal
one. The values of the dimension units are the lattice unit and 2.77 eV respectively.
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Chapter 1. Localized nonlinear waves in lattices.

Sinusoidal waveform and mode with q = π

The properties of sinusoidal kinks with mode q = π are easy to obtain as there
are only two active strain variables and one coordinate, which during the interval
∆πt, 0 ≤ t < T/2, are:

vn = −A
2

(1 + cos (q n− ωt)) ;

vn+1 = −A
2

(1 + cos (q[n+ 1]− ωt)) =

−A
2

(1− cos (q n− ωt)) ;

un = −vn+1 ; u̇n =
A

2
ω sin (q n− ωt) . (1.23)

The kinetic and potential energies, K = 1
2 u̇

2
n and U =

1

1 + vn
+

1

1 + vn+1
− 2 =

1

1 + vn
+

1

1− vn
− 2, can be obtained. The maximum kinetic, maximum and

minimum potential energies are given by

KM =
π2

8
A2V 2 ; UM =

1

1−A
− 1 ; Um =

2

1−A/2
− 2.

(1.24)

Triangular waveform and mode with q = π

The potential energy fits very well the numerical values, unlike the kinetic energy,
as can be seen in Figs. 1.10 and 1.11. This is because the π kink is better described
by a triangular waveform in the limit of large energies, as Fig. (1.9) shows. Let
us suppose that t = 0 is the time for which vn = −A, as it takes half a period to
change from −A to 0, then V T/2 = 2. Therefore, for the interval 0 ≤ t < T/2 the
active variables for a ideal triangular waveform are:

vn = −A+AV t; vn+1 = −AV t;
un = −vn+1 = AV t; u̇n = AV. (1.25)

The maximum and minimum potential energies are identical to that of the
q = π sinusoidal waveform given by Eq. (1.24).

On the other hand, the kinetic energy is a constant:

K = KM =
1

2
A2V 2 . (1.26)

In the numerical simulations, there are short time intervals when K changes,
separated by a larger interval when K is almost constant.
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1.5. Interaction with several neighbours

In the high energy limit, A→ 1, the numerical solution converges to the trian-
gular waveform: at fixed time only one particle is in movement, and its velocity
is constant. During 0 < t < T/2 the potential energy in this limit is negligible
compared with the kink kinetic energy. Only when t→ 0 and t→ T/2 the moving
particle see the Coulomb potential of the adjacent particles at rest. For t → T/2
the particle experiment a deceleration, that in the limit A→ 1 can be considered
as a rigid collision and therefore the kinetic energy must vanish for t→ 0 and for
t→ T/2. Here a sharp peak on the potential energy is observed, where in the high
amplitude limit a Dirac δ(t) is expected for energy conservation considerations.

Also, this result has implications in the interpretation of the kink as a particle-
like excitation for high energies. In the limit A → 1 the kink travels trough the
lattice at constant velocity and energy, E, fixed by Eq. (1.26) as E = 1

2V
2, which

means that the kink behaves itself as a quasiparticle of unit mass (or a K+ion
mass in physical units).

1.5 Interaction with several neighbours

All the previous results apply to the case of nearest-neighbor coupling. However,
for a more realistic description the long range interaction must be taken into
account. With multiple neighbours, M , the dynamical equations become:

∂2un
∂t2

=

M∑
m=1

(
− 1

(m+ un+m − un)
2 +

1

(m+ un − un−m)
2

)
, (1.27)

which linearized become:

∂2un
∂t2

= c20

M∑
m=1

1

m3
(un−m − 2un + un+m) . (1.28)

Substitution of un = exp (i (qn− ωt)), leads to:

− ω2un = c20

M∑
m=1

1

m3
(exp (−iqm)− 2 + exp (iqm))un (1.29)

with c0 =
√

2, or:

ω2 = 4c20

M∑
m=1

1

m3
sin2

(qm
2

)
. (1.30)

The function ω = ω (q) is quite similar to the one with a single neighbour, but
with a slope at q = 0 that increases with the number of neighbours. The phase
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Chapter 1. Localized nonlinear waves in lattices.

and group velocity are plotted in Fig. for the positive first Brillouin zone (1.12)
for M = 1, 3, 8, 50. It is worth noting here that close to the continuous limit, i.e.
q → 0, sin(qm/2) ' qm/2 and we obtain:

ω2 = q2c20

M∑
m=1

1

M
. (1.31)

Which leads to the group velocity at q → 0 and λ→∞ cM = ∂ω/∂q

cM = c0

√√√√ M∑
m=1

1

m
. (1.32)

For a finite number of neighbours, the speed of sound is larger than with a single
one. For example c3 = 1.354c0 and c8 = 1.6486c0. Note if causality is not
imposed limM→+∞ cM =∞, although the convergence of is slow, e.g. for M = 106

neighbours cM = 3.7938c0.

Simulation results show that kinks still exist and propagate supersonically when
the Coulomb interaction extends beyond the nearest neighbours. Kinks have sim-
ilar velocity and wave number if we normalize kink velocity to the sound speed in
the Coulomb chain with interactions between M nearest neighbours, i.e. V/cM .

Figure 1.13 shows the dependence of the relative velocity V/cp on the minimum
interparticle distance and Fig. 1.14 shows the dependence of the numerical best fit
for the wave number as a function of the relative velocity, emphasizing the essential
identity of the phenomenon. Other aspects of these figures will be commented
below. For clarity, only the cases of three and eight neighbours are represented
although up to 30 neighbours have been tested.
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Figure 1.12: (left) Phase and (right) group velocity for the linearized Coulomb lattice including
M=[1, 3, 8 and 50] neighbours.
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Figure 1.13: Kink velocities as a function of minimal interatomic distance in lattice units
R = 1−A (A is kink’s amplitude) for several potentials. Notations in the legend: cm, m = 1, 3, 8,
refers to the Coulomb interaction between the first m neighbours. Velocities are normalized to
the sound speed cM for a system with interaction between M neighbours, except for the system
with a substrate which is normalized to c1 = cs. It can be seen that the increase of the number
of interacting neighbours slows the normalized velocity V/cM of the kink (but not its absolute
velocity). Also, it can be seen that in the system with a substrate the normalized velocity V/cM
deviates from the curve c1+ZBL to some specific velocity Vc on the c1 curve. The values of the
sound velocities are c1 = cs = 3.7 km/s, c3 = 5.0 km/s and c8 = 6.1 km/s.

It is worth commenting the problem that arises when the interaction with an
infinite number of neighbours is taken into account. If the pair potential depends
on the interparticle distance |r| as 1/|r|s, the long-wave phonon velocity is finite
for s > 1, but it diverges with the number of particles N as vph ∝

√
ln (N/2) for

the unscreened Coulomb potential (s = 1). However, this divergence occurs only
in the electrostatic limit when the electromagnetic wave retardation is neglected.
With an account of the retardation, the long-wave group velocity tends to the
speed of light in vacuum. If the particles are in a material medium, there is a
rearrangement of the electron density that can be described as a screening of the
Coulomb interaction with some characteristic length lscr. The screening brings
about a finite long-wave phonon velocity vph ∝

√
ln(lscr/a), where a is the lattice

constant. As it has been mentioned, we do not study in depth this problem here
and have considered only a few neighbours for simplicity.
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Figure 1.14: Best fit for the wavenumber q of the kinks as a function of the velocities normalized
to the sound speed. Notations in the legend: Ci is the Coulomb interaction between the first
i neighbours. Note that the magic wave number q = 2π/3 is also chosen in the system with
a substrate. The values of the sound velocities are c1 = cs = 3.7 km/s, c3 = 5.0 km/s and
c8 = 6.1 km/s.

1.6 The effect of nuclear repulsion: kinks with
short–range ZBL potential

The minimal interatomic distance in lattice units R = 1 − A, obtained for fast
large-amplitude kinks, is clearly impossible in realistic systems. At short distances
short–range forces appear, which are produced by the overlapping electronic shells
of the two close atoms. A large number of different repulsive potentials and screen-
ing functions have been proposed over the years, some determined semi-empirically,
others from theoretical calculations. Much used repulsive potential is the one given
by Ziegler, Biersack and Littmark, the so-called ZBL repulsive potential. It has
been constructed by fitting a universal screening function to theoretically obtained
potentials calculated for a large variety of atom pairs (Biersack et al., 2008). The
ZBL potential has the form

UZBL(r) = ke
Z1 Z2 e2

r
φ

(
r

ρ

)
, (1.33)

with ke being the Coulomb constant, Z1 and Z2 are the atomic numbers of the
involved atoms, and r the distance between them, φ(x) is the universal screening
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1.6. The effect of nuclear repulsion: kinks with short–range ZBL potential

Constant i = 1 i = 2 i = 3 i = 4

Ai 0.1818 0.5099 0.2802 0.02817

bi 3.2 0.9423 0.4029 0.2016

Table 1.1: Constants used for the Ziegler-Biersack-Littmark (ZBL) screening potential of Eq.
(1.34)

function:

φ(x) =

4∑
i=1

Ai exp (−bix) , (1.34)

where the constants Ai and bi are listed in Table (1.1).

The screening length is ρ = 0.8854 a0/
(
Z0.23

1 + Z0.23
2

)
, with a0 = 0.529Å being

the Bohr radius. The ZBL potential describes well the interaction between neutral
atoms. In the case of ions considered here, the Coulomb potential must also be
added, accounting for the repulsion between the ions. The introduction of the ZBL
potential restricts the interatomic distances to the realistic values. The four terms
in the ZBL potential are important for different range of energies, but for K+ions,
with energies up to 200 KeV, which are much larger that the ones considered here,
the interaction potential can be represented by a single term, which together with
the Coulomb ionic part takes the form:

U (r) =
1

r
+
α

r
exp(− r

ρ
) , (1.35)

with α = 184.1 and ρ = 0.0569 in dimensionless units, which in physical units
correspond to 2650.6 eVÅand 0.29529 Å, respectively. Figure 1.15 represents ZBL
and Coulomb potentials, with their sum and other details to be commented later.
Note that around r ' 0.4, the combined potential U(r) differs considerably from
the Coulomb potential.

The dynamical equations become

∂2un
∂t2

= −Gn+1 +Gn − Fn+1 + Fn , (1.36)

with Fn given by Eq. (1.11) and Gn given by

Gn =
α

1 + vn
exp

(
−1 + vn

ρ

)(
1

1 + vn
+

1

ρ

)
. (1.37)

When the joint effect of both the screened Coulomb (ZBL) and bare Coulomb
potentials is considered, i.e., Eq. (1.35), numerical simulations show that the
behavior of the kinks is not much different from that observed in the bare Coulomb
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Figure 1.15: Interaction potentials U(r) in dimensionless units. Coulomb (c1); ZBL (cZBL);
Coulomb+ZBL (c1+ZBL); substrate potential (cS) and the sum of the Coulomb, ZBL and sub-
strate potentials (c1+ZBL+S). The scaled units are 2.77 eV and the lattice unit a=5.19 Åfor U
and r, respectively.

case, discussed in the preceding sections. Supersonic kinks propagate equally well,
changing from the magic wavenumber q = 2π/3 to the proximity of q = π and
from the sinusoidal to nearly triangular waveform in increasing the amplitude
A. Figures 1.13 and 1.14 also show the characteristic curves V = V (A) and
q = q(A). The basic difference is that the high energy regime, i.e. the regime
of high velocities at witch the waveform change from sinusoidal to triangular, is
obtained for for lower (and also realistic) interatomic distances. On the other hand
the sound velocity does not change since the ZBL potential is felt only for very
large perturbations. Unfortunately, the RWA cannot be obtained analytically but
the numerical RWA fits very well the results of the simulations.

1.7 The effect of the substrate potential: lattice
kinks or crowdions

In the preceding sections, the interaction with the other atoms in the crystal was
taken into account only implicitly, since the only effect of the surrounding atoms
was to fix the equilibrium lattice period and to confine the particles within the
crystal. To better model the properties of the kinks in a crystal like muscovite,
we take into account explicitly the interaction with the surrounding atoms in a
simplified mica geometry.
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Figure 1.16: Projection on the [001] plane of the ions used in the calculation of the substrate
potential. Four planes of ions are considered, two above and two symmetrical below the K+plane,
the closest two with oxygen and the other two with silicon ions. The path for the central K+ion
used the in calculation is shown, note that the O−2 ions in the middle of the path are actually
at a distance of 1.68Å above and below. The interaction between the K+ions in the central X-
axis is not taken into account in constructing the substrate potential as it is taken into account
explicitly. The crystal is continued in the K+plane until the convergence is achieved. Distance
between the longer marks is 1 Å.

The K+ ions occupy the nodes of the hexagonal lattice with a lattice unit
a = 5.19 Å. There are no other atoms in the K+plane, therefore we need to consider
more atoms above and below. We consider two planes above and two symmetric
below. The closest plane, situated at a height of 1.6795Å, is occupied with oxygen
ions with charge -2, their projections on the K+plane lie in the middle of the two
nearest-neighbor K+ ions. The other layers, at at a height of 2.2227Å from the
K+ plane, are occupied by silicon ions. They are in the centers of tetrahedra
whose three horizontal vertices are occupied by the oxygen ions. See the sketch
on Fig. 1.16 for a projection of oxygen and silicon layers on the [001] plane, i.e. a
top view of the K+layer. The Si sites are occupied by Si+4 and Al+3 ions in the
proportion of 3:1, giving an average charge of +3.75, but we assign them a smaller
charge +2.75 to take into account other atoms in successive layers, particularly
the oxygen ions at the top of the tetrahedra, and to achieve charge neutrality.

We suppose that all the atoms are in fixed positions except the moving K+ ions
in a row and only in the [100] direction. This is justified by the supersonic speed
of the kinks, that we are interested in, and due to the weak interaction between
the Si and Al ions compared to the ZBL interaction between potassium ions when
they collide at high velocities. The interaction between the K+ ions, that are in
the central X-axis, are not considered in constructing the substrate potential as
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Chapter 1. Localized nonlinear waves in lattices.

it is taken into account explicitly. The lattice is extended in the [001] K+ plane
until the convergence of the potential is achieved. Specifically the potentials used
are the electrostatic interactions and Born-Mayer potentials of the form V =
A exp(−r/rg), given in Ref. (Gedeon et al., 2002). The value rg = 0.29Å is for all
the interactions, and the pre-exponential constants in eV are: AKO = 3800.125,
AKSi = 2762.5, AOO = 453.375, A0Si = 1851.25, and ASiSi = 1173.125. For the
K+-K+ interaction, we use the Coulomb-ZBL potential described above.

We obtain a substrate potential in scaled units (uE ' 2.77 eV), which can be
described with very good approximation by a truncated Fourier series up to fourth
harmonic:

Us (x) =

4∑
h=0

Uh cos (2πhx) , (1.38)

with coefficients Uh equal to [2.4473, -3.3490, 1.0997, -0.2302, 0.0321]. The poten-
tial well of 20 eV is consistent with molecular dynamics simulations (Collins et al.,
1992). It is represented in Fig. 1.15 together with the other potentials, such that
their relative magnitudes can be compared.

1.7.1 Dispersion relations with substrate

Our dynamical equations with a substrate potential Us (x) in the form given by
Eq. (1.38) and for M neighbour Coulomb interactions can be written as

∂2un
∂t2

= −∂Us (un)

∂un
+

M∑
m=1

(
− 1

(m+ un+p − un)
2 +

1

(m+ un − un−m)
2

)
, (1.39)

where the restoring forces of the substrate potential are

− ∂Us (un)

∂un
=

4∑
h=1

2πhUh sin (2πhun) . (1.40)

The latter equations, for small amplitude oscillations of un becomes

− ∂Us (un)

∂un
' −ω2

0un , (1.41)

with the linear frequency ω0 as

ω2
0 =

4∑
h=1

(2πh)
2
Uh. (1.42)
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Figure 1.17: Left: Dispersion relation for the linearized Coulomb lattice with (continuous) and
without (dotted) substrate potential. Right: Phase (dotted) and group (continuous line) velocity
for linearized Coulomb lattice. All dispersion curves are for M = 1 neighbour interaction.

The corresponding value for linear frequency is ω0 = 4.48 or 119 cm−1 in
physical units, which is close to 110 cm−1 determined experimentally (Diaz et al.,
2000). Therefore the dynamical equations for un small become

∂2un
∂t2

= −ω2
0un + c20

M∑
m=1

1

m3
(un−m − 2un + un+m) . (1.43)

Substitution of un = exp(i(qn− ωt)) leads to

− ω2 = −ω2
0 + c20

M∑
m=1

1

m3
(exp (−iqm)− 2 + exp (iqm)) . (1.44)

Therefore the phonon dispersion relation become

ω2 = ω2
0 + 4 c20

M∑
m=1

1

m3
sin2

(qm
2

)
. (1.45)

In the following we particularize for a single neighbour,i.e. M = 1. The phonon
spectrum becomes an optical one, and the frequency and group velocity are

ω2 = ω2
0 + 4 c20 sin2 (q/2) ,

cg =
∂ω

∂q
=

c20 sin q√
ω2

0 + 4 c20 sin2 (q/2)
. (1.46)

Note that c0 is still the sound speed in the system without substrate. Thus,
as Fig. (1.17) shows, the dimensionless phonon frequencies ω are in the interval
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Figure 1.18: Representation of the process of dynamical slowing down of the kink. The non-
linear and linear radiation processes can be easily distinguished. Nonlinear waves with large
amplitude are first emitted. Later, the phonons with the wavelength close to λ ' 4, which
corresponds to maximal group velocity, and with exponentially decaying amplitudes are emitted
while the kink approaches the limit velocity. Scaled units for time and distance are 0.2 ps and
lattice constant 5.19 Å.

between ω0 = 4.48 and ωmax = 5.31. The group velocity is zero at q = 0 and q = π
and reaches its maximum cc,max ' 0.4, in the proximity of q = π/2 with λ ' 4.
These features are also observed in the simulations for low amplitude travelling
waves.

1.7.2 Qualitative description

The introduction of the substrate potential does not prevent the existence of super-
sonic lattice kinks. The lattice kink, also called crowdion, consists of an interstitial
atom propagating very fast in the lattice and leaving behind a vacancy. The spe-
cific feature of the kinks found in the present work is that its velocity and energy
are fixed by the layer+substrate system, let us denote them as Vc and Ec (c for
crowdion). If the initial energy of the excitation is smaller than the threshold Ec,
the kinks are rapidly dispersed and disappear and cannot propagate more than few
lattice units. However, if it is larger, a kink is formed and its speed depends on its
amplitude following the relation V (A) of the ZBL interaction without substrate.
However this velocity is not constant with time: the kink always slows down to
a fixed stable speed Vc, and the excess energy is backward radiated. The specific
values for the stable kink velocity and energy in scaled units are Vc = 2.7387 ' 2c0
and Ec = 9.4374, corresponding to 7.16 km/s and 26.2 eV, respectively.

The lattice kink is supersonic in the two meanings a) Vc > c0, where c0 is the
sound velocity without substrate; b) Vc is much larger than the maximum phonon
group speed Vc,max ' 0.4 in the system with the substrate, but is not larger than
the maximum phase velocity which is unbounded for q → 0, see Fig. (1.17).
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Figure 1.19: (top) Energies of several kinks with respect to time. When more energy than the
crowdion’s one is delivered a faster kink is produced and a radiation process takes place until
the supersonic crowdion is formed. Thereafter, the crowdion is extremely stable. If the initial
energy is smaller than the crowdion’s one the kink dissipates into phonons. The scaled units
are approximately 2.77 eV for energy and 0.2 ps for time. (bottom) Velocities of lattice kinks
or crowdions versus time in scaled units for different initial conditions. The final velocity and
energy are approached asymptotically, being Vc = 2.7 (7.2 km/s) and Ek = 9.5 (26.2 eV) in
scaled and physical units. For V < Vc, the kinks are dissipated into low-amplitude phonons.

1.7.3 Slowing down processes

The process of slowing down to Vc is shown in Figs. (1.18) and (1.19), where two
well distinguished phases can be identified.

a) Nonlinear radiation: For an initial energy E > Ec, the kink progres-
sively loses energy. The particles immediately after the kink perturbation are left
with enough energy for nonlinear vibrations in the potential well bringing about
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nonlinear wave. Their frequencies obtained numerically are above the phonon
band with a maximum value of about 6.3. This strong radiative process is shown
in Fig. 1.18 for an initial velocity V (t = 0) = 7. This process is very fast and the
decay of kink energy is almost linear with time. As long in this regime the wave-
form is nearly triangular, kink kinetic energy can be approximated by K = 1

2A
2V 2

as explained is Sec. (1.4.5). Thus, as the potential energy is negligible for this
regime, the linear decay of energy is consistent with the decreasing of velocity at
the initial part seen in the of Fig. 1.19.

b) Linear radiation: As the lattice kink energy approaches Ec, the ampli-
tude of the tail oscillations and its frequency decrease, the kink frequency enters
the phonon band, radiating low amplitude phonons (Braun et al., 1998; Braun
et al., 2004). The energy decreases exponentially with time towards Ec. The wave
number of the radiated phonons can be deduced from the kink speed as each par-
ticle left behind the kink is excited with a delay ∆t = 1/Vc and, therefore, with
a phase difference q = ω(q)∆t = ω(q)/Vc. As the phonon wave vector is given
by q = ω(q)/cph, where cph is the phase speed of the phonons, Vph = Vc. Using
the phonon dispersion relation in Eq. (1.46) it is possible to obtain the phonon
wavenumber and wavelength λph = 3.5 which is the observed one in the simu-
lations. Similar process has been described in Ref. (Braun et al., 1998) and in
references therein for subsonic kinks. However, there is an important difference:
the subsonic kinks, described in those works, radiate continuously and eventually
stop. Here the amplitude of the radiation decreases exponentially, allowing the
kink to achieve a constant energy value and propagate stable along the lattice.

From the comparison of Figs. (1.13) and (1.19) with Fig. (1.15) we conclude
that supersonic kink’s amplitude A of relative particle displacements is determined
by the interatomic distance R at the local minimum of the combined interatomic
plus substrate potential, R = 1 − A ≈ 0.33 in lattice units. This value of the
kink amplitude ensures the absence of kink oscillations and correspondingly the
absence of phonon radiation into the chain by the supersonic kink. We also want
to emphasize that we do not observe discrete spectrum (a set of possible values)
of the velocity of the supersonic kink in our system, even when we start with
high initial kink velocity, see Fig. (1.19). This is in contrast with the prediction
of supersonic multi-solitons (lattice N -solitons) in Frenkel-Kontorova model with
nonlinear intersite coupling in Refs. (Braun et al., 2004; Savin, 1995; Zolotaryuk
et al., 1997). We relate this finding with the extreme discreteness of our kink
of effective wavenumber q ' 2π/3, which as shown in Fig. (1.14) corresponds to
only two particles moving at a given time, cf. Ref. (Kosevich et al., 2004), which
does not allow for different matching with the substrate potential, and also with
possible dynamical instability of lattice multi-solitons (bound states of supersonic
kinks) in the considered system.
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Figure 1.20: Particle velocity waveform measured at n = 470 in supersonic kink with amplitude
A = 0.67 and minimal interatomic distance in lattice units R = 1−A = 0.33 for Coulomb+ZBL
potential with (continuous line) and without (dotted line) substrate potential. The instants when
the ZBL interaction acts (near A) and the minimum velocity at the top of the potential barrier
(E) are easily identified. The configurations at those times can be seen in Fig. 1.21. Scaled units
are 0.2 ps and 2.6 km/s.

1.7.4 Double kink

The particle velocity u̇n as a function of time for the stable kink in the substrate
is represented in Fig. 1.20. Due to the extreme discreteness of the kink, it is not
practical to represent u̇n an a function of n. The profile of a double soliton for
the particle velocity corresponds to the double kink shown in Fig. (1.21)-(a), is
evident as a function of time.

Supersonic multi-solitons in Frenkel-Kontorova system with anharmonic cou-
pling has been described in Refs. (Kosevich et al., 1973; Savin, 1995; Zolotaryuk
et al., 1997). They correspond precisely to the discrete set of velocities for which
the kinks do not radiate phonons. Although roughly similar in the shape, the kink
in our system does not correspond to the mathematical forms obtained in those
references. The kink in our system is more discrete, very close to the limit of
discreteness, its wavenumber q ' 2π/3, shown in Fig. (1.14), corresponds to only
two particles moving at a given time, cf. Ref. (Kosevich et al., 2004).

This discreteness makes possible the exact description of the double kink pro-
cess as shown in Fig. 1.21 (c): a particle n, represented by a white circle, initially
at rest at the bottom of a potential well, experiences two collisions, one when it
was hit by the particle n−1 and is accelerated afterwards, and a second one when
it hits the particle n + 1 and is decelerated, attaining almost zero velocity at the
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Figure 1.21: (a) Particle displacement waveform for the established lattice kink. (b) Potential
energy seen by the kink during propagation (thick line) and periodic substrate potential (thin
line), horizontal lines are the energies corresponding to the equilibrium stable (C) and unstable
(A) interstitials. (c) Particle configurations corresponding to the points A−E, shown in (a) and
(b). Scaled units are lattice unit 5.19 Å for distances, 0.2 ps for time and 2.77 eV for energies.

bottom of the potential well (during the radiation process the particle velocity is
different from zero). Between the two collisions, the particle finds the substrate
potential barrier between sites and experiences a decrease in velocity while going
uphill which is followed by an acceleration while going downhill.

Note that the states A and E in Fig. 1.21 have exactly the same energy, but
the kink has only moved half a lattice site. This is the first kink of the double-kink
process shown in Fig. 1.21 (a). The process of the particle n going downhill and
hitting the n+ 1 particle until it stops forms the second kink.

This process can be seen in terms of the kink energy in Fig. 1.21 (b). Two
identical oscillations of particle’s potential energy U happen for the kink to move a
lattice site. There is a local maximum at point C, corresponding to the minimum
distance between particles and the short range ZBL interaction. The horizontal
dashed-dotted lines indicate the energies for the equilibrium interstitial configu-
rations, with two particles inside a potential well (stable), or one particle at the
top of the potential barrier (unstable), with the energy difference corresponding
to the Peierls-Nabarro (PN) barrier. The potential energy is always above the
stable interstitial energy as the lattice has no time to relax, bringing about an adi-

36



1.8. Some numerical simulations with ultradiscrete kinks or crowdions

abatic PN barrier. The kink always has finite kinetic energy, with the minimum
corresponding to configuration A.

1.8 Some numerical simulations with ultradiscrete
kinks or crowdions

In this section we present the results of different simulations to show the capacity
of the crowdions to survive a perturbed environment when larger energy is initially
delivered and, second, the behaviour of the crowdions with temperature.

1.8.1 Excess energy

We present some examples of simulations when the lattice is given more energy
than the 26.2 eV needed to produce the supersonic crowdion. The energies range
from 130 eV to 520 eV. They are represented in Fig. 1.22. In (a) a single crowdion is
formed after nonlinear waves are emitted. In (b) two crowdions are formed leaving
behind an stationary linear wave. Note how the second crowdion survives to the
tail of the first and the common velocity Vc of both. In (c) the excessive energy
destroys the second crowdion which transforms into a highly localized nonlinear
stationary wave. In (d) the second crowdion survives again, while in (e) it is again
destroyed. Extensive phonon radiation and wandering kinks can be seen in the
latter figure. In (f) a second crowdion survives 150 sites in a highly perturbed
media but it is finally pinned down.

1.8.2 Thermalized medium

An interesting question is whether the crowdion can travel trough a previously
thermalized medium. This is not only a question of general interest but particulary
important for mica muscovite. As it has been calculated in the chapter Tracks
in mica: 50 years later in this book, the recording process of tracks happens a
few kilometers underground under large pressure and temperatures of 700-1000 K.
Although much more work is necessary, the answer is positive. For comparison
Fig. 1.23 (a-b) shows two simulations at 300 K and 1000 K in the system without
substrate potential where the kink survives over hundreds of lattice sites. It is
not really surprising as if we compare the energy of the crowdion 26.2 eV with the
mean thermal energy of a particle kBT , the crowdion energy is 1000 and 300 times
larger at 300 K and 1000 K respectively.

In the case of including the substrate potential, as shown in Fig. 1.23 (c-d)
for 300 K and 1000 K respectively, the crowdion can also travel hundreds of sites
of the previously thermalized media. As it was studied in Ref. (Archilla et al.,
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Figure 1.22: (Color) Particle energy plots of several examples of crowdion formation in arbitrary
units of ' 3 eV. Initial energy increases form (a) to (f). Many features can be observed, among
them the specific velocity of the crowdion Vc, the formation of nonlinear waves and phonons, the
formation of two crowdions and the survival of the crowdion to the severely perturbed media
during hundreds of sites
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Figure 1.23: (Color) Particle energy plots of two crowdions travelling on a previously thermal-
ized medium at (a,c) 300 K and (b,d) 1000 K, top without and bottom with substrate potential.
Color bars are in 10 log10(E) units

2015), the crowdion always has finite kinetic energy, but the final total energy
of the kink, Ek, is always on the order of magnitude of the Peierls-Nabarro (PN)
barrier. The equivalent kinetic energy equivalent for the thermalized media is 0.005
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(0.013 eV) at 300 K and 0.016 (0.043 eV) at 1000 K in normalized and physical
units . These values are far below the energy difference between the PN barrier
and the kink energy. However, in some simulations, for temperatures of 1000 K the
thermalization is not completely achieved due to appearance of nonlinear waves
instead of phonons. Therefore, localized peaks of the background vibrations can
interfere with the crowdion where, in some cases, it can be trapped leading to
a highly localized nonlinear stationary perturbation. Figure 1.23 (d) shows and
example of this situation, where the crowdion is eventually trapped forming an
interstitial defect.

Thermal effects discussed in this section lead to different survival path length
of the crowdions. It the hypothesis of crowdions propagating in mica muscovite is
correct, they might be related with some the tracks observed in the mineral. Other
feature of the presented simulations worth remarking is that the high equivalent
temperature of the nonlinear tail radiation of the crowdion is likely to favor a
change of structure and the formation of tracks.

1.9 Conclusions

In this chapter we have modeled a low dimensional system using realistic potentials
corresponding to a row of ions in a silicate layer, mica muscovite sheet. Our
objective was to determine what kind of nonlinear localized modes can exist with
realistic parameters and with what characteristics. The choice of the parameters
of mica muscovite is motivated by the fact that many of the dark tracks that
appear in sheets of this material are consistent with the in-layer propagation of
vibrational excitations along close-packed lattice lines of ions, and an experiment
has demonstrated that localized energy can travel along lattice directions, being
able to eject an atom at the opposite surface.

The modeling of the system has followed a process of increasing complexity to
better understand which effect is responsible for which characteristic of the model.
In the starting model in preliminary publications (Archilla et al., 2013; Archilla
et al., 2014), only K+ions with nearest-neighbor Coulomb repulsion were present,
for which we have found that very fast supersonic kinks can propagate. They are
extremely localized, only two particles or for higher energies only a single particle
is moving at the same time.

We have added analytical calculations of the energies and compare them with
numerical simulations. We have also shown that the introduction of interaction
with several neighbours do not produce significant changes as long as the sound
speed in each system is taken as a reference. But the extremely short minimal
interatomic distances in the kink has motivated the introduction of more realistic
short-range ZBL potential. In the improved dynamical model, kinks propagate
equally well and with as much energy as desired, but now with realistic minimal
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interatomic distances.

The next step was the introduction of a periodic substrate potential using
empirical potentials and the geometry of the crystal. Supersonic kinks continue
to propagate without losing energy but with several important properties:

a) The main one is that the system selects only one velocity and one energy of
the kink;

b) The lattice kink energy is larger than the one which is needed for atom
ejection at the surface, and smaller than the one of the proposed sources of energy,
the recoil of a K+ion due to beta emission;

c) The found kinks can be described as the double-kinks or bi-solitons depend-
ing of the variable chosen. The unique velocity of the supersonic kink on the
periodic substrate potential we relate with the kink amplitude of relative particle
displacements which is determined by the interatomic distance corresponding to
the minimum of the combined intersite plus substrate potential.

The extreme discreteness of the system with basically two particles moving
at the same time allows for the detailed interpretation of the observed double-
kinks, which was not possible for multi-kinks without dispersion presented in other
works. The double-kink structure is produced by the matching of the two collisions
experienced by a particle and the process of going over the substrate potential
barrier between neighboring sites. We have shown that realistic potentials allow
for the propagation of ultra discrete lattice kinks with energies that are consistent
with the properties observed in experiments. Although we cannot claim that
those kinks are responsible for those phenomena, it seems likely that they play an
important role.

References

Alba, M. D., A. I. Becerro, M. A. Castro, and A. C. Perdigón (2001). “Hydrothermal reactivity
of Lu-saturated smectites: Part I. A long-range order study”. In: Amer. Mineral. 86, p. 115.

Archilla, J. F. R., J. Cuevas, M. D. Alba, M. Naranjo, and J. M. Trillo (2006). “Discrete Breathers
for Understanding Reconstructive Mineral Processes at Low Temperatures”. In: J. Phys.
Chem. B 110.47, pp. 24112–24120.
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Raffi, L. M. “Effect of ZBL potential on kinks in repulsive lattices” IV International
Symposium on Strong Nonlinear Vibronic and Electronic Interactions in Solids.
Tartu, Estonia, May 1-3, (2013)

43



Chapter 1. Localized nonlinear waves in lattices.

• Archilla, J. F., Kosevich, Y. A., Jiménez, N., Sanchez-Morcillo, V. and Garćıa-
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Chapter 2

Nonlinear Acoustic Waves
in Layered Media

Abstract

In this chapter we investigate numerically the propagation of a plane
acoustic wave in a periodic medium in a structured fluid, formed by
a periodic array of fluid layers with alternating acoustic properties.
Periodic acoustic media such as 1D layered media, or 2D sonic crys-
tals, are known to introduce strong dispersion in wave propagation,
even creating forbidden propagation bands or bandgaps where wave
propagation at particular frequencies is not allowed. We show how the
nonlinear generation and propagation of the second and higher har-
monics are strongly affected by the presence of the periodicity. Thus,
the combined action of nonlinearity (harmonic generation) and period-
icity (different propagation velocities and attenuation for the different
harmonics) results in novel and unexpected phenomena with respect
to the linear counterpart, and opens the door to new mechanisms of
acoustic wave control and manipulation.
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2.1 Introduction

In the previous chapter we have considered waves propagating in nonlinear lattices.
Such lattices can be macroscopic, idealized as masses coupled by springs, or even
microscopic, as atoms/ions coupled by electromagnetic forces. Lattices can be then
considered of basic model of solid matter, with its elements distributed periodically
in a regular array. Many properties of solids, such as thermal conductivity, can be
interpreted in terms of fundamental vibrations of the lattice, or phonons.

The study of matter as a periodic medium (a crystal of atoms), was originally
performed by Bloch and Brillouin (Brillouin, 2003) in the 30-40’s, and gave rise to
an entire new discipline in physics, the solid state (or condensed matter) physics.
One of the most celebrated effects of wave propagation in periodic media are the
appearance of forbidden propagation regions in the energy spectrum of electrons,
or band-gaps. Most of the physics of semiconductors, and therefore many elec-
tronic devices, are somehow based on this concept. In the late 80’s, these ideas
where extended by Yablonovich and John to light waves (electromagnetic waves
in general) propagating in materials where the optical properties like the index of
refraction were distributed periodically. These materials were named, by analogy
with metals, as photonic crystals. The typical scale is given by the wavelength.
Actually, not only light but any wave propagating in a periodic medium may ex-
perience the same effects, and acoustic waves are not an exception. Sound wave
propagation in periodic media has become very popular in the last 20 years in
acoustics, after the introduction of the concept of sonic crystals. Exploiting the
analogies with other type of waves many interesting effects, as the mentioned
forbidden propagation bands (band-gaps), but also focalization, self-collimation,
negative refraction, and many others have been proposed. We consider in this
chapter the simplest case plane waves propagating in a 1D structure, formed by
a periodic alternation of layers with different properties. Depending on the con-
text, such a structure has been named a multilayer, a superlattice (particularly in
the context of semiconductors) or a 1D phononic crystal (this include more exotic
structures, as the granular crystal or lattice).

The huge majority of the studies considered so far have assumed a low-amplitude
(linear) regime, neglecting the nonlinear response of the medium. Intense wave
propagation in nonlinear periodic media, and in particular the case of sound waves,
is almost unexplored. In this chapter we present different examples of new phe-
nomena related to sound wave propagation in multilayers, where each of the layer
has a nonlinear cuadratic elastic response. Nonlinear acoustical effects in such
structure have been studied only in a few works. For example, in (Yun et al.,
2005) the harmonic generation process is described in a fluid/fluid multilayered
structure (water/glicerine), based in a nonlinear wave equation. Also, acoustic
solitons in solid layered nonlinear media have been presented (Yong et al., 2003).
More recently, nonlinearity plus periodicity has been considered in (Liang et al.,
2009), where an asymmetric propagation device (acoustic diode) was proposed.

46



2.2. Dispersion relations

There, the nonlinearity and the periodicity appear in different position and its
effect is consider separately.

The effects discussed in this Chapter are the result of the interplay between
nonlinearity and periodicity. We mostly concentrate in two phenomena: the con-
trol of harmonic distortion and the generation and propagation of solitons in the
multilayer. The first case is analyzed in depth, and the conditions needed to se-
lectively act on the nonlinearly generated spectrum, and therefore manipulate the
waveform in the desired way, are obtained and discussed.

The theory in this Chapter has been developed for fluid-fluid (scalar) struc-
tures, however the main conclusions are extendable to fluid-solid or to solid-solid
multilayers, if particular conditions are given. Also, the main conclusions in the
Chapter are independent on the regime of the waves (audible, ultrasound,...), and
therefore on the size or scale of the structure. However, there is a domain, when
ultrasound waves reach the Teraherz regime, where these ideas may find a great
potential. The progress in miniaturization and the technological development al-
lows currently to create multilayers at scales even in the nanometer range (each
layer contains then a small number of atoms). This structures are usually made of
semiconductors and are often used in particular applications as phononic mirrors to
form phonon nanocavities, (Huynh et al., 2006) or microcavities to obtain a strong
optomechanical coupling (Fainstein et al., 2013) (for a revent survey, see Huynh
et al. (2015)). Notably, acoustic amplification was realized in doped GaAs/AlAs
superlattices and recently a saser, for sound amplification by the stimulated (acous-
tic phonons) radiation was demonstrated, in a device including a superlattice gain
medium and GaAs/AlAs SLs acoustic mirrors (Maryam et al., 2013).

Some phenomena are common to lattices and superlattices (both are nonlinear,
dispersive, periodic media), and the results of this Chapter and the previous are
connected. Harmonic generation has been described in granular chains, modeled
by FPU equation. Such quadratic FPU is actually a basic model for lattices with
different interaction potentials (like Hertz, Coulomb,...) for small displacements.
The continuous limit of this equation gives the nonlinear acoustic equation, which
actually connects the propagation of sound waves with the microscopic theory of
matter.

2.2 Dispersion relations

We consider the simple case of a 1D periodic medium made of an arrangement of
homogeneous fluid media of thickness ai with varying material properties. For the
shake of simplicity only longitudinal waves under normal incidence are considered.
A scheme of the system is shown in Fig. 2.1.

The propagation of small amplitude waves in an infinite periodic system is
completely described by its dispersion relation, often known as band structure,
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k(ω)

a c
2

k(2ω)
c

1

Figure 2.1: Layered acoustic system with two different layers and second harmonic generation
scheme. Here the lattice period is a =

∑
ai.

that for 1D systems consisting in a periodic alternation of two different layers of
length a1 and a2 can be expressed analytically as (Kosevich, 2005):

cos (ka) = cos (k1a1) cos (k2a2)− 1

2

(
k1

k2
+
k2

k1

)
sin (k1a1) sin (k2a2) , (2.1)

also known as the Rytov formula, where k is the Bloch wave-number, the lattice
period is defined by a = a1 + a2 and ki = ω/ci with ci the sound speed in the i
layer. For a wave of frequency ω incident in a medium with known acoustical ci
and geometrical ai parameters, the above equation results in a band structure of
propagating and nonpropagating (bandgap) regions, as shown in Fig. 2.2. Thus,
using Eq. (2.1), we can estimate the effect of periodicity on the different harmonics
of the incident wave as they propagate trough the multilayer.

The ratio between layer thickness can be defined as

α = a1/a , (2.2)

leading to a2 = (1− α)a.

An example of dispersion relation plot is shown in Fig. 2.2 for normalized
parameters a = 0.5 and for different sound speed ratios c1/c2. Increasing the
impedance ratio between layers increases the reflected intensity in the trans-layer
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Figure 2.2: Dispersion relation of the two-layers system for layer proportion α = 0.5 and for
different c2/c1 ratio. Left: real wavenumbers. Right: imaginary part of the complex wavenumber.

propagation, while the transmitted energy of the multiple internal reflections di-
minishes. As can be seen, due to these scattering processes band-gaps are pro-
gressively open for wavenumber k = nπ/a with n = 1, 2, .... Thus, the bandwidth
of these band-gaps also increases when the impedance ratio grows.

On the other hand, its imaginary part increases in amplitude with c1/c2, lead-
ing to shorter evanescent propagation inside the band-gap for high sound speed
contrast layers, while remains zero (no attenuation) in the propagation band. It is
worth noting here that the system is conservative: the physical interpretation of
the complex wavenumber is not energy absorption, but back reflection of the inci-
dent wave. Thus, at band-gap frequencies waves penetrate only a short distance
into the medium with a forward evanescent mode, and if the medium is perfectly
periodic and lossless the energy is back-reflected (it behaves as a mirror).

Furthermore, the curvature of the real part of the dispersion relations in the
propagation band indicates dispersive propagation. However, in the low frequency
regime the curve ω(k) is nearly linear. Here, a relation between c1 and c2 can be
obtained for estimating the ratio in the limit ω → 0, k → 0, that is the effective
sound speed of the layered system c̃0.

In order to obtain c0 we first expand in Taylor series Eq. (2.1) in powers of ω
around ω = 0, and collecting terms up to second order we get

ω ≈

√
(1− cos (ka))

2c21c
2
2

a (a2c21 + a1c22)
. (2.3)

Then, we expand again in Taylor series in powers of k around k = 0, and
collecting terms up to first order we get

c̃0 =
ω

k
≈

√
ac21c

2
2

a2c21 + a1c22
. (2.4)
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Chapter 2. Nonlinear acoustic waves in layered media.

This value characterizes the layered media in the low frequency regime where
the wavelength is much greater than the distance between layers. Furthermore, c̃0
is useful also for frequency normalization, as long the first band-gap appears at
ω = πc̃0/a as can be appreciated in the common slope in the low frequency regime
in Fig. 2.2. This quantity can be also obtained by assuming a mean density, ρ̃,
and compressibility, κ̃ as (Yong et al., 2003):

c̃0 =

√
κ̃

ρ̃
, (2.5)

where the mean values for density and compressibility can be obtained as

ρ̃ = αρ1 + (1− α)ρ2 , (2.6)

1

κ̃
=

1

ακ1
+

1

(1− α)κ2
, (2.7)

being κi = ρic
2
i the compressibility of each layer.

2.3 Full-wave model

2.3.1 Nonlinear constitutive mode

The nonlinear propagation of sound in the acoustic inhomogeneous media, and in
particular in multi-layered media can be described by several models, with different
levels of accuracy. Here, we start from the equations of continuum mechanics for
ideal fluids with space dependent parameters. Thus, applying mass conservation
principle over a fluid control volume, the continuity equation reads (Naugolnykh
et al., 1998):

∂ρ

∂t
+∇ · (ρv) = 0 . (2.8)

On the other hand, the conservation of momentum over the same fluid test
volume leads to the equation of motion

ρ
Dv

Dt
+∇p = 0 , (2.9)

where ρ is the total density, v is the particle velocity vector over a Eulerian refer-
ence frame, p is the acoustic pressure, t is the time and D is the material derivative
operator
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2.3. Full-wave model

D

Dt
=

∂

∂t
+ v · ∇ . (2.10)

For non homogeneous media, the ambient properties of the fluid in the absence
of sound can be space dependent, so the total density becomes ρ(t,x) = ρ′(t,x) +
ρ0(x), where ρ0(x) is the spatially dependent ambient density and ρ′(t,x) is the
perturbation of the density or acoustic density, that is space and time dependent.
Then, using the material derivative, Eq. (2.9) becomes

ρ0
∂v

∂t
+∇p = −ρ′ ∂v

∂t
− (ρ′ + ρ0) (v · ∇)v . (2.11)

In this equation, the first two terms in the left-hand-side accounts for linear
acoustic propagation, where the terms in the right-hand-side introduces nonlin-
earity in the Eulerian reference frame through momentum advection processes.

On the other hand, we can expand Eq. (2.8) for non-homogeneous media as

∂ρ′

∂t
+ ρ0∇ · v + v · ∇ρ0 = −ρ′∇ · v − v · ∇ρ′ . (2.12)

Here, the first two terms on the left-hand-side account for linear acoustic prop-
agation, the third, also linear, accounts for the magnitude of the changes in the
ambient layer properties. Note this term is space dependent but only changes at
the interface between adjacent layers. For density matched layers, ρi = ρi−1, this
terms vanishes. The terms on the right-hand-side are nonlinear and accounts for
mass advection. This equation remains exact.

Finally, a fluid thermodynamic state equation p = p(ρ, s) is needed to close the
system, with s the entropy. The local nonlinear media response relating density
and pressure variations, retaining up to second order terms, can be written as

p = c20ρ
′ +

B

2A

c20
ρ0
ρ′

2
, (2.13)

where B/A(x) is the quadratic nonlinear parameter and c0(x) is the sound speed,
that can be also spatially dependent.

In this system of equations, quadratic nonlinearity appears in the equation of
motion (2.11) and in the continuity equation (2.12), in the momentum and mass
advection terms respectively, and also in the equation of state, Eq. (2.13), relating
pressure and density acoustic perturbations. It is worth noting here that we only
take into account nonlinear processes through the layer’s bulk. The nonlinear
effects at the boundary between adjacent sheets are neglected. These nonlinear
boundary effects include cavitation processes, that in the case of fluids with very
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different compressibility can be very important. In the case of solid layers, other
local nonlinear effects relative to boundaries, e.g. clapping phenomena between
surfaces, can lead to nonlinearities that are orders of magnitude in importance
compared to the bulk cumulative nonlinearities (Tournat et al., 2004).

2.3.2 Second-order model

For moderate amplitudes, the system of Eq. (2.11-2.13) can be simplified. In the
following, we use same ordering scheme as in Ref. Hamilton et al. (1998a), where
O(ε), O(ε2) and O(ε3) represents the terms of generic smallness parameter ε. The
derivation of a second-order nonlinear wave equation requires the substitution of
the linearized acoustic approximations (first order) into second order terms of
Eq. (2.12, 2.21). This substitution procedure will give third order errors, so the
final nonlinear wave equation will be a second order approximation of the full
constitutive relations.

Therefore, the first order equations of momentum and continuity can be ob-
tained by linearization of Eq. (2.11-2.13) by assuming the acoustical magnitudes,
ρ′, p′, and v, are of small amplitude compared to the ambient values. Thus, for
small amplitude perturbations the constitutive equations become

∂ρ′

∂t
= −ρ0∇ · v + O(ε2) , (2.14)

ρ0
∂v

∂t
= −∇p + O(ε2) , (2.15)

ρ′ =
p

c20
+ O(ε2) . (2.16)

Then, we begin to manipulate the second order terms of the full constitutive
relations with these first order approximations. Thus, using Eq. (2.14), the third
right-hand-side term of the exact continuity Eq. (2.12) can be approximated up
to second order as

− ρ′∇ · v =
ρ′

ρ0

(
∂ρ′

∂t

)
+ O(ε3) , (2.17)

and using the linearized state Eq. (2.16) and rearranging terms leads to

− ρ′∇ · v =
1

2ρic40

∂p2

∂t
+ O(ε3) . (2.18)

On the other hand, the fourth right-hand-side term of continuity Eq. (2.12)
can be rewritten using the first order Eq. (2.15, 2.16) as
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− v · ∇ρ′ =
ρ0

2c20

∂u2

∂t
+

vρ′

c20
∇c20 + O(ε3) . (2.19)

Note that the last term of the above equation, that accounts for the local effect
of the sound speed spatial variations, is O(ε3), so it will be discarded, in contrast to
the local effect of the ambient-density spatial variations (third term of Eq. (2.12)),
that is O(ε2) and it will remain in the derivation of the second order nonlinear
wave equation for the layered media.

On the other hand, using the vector identity (v · ∇)v = 1
2∇v

2 − v × ∇ × v
with v2 = v · v, and collecting terms up to second order, the equation of motion,
Eq. (2.11), can be rewritten as

ρ0
∂v

∂t
+∇p =

1

2
ρ0∇v2 − ρ′ ∂v

∂t
+ ρ0v ×∇× v + O(ε3) . (2.20)

In general, although it is second order, the vorticity term (last term in the right-
hand-side) decays exponentially away from rigid boundaries and can be discarded.
However, it is essential to the analysis of other second order phenomena as the
acoustic streaming (Hamilton et al., 1998a). In the following we will assume
irrotational fluid. For a layered system, where the layer boundaries are orthogonal
to the acoustic wave-vector, the vorticity modes can be neglected, while for strictly
1D propagation vanishes. Therefore, Eq. (2.20) becomes

ρ0
∂v

∂t
+∇p = −1

2
ρ0∇v2 − ρ′ ∂v

∂t
+ O(ε3) . (2.21)

On the other hand, the second term of the right-hand-side of the above equation
can be approximated up to second order using the first order Eqs. (2.14, 2.16) as

− ρ′ ∂v
∂t

=
1

2ρ0c20
∇p2 + O(ε3) . (2.22)

Therefore, the second order approximation of the full constitutive relations in
nonhomogeneous media can be expressed as:

∂ρ′

∂t
+ ρ0∇ · v + v · ∇ρ0 =

1

2ρ0c40

∂p2

∂t
+

ρ0

2c20

∂u2

∂t
+ O(ε3) , (2.23)

and

ρ0
∂v

∂t
+∇p = −∇

(
1

2
ρ0v

2 − 1

2ρ0c20
p2

)
+ O(ε3) . (2.24)
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Using the definition of the Lagrangian density

L =
ρ0

2c20
u2 − p2

2ρ0c20
, (2.25)

the second order relations can be rewritten in a compact form

∂ρ′

∂t
+ ρ0∇ · v + v · ∇ρ0 =

1

ρ0c40

∂p2

∂t
+

1

c20

∂L
∂t

+ O(ε3) , (2.26)

and

ρ0
∂v

∂t
+∇p = −∇L + O(ε3) . (2.27)

These equations can be combined to form a unique nonlinear wave equation
by subtracting the time derivative of Eq. (2.26) to the divergence of Eq. (2.26) to
obtain

∇2p− ∂2ρ′

∂t2
− ∂v

∂t
∇ρ0 = − 1

ρ0c40

∂2p2

∂t2
−
(
∇2 +

1

c20

∂2

∂t2

)
L + O(ε3) . (2.28)

Here, the third term can be expressed in terms of the acoustic pressure using
the local instantaneous media response described by the state equation

ρ′ =
p

c20
− 1

ρ0c40

B

2A
p2 . (2.29)

The fourth term of Eq. (2.28) can be also approximated using the first order
Eq. (2.15), to finally obtain the second order nonlinear wave equation for nonho-
mogeneous media

∇2p− 1

c2i

∂2p

∂t2
− 1

ρ0
∇ρ0∇p = − β

ρ0c40

∂2p2

∂t2
−
(
∇2 +

1

c20

∂2

∂t2

)
L + O(ε3) . (2.30)

where we introduced the coefficient of nonlinearity β = 1 + B
2A that accounts for

material and mass advection quadratic nonlinearities. It is worth noting here (and
discussed elsewhere (Hamilton et al., 1998a)) that the second-order Lagrangian
density vanish for plane progressive waves due to the first order relation p = uc0ρ0

that leads to L = 0. In this case, Eq. (2.28) simplifies to the well-known Westervelt
equation for inhomogeneous media
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∇2p− 1

c20

∂2p

∂t2
− 1

ρ0
∇ρ0∇p = − β

ρ0c40

∂2p2

∂t2
+ O(ε3) . (2.31)

In general, the Lagrangian density term can be discarded based on the dis-
tinction of cumulative and local nonlinear effects. In this way, for progressive
quasi-plane wave propagation in homogeneous media the nonlinear local effects
become insignificant in comparison to the nonlinear cumulative effects, where in
most practicals situations, beyond a distance of only one wavelength away from
the source local nonlinear effects can be neglected. However, local nonlinear ef-
fects can become significant in other complex situations including standing-wave
fields. Concerning the layered media, in this Chapter we solve numerically the
full constitutive relations, and we use the second order approximation Eq. (2.31)
to obtain analytical solutions where the effect of the Lagrangian density term is
assumed to be negligible.

2.3.3 Numerical solution

For one-dimensional acoustic waves v = (vx, 0, 0), so the full constitutive relations
Eqs. (2.8-2.11) can be expressed for nonhomogeneous media as

∂ρ

∂t
= −∂(ρvx)

∂x
, (2.32)

∂vx
∂t

= −1

2

∂v2
x

∂x
− 1

ρ

∂p

∂x
, (2.33)

The system of equations (2.13, 2.32-2.33) can be solved by several numerical
methods (Botteldooren, 1996; Ginter et al., 2002; Vanhille et al., 2004; Albin et
al., 2011). In this chapter we use the Finite-Differences in Time-Domain (FDTD)
method: the density and pressure domain are discretized staggered in time and
space respect to the particle velocity field, spatial and temporal derivatives are
solved by centered finite difference operators, while the temporal integration is an
explicit leap-frog scheme that consecutively solves density, pressure and particle
velocity from continuity, momentum and state equations respectively. Thus, due to
the 2-point stencil of the centered finite differences, the algorithm presents second
order accuracy. Stability is achieved by the well-known Courant- Fiedrich-Levy
(CFL) time step restriction and numerical FDTD dispersion is controlled due to
a high enough grid refinement. Due to the low-dimensional space, a refinement
> 100 elements per wavelength gives a negligible numerical dispersion compared
to the physical one due to the layered system.

The dispersion relation (band structure) can be numerically obtained for the
1D system by a time-domain simulation of the linearized system. Linearization of
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Figure 2.3: Dispersion relation of the two-layers system for normalized parameters α = 0.5
and c2/c1 = 0.5. Left: real wavenumbers. Right: imaginary part. Rytov analytical Eq. (2.1)
(Continuous line) and numerical solution (markers).

equations (2.13, 2.32-2.33) leads to the small amplitude version of Eq. (2.30), that
is the nonhomogeneous wave equation, so both models present the exact same
solution. Simulated pressure of Eqs. (2.13, 2.32-2.33) using a small amplitude
excitation (p0 = 10−6 Pa or ε = u0/c0 ≈ 10−16) was recorded at two locations x0

and x1, located in different layers. Attenuation and phase velocity were estimated
from the spectral components over the bandwidth of the recorded signals, that
in this case was a numerical Dirac delta function in order to excite the entire
numerical bandwidth. The numerical attenuation was calculated as

α(ω) =
ln (|P (ω, z2)/P (ω, z1)|)

(z1 − z0)
, (2.34)

where P (ω) is the Fourier transform of the measured pressure waveforms at points
x1 and x2. On the other hand, the phase velocity was computed as

cp(ω) =
ω · (z2 − z1)

arg (P (ω, z2)/P (ω, z1))
, (2.35)

where a correct phase unwrapping is needed in the arg function. Figure 2.3 shows
the numerical and theoretical estimations of the dispersion relations, where excel-
lent agreement is observed between them.

56



2.4. Harmonic generation in layered media

2.4 Harmonic generation in layered media

2.4.1 Overview

We start studying the response of the layered system for plane-harmonic wave
excitation. Then, as sketched in Fig. (2.1), the source is placed in one boundary
of the layered system, and the acoustic relevant magnitudes are calculated and
measured along space and time. As the wave propagates, cumulative nonlinear
effects generate harmonics of the fundamental frequency, ω0, and due to the mul-
tiple scattering processes into the layers, local nonlinear effects also distorts the
wave. However, the high dispersion of the layered system have a strong impact on
the nonlinear harmonic generation. Dispersion modify the resonance conditions
between fundamental and second harmonic wave, and also for other nonlinearly
generated higher frequencies. In this way, nonlinear energy transfer efficiency from
one component to another is modified in a wide variety of configurations, leading
to the possibility of engineering and controlling the nonlinear wave processes by
tuning the dispersion relation.

Figures 2.4 Figure 2.5 show an overview of the nonlinear harmonic generation
over the propagation distance in a sample of layered media for normalized param-
eters α = 0.5 and c2 = 0.7c1. From now on, if it is not explicitly said, the rest
of the medium parameters are kept constant for the sake of simplicity, namely
ρ1 = ρ2 and B1/A1 = B2/A2. If the frequency of the fundamental wave is varied,
the harmonic generation exhibit various phenomena depending on the dispersion
relation (plotted on the left of Fig 2.4a and Fig. 2.4b). Thus, we difference dif-
ferent frequency areas that will be explained below. It is worth noting here that
the specific limiting frequency values and bandwidth between areas are strongly
depending in the layered parameters However, the ordering of zones for different
phenomena are, in general, the following:

(A) Fubini-homogeneous: The first zone is the very-low frequency band where
the dispersion relation is nearly flat not only for the fundamental wave, but
also for higher spectral components. In this region, the layered system behaves
as an homogeneous material with effective parameters and dispersion can be
neglected.

(B) Weak-dispersion: As the frequency is increased dispersion start to appear
and different harmonics propagate with different wave speed. In the low dis-
persive regime, second harmonic dispersion is weak and even can be neglected,
but third harmonic experiment strong dispersion and higher harmonics can
fall in a band-gap where its propagation will be evanescent. Due to this sit-
uation, the energy transfer from the fundamental to its second harmonic is
almost constant, and the second harmonic grows linearly with propagation.
However, higher order cascade processes can be modified due to dispersion
and the energy transfer from second to higher harmonics is decreased. This
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Figure 2.4: Overview of the harmonic generation processes in a nonlinear layered acoustic
media. Top: fundamental component field, bottom: second harmonic field. Left: dispersion
relation of the two-layers system for normalized parameters α = 0.5 and c2/c1 = 0.7. Right:
pressure amplitude (color) normalized to the source amplitude versus fundamental wave (ω)
frequency and distance normalized to shock distance (σ)
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Figure 2.5: Overview of the harmonic generation processes in a nonlinear layered acoustic media
for third harmonic. Left: dispersion relation of the two-layers system for normalized parameters
α = 0.5 and c2/c1 = 0.7. Right: pressure amplitude (color) normalized to the source amplitude
versus fundamental wave (ω) frequency and distance normalized to shock distance (σ)

situation avoids the emergence of shocks and underthat conditions the sec-
ond harmonic amplitude can overcomes the second harmonic field amplitude
observed in the absence of dispersion.

(C) 3rd harmonic in band-gap: In this frequency area the propagation of third
harmonic is evanescent and, in general, strong dispersion is observed on the
second harmonic.

(D) Strong-dispersion: Where strong dispersion is observed for the second har-
monic component, its field develops beatings in space, where its amplitude
and spatial frequency depends on the matching conditions.

(E) 2nd harmonic in band-gap: In this frequency area second harmonic prop-
agation is evanescent and the field does not grow with distance, but achieves
a nearly constant value, being locally forced by the first.

(F) 2nd band dispersion: When second harmonic is in the second band, a high
variability of phenomena can be observed depending on the material parame-
ters. In the sample plot in Fig. 2.4 the second harmonic develops oscillations
whose period varies by changing the frequency due to different phase match-
ing conditions. By tuning material parameters and frequency different phase
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matching conditions can be obtained, leading to a wide variety of possibili-
ties. A sample is observed in Fig. 2.5 for ω0 = 0.6Ω0, where third harmonic
falls in the limit of the second band-gap and also phase-matching is higher for
third that for second harmonic, leading to third harmonic field higher than
the second for this specific situation.

(G) 1st harmonic in band-gap: When fundamental frequency falls in the band-
gap evanescent propagation is achieved and only local nonlinearities can be
exited. However, due to the imaginary part of the wavevector inside the
band-gap, that depends on the frequency, (see Fig. 2.3), the length of the
exponentially decaying propagation inside the layered media can be tuned and
therefore second harmonic can be produced at the beginning of the layered
media while fundamental cannot propagate at the exist of the system.

These scenarios will be studied in the following subsections.

2.4.2 Homogeneous-Fubini

We start studying the rpropagation in the layered system for harmonic excitation
in the very low frequency regime, where we assume that ka � 1 holds. As the
Rytov’s Eq. (2.1) predicts, in the very low frequency regime the slope of the ω(k)
curve is nearly flat, and after sound speed normalization using using Eq. (2.4), the
dispersion of the layered system should be negligible. Thus, the medium behaves
as a continuum-lossless homogeneous material with effective parameters. This is
known as the homogenization limit. However, attention should be paid here if
the fluid compressibility highly differs between layers because the validity of the
effective parameters may fail. It is the case, for example, of a liquid with gas
inclusions (bubbly liquids) (Gurbatov et al., 2011).

In limit of low-frequency, the dispersion of all the spectral components is neg-
ligible, and they all propagate at nearly the same velocity. Thus, in the absence
of dispersion and attenuation process, the system of Eq. (2.13, 2.32-2.33) can be
reduced for harmonic-plane wave to a Burger’s evolution equation expressed in
traveling coordinates with effective parameters, namely c̃0, ρ̃0 and β̃. Therefore,
the approximate evolution equation in terms of the acoustic pressure can be writ-
ten as:

∂p

∂t
+ c̃0

∂p

∂x
=

β̃

2ρ̃0c̃0
2

∂p2

∂t
. (2.36)

An analytic solution of this equation is also available through the Fubini’s
representation for the nth-harmonics of the fundamental wave of frequency ω and
initial amplitude p0 as

60



2.4. Harmonic generation in layered media

0 0.5 1
0.85

0.9

0.95

1

σ

p
n
/
p
0

 

 

ω/Ω0

n = 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.5 1
0

0.1

0.2

0.3

0.4

σ

p
n
/
p
0

 

 

ω/Ω0

n = 2

n = 3

n = 4
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 2.6: Harmonic generation in homogeneous-Fubini regime of the layered media

p(σ, τ) = p0

∞∑
n=1

2

nσ
Jn (nσ) sin (nωτ) , (2.37)

where Jn is the Bessel function of order n, and σ = x/xs is the propagation
coordinate, normalized to the shock formation distance:

xs =
1

β̃ε̃k
, (2.38)

with the effective match number ε̃ = u/c̃0 and the effective wavenumber k = ω/c̃0,
that can be also found from Eq. (2.1). This celebrated solution is valid for σ < 1
(pre-shock region).

Simulations in this regime were carried out using a full-wave constitutive rela-
tions solver. Thus, we shall define the normalized frequency as Ω0 = πc̃0/a (located
in the first band-gap). Therefore, the source frequency was set to ω = 0.1Ω0.

Figure 2.6 shows the analytical and numerical solutions for the low frequency
limit of the layered system, where an excellent agreement is obtained between
Fubini and numerical solutions in the pre-shock region, σ < 1 and for low excitation
frequencies. As commented above, when the fundamental frequency is increased
the higher harmonics fall in dispersive region of the frequency bands, and thus its
wave speed is reduced. In this situation, phase matching conditions are no longer
fulfilled and therefore the energy transfer from fundamental to higher harmonics
is modified. Thus, the Fubini solution can be only applied as an ideal solution for
the low-frequency limit or as a good approximation for the first harmonics and for
frequencies below ω . 0.1Ω0.

However, it should be noted that for observing a shock wave, i. e. a discontin-
uous solution, all the spectral components must be phase matched, as occurs in
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Figure 2.7: Waveform evolution beyond shock formation distance in layered media with pa-
rameters ω0/Ω0 = 0.1 and c2/c1 = 1 (top), c2/c1 = 0.95 (middle) and c2/c1 = 0.5 (bottom).
Instead a discontinuity, pulsations around the sharp front are formed.
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the nondispersive (homogeneous) media. Then, even for a low finite fundamental
frequency, a small (but non negligible) dispersion will appear for the higher fre-
quency components, and a phase mismatch is introduced on these high spectral
components. The differences on phase speed on the different spectral components
over a discontinuity impedes the formation of a stable traveling shock wave, as long
sound speed dispersion spreads the high-frequency wave vectors that describe the
discontinuous solution. Instead of a shock wave, pulsations or ripples are formed
over the sharp nonlinear wavefront for σ > 1. This scenario reduces the validity of
the homogeneous Eq. (2.36) to distances shorter than shock formation in lossless
media, where the specific limit is dependent on the flatness of the dispersion re-
lation near the band-gap, i.e. the layered media parameters: a, c2/c1, ρ2/ρ1 and
α = a1/a.

Figure 2.7 shows the waveform evolution calculated at different distances in the
shock-free region and also beyond shock formation distance for a homogeneous me-
dia (c2/c1 = 1) for a nearly-flat dispersion relation (c2/c1 = 0.95 and α = 0.5)
and for a more dispersive media (c2/c1 = 0.5, d2/d1 = 0.5). The above described
effects are clearly visible: the waveform evolution follows the Fubini analytical so-
lution for σ < 1 in both layered systems. However, for longer distances, pulsations
around the discontinuity are formed due to different phase speed of the higher
spectral components, spreading the sharp solution into a solitonic pulsations. In
the absence of dissipation, these pulsations evolves in a train of weakly interacting
solitons. Solitons in the layered media will be studied later on Sec. 2.6.

2.4.3 Dispersive regime

For frequencies above the (idealized) homogeneous-Fubini regime, finite (weak and
strong) dispersion effects are observed. The dispersive effects of the layered system
deeply affects harmonic generation processes.

As intense waves propagate through a quadratic nonlinear medium, their fre-
quency component interact with each other and new frequencies arise at combina-
tion frequencies, including higher harmonics. The cumulative energy transfer from
the interacting waves to the harmonics is dependent on the resonance conditions:

ω1 ± ω2 = ω3 , k1 ± k2 = k3. (2.39)

Note these conditions express the laws of conservation of energy (~ω) and
momentum (~k) in the quantum description for the disintegration and merging of
quanta (Naugolnykh et al., 1998).

These conditions can be satisfied in a variety of situations. The most simple
case is observed in nondispersive media and for collinear waves ki = ωi/c0. In
this situation the resonance conditions are fulfilled all over the spectra and a large
number of harmonics interacts synchronously: when there exist in the system a free
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Figure 2.8: Scheme of the phase miss-matching situation. The fundamental wave vector k1 at
frequency ω generates a forced wave 2k1 at frequency 2ω. The free wave that the system allows to
propagate is k2, located in the dispersion relation curve. Due to dispersion, k2 6= 2k1, thus there
exist a phase mismatch, ∆k2 between both waves and the generation is therefore asynchronous.

wave with velocity ω3/|k3| that matches the excited (forced) wave ω1±ω2/|k1±k2|,
the free wave is excited in a resonant way. The resonant interaction leads therefore
to synchronous, cumulative energy transfer from the initial wave to the secondary
wave fields.

In the case of an initial monochromatic wave, the main wave generates its
second harmonic. The resonant conditions Eq. (2.39) in this situation read

2ω1 = ω2 , 2k1 = k2, (2.40)

that holds true for nondispersive collinear waves, leading to the simple relation
2k(ω1) = k(2ω1). However, in the case of dispersive media this condition is,
in general, not fulfilled and the forced and free waves interact asynchronously.
Figure 2.8 shows a scheme of this situation for a layered media with a fundamental
wave in the first dispersion band.

In order to study asynchronous second harmonic generation processes, we recall
here for the lossless second-order wave equation Eq. (2.31) for one-dimensional
propagation

∂2p

∂x2
− 1

c20

∂2p

∂t2
− 1

ρ0

∂ρ0

∂x

∂p

∂x
= − β

ρ0c40

∂2p2

∂t2
. (2.41)
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2.4. Harmonic generation in layered media

This equation does not include dispersion by itself, dispersion arises from the
solution of the linearized wave equation with the layered media boundary con-
ditions, where the eigenvalue problem leads to the Rytov’s dispersion relation
Eq. (2.1).

In the following, we apply a perturbation method to obtain an approximate
solution for the second harmonic field. We expand the pressure field as sum of
contributions of different orders, as

p = p(1) + εp(2) + · · · , (2.42)

where ε is the smallness perturbation parameter, which we identify with the acous-
tic Match number. Thus, p(1) is the first order (linear) solution of the problem and
p(2) its the second order contribution. By substituting Eq. (2.42) in the second
order wave Eq. (2.41), assuming constant density1 and neglecting O(ε3) terms we
get the coupled set of equations

∂2p(1)

∂x2
− 1

c20

∂2p(1)

∂t2
= 0 , (2.43)

∂2p(2)

∂x2
− 1

c20

∂2p(2)

∂t2
= − β

ρ0c40

∂2p(1)2

∂t2
. (2.44)

The first order Eq. (2.43) for a monochromatic plane wave of frequency ω has
the trivial solution

p(1) = p0 sin (ωt− k1x) , (2.45)

where k1 = k(ω) is the wave vector associated with the primary frequency ω, and p0

is the excitation pressure amplitude. Substitution of Eq. (2.45) into the right-hand
side term of Eq. (2.44), using the trigonometric identity sin2(θ) = (1− cos(2θ))/2,
an inhomogeneous equation for the second harmonic field is obtained:

∂2p(2)

∂x2
− 1

c20

∂2p(2)

∂t2
= −4βω2p2

0

ρ0c40
sin (2ωt− 2k1x) . (2.46)

The general solution of the this equation will be the sum of the solution of the
homogeneous equation (p0 = 0), and the particular solution of the inhomogeneous
equation (p0 6= 0). Therefore the field for the second harmonic can be expressed

as p(2) = p
(2)
h + p

(2)
f , where the corresponding waves for this two solutions are the

free, and forced waves respectively. Following Ref. Rudenko et al. (1977), we can
obtain the homogeneous and particular solutions as:

1We neglect the ambient density variations for the sake of simplicity. Dispersion arise also for
sound speed variations, that are assumed to be implicit in the boundary conditions.
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p
(2)
h = p

(2)
h (x = 0) sin(2ω1t− k2x), (2.47)

p
(2)
f =

A

(k2 + 2k1)(k2 − 2k1)
sin (2ω1t− 2k1x) , (2.48)

where k2 = k(2ω1) is the wavenumber of the free wave at second harmonic fre-
quency, and the constant A = −4βω2

1p
2
0/ρ0c

4
0. It is worth noting here that as

long 2k1 6= k2, the forced and free waves in dispersive media have different phase
speed, i. e. the forced and free waves are phase mismatched as can be seen in the
argument of the sin function in Eq. (2.47-2.48). On the other hand, as long as
there is not second harmonic at x = 0 (boundary condition), we must set

p
(2)
h (x = 0) = − A

(k2 + 2k1)(k2 − 2k1)
. (2.49)

Therefore, combining Eqs. (2.47-2.49) the evolution of the second harmonic
field can be expressed as

p(2) =
A

k2∆k
sin

(
∆k

2
x

)
cos (2ω1t− k′2x) , (2.50)

where the effective wave number is k′2 = (k2 + 2k1)/2 ≈ k2 and the detuning
parameter that describes the asynchronous second harmonic generation is defined
as

∆k = |k2 − 2k1| = |k(2ω)− 2k(ω)|. (2.51)

Equation (2.50) describes the well-known effect in second harmonic generation,
that is the beatings in space of the second harmonic field when the resonant
conditions are not fulfilled. Thus, as ∆k increases, the beating spatial period
and also its maximum amplitude decreases. The position of the maximum of the
beating, also called the coherence length, can be related to the second-harmonic
phase-mismatching frequency as

xc =
π

∆k
=

π

|k(2ω)− 2k(ω)|
. (2.52)

This length corresponds to the half of the spatial period of the beating, where
the maximum of the field is located. It can be expressed also for other higher
harmonics simply as xc(n) = π/∆kn = π/|k(nω)− nk(ω)|.

In the limiting case of ∆k → 0, the second harmonic field is generated syn-
chronous and accumulates with distance, so linear growth is predicted. In this
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Figure 2.9: Second harmonic evolution for xc/xs = [1, 1/2, 1/4, 1/8] obtained using Eq. (2.50)
(continuous line), numerically (white circles), nondispersive linear law of growing (dotted line)
and Bessel-Fubini nondispersive solution (dashed).

case, phase matching conditions are fulfilled and the free wave is excited syn-
chronous to the forced wave. Note here that in the derivation of Eq. (2.50) only
second order processes are taken into account and therefore, only second harmonic
is predicted. This leads to overestimate the second harmonic field: as long no en-
ergy is transferred to third harmonic, second harmonic predicted by Eq. (2.50)
in the absence of dispersion grows indefinitely. The validity of this model can be
explored expanding the Bessel functions of Fubini series near the source. A simple
comparison between the full Fubini solution and linear second harmonic growth
gives a reasonable approximation for distances σ < 0.5 or for second harmonic
field values of p(2ω) < p0/4.

Figure 2.9 shows four different simulations in the dispersive regime of the lay-
ered media where the wave amplitude and frequency has been selected to match
xc/xs = [1, 1/2, 1/4, 1/8]. The higher beating spatial period waves corresponds
to lower frequencies. The analytical solution for the second harmonic matches
the full-wave numerical solution. However, differences can be observed in the sec-
ond harmonic amplitude estimation for xc/xs = 1 (left plot in Fig. (2.9)). This
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overestimation by the analytical solution can be related to the absence of energy
transfer to higher harmonics, that is not considered by the perturbation solution
but is included in the simulation. Therefore, this model is specially suitable in
situations where the third harmonic does not grow cumulative with distance. In
the lossless layered media, this situations include frequencies that leads to very
high-third harmonic detuning and also when the third harmonic falls in band gap.

2.4.4 Second harmonic in band gap

Waves with frequencies falling into the band-gap of the dispersion relation are
evanescent due the non negligible imaginary part of its complex wave number.
Thus, its amplitude decays exponentially with distance. When the second har-
monic frequency falls into the band-gap, a characteristic effect, studied also in
other nonlinear lattices (Sánchez-Morcillo et al., 2013) can be observed: its ampli-
tude reaches a constant value. Figure 2.10 present an example of this case for four

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ

|p
|/
p
0

P (ω0)

P (2ω0)

a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ

|p
|/
p
0

P (ω0)

P (2ω0)

b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ

|p
|/
p
0

P (ω0)

P (2ω0)

b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ

|p
|/
p
0

P (ω0)

P (2ω0)

d)

Figure 2.10: Evolution of the second harmonic field propagating in bang-gap for second har-
monic frequencies (a) just above band-gap 2ω0 = 0.84Ω0, (b) 2ω0 = 0.85Ω0, (c) in the middle
of the bandgap 2ω0 = Ω0 and (d) 2ω0 = 1.05Ω0 at the maximum of the imaginary part for the
first band gap. All results for a layered system of α = 1/2 and c1/c2 = 1/2.
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different frequencies, where can be observed that the constant value of the second
harmonic field depends on the imaginary part of the wave vector.

This effect can be understood in terms of the free and forced waves. If the
second harmonic is evanescent (as follows from the dispersion relation), the wave
will not accumulate with distance. But the fundamental wave is still “pumping”
energy to the second harmonic field at every point in space. Thus, the second
harmonic field is generated locally and remains trapped inside the layered media.
It reaches a constant level that depends on three main factors. In first place, the
”pumping” rate, characterized by the fundamental wave amplitude and medium
nonlinearity, or more strictly the ratio between the layer thickness and the shock
distance d/xs. Secondly, it also strongly depends on the magnitude of the imag-
inary part of the complex wave number, i.e. the ratio between its characteristic
exponential decay length and the shock distance in a layer. The characteristic
decay length of the evanescent propagation is always shorter when the second har-
monic is in the middle of the band-gap, leading to less second harmonic field in
this frequency region, as can be seen in Fig. 2.10 (c-d). Finally, it depends also
on the detuning of real part of the wave number, where for the first band-gap is
minimum at the center. The first factor can be isolated and studied separately.
However, the two last factors are linked through the specific dispersion relation of
the medium.

Figure 2.11 shows the detuning of the second harmonic and the imaginary part
as a function of the frequency for a medium with α = 1/2 and c1/c2 = 1/2, showing
that at the middle of the band-gap these two factors have opposite effects: detuning
is minimized when evanescence decay is maximized and vice versa. However, the
magnitude of the effects can be very different. As the rate of the second harmonic
generation (see the initial slope in Fig. 2.9) is independent on the detuning, and the
evanescence implies that the wave decays after few layers, there not exist a practical
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Figure 2.11: Detuning of the second harmonic (continuous line) and imaginary part (dotted
line) in function of the normalized frequency.
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Figure 2.12: (left) Amplitude of the constant field value for fundamental (dashed) and (right)
its second harmonic field (continuous line) for amplitudes matching a/xs = 0.08, 0.04, 0.02, 0.001

compensation of the effects at the center of the band-gap. However, the situation
is different for frequencies around the limits of the band-gap, where the coherence
length is of the order of the exponential decay characteristic length. Thus, for
frequencies just above bad-gap and for amplitudes with shock distance comparable
to the evanescent characteristic decay length, the beatings can be also observed,
as shown in Fig. 2.10 (a). Then, if frequency is increased the characteristic decay
length becomes shorter than the shock wave distance and beatings cannot be
observed, leading to to the characteristic constant second harmonic field shown in
Fig. 2.10 (c-d).

Figure 2.12 (right) shows the second harmonic amplitude (of the constant field)
in function of the frequency for different amplitudes matching a/xs =0.08, 0.04,
0.02, 0.001, where it is clearly visible that the minimum field value is obtained at
the frequency of the maximum imaginary part of the complex wave number. On
the other hand, as more energy is transferred to second harmonic the fundamental
amplitude decays in an inverse way of its second harmonic field, as shows in Figure
2.12 (left).

2.4.5 Fundamental harmonic in band gap

When the fundamental frequency of the wave lies within the band-gap, small
amplitude waves propagates evanescently. Essentially, the same applies to finite
amplitude harmonic waves. In general, if the shock distance is large compared to
the exponential characteristic length of the evanescent wave, the nonlinear effects
have no time to accumulate and harmonic amplitude is negligible. Since the char-
acteristic exponential decay is about few lattice sites, this means that the initial
amplitudes necessary to achieve nonlinear effects in this configuration are much
higher than those in the preceding sections. Figure 2.13 shows the evolution of the
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first and second harmonics for a fundamental frequency falling in the middle of
the bad-gap, 2ω0 = 1Ω0, and with a frequency just above but into the band-gap,
ω0 = 0.87Ω0 for a layered media of α = 1/2 and c1/c2 = 1/2. In the first case,
the imaginary part of the wave vector is remarkable high and the waves decay
fast after few lattice units. Due to this fast decay, the second harmonic interacts
over a short distance with the first, and its amplitude is very limited. After few
lattice units, fundamental wave can be treated as a small-amplitude evanescent-
wave. The second harmonic, that also falls in bandgap (but in the second band)
also decays exponentially.

On the other hand, if the fundamental frequency is set just above the band-
gap, where the imaginary part of the wave-vector is smaller, the amplitude of the
fundamental wave decays more slowly, penetrating deeper into the material. The
interaction region with the second harmonic is larger, and nonlinear effects resultv
in a more efficient generation of the second harmonic. Furthermore, as long the
different (higher order) bandgaps in the layered media can have different band-
width, in this configuration at ω0 = 0.87Ω0 second harmonic does not fall inside a
bandgap. Therefore, the generated second harmonic wave at the beginning of the
lattice propagates through the medium essentially without amplitude change. Due
to the evanescence of the fundamental wave, there is only forced wave at the be-
ginning of the medium. Therefore, although in this configuration waves are phase
mismatched, beatings are not present: only the free wave propagates through the
medium.
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Figure 2.13: (a) Evolution of the fundamental harmonic wave field with its fundamental fre-
quency falling just above into band-gap, ω0 = 0.87Ω0, (continuous line), and in the middle of the
bad-gap, 2ω0 = 1Ω0 (dotted line). (b) Corresponding second harmonic field, where for ω0 = 1Ω0

(dotted line) second harmonic frequency falls in the 2nd band band-gap while for ω0 = 0.87Ω0,
(continuous line) lies into a propagating band.
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2.5 Nonlinear acoustic field management

2.5.1 Tuning nonlinearity with dispersion

In the preceding sections we have explored the fundamental behavior of nonlinear
waves generated inside layered media. However, the layered medium parameters
can be tuned to provide specific conditions. These conditions are, among others,
looking for detuning or coherence at specific frequencies and using the evanescent
propagation in the bad-gap for another specific frequency.

The material parameters can be tuned to get coherence at one frequency of
interest, e.g. at one of the harmonics of the fundamental wave, or to get detuning
or evanescent propagation at other specific harmonics. Using these mechanisms
the layered system provides a control of the nonlinear process inside the medium.
Thus, the layered media can be tuned in order to obtain specific balance of the
harmonic amplitude or specific nonlinear waveforms.
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Figure 2.14: (Top) dispersion relation for a layered media of c1/c2 = 1.33 and α = 1/2. (Bot-
tom) coherence length for second (red) and third (blue) harmonic in function of the fundamental
frequency. Phase matched frequencies are those with xc → ∞, while asynchronous generation
is predicted for xc → 0. Frequencies at which the fundamental frequency is in band-gap are is
marked in gray regions, while band-gap regions for second and third harmonic are marked in
dashed lines.
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Figure 2.15: Harmonic distribution for the frequency ω0 = 1.75/Ω. Coherence is recovered for
at least the lowest spectral components. Blackstock solution (dotted lines).

In the design of a system for this purpose, the coherence length is a useful
control parameter. Thus, Fig. 2.14 (top) shows an example of the dispersion rela-
tion with parameters c1/c2 = 1.333 and a = 1/2. Then, in Fig. 2.14 (bottom) the
coherence length for the second and third harmonic is shown. The propagating
bands are marked with continuous lines while the band-gap frequencies are marked
in dotted lines. Thus, the abscissa axes marks the frequency of the fundamental
wave. It can be observed that there exist singular frequencies, e.g. frequencies
where all the harmonics are phase matched, xc → ∞. In Fig. 2.14 it happens
for ω0 = (0, 1.75, 2.333, ...)/Ω. On the other hand, there also exist frequencies at
which there exist coherence for the second but a non-negligible detuning is ob-
served for the third. Opposite effect can be observed, where coherence is achieved
for the third harmonic but second harmonic presents strong dispersion. Finally,
other interest regions are those where second harmonic component is almost phase
matched and for the same frequency third harmonic falls into a band-gap.2

Thus, the analytic Eq. (2.1) provides an excellent framework to tune-up the
layered parameters to obtain the desired balance between detuning, evanescent
propagation, synchronous generation and, at the same time, it allows to find those
conditions for a specific phase/group speed.

We start studying the harmonic distribution for an initial monochromatic wave
of ω0 = 1.75/Ω, corresponding to the triangle marked in Fig. 2.14 (bottom). Fig-
ure 2.15 shows the harmonic distribution, where, as expected, synchronous cumu-
lative harmonic generation inside the dispersive media is recovered. The harmonic
evolution in the second band follows again the Bessel-Fubini-Blackstock harmonic

2This singular situations can be also obtained with no difficulty for physical values of sound
speed and other layer proportions. We use here normalized values for the sake of simplicity.
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distribution for the lower spectral components. However some remark must be un-
derlined. First, there exist some detuning for the high frequency components that
avoids the formation of shock waves for σ > 1. Figure 2.16 shows the waveforms
measured at σ = (0.5, 1, π/2, 2). It can be observed that, although second and
third harmonics are phase matched a shock is not produced. Due to finite detun-
ing of the higher harmonic components, oscillations instead of a shock wave profile
appears for σ > 1, as those presented in the low frequency limit in Sec. 2.4.2.

It is worth noting here that coherence is achieved in theoretically lossless media
for all spectral components. However, losses can modify the dispersion relation
specially for frequencies near the band-gap. Thus, in practical cases, where losses
exist and typically increases quadratically with frequency, the dispersion relation
will be modified specially at frequencies of the higher spectral components. In
the presented cases, due to the introduction of some amount of artificial attenu-
ation necessary for nonlinear numerical stability and convergence, it is observed
how appears a finite detuning for high spectral components, causing the charac-
teristic dispersive oscillations. On the other hand, the finite difference method
used always introduces some amount of artificial dispersion that modify the dis-
persion relations. However, the oscillatory solutions, e.g. Fig. 2.16, are therefore
not caused directly by numerical artifacts. They are not present in homogeneous
simulations. Note the grid used is 300 elements per wavelength and the artificial
attenuation was only 10−3 P/s, ten times greater than the water viscosity. The
effect of computational restrictions is to slightly modify the dispersion relations
for higher harmonics causing finite detuning. We expect those effects to be present
in real materials, and therefore, limit the ability of recovering perfect coherence
for all spectral components and create shock waves3.

Other interest feature is that in these conditions phase speed at the fundamen-
tal and at higher harmonic frequencies always match cp(nω) = c̄0. In contrast,
in this situation the group velocity does not match necessary the low frequency
sound speed. In this case was close, with a value of cg = 0.97c̄0.

Other situations can be explored by changing the layered parameters. Fig-
ure 2.17 (top)shows the dispersion relation for c1/c2 = 2 and α = 0.1. It is shown
in Fig. 2.17 (bottom) that coherence is achieved, at least for the lowest compo-
nents, for ω/Ω = 1.22. In this case, the phase speed matches cp(nω0) = c̄0, but
the group velocity is reduced to cg(ω0) = 0.830. Figure 2.18 shows the evolution of
the fundamental and its first two harmonics. A remarkable effect that can be ob-
served here is the appearance of high-amplitude oscillatory fields due to the strong
impedance contrast between layers, actually nonlinear Bloch waves. In these re-
duced group velocity conditions, the analytical solution for homogeneous media
(dashed lines) does not match the numerical results. However, no beating are pro-
duced and the shape of harmonic growing is essentially the same. It can be seen
that the rate of second and third harmonic growth is increased. The distance at

3Other interesting topic, not studied here, is to find conditions for recovering coherence in
media with attenuation by tuning its lossy dispersion relations
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Figure 2.16: (continuous lines) Waveforms at different distances (σ = 0.5, 1, π/2, 2) for ω0 =
1.75/Ω where a coherence is recovered for the lowest harmonics. Blackstock analytic solution
(red dotted lines).

which the maximum second harmonic field is produced is located at σ ≈ 1.2 in the
homogeneous media while in the numerical simulations appears at σ = 0.7. Same
scaling is observed for the rate of harmonic generation, where in the homogeneous
media (near the source) second harmonic grows at a rate p0σ/2 Pa/σ, and in the
numerical simulations the rate of growing was 0.86p0/σ Pa/σ. The whole effect is
that the effective nonlinearity of the system in these conditions is increased. For
the present case, a factor of increased nonlinearity can be obtained by fitting the
analytical solution to the numerical results, letting as the free variable an effective
parameter o nonlinearity, namely β̄. Thus, for the presented results, a factor of
β̄ = 1.72 is estimated. A new solution using this effective parameter is shown in
Fig. 2.17 (bottom) in thick lines. It can be observed how the fitted solution agrees
the slow-group speed for distances up to the effective shock distance (0.58σ in the
figure). The observed effect of retaining coherence and reduce group velocity is to
increased the effective nonlinearity of the media together with the apparition of
high-amplitude nonlinear Bloch waves.

In the following subsections, we propose and analyze different interest layered
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Figure 2.17: (Top) dispersion relation for a layered media of c1/c2 = 2 and α = 0.1. (Bottom)
coherence length for second (red) and third (blue) harmonic in function of the fundamental
frequency. Frequencies at which the fundamental frequency is in band-gap are is marked in gray
regions, while band-gap regions for second and third harmonic are marked in dashed lines.
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Figure 2.18: Harmonic distribution for the frequency ω0 = 1.22/Ω. Blackstock solution (dotted
lines).
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Figure 2.19: Harmonic distribution for ω0 = 1.668/Ω where a coherence is achieved for second
harmonic while the frequency of the third harmonic falls into the bad-gap.

media designs with specific balance between between detuning, evanescent propa-
gation and synchronous generation.

2.5.2 Increasing second harmonic generation

One can expect that second harmonic generation is maximized in homogeneous
nondispersive media. However, in nondispersive media coherence is achieved not
only at second harmonic frequency, but also in the higher spectral components.
As a result, energy is transferred from second harmonic field to higher spectral
components and therefore second harmonic field does not grow indefinitely. More-
over, shock waves are formed and nonlinear absorption reduces wave intensity for
σ > π/2 even in lossless media (Hamilton et al., 1998a).

The controlled dispersion of the layered system can modify this situation by
including dispersion that alters the higher harmonic cascade processes while main-
taining coherence for second harmonic. Figure 2.14 shows an example of a dis-
persion relation where for ω0 = 1.668/Ω it can be observed that there exist a
reasonable coherence for the second harmonic (xc/a ≈ 1000 lattice units), while
the third harmonic falls in a band-gap. Figure 2.19 shows the harmonic distribu-
tion in this situation. Here, energy is transferred to second harmonic field that
grows almost linearly for σ < 2. On the other hand, the energy transferred from
second to third harmonic is not cumulative and its amplitude does not grow with
distance. Third harmonic experiment evanescent propagation due to the imagi-
nary part of the complex wave-vector at this frequency. A constant field, as studied
in Sec. 2.4.4, is obtained for the third harmonic.
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Figure 2.20: (continuous lines) Waveforms at different distances for ω0 = 1.668/Ω. At σ =
3.3 second harmonic generation field is maximize and can be seen the period doubling in the
waveform. Then, at σ = 7.8 due to second harmonic detuning nearly sinusoidal wave is recovered.
Blackstock analytic solution (red dotted lines).

The total amount of the second harmonic amplitude in nondispersive media is
p2|max ≈ 0.36p0, while in the example of Fig. 2.19 a maximum second harmonic
amplitude of p2|max ≈ 0.75p0 is predicted. As can be shown the decreasing of the
first harmonic follows the analytic nondispersive Blackstock solution for σ / 3.
Thus, in this regime all the energy of the first harmonic is being transferred to the
second harmonic field. However, due to finite detuning of the second harmonic a
long spatial beating is produced, with period 8σ, and energy is returned back to
the first harmonic component.

It is worth noting here that at distance σ ≈ 3 sawtooth profile is observed in
nondispersive media. In contrast, only second and first harmonic have remarkable
amplitude into the layered media. Waveforms are shown in Fig. 2.20. Near the
source, where the amplitude of higher harmonics in not relevant the nondispersive
waveform (in red dotted) is well approximated by the fundamental and its second
harmonic of the layered medium. However, due to the evanescent propagation
of the third harmonic for longer distances the nonlinear solution of the layered
medium is mainly composed by the fundamental and its second harmonic. The
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maximum second harmonic in this configuration is observed at σ = 3.3, where it
can be appreciated in the waveforms of Fig. 2.20 the period doubling. Moreover,
due to finite detuning of the second harmonic the process is not cumulative for
all distances and at σ = 7.8 the energy is restored in the first harmonic again and
a sinusoidal wave is obtained4. An analogous effect has been also studied (Nau-
golnykh et al., 1998) where instead of dispersion, selective absorption at specific
frequencies is used to modify and enhance harmonic generation.

2.5.3 Increasing third harmonic generation

In the first band (ω < Ω0), coherence is always lower for the third harmonic than
for the second. However, in the superior bands the layered medium parameters
can be tuned to obtain higher coherence for the third than for the second har-
monic. Essentially we follow same ideas on the preceding section but for the third
harmonic. In this case, the lattice is designed forcing the second harmonic to fall
in bandgap. A the same time, perfect coherence can be found for the third har-
monic at ω = 0.529Ω0. This situation is illustrated on Fig. 2.21. In this case, the
dispersion relation was obtained for a layered medium with parameters α = 0.3
and c2/c1 = 1/3.

In this situation, as Fig.2.22 shows, second harmonic field present a constant
value of about 0.04p0. As discussed in Sec.2.4.4, this constant field does not grow
with distance and is related to the evanescent solution of the free wave and the
local nonlinear “pumping”. On the other hand, due to the coherence of the third
harmonic, all the energy transferred form second to third is accumulated with
distance. Therefore, near the source the rate of energy transfer from second to
third harmonic is constant. Thus, third harmonic start to grow almost linearly
with distance, opposite to quadratically in homogeneous media.

Also it can be seen in the simulations how fourth and fifth harmonics grow (red
dotted and blue dotted lines in Fig. 2.22). In this case only fifth harmonic have
remarkable amplitude, growing near the source almost quadratically with distance.
Therefore, the entire system behaves as an artificially cubic-like nonlinear medium
formed by quadratic nonlinear layers.

The corresponding waveforms measured at σ = (0.5, 2, 8, 12) are shown in
Fig. 2.23. For σ = 0.5 and 2, it can be observed how the wave steepens with
the characteristic shape of cubic nonlinearity. No shock waves are formed as long
strong dispersion is present for high frequency harmonics. However, it is worth
noting here a remarkable fact: it steepens in the positive time axis direction (to

4Note all the energy is not restored to first harmonic in Fig. 2.19 at σ = 7.8, leading to a
sinusoidal wave of different amplitude as can be observed in Fig. 2.20. The energy loss is mainly
due to the artificial (numerical) viscosity necessary to nonlinear convergence(Hamilton et al.,
1998a). For these simulations the total distance is 1200 lattice sites and therefore the effects
of attenuation are not negligible. However, the main nonlinear effects related to strong lattice
dispersion still appreciated.
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Figure 2.21: Harmonic distribution for ω0 = 1.668/Ω where a coherence is achieved for second
harmonic while the frequency of the third harmonic falls into the bad-gap.
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Figure 2.22: Harmonic distribution for ω0 = 1.668/Ω where a coherence is achieved for second
harmonic while the frequency of the third harmonic falls into the bad-gap.

80



2.5. Nonlinear acoustic field management

−1 0 1

−1

0

1

2

t f0

p/
p 0

σ = 0.5

−1 0 1

−1

0

1

2

t f0

p/
p 0

σ = 2

−1 0 1

−1

0

1

2

t f0

p
/p

0

σ = 8

−1 0 1

−1

0

1

2

t f0

p
/p

0

σ = 12

Figure 2.23: (continuous lines) Waveforms at different distances for ω0 = 1.668/Ω. At σ =
3.3 second harmonic generation field is maximize and can be seen the period doubling in the
waveform. Then, at σ = 7.8 due to second harmonic detuning nearly sinusoidal wave is recovered.
Blackstock analytic solution (red dotted lines).

the right in the figure), opposite than the quadratic nonlinearity plotted in red
dotted as a reference. This effect, i.e. the steepening on the opposite side of the
propagation direction, is characteristic of materials with negative parameter of
nonlinearity. Therefore, the effective nonlinear behavior observed by the simula-
tions in this conditions can be described as negative-cubic-like nonlinearity.

2.5.4 Acoustic Fluorescence in chirped layered media

Another interesting configurations can be achieved by adiabatically changing the
lattice period, a = a(x), of the layered medium, namely chirped layered media.
Analogues to these configurations, chirped periodic media has been studied in lin-
ear regime in optics (Cheng et al., 2014) or in acoustics using arrays of distributed
cylindrical scatterers (Romero-Garćıa et al., 2013). Using these chirped config-
urations band-gap can be placed at different locations for different frequencies.
Here, we design a system with increasing lattice period, where the band-gap for
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Figure 2.24: Scheme of the acoustic “fluorescence” effect. The chirped system is radiated with
two waves of slightly different fundamental frequencies ω1 and ω2. Harmonics are generated at
combination frequencies inside the medium and at the end of the system the period is tuned to
achieve a band-gap at fundamental frequency. Thus, only the low-frequency difference-component
is transmitted.

the fundamental component of two nearly similar frequency waves is located at the
end of the chirped layered medium. Thus, as sketched in Fig. 2.24, two harmonic
waves with close frequencies are injected at the beginning of the lattice. In this
region, the lattice period is designed small enough to achieve good coherence so
harmonics at combination frequencies can be generated progressively through the
layered system. Then, at the end of the lattice the period is decreased in such a
way that it correspond to a forbidden band for the fundamental component.

In this case, the frequency of the waves was selected to be f1 = f0 and f2 = f0+
f0/3. Figure 2.25 (top) shows the bandgap location in the lattice, that is located
at x = 0 until x = 200a. Then, the rest of the domain is homogeneous. Although it
is calculated for infinitely period media, we assume that the band gap exist for the
adiabatic chirped lattice. Figure 2.25 (bottom) shows the harmonic evolution for
this configuration where it can be seen how harmonics at combination frequencies
are generated at the beginning of the lattice. The bandgaps of layered medium act
as spatial filtering for the fundamental components that are reflected back around
x/a = 100, leading to an enhancement of the field discussed in (Romero-Garćıa et
al., 2013). This enhancement is clearly visible in Fig.2.25 (bottom). Furthermore,
not only fundamental frequency is filtered. As long the bandgap central frequency
change with distance, the superior bandgaps cover the entire frequency range,
reflecting back higher harmonics.
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Figure 2.25: (top) Bandgap distribution in function of space. The chirped lattice ranges from
x = 0 to x/a = 200, (middle) Spectrum-spatial distribution, (bottom) harmonic distribution for
fundamental waves, its second harmonics and the difference component.

Therefore, only the difference frequency wave can be transmitted trough the
medium. The final effect is that in transmission an effective demodulation is
achieved: an amplitude modulated wave is injected, see Fig. 2.26 (a), the dif-
ference frequency is nonlinearly generated among other combination frequencies
Fig. 2.26 (b-c), and the system output is only the low frequency component.

The whole effect presents some analogy with fluorescence, where electrons re-
emit a photon when relaxing to a lower quantum state after being exited with some
electromagnetic wave. The emitted light has, in most cases, a longer wavelength
and lower energy, than the absorbed radiation. Obviously, this analogy is not
formal and only conceptual.
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Figure 2.26: (Top) Harmonic distribution in the chirped layered media where the acoustic
“fluorescence” is observed. The self-demodulation of the two collinear modes is achieved inside
the nonlinear media, while the band-gap at the end of the chirped layered media limits the
transmission of the high frequency components. Therefore, only the self-demodulated component
is transmitted. (Bottom) Corresponding waveforms observed at locations (a-d).
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2.5.5 Frequency Conversion Mirror in chirped layered me-
dia

We propose a setup of the chirped layered media in which the bandgap is located
for the frequency of the second harmonic at the end of the structure. Actually, the
structure is equivalent to the preceding subsection, but a monochromatic funda-
mental wave is selected here at frequency ω−. The fundamental wave is therefore a
propagating mode over all the structure. On the other hand, its second harmonic
only can propagate trough the beginning part of the structure. At the end of the
layered media, its corresponding wavevector presents an imaginary part and the
propagation is evanescent. Therefore, it is reflected back to the source. From the
point of view of the source, the whole process can be treated as a nonlinear mirror:
the incident wave is reflected with doubled frequency.

In order to visually illustrate the process, simulations were carried out using a
k-space method over a 2D domain. The incident wave was generated by a Gaussian
beam at frequency ω, steered 10o from the axis of the structure, see Fig. 2.27. It
is worth noting here that the theoretical dispersion relation is one-dimensional
and for non-normal incidence angles it will change. However, for illustrate the
processes and for the selected incident angles is enough.

Figure 2.28 shows the first and second harmonic field, with the structure in
the middle and the source below. It can be seen that when the intense wave im-
pact on the layered, its first harmonic is slightly refracted due to different phase
speed in the outside media and in the layered structure. Then, it shows very high
transmission out of the structure. Only spurious reflection of the first harmonic
is observed due to the impedance mismatching at the boundaries of the structure:
in both limits of the crystal (top and bottom) reflection can be observed. On the
other hand, the second harmonic is generated at the beginning of the propagation
and inside the structure. The transmission of second harmonic is negligible. It
can be seen how its amplitude becomes negligible in the bandgap area marked by

ω
0

ω
0

2ω
0

chirped layered media

Figure 2.27: Scheme of the frequency conversion mirror effect. A wave with fundamental
frequency ω0 enters in the chirped system. Second harmonic is generated inside the medium and
at the end of the system the period is tuned to achieve a band-gap at second harmonic frequency.
Thus, second harmonic is reflected while fundamental field is transmitted.
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Figure 2.28: Field distribution for (a) first harmonic and (b) second harmonic field in the
frequency conversion mirror configuration. The chirped layered media extends between white
lines. White dotted lines marks the extension of the bandgap for the second harmonic.

the dotted lines. After the end of the gap, first harmonic start again generate har-
monics by cascade processes, and second harmonic field increases, but the second
harmonic generated at the beginning is not transmitted. The energy that is not
transmitted is reflected back, as can be seen in Fig. 2.28 (b). In addition, reflection
at the bottom boundary can be also observed due to impedance mismatching.

The effects of the present configuration can be enhanced by using very high
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nonlinear material in the construction of the layered media than in the surround-
ing fluid. Thus, for instance using layers of bubbly fluids and solid plates with
micro cracks the nonlinear generation of second harmonic can be located only in-
side the layered structure and if the bandgap is properly designed at the end of
the lattice the transmission of second harmonic will be negligible. On the other
hand, controlling the length of the crystal and the steering of the beam the reflec-
tion of the second harmonic can be uncoupled totally from the reflections of the
first harmonic field. Another improvements include focalization of the reflected
harmonics as achieved in optics for linear waves (Cheng et al., 2014).

2.5.6 β-Modulated media

Finally, instead of modulate the sound speed and density of the layers, the non-
linear parameter of the media can be also modulated. Thus, it is interesting to
take into account that there exist some materials, most of them solid, that ex-
hibit negative nonlinearity. These materials are well-known and also common,
e.g. some glasses as Pyrex or fused silica (Hamilton et al., 1998a). The nonlinear
processes in negative nonlinear parameter media are not completely different from
the positive ones. The nonlinear parameter shows the dependence of sound speed
on pressure. Thus, the difference between positive and negative nonlinear media
is that in negative media the rarefaction cycles of the wave travels faster than the
compression cycles. Thus, wave profile distortion, as Fig. 2.29 sketches, is simply
inverted.

–β

+β

–β

+β

–β

+β

Figure 2.29: Scheme of the β-modulated acoustic layered media. (top-left) The nonlinear
distortion in an homogeneous layer with +β leads to steepening in the +z direction, while for
−β the steepening is produced in the opposite direction. Therefore, alternating thin layers of
positive and negative nonlinearity the steepening distortion can be mitigated.
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Figure 2.30: (Left) Spectrum obtained at σ = 1 for a wave traveling a the β-modulated
material. (Right) Corresponding waveform.

Then, we propose a configuration where thin layers of two materials with in-
verted nonlinear parameter are alternated. The idea is that the distortion during
propagation in one layer is compensated by the distortion in the following and
thus, a extremely linear material can be generated for supporting very intense
waves at distance much longer than the shock formation distance. For the sake of
simplify, the density and sound speed will be maintained equal in both media. The
layer thickness was set to a = 0.1λ and the nonlinear parameters as β1 = −β2 = 5,
of the order of the common materials.

Extremely linear media

Figure 2.30 shows the waveform and its spectrum recorded at the shock distance. It
can be observed the absence of nonlinear distortion. due to the negligible energy
transference to higher harmonics the fundamental component retains its initial
amplitude. The evolution of the spectral components versus distance is shown in
Fig. 2.31. It can be observed that the monochromatic wave can travel at the shock
distance without experiment distortion.
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Figure 2.31: Harmonic evolution in the β-modulated material. Up to the shock wave distance
almost all the energy remains in the fundamental harmonic and the harmonic amplitude for the
higher spectral components is negligible.
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Figure 2.32: (Left) Spectrum obtained at σ = 10 for a wave traveling a the β-modulated
material. (Right) Corresponding waveform.

Cubic nonlinear composite media

However, an interesting effect is also observed. If the propagation is long enough,
some harmonics of the fundamental frequency appears, but only the odd harmonics
are generated. Thus, response of the media appears to be effectively equivalent to
a cubic media. An explanation of this phenomena can be obtained for nondisper-
sive propagation. The asymptotic expressions for the amplitude of the harmonics
near the source can be obtained by expanding the Bessel-Fubini Eq (2.37). The
expansion leads to the expressions for the second and third harmonics:

p2(x, τ) =
βp2

0ω

2ρ0c30
x sin 2ωτ, (2.53)

p3(x, τ) =
3β2p3

0ω
2

8ρ2
0c

5
0

x2 sin 3ωτ. (2.54)

It can be seen that the second harmonic grows linearly with the distance and
it is proportional to the nonlinear parameter β. On the other hand, the third
harmonic depends quadratically on both variables. Then, if a wave travels trough
a layer of the proposed structure with β1 = +β, its second harmonic will increase
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Figure 2.33: Harmonic evolution in the β-modulated material, where it can be seen the gener-
ation of odd harmonics.
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linearly and the third, almost absent, will do quadratically. When the wave crosses
the next layer with inverted nonlinearity β2 = −β, Eq. 2.53 contributes creating
the same amount of second harmonic than in the preceding layer but inverted due
to the −β coefficient, i.e. with opposite phase. Therefore, second harmonic at
the end of the second layer vanishes. This process holds for thin layers were the
asymptotic expressions can be applied. However, the generation of third harmonic
depends on β2, so there does not exist cancellation between layers and the genera-
tion is cumulative with distance. Third harmonic is generated by cascade processes
and needs second harmonic field. Due to second harmonic is generated and com-
pensated periodically, the evolution of the third does not grows quadratically with
distance and its rate of the generation is very slow.

Figure 2.33 presents the evolution of the spectral components for distances up
to x = 10xs. It can be observed that the odd harmonics are generated and the even
ones vanishes. On the other hand, the generated third harmonic shows an almost
linear dependence with propagation distance, where the fifth harmonics grows at
a quadratic rate. Figure 2.32 shows a waveform recorded at σ = 10, where the
characteristic shape of cubic nonlinearity can be observed, see e.g. (Jacob et al.,
2007). On the right plot, its spectrum revels an almost negligible contribution of
the even harmonics.

The configuration proposed, opens a way to obtain cubic nonlinearity for the
longitudinal waves from a layered distribution of quadratic nonlinear materials.
Therefore, such structure can be designed also using solid composites in the mi-
cro scale to obtain new ways of management of acoustic waves as low distortion
waveguides for intense perturbations where the acoustical saturation distance can
be extended. In the more general case including dispersion, the system offers the
possibility of designing new tunable nonlinear materials where phase velocity and
effective nonlinearity can be modified to achieve exotic configurations, while the
structure is made from common material composites.

2.6 Dispersion managed acoustic solitons

One of the most widely studied phenomena in most nonlinear and strongly dis-
persive media is the existence of solitons. Solitons are nonlinear localized pertur-
bations that propagate without changing its shape, emerging from the interaction
of nonlinearity and dispersion. The first observation of the solitary waves was
in 1834 by John Scott Russell at the Union Canal in Scotland, who called them
Waves of Translation. In its experiments Russel described the main properties
of these shallow-water waves (Russell, 1844). Starting from the theoretical works
of Boussinesq and Rayleigh (Boussinesq, 1871; Boussinesq, 1877; Rayleigh, 1876),
these waves could not been completely explained by the existent theory of water
waves until 1895 when the Diederik Korteweg and Gustav de Vries derived a sim-
ple partial differential equation for shallow-water waves (Kordeweg et al., 1895).
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Their model, now known as the KdV equation, is completely integrable and pro-
vides exact solutions as solitons and cnoidal waves. However, it was not widely
studied until 1965 with the advent of the computational physics when Zabusky
and Kruskal found that the KdV model arises as the continuum limit of the FPU
nonlinear lattice (Zabusky et al., 1965).

From these seminal works, solitary-wave solutions have been observed and
deeply studied in most physical systems that can support nonlinear and dispersive
waves: electromagnetism and nonlinear optics; hydrodynamics; acoustics, elasto-
dynamics and granular media; phononics and nonlinear molecular dynamics, DNA
dynamics, Bose-Einstein condensates, plasmas and so on. The solutions presented
Chapter 1, in the limit of weak dispersion and weak nonlinearity, can also be
described by the KdV equation. The acoustic layered media is not an exception.

Solitons have been studied by Yong et al. (2003) in layered acoustic media
and in also in media with alternated solid and fluid layers (Fainstein et al., 2013;
Huynh et al., 2015). Here, we extend the analysis using numerical techniques in
the limits of strong nonlinearity and strong dispersion, i.e. from the long and slow
solitons to sharp and intense acoustic solitary-waves.

2.6.1 KdV solitons

The Korteweg-de-Vries (KdV) equation arises as the continuum limit of the FPU
quadratic nonlinear lattice (Zabusky et al., 1965). Thus, in the low frequency
limit both models can be described by the same dispersion relation. Consider the
dispersion relation of a mono-atomic lattice as

ω2 = ω2
M sin

(
ka

2

)2

, (2.55)

where c0 is the small amplitude sound speed and a the oscillator separation, and
the upper cut frequency is ωM = 2c0/a. We can expand in Taylor series this lattice
dispersion relation around k = 0, retaining up to cubic terms leads to the KdV
dispersion relation:

ω(k) = c0k − bk3, (2.56)

with

b =
1

24
c0a

2 (2.57)

as the dispersion parameter of the low frequency limit for longitudinal vibrations in
any mono-atomic lattice. Figure 2.34 shows the normalized dispersion relation for
the lattice and its KdV low frequency approximation, where it can be appreciated
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Figure 2.34: Dispersion relation for the mono-atomic lattice (continuous) and its KdV low
frequency regime (dotted). Nondispersive slope is plotted in dashed-dotted line for comparison.

that both models fit very well for long wavelengths, but also for remarkable high
wavenumbers. Relative difference is below 1% for wavenumbers below kd/π <
0.64. However, the group velocity in this equivalent KdV is lower then in the full
lattice, and it decreases faster with frequency.

Seen that similarity between band structures, and given the fact of the same
quadratic nonlinearity is present in the KdV model and the FPU lattice, it is not
surprising that similar solutions can be obtained in both systems, at least in the
low frequency regime. The solutions explored in the Coulomb chain presented in
Chapter 1 can be obtained also by the KdV equation provided that the kinks are
far of the ultra–discrete regime, e.g. for energies below 0.5 eV.

Furthermore, homogenization techniques can applied to the layered media
(Santosa et al., 1991), where, despite the complexity of the superior bands, the
dispersion relation in the first band present the same shape under some assump-
tions than the FPU lattice. Therefore, a Taylor series expansion of Eq. (2.1) in
powers of ω around ω = 0, collecting terms up to second order, leads to

ω2 ≈ (1− cos (ka))
2c21c

2
2

a (a2c21 + a1c22)
. (2.58)

Then, we expand again in Taylor series in powers of k around k = 0, and
collecting terms up to third order we get
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ω ≈

√
ac21c

2
2

a2c21 + a1c22
k − a2

24

√
ac21c

2
2

a2c21 + a1c22
k3 , (2.59)

that can be expressed in the compact KdV form

ω(k) = c0k − bk3 , (2.60)

with the parameters

c0 =

√
ac21c

2
2

a2c21 + a1c22
(2.61)

b =
a2

24
c0 . (2.62)

Note the dispersion parameter is exactly the same that obtained for the FPU
mono-atomic lattice.

However, this result only states that both models are similar around k = 0,
but there can exist remarkable differences between the layered system and its
equivalent KdV model for short waves when ka → 1. Figure 2.35 shows the
full dispersion relation for three different α ratios and its asymptotic solution for
the low frequency regime by Eq. (2.60). It is clearly seen that good agreement
between the mono-atomic lattice and its KdV expansion is only achieved in the
case of α = 0.9 and c2/c1 = 0.1. For the other cases (α = 0.1 and α = 0.5), the
first propagation band becomes flatten, the frequency at which the band-gap start
becomes higher and therefore the band-gap stretches. In the limit of Eq.(2.1) for
α → 1 and c2/c1 → 0, the first band of the layered matches exactly the mono-
atomic chain dispersion relation Eq. (2.55), while the second band does not start
in a finite frequency, i.e. there does not exist superior bands. This limit shows
that the first band most dispersive shape for the layered medium is the dispersion
relation Eq. (2.55). This situation corresponds to the case of a homogeneous
media with infinitesimal-sized soft inclusions. Note that the inclusions impedance
contrast must be large and also that the sound speed of the inclusions must be is
low than the host media. A good analogy of this situation, for small amplitude
waves5, is a one dimensional version of a liquid with period inclusions of gas
bubbles. Also note in one dimensional system a rigid inclusion (c2/c1 = 0) implies
zero transmission and therefore no wave inside the structure, increasing c2/c1 to
low but physical values mean strong dispersion.

On the other hand, the effect of the layered medium dispersion is to flatten the
slope of the first propagation band for high spatial frequencies, from the critical

5Soft inclusion typically shows large compressibility values and for finite amplitude waves the
inclusions, in this case bubbles, are large compressed. Therefore, large strains are produced and
the material response is described not only by its compressibility, but a large fraction of its local
nonlinearity.
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Figure 2.35: Dispersion relation for the layered media using c2/c1 = 0.1 and α = 0.1 (blue),
α = 0.5 (red) and α = 0.9 (gray), mono-atomic lattice (black) and the KdV homogeneous limit
(dotted line). It can be observed that the layered linear dispersion relation converges to the
lattice dispersion for small inclusion of low sound speed.

case of the mono-atomic chain dispersion (gray line in Fig. 2.35), to situations
in which infinitesimal bandgap are created and the group speed is c0 for all the
frequencies (blue line in Fig. 2.35).

As can be seen, the layered media dispersion can modify its shape in a large
amount of different configurations. Soliton shape, width and amplitude will depend
in those parameters.

Let us recall here the second order lossless-Westervelt Eq. (2.31), assuming ρ0

does not change with space and for plane waves travelling in the x direction

∂2p

∂t2
− c20

∂2p

∂x2
− β

ρ0c20

∂2p2

∂t2
= 0. (2.63)

Here, as usual in the literature6, we introduce the “travelling” coordinate sys-
tem z = x− c0t in which the reference frame z moves “with the wave” at speed c0.
Also, we define the new slow changing τ = t that corresponding to the travelling
coordinates. The changes in the new coordinates can be related to the standard
ones as

∂

∂x
=

∂

∂z
,

∂

∂t
=

∂

∂τ
− c0

∂

∂z
(2.64)

6Although for boundary problems is more convenient to transform the reference frame to a
“retarded time” coordinate, we introduce the spatial “travelling” coordinates for convenience.
The transformation here would be more appropriate for initial value problems.
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After some algebra, substitution of Eqs. (2.64) in Eq. (2.63) yields the lossless
version of the Burgers equation

∂p

∂τ
+

β

ρ0c0
p
∂p

∂z
= 0, (2.65)

where the term ∂2p/∂τ2 has been neglected due to the slowness change in the time
τ . This equation can be rewritten in terms of particle velocity using the first order
relation v ≈ p/ρ0c0 as

∂v

∂τ
+ βv

∂v

∂z
= 0. (2.66)

That is actually more close to its original form derived by Burgers. For con-
venience, let us return again to the static reference coordinate system, where
Eq. (2.66), can be expressed as

∂v

∂t
− (c0 + βv)

∂v

∂x
= 0. (2.67)

In this evolution equation is clearly evident amplitude dependence of the wave
speed c = c0 + βv, causing the well known steepening of the waveforms. As in
previous sections, we know that the layered dispersion arises from the solution of
the linearized wave equation with the layered media boundary conditions, where
the eigenvalue problem leads to the Rytov’s dispersion relation Eq. (2.1). In order
to model KdV type dispersion, ω = c0k−bk3, an additional term can be introduced
into the Eq. (2.67):

∂v

∂t
− (c0 + βv)

∂v

∂x
+ b

∂3v

∂x3
= 0 . (2.68)

With this term, the leading equation (in traveling coordinates) is the KdV
equation, the most widely model for nonlinear waves in dispersive media. One of
the exacts solution of the KdV equation is the solitary wave

v (x, t) = Asech2 (γ (x− V t)) , (2.69)

where the soliton width, γ, the amplitude, A, ant its speed, V , are related as

γ =

√
βA

12b
, (2.70)

V = c0 +
βA

3
(2.71)

Here and beyond, we will demonstrate numerically the existence of this solution
in the layered media, showing its limits of validity. Furthermore, we will investigate
the behavior of solitary waves in the regime in which the layered media dispersion
cannot be described by a KdV model with accuracy.
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Figure 2.36: Solitary wave for the layered parameters c2/c1 = 0.1 and α = 0.1, (continuous
line) numerical solution of the layered media (dotted line) KdV solution.

Figure 2.36 shows the evolution of solitary waves for the layered parameters
c2/c1 = 0.1 and α = 0.1. As shown previously in Fig. 2.35, in this regime of
parameters the layered dispersion can be described precisely by the KdV dispersive
model. Due to both models are not exactly the same (even for the mono-atomic
chain this is not fulfilled), we cannot claim the solitary wave solution observed
in the layered system is strictly described by the solitary solution Eq. (2.69).
However, as can be seen from the numerical tests, both solution closely agrees.

2.6.2 Non-cubic dispersion solitons

The presented KdV-like soliton exist only for a particular set of condition. In gen-
eral, the dispersion near the band gap cannot be accurately described by the KdV
dispersion. Furthermore, in case of high-amplitude/low-width solitary waves, the
soliton spectrum can reach superior bands, that are in-existent in the KdV model.
Here, we briefly present the existence of solitons with its width comparable to the
lattice separation. Figure 2.37 shows four examples of propagating localized waves
with different amplitudes. As can observed, as the soliton amplitude increases its
speed increases and its width reduces, as commonly observed is any solitary wave.
However, it can be seen that for high amplitude solitons, in which the width of
the localized wave is of the order of the lattice, there exist remarkable differences
with the continuum KdV approximation. In this simulations, the initial excitation
is the KdV solution. Thus, for the low amplitude regime (Fig. 2.37 (a)) the soli-
ton solution matches the excitation and propagates without changing its shape,
amplitude and velocity. However, for higher amplitudes (Fig. 2.37 (b, c)) , it can
be observed that the KdV is not the exact solution: the solitary wave breaks into
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Figure 2.37: Examples of 4 solitons with increasing amplitudes.

other wave-packets plus an oscillatory tail that its left behind. Finally, in the
regime width the soliton spectrum extend over the band-gap and up to second
band, i.e. for very localized waves waves (Fig. 2.37 (d)) , the solitary wave suffers
from a process of radiation. Note this radiation is totally different from the os-
cillatory tail shown in Figs. 2.37 (b, c): this radiation is not left behind and the
localized wave continuously radiate low linear waves or phonons on its tail.

On the other hand, Fig. 2.38 shows the space time diagram of these waves.
It can be seen clearly how the speed increases from c0 to V , being V the speed
of the localized wave. Here, the radiation is not visible due to the scaling of the
color map but another particular feature of this system can be observed. For
high amplitude solitons, the amplitude oscillates periodically in time and space,
showing variations that in space matches the lattice period a and in time V t/a.
Therefore, the main features of the solitons in the discrete limit, where the width
of the wave is comparable to the layer thickness is the existence of tail radiation
and periodic oscillatory amplitude of the strongly localized waves.

A more detailed study is presented in Fig. 2.39, where we show the amplitude
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Figure 2.38: Space-time diagram representation of the solitons in Fig. 2.37, with increasing
amplitude and velocity.

dependence of the soliton amplitude in function of its velocity. It can be seen that
the KdV regime is only valid for weakly nonlinear excitations, of in other words,
for wide solitons. For amplitudes of several MPa7 the soliton velocity observed in
simulations is considerably higher than in the KdV model.

2.6.3 1D Layered chirped: progressive amplification of soli-
tons

The layered media offers the possibility of artificially modify the dispersion rela-
tion. As seen in previous sections, the modification of the lattice parameters can be
made adiabatically, increasing or decreasing the lattice period progressively with
distance forming chirped layered structure. Along the solitary wave amplitude,
speed an thickness depends on the dispersion, the chirped la provides an usefully
way to progressively amplify solitons. Thus, we present a test of this idea where

7The lattice parameters were a = 0.85, c2 = 1500 m/s, c1 = 450 m/s and d = 0.225 mm
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Figure 2.39: Soliton speed as a function of its amplitude for (continuous line) numerical results
and (dotted line) KdV solution.

a chirped lattice period decreases with distance.

The initial excitation at the beginning of the lattice is a wide, KdV-type ex-
citation. Thus, as Fig. 2.40 shows, soliton start to propagate at a supersonic,
but low speed. As long the period is decreased, the dispersion seen by the wave
adiabatically changes. Thus, the solitary wave solution slowly adapts it amplitude
and thick according to the local dispersion. The result is that the wave can be
stretched, amplified and accelerated to higher supersonic speeds. This proof of
concept provides a method to manage the parameters of localized waves that can
be applied to any other lattice. Configurations of special interest are probably
the dispersion management of strain solitons in micro-structured composites, high
intensity ultrasonic cutting devices for medical applications triggered by trains
of amplified and pulsed excitations (instead of continuous mode) to reduce the
heating and material fatigue (Harvey et al., 2014), or even period-varying gran-
ular beads composed of metallic spheres for drilling devices that can be usefully
planetary exploration (Harkness et al., 2012).

2.7 Conclusions

In this Chapter we have analyzed the nonlinear propagation of acoustic waves in
a layered media. The harmonic generation processes are presented and discussed
mainly with numerical solutions considering a fluid-fluid structure. The strong
characteristic dispersion of a layered media, in addition to the fluid nonlinearity,
provides a wide range of possibilities for harmonic generation and control. In this
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Figure 2.40: Progressive amplification of a soliton traveling in a chirped lattice.

sense, the effective nonlinearity of the composite media can be tuned for obtain-
ing the desired harmonic balance. We provide the methods for selective harmonic
generation, where the material layers can be adjusted for generate only second har-
monic, only third harmonic, discard the even harmonics creating a cubic-nonlinear
medium composed of quadratically-nonlinear layer. We provided also conditions
for fabrication of waveguides for intense acoustic waves with extraordinary non-
linear distortion. Finally, the layered media provides conditions for dispersion
management solitons, that are briefly presented, extending the work existent in
the literature to the discrete limit of the soliton in which the width is of the order
of the media periodicity.

On the other hand, much work on modeling the presented results remains. In
this sense, we are currently working on Coupled Mode Theory. This analytical
method widely used in optics (Malomed, 2000) can provide simple explanation of
the dynamics of the system in terms of forward and backward coupled fields for
fundamental and higher harmonics.
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Huynh, Agnes, B Perrin, and A Lemâıtre (2015). “Semiconductor superlattices: A tool for tera-
hertz acoustics”. In: Ultrasonics 56, pp. 66–79.

Jacob, Xavier, Stefan Catheline, Jean-Luc Gennisson, Christophe Barrière, Daniel Royer, and
Mathias Fink (2007). “Nonlinear shear wave interaction in soft solids”. In: The Journal of
the Acoustical Society of America 122.4, pp. 1917–1926.

Kordeweg, DJ and G de Vries (1895). “On the change of form of long waves advancing in a
rectangular channel, and a new type of long stationary wave”. In: Phil. Mag 39, pp. 422–
443.

Kosevich, Arnold M. (2005). “The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices,
Second Edition”. In: The Crystal Lattice. Ed. by Arnold M. Kosevich. Wiley-VCH Verlag
GmbH & Co. KGaA. Chap. Chapter 5. Acoustics of Elastic Superlattices: Phonon Crystals,
pp. 153–162.

Liang, Bin, Bo Yuan, and Jian-chun Cheng (2009). “Acoustic diode: Rectification of acoustic
energy flux in one-dimensional systems”. In: Physical review letters 103.10, p. 104301.

Malomed, Boris A (2000). “Solitons in optical media with quadratic nonlinearity”. In: Nonlinear
Science at the Dawn of the 21st Century. Springer, pp. 247–262.

Maryam, W, AV Akimov, RP Campion, and AJ Kent (2013). “Dynamics of a vertical cavity
quantum cascade phonon laser structure”. In: Nature communications 4.

Naugolnykh, K. and L. Ostrovsky (1998). Nonlinear Wave Processes in Acoustics. Cambridge
Texts in Applied Mathematics. Cambridge University Press.

Rayleigh, Lord (1876). “On waves”. In: Phil. Mag 1.5, pp. 257–279.
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Chapter 3

Nonlinear Self-Collimated Beams
in Periodic Media

Abstract

We report the propagation of high-intensity sound beams in a sonic
crystal, under self-collimation or reduced-divergence conditions. The
medium is a fluid with elastic quadratic nonlinearity, where the domi-
nating nonlinear effect is harmonic generation. The conditions for the
efficient generation of narrow, non-diverging beam of second harmonic
are discussed. Numerical simulations are in agreement with the analyt-
ical predictions made, based on the linear dispersion characteristics in
modulated media and the nonlinear interaction in a quadratic medium
under phase matching conditions.
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3.1 Introduction

The beams of different kind of waves, electromagnetic, sonic, etc..., experience
diffraction and broaden as they propagate in a homogeneous medium. This spread-
ing of energy in space diminishes the wave amplitude of the beam in the axis along
propagation, unless the spreading is balanced by some focusing mechanism. Still,
it is possible to prevent this fundamental wave propagation property and create
non-diverging beams. Among the beam patterns without divergence the most
popular are the linear Bessel beams (J. Durnin et al., 1987), and the nonlinear
solitonic or self-trapped beams (Stegeman et al., 1999). Recently, another method
for creating linear non-diverging beam was proposed, for waves propagating in
a periodic medium. Such beams have been named self-collimated beams, and
were first proposed for light beams in photonic crystals (Kosaka et al., 1999), and
later extended to other type of waves. The phenomenon of self-collimation has
attracted much attention, as a technique to propagate optical, acoustical or even
matter wave beams at long distances without a sensible loss of amplitude. Self-
collimation is highly sensitive to the frequency: the divergence of beams can be
reduced or even suppressed only at particular frequencies, those presenting par-
ticular dispersion characteristics, namely flat regions in the isofrequency contours
(Kosaka et al., 1999). The size of the self-collimated beam is also limited by the
extension of such flat region in angular space.

Self-collimation of low amplitude (linear), monochromatic acoustic waves has
been demonstrated in 2D (Espinosa et al., 2007) and 3D (Soliveres et al., 2009)
sonic crystals. More recently, the simultaneous self-collimation of two beams of
different frequencies was also demonstrated experimentally (Soliveres et al., 2011).
These results show that the conditions for self-collimation can be achieved also for
non-monochromatic beams; in particular the case of the superposition of beams of
one frequency and its second harmonic was considered in (Soliveres et al., 2011).
The latter results are valid in linear regime; actually in (Soliveres et al., 2011)
both frequency components were present in the input beam, and the corresponding
beams propagated in the crystal without nonlinear interaction between them.

In the linear case, the propagation of light and sound beams obey similar
equations, and similar propagation characteristics are expected. The similari-
ties between photonic and sonic crystals are well established (Miyashita, 2005),
and have motivated many studies, where analogous effects in both systems have
been investigated. The analogy, however, breaks for high amplitude waves, where
nonlinear effects appear. For example, second and higher harmonic generation
processes may be essentially different in optics and acoustics. One reason is the
absence of intrinsic dispersion for acoustic waves propagating in homogeneous me-
dia. Nonlinear acoustical waves in nondispersive media as homogeneous fluids,
eventually generate shock waves, which are not observed in optics. Also, the
type and strength of nonlinearity may be different. While most common optical
nonlinearities are cubic (Kerr-type), in fluids and homogeneous solids, quadratic
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Host media
(fluid)

scatters
(rigid)

Figure 3.1: Basic scheme of a sonic crystal. The strong dispersion of the system is caused
by the multiple scattering of waves over periodically distributed rigid inclusions. The resulting
waves that propagates in the periodic media are Bloch waves, where the specific band structure
of the media depends on the scatters and host media parameters. In this work we consider a
fluid host media (nonlinear) and perfectly rigid scatters.

nonlinearity is dominant in acoustics. Even, nontraditional acoustic nonlinearities
(power-law, hysteretic,...) are typical of some complex or microstructured acoustic
media. In this sense, nonlinear effects of acoustic waves in periodic media, and in
particular the self-collimation problem considered here are not a direct extension
of the same effects in the optical case. Furthermore, the propagation of nonlinear
acoustic beams in sonic crystals has never been addressed before.

The basic effect in nonlinear acoustics is harmonic generation (Hamilton et
al., 1998b). It is known that efficient harmonic generation is only possible under
fulfillment of phase matching conditions. For acoustic waves in fluids, this condi-
tion is rather natural, being always fulfilled for all harmonics due to the absence
of dispersion, however in optics this requires special materials and special phase
matching techniques (Boyd, 2003).

Acoustic harmonic generation has been studied in a variety of highly-dispersive
nonlinear media, as bubbly liquids, or acoustic waveguides (Hamilton et al., 1998b),
and weakly dispersive media as elastic plates (De Lima et al., 2003; Müller et al.,
2010), nonlinear porous-elastic media (Donskoy et al., 1997) and in granular media
(Legland et al., 2012). It has been proven as a useful effect in different applica-
tions, as material characterization (Hirsekorn et al., 1994; Zheng et al., 2000),
ultrasound imaging and echography, (Humphrey, 2000), biological tissue charac-
terization (Law et al., 1981) and other medical ultrasound applications.

The purpose of this Chapter is to study nonlinear propagation of high intensity
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sound beams in periodic media, and in particular to demonstrate the formation of
nonlinear self-collimated acoustic beams in sonic crystals, and discuss the condi-
tions under which this process occurs with maximal efficiency. A sonic crystal, as
sketched in Fig 3.1 is designed, by using an iterative method, to fulfill the three
conditions for optimal energy transfer between harmonics: flatness of isofrequency
contour for each harmonic, phase matching and large overlap between distributions
of the interacting Bloch modes. The predictions are checked by FDTD simulations
of the nonlinear problem, that demonstrate the efficient generation of fundamental
and second harmonic acoustic narrow beams.

3.2 Nonlinear sound beam propagation model

Several models can be used to describe nonlinear sound wave propagation though
a fluid medium, with different levels of accuracy. An accurate description, when
thermal and viscous effects are negligible, follows from the conservation laws of
mass and momentum, can be written, respectively, in a Eulerian form (Hamilton
et al., 1998b):

∂ρ

∂t
= −∇ · (ρv) , (3.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p, (3.2)
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Figure 3.2: Band structure obtained by the Plane Wave Expansion (PWE) method for a SC
made by a square lattice of rigid cylinders with r = 0.11a, where a is the lattice constant,
immersed in water. Red and blue lines mark the bands (2nd and 8th) for which simultaneous
nondiffractive propagation in Γ−X direction is explored for both FW and SH respectively.
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Figure 3.3: Top: Band structure (left) of a square lattice of rigid cylinders with r = 0.11a,
where a is the lattice constant, immersed in water (right). Red and blue lines mark the bands
(2nd and 8th) for which simultaneous self-collimation for both fundamental and second harmonic
searched, along Γ−X direction.

where v is the particle velocity vector, p is the acoustic pressure, ρ is the total
density field that can be expressed as ρ = ρ0+ρ′, where ρ0 the ambient fluid density
and ρ′ is the acoustic density. The system is closed by the equation of state of
the fluid, that under our assumptions is a pressure-density relation, p = p(ρ). A
commonly used expression is obtained after Taylor expansion, keeping nonlinear
terms up to second order. Then

p = c20ρ+
c20
ρ0

B

2A
ρ2, (3.3)

where B/A is the nonlinearity parameter of the medium (which is known for most
of materials, see e.g. (Naugolnykh et al., 1998)) and c0 the sound speed in the
medium. Note that Eqs. (3.1) and (3.2) also contain nonlinearities related to (1)
mass and momentum advection , or (2) geometrical nonlinearities. However, for
the second harmonic generation they are of minor importance compared with the
nonlinear terms in the equation of state, Eq. (3.3).

The above formulation of nonlinear propagation problem remains valid when
the propagating medium is inhomogeneous, including the case of sonic crystals
where inhomogeneity is periodically distributed in space. In such case, the medium
parameters c0 and ρ0 are space-dependent, represented by periodic functions. To
our knowledge, the propagation of acoustic beams in periodic media has been only
studied in the linear regime, and the corresponding nonlinear problem is addressed
here for the first time.
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Figure 3.4: Isofrequency contours for the 2nd (left) and 8th bands (right). Points denote the
wavevectors for both waves, lying on flat segments respectively.

3.3 Self-collimation of intense acoustic beams

We consider a narrow, intense acoustic beam incident on a 2D sonic crystal made of
cylindrical scatterers of radius r embedded in a fluid, arranged in a square-lattice
with lattice constant a. The corresponding filling fraction is ff = π(r/a)2. The
beam width is roughly 6 lattice periods. For the sake of simplicity the scatterers
are considered perfectly rigid (the sound field is totally reflected from the wall of
scatterer). Assuming water as a host fluid, the material parameters are ρ0 = 1000
kg/m3, c0 = 1490 m/s.

The special conditions required for a sound beam to propagate without diffrac-
tion are presented in this section. The problem of self-collimation has been al-
ready discussed for linear, monofrequency (Pérez-Arjona et al., 2007; Espinosa
et al., 2007) and bi-frequency (Soliveres et al., 2011) beams. Since a nonlinear
beam is composed by a fundamental frequency component and its high frequency
harmonics, self-collimation of the nonlinear beam requires self-collimation of its
constituent frequency components. We remind that in self-collimation regime the
sonic beam does not spread diffractively because Bloch wave vectors lying on the
flat segment of the spatial dispersion curve have equal longitudinal components
and thus do not dephase mutually in propagation. In general, this flatness of
the dispersion curve appears at a particular frequency, but as shown in (Soliveres
et al., 2011) it can be also obtained for a wave and its second harmonic regarded
they propagate in different propagation bands.

To illustrate this case, we show in Fig. 3.3 the dispersion diagram of the sonic
crystal for small-amplitude excitations, obtained using the Plane Wave Expansion
(PWE) method on a linearized version of Eqs. (3.1)-(3.3). The conventional form
of the band diagram is represented on the trajectory along the principal directions
of the crystal, Γ−X−M−Γ, which are the boundary of the irreducible Brillouin
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3.3. Self-collimation of intense acoustic beams

zone (BZ). Figure 3.3 (top) shows the dispersion diagram for Γ−X direction. The
red line in Fig. 3.3 denotes the 2nd propagation band. The fundamental (driving)
field lies on this band. Its frequency Ω is chosen such that the corresponding
isofrequency contour contains flat regions. The blue line in Fig. 3.3 denotes the
8th propagation band. The second harmonic frequency, 2Ω, lies in this band for
the particular crystal parameters considered.

As shown in (Soliveres et al., 2011), for a given crystal, it is possible to choose
the fundamental frequency such that the isofrequency contours for both frequencies
present flat regions. In our particular crystal, this happens when Ω = 0.125. These
are dimensionless frequencies, related to physical frequencies ω as ω = Ω(2πc0/a).
Similarly, a normalized Bloch wavevector is defined as K = kx(a/π)

Such condition is necessary to achieve self-collimated propagation of the non-
linear beam. In order to obtain an efficient generation of the second harmonic,
together with simultaneous self-collimation for both waves two additional geomet-
ric conditions must be fulfilled, related to the wavenumber and spatial shape of
the interacting beams. These conditions have been discussed for photonic crystals
(Nistor et al., 2008; Nistor et al., 2010). The analysis can be extended to higher
harmonics (third,...), however numerical simulations show that the amplitude of
harmonics higher than second is small and does not contribute significantly to
the beam profile, and therefore they will not be considered for the design of the
structure.

3.3.1 Phase matching conditions

It is well known from nonlinear optics (Boyd, 2003) that a proper phase rela-
tionship between the fundamental and second harmonic waves must be satisfied
for an efficient nonlinear frequency conversion along the propagation direction.
In a dispersive medium, the wavenumbers of first harmonics do not combine
to result precisely in wavevector of second harmonics, and a phase mismatch
∆K = 2K(Ω) − K(2Ω) occurs. As a consequence, the second harmonic field is
limited in amplitude: it does not grow linearly but oscillates in propagation, with
a characteristic period given by the coherence length (Boyd, 2003)

lc =
π

∆k
=

a

∆K
. (3.4)

The conversion efficiency into second harmonics generally is smaller in optics
than in acoustics, because of the inherent material dispersion for light waves (ab-
sent for sound waves in fluids), that causes the fundamental and second harmonic
waves to travel along the crystal with different phase velocities. Thus, the presence
of the scatterers is the only important source of dispersion in the acoustic case.

Phase matching corresponds to ∆K = 0. Figure 3.5 shows that it can be
actually achieved for the pair of frequencies where self-collimation occurs, as follows

111



Chapter 3. Nonlinear self-collimated sound beams in periodic media.

from the previous analysis. There, we represent the dispersion branches involved
in self-collimation, along Γ−X direction, as in Fig. 3.3. Fundamental and second
harmonic modes correspond to the crossings of the dotted horizontal lines with the
corresponding dispersion branches. For a given fundamental frequency Ω, in order
to check the fulfillment of the phase matching condition, the curve corresponding
to the ”double” of the 2nd band dispersion curve, 2Ω(2K), has been represented
in Fig. 3.5 as a red dashed line. Phase matching is satisfied at the intersection
between this curve with the corresponding curve at the 8th band. This corresponds
to the mode labeled A in Fig. 3.5, which is phase-matched with the fundamental
mode.

Note that due to the concavity of the 8th band, at frequency 2Ω a second mode
labelled with B in Figure. 3.5 can be also excited. This solution presents a large
phase mismatch with the fundamental mode, and its contribution to the second
harmonic field is negligible.

The simultaneous fulfillment of both conditions is obtained by an iterative
procedure, which implies a re-design of the crystal parameters. The procedure
is as follows: we start from a pair of frequencies (Ω, 2Ω) showing self-collimation
for a given crystal parameters. Around this doublet, we seek the closest pair of
frequencies Ω′ = Ω + δΩ and 2Ω′ showing phase-matching. Then the isofrequency
curves (Fig. 3.3) are again calculated in order to evaluate the deviation of flatness
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Figure 3.5: Dispersion curves involved in simultaneous self-collimation for the fundamental
(red line) at the 2nd band and second harmonic (blue line) at the 8th band. The ”doubled”
dispersion curve is represented (dashed red line) to identify phase matching of harmonics. The
intersection denotes the frequency presenting phase matching. A closest view (inset) shows that
for the self-collimated second harmonic, two solutions (modes A and B, with distinct K) are
found, phase and non-phase matched, respectively
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Figure 3.6: Spatial distribution of the pressure field for the Bloch modes of the fundamental
(left) and the second harmonic (right) waves. The coupling coefficient is estimated to be κ = 0.85.

in the isofrequency contours. The sonic crystal parameters are then modified, e.g.
by a slight variation of the filling fraction, in order to tune the dispersion relations
to get again self-collimation conditions. The process is repeated again until both
conditions (flatness and phase matching) are simultaneously satisfied. We note
that, despite this is out of the scope of this paper, optimization techniques as
genetic algorithms can be applied here in order to find an optimal structure.

3.3.2 Nonlinear coupling of Bloch modes

Efficient energy transfer between harmonics requires also a strong mode coupling,
which depends on the spatial overlapping between the two interacting waves. For
plane waves in a homogeneous medium a perfect spatial nonlinear coupling between
first and second harmonic is assured, since mode overlapping is maximal. The
propagation eigenmodes in a periodic medium are Bloch waves, whose amplitudes
are spatially modulated and does not necessarily overlap. If two modes do not
overlap in space, the energy transfer is less efficient even if they are phase matched.
The amount of energy transfer can be estimated evaluating the spatial overlap
between the envelopes of the corresponding Bloch modes.

Let B1 and B2 be the spatial envelopes of the Bloch modes of the fundamental
and and second harmonic waves, respectively. The nonlinear coupling coefficient
is calculated as the cross-correlation between the functions B2

1 and B2 normalized
in such a way that unity would correspond to the perfect matching of the modes
(Nistor et al., 2008). We define the coupling coefficient as

κ =
|
∫
M
B2

1 B
∗
2dr|√∫

C
|B4

1 |dr
∫
C
|B2|2 dr

, (3.5)

where the upper integral is calculated in the nonlinear medium from one unit cell,
while the lower integrals are taken over the entire unit cell.
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To calculate B1 and B2 we solve the eigenvalue problem for the pressure field
by means of the PWE method, which converts the differential equation to an
infinite matrix eigenvalue problem that can be truncated and solved numerically.
For that, we follow the same procedure as in (Pérez-Arjona et al., 2007), however,
the problem is solved inversely, i.e. for a given frequency, the corresponding wave
vectors satisfying the phase matching condition are obtained. Then B1 and B2 are
obtained as the eigenvectors corresponding to fundamental and second harmonic
frequencies, respectively. In Fig. 3.6 we plot the spatial distributions of B1 and B2,
respectively, for the selected final design where a coupling coefficient of κ = 0.85 is
obtained. This value is of the same order as the coupling in homogeneous media,
κ = 1, and therefore sufficiently large for an efficient harmonic generation.

3.4 Numerical simulation

A full-wave nonlinear simulation was performed, using the FDTD method, to val-
idate the efficiency of the second harmonic generation in the proposed structure.
The crystal parameters, obtained after the iterative procedure describe above,
are as in Fig. 3.3 and Fig. 3.5. The source is a plane piston with a width of
6a, located near the crystal, and radiating a harmonic wave with normalized fre-
quency Ω = 0.125. In order to minimize numerical dispersion a computational
grid with Nλ = 45 elements per wavelength and a Courant-Friedrich-Levy number
of S = 0.95 was used. In Fig. 3.7 we present the numerically obtained spatial
distributions of the fundamental and its nonlinearly generated second harmonic.
As predicted, both beams are nearly collimated. For comparison, the beam spa-
tial distribution calculated for an homogeneous material (removing the crystal)
are represented in Fig. 3.7 (e-f), where the diffractive broadening of the beams
is visible. Transversal intensity distributions are shown in Fig. 3.8 (a-b) for a
distance 80a, where beam widths are compared with the reference beams in the
homogeneous medium, broadened by diffraction.

The pressure amplitudes along the beam axis are shown in Fig. 3.9 for each
harmonic. Here, the analytic solution for a nonlinear plane wave propagating
in a homogeneous (nondispersive) medium is plotted for reference (dashed lines)
(Naugolnykh et al., 1998), given by pn/p0 = 2Jn(nσ)/nσ, where Jn is the Bessel
function of order n, σ = (βωp0/ρ0c

3
0)x is coordinate normalized to the shock for-

mation distance, p0 is the pressure at the source and β = 1+B/2A the nonlinearity
parameter. Such analytical solution is valid in the preshock region σ < 1. The
growth rate of the self-collimated second harmonic beam propagating in the crys-
tal matches well the growth rate of a plane wave in a homogeneous medium in
such preshock region, which is a consequence of the weak divergence of the beam
and the high degree of phase matching. Also, the second harmonic field can reach
even higher amplitudes than those corresponding to nondispersive media (where
harmonics decay beyond the shock formation distance). The latter effect can be
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Figure 3.7: Beam spatial distribution for simultaneously self-collimated harmonics in the sonic
crystal (c-d) and in homogeneous fluid (e-f). Pressures are normalized to the maximum pressure.

115



Chapter 3. Nonlinear self-collimated sound beams in periodic media.

−20 0 20
0

0.5

1 a)

y/a

I
/
I m

a
x

−20 0 20
0

0.5

1 b)

y/a

I
/
I m

a
x

Figure 3.8: Pressure distributions obtained by FDTD simulations. Normalized intensity cross
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Figure 3.9: Normalized field amplitude along the acoustical axis y = 0, for the fundamen-
tal, second and third harmonic beams. The dashed lines represent the analytical solutions for
harmonic evolution on a plane wave propagating in a nondispersive medium.

understood in terms of phase mismatch of higher harmonics: in homogeneous me-
dia all harmonics are phase matched while in the crystal only the second harmonic
is phase matched. In Fig. 3.9 the third harmonic is also plotted, where its small
contribution to the beam is evident. The phase mismatch in third and higher
harmonics decrease the energy flow into these components. Finally, the amplitude
in Fig. 3.9 decays because non-perfect conditions for self-collimation, that makes
the beam to start diverging after a long distance, or non-perfect phase matching,
which results in a beating period with long coherence length.

3.5 Conclusions and Remarks

We have demonstrated the possibility of efficient second harmonic generation of
sound in a sonic crystal, by means of the formation of narrow, weakly diverging
nonlinear acoustic beams. Three conditions must be simultaneously present for a
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efficient second harmonic generation, which are: 1) simultaneous self-collimation,
2) phase mathing and 3) high spatial coupling of interacting harmonics. The use of
simultaneous self-collimation regime limits the diffraction of both harmonic beams,
maintaining the amplitude at the axis and therefore the nonlinear interaction. Un-
der ideal conditions (no divergence and losses), the decrease of the first harmonic
beam is mainly attributed to the energy transfer to second and higher harmon-
ics. The sonic crystal parameters can be chosen to fulfill phase matching with
the second harmonic, maximizing second harmonic generation due to synchronous
cumulative interaction. Finally, the spatial coupling (overlapping) between inter-
acting modes is also analyzed by calculating a nonlinear coupling coefficient. It is
shown that its value (κ = 0.85 for the case studied) is not far from the ideal case,
revealing a strong spatial overlap between both Bloch modes that leads to high
energy transfer.

The study show that linear dispersion characteristics (band structures, isofre-
quency contours) can be used to predict the behaviour of nonlinear beams prop-
agating in periodic media. This opens the possibility of extending the study of
nonlinear sound beam propagation in sonic crystals to other cases of interest. For
example, crystals with higher filling factors present full frequency bandgaps, that
may be used to filter out the propagation of selected higher harmonics. In this
sense, sonic crystals can be a way to control the spectrum of intense acoustic
waves, using the strong dispersion properties introduced by the periodicity.
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Chapter 4

Acoustic Bessel Beams
generated by

Axisymmetric Gratings

Abstract

We report Bessel-like beam formation of acoustic waves by means
of an axisymmetric grating of rigid tori. The results show that the
generated beam pattern is similar to that of Bessel beams, character-
ized by elongated non-diffracting focal spots. A multiple foci structure
is observed, due to the finite size of the lens. The dependence of the
focal distance on the frequency is also discussed, on the basis of an
extended grating theory. Experimental validation of acoustic Bessel-
like beam formation is also reported for sound waves. The results can
be generalized to wave beams of different nature, as optical or matter
waves.
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4.1 Introduction

Bessel beams, originally proposed in optics (Durnin, 1987; Maddox, 1987), are
now at the basis of many applications due to their unusual propagation properties
(Duocastella et al., 2012; Fahrbach et al., 2011; Chu, 2012; Matsupka et al.,
2006; Hsu et al., 1989a; Katchadjian et al., 2010). The most celebrated property
of a Bessel beam is that, in the ideal case, the field propagates invariantly, i.e.
without any diffracting broadening, in contrast to the other canonical case, the
Gaussian beam, where the beam experiences diffractive broadening in free space
propagation. As a consequence, the field pattern in a Bessel beam possesses an
infinitely extended focal line.

Strictly speaking, Bessel beam is a solution of the wave equation in the form of
a monochromatic wave with a transverse profile given by a Bessel function of the
first kind, which by definition presents an infinite spatial extension. This ideal case
cannot be realized in practice (in the same way as ideal, infinitely extended plane
waves cannot exist). However, approximate or imperfect Bessel beams of finite
transverse extent can be excited by different means, displaying not an infinite but
an extremely elongated focal line.

In optics, Bessel-like beams are usually formed by focusing a Gaussian beam
by an axicon (McLeod, 1954), a transparent refractive element of conical shape,
as shown in Fig. 4.1 (a). The beam in propagation through the axicon acquires
linearly tilted (conical) wave-fronts, which results in an elongated focus behind the
axicon. As the axicon is not infinitely extended in transverse space, the resulting
Bessel beam is not perfect, and displays a focal line of finite extent. Optical Bessel
beams have been also obtained by acoustic gradient index lenses (McLeod et al.,
2006). In electromagnetism, Bessel-like beams have been generated from a sub-
wavelength aperture by adding a metallic circular grating structure in front of the
aperture (Li et al., 2009). Such imperfect Bessel beams find multiple applications,
e.g. in optics for laser inscription of patterns deep into transparent materials, or
for etching of deep narrow holes in laser manufacturing of opaque materials, among
others (Duocastella et al., 2012; Matsupka et al., 2006; Fahrbach et al., 2011).

In acoustics, Bessel beams of sound waves were also reported (Hsu et al., 1989a;
Lu et al., 1990a), however are still not so broadly applied as in optics, which
is perhaps related with the lack of convenient techniques of formation of such
kind of acoustic waves. Acoustic Bessel beams have been excited using acoustical
axicons (Katchadjian et al., 2010), in analogy to the optical case. However the
most convenient way to form acoustic Bessel beams is by using annular transducer
arrays (Masuyama et al., 1999). Related theoretical studies include the scattering
of Bessel beams by spheres (Marston, 2007b), nondiffracting bulk-acousticX waves
(Salo et al., 1999) or non linearly generated Bessel beams of higher harmonics (Ding
et al., 2000a; Cunningham et al., 2000a). More recently, ultrathin planar acoustic
metasurfaces by coiling up space have been proposed to generate acoustic Bessel
beams (Li et al., 2012).
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4.2 Generation of Zero th-order Bessel beams by
axisymmetric gratings

The present work proposes and demonstrates a technique for acoustic Bessel-like
beam formation using a structure made of concentric tori of circular section,
called here rings for simplicity. We show that, under specific conditions, part
of a diffracted wave collimates, producing an elongated focus. Moreover, differ-
ent diffraction orders can result in different elongated foci, as illustrated in Fig.
4.1(b). In the present work we demonstrate the feasibility of this idea by analytical
estimations, numerical simulations and experiments. A simple analytical model
based on an approach of axisymmetric diffraction gratings is used to estimate the
focal positions and the extent of the focal line. Numerical calculations (using fi-
nite difference time domain (FDTD) techniques (Taflove et al., 2000)) of acoustic
waves propagating through such axisymmetric gratings were used to observe the
complete acoustic field. Finally, the experimental verification of Bessel-like beam
formation by an axisymmetric grating is reported.

Each element of the concentric ring structure is characterized by two param-
eters, (i) the toroidal radius, rm and (ii) the radius of the tube (circular sec-
tion), Rm. The rings in the axisymmetric grating have increasing toroidal radii as
rm = ma, where a is the separation between rings and m is an element index, as
shown in Fig. 4.1 (b). The continuity of the transversal component of the wave
vector at the interface between the free propagation medium and a linear diffrac-
tion grating with periodicity a, results in diffraction of normal incident plane waves
at diffraction angles given by

sinβn = nλ/a (4.1)

where λ is the wavelength and n is the diffraction order. It is worth noting that
approximately half part of the diffracted radiation converges towards the symmetry
axis and the other half diverge. Resulting from the converging radiation, as it
follows from simple trigonometry considerations, each ring with major radius rm
is mapped to a particular distance along the symmetry axis, given by

fn(rm) = fnm =
rma

nλ

√
1−

(
nλ

a

)2

. (4.2)

If the system of concentric rings extends from r1 (toroidal radius of inner ring)
to rM (radius of outer ring) in the transverse plane, the focal line for the n-th
diffraction order will extend approximately from fn1 to fnM . In a limiting case of
infinitely extended ring structure (r1 = 0, rM =∞) Eq. (4.2) predicts an infinitely
extended focus, similarly to that of an ideal Bessel beam.

First, we perform numerical simulations in order to explore the character of the
elongated focal line (also different foci) due to the axisymmetric diffraction. For
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Figure 4.1: Illustration of the formation of Bessel beam by an axicon resulting in imperfect
Bessel beam showing a focus-line of finite extent; (b) Illustration of the formation of Bessel-like
beams by a plane of concentric rings, where converging diffracted waves result in two elongated
foci.

that, we use a structure composed by a set of 50 concentric rings with constant
minor radius R = a/3, irradiated by a plane wave. We notice that this struc-
ture is much larger than that used in experiments (detailed below), therefore, the
Bessel-like features of focal line are more pronounced. For the numerical simula-
tions we calculate the wave propagation using the FDTD technique considering an
incident plane wave of unity amplitude, |p0| = 1 Pa. Figures 4.2 (a) and 4.2 (b)
represent the frequency dependence of the on-axis amplitude and radial far field
amplitude respectively. Color map represents the amplitude of the acoustic field,
|p|, and continuous lines in Fig. 4.2 (a) show the predictions from Eq. (4.2) for
the cases m = 1 and m = 50 for the first three diffraction orders, n = 1, 2, 3.
The focal spots appear at normalized frequencies a/λ = n, so the diffraction an-
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Figure 4.2: Map of acoustic pressure along the symmetry axis (horizontal axis) for varying
frequency (vertical axis). Analytical estimations from Eq. (4.2) of focal line extent from fn1 to
fnM are shown by solid white lines.

gles at these frequencies corresponds to βn = π/2 (sinβn = 1). With increasing
frequency, as shown in Fig. 4.2 (a), foci elongate corresponding to analytical esti-
mations by Eq. (4.2) (white lines in Fig. 4.2 (a)). The diffraction angle decreases
with the increasing frequency. Concerning the angular far field distribution shown
in Fig. 4.2 (b), excellent agreement between theory (Eq. 4.1) and numerical re-
sults are observed, where the characteristic rings appear in the far field pressure
distribution. Different maxima appear due to different diffraction order, as a con-
sequence of the focusing effect at near field due to the finite size of the structure,
in agreement with Fig. 4.2 (a).

Next, we analyze the acoustic field behind the axisymmetric grating for a
particular frequency corresponding to a = 1.033λ. We study here the case when
only one focal line appears. Fig. 4.3 (a) shows the field distribution on axial
cross-section. The focus is substantially long, which is a signature of a Bessel-like
beam. The latter is proven and illustrated in Fig. 4.3 (b), where the transverse
field profiles at the indicated distance behind the ring structure is plotted and
compared with Bessel function.

Finally, Fig. 4.4 shows the intensity distribution along the symmetry axis for
two different frequencies: important to note that the intensity increases with dis-
tance until a maximum focusing distance, where it drops. The scattered energy
is proportional to the area between neighbouring rings. Henceforth, the acoustic
intensity along the focus increases with a linear trend overlaid of stray oscilla-
tions from fn1 to fnM , as shown in Fig. 4.4. These oscillations are mainly due
to the finite size of the structure: the edges of the diffraction grating result in
fringes. The linear dependence of acoustic intensity along the focus is however
modified if the thickness of the rings depends on their radius (see the experiments
below). Moreover, the transmission efficiency of the structures is high as shown
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in Fig. 4.4, with a gain of amplitude g = |p|/|p0| = 12.5 for a/λ = 1.17 (red line)
and of g = 9.76 for a/λ = 1.63 (blue line). We also note, that although the focal
lines associated with different diffraction orders partially overlap, the radiation
due to higher order diffraction clearly dominates in the interference picture being
the higher diffraction order presenting the biggest gain (see maximum values in
Fig. 4.2 (a)).

4.3 Experimental validation

For the experimental validation we designed a system composed by a set of 7
concentric rigid rings embedded in air. The rings are made of methyl methacry-
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Figure 4.4: On-axis intensity for the cases a/λ = 1.17 (red line) and a/λ = 1.63 (blue line).
Dashed line is an eye-guide to show the linear dependence.
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late (plexiglass), which acoustic impedance is much larger than that of the air
(Zplexiglass/Zair ∼ 6000); therefore, they can be considered acoustically rigid.
The variation of the toroidal radius in the structure is rm = ma, where a = 4
cm. The minor radius now is a function of the major radius, R(rm), following a
hyperbolic secant profile like in the axisymmetric gradient index lens analyzed in
Ref. (Romero-Garćıa et al., 2014). This profile slightly modifies the linear depen-
dence of the intensity along the focus because of the changing of the area between
the different tori. The hyperbolic secant used here increases the intensity of the
components at the end of the foci because the area between the external tori is
bigger than the area between the inner tori. In the same way, if the profile is
inverted, i.e. the area is bigger between the inner tori, then the near components
are increased. Therefore, as we want to show the elongated focus produced by
these structures, we use the hyperbolic secant profile with decreasing R with rm,
in order to increase the far components. This profile produces clearer and bet-
ter reproducible diffraction pattern with smaller number of concentric rings. All
measurements were performed in anechoic chamber to avoid unwanted reflections.
The source was a loudspeaker radiating a sound wave with a white noise spectrum
placed at 1.5 m in front of the plane of concentric rings, a sufficient distance in
order to ensure that a nearly plane wave radiates the structure at the frequen-
cies of interest. A movable microphone located behind the structure recorded the
transmission spectrum. The experimental set-up is shown in Fig. 4.5 (a).

The quantitative study of Bessel-like beam formation is summarized in Figs.
4.5(b) and 4.5(c). Pressure color maps of Figs. 4.5(b) and 4.5(c) show the numer-
ical and experimental frequency dependence of the on-axis amplitude produced
by the used structure. In the experiment, we were able to measure frequencies
until 20 kHz ( aλ < 2.3), i.e. we could achieve Bessel beam formation by the first
diffraction order only. The expected dependence of the focal distance on frequency
(compare with Fig. 4.4) is also evident in both numerical and experimental plots.

We have also measured field cross-sections: an horizontal plane containing the
symmetry axis (see Figs. 4.6 (a-d)) as well as several axial cross-sections (see Figs.
4.6 (e-j)). We focused on two particular frequencies, 10 kHz (a/λ = 1.17) and
16 kHz (a/λ = 1.88) (indicated by white dashed-dotted horizontal lines in Figs.
4.5(b) and 4.5(c)). For the analyzed structure the frequency of 10 kHz is close to
the condition a/λ = 1, consequently, the first diffraction spot appears just behind
the structure (see white dashed line in Fig. 4.5(c) as a reference). However, the
frequency of 16 kHz produces the elongated focus or Bessel-like beam. These two
phenomena are both numerically and experimentally shown in Figs. 4.6(a)-(c) and
Figs. 4.6(b)-(d) with good agreement.

In order to see the symmetry quality of the beams produced experimentally,
we have also measured the axial cross-sections of the pressure field at different
z-positions for above discussed cases of 10 kHz and 16 kHz (Fig. 4.6(e)-(j)). In
both cases (i) the diffracted pattern is highly axisymmetric and (ii) the diffracting
broadening of the central beam, along the extended focus, is almost negligible.
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Figure 4.5: (Color online) (a) Experimental set-up. (b) Numerically calculated and (c) experi-
mentally measured maps of on-axis amplitude dependence for varying frequency (vertical). Solid
white lines indicate the extend of the focal line from analytical estimations using Eq. (4.2) for
f1(r1) and f1(r7). Dashed white lines represent the frequencies shown in Fig. 4.6
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Figure 4.6: (Color online) (a-d) Amplitude distributions in planes along the symmetry axis
r(z, x) obtained by numerical simulations (a, b) and experimental (c, d) measurements for two
different frequencies, showing the formation of elongated foci. Experimental transversal ampli-
tude cross-sections (x, y) at different distances behind the ring structure, showing the formation
of the Bessel-like beam. (e-g) correspond to the experimental transversal planes at 10 kHz
marked with dashed lines in (c). (h-j) correspond to the experimental transversal planes at 16
kHz marked with dashed lines in (d).

The transversal profiles in Figs. 4.6(e)-(j) also illustrate the typical shape of the
truncated Bessel function. It is simple to predict the tendencies of the amplitude
distribution along the focus for such a small number of rings. The longitudinal
shape along the elongated focus seems to be not linearly increasing/sharply drop-
ping, but correspondingly smoother. This is due to the small number of rings in
the structure; also due to the difference in thickness of the rings.

4.4 Conclusions

Concluding, we have demonstrated the principle of Bessel-like focusing in a system
of concentric rigid rings. Although the size of experimental system was reduced
(to 7 rings), the main properties of the Bessel beam formation were demonstrated:
the elongated foci along the symmetry axis, the Bessel-like distributions of the
field in axial cross-sections, and the expected dependence of the focal distance
with the frequency. The Bessel beam formation can be substantially improved, as
follows from numerical calculations with larger number of rings.

For technical applications, the Bessel beam formation can be modified and
improved, according to specific needs, by some means as for example: (i) the use
of not toroidal rings, but rather the ones with more sophisticated shapes, which
would favor the converging part of the diffracted wave (i.e. to convert into Bessel
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beams nearly all radiation (note that the rings can converge as maximum the
half of initial radiation); (ii) the use of a ring structure of adequate thickness
which would allow tailoring the longitudinal profile of the focus, according to the
requirements; (iii) modifying the radii of the rings (making the radii incrementing
not linearly) which is another parameter allowing the engineering of the focusing,
and allowing to optimize the focal structure; finally (iv) by using multiple layers
of rings at equidistant separations along the symmetry axis one could not only
enhance the effect, but also introduce another possibility of tailoring the focal
spot, as the interference from different planes will come into play.
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Chapter 5

Nonlinear Focused Beams by
Axisymmetric Gratings

Abstract

Previously, we presented the diffraction of waves on axisymmetric
uniform gratings can conform a Bessel beam. Here, the spacing be-
tween slits is designed in order to provide focusing as in Fresnel Zone
Plates. The device presents a very narrow focal spot, that is between
the sub-diffraction and the sub-wavelength limits. As common from
other Fresnel-like lenses, and also in Bessel beams, the narrow focal is
accompanied by high amplitude side lobes. The lens presents high gain,
around 30 dB. Thus, nonlinear effects can mainly activated locally at
the focal spot. The field of the second harmonic maintain the excel-
lent beam-width of the Fresnel lens, while its side-lobes are strongly
reduced. The proposed lens in the weakly nonlinear regime is suitable
for second harmonic imaging techniques: the excellent beam spatial
resolution of the second harmonic is maintained, while the side-lobe
amplitude, responsible of signal-to-noise ratio, is reduced.
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5.1 Introduction

Acoustic focusing is an interdisciplinary topic covering a rich set of applied sciences
that include nondestructive testing and acoustic microscopy techniques, detection
of fish and undersea exploration, ultrasound and elasticity diagnostic imaging or ul-
trasound therapeutic techniques among others. Particularly interesting is the fact
that focusing results in high intensities at a specific location and over only a small
volume, triggering nonlinear acoustics effects and enhancing specific mechanical
and thermal effects. Mechanical phenomena include cavitation, microstreaming,
and acoustic radiation forces while the thermal effects include heat generation due
to acoustic energy absorption.

These nonlinear effects are exploited by a broad range of applications. In
ultrasound medical applications second harmonic generation is widely used in har-
monic imaging techniques as in Tissue Harmonic Imaging (THI) (Averkiou et al.,
1997), microbubble cavitation processes are commonly used for increase contrast
in ultrasound imaging (Duck, 2002), to induce mechanical interaction with the
surrounding tissues in ultrasound-enhanced drug delivery techniques (Bailey et
al., 2003) or for noninvasive blood-brain barrier opening using focused ultrasound
(Choi et al., 2007). Acoustic radiation forces are exploited to map media elasticity
in ultrasound elastography techniques such as in Shear Wave Elasticity Imag-
ing (SWEI) (Sarvazyan et al., 1998), Acoustic Radiation Force Impulse imaging
(ARFI) (Nightingale et al., 2002), Harmonic Motion Imaging (HMI) (Konofagou
et al., 2003) or in Supersonic Shear Imaging (SSI) (Bercoff et al., 2004). Moreover,
at high intensities nonlinearity increase energy deposition rate, that is exploited in
High Intensity Focused Ultrasound (HIFU) for enhancing thermal ablation (Bai-
ley et al., 2003). Finally, in the case of Shock Wave Lithotripsy (SWL) acoustic
pulsed-shock waves are focused to produce high-amplitude localized shear stresses
and induce calculus fragmentation, as widely used for kidney stone treatments
(Bailey et al., 2003). In all of these techniques, the design of devices to easily
manage the focusing properties and the enhancement of the focal gain is of pivotal
importance.

Acoustic focusing can be achieved by arrays of transducers where the beam
focusing and steering can be controlled actively, where its focusing performance
is limited by the number of active channels. It is attractive the design of passive
acoustic focusing devices in order to reduce costs.

Generally, there are four main different procedures to generate strongly focused
acoustic field by passive devices: by optimizing the geometry of the transducer, by
using refraction lenses, by using reflective systems or by using diffraction gratings.
The most common approach is to use curved shaped radiation surfaces. These
can be made by curved bowl single element piezoelectric transducers, but also
from different arrangements of small plane transducers distributed over a curved
surface and excited in-phase. Curved acoustic lenses made of different refraction
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index material are also common, as long the lens is also used as an impedance
matching layer between the active element, and the surrounding media. However,
the transmission efficiency of these lenses is strongly reduced because the contrast
of refraction index between the lens and the surrounding media is remarkable. On
the other hand, focusing can be achieved by curved reflectors, e.g. elliptic reflectors
in SWL. Due to the low dispersion of the acoustic media, all these focusing devices
based on refraction, and also based on reflection of curved surfaces, present the
feature that focusing does not strongly depends on frequency and therefore are
suitable for impulsive excitations. However, in these devices, in which the focal
sport is limited by the diffraction limit (Rayleigh criterion), the focal size is larger
than one wavelength, i.e. the focal resolution is bigger than the sub-wavelength
regime.

The last group of passive devices to generate strongly ultrasound focusing is
based on the diffraction grating. The diffraction of waves on flat grating plates have
been proposed as acoustic analogues of the Fresnel Zone Plates (FZP) (Farnow
et al., 1974; Sleva et al., 1994; Schindel et al., 1997; Wang et al., 2008). As
in optics, acoustic Fresnel Zone Plates consist of alternating rigid (opaque) and
open (transparent) annuli. The radius and width of the open annuli are specially
designed to only transmit the waves that constructively interferes at focus, while
the radiation that destructively interferes is blocked by the rigid annuli. There
exist other approaches that exploit the diffraction over concentric ringed-shaped
structures to achieve focalization. These include axisymmetric gratings based on
Fresnel Zone Plates in which the area of the annuli is not equal for opaque and
transparent zones (Clement et al., 2015) or acoustic Fresnel lenses that exploit
resonances to enhance the transmission (Molerón et al., 2014).

It is worth noting here that the diffraction grating over equally spaced toroidal
scatters, as those presented in Chapter 4, can generate Bessel beams at the axis
(Jimenez et al., 2014). This approach is roughly equivalent to the Bessel beams
created by annular piezoelectric annuli (Hsu et al., 1989b). A characteristic feature
of Bessel beams is that the transverse beam-width can be reduced below the sub-
wavelength limit. However, these beams present also high amplitude side-lobes.
Thus, when used for imaging, these devices provides high spatial resolution but
low signal-to-noise (S/N) ratios (Lu et al., 1990b).

As soon as high amplitudes are applied to these focusing devices, it is well-
known that the second harmonic field is generated mainly around the focal spot
due to the local activation of the nonlinear response of the media. The focus of
the second harmonic has reduced side-lobes as long the nonlinear processes are
mainly activated at the focal spot (Duck, 2002). In the case of ideal Bessel beams,
it has been observed a reduction of half intensity of the side-lobe amplitude for
the second harmonic component (Ding et al., 1996), while its transverse profile
is reduced to the half, i.e. exactly maintain its narrowness if normalized to the
wavelength (Ding et al., 2000b). These effects have been also observed in more re-
alistic configurations including absorption (Cunningham et al., 2000b) and limited
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Figure 5.1: (a) Scheme of the passive focusing device composed of concentric rings. (b) Simu-
lation example of focusing by this device.

aperture Bessel beams (Holm et al., 2010). Recently, the reduction of side-lobes of
second harmonic has been observed for a focused Fresnel field, where the focaliza-
tion, instead of passive lenses, has been achieved by active Fresnel beamforming
in the context of second harmonic imaging (Nguyen et al., 2014).

In this Chapter, we present the acoustical focusing properties of an axisym-
metric diffraction grating in both the linear and the nonlinear regime. We show
that in the linear regime the system presents a focal spot in the sub-wavelength
regime with high gain, around 30 dB, with relative high amplitude side-lobes. In-
terestingly, nonlinear effects can be excited locally mainly at the sharp focal spot.
Thus, in the nonlinear regime the high intensity at the focal spot activates the
harmonic generation, producing a focus of the second harmonic with particular
spatial features. Mainly, second harmonic beam-width is between sub-diffraction
and sub-wavelength limits, but having strongly reduced lateral lobes.

We demonstrate these results by analytical estimations, numerical simulations
and experiments. A simple analytical model based on an approach of axisymmet-
ric diffraction gratings is used to estimate the focal positions and the extent of the
focal spot. Numerical calculations (using finite-difference time domain (FDTD)
techniques (Botteldooren, 1995)) of acoustic waves propagating through such ax-
isymmetric gratings were used to observe the complete acoustic field in both the
linear and the nonlinear regime. The experimental verification of the theoretical
prediction is also reported showing very good agreement with the theory.
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5.3. Axisymmetric diffraction grating design

5.2 Axisymmetric diffraction grating design

We consider M concentric toroidal scatterers of minor radius R and major radius
rm with m = 1, ...,M . A detailed scheme is presented in Fig. 5.1 (a). A plane wave
radiates the axisymmetric grating and as a consequence it is scattered. We consider
that R is small in comparison to the wavelength of the incident wave, in such a way
that each scatterer can be considered as a point source. Then, in order to have an
optimal superposition at a given focal point, F , behind the axisymmetric grating,
all the incoming waves should arrive precisely in phase to F . This suggests an ideal
axisymmetric grating would consist of a series of infinitesimal toroidal scatterers
located in a plane at radial distances given by the geometric focal law

r2
m+1 = r2

m + nλ
(
nλ+ 2

√
r2
m + F 2

)
, (5.1)

where n indicates the diffraction order of the axisymmetric diffraction grating.
Equivalently, given the distribution of toroidal scatterers, rm, the focal position
can be determined by the following expression,

F =

√(
r2
m+1 − r2

m

2nλ
− nλ

2

)2

− r2
m. (5.2)

Here, it is important to note the relation of Eq. (5.1) to the standard Fresnel
Zone Plate. As explained above, FZP consist in alternating opaque and open
annuli. The location of the edges for the m zone is given by

r′m =

√(√
r0 + F 2 +m

λ

2

)2

− F 2. (5.3)

The location of the center of each annuli in the standard FZP is given by
(Clement et al., 2015)

rm =

√(√
r0 + F 2 +mλ

)2

− F 2, (5.4)

which gives same radial distribution of the toroidal rings as the succession obtained
by diffraction grating in Eq. (5.1) if the proper first toroidal radius is matched for
both lenses. On the other hand, in the work of Clement et al. (2015) they study a
lens formed by slits of different thickness located at rm, while in the present work
we used rigid scattered located at rm. Following Babinet’s principle considerations,
both approach can be considered equivalent.

Figure 5.1 (b) presents a simulation example of the focalization. As long the
separation between the external rings is about one wavelength, it can be seen qual-
itatively the focusing of the system, the focal spot and the good spatial resolution
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Figure 5.2: (a,c,d) Design of the axisymmetric grating plate. (b) Image of the constructed
grating mounted over a plane piezoelectric transducer of 50 mm aperture.

compared to the wavelength. In the following sections a further analysis of the
focusing quality of this design is presented.

5.3 Small amplitude focusing

An experiential test was performed in order to validate model results. Following
the design Eq. (5.1), an axisymmetric grating was designed by using a focal dis-
tance of F = 15 mm and focal frequency f0 = 2.29 MHz. The passive system
was fabricated by laser cutting over a stainless steel plate of 0.8 mm thickness.
Figures 5.2 (a,c,d) show a scheme of the axisymmetric grating. The minor radius
of the toroidal scatterers was R = 0.75 mm (solid parts). The number of rings was
M = 21 and the grating total radius was rM = 25 mm.

The axisymmetric grating lens was placed in front of an ultrasound plane trans-
ducer as shown in Fig. 5.2 (b). This source was formed by a plane single element
piezoceramic crystal (PZ 26, Ferroperm Piezoceramics, Denmark) mounted in a
custom designed steel housing with aperture R = 25 mm, matching the area of
the grating. The separation distance between the grating and the source plane
was adjusted to 0.5 mm.
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5.3. Small amplitude focusing

The assembled grating-transducer system was immersed in a degassed and
distilled water tank of 350 × 350 × 350 mm3, the temperature of which during
the measurements was constant at 26 ◦C. The source was driven with a sinusoidal
sweep burst ranging from frequency fmin = 1 MHz to fmax = 3 MHz and 50
cycles using a function generator (14 bits, 100 MS/s, model PXI5412, National
Instruments) and a linear RF amplifier (ENI 1040L, 400W, 55dB, ENI, Rochester,
NY). The pressure waveforms were acquired with a HNR 500 µm needle PVDF
hydrophone (Onda Corp, CA), and a digitizer (64 MS/s, model PXI5620, National
Instruments) were used. A three-axis micropositioning system (OWIS GmbH,
Germany) was used to move the hydrophone in three orthogonal directions with an
accuracy of 10 µm and a National Instruments PXI-Technology controller NI8176
was used to control all the devices. The amplitude frequency response of the
hydrophone was compensated in post-processing.

In addition to measurements, we perform numerical simulations in order to
explore the linear character of the designed axisymmetric diffraction grating. For
the numerical simulations we calculate the wave propagation using the FDTD
technique considering an incident plane wave of unity amplitude, p0 = 1 Pa. From
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Figure 5.3: Field distribution for four different frequencies obtained by the experiment. It can
be seen how the focal spot displaces in the axial location.
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Figure 5.4: On axis field distribution as a function of frequency obtained by (a) simulation
and (c) experiment. White lines indicates theoretical focus by using Eq. (5.2). Transverse field
distribution measured at the focal spot axial distance as a function of frequency obtained by
(b) simulations and (d) experiment. White lines mark the sub-wavelength and blue lines the
sub-diffractive limit.

now we will show the results in normalized units. Distances will be normalized
with respect to the wavelength, λ, and in the case of the distances in the symmetry
axis will be referred to the focal distance F ; frequencies will be normalized to the
design frequency, f0.

Figure 5.3 shows the experimental pressure distribution for different frequencies
around the design frequency f0 = 2.229 MHz. It can be seen that a sharp focusing
is observed for the design frequency. Furthermore, if frequency is modified the focal
position displaces in the axial direction according to Eq. (5.2). In these cases, some
focus aberration appears as long the design model holds exact only for the design
frequency (Fig. 5.3 (b)). However, the focal spot maintains its shape and focusing
properties for a reasonably bandwidth that we will study in the following sections.

The axial pressure distribution as a function of frequency is presented in
Fig. 5.4 (a) for the simulations and Fig. 5.4 (c) for the experiment. Note that, due
to the finite bandwidth of the ultrasonic source, in the experimental measurements
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Figure 5.5: (a-d) On-axis pressure measured for the frequencies f = 2, 2.2, 2.5, 2.9 MHz respec-
tively obtained by (doted lines) experiments and (continuous lines) simulations.

the characterization is restricted to a frequency range covering the first diffraction
grating mode, i.e., n = 1, while in the simulations the characterization is extended
for frequencies covering up to n = 3 diffraction orders. White dotted line repre-
sents the curves obtained from Eq. (5.2) for two different pairs of m, (m = 1 and
m = 21), the crossing of this line represents the focal point. The agreement with
the numerical simulation is very good. Moreover, one can see that although the
lens is designed to focus waves in the point F at frequency f0, the lens produces
a focal shift with frequency giving the possibility to manage the position of the
focus with frequency. However, as we will see later, the gain at focal spot changes
considerably with frequency. Finally, we notice that as we increase frequency in
the simulations new focal spots are generated for the higher diffraction grating
orders. according to Eq. (5.2).

Figures 5.4 (b, d) represents the radial distribution of the normalized acous-
tic field at the position of the focal spot: Fig. 5.4 (b) shows the simulation while
Fig. 5.4 (d) shows experimental results. Figures 5.4 (a, c) represents the equivalent
radial distribution to the results of Figs. 5.4 (b, d) respectively. We can observe
a main lobe aligned with the center of the axisymmetric lens. Secondary smaller
lobes also appears. We also represent the the theoretical Full Width at Half Max-
imum (FWHM) corresponding to (dotted white lines) sub-wavelength (< λ) and
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Figure 5.6: (Left) Location of the focal obtained by (dotted lines) experiments and (continuous
line) simulations. (Right) Gain value obtained by (dotted lines) experiments and (continuous
line) simulations. Markers (a-d) corresponds to the frequencies f = 2, 2.22.5, 2.9 MHz respec-
tively.

(dashed blue lines) subdiffractive (< λ/2) limits respectively. At first glance, we
can observe that in both, simulations and experiments, the width of the focal spot
between the sub-diffractive and sub-wavelength regime, overcoming the diffraction
limit. A deeper analysis is presenter later.

In order to see the agreement between experiments and theory, we have plot-
ted in Fig. 5.5 the longitudinal cuts of the normalized acoustic pressure for the
cases f = 2, 2.2, 2.5, 2.9 MHz, in the subplots (a-c) respectively. Continuous line
represents the numerical predictions while dashed lines show the experimental re-
sults. Good agreement is seen in all cases, where again it can be seen how the
focal spot is shifted in axial direction for increasing frequencies. The shifting of
the focal position can be seen in detail in Fig. 5.6 (left), where it is represented
the location of the peak pressure for the (continuous line) simulations and (dashed
lines) experiment. Excellent agreement is observed between them. The frequencies
corresponding to f = 2, 2.2, 2.5, 2.9 MHz, are marked as the points (a-c).

In order to evaluate the focusing capability of the axisymmetric grating we
are discussing in this work, we have analyzed the gain of the lens evaluating the
expression G = 20 log (|pmax|/|p0|) [dB], where pmax is the pressure at the focal
point and |p0| is the incident wave pressure amplitude. Figure 5.6 (right) shows the
gain numerically evaluated (continuous line) and experimentally measured (dotted
line). For the design of this lens with M = 21 scatterers, the gain is 20 dB. We
notice that this gain is constant around f/f0 = 1, so the focusing properties of the
axisymmetric lens is robust in terms of frequency, i.e., it is insensitive to possible
errors in frequency around f/f0 = 1.

Figure 5.7 (left) goes further and shows a general overview of the gain of a lens
designed with the Eq. (5.1) as the number of toroidal scatterers, M is increased.
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Figure 5.7: (Left) Simulated gain value measured at the design frequency for different grat-
ings, as a function of the number of rings, M , and the design focal distance, F . (Right) Full
Width at Half Maximum (FWHM) obtained by (dotted lines) experiments and (continuous line)
simulations, measured at the half pressure.

By using double number of toroidal scatterers, M = 42, the gain of the system can
be increased to 34 dB. We notice that this amount of gains are competitive with
the usual systems used in high intensity focused ultrasound (Canney et al., 2008),
but note we can achieve these values for very short distances. It is worth noting
here that we can achieve these high gains at very short focal distances, of the
order of wavelength. This property is almost impossible with with other common
passive devices due to geometrical limitations. A further discussion is reported in
the Conclusions section.

Finally, we have analyzed the Full Width at Half Maximum (FWHM) of
the radial dimensions of the focal spot in the whole range of frequencies. Fig-
ure 5.7 (right) shows the (continuous line) numerical predictions and the (dotted
line) experimental results for the FWHM. The axisymmetric lens presented in this
work, shows a sub-wavelength full width at half maximum, i.e., FWHM < λ, for
the whole range of analyzed frequencies. We also calculated the FWHM evaluated
from the intensity data, i.e. the with of the spot at p = pmax/

√
2. Obviously

the width of the focal evaluated by intensity is thinner but the same concussions
applies here: the central radial lobe corresponding to the focal spot is always be-
tween the sub-wavelength regime and the diffraction limit. This feature can be
also observed by the white dashed lines in the maps shown in Figs. 5.4 (b, d).

143



Chapter 5. Nonlinear focused beams by axisymmetric gratings.

5.4 Transition from linear-to-nonlinear focusing

Now we start the study of the transition from the linear- to the nonlinear focusing
of the axisymmetric grating by increasing the amplitude of the incident plane wave.
The piezoelectric transducer is excited with an amplitude in which its behavior can
be considered linear in the range of frequencies from 0.5f/f0 to 1.5f/f0. In this
range of frequencies we reproduce the same acoustic pattern as in the linear (small
amplitude excitation) regime showing the focal spot at f/f0 = 1 and at z = F ,
as shown in Fig. 5.8 (a). However, now we can clearly see that the focal spot has
contributions fro the double frequency f/f0 = 2, i.e., at the second harmonic of the
fundamental wave. The high amplitude around the spot generated at frequency
f/f0 = 1 activates the harmonic generation due to the nonlinearity of water,
activating the contribution from f/f0 = 2 due to the high amplitudes around the
focal spot.

The focal spot generated by this nonlinear effect presents a spatial acoustic
profile with different properties than the focal spot of the fundamental mode.
Because of the local nonlinear generation of this spot, the longitudinal profile
presents smaller lobes than in the case of the spot of the fundamental frequency.
Figure 5.8 (b) shows the comparison between the experimental longitudinal profile
for (continuous line) first harmonic and (dashed line) its corresponding second
harmonic.
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Figure 5.8: Weakly nonlinear experimental measurements of the grating. (a) On-axis field
distribution as a function of the frequency. (b) On-axis field distribution for the second harmonic
for three frequencies, marked by the arrows in (a). Experiments (Red dotted line) and simulation
(continuous line).
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5.5 High intensity regime

We explore the high amplitude regime by using nonlinear simulation methods
based also in FDTD technique, as used previously in Chapter 3. The simulations
assumed perfectly rigid scatters over a cylindrical axisymmetric coordinate system,
where the nonlinearity is only present on the bulk of the fluid, in this case we
assumed water, with parameters: β = 1 + B/2A = 3.5, density ρ0 = 1000, sound
speed c0 = 1500.

An overview of the device focusing for increasing source amplitude is shown in
Fig. 5.9. The source amplitude is expressed as the normalized quantity F/xs, being
xs = 1/kεβ the shock formation distance with k the wavenumber, ε the acoustic
match number and β the parameter of nonlinearity. In Fig. 5.9, we show the axial
peak pressure distribution, i.e. the maximum of the nonlinear waveforms, |p|+,
and the minimum rarefaction distribution, |p|−. On the other hand, in Fig. 5.10 it
is shown the lateral pressure distribution corresponding also to |p|+ and |p|− for
the same range of excitation amplitudes.

The main nonlinear effects in the field distribution in high intensity focused
ultrasound can be observed here. The effective gain of the system, the peak
value corresponding to pmax/p0, is extraordinary increased from the linear value of
p/p0 = 39 (32 dB), to |p|+/p0 = 92 (39 dB) in the case of very strong nonlinearity.
Thus, as peak pressure grows locally at the focus, the focal width stretches in both
axial and lateral dimensions. In addition, the relative amplitude between the peak
pressure and its lateral lobes is strongly increased.

In Figure 5.11 we illustrate the pressure distribution for 4 different source
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Figure 5.9: Axial simulated pressure profile for the positive envelope (|p|+) and for the rarefac-
tion minimum distribution (|p|−). Different excitation amplitudes are marked as different color
lines.
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Figure 5.10: Transversal simulated pressure profile for the positive envelope (|p|+) and for the
rarefaction minimum distribution (|p|−). Different excitation amplitudes are marked as different
color lines.

amplitudes, being F/xs = 0.02, 0.16, 0.260.3 from low to high amplitude. The
above described effects can be observed. The axial field distribution corresponding
to these amplitudes can be observed in Fig. 5.12, where the amplitude of the first
and second harmonic is extracted. It can be seen that the amplitude of the first
harmonic is slightly reduced for increasing amplitudes and the second harmonic
field grows locally at the focal spot.

The locally nonlinear generation of the higher harmonics contributes to modify
the waveform, shown in the corresponding subplots of Fig. 5.12. Here, the char-
acteristic shape of nonlinear focused waveforms can be observed, reaching a peak
pressure of |p|+ = 126 MPa and a rarefaction pressures of |p|+ = −36 MPa. These
peak pressures are of the order of those used in medical therapy applications for
thermal ablation, with the rarefaction pressure close to the cavitation threshold of
the water at room hydrodynamic pressure and temperature1 (Caupin et al., 2006).

1Note the cavitation threshold strongly depends of the dissolved oxygen content and bubbles
in general of the water.
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Figure 5.11: Field distribution for increasing amplitude excitation. (Left column) pressure pro-
file for the positive envelope (|p|+) and (right column) for the rarefaction minimum distribution
(|p|−).
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Figure 5.12: Axial field distribution for four increasing amplitudes, being F/xs =
0.02, 0.16, 0.260.3 from low to high amplitude. (Black lines) full envelopes |p|+ and |p|−, (blue)
fundamental harmonic component and (red) second harmonic field distribution. The inset shows
the corresponding waveforms measured at the focal in physical units.

Finally, from all these the simulation data, the nonlinear dependence of the
focusing parameters of the grating is calculated and presented in Fig. 5.13. In
first place, the nonlinear gain of the system is shown in Fig. 5.13 (a), where it is
plotted the gain for the full peak amplitudes (|p|+/p0 and |p|−/p0), and also the
corresponding gain for the first, second and third harmonics. It can be seen that
the nonlinear effects dramatically increases the peak pressure gain due to the strong
asymmetry of the waveforms. In the same way, the gain for the rarefaction pressure
decreases with excitation amplitude also due to the asymmetry of the nonlinear
distortion at focus (see insets in Fig. 5.12). The gain for the first harmonic is
almost constant, around 40 dB, but it slightly reduces for increasing amplitudes
as long energy is transferred to higher harmonics. Finally, the gain for second and
higher harmonics increases. In the case of second harmonic it varies from 0 to
about the half of the linear gain of the system.

There exist also a nonlinear focal shift in the location of the peak pressure,
shown in Fig. 5.13 (b). Thus, as the source amplitude is increased the location
of the peak pressure is displaced in the axial direction beyond the linear focal
position, a self-defocusing effect is observed. On the other hand, for the case of
the rarefaction pressure it appears a nonlinear self-focusing effect, i.e. the focal
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Figure 5.13: Focal characterization in the nonlinear regime. (Up left) Effective gain obtained as
|pmax|/p0 as a function of the normalized excitation amplitude. (Up right) Location of the peak
pressure. (Bottom left) Intensity Full Width at Half Maximum (FWHM), also normalized by the
harmonic index. (Bottom right) Side lobe amplitude as a function of the excitation amplitude.

displaces towards the source. Both effects can be related to nonlinear self-refraction
of the beam in the focal spot (Camarena et al., 2013a). However, due to the low
focal size of this strongly focused device (Camarena et al., 2010) these effects are
minor and the total displacements are not longer that λ/4.

We have analyzed the FWHM of the several harmonics as the amplitude of the
incident wave in increased. Figure 5.13 (c) shows the dependence of FWHM on
the amplitude of the incident wave, measured again in terms of the shock distance
normalized to the focal position in the linear regime, F . FWHM is constant for
both the fundamental and the second harmonic focal spots, note here that the
second harmonic focal size is effectively half of the size of the fundamental wave,
but we show the value normalized to its wavelength. It is worth noting here, that
as the nonlinearity of the medium is activated, the focal spot considering all the
components, decreases dramatically its FWHM because of the strong asymmetry
of the waveforms only at the focal spot.
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Chapter 5. Nonlinear focused beams by axisymmetric gratings.

Finally, we can compare the different transversal profiles and observe the reduc-
tion of the side lobes of the second-and-higher harmonic profiles. The numerical
results show the highly reduced lobes around the focal spot both in the radial
and in the longitudinal directions. This effect is caused by the locally generation
of the field only at the focal spot, where in the other hand, the nonlinear (local)
harmonic generation at the lateral lobes is reduced due to its low amplitude. It is
worth noting here that the reduction does not strongly depends on the excitation
amplitude: very weak nonlinear effects are enough to provide second harmonic
side-lobe reduction.

5.6 Conclusions

We have presented a characterization of the focusing properties of an axisymmetric
grating constructed by toroidal scatters. The design is equivalent to a binary
Fresnel lens of infinitesimally thicker slits. We demonstrated experimentally and
numerically that the device presents a very narrow focal spot, that is between the
sub-diffraction and the sub-wavelength limits. As common from other Fresnel-
like lenses and also in Bessel beams, the narrow focal is accompanied by high
amplitude side lobes. On the other hand, the confined focal provides strong energy
concentration over a small volume. Thus, nonlinear effects can be mainly activated
locally at the focal spot, and second harmonic is generated mainly there. In
this way, the field of the second harmonic maintain the excellent beam-width of
the Fresnel lens, while its side-lobes are strongly reduced. The proposed lens in
the weakly nonlinear regime is suitable for second harmonic imaging techniques:
the excellent beam spatial resolution of the second harmonic (normalized to the
wavelength) is maintained, while the side-lobe amplitude, responsible of signal-to-
noise ratio, is reduced.

Another important feature is related to the energy concentration of the system.
In the proposed system, an amplification of the incident field up to 30 dB has
been observed numerically and experimentally. A parametric study shows that
amplification values up to 35 dB can be also obtained if the number of rings, i.e.
the aperture, are increased to M = 50.

Finally, it is worth noting here that the device is designed for single frequency
operation. The chromatic aberration for frequencies around the design frequency
is not strong: for a relatively broad bandwidth, around one octave, the main
observed effect in simulations and experiments is a focal shift. The focal spot shifts
in the axial direction and the displacement can be estimated analytically. For the
presented device a focal displacement of about 30 wavelengths has been observed in
the frequency range studied. The gain also is modified by the chromatic aberration,
but notice that these variations can be compensated by signal processing. In this
way, the focal aberration provides a way to actively change the axial location of
the sharp focus if the passive device is excited by a frequency modulated signal.
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5.6. References

Thus, it can provide a cheap alternative to ultrasound imaging techniques that
requires a fast intense moving focal, as in Supersonic Shear Imaging.
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Chapter 6

Chiral Beams
generated by Spiral Gratings

Abstract

Previously, zeroth order Bessel-like beams have been generated by
axisymmetric diffraction gratings. Here, we report the generation of
high order Bessel beams by the diffraction of plane waves over spiral
shaped scatters. The acoustical beam vortex structure is analyzed and
a method for generate arbitrary order Bessel beams based in multiple
arms spirals is presented. A passive device is experimentally tested
in the ultrasound regime and a first order Bessel vortex beam is ob-
served. Simulations in the weak nonlinear regime are also included
where the conservation law for the ratio between the topological charge
of the beam and the generated harmonic order is proved. This novel
technique can be used to generate cheap lenses for acoustic particle
manipulation and acoustic radiation force applications.
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6.1 Introduction

In the previous Chapters (4, 5) the diffraction generated by axisymmetric struc-
tures is analyzed for generate Bessel beams and strongly focused beams. Many
of these axisymmetric structures, matching its symmetry with the usual sources,
have been proposed for the control of the acoustic field. thus, zeroth-order Bessel-
like beams can be generated by these structures in Bragg regime (Jimenez et al.,
2014). In the long-wavelength limit, GRaded INdex (GRIN) lenses amplify the
field in the axis (Romero-Garćıa et al., 2013; Molerón et al., 2014). In all of these
configurations the scattered field maintain the axisymmetry of the lenses.

Zeroth-order Bessel beams, as those reported in Chapter 4, present a maximum
of the field trough the axis. On the other hand, higher-order Bessel beams exhibit a
minimum of the field at the axis. Both, zeroth and higher Bessel beams propagates
in free space without any diffraction spreading, as long they are propagation-
invariant solutions of the Helmholtz equation (Durnin et al., 1987). Both types
of beams are characterized by the appearance of high amplitude concentric rings
surrounding the axis that its transverse profile follows a lth-order Bessel function.
Is important to note also that the magnitude of the spatial spectrum of these
beams does not depends of the order of the beam, i.e. in the far field all Bessel
beam is characterized by a annular radiation. In other words, all Bessel beams can
be generated by a conical wavefront of infinite extension. The difference between
zeroth and higher order Bessel beams is that for higher order Bessel beams the
azimuthal phase shows a linear variation across its annular spectrum. Thus, the
central zero in the axis of the higher-order Bessel beams that appears in the near
field is caused due to the phase singularity of charge l associated with the azimuthal
phase variations.

In this way, high order Bessel beams generates acoustical vortices with a spatial
phase dependence that cannot be generated by axisymmetric radiating sources. In
optics, different solutions have been proposed to break the axial symmetry in an
appropriate way to generate vortices. These methods include direct Gaussian beam
illumination by use of axicon-type computer generated holograms (Vasara et al.,
1989; Heckenberg et al., 1992) or illuminating an axicon with a Laguerre–Gaussian
mode (Arlt et al., 2000). Another solution is to impose an azimuth-dependent
retardation on the optical field with Spiral Phase Plates (SPP) (Oemrawsingh et
al., 2004). A diffraction grating with groove bifurcation (called ”fork”) is also able
to generate a vortex from an optical beam falling onto the grating center with an
arbitrary topological charge (Bekshaev et al., 2008).

Although phase dislocations were first studied in acoustics (Nye et al., 1974),
the related experimental works have been developed lately. The acoustic analog of
optical Spiral Phase Plates was proposed by Hefner et al. (1999). Here, the trans-
ducer surface is physically offset by twisting like the coil of a spring. This design
has an important limitation: the transducer has a unique operating frequency of
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interest. Other approaches include the use of photoacoustic effeect to generate the
Helical beam (Gspan et al., 2004). A common approach to overcome this problem
is by using electronic means: an appropriate phase profile for an array of trans-
ducers generates the helical beam. Thus, signals emitted by each transducer of
the array are delayed in order to control the angular phase shift. The interaction
of high order Bessel beams with particles have been widely studied in the exhaus-
tive collection of works of F. G. Mitri and G. T. Silva among others. Two main
remarkable effects have been reported: (1) the transference of orbital momentum
from the acoustical vortex to the particle (Mitri et al., 2012), and on the other
hand, the appearance of negative axial acoustic radiation forces (Marston, 2006;
Marston, 2007a; Mitri, 2008; Mitri, 2009). Thus, practical applications of vor-
tex acoustic beams are multiple: particle manipulation (Demore et al., 2011) and
acoustical tweezers (Wu, 1991), an acoustic spanner (Skeldon et al., 2008), rotation
of fibers (Schwarz, 2013) or multiple-particle trapping (Yoon et al., 2014). How-
ever, although the array provides active steering and control of the vortex beam,
in these active methods the discretization of the source is restricted by the number
of transducers in the array. On the other hand, the screw dislocations generated
by finite amplitude acoustical vortex has been also studied. In the case of weak
nonlinear regime, it has been proved the conservation law for the ratio between
the topological charge of the beam and the generated harmonic order (Thomas
et al., 2003; Marchiano et al., 2008). ON the other hand, for intense acoustic
beams, azimuthal shock wave have been reported numerically and experimentally
(Marchiano et al., 2008; Brunet et al., 2009; Brunet et al., 2010).

In this Chapter we propose a passive system for the formation of acoustic vor-
tex. The design consist of an Archimedes’ spiral grating. An experimental setup is
proposed in the ultrasound regime, where the results show that the diffracted field
around the axis generates a first order Bessel beam with its characteristic screw
dislocation. A method for synthesize high order Bessel beams is also provided and
tested numerically, where it was proven that a n-arm spiral generates a nth-order
Bessel beam. Furthermore, weakly nonlinear propagation is considered, where the
conservation law for the ratio between the topological charge of the beam and the
generated harmonic order is also observed.

6.2 From axisymmetric to chiral beams

Let us start considering a pair of uniform axisymmetric gratings, A and B, as those
studied before in Chapter 4. Let the grating A only differ in one aspect from the
grating B: a shift in the radial position of the toroidal rings. Figure 6.1 shows a
scheme of the situation. Therefore, the first structure presents a radial distribution
for the M toroidal rings as rm = ma, where a is the separation distance between
rings and m = (1, 2, ...,M) is the ring index. On the other hand, the second
structure is designed as rm = ma+ a/2. The incident plane wave is scattered by
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Figure 6.1: Scheme of the axisymmetric diffraction grating. The structure A differs from B by
a shift of ∆r = a/2 in the radial distribution of the rings. The incident plane wave is scattered
by the structures in a converging conical wavefront. When it converges to the axis a Bessel beam
is formed. The beams generated have equal magnitude but are shifted ∆φ = 2π∆r/a, that in
this example, for ∆r = a/2 leads to a phase difference of ∆φ = pi.

the structure creating a conical wavefront that converges to the axis of symmetry
creating a limited-aperture Bessel beam. Same situation is also produced in the
configuration B, with the only main difference of the scattered field is phase shifted.

Numerical solutions for the scattering of the two structures are shown in
Fig. 6.2. It is clearly visible how the magnitude of the field remains basically
the same, where the transversal field is described by a Bessel function of zeroth
order, namely J0. In the other hand, the phase difference between the structure
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Figure 6.2: Radial distribution of the field generated by the axisymmetric structures A and B.
(left) Magnitude, (right) phase. Note if the φA + φB = 0, then ∆φ = π.
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A and the shifted grating B is π radians. The field remains in anti-phase not only
at the center, but over all the the lateral lobes of the Bessel function. Only at the
zeros of the Bessel function there exist in the simulations some not perfect anti-
phase field distribution. In this example, the structure A is shifted in the radial
coordinate by half of the radial period, this spatial shift between both structures
is ∆r = a/2. In a more general case, the phase difference can be related to the
radial shift simply by

∆φ = 2π∆r/a (6.1)

where ∆φ = φA−φB is the phase difference between fields generated by a gratings
shifted a distance ∆r.

Thus, we propose a structure composed of curved tubular scatters, but not
necessary of toroidal shape, that mixes the properties of the gratings A and B
in order to have a destructive interference in the axis. First, is obvious that this
structure is no longer axisymmetric, as long the scatters at azimuth angle θ = 0
must be shifted radially by ∆r = na/2 respect to the plane θ = π, being n an
integer. On the other hand, the tubular scatters must be continuous in azimuth,
and the following design condition

φ(θ) = φ(θ + π)± π (6.2)

must hold for any θ. This condition is necessary in order to achieve a minimum
at the axis. It essentially states that there exist a scattered field at some θ that
have inverted phase respect to the scattered field at opposite azimuth θ + π.

Let us here assume that the phase of the field changes linearly with the azimuth
angle as φ = αθ. Substituting this equation in Eq. (6.2) we get that, in order to
fulfill the design conditions, that the rate of change of phase respect to the azimuth
angle must be α = ±1, leading to the simple relation φ = ±θ.

Then, we can write Eq. (6.1) as

∆r

∆φ
=

a

2π
. (6.3)

This relation states that the rate of change in the radial position of the tubes
respect to the changes produced in the phase of the field is constant. Thus, using
∆φ = ±∆θ, we can relate the change of the radial position of the tubes respect to
the azimuth coordinate as

∆r

∆θ
= ± a

2π
. (6.4)

In the continuous limit, ∆r
∆θ →

∂r
∂θ and therefore Eq. (6.4) can be expressed as

the parametric curve

r = ±bθ (6.5)
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with b = a/2π. Thus, if the tubular scatterers are bend following this parametric
curve, the scattering of the structure in the axis must be zero. This expression
is the Archimedes’ spiral, a particular case of the general class of Archimedean
spirals that can be described by

r = ±bθ1/γ . (6.6)

Here, the parameter γ controls how fast the spiral is wrapped. For γ = 1,
we get the normal Archimedes’ spiral, with uniform separation between turns, for
γ > 1 the spiral radius grows with each turn, while for γ < 1 the separation
distance between turns becomes thigh. Special cases of this family are the lituus
(γ = −2), the hyperbolic spiral (γ = −1) or the Fermat’s spiral (γ = 2).

6.3 Chiral beams generated by spiral gratings

In the previous section we have found that the spirals gratings are good candi-
dates to provide chiral beams. These spirals have the propriety of having uniform
separation between turns as r(θ + 2π) = r(θ) + a. This uniformly spaced grating,
as occurs in the previously studied Bessel beams, diffracts plane waves in a con-
verging conical wavefront1. In analogy to the well-known diffraction grating, the
angle β defined by the conical wavefront is

sinβ = Nλ/a, (6.7)

where λ is the wavelength and N is the diffraction order. A scheme of this situation
is shown in Fig. 6.3. It is well known that a converging conical wavefront generates
a Bessel beam. The field of an ideal Bessel beam can be expressed for the velocity
potential2, ψ, as

ψ (r, θ, z) = ψ0Jn (krr) exp (ikzz ± inθ) , (6.8)

where Jn is the nth-order Bessel function ψ0 is the amplitude, and kz and kr are
axial and transverse components of the wavevector k =

√
k2
z + k2

r . It is important
the relation of this quantities to the cone angle of the Bessel beam

cosβ = kz/k , sinβ = kr/k. (6.9)

1Note that the field is also scattered in a diverging cone with angle π/2 − β, but this waves
does not contributes to the field distribution near the axis in free propagation. If the structure
is embedded inside a tube, this field can be reflected by the boundaries and it will converge to
the axis creating another Bessel beam.

2the velocity potential can be related to the acoustic pressure as p = iωρ0ψ and to particle
velocity as v = ∇ψ
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φ+π

Figure 6.3: Scheme of the Archimedes’ spiral scattering process. The incident plane wave
is scattered into a converging conical wavefront which its phase changes linearly in azimuthal
angle θ. The field can be described as a first order Bessel beam, where in the axis a corkscrew
dislocation is produced, leading to an acoustic vortex and a node at r = 0.

Note the trivial solution for β = 0, where the Bessel beam reduces to a plane
wave traveling in the z direction. Therefor, thee cone angle β of the Bessel beam
depends on the separation of scatters. Thus, combining Eq. (6.7) and (6.9) we get
the relations

kz =
2πN

a tanβ
, kr =

2πN

a
. (6.10)

This relations allow us to obtain the Bessel beam field, Eq. (6.8) in terms of
the grating parameters as

ψ (r, θ, z) = ψ0Jn

(
2πN

a
r

)
exp

(
i

2πN

a tanβ
z ± inθ

)
. (6.11)

This idealized field is valid for a grating of infinite aperture. In the case of a real
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structure with finite aperture, the Bessel beam is bounded in the axial direction. Is
common to refer to this limitation as limited diffraction Bessel beams. Therefore,
if the grating have a total aperture of R = Ma, where M is the number of turns
of the spiral, from simple trigonometrical considerations the cone angle will cover
a region of the axis from z = 0 to z = F , being

F =
R

tanβ
=
Ma2

Nλ

√
1−

(
Nλ

a

)2

(6.12)

the maximum distance at which the Bessel beam is formed, showing the limit of
the validity of the nondiffractive propagation.

Let us consider the radiation converging from each ring at angle β, in order to
find the locus of the points around the axis where exact constructive interference
is produced. The spiral grating is not axisymmetric, but chiral, that is, it is
distinguishable from its mirror image and it cannot be superposed onto it. Thus,
the radiation converging from each ring do not converge along the symmetry axis.
Figure 6.4 shows a scheme, where if we suppose the grating diffracts the wave at
angle β, and following simple trigonometry considerations the coordinates of the
focal points can be obtained in function of the spiral geometry. Thus, for the axial
component of the focal can be expressed as

F(r
F
, θ, z

F
)

z
F

r
F

r(θ)

a

β

Figure 6.4: Scheme of the geometry of the spiral. Due to the scattering of the spiral at angle
β, the locus of points in which perfect constructive interference is produced around the axis is
an helix.
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zF (r, θ) =
r(θ) + a

4

sinβ

√
1− sin2 β. (6.13)

Then, using the cone angle definition and the spiral curve r(θ) we get

zF (θ) =

(
θ

2π
+

1

4

)
a2

Nλ

√
1−

(
Nλ

a

)2

. (6.14)

On the other hand, this interference is not produced at the axis, but shifted
a constant radial distance. From the geometry, see Fig 6.4, we can see that the
radial component of the focal is

rF = a/4. (6.15)

Equations (6.14-6.15) composes the curve F (rF , θ, zF ), that is a liner helix of
constant radius. Thus, in addition the beam generation, the scattering located
in the points of the spiral achieves perfect constructive interference over the helix
curve that rotates around the axis. Moreover, the distance between turn of this
helix can be calculated as zF (θ+2π)−zF (θ) = λ cosβ/N . Thus, for small diffrac-
tion angles, the focal rotates in z with a period of the order of the wavelength,
when for shorter Bessel cone is generated, the distance between rotation in the
helix stretches3.

6.3.1 First order Bessel beams

Let us now analyze the Archimedes’ spiral with γ = 1 and b = a/2π. With this
parameters the ideal Bessel beam can be expressed as

ψ (r, θ, z) = ψ0Jn

(
N

b
r

)
exp

(
i

N

b tanβ
z ± inθ

)
. (6.16)

In the other hand, we model the scattering of the grating by two methods.
First, if the scatters are thing compared to the wavelength, we can assume the
scattering of each fragment of the spiral can be modeled by a point source. This
modeling is also valid in the opposite limit, where the scatterers are thick enough
to provide narrow aperture between them. In this situation the structure forms
a grating. From Babinet’s principle considerations, both situations can be equiv-
alent. Therefore, we calculate the Rayleigh-Sommerfeld diffraction integral along
the path of the spiral, r = bθ, as

p(x, y, z) =
−iωρ0v0

2π

∫
r

exp(ik|r|)
|r|

dr (6.17)

3In the limit β → 0, where the helix period is the wavelength, the divergent and conver-
gent conical wavefront sums again into a plane wave. Thus, the helicity disappears due to the
topological charge of two chiral waves is inverted.
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Figure 6.5: (Left) Transversal cut of beam field obtained by (continuous line) the analytic
expression for ideal Bessel beam Eq. (6.16) and (circles) obtained by numerical evaluation of the
Rayleigh-Sommerfeld diffraction integral Eq. (6.17) for a finite structure. (Right) Far-field of the
spiral scattering showing the typical ring of the Bessel beam.

where |r| is the distance between each point in the path, r = bθ, and the observa-
tion point (x, y, z).

Second, we also approximate the diffraction with full-wave numerical integra-
tion of the acoustic wave equations. This approach provides an accurate estimation
of the diffraction in situations where the wavelength is of the order of the scat-
ter size, but due to the problem is 3D, the full cartesian domain is integrated
and is computationally intensive. In order to reduce the grid refinement require-
ments, we use the k-space method for solving the 3D computational problem. This
method will be necessary also for the last section where we include the nonlinear
propagation effects.

Figure 6.5 shows an example of first order Bessel-like beam generated by an
uniform spiral with parameters β = 56.4o, a/λ = 1.2 and aperture R = 60λ. We
can see that the analytic expression for ideal Bessel beam Eq. (6.16) agrees with
the solution obtained by the numerical evaluation of the Rayleigh-Sommerfeld
diffraction integral Eq. (6.17) for this finite structure. On the right subplot, it can
be appreciated how the typical ring of the Bessel beam appears in the far-field.
This result shows that a conical wavefront is being generated by the structure,
and it can be seen that the transversal wavenumber agrees with the estimated by
the spiral parameters in Eq. (6.10), marked as a dotted line as kr in the figure.
Therefore, we prove the field generated by the spiral structure is a first order
Bessel-like beam.
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Figure 6.6: Transversal distribution of the field obtained by numerical evaluation of the
Rayleigh-Sommerfeld diffraction integral. (Left) Magnitude, (right) phase. Colorbars in nor-
malized units (p/p0 and φ/π).

Radial distribution: vortex

One of the main features of the high order Bessel beams (HOBBs) is that all over
the axis the field is zero, in contrast with the zeroth-order Bessel beam where
a maximum appears in the symmetry axis. In the high order Bessel beams this
zero is generated by destructive interference of a phase-rotating conical wavefront.
Therefore, as a necessary condition, a vortex is generated around the axis. Fig-
ure 6.6 shows the transversal distribution of the field of a spiral at F/2. It can
be observed the node at the center in the magnitude, as long the high amplitude
lateral lobes characteristic of the HOBBs.

On the right subplot, it can be appreciated that a vortex is generated. The
number of complete phase shifts per turn is one, the vortex presents a topological
charge of 1. The nodes of the field connects 2 areas with opposite phase, while at
the central minimum a screw-cork like dislocation is produced in the field. The
ringed areas of the phase distribution corresponding to odd lateral lobes are phase
inverted respect than the even ones, but all have the same rotation direction.

Axial distribution

Although the field distribution in the sagittal plane correctly corresponds to a
truncated Bessel beam, there exist some features that must be underlined. Fig-
ure 6.7 shows the field in the (x = 0) plane of two first order Bessel beams. In
the top subplot the spiral parameters are a/λ = 1.85, that leads to a cone angle
of β = 32.7o and a beam extension distance of F = 115λ. As can be seen in the
figure, the generated beam agrees with the analytical parameters. However, the
farther part of the beam that is close to F presents more amplitude compared to
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Figure 6.7: (Top) Distribution of the field for a spiral of a/λ = 1.85 that leads to a (white
line) cone angle of β = 32.7o and beam extension distance of F = 115λ (white line at y = 0).
(Bottom) Distribution of the field for a spiral of a/λ = 1.3 that leads to a (white line) cone
angle of β = 50o and beam extension distance of F = 43.2λ (white line at y = 0). Colorbars in
normalized units (p/pmax).
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Figure 6.8: (Left) Axial Intensity distribution for a spiral of (blue) a/λ = 1.85 and (red)
a/λ = 1.3. Black dashed lines shows the analytical extension of the truncated beam with a
linear intensity profile. (Right) Axial Intensity distribution including higher diffraction orders
for a spiral of (blue) a/λ = 2.85 and (red) a/λ = 2.3.

the part of the beam that is close to the grating. On the other hand, the field also
present some oscillations in the z direction.

Figure 6.7 (bottom) shows other example at lower frequency. Here, the spiral
parameters are a/λ = 1.3, that leads to a sharper cone angle of β = 50o and a
closest extension distance of F = 43.2. Same properties can be observed in this
situation.

In order to analyze the field amplitude, a axial cut is represented in Fig. 6.8.
As long the field is zero in the axis, the intensity distribution shown in Fig. 6.8 is
evaluated trough the maximum of the first lateral lobe. It can be clearly seen that
the intensity increases linearly with the axial distance. This effect, is analogous
to the studied in Sec. 4.2. As long the outermost rings scatters more energy, the
external portions of the conical wavefront present more intensity. This energy con-
verges to axial points around F , creating the same Bessel beam but with linearly
increasing intensity.

Same effects are observed for the higher diffraction orders. As can be seen in
Fig. 6.8 (right), when a/λ > 2 the higher diffraction orders generates a secondary
beam. Its corresponding parameters correctly follows the analytical estimations,
as can be seen comparing the beam distribution to the dashed black lines. Due
tho the appearance of this secondary beam, the amplitude of the fundamental
diffraction order is reduced.

A parametric study of the longitudinal field is presented in Fig. 6.9 (left). It is
analogous to the Fig. 4.2 for the zeroth-order Bessel beams. The field distribution
extends with frequency following the analytical estimations (white lines), and for
a/λ > 2 higher diffraction orders appears forming secondary Beams close to the
grating. On the other hand, similar study can be addressed for the transversal

165



Chapter 6. Chiral beams generated by spiral gratings.

z/R

a
/
λ

0 0.5 1 1.5
1

2

3

4

y/λ

a
/
λ

−4 −2 0 2 4
1

2

3

4

Figure 6.9: (Left) Axial distribution of the field in function of the quantity a/λ obtained by
numerical evaluation of the Rayleigh-Sommerfeld diffraction integral. White lines indicates the
estimation of the focal by Eq. (6.12). (Right) Transversal distribution of the field in function
of the quantity a/λ. Black dotted lines indicates the lateral location of the lobes estimated by
Eq. (6.16). Colorbars in normalized units (p/p0 and φ/π).

distribution. Figure 6.9 (right) shows the lateral distribution normalized to the
wavelength in both axes. The separation distance is varied. As long the lateral dis-
tribution of the HOBBs depends on the transversal component of the wavevector,
kr = 2πN/a, there exist a lateral dependence of the lateral beam-width respect to
spiral parameters. It essentially states that extending the Bessel beam at longer
distances by spacing the spiral also spreads the beam-width. The numerical inte-
gration agrees with the analytical estimations (dashed black lines).

6.3.2 Experimental validation

An experimental test was realized in order to validate model results. A spiral grat-
ing was fabricated by laser cutting over a stainless steel plate of 0.8 mm thickness.
Fig. 6.10 (a) shows a scheme of the grating designed. The grating aperture was
a = 1 mm. The thickness of the scatters was 0.75 mm (solid parts), leading to a
grating aperture of 0.25 mm (open parts)4. The number of turns was M = 20 and
the grating radius was R = 25 mm. The circular spiral plate was placed in front of
a ultrasound plane transducer. This source was formed by a plane single element
piezoceramic crystal (PZ 26, Ferroperm Piezoceramics, Denmark) mounted in a
custom designed steel housing with aperture R = 25 mm, matching the area of the
spiral grating. The separation distance between the grating and the source plane
was adjusted to 0.5 mm.

4As pointed before, following Babinet’s principle considerations, the scattered field by an
structure of thin scatters or thin slits, in terms of the generated beam profile over the axis, is
equivalent.
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Figure 6.10: (a, c, d) Scheme of the grating used in the experiment. (b) The spiral grating
mounted in front of a plane ultrasound transducer.

The transducer was immersed in a degassed and distilled water tank of (350×
350 × 350 mm) were during the measurements the temperature was constant at
26o C. Therefore, the theoretical beam extension distance of the proposed grating
lens at the operating frequency was F = 27 mm and only one diffraction order
appear.

The source was driven with a sinusoidal pulse burst of frequency f0 = 2.226
MHz and 50 cycles using a function generator (14 bits, 100 MS/s, model PXI5412,
National Instruments) and a linear RF amplifier (ENI 1040L, 400W, 55dB, ENI,
Rochester, NY). The pressure waveforms were acquired with a HNR 500 µm needle
PVDF hydrophone (Onda Corp, CA), and a digitizer (64 MS/s, model PXI5620,
National Instruments) were used. A three-axis micropositioning system (OWIS
GmbH, Germany) was used to move the hydrophone in three orthogonal directions
with an accuracy of 10 µm and a National Instruments PXI-Technology controller
NI8176 was used to control all the devices. The amplitude frequency response of
the hydrophone was compensated in post-processing.

Figure 6.11 summarizes the experimental and numerical results, and the Rayleigh-
Sommerfeld integration. It can be observed in Fig. 6.11 (a) that the steel grating
conform a beam with a zero in its axis, and with a ring shaped maximum sur-
rounding this zero. The experimental beam agrees the analytical Bessel beam
presented in Fig. 6.11 (c). On the left column, the phase is shown and, again,
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Figure 6.11: (a) Normalized field magnitude and (b) phase observed in the experiment and (c,
d) its corresponding analytical estimation using Rayleigh-Sommerfeld integration. Colorbars in
p/pmax units for the magnitude and φ/π units for the phase.
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Figure 6.12: Transversal cut of the field observed by (circles) grating experiment and (line)
predicted by the HOBB. Vertical line marks the axis were the zero field is expected.
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the generated beam in the experiment shows the correct topological charge of the
analytic solution plotted in Fig. 6.11 (d). The characteristic screw-cork dislocation
of the field at the center is also observed. Moreover, the phase distribution all over
the secondary lateral lobes of the beam also shows, in some degree, the correct
phase distribution of the HOBB.

However, some discrepancies can be observed in the experimental measure-
ments. These aberrations are minor and can be produced by the misalignment
between the grating and the transducer plane. A detailed transversal field profile
is presented in Fig. 6.12. The transversal cut (markers) was selected for an az-
imuthal angle in the (y, x) plane at -3 degrees, in order to present a good fit with
the analytical solution (black line). The traversal profile correctly agrees its cor-
responding J1(krr) first order Bessel function. Minor aberration slightly modifies
the lateral lobe amplitude, but the main features of the high order Bessel beam,
i.e. its central zero and rotational vortex, are correctly observed by the proposed
(and simple) experimental setup.

6.4 High order Bessel beams generated by n-arm
spirals

In the preceding section a synthesis of first order Bessel beams is proposed. The
basic principle of formation is the destructive interference trough the axis of a
rotating-phase conical-wavefront. The phase rotation over a turn in the cone was
2π, and the topological charge of the generated vortex was 1. Here, we extend
this idea in order to generate vortex with higher topological charge. Therefore, the
phase rotation of the cone must increase for each turn as n2π. Applying same ideas
developed previously, Eq. (6.1), we must increase the spiral radius r as r(θ) = nbθ
in order to increase the rotation of the phase by n2π.

However, if the spiral is constructed in that way, the spacing between turns
is increased from a to na, and therefore, higher diffraction grating will appear
and energy will spread into a multi focal beam as shown in Fig.6.8. Actually, the
higher diffraction grating orders of a spiral generates high order Bessel beam. The
beams presented in Fig.6.8 (right) corresponding to the diffraction order N = 2
were second order Bessel beams. Figure 6.13 shows a more clear example. There,
in the left subplot a first order Bessel beam is generated at a/λ = 1.2. On the
right, the frequency is increased to match a/λ = 7.2, the beam of the first order
is generated far a way from the grating plane. Near the source appear the higher
diffraction gratings. The profile of the 7th diffraction grating order generates a
7th order Bessel beam, where it can be appreciated that the numerical integration
correctly agree the analytical estimation using N = 7. Therefore, HOBBs can be
generated from the higher diffraction grating of a simple Archimedes’ spiral.

For practical applications it must be desirable to generate a single HOBB
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Figure 6.13: Generation of a high order Bessel beam from higher diffraction orders of a simple
Archimedes’ spiral grating. (continuous line) Analytical solution with (left) N = 1 and (right)
N = 7, (circles) numerical integration at a distance z = F (N)/2

without any diffraction orders in order to do not spread energy from the main
beam to other secondary spots, e.g. in addition to the previously 7th order Bessel
beam of Fig. 6.13, all the inferior order Bessel beams are generated together.

The only way to increase the radius of the spiral as r(θ) = nbθ, while maintain-
ing the grating spacing between turns, a, is to add additional arms to the spiral
that fills the space between the stretched new curve. The general expression of
n-arms spiral is

rj = nb

(
θ + j

2π

n

)
. (6.18)

Therefore, there exists n curves, each j curve is separated a distance a from its
adjacent curve, and each curve start from the origin at different angles, equispaced
2π/n. Figure 6.14 shows various spirals with increasing number of branches. In the
case of n = 2, it can be observed that the curve for the j = 1 branch (black spiral)
have a growth slope of ∆r/∆θ = 2b. Therefore, the phase rotates at ∆φ = ∆θ = 2.
Same applies to the second arm, but this arms maintain the separation between
turns constant, allowing the generation of the Bessel conical wavefront for the first
diffraction order. As Fig. 6.14 shows, other possibilities are also feasible in order
to obtain higher spiral arms. The main issue is that when the number of arms
increases the aperture between them does not remain constant near the center,
when obviously in the limit n→∞, the structure becomes completely opaque if it
is formed by finite sized scatterers, or in-existent if the grating is formed by finite
sized slits.

As long the spacing between spiral arms is kept constant at a distant a, the
diffraction produced by the grating will create a cone with same angle that for
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Figure 6.14: Scheme of a variety of n-arm spirals.
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the first order Bessel Beams. When this conical wavefront converges to the axis,
a Bessel beam is also generated. However, due to the rotation of the phase is
increased by a factor of n, the corresponding beam is a nth-order Bessel beam. It
can be appreciated in the last term of Eq. (6.11), that the topological charge will
also be increased by a factor n. The number of arms of a spiral directly corresponds
to the order of the Bessel beam generated and therefore to the topological charge
of the acoustical vortex.

Beam profiles of the generated HOBBs are presented in Figs. 6.15-6.17. The
magnitude of the field transversal sections are shown in Fig. 6.15 for n-arm spiral
gratings of n = 1, 2, 3, 7, 20, 50. Here, the grating parameters were selected as
a/λ = 1.2 and β = 56.4o. First, in Fig. 6.15 we represent a transversal cut of the
field measured at z = F/2. As can be seen, the field is zero at the axis of the beam,
and the central null spot increases in size according to the number of branches of
the spiral. The generated field is nearly zero in a cylindrical volume around the
axis: the higher the number of arms of the spiral, the bigger the volume around
the axis where the field is nearly zero. Even in the case of a 50 branches spiral,
the generated beam profile agrees with a 50th order Bessel beam. In this case,
the corresponding central null is generated over a roughly cylindrical volume of
18 λ diameter (in agreement to Eq. (6.16) and a height of F (in agreement to
Eq. (6.12).

The location of the ring shaped lateral lobes, where the field increases to its
maximum, also matches the beam profile of the function Jn(2π/ar). A close
comparison will be presented later. On the other hand, it can be appreciated that
the ringed lateral lobes present some oscillations or bumps. They are more evident
in the higher order Bessel beams. If the transverse plane where the measurement
is done moves from z = F/2 to z = F/2 + ∆F , these oscillation rotate around
the axis. Furthermore, the number of oscillations is proportional to the order
of the Bessel beam. They can be associated to the geometrical laws of perfect
constructive interference around the axis for each arm of the spiral, in analogy to
Eq. (6.14). Therefore, this results shows evidence of that the focal F (rF , θ, zF ) for
n-arms develop equispaced n helix curves that rotates around the axis.

On the other hand, the phase of the nth-order Bessel beam rotates around the
axis forming an acoustic vortex. As can be seen in Fig. 6.16, the topological charge
of the beam, i.e. the number of n2π phase increments in a turn, is proportional
to the number of branches. Furthermore, it is in agreement with the n-th order
phase rotation characteristic HOBBs. These features are specially visible around
the ringed areas of the field in which the field is maximum, according to Fig. 6.15.

Figure 6.17 shows the magnitude over the (x = 0) plane. The generated beams
correctly agrees with the truncated HOBBs. The extension of the minimum at the
axis is in all cases F = XXXλ. Another feature is that in the case of higher n,
i.e. n = 50, the extension of the maximum lateral lobe ring is shorter. This is due
to the finite size structure, the beam only can be formed in the volume sonificated
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Figure 6.15: Magnitude of the transversal section of the field generated by a n-arm spiral
grating, from (a-f), n = 1, 2, 3, 7, 20, 50. Colorbars in p/pmax units.
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Figure 6.16: Phase of the transversal section of the field generated by a n-arm spiral grating,
from (a-f), n = 1, 2, 3, 7, 20, 50. Colorbars in φ/π units.
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Figure 6.17: Magnitude of the axial distribution of the field for the n-arm spiral grating, from
(a-f), n = 1, 2, 3, 7, 20, 50. Colorbars in p/pmax units.
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Figure 6.18: Magnitude of a transversal cut of the field for the n-arm spiral grating, from
(a-f), n = 1, 2, 3, 7, 20, 50. (Markers) k-space numerical simulation, (continuous line) analytical
HOBBs solutions.

by the conical wavefront. This volume extends from z = 0 to z = F at the axis,
but for radially distant points, this distance is reduced. Any case, this limitation
does not impedes the correct formation of the truncated Bessel beam, even in the
case of n = 50.

In order to demonstrate the multiple helix that conforms the acoustic vortex,
we can represent the isosurface of the equal phase points. The modulations in the
field magnitude over the rings of the high order Bessel beam correctly matches the
helical shape shown of this reconstructed Fig. 6.21, in analogy with the analytical
locus by Eqs. (6.14-6.15). The number of helix arms is equal to the number of
spiral arms of the gratings, and its radius grows also withe the order of the Bessel
beam generated.

Finally, in order to study these beams in a more realistic configuration, sim-
ulations of the full 3D problem of the same system were performed. In these
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Figure 6.19: Magnitude of the field for the n-arm spiral grating, from (a-f), n = 1, 2, 3, 7, 20, 50
obtained by k-space numerical simulation. Colorbars in p/pmax units.
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Figure 6.20: Phase of the field for the n-arm spiral grating, from (a-f), n = 1, 2, 3, 7, 20, 50
obtained by k-space numerical simulation. Colorbars in φ/π units.
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Figure 6.21: Reconstruction of the helical vortex by an isosurface of field points with equal
phase. The number of helix arms is equal to the number of spiral arms of the gratings. Colorbars
in p/pmax units.

simulations, instead of considering the scatterers perfectly rigid, the grating was
included as a stainless steel plate, with same parameters than in the previous ex-
perimental setup. Thus, longitudinal wave propagation over the bulk of the steel
plane were included. However, shear waves were not included in the simulations
for the sake of simplicity. The simulation parameters used for the water media
were c0 = 1490 m/s and ρ0 = 1000 kg/m3 and for the grating plate c0 = 6100 m/s
and ρ0 = 7850 kg/m3. Losses were neglected in both media. Figure 6.18 shows the
analytical HOBBs and the simulations of the proposed steel spiral gratings. Excel-
lent agreement is obtained between the theory and the realistic simulations. Due
the finite size of the structure, in this cases reduced to Rmax = 25a, the truncation
effect of the Bessel function is more evident, as can be observed in the mismatching
of the farther lateral lobes of the simulated beam. Furthermore, the characteristic
oscillations of the maxima due to the helix focusing are more evident, as can be
observed clearly in Fig. 6.19. It is worth noting here that those maxima are static,
at this transversal cut (z = F/2), but rotates when the measurement is realized
in a different plane according a multiple branch helix.

Concerning the vortex phase, the field also rotates with a topological charge
equal to the spiral number of arms. Only in the case of n = 50 the beam is roughly
generate. This effect is related to the finite sized aperture grating, where the cone
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barely cover the volume necessary to generates the 18λ diameter of the ring shaped
beam. However, even in this situation the central dark spot is generated, due to at
the axis the conical wavefront always covers the volume for z < F . Those results
evidence the feasibility of high order Bessel beam generation by spiral grating in
realistic configurations.

6.5 Weakly nonlinear chiral beams

The nonlinear propagation of acoustic vortex have been studied previously. Most
of these studies employs arrays of transducers to electronically modify the phase
profile at the source plane. Acoustic vortex beams including shocks has been
tested numerically and experimentally, where rotational shock waves have been
generated. If nonlinear effects are produced in the propagation path and not near
or inside the spiral grating, the propagation of electronically generated beams and
the diffraction grating HOBBs proposed here will present high similarities.

We present simulations of the full-wave Eqs (3.1, 3.2, 3.3). The grating is
designed as in previous simulations, where the nonlinearity of the water is intro-
duced by the nonlinear parameter B/A = 5. Nonlinearity in the bulk of the steel
plate is neglected. As Figs (6.22-6.22) shows, nonlinear acoustic vortex are pro-
duced in a similar fashion than in the preceding sections. However, in order to
correctly account for higher spectral components, the numerical grid have been
refined compared to the numerical results presented below. Due to the compu-
tation requirements of the resulting 3D problem, the total size of the domain of
integration has to be reduced, and therefore, the total aperture, i.e. the number
of turns of the spiral, has been reduced dramatically. In this section, the grating
spiral is composed by only by 5 turns. These computational limitation impedes
the calculation of higher Bessel beams due to the ring lateral lobes falls out of the
domain. Other restriction of the full 3D nonlinear numerical problem is that the
number of harmonics is very limited, and therefore, the simulations only can take
into account weakly nonlinear propagation.

However, the basic features of the nonlinear vortex up to n = 5 can be pre-
sented. Figure 6.22 shows the magnitude of the first and its second harmonic
transversal field distribution. It can be observed that due to the limited aperture
grating, the Bessel beam is not correctly formed, but it can be appreciated how
the characteristic lateral lobes appears. The zero at the axis roughly appears for
the first and third order Bessel-like beams. In the case of n = 5 cannot be formed
correctly. Here, the focalization of each spiral arm that creates n modulations over
the lateral maxima is more evident. Again, if the measurement plane is shifted
a small increment in z axial direction, those maxima rotates. Thus, the maxima
conforms an n-helix curve. The second harmonic field generated in propagation
also focuses on these maxima. In addition, second harmonic field also present
additional modulations in the positions between the first harmonic modulations,
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Figure 6.22: Magnitude of the field for the n-arm spiral grating, from top to bottom n = 1, 3, 5,
(left column) first harmonic, (right column) second harmonic. Colorbars in p/pmax units.
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Figure 6.23: Phase of the field for the n-arm spiral grating, from top to bottom n = 1, 3, 5,
(left column) first harmonic, (right column) second harmonic. Colorbars in φ/π units.
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6.6. Weakly nonlinear chiral beams

being these last of lower amplitude. Therefore, focalization around the axis of the
higher harmonics are also helix shaped: the number of helix curves is the product
of the harmonic index and the Bessel order.

Although the magnitude distribution of the field by this truncated grating
hardly agrees to an ideal Bessel beam, the rotation of phase distribution is in
agreement with the analytical vorticity of HOBBs. Thus, is clearly visible that
the first harmonic in the simulations present a topological charge of n for the
presented cases. In the case of second harmonic it rotates with topological charge
2n. The topological charge is therefore the product of the the harmonic number
and the order of the Bessel, i.e. the product of the harmonic and the number of
arms. Thus, the conservation law for the ratio between the topological charge of
the beam and the generated harmonic order is also observed (Marchiano et al.,
2008). In this sense, nonlinearity present a opportunity to increase the topological
charge of a generated beams.

Intensity vortex

One remarkable feature of the generated vortex is the acoustic intensity field.
Due to the vortex rotation, the acoustic intensity vector presents, in addition
to the axial, a rotational azimuthal component. The existence of this component
evidences the possibility of using the HOBBs to transfer angular momentum to the
media. Figure 6.24 presents an example of the transversal intensity distribution.
The magnitude of the intensity maintains the characteristic ringed shape of the
Bessel beam profile, wile the pointing vector of the intensity rotates around the
axis.

The transfer of momentum from a wave to the media is closely related to the
acoustic radiation force field. In the case of acoustic radiation force generated
by scattering processes, i.e. when the gradient of the acoustic energy density is
not null due to reflection on surfaces or objects, Bessel beams have been demon-
strated high potential to generate interesting configurations for particle manip-
ulation where negative axial radiation forces have been observed. On the other
hand, if the gradient of the acoustic energy density is not null due to attenuation
processes, there appears also a radiation force field. For plane waves, the acous-
tic radiation force exerted in the bulk of the lossy media is directly proportional
to the intensity vector. The generated beams with acoustic intensity vortex can
offer great potential in practical applications that uses acoustic radiation force
generated by both, scattering or attenuation processes. The nonlinear acoustic
radiation force will be studied in detail in Chapter 9 in the case of lossy media
with frequency power law attenuation.
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Figure 6.24: Intensity of a first order Bessel-like beam generated by a grating spiral. Colormap
in I/Imax units, (arrows) intensity pointing vectors.

6.6 Conclusions

We have studied the scattering of Archimedes’ spiral gratings, and demonstrated
theoretically, experimentally and by numerical simulations that these diffraction
gratings generates chiral beams. These beams are basically truncated high order
Bessel beams, and are characterized by a null in the field all over it axis. It
is demonstrated how the geometrical focal surrounds the axis in an helix shaped
curve. It is of special interest the method presented for generation of arbitrary nth-
order Bessel beams using regular spiral patters with n-arms or arms. It was shown
that the order of the Bessel beam is directly the number of arms of the spiral. The
radial position of the ringed lateral lobes grows with the order of the Bessel beam,
and over it an acoustic vortex is generated. The topological charge of these vortex
was also proportional to the number of arms of the spiral. Furthermore, we have
demonstrated that another way to generate HOBBs is using higher diffraction
orders, but this approach generates also secondary secondary beams along the
axis and the energy spreads into all. Finally, The topological charge can be also
increased by cumulative nonlinear effects, where the number of the harmonic is
proportional to the product between the number of arms and the harmonic index.

The spiral diffraction gratings offers the possibility of dramatically increase the
order of the beam by using together the mentioned effects. Thus, a grating made of
high number of gratings can radiated with high frequency wave in order to excite
superior diffraction orders. Finally, the ith-harmonic will present a topological

184



6.6. References

charge of inN , increasing its rotation and the possibility of transferring angular
momentum to the media. On the other hand, currently work is being developed
applying the technique of period varying grating exposed in Chapter 5 to an spiral
configuration in order to achieve focusing of the vortex.

The presented method for synthesize HOBBs presents a high potential in ul-
trasound particle manipulation techniques and, in general, in acoustic radiation
force applications in which the HOBBs have attracted great interest. This method
provides the possibility of generation arbitrary order Bessel beams by a passive
and extremely cheap device compared to active multiarrays. The generation of
acoustic vortex by active means is limited by the amount of elements and its size.
In contrast, the beam resolution by the proposed gratings is limited by the size of
the scatterers and the space between them. Nowadays, with the increase in the
performance of 3D printing and laser cutting techniques, the generation if HOBBs
offer far more possibilities than its active counterpart to generate acoustical vortex.
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Garcia-Raffi, Juan Vicente Sánchez-Pérez, and K Staliunas (2014). “Acoustic Bessel-like
beam formation by an axisymmetric grating”. In: EPL (Europhysics Letters) 106.2, p. 24005.

Marchiano, Régis, François Coulouvrat, Lili Ganjehi, and Jean-Louis Thomas (2008). “Numerical
investigation of the properties of nonlinear acoustical vortices through weakly heterogeneous
media”. In: Physical Review E 77.1, p. 016605.

185



Chapter 6. Chiral beams generated by spiral gratings.

Marston, Philip L (2006). “Axial radiation force of a Bessel beam on a sphere and direction
reversal of the force”. In: The Journal of the Acoustical Society of America 120.6, pp. 3518–
3524.

Marston, Philip L (2007a). “Negative axial radiation forces on solid spheres and shells in a Bessel
beam”. In: The Journal of the Acoustical Society of America 122.6, pp. 3162–3165.

Mitri, FG (2008). “Acoustic scattering of a high-order Bessel beam by an elastic sphere”. In:
Annals of Physics 323.11, pp. 2840–2850.

Mitri, FG (2009). “Negative axial radiation force on a fluid and elastic spheres illuminated by a
high-order Bessel beam of progressive waves”. In: Journal of Physics A: Mathematical and
Theoretical 42.24, p. 245202.

Mitri, FG, TP Lobo, and GT Silva (2012). “Axial acoustic radiation torque of a Bessel vortex
beam on spherical shells”. In: Physical Review E 85.2, p. 026602.

Molerón, M., A. Leonard, and C. Daraio (2014). “Solitary waves in a chain of repelling magnets”.
In: J. Appl. Phys. 115.18, p. 184901.

Nye, JF and MV Berry (1974). “Dislocations in wave trains”. In: Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences. Vol. 336. 1605. The Royal
Society, pp. 165–190.

Oemrawsingh, S. S. R., J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen,
J. G. Kloosterboer, and G. W. ’t Hooft (2004). “Production and characterization of spiral
phase plates for optical wavelengths”. In: Appl. Opt. 43.3, pp. 688–694.
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Chapter 7

Time-Domain Nonlinear
Acoustic Wave Modelling

of Soft-Tissue Media

Abstract

A time-domain numerical code based on the constitutive relations
of nonlinear acoustics is presented. To model frequency power law
attenuation, such as observed in biological media, multiple relaxation
processes are included and relaxation parameters are fitted to both
exact frequency power law attenuation and empirically measured at-
tenuation data of a variety of tissues. A computational technique based
on artificial relaxation is included to correct the non-negligible numer-
ical dispersion of the numerical method and to improve stability when
shock waves are present. This technique avoids the use of high order
finite difference schemes, leading to fast calculations. The accuracy
of the method is discussed by comparison with analytical and k-space
numerical solutions, and also to focused beam experimental data.
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7.1 Introduction

The propagation of acoustics waves trough tissue for biomedical applications is
usually linked to nonlinear propagation (Carstensen et al., 1980). Nonlinear regime
is commonly achieved in therapy techniques in which the waves interact with the
tissue to achieve some ultrasound bio-effect. On the other hand, most tissues
shows very large acoustic attenuation coefficients at interest frequencies (Duck,
1990). Therefore, for most ultrasound imaging techniques the acoustic amplitude
necessary to achieve a good signal/noise ratio is high enough to generate weakly
nonlinear effects, while, in some applications, nonlinear effects are used as the
basis of imaging and therapy techniques.

Thus, accurate prediction of finite amplitude acoustic waves traveling through
biological media are essential in developing new therapy and imaging techniques
for medical ultrasound applications (Carstensen et al., 1980; Muir et al., 1980).
Numerous experimental studies show that attenuation α(f) of biological media
exhibits a power law dependence on frequency α(f) = α0f

γ over the frequency
range used in medical applications (Hill et al., 2004; Duck, 1990). Considering
an initial monochromatic plane wave traveling through nonlinear media, two op-
posite effects govern the final wave amplitude: on one hand, higher harmonics
appear and their amplitude grows as a consequence of nonlinear progressive wave
steepening; and on the other hand, the damping for each harmonic is different,
following the above power law. Therefore, differences in the frequency power law
model can lead to huge differences in attenuation of higher harmonics, and hence
the inclusion of frequency dependence attenuation is critical for correctly predict
nonlinear propagation.

7.1.1 Models of frequency power law media attenuation

Classical thermo-viscous sound attenuation exhibit a squared frequency depen-
dence, γ = 2 (Pierce, 1989), however the empirically fitted power law for soft
tissues typically ranges between γ = (0.6, 2) (Goss et al., 1979; Duck, 1990; Hill et
al., 2004). For most tissues the attenuation shows a dependence that can be mod-
eled by γ close to the unity, where the specific value varies from different tissues.
Moreover, for some individual examples the local value of γ exhibit lower values at
low ultrasound frequencies and tends to 2 in the high frequency limit (Hill et al.,
2004). Despite the study of the physical mechanism besides this complex frequency
dependence is out of the scope of this work, there exist numerous phenomenologi-
cal approaches for including the observed losses in the acoustic equations (Wismer
et al., 1995; Kellya et al., 2009). On the other hand, is common in literature to
describe the losses in soft tissues as multiple-relaxation processes (Nachman et al.,
1990; Hill et al., 2004), from continuous distribution of relaxation processes (Jon-
gen et al., 1986) to a discrete representation. Thus, relaxation parameters can be
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optimized to fit the observed tissue attenuation, where has been shown that two
processes are enough to model tissue attenuation with acceptable accuracy over
frequency range covering about 4 octaves (Yang et al., 2005). Moreover, fractional
partial differential operators can describe frequency power law attenuation (Ca-
puto, 1967) when inserted into a wave equation. These operators can be included
into wave modeling equations by means of time-causal convolutions (Szabo, 1994;
Chen et al., 2003), fractional spatial derivatives (Chen et al., 2004) and its causal
correction (Treeby et al., 2010), and combined time-space fractional derivatives
(Caputo, 1967; Wismer, 2006). The latter operators can be biological motivated
and derived from tissue micro-structure using fractal ladders based on networks of
springs and dashpots (Kellya et al., 2009). However, these fractional loss operators
can be also derived from a continuum of relaxation process (Nasholm et al., 2011),
that suggest that the two approaches can be equivalent under certain conditions
(Treeby et al., 2012).

7.1.2 Burgers equation

The above lossy operators can be included in a variety of nonlinear acoustic wave
propagation models and, while analytical solutions are not available for finite am-
plitude waves in frequency power law media even in simplest configurations, a wide
range of numerical methods has been developed. The numerical resolution of the
nonlinear constitutive equations in tissue-like medium supposes a difficult problem
due to the large size of the region of interest in relation to the size of the acoustic
wavelength and the complexity of the model. Simplifying assumptions have been
needed in the past for modeling nonlinear propagation in the past. Forward or
one-way methods are the simplest way to model progressive nonlinear acoustic
waves. The general representation of a causal media response was introduced in
the Burgers equation (Blackstock, 1985) leading to the generalized Burgers equa-
tion. Thus, by choosing an adequate time function in the convolution kernel the
attenuation and dispersion of an specific medium can be accurately modeled. The
memory function can be modeled by a discrete sum of relaxation processes (Cleve-
land et al., 1996), while fractional time derivatives can also be included into the
augmented Burgers equation (Ochmann et al., 1993).

7.1.3 KZK and one-way models

In order to describe finite amplitude sound beam diffraction effects in a paraxial
approximation the well-known Khokhlov-Zabolotskaya-Kuznetsov equation (KZK)
(Aanonsen et al., 1984; Lee et al., 1995) can be used. The KZK model can be
extended for accounting for tissue attenuation by including relaxation (Cleveland
et al., 1996; Yang et al., 2005) or fractional derivatives (Prieur et al., 2011). The
KZK equation is commonly solved by a split operator techniques (Lee et al., 1995)
that allows the frequency domain representation of the progressive wave. In this
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way, the inclusion of tissue attenuation can be achieved efficiently in frequency
domain (Khokhlova et al., 2006). Efficient and fast numerical solutions of the
KZK model in power law media are also feasible under the assumption of Gaussian
representation of the transverse field for each harmonic (Soneson et al., 2007). To
overcome the validity of the parabolic approximation (i.e. when dealing with
large aperture focused sound sources or modeling sound field near the acoustic
source) many approaches has been proposed (Varslot et al., 2005). Also other
phenomenological one-way approximations of finite amplitude sound beams has
been developed (Christopher et al., 1991; Tavakkoli et al., 1998) and extended
including tissue attenuation (Zemp et al., 2003). Furthermore, a numerical solution
of the one-way version of the Westervelt equation (Yuldashev et al., 2011) has been
also proposed.

7.1.4 Full-wave Westervelt type equations

Tissue inhomogeneity can be modeled in these one-way models (Jing et al., 2007),
like transmission though tissue layers with refraction, but they do not take into ac-
count backscattering and multiple reflections. More realistic models, e.g. those ac-
counting for scattering from internal tissue structures, are based on the Westervelt-
type full-wave equations. Finite-Differences in Time-Domain methods (FDTD)
can be applied to obtain explicit numerical schemes that account for nonlinear
propagation and temperature rising in thermo-viscous media (Hallaj et al., 1999),
where the inclusion of temperature-dependent sound speed changes can be also
modeled (Hallaj et al., 2001). Tissue attenuation can be achieved in the Wester-
velt nonlinear wave equation by including multiple relaxation processes (Pinton
et al., 2009) with optimized relaxation parameters. The Westervelt equation can
be solved also by the Iterative Nonlinear Contrast Source (INCS) (Huijssen et al.,
2010) where power law attenuation is modeled as a compliance relaxation function
(Demi et al., 2011; Verweij et al., 2013). Other approach to include tissue losses
in the Westervelt equation is to solve the model in k-space and directly include
tissue looses in spatial frequency domain (Jing et al., 2012). This full-wave equa-
tion has been validated for strongly focused sources (Jing et al., 2011). However,
due to the assumptions taken in the derivation of the Westervelt equation, the
accuracy of this model is limited in practical situations as (i) the modeling of rigid
boundaries where the thermo-viscous boundary layer effects are not-negligible,
i.e. in general case where the particle velocity becomes rotational, (ii) situations
where the second order Lagrangian density of acoustical energy not vanish, i.e.
where plane progressive waves does not exist and the acoustic field becomes com-
plex due to multiple scattering, reverberation or resonances, (iii) situations where
the equilibrium-state particle velocity is not null, including the self generation of
acoustic streaming. See Ref. Hamilton et al. (1998b) Chap. 3 for further discus-
sion.

In this way, a physical model based on the constitutive relations of nonlinear
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acoustics include a more complete description of the nonlinear acoustic phenom-
ena over arbitrary boundary conditions, i.e. the time-space relations between the
involved acoustic magnitudes remains exact.

7.1.5 Full-wave constitutive relations

The recent development of computational capacity has made possible to consider
the full constitutive relations (i.e. without the assumptions discussed above).
Thus, for small-amplitude acoustic waves, the linearized pressure-velocity formu-
lation of constitutive relations in inhomogeneous media was solved by means of
Finite-Differences in Time-Domain (FDTD) methods with frequency independent
losses by Manry et al. (Manry et al., 1996), or using two-step MacCormack finite-
differences scheme by Mast et al. (Mast et al., 1997). Also, relaxation processes
can be included in finite difference methods in an efficient way in order to model
tissue attenuation and dispersion (Yuan et al., 1999). Furthermore, k-space nu-
merical methods have also been applied to solve the linearized first order equations
in lossless inhomogeneous media (Mast et al., 2001). In order to account for soft
tissue losses, the computational solution of the fractional Laplacian by k-space
spectral methods have demonstrated to be extremely efficient due to the spatial
frequency domain representation of the acoustic field (Treeby et al., 2010).

In the case of nonlinear constitutive relations models, the evolution of the
acoustic magnitudes have been simulated in time-domain by means of finite dif-
ferences schemes such as Dispersion Relation Preserving method (DRP) in ideal
fluids and axisymmetric domains (Ginter et al., 2002). Thermo-viscous losses in
finite-differences methods have been widely used, see Sparrow et al. (Sparrow
et al., 1991). In order to introduce tissue attenuation in the governing equations
time-dependent fractional derivatives can be included by convolutional operators.
Thus, in Ref. Liebler et al. (2004) an efficient method has been presented, but
although the memory requirements can be strongly reduced compared to direct
convolutions the algorithm employs up to ten auxiliary fields and a memory buffer
of three time steps. Furthermore, construction of specific causal memory functions
that models soft tissue attenuation and dispersion in Navier-Stokes equations is
also possible (Lobanova et al., 2014), but certain time history must be stored in
memory and in this case the computational domain was restricted to one dimen-
sional propagation.

In order to overcome those numerical limitations, recently k-space and pseudo-
spectral numerical methods have been applied to constitutive relations in nonlinear
regime to solve fractional Laplacian operators efficiently (Treeby et al., 2012). Fur-
thermore, in the case of domains of hundreds of wavelengths, when the cumulative
phase error due to numerical dispersion of standard finite-difference schemes can
not be neglected, those spectral numerical methods have reported an improvement
in accuracy of the numerical solution. This two factors, i.e. the negligible numer-
ical dispersion and the efficient resolution of fractional Laplacian operators, have
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led the spectral methods to be widely used in practical applications. However,
their main limitation is that the implementation of natural space discontinuities
due to tissue layers or rigid boundary conditions leads to errors in the reconstruc-
tion of the spectral information due to the poor convergence of Fourier series at
jumps, i.e. the well-known Gibbs oscillations. Preventing this kind of errors is
typically achieved by filtering the spatial spectrum (Jing et al., 2012), so the the-
oretical spatial minimum sampling of two point per wavelength becomes larger.
In addition, these errors propagate globally and affect to the accuracy all over the
domain, in contrast with locally propagating errors in finite differences methods.
On the other hand, taking into account the spatial discontinuity due to symme-
try boundary condition, axisymmetric domains becomes not feasible by standard
k-space methods, and full 3D domains must be employed even for axisymmetric
configurations. Those errors can be prevented by means of the recently developed
Fourier Continuation (FC) method (Albin et al., 2012). However, the disconti-
nuities formed due to shock propagation are still not solved by FC methods and
other additional numerical treatment must be applied for correctly describe shock
formation, e.g. intensive computations by high order accurate weighted essentially
non-oscillatory schemes (FC/WENO) (Shahbazi et al., 2011). Unlikely, the com-
putational times increases by using those intensive computational techniques and
the multiresolution analysis to detect discontinuities in the domain.

The aim of the present chapter is to present a generalization of the constitutive
relations of nonlinear acoustics including multiple relaxation processes in a non-
convolutional formulation that allows the time-domain numerical solution by an
explicit finite differences numerical scheme. Frequency power law attenuation
based in relaxation have been applied in the same way than it has been applied
to generalized Burgers equation (Cleveland et al., 1996), Khokhlov-Zabolotskaya-
Kuznetsov (KZK) model (Cleveland et al., 1996; Yang et al., 2005) and Westervelt
equation (Pinton et al., 2009). The relaxation parameters have been fitted to both
exact frequency power law attenuation and empirically measured attenuation of a
variety of tissues that does not fit an exact power law. Two processes have been
enough to model tissue attenuation with acceptable accuracy over a frequency
range covering about 4 octaves, as it was demonstrated by Yang et al. (Yang
et al., 2005). A numerical technique based on artificial relaxation is included to
control the non-negligible numerical dispersion of the FDTD method and improve
stability when shock waves are present in the solution. The method includes
backscattering and arbitrary propagation direction of finite amplitude beams, and
can be specially suitable in axisymmetric configurations where the computational
resources for full 3D k-space methods are prohibitive.
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7.2 Generalized nonlinear acoustics model for mul-
tiple relaxation media

7.2.1 Full-wave modeling

The principles of mass and momentum conservation lead to the main constitu-
tive relations for nonlinear acoustic waves, which for a fluid can be expressed as
(Naugolnykh et al., 1998)

∂ρ

∂t
= −∇ · (ρv) (7.1)

and

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ η∇2v +

(
ζ +

η

3

)
∇ (∇ · v) , (7.2)

where ρ is the total density field, v is the particle velocity vector, p is the pres-
sure, and η and ζ are the coefficients of shear and the bulk viscosity respectively.
The acoustic waves described by this model exhibit viscous losses with quadratic
power law dependence on frequency. In order to include a power law frequency
dependence on the attenuation, a multiple relaxation model will be added into the
time domain equations.

The basic mechanism for energy loss in relaxing media is the appearance of a
phase shift between the pressure and density fields. This behavior is commonly
modeled as a time dependent relation at the fluid state equation, that for a fluid
retaining the material nonlinear effects up to second order an be expressed as
(Naugolnykh et al., 1998; Rudenko et al., 1977):

p = c20ρ
′ +

c20
ρ0

B

2A
ρ′2 +

∫ t

−∞
G(t− t′)∂ρ

′

∂t
dt, (7.3)

where ρ′ = ρ− ρ0 is the density perturbation over the stationary density ρ0, B/A
is the nonlinear parameter, c0 is the small amplitude sound speed, and G(t) is
the kernel associated with the relaxation mechanism. The first two terms of the
right hand side of Eq. (7.3) describe the instantaneous response of the medium,
where the convolutional third term accounts for the “memory time” of the re-
laxing media. Thus, by choosing an adequate time function for the kernel G(t)
the model can present an attenuation and dispersion response that fits the exper-
imental data of the heterogeneous media. However, the direct resolution of the
constitutive relations (7.1-7.3) in this integral form is a complex numerical task due
to the convolutional operator. Thus, instead of describe G(t) with a specific time
domain waveform, the response of the heterogeneous medium can be alternatively
described by a sum of N relaxation processes with exponential time dependence

197



Chapter 7. Time-domain nonlinear acoustic wave modelling of soft-tissue media.

as: ∫ t

−∞
G(t− t′)∂ρ

′

∂t
dt =

N∑
n=1

Gn ∗
∂ρ′

∂t
, (7.4)

with the n-th order relaxation kernel expressed as

Gn(t) = ηnc
2
0 e
−t
τnH(t), (7.5)

where H(t) is the Heaviside piecewise function H(t < 0) = 0, H(t > 0) = 1,
τn is the characteristic relaxation time and ηn the relaxation parameter for the
n-th order process. This last dimensionless parameter controls the amount of
attenuation and dispersion for each process as ηn = (c2n − c20)/c20, where cn is the
sound speed in the high frequency limit associated to n-th order relaxation process,
also known as the speed of sound in the “frozen” state (Pierce, 1989). In order
to describe relaxation without the need of including a convolutional operator, we
shall define a state variable Sn for each process as

Sn =
1

τn
Gn ∗ ρ′. (7.6)

Thus, using the convolutional property ∂
∂t (G(t) ∗ ρ′(t)) = ∂G(t)

∂t ∗ ρ′(t) =

G(t) ∗ ∂ρ′(t)
∂t , the time derivative of the relaxation state variable obeys the fol-

lowing relation for the n-th order process:

∂Sn
∂t

=

(
− 1

τn

ηnc
2
0

τn
e−

t
τnH(t) +

ηnc
2
0

τn
e−

t
τn δ(t)

)
∗ ρ′ (7.7)

where δ(t) is the Dirac delta function. Using the Eq. (7.6) this relation becomes
a simple ordinary differential equation for each process as

∂Sn
∂t

= − 1

τn
Sn +

ηnc
2
0

τn
ρ′. (7.8)

Using again convolutional properties, we can substitute Eq. (7.8) into (7.4),
and the relaxing nonlinear state Eq. (7.3) becomes

p = c20ρ
′ +

c20
ρ0

B

2A
ρ′2 −

N∑
n=1

Sn +

N∑
n=1

ηnc
2
0ρ
′. (7.9)

Moreover, if “frozen” sound speed for N mechanisms is defined as c2∞ =

c20

(
1 +

N∑
n=1

ηn

)
, Eq. (7.9) leads to

p = c2∞ρ
′ +

c20
ρ0

B

2A
ρ′2 −

N∑
n=1

Sn. (7.10)
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Due to the smallness of the relaxation parameter, ηn, i.e. when weak dispersion
is modeled, the sound speed in the high frequency limit reduces to (Naugolnykh
et al., 1998):

c∞ = c0

(
1 +

N∑
n=1

ηn
2

)
. (7.11)

Note Eq. (7.10) for a mono-relaxing media is equivalent to that can be found
in literature (Rudenko et al., 1977)

p = c2∞ρ
′ +

c20
ρ0

B

2A
ρ′2 −

t∫
−∞

ηc20
τ

e
−
(
t−t′
τ

)
ρ′(t′). (7.12)

Thus, the constitutive relations to solve by means of the numerical method in
the nonlinear regime are the continuity Eq. (7.1), the motion Eq. (7.2) and the
second order fluid state relaxing Eq. (7.10), where the state variable Sn obeys
the relation (7.8) for the n-th order relaxation process. Although the aim of this
work is to model biological media, the generalized formulation presented here can
be used to describe the attenuation and hence the dispersion observed in other
relaxing media, as the relaxation processes of oxygen and nitrogen molecules in
air or the relaxation associated with boric acid and magnesium sulfate in seawater
(Pierce, 1989).

7.2.2 Small amplitude modeling

If small amplitude perturbations are considered, an equivalent derivation of this
model can be expressed for multiple relaxation media (Yuan et al., 1999). Thus,
for an homogeneous inviscid relaxing fluid the linearized continuity and motion
Eq. (7.1-7.2) reduces to

∂ρ

∂t
= −ρ0∇ · v (7.13)

and

ρ0
∂v

∂t
= −∇p, (7.14)

and linearizing the fluid state Eq. (7.10) we obtain:

ρ′ =
1

c2∞

(
p+

N∑
n=1

Sn

)
. (7.15)

These equations can be solved directly in this form, however, if expressed in
pressure-velocity formulation the density field is no longer necessary and com-
putational effort can be reduced. Thereby, assuming a linear “instantaneous”
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compressibility κ∞ = ρ0c
2
∞, and substituting Eq. (7.15) into Eq. (7.13) yields

∂p

∂t
+

N∑
n=1

∂Sn
∂t

= −κ∞∇ · v. (7.16)

Then, taking the time derivative of the state variable Eq. (7.8) we get

∂p

∂t
−

N∑
n=1

1

τn
Sn + ρ′

N∑
n=1

ηnc
2
0

τn
= −κ∞∇ · v. (7.17)

Finally, substituting again the linearized state Eq. (7.15) and arranging terms
the linearized continuity equation leads to

∂p

∂t
+ p

N∑
n=1

ηnc
2
0

τnc2∞
+

N∑
n=1

(
ηnc

2
0

τnc2∞
− 1

τn

)
Sn = −κ∞∇ · v. (7.18)

On the other hand, the state evolution equation can be expressed as a function
of the acoustic pressure as

∂Sn
∂t

= − 1

τn
Sn +

ηnc
2
0

τnc2∞

(
p−

N∑
n=1

Sn

)
. (7.19)

Thus, the linearized governing Eq. (7.14, 7.18) for a relaxing media are ex-
pressed in a pressure-velocity formulation and can be solved together with the
coupled state evolution equation (7.19) by means of standard finite differences
numerical techniques (Yuan et al., 1999). In this way, lossless linear acoustics
equations can be obtained by setting ηn = 0 or in the limit when the relaxation
times τn → ∞. The relaxation behavior described by this linearized model is
achieved too by the formulation described by (Yuan et al., 1999), where the relax-
ation coefficients ηn and the relaxation variable Sn are defined in a different, but
analogous way.

7.3 Numerical solution by finite differences in time
domain

In this section the numerical techniques for solving the complete set of equations
(continuity Eq. (7.1), momentum Eq. (7.2), state Eq. (7.10) and the relaxation
Eq. (7.8)) are presented. The numerical method is based on a second order FDTD
method where multiple relaxation processes are included in order to: first, mod-
eling physical attenuation and dispersion in the interest frequencies and second,
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Figure 7.1: Spatial discretization as in standard acoustics FDTD method. The pressure (pmi,j)

and the n-th order relaxation process state fields (Smn,i,j) are evaluated at same discrete location

as the density (ρmi,j). Particle velocity fields are discretized staggered in both space and time
respect to the density, pressure and the n-th order state fields.

correct the numerical dispersion and include artificial attenuation to guarantee
convergence in nonlinear regime. Moreover the inclusion of relaxation processes in
the presented formulation require only one extra field per relaxation process and
no memory buffer is needed.

7.3.1 Discretization

Cylindrical axisymmetric x = (r, z) coordinate system is considered in this work,
however, the method can be derived in other coordinate system. As in the standard
acoustic FDTD method (Botteldooren, 1996), the particle velocity fields are dis-
cretized staggered in time and space respect to the density and pressure fields. As
shown in Fig. 7.1 uniform grid is considered, where r = i∆r, z = j∆z, t = m∆t,
with ∆r and ∆z as the radial and axial spatial steps, and ∆t is the temporal step.

Centered finite differences operators are applied over the partial derivatives of
the governing equations. Thus, spatial interpolation is needed over the off-center
grid variables in order to fulfill the conservation principles over each discrete cell
of the domain (LeVeque, 1992). The r component of Eq. (7.2) is expressed in a
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cylindrical axisymmetric system as

∂vr
∂t

=− 1

ρ

∂p

∂r
− vr

∂vr
∂r
− vz

∂vr
∂z

(7.20)

+
η

ρ

(
∂2vr
∂r2

+
1

r

∂vr
∂r

+
∂2vr
∂z2

− vr
r2

)
+

1

ρ

(
ζ +

1

3
η

)(
∂2vr
∂r2

+
1

r

∂vr
∂r

+
∂2vz
∂r∂z

− vr
r2

)
.

Each term of the above expression is approximated by centered finite differences
evaluated at r = (i + 1

2 ) ·∆r, z = (j + 1
2 ) ·∆z, t = (m + 1

2 ) ·∆t. This equation

can be solved obtaining an update equation for vr
m+ 1

2

i+ 1
2 ,j

. In the same way, the z

component of the motion equation (7.2) is expressed as

∂vz
∂t

=− 1

ρ

∂p

∂z
− vr

∂vz
∂r
− vz

∂vz
∂z

(7.21)

+
η

ρ

(
∂2vz
∂r2

+
1

r

∂vz
∂r

+
∂2vz
∂z2

)
+

1

ρ

(
ζ +

1

3
η

)(
∂2vr
∂z∂r

+
1

r

∂vr
∂z

+
∂2vz
∂z2

)
.

This equation is approximated by centered finite differences and evaluated at
r = i ·∆r, z = (j+ 1

2 ) ·∆z, t = m ·∆t. An update equation is obtained solving this

equation for vz
m+ 1

2

i,j+ 1
2

. The equation (7.1) in cylindrical axisymmetric coordinate

system is expressed as

∂ρ

∂t
= −ρ

(
∂vr
∂r

+
vr
r

+
∂vz
∂z

)
− vr

∂ρ

∂r
− vz

∂ρ

∂z
. (7.22)

Following the same procedure, each term of the above expression is approx-
imated by centered finite differences and evaluated at r = i · ∆r, z = j · ∆z,
t = (m + 1

2 ) ·∆t, and the update equation is obtained solving this expression for

ρm+1
i,j .

A leap-frog time marching is applied to solve Eq. (7.20-7.22) for each time step
until the desired simulation time is reached. Finally, Eq. (7.8) is locally solved for
m + 1 by and explicit fourth-order Runge-Kutta method and then Eq. (7.10) is
evaluated.

7.3.2 Boundary conditions

The staggered grid is terminated on velocity nodes, so the boundary conditions are
applied on these external nodes, allowing to prevent the singularity of the cylindri-
cal coordinate system: due to the staggered grid, the only variable discretized at
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Figure 7.2: Reflection coefficient of the perfectly matched layer (PML) versus number of layers
for different wave amplitudes.

r = 0 is vr, and axisymmetric condition vr|r=0 = 0 is applied there. Furthermore,
to solve spatial differential operators at boundaries some “ghost” nodes must be
created with the conditions: vr(−r) = −vr(r), vz(−r) = vz(r), ρ(−r) = ρ(r) and
p(−r) = p(r).

Perfectly matched layers (PML) (Liu et al., 1997) were placed in the limits
of the domain (±z and +r) to avoid spurious reflections from the limits of the
integration domain. Inside the PML domains linearized acoustic equations were
solved using the complex coordinate screeching formulation (Liu, 1999). For a layer
of 30 elements and a broadband incident wave with 1 MHz central frequency and
non-normal incidence angle, these absorbent boundary conditions have reported a
reflection coefficient of R = −55.2 dB.

However, the performance of the PML is amplitude dependent as long the
nonlinear terms are uncoupled to the PML domains. The amplitude dependence
of the reflection coefficient is shown in Fig. 7.2, where a PML of 25 elements
thickness have reported reflection coefficients R < −50 dB for waves in linear
regime and highly nonlinear waves including shocks.

7.3.3 Minimizing numerical dispersion

The stability for the lossless linear FDTD algorithm follows the Courant-Friedrich-
Levy (CFL) condition, that for uniform grid (∆r = ∆z = ∆h) the maximum
duration of the time step is limited by ∆t ≤ ∆h/c0

√
D where D is the number

of dimensions (i.e. D = 2 in cylindrical axisymmetric coordinate system). That
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condition essentially states that for a single time step information can not propa-
gate in the numerical grid a distance longer that one cell. However, if relaxation is
included numerical instabilities have been observed when τf/2π < ∆t. Due to this
empirical relation, the maximum values for relaxation frequencies are limited too
by the chosen spatial discretization by the simple relation fn <

√
2Nλf0, where

fn = 2π/τn is the maximum relaxation frequency for all processes, Nλ is the num-
ber of spatial samples per wavelength and f0 the frequency of the propagating
wave.

On the other hand, nonlinear effects induce the progressively growing of har-
monics of the fundamental frequency of the initial wave. The diffusive viscous
terms in Eq. (7.2), attenuates the small-amplitude high-spatial frequencies, damp-
ing the “node to node” numerical oscillations and ensuring numerical stability in
weakly nonlinear regime. Thus, for a smooth solution the numerical algorithm
shows consistency when ∆h → 0, so if stability is achieved by the CFL condi-
tion, the convergence is guaranteed. However, in strongly nonlinear regime, i.e.
when sharp waveforms or even shocks are present in the solution, extra numer-
ical techniques must be employed to guarantee convergence. Artificial viscosity
can be added when shock waves are present in the solution where a common im-
plementation follows a fourth order spatial filtering (Sparrow et al., 1991; Ginter
et al., 2002). Thus, the artificial attenuation retrieved by this spatial operator is
fourth power of frequency: the low frequency components of the solution remains
quasi-undamped, while the higher spatial frequencies are strongly attenuated. In
this way, the solution is smoothed and shock thickness depends on the artificial
viscosity coefficient.

However, the main drawback for finite difference methods is numerical disper-
sion, where the analytic dispersion relation can be expressed in 1D as

sin2 k∆h

2
=

1

S2
sin2 ω∆t

2
, (7.23)

with the Courant number S = c0∆t/∆h. In this way, numerical dispersion re-
duces phase speed for high frequency components so traveling sharp solutions
develop tail oscillations: the low wavenumbers travels fast and left behind high
spatial frequencies. In nonlinear regime, is well-known that the combined effects
of nonlinearity and strong dispersion can lead rich phenomena, e.g. beatings in
the generated harmonics, pulsations on the vertex of a sawtooth wave or soliton
formation in strong dispersive media (Rudenko et al., 1977). In this way, the nu-
merical dispersion by discreteness of the FDTD methods couple to the physical
nonlinearity can lead to a great variety of non-physical or even unstable solutions.

In order to overcome those two limitations, i.e. the generation of harmonics
over the discrete limit and the numerical dispersion, we propose the use of arti-
ficial relaxation. Physical relaxation processes introduces anomalous dispersion,
i.e. the phase speed increases in the high frequency regime, opposite to the nu-
merical (lattice) dispersion described above. Thus, by introducing a collection of
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Figure 7.3: Normalized dispersion relation for of a FDTD lattice of Courant number S = 0.9
and anomalous dispersion relation for a mono relaxing acoustic media. The straight line c0 = ω/k
represents the reference nondispersive case.

relaxation processes and choosing its adequate relaxation parameters the high fre-
quency numerical dispersion can be compensated. As a consequence, introduction
of those relaxation processes in the high frequency lead to the inevitable inclusion
of artificial attenuation. However, this numerical attenuation is then exploited
to limit the growing of higher harmonics in a similar way than artificial viscosity
(Sparrow et al., 1991). It is worth noting here that, due to the attenuation us-
ing artificial relaxation is, at maximum, only second power of frequency, the low
frequency range of the solution is therefore also attenuated. Thus, the proposed
method is restricted to lossy media.

The adequate relaxation parameters that corrects the numerical dispersion
have been found by multi-objective optimization techniques, where two cost func-
tion are proposed: one for dispersion and other for attenuation. In the first case,
the error between the goal (ideal) dispersion relation and the retrieved numerical
dispersion corrected by multiple artificial relaxation and is evaluated in the high
frequency regime. Finally, the second cost function is the error between the desired
(ideal) attenuation and the artificial attenuation evaluated in the low frequency
regime.
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7.4 Validation

7.4.1 Single relaxation process

A canonical case of a physical single relaxation process is presented. In order
to correct numerical dispersion the parameters of two extra artificial relaxation
processes have been found using the multi-objective genetic algorithms provided
by the optimization toolbox in MATLAB R2014a v8.03. Linear propagation was
considered and simulation parameters were set to typical values for water: c0 =
1500 m/s, ρ0 = 1000 kg/m3, B/A = 5, η = 8.90 · 10−4 Pa·s. A single physical
relaxation process was included, with a characteristic relaxation time of τ1 =
1/2πf0 and f0 = 2 MHz, and relaxation modulus of η1 = 0.0134 that leads to a
frozen sound speed of c∞ = 1510 m/s. In this case, the numerical parameters were
set to ∆r = ∆z = 1.87 · 10−7 m and ∆t = 8.65 · 10−11 s. A plane wave traveling
in +z direction was considered.

Thus, the theoretical attenuation for the relaxation processes and including
viscosity can be expressed as

α(ω) =
ω2

2ρ0c30

(
ζ +

4

3
η

)
+

N∑
n=1

ηn
2c0τn

ω2τ2
n

1 + ω2τ2
n

, (7.24)

and the theoretical phase velocity can be predicted as (Pierce, 1989)

cp(ω) = c0

(
1 +

N∑
n=1

ηn
2

ω2τ2
n

1 + ω2τ2
n

)
. (7.25)

In order to compute the attenuation and dispersion of the numerical method,
simulated pressure was recorded at two locations z0 and z1, and attenuation and
phase velocity were estimated from the spectral components over the bandwidth
of the input signal. The numerical attenuation was calculated as

α(ω)fd =
ln (|P (ω, z1)/P (ω, z0)|)

(z1 − z0)
, (7.26)

where P (ω) is the Fourier transform of the measured pressure waveforms at points
z0 and z1. On the other hand, the phase velocity was computed as

cp(ω)fd =
ω · (z1 − z0)

arg (P (ω, z1)/P (ω, z0))
, (7.27)

where correct phase unwrapping is needed.
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In this way, Fig. 7.4 shows the retrieved Pareto front of the optimization,
where 3 different areas can be distinguished. The first area, marked as (A) in Fig.
7.4, represents individuals those numerical dispersion is minimal but attenuation
is not optimal. On the other hand, the individuals around area (B) represent a
set of relaxation parameters that provides the best agreement between numerical
and physical attenuation. A good compromise between both situations can be
obtained in the central area of the Pareto front (C), where retrieved attenuation
and dispersion in the low frequency band shows good agreement with the physical,
and the numerical dispersion has been corrected over a wide frequency range.
However, as can be seen in the inset of Fig. 7.4, the dispersion relation retrieved
by all the cases corrects the FDTD lossless numerical dispersion relation. The
phase speed of those tree individuals is shown in Fig. 7.5 b), where it can be seen
that in the frequency range selected for the optimization the numerical phase speed
is corrected for all the individuals, where the best fit is obtained for individuals in
the Pareto front area A. On the other hand, the inclusion of artificial relaxation
leads to an increasing of the attenuation in the high frequency range, as is shown
in Fig. 7.5 a). In this way, as the phase speed error is reduced the effect of
artificial attenuation increases. Although this increasing can be seen as a non-
desired counterpart, the appearance of this attenuation is useful in order to control
the harmonic growing in nonlinear regime in the same way as artificial viscosity
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Figure 7.4: Pareto front retrieved by the multi-objective genetic optimization. Red marker
(A) is the solution those relaxation parameters minimizes the numerical dispersion. The best fit
in the attenuation are the parameters that provided the solution marked by green circle (B). A
compromise between attenuation and dispersion is achieved at the individuals in the center of the
Pareto front as the sample marked by blue circle (C). The inset shows the normalized dispersion
relation retrieved by the individuals A-C. Dashed black line shows the numerical dispersion
relation of the FDTD method for a Courant number of 0.94 without artificial relaxation.
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Figure 7.5: Retrieved attenuation (Up) and dispersion (Down) by the inclusion of artificial
relaxation for the individuals A (red), B (green) and C (blue) of Fig. 7.4. Continuous lines
represent the frequency range included by the optimization and dashed lines the not useful
frequency range. As a consequence of correcting dispersion appears attenuation in the high
frequency range that will be used as artificial attenuation for nonlinear stability.

spatial operators (Sparrow et al., 1991).

7.4.2 Nonlinear steady solution for single relaxation process

In order to validate the method in the nonlinear regime a full-wave simulation was
developed in a mono-relaxing media using above parameters. Thus, the analytical
(inverted) solution for the steady solution with p = −p0 for τ = −∞, p = p0 for
τ = ∞ and p = 0 for τ = 0, for the retarded time τ = t − z/c0 reads (Hamilton
et al., 1998b)

τ = τn ln
(1 + p/p0)

D−1

(1− p/p0)
D+1

(7.28)

where D = ηnρ0c
2
0/2βp0 measures the ratio of relaxation effects to nonlinear ef-

fects.
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For D > 1, where no shock is present, the solution retrieved by FDTD algo-
rithm shows good agreement with analytical and no artificial relaxation is needed.
However, for D < 1 a discontinuity is present in the solution and convergence is
only possible with the inclusion of extra numerical techniques.

Thus, Fig. 7.6 (a-c) shows the analytical and numerical solutions including
artificial relaxation and artificial viscosity, where excellent agreement is achieved in
all cases. In the case of artificial viscosity, higher harmonics are strongly attenuated
and by reducing grid step convergence can be achieved. However, as long the phase
speed of the higher spatial frequencies present in the shock is modified due to
numerical dispersion, oscillations appears in the tail of the discontinuity, leading
to the appearance of non-physical solutions. On the other hand, the artificial
attenuation by relaxation also limits the harmonic growing so a smooth version of
the shock appears. Moreover, artificial relaxation also corrects phase velocity so
all the spatial frequencies travels at same speed and no oscillatory tail appears.
The case of D = 0.01 is shown in Fig. 7.6 c), where nonlinear effects strongly
dominates over attenuation. In this case, tail oscillations provided by artificial
viscosity increases in amplitude. In contrast, by including artificial relaxation a
smoothed version of the shock is captured and accuracy is maintained.

7.5 Results

7.5.1 Frequency power law attenuation

Using methodology described above, the optimal relaxation parameters were ob-
tained in order to fit the multiple-relaxation numerical attenuation to frequency
power law attenuation in the form

α(ω) = α0ω
γ , (7.29)

where γ is the power law exponent and α0 the power law coefficient in Np (rad/s)γm−1.
Moreover, the numerical dispersion was corrected by means of artificial relaxation
in order to fit the corresponding frequency power law dispersion, where its ana-
lytical form satisfying causality can be expressed as (Waters et al., 2005)

1

cp (ω)
=

1

c(ω0)
+ α0 tan

(πγ
2

)(
|ω|γ−1 − |ω0|γ−1

)
. (7.30)

This expression is valid for 0 < γ < 3 with γ 6= 1, and an alternate equation can
be found (Waters et al., 2005) in the limit for γ = 1. Here, simulation parameters
were c0 = 1500 m/s, ρ0 = 1000 kg/m3, B/A = 5, η = 8.90 · 10−4 Pa·s, f0 = 1
MHz, ∆r = ∆z = 1.3 · 10−5 m, ∆t = 5.4 · 10−9 s; that leads to 26 elements per
wavelength and a CFL number of 0.9. Only two independent relaxation processes
were employed in this section to obtain the target frequency power laws.
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Figure 7.8: Phase speed retrieved by the numerical algorithm (markers) and target frequency
power law attenuation (gray lines) for γ = [1, 1.3, 1.6, 2].

Following the above procedure, the relaxation times τn and relaxation modulus
ηn were optimized for different frequency power laws covering the range of that
observed in tissues γ = [1, 1.3, 1.6, 2]. The attenuation coefficient α0 was chosen for
each power law to present an attenuation α = 1 dB/cm/MHzγ . The fitting was
developed over the typical frequency range for medical ultrasound applications,
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Figure 7.9: Experimental attenuation data for some tissues adapted from (Hill et al., 2004)
(lines), and obtained by the numerical method (markers) by fitting the parameters of 2 relaxing
processes. The numbers above the curves show the coefficient of the frequency power law γ for
each frequency region (i.e. the slope of the curve).

i. e. 1 to 20 MHz for both attenuation and phase speed. The results for the
attenuation and phase speed curves are plotted in Fig. 7.7 and Fig. 7.8, where the
theoretical and the numerical predictions agree over the frequency range used for
the fitting.

7.5.2 Fitting attenuation for tissue experimental data

Although a frequency power law dependence can describe the ultrasound attenua-
tion over a finite frequency range, the attenuation data of some particular examples
shows variation of the exponent over the entire frequency range (Hill et al., 2004).
Thus, Fig. 7.9 shows experimental attenuation data curves for some tissues where
the local slope of the power law changes over the measured frequency range. This
behavior can be modeled by a sum of relaxation processes by optimizing the re-
laxation parameters as described above. Thus, the results show that most tissues
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Table 7.1: Error of the optimized attenuation response relative to the experimental data for N
relaxation processes.

Tissue Power law N = 1 N = 2 N = 3 N = 4

(local slope) ε(%) ε(%) ε(%) ε(%)

Skin f0.6 6.67 0.167 0.136 0.120

Liver f1.2 7.62 0.517 0.404 0.165

Blood f1.4, f1 8.34 0.349 0.330 0.310

Breast f0.9, f1.2 5.20 0.216 0.209 0.205

Skull bone f0.9, f2.1, f0.5 10.60 10.54 8.628 5.189

with locally variable γ can be fitted by only a pair of relaxation processes, as the
same way that for constant-slope frequency power law attenuation (Cleveland et
al., 1996).

In this way, Table 7.1 shows the error of the numerical attenuation relative to
the experimental data. The percent relative error was computed as

ε =
100

f2 − f1

∫ f2

f1

|αe(f)− α(f)|
αe(f)

df, (7.31)

where αe(f) is the experimental attenuation data, f1 and f2 define the frequency
range of the measurement.

As expected, the goodness of fit grows as the number of relaxation processes
included increases. However, only two processes are enough to obtain relative
errors below 1% for tissues with γ < 2. In the case of tissues where a local value
of γ > 2 has been observed, the fitting procedure fails, like in the skull bone
in the 2 MHz range (Hill et al., 2004). The maximum slope achieved by single
relaxation and thermo-viscous losses is γ = 2 for any frequency, so a tissue showing
that slope cannot be accurately modeled in this frequency region with the method
proposed in this work. Another point of view of is from dispersion: Eq. (7.30 states
that frequency power law medium with 2 < γ < 3 presents standard dispersion
(Waters et al., 2005), opposite to anomalous dispersion for media falling in the
range 0 < γ < 2. Therefore, the dispersion relation of media with 2 < γ < 3
cannot be modeled by a sum of relaxation processes as long relaxation includes
anomalous dispersion.

Using Kramers-Kronig relationships (O’Donnell et al., 1981), the variations of
sound speed ∆c can be predicted by the frequency dependent attenuation. Table
7.2 shows the variation of sound speed observed in the numerical solution over
the fitted frequency range. The magnitude of these variations are of the order of
magnitude of those measured experimentally in this frequency range, and the fre-
quency dependence observed for the variation is roughly linear as observed in real

213



Chapter 7. Time-domain nonlinear acoustic wave modelling of soft-tissue media.

Table 7.2: Variation of sound speed (∆c) observed numerically for the modeled tissues by
means of two relaxation processes and analytical using the Kramers-Kronig relations.

Tissue Numerical ∆c Analytical ∆c

(m/s) (m/s)

Skull bone 80.737 70.720

Skin 10.148 2.460

Breast 2.323 2.455

Liver 3.118 2.339

Blood 0.865 0.907

tissue (Hill et al., 2004). As expected from the relations between dispersion and
absorption (O’Donnell et al., 1981), the magnitude of the variation in sound speed
increases as the total variation of the absorption increases for a given frequency
range.

7.5.3 Nonlinear one-dimensional propagation in tissue-like
media

Non-dispersive media

In order to study the convergence of the numerical calculations to an analytical
solution of the model in the nonlinear regime, a medium with frequency squared
dependence attenuation is implemented using the adequate relaxation times and
relaxation modulus as explained above. The solution for the frequency squared
absorption is compared with the analytical solution for a plane wave traveling
through a thermo-viscous fluid proposed by Mendousse (Pierce, 1989):

p

p0
=

4
Γ

∑∞
n=1 (−1)

n+1
In
(

Γ
2

)
ne−n

2σ/Γ sin (nωt′)

I0
(

Γ
2

)
+ 2

∑∞
n=1 (−1)

n
In
(

Γ
2

)
ne−n2σ/Γ cos (nωt′)

(7.32)

where Γ is the Gol’dberg number, defined for power law media as Γ = xa/xs,
with absorption length xa = 1/α0ω

γ , shock formation distance xs = 1/βεk and
normalized distance σ = x/xs; with the parameter of nonlinearity β = 1 + B/2A
and the acoustic Mach number ε = v/c0, with v is the source particle velocity and
k the wavenumber.

Figure 7.11 (top) present the simulated waveforms at σ = 1 and σ = 3. The
wave steepening due to nonlinear processes in the absence of dispersion are well
resolved by the numerical method presented here. In order to study the accuracy
of the algorithm, the amplitude of the first ten harmonics has been extracted for
numerical and analytic solutions and plotted versus σ in Fig. 7.11 (bottom). The
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observed relative error of the computational method decreases due to grid coars-
ening by a square law (i.e. the numerical scheme is second order accuracy). The
magnitude of the error mainly depends on the number of elements per wavelength
but, due to not ideal dispersion, also on the traveled propagated distance. Includ-
ing the correction of dispersion by artificial relaxation, for a path length of 100 λ,
a grid of 26 elements per wavelength was needed to obtain a relative error below
1 % for the third harmonic. Obviously, the relative error of the first and second
harmonics will be always lower, i.e. the fundamental component error was 0.072
%.

In addition, the solution was compared also to the obtained by a k-space
method applied to the constitutive relations by using the k-wave algorithm (Treeby
et al., 2012). This method was selected due to the low numerical dispersion and
the possibility of including frequency power law attenuation. The result of both
computational methods and Eq. (7.32) agree over all the spectral components
analyzed, showing convergence to the analytic solution.

Dispersive media

In the case of frequency power law attenuation media with γ ≈ 1 no general
analytic solution exist in nonlinear regime for monochromatic progressive waves.
Thus, in order to study convergence in this regime, the proposed FDTD solution
was compared with the solution obtained by k-space methods (Treeby et al., 2012).
By using same physical and grid parameters in both methods, the solutions agrees
for different power laws. Thus, Fig. 7.12 (top) shows the good agreement for the
waveforms measured at σ = 1 and σ = 3 obtained for γ = 1.6, where the charac-
teristic asymmetry of media with anomalous dispersion (e.g. relaxing, boundary
layer effects) (Hamilton et al., 1998b) is observed: the shock front after the rar-
efaction phase is followed by a rounded positive compression profile. The spatial
distribution for each harmonic is shown in Fig. 7.13 (bottom), where it is observed
that the proposed FDTD solution with optimized attenuation and dispersion con-
verges to the obtained by pseudo-spectral methods up to ten harmonics. As in the
case of frequency squared media, grid refinement numerical tests have reported a
second order accuracy of the FDTD method in nonlinear regime.
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7.5.4 Nonlinear propagation in tissue-like media including
diffraction

Experimental validation

An experiment was designed to test the validity of the algorithm for intense
beams in frequency power law attenuation media. The source was formed by a
plane single element piezoceramic crystal (PZ 26, Ferroperm Piezoceramics, Den-
mark) mounted in a custom designed steel housing and a Polymethyl methacrylate
(PMMA) focusing lens with aperture A = 50 mm and radius of curvature R = 50
mm. The source was driven with a sinusoidal pulse burst of frequency f0 = 1.112
MHz and n = 50 cycles using a function generator (14 bits, 100 MS/s, model
PXI5412, National Instruments) and a linear RF amplifier (ENI 1040L, 400W,
55dB, ENI, Rochester, NY). The pressure waveforms were acquired with a HNR
500 µm needle PVDF hydrophone (Onda Corp, CA), and a digitizer (64 MS/s,
model PXI5620, National Instruments) were used. A three-axis microposition-
ing system (OWIS GmbH, Germany) was used to move the hydrophone in three
orthogonal directions with an accuracy of 10 µm and a National Instruments PXI-
Technology controller NI8176 was used to control all the devices. The amplitude
frequency response of the hydrophone was compensated in post-processing but not
in phase due to the absence of phase calibration for this equipment. A scheme of
the measurement setup is shown in Fig. 7.14.
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Figure 7.14: Scheme of the measurement system
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obtained by the numerical (continuous line) and experimental methods (markers) for a focused
transducer immersed in castor oil.
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The source was completely immersed in a castor oil tank (350×350×350 mm).
We select this frequency power law attenuation media due to the low variability of
its acoustic properties along existent literature (Liebler et al., 2004; Treeby et al.,
2009). Using a sound speed inside the bulk of the lens cl = 2711 m/s, and a sound
speed of the castor oil of c0 = 1480 m/s (at 26o C room temperature), the effective
lens geometrical focal is estimated as F = R/(1 − c0/cl) = 110.1 mm, leading to
a linear lossless gain of G = 13.4.

On the other hand, a nonlinear simulation including diffraction and frequency
power law attenuation with same parameters was carried out in a workstation
(20 cores Intel Xeon E5-2680 CPU, 2.8GHz with 256 GB RAM). The boundary
conditions were implemented for a spherical focused ultrasound source. The castor
oil parameters at 26o C room temperature (Treeby et al., 2009), were c0 = 1480
m/s, ρ0 = 961 kg/m3, α = 0.4 dB/cm/MHzγ , γ = 1.69, B/A = 12.0. The grid
parameters were ∆r = ∆z = 29.6 µm and ∆t = 13.6 ns, leading to a CFL number
S = 0.95 and Nλ = 50 elements per wavelength at fundamental frequency, note
that this grid leads to Nλ = 16 for third harmonic.

The balance between nonlinear effects and power law attenuation can be esti-
mated by using the Gol’dberg ratio, Γ = xa/xs where xs is the shock formation
distance and xa the media attenuation characteristic length. Thus, the amplitude
of the source were selected to obtain a Gol’dberg ratio of Γ = 0.25 in order to
let the frequency power law attenuation effects slightly dominate over nonlinear
effects. On the other hand, the ratio between diffraction effects and nonlinear
effects can be described by the so called Khokhlov number N = xd/xs, where
xd = ka2/2 is the diffraction length and a source radius. For the proposed test
a Khokhlov number of N = 0.49 was selected to let the nonlinear effect slightly
dominate over diffraction effects. The selected excitation pressure amplitude was
p0 = 87.7 kPa.

The results are summarized in Fig. 7.15, where axial pressure distribution for
the fundamental, second and third harmonic are presented. A good agreement is
found between simulations and the experimental test. Only far to the focal point
the amplitude there exist differences between computations and experiments, that
can be caused by nonuniform vibration of the source (Canney et al., 2008), bound-
ary effects of the PMMA lens, or miss-alignment of the source axis and micropo-
sitioning system orthogonal directions along the 100 mm axial measurement.

The maximum amplitudes of the first harmonic were pe1 = 0.6539 MPa for the
experiment and pn1 = 0.6576 for the numeric. The second harmonic peak pressure
was pe2 = 78.368 kPa and pn2 = 76.272 kPa, and the third harmonic peak pressure
pe3 = 10.146 and pn3 = 10.252 kPa for the experimental and numeric respectively.
The relative errors between numerical and experimental results are 0.56 % for the
fundamental frequency, 2.67 % for the second harmonic and 1.04 % for the third.
No error estimation was done for the peak pressure due to the absence of a phase
calibration of the hydrophone.
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Highly focused beam

In order to test the algorithm in the very high nonlinear regime with realistic tissue
parameters a focused bowl of geometrical focal F = 50 mm and aperture A = 50
mm, driven at f0 = 1 MHz was numerically tested. These parameters leads to
a source gain G = 26.5 and a f -number= 1, showing that source is beyond the
paraxial limit. The media consist in two layers. The first, where the source was
located, was water at 20o with parameters c1 = 1482 m/s, ρ1 = 1000 kg/m3,
B/A1 = 5, α1 = 2.17×10−3 dB/cm MHzγ , γ1 = 2. At a distance zl = 0.7/F = 35
mm, a layer of human liver tissue was placed, therefore the focal spot is located
inside tissue at a depth of 15 mm. Liver tissue parameters (Hill et al., 2004) were
c2 = 1597, ρ2 = 1050 kg/m3, B/A2 = 7.9, α2 = .75 dB/cm MHzγ , γ2 = 1.5. In
this case, the numerical grid parameters were ∆r = ∆z = 29.6 µm and ∆t = 11.9
ns, leading to a CFL number S = 0.9 and Nλ = 50 elements per wavelength at
fundamental frequency (Nλ = 16 for third harmonic).

Figure 7.16 shows the spatial peak pressure profiles for different excitation am-
plitudes. Thus, in Fig. 7.16 (top) the pressure of the source was p0 = 0.18 MPa,
while in the bottom figure was increased to p0 = 0.94 MPa. Thus, for the selected
parameters, Fig. 7.16 (top) present results for Γ = 0.16 and N = 0.55, so the
attenuation effects dominates over nonlinear effects and nonlinearity dominates
over diffraction effects. In this way, low asymmetry is observed between the pos-
itive compression peak, p+, and the minimum rarefaction pressure distribution,
p−. The measured waveform at z = F , shown in the inset of Fig. 7.16 (top), is
weakly distorted. However, there exist differences between its normalized peak
amplitude p+/p0 = 25.7 and p−/p0 = 21.05, and the source characteristic linear
gain, G = 26.5. There are caused, in one hand by the attenuation effects, where
the value of the lossy linear gain observed was Gα = p+/p0 = p−/p0 = 23.1 mea-
sured at z=F, i.e. the amplitude at the focal was reduced to 87.2% of the lossless
amplitude. On the other hand, the differences due to the asymmetry between com-
pression and rarefaction cycles are caused by the combined effect of nonlinearity
and focusing.

If source amplitude is increased to p0 = 0.94 MPa, as shown in Fig. 7.16 (bot-
tom), the ratio between attenuation and nonlinear effects is increased to Γ = 0.79.
In this regime, nonlinear effects are almost of the same order of attenuation effects.
On the other hand, increasing source amplitude while keeping same transducer pa-
rameters implies also the Khoklov number changes to N = 0.11, so the nonlinear
effects clearly dominates over diffraction. In this regime, highly asymmetric pres-
sure distribution is observed, where the values at focal point are p+ = 49.05 MPa
and p− = −14.91 MPa.

Other typical nonlinear phenomena characteristic of high intensity focused
sources can also be observed: formation of sharp shock front and its correspond-
ing harmonic generation, or, as Fig. (7.17) shows, narrowing of the beam for p+

and broadening for p− pressure distributions. In addition, nonlinear focal shift,
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Figure 7.16: Axial spatial distribution of the peak compression (p+) and minimum rarefaction
(p−) pressure for a focused transducer thought a liver tissue layer propagation. (Top) weakly
nonlinear propagation (Γ = 0.16) and (bottom) strong nonlinear effects (Γ = 0.79). The insets
show the waveforms recorded at the geometrical focal.

i.e. displacement of the peak pressure relative to the position of the liner peak
pressure can be also predicted for tissue propagation. In the case of Γ = 0.79 the
nonlinear focal shift was ∆F+ = +1.05 mm and ∆F− = −1.03 mm for the p+

and p− pressure distribution respectively.

7.6 Summary

A model for nonlinear acoustic waves in relaxing media is presented in a time-
domain formulation which does not require convolutional operators. A numerical
solution by means of finite-differences in time-domain have been obtained, showing
that the theoretical attenuation and dispersion due to relaxation processes can be
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pressure for a focused transducer thought a liver tissue layer propagation (boundary marked with
dashed line) for Γ = 0.79. Colorbars are in p/p0 units.

achieved by the numerical method with accuracy. These result can be used to
model typical relaxation process (e. g. the processes observed in air, associated to
the molecules of oxygen and nitrogen, or in seawater, associated to the relaxation
of boric acid and magnesium sulfate).

Moreover, a method for modeling a frequency power law on attenuation by
means of multiple relaxation has been described. The proposed method can de-
scribe local variations of the exponent of the frequency power law, so an arbitrary
attenuation curve in the range 0 < γ < 2 can be modeled by means of the proper
optimization of the relaxation coefficients. This feature of the presented method
is an advantage when compared with most fractional derivatives methods, where
the attenuation follows an exact but unique frequency power law over the entire
frequency range. A broad range of human tissues have been modeled and the
goodness of the fit using from two to four relaxation processes has been discussed.

Furthermore, a computational technique that exploits the anomalous disper-
sion of the relaxation processes is employed to mitigate the numerical dispersion
of the finite-differences scheme. Thus, while phase speed is corrected by including
artificial relaxation processes, its corresponding artificial attenuation is used to
improve stability in the nonlinear regime. In this way, a smooth version of shock
waves have been obtained and compared with analytic solutions. Furthermore, the
validity of the algorithm including diffraction have been tested with experimental
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measurements of a focused beam in castor oil.

Due to the model is developed from the constitutive relation for nonlinear
acoustics, most wave phenomena is captured. As a difference from the one-way
models the proposed model implicitly includes multiple wave direction, and, due
to the Lagrangian density of acoustic energy is implicitly included in the compu-
tation, multiple scattering and strong resonance effects are accurately described.
Moreover, unlike KZK and other parabolic approximations, the proposed model
captures the diffraction exactly, so for simulation of acoustic beams the field is not
approximated only to the beam axis, but also in the near field and far to the beam
axis and thus high focusing devices can be simulated.

The code has shown to be particularly appropriate if the problem to simulate
presents axisymmetry, because the constitutive relations for nonlinear acoustics
are solved in a computational 2D domain, while standard k-space methods need
to employ full 3D domains due to the poor convergence of the Fourier series at
discontinuities (r = 0). This is the case, for example, of the focused transducer
simulated in section 7.5.4, where a full 3D solution will require a huge computa-
tional resources and time. Finally, the particle velocity vector is solved implicitly
by the code and can be used to estimate other relevant magnitudes as the full non-
linear intensity vector, the nonlinear radiation force field in the absorbing media
or the acoustic streaming in frequency power law attenuation fluids.
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biológicos”. 44o Tecniacústica’13, Valladolid, October, 1632-1637 (2013)

And the numerical method method have been applied for obtaining the following
results

Journal papers
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Chapter 8

Nonlinear Plane Waves
in Frequency Power Law

Attenuation Media

Abstract

In this chapter we revise fundamental aspects of nonlinear acous-
tic plane wave propagation through frequency power law attenuation
media, with special focusing in the implications for finite amplitude
ultrasound in biological media. The basic relationships between non-
linearity, absorption and dispersion are explored in detail, among with
its implications for soft-tissue modeling in biomedical ultrasound appli-
cations. A derivation of simple expressions for quantify the role of the
exponent of the power law in the balance between nonlinearity, disper-
sion and attenuation is presented. Detailed numerical calculations of
the harmonic generation are also provided, where the efficiency in the
harmonic generation and its relation with the weak frequency power
law dispersion is studied.
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8.1 Introduction

When modeling longitudinal acoustic wave propagation in biological soft-tissue
media it is critical to account for the correct attenuation and phase speed. When
dealing with linear monochromatic propagation, the values of media attenuation
and phase speed for a given frequency can be explicitly included in the model
equations from those obtained from experimental tests. A common practice is
to adopt a sound speed value from the experimentally measured phase speed as
c0 = cp(ω0), and to match a value for the fluid viscosity, µ, that match the atten-
uation value at the desired frequency. However, if finite amplitude propagation is
considered, the attenuation and phase velocity of each spectral component must be
explicitly included in the model. In the case of biological media, where frequency
power law attenuation is experimentally observed, there it is impossible to model
these losses with only viscosity as long viscous losses present a frequency squared
dependent attenuation and no dispersion. Thus, the inclusion of a causal-time
domain operator that models frequency power law attenuation is necessary to ac-
curately model the losses of each spectral component. Moreover, the inclusion of
a frequency power law leads to the inevitable inclusion of dispersion that must be
accurately modeled. Thus, for a frequency dependent attenuation in the form

α(ω) = α0ω
γ , (8.1)

and by applying the Kramers-Kronig relationships (O’Donnell et al., 1981), the
frequency dependent phase speed can be obtained as (Waters et al., 2005):

1

cp (ω)
=

1

c0
+ α0 tan

(πγ
2

)(
|ω|γ−1 − |ω0|γ−1

)
. (8.2)

This expression is valid in the range 0 < γ < 3 with γ 6= 1 and includes
causality. In the limit γ → 1 Eq. 8.2 reduces to

1

cp (ω)

∣∣∣∣
γ=1

=
1

c0
− 2

π
α0 log

∣∣∣∣ ωω0

∣∣∣∣ . (8.3)

On the other hand, the complex wave number k̃ can be written as

k̃ (ω) =
ω

cp (ω)
− iα (ω) , (8.4)
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Figure 8.1: Dispersion relations for different frequency power laws for (a) α0 = 10 dB/cm and
(b) α0 = 1 dB/cm measured at 1 MHz.

where Im(k̃) is defined by the frequency power law attenuation and Re(k̃) defines
the phase speed. Combining Eq. 8.2, 8.1 and 8.4 the dispersion relations for a
frequency power law media read

k̃ (ω) =
ω

c0
+ α0ω tan

(πγ
2

)(
|ω|γ−1 − |ω0|γ−1

)
− iα0ω

γ (8.5)

for 0 < γ < 1 and 1 < γ < 3, and

k̃ (ω)
∣∣∣
γ=1

=
ω

c0
− 2α0ω

π
log

∣∣∣∣ ωω0

∣∣∣∣− iα0ω (8.6)

for γ = 1.

Thus, as shown in Fig. 8.1, the dispersion modeled by a frequency power
law shows three different behavior depending on the power law exponent. First,
for frequency independent losses, γ = 0, the media exhibit no dispersion as long
cp = c0. This behavior is equivalent to the other simple physical attenuation
models, e.g. the damped pendulum. On the other hand, this dispersionless regime
is achieved also for γ = 2, as it is observed in acoustics for bulk thermo-viscous
losses in pure water. Second, for 0 < γ < 2 the real part of the wavenumber
reduces in magnitude as long the frequency increases, so phase speed is increased
in the higher frequency range, leading to the so called “anomalous dispersion”
(Hill et al., 2004) (e.g. as observed also in water capillary waves). Finally, for
media obeying frequency power law attenuation with 2 < γ < 3 the phase speed
decreases with increasing frequency, so “normal” dispersion is achieved as observed
in other common physical systems as water surface gravity waves.

The frequency power law attenuation obtained for a soft-tissue media with
an attenuation of 1 dB/cm and for 10 dB/cm measured at 1 MHz is shown in

231



Chapter 8. Nonlinear plane waves in frequency power law attenuation media.

Fig. 8.2. In the same way, Fig. 8.3 shows the frequency dependent phase speed
from Eq. (8.2, 8.3), where for a frequency range from 0.1 to 10 MHz variations
of about ±9 m/s are obtained in the case of 1 dB/cm at 1 MHz, and ≈ ±90
m/s for the case of 10 dB/cm for a linear power law. Thus, the magnitude of
the dispersion of the system increases linearly with the attenuation magnitude.
This behavior is in agreement with dispersion measurements in weakly (Szabo,
1995; Waters et al., 2000) and strongly (Fry et al., 1978) lossy media obeying
frequency power law attenuation, and shows the importance of modeling correctly
not only the attenuation but the dispersion when dealing with high damped media
as biological tissues.
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Figure 8.2: Frequency dependent attenuation obtained for different frequency power laws for
(a) α0 = 10 dB/cm and (b) α0 = 1 dB/cm measured at 1 MHz.
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Figure 8.3: Phase velocity obtained for different frequency power laws for (a) α0 = 20 dB/cm
and (b) α0 = 2 measured at 1 MHz.
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8.2 Nonlinear coherence length

As introduced in Chapter 2, the coherence length magnitude is very helpfully in
quantifying the nonlinear acoustic effects in dispersive media. Thus, the efficiency
of energy transfer from fundamental to second harmonic component is dependent
on the phase matching condition:

k (2ω) = 2k (ω) . (8.7)

In general, for dispersive media this condition is not fulfilled, so the second har-
monic characteristic linear growth develops the well known beating effect (Rudenko
et al., 1977), where the beating spatial frequency for the second harmonic is

∆k2 (ω) = |2k (ω)− k (2ω)| (8.8)

and the coherence length for the second harmonic is defined as

xc (ω) =
π

∆k2 (ω)
. (8.9)

In the case study, i.e. in frequency power law attenuation media, using Eqs. (8.5,
8.6), Eq. (8.8) reduces to

∆k2 (ω) = (2γ − 2)α0ω
γ tan

(πγ
2

)
(8.10)

for 0 < γ < 3 with γ 6= 1, and

∆k2 (ω)|γ=1 = −4 log (2)α0ω
γ

π
(8.11)

for γ = 1. Then, combining Eq. (8.9) and Eq. (8.10), the characteristic nonlinear
coherence length (for second harmonic) can be calculated as

xc (ω) =
π cot

(
πγ
2

)
(2γ − 2)α0ωγ

(8.12)
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Figure 8.4: Coherence length as a function of frequency for a variety of tissues, where it has been
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Typical values extracted from Ref. Hill et al. (2004).

for 0 < γ < 3 and γ 6= 1, and

xc (ω)|γ=1 =
π2

4 log (2)α0ω
(8.13)

for γ = 1. It is worth noting here that the coherence length, xc, is inversely propor-
tional to attenuation magnitude. In this way, in frequency power law attenuation
media with strong attenuation values and γ ≈ 1, e.g. in bones, tendons(Fry et al.,
1978) where strong dispersion is observed, and also for γ ≈ 3, the efficiency of
nonlinear harmonic generation is expected to be modified due to phase mismatch-
ing. The frequency dependence for different power laws of real tissues is shown in
Fig. 8.4. Here, we show that the magnitude of coherence length is on the order of
the size of the internal structures of the human body for ultrasound applications,
i.e. x / 10 cm. Thus, dispersion effects, in addition to attenuation and nonlinear
effects can also be important in the nonlinear full solution. However, in order
to evaluate the relevance of each effect in the full-wave propagation (attenuation,
dispersion and nonlinearity), we shall define the ratio of attenuation to dispersion
effects.

Thus, the amplitude of each harmonic will be damped due to the increase in
attenuation, following the corresponding power law. Thus, we shall define the
second harmonic characteristic attenuation distance for the frequency power law
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8.2. Nonlinear coherence length

attenuation media as

xa =
1

α0ωγ
. (8.14)

In this way, using Eq. (8.12, 8.14) we define the quantity Nc as the ratio of
attenuation and dispersion effects for power law media as

Nc =
xc
xa

=

∣∣∣∣∣π cot
(
γπ
2

)
2γ − 2

∣∣∣∣∣ . (8.15)

In the limit of γ → 1 Eq. (8.15) reduces to

Nc =
π2

4 log 2
. (8.16)

One important remark is the ratio of attenuation to dispersion effects in a
frequency power law media is frequency independent: both, the amount of attenu-
ation and second harmonic phase mismatching magnitude are proportional to the
quantity α0ω

γ . Furthermore, an increase in the attenuation coefficient, α0, will
increase in equal magnitude dispersion and attenuation effects. In this way, as
Eq. (8.15) shows, the balance between attenuation and dispersion only depends
on the exponent of the frequency power law media.

Figure 8.5 shows the ratio Nc for different power laws. For frequency power
laws of 0 < γ < 2, i.e. those that model biological media, the ratio fall in the
range 3.43 / Nc <∞. In this way, Nc →∞ for dispersionless media, i.e. for even
exponent power γ = 0 and γ = 2. The higher dispersive regime is obtained for
nearly linear frequency dependent absorption, where a local minimum is numeri-
cally found at

γ ≈ 1.2053. (8.17)

In the range 0.5 < γ < 1.5, the ratio of attenuation to dispersion effects, Nc,
present variations of +44% from the minimum value (Nc = 3.43).

On the other hand, as Fig. 8.5 shows, for materials with 2 < γ < 3 the dis-
persive effects can be much more important than attenuation effects. In addition,
using Eq. (8.15), we obtain Nc|γ=3 = 0, indicating that dispersive effects strongly
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dominates over attenuation effects. However, there exists few materials that falls
in this range (Szabo, 1995). For the case of soft tissue media, where 1 < γ < 2, the
results arising from this section indicates that attenuation dominates over disper-
sion effects, but the phase mismatching between forced and propagating second
harmonic wave is not negligible for nearly linear frequency dependent attenua-
tion media. However, due to the absorption distance excess in about of one order
magnitude the coherence distance, it is not possible to observe a complete beat-
ing. Instead, the effect of the weak dispersion in frequency power law media with
1 < γ < 2 is a decreasing in the efficiency of energy transfer from the fundamental
to higher harmonics. This aspect will be explored numerically in the next section.

8.3 Competition between nonlinearity and power
law attenuation and dispersion

For a monochromatic plane wave in the absence of dissipation, either viscous or
relaxation losses, the shock formation distance can be expressed as

xs =
1

βεk
, (8.18)

with ε = v0/c0 as the acoustic Mach number, v0 the source amplitude, and
β = 1+B/2A the parameter of nonlinearity that accounts for material (B/A) and
mass advection nonlinearity (unity factor).
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In order to measure the relative relevance of nonlinear and attenuation effects,
we shall define the so called Gol’dberg number for frequency power law attenuation
media as the ratio of characteristic absorption length, xa, and shock distance, xs:

Γγ =
xa
xs

=
βp0

c30ρ0α0ω(γ−1)
. (8.19)

Thus, in the same sense of the classical definition of the Gol’dberg number
for thermo-viscous fluids, for Γγ � 1 the shock distance is too short compared
to the characteristic attenuation length and the nonlinear effects dominates over
attenuation. In this way, for the range 0 < γ < 2 where the dispersion remains
weak, the nonlinear harmonic cascade can be developed and shock waves can
be observed. In the limit Γγ → ∞ model equations reduces to lossless nonlin-
ear acoustic and analytical solutions can be obtained for a variety of boundary
conditions (e.g. in the case of monochromatic plane wave propagation the well
known Fubini-Blackstock-Fay solution describes the harmonic evolution). On the
other hand, in the regime Γγ � 1 dissipation effects dominates over nonlinear
effects. Although energy transfer from fundamental to higher harmonics could be
observed, absorption prevents the development of shock waves. In the limit of
Γγ → 0, linear-damped propagation is achieved and no harmonic is generated.

However, in many practical cases Γγ ≈ 1 and an analytical treatment of the
problem is not available (with the exception of γ = 2 where the so called Men-
dousse, Eq. 7.32, solution could be obtained). Due to plane-harmonic nonlinear
wave propagation in a mono-relaxing media is still unsolved, the prospective is fair
in order to find an exact analytical solution for multiple relaxation media or for a
continuum of relaxation processes. In addition, no analytical solution is available
for fractional derivatives nonlinear wave equations (Szabo, 1994) for the case of
monochromatic plane wave. Thus, in this section we will explore numerical solu-
tions of Eqs. (7.1, 7.2, 7.10, 7.8) by using the methods described in Chapter 7 in
order to study the harmonic generation in frequency power law attenuation media.

In addition, one important remark arising from Eq. (8.19) for tissues with
exact γ = 1 is that the ratio between nonlinearities and attenuation effects does not
depend on frequency. In this way, Eq. (8.19) predicts that given media parameters,
(β, c0, ρ0 and α0), a wave with fixed initial amplitude will develop exact nonlinear
processes with independence of the wave frequency. In this way, the amplitude
can be selected and fixed in order to produce shock waves as

p0 > c30ρ0α0/β. (8.20)

If the frequency is increased the shock formation distance is moved towards
the source, but according to Eq. (8.19) the Gol’dberg ratio remains constant and
therefore the harmonic balance remains the same but stretched in space.

237



Chapter 8. Nonlinear plane waves in frequency power law attenuation media.

As explained above, for Γγ ≈ 1 the nonlinear and attenuation effects may play
a role of similar importance in the full solution. Thus, there exist a competition
between nonlinearity and attenuation effects that, at first order, leads the final
amplitude for each harmonic. In one hand, harmonic generation is governed by
nonlinearity, where second and higher harmonics are generated by cascade pro-
cesses due to material nonlinearity and mass convection processes. On the other
hand, each generated harmonic will be attenuated during propagation by its spe-
cific attenuation coefficient, provided by the frequency power law evaluated at each
harmonic frequency.

Consider here media with equal attenuation at fundamental frequency, but
different power law. In these media, it is obvious that for higher values of the
power law exponent, γ, the attenuation of higher harmonics will be in any case
higher than the attenuation for media with lower power law. Thus, in principle, the
exponent has a great influence in the harmonic balance of the traveling nonlinear
wave due to differences in attenuation, and these differences will be higher for
higher harmonics.

However, as long frequency power law attenuation introduces dispersion, see
Eq. (8.2), the phase matching conditions are in general no longer fulfilled. There-
fore, dispersion modifies the efficiency on harmonic generation, together with the
interplay between power law attenuation and nonlinear harmonic growing. Thus,
from Eqs. (8.10, 8.11), phase matching conditions, i.e. ∆k2 = 0, are fulfilled
for even powers, e.g. γ = 0, 2, . . .. In these cases, propagation is nondispersive:
the nonlinear efficiency is maximum and therefore the energy transference from
fundamental to higher harmonics is maximized. On the other hand, for γ ≈ 1,
dispersive propagation is predicted and the nonlinear efficiency will be modified.
Due to these effects cannot be isolated, we study the modification of the nonlinear
efficiency numerically.

8.4 Plane wave simulations in power law media

As shown Chapter 7, the propagation of nonlinear acoustic waves in frequency
power law attenuation can be modeled by the use of multiple relaxation processes.
Thus, the set of Eq. (7.1, 7.2, 7.10 and 7.8) can be expressed for a plane wave
travelling in x direction as

∂ρ

∂t
= −∂(ρvx)

∂x
, (8.21)

∂vx
∂t

= −1

ρ

∂p

∂x
− 1

2

∂v2
x

∂x
+

1

ρ

(
4

3
η + ζ

)
∂2vx
∂x2

, (8.22)
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p = c2∞ρ
′ +

c20
ρ0

B

2A
ρ′2 −

N∑
n=1

Sn, (8.23)

∂Sn
∂t

= − 1

τn
Sn +

ηnc
2
0

τn
ρ′, (8.24)

where vx is the x component of particle velocity vector.

In order to study the changes induced by power law attenuation and dispersion
into the nonlinear efficiency, we consider media with equal attenuation coefficient
at fundamental frequency, ω0, as shown in Fig. 8.2. Thus, by varying power law
exponent from realistic values for biological media, γ = [0.5, 2], dispersion is in-
troduced while the attenuation of the fundamental wave remains constant. As
Eq. (8.15) shows, the balance between attenuation and dispersion for power law
media (Nc) only depends on the power law exponent. In this way, by increasing the
attenuation magnitude both dispersion and attenuation effects will by modified in
same amplitude. On the other hand, by modifying the attenuation magnitude the
Gol’dberg number for power law media is also modified following Eq. (8.19). In
summary, for media with equal attenuation coefficient at fundamental frequency,
the balance between nonlinearity and attenuation effects, Γγ is governed by the at-
tenuation coefficient, while the balance between attenuation and dispersion effects,
Nc, is governed by the exponent of the power law.

Numerical results for the spatial distribution of fundamental wave are shown in
Fig. 8.6, while the spatial distribution for second and third are plotted in Fig. 8.7.
The amplitude and fundamental wave of the excitation was maintained constant,
thus, by changing attenuation magnitude the ratio between attenuation and non-
linearity is modified and therefore the ratio between dispersion and nonlinearity
also is modified.

Here, the analytical nonlinear solution for lossless media (Bessel-Fubini’s so-
lution) is plotted in dotted line. Thus, for low attenuation media, i.e. when
Γγ → ∞, nonlinear effects dominate over attenuation and dispersion and there-
fore the numerical solution for frequency power law media converges to the lossless
Bessel-Fubini’s solution, see Fig. 8.6 and Fig. 8.7 for Γγ = 57.9. In these cases, the
fundamental wave decay is mainly due to energy transference to higher harmon-
ics, that grow with propagation. Here, harmonic amplitude is independent on the
exponent of the power law, showing that both dispersion and attenuation effects
are much less smaller compared with nonlinear effects during propagation and can
be neglected for Γγ →∞.

In contrast, as Figs. 8.6, 8.7 show for Γγ = 0.74, for high damped media
and weak nonlinearity, attenuation effects are comparable to nonlinear harmonic
pumping. The fundamental wave not only decays for energy transfer but also due
to high attenuation.
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Figure 8.6: First harmonic normalized-amplitude spatial distribution for different frequency
power laws. For each subplot, the ratio of nonlinear to power law attenuation effects, Γγ , is
increased
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Figure 8.7: Second and third harmonic normalized-amplitude distribution for different fre-
quency power laws. For each subplot, the ratio of nonlinear to power law attenuation effects,
Γγ , is increased
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Chapter 8. Nonlinear plane waves in frequency power law attenuation media.

Thus, at distance σ ≈ 0.5 fundamental wave have loss approximately half of its
initial amplitude and therefore nonlinear energy transfer processes to second-and-
higher harmonics also diminishes. On the other hand, second and third harmonics
are mainly generated near the source, where fundamental wave is still have enough
amplitude. However, attenuation of higher harmonics is in any case higher than
for fundamental wave and therefore they are quickly damped by the power law
lossy media. Due to the harmonic generation is strongly decreased far away from
the source due to fundamental wave energy loss, second and higher harmonics are
restricted near the source and its maxima value is produced for σ < 1, in contrast
with lossless media where the maxima of the harmonics is produced σ ≈ π/2.

It is worth noting here that the harmonic evolution is strongly dependent on the
exponent of the power law. Thus, due to differences in attenuation coefficient for
each harmonic (see Fig 8.2 for ω/ω0 = 2), second-and-higher harmonic amplitude is
damped by different magnitude, where obviously higher attenuation and therefore
lower harmonic amplitude is observed for the cases of γ → 2.

However, although the fundamental wave attenuation magnitude is the same,
with independence of the power law exponent, the amplitude of the fundamental
wave strongly varies. We recall here to Eq. (8.15), that shows the ratio between
dispersion and attenuation. By varying the power law exponent dispersion is
modified. Thus, the harmonic efficiency is only maximized for even powers of γ,
where for γ ≈ 1 dispersion effects are not negligible. This is the reason because
more energy remains in the fundamental wave for γ ≈ 1, dispersion is modifying
the phase matching conditions and therefore the energy transfer from fundamental
to second-and-higher harmonics is decreased.

8.5 Nonlinear efficiency

As explained above, the nonlinear efficiency can be strongly dependent not only
on the magnitude of the attenuation, but also on the dispersion due to frequency
power law attenuation. These effects have been shown previously for tissue like
media in the absence of dispersion (Haran et al., 1983) and including power law
dispersion (Kashcheeva et al., 2000; Wallace et al., 2001) for selected media. A
closer view of these phenomena can be studied by showing the harmonic ampli-
tude at a given distance, that for reference we choose σ = 1. Thus, Fig. 8.8
shows the amplitude of the fundamental wave for different power law media and
its dependence on the power law. As commented above, if the balance between
nonlinear and attenuation effects is constant, the maximum amplitude of the fun-
damental component is observed for power laws where dispersion is maximized,
i.e. for γ ≈ 1.2. Furthermore, there exist differences between different Gol’dberg
numbers: the balance between nonlinearity and dispersion is also coupled to the
attenuation, so for high Gol’dberg numbers dispersion effects also dominate over
nonlinear effects, leading to a decreasing in the nonlinear efficiency and therefore
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Figure 8.8: Amplitude of the fist harmonic for different Gol’dberg number (Γγ) in function of
the exponent of the frequency power law (γ), measured at shock formation distance, σ = 1. The
attenuation of the media is selected for achieve a constant value at first harmonic frequency, so
for this plot the amount of media attenuation is independent of the power law.

more energy remains in the fundamental component of the nonlinear wave.

A knowledge of the role of the power law dispersion into the second-and-higher
harmonic components is not so evident. If dispersion is modified, i.e. we force a
change in the power law exponent, the attenuation magnitude at second harmonic
frequency will be also modified. On the other hand, is obvious that if attenuation
is matched for second harmonic, e.g. being the source frequency ω0/2 in Fig. 8.2,
the attenuation magnitude at fundamental wave will be different.

Left side of Fig 8.9 shows the harmonic amplitude in function of the power
law exponent at distance σ = 1 for different Gol’dberg ratios. Observing the
harmonic amplitude is not obvious that, as stated, more energy is transferred
for nondispersive power law media (γ → 0, 2, ...). Thus, as attenuation is strongly
increased for second harmonic in function of the power law exponent, the harmonic
amplitude is therefore more attenuated for the non-dispersive cases, masking the
effect of nonlinear efficiency.

In this way, we introduce in the right side of Fig 8.9 a compensation of the
second harmonic amplitude by the attenuation coefficient at this frequency. In this
plot, it is appreciable that for nondispersive cases, γ = 2, the harmonic amplitude
is higher due to the phase matched generation, while for the dispersive cases there
exist a reduction in the efficiency for second harmonic generation. However, this
compensation does not take into account that harmonics are generated during
propagation. Thus, it serves as an eye guide for illustration purposes but lacks of
exact physical fidelity.

Similar plots, shown in Fig. 8.10, are generated for third harmonic at shock
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Figure 8.9: Left: Amplitude of the second harmonic for different Gol’dberg number (Γγ) in
function of the exponent of the frequency power law (γ), measured at shock formation distance,
σ = 1. Right: Same curves compensated by the increment of attenuation of second harmonic,
which is different for each power law.
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Figure 8.10: Left: Amplitude of the third harmonic for different Gol’dberg number (Γγ) in
function of the exponent of the frequency power law (γ), measured at shock formation distance,
σ = 1. Right: Same curves compensated by the increment of attenuation of third harmonic,
which is different for each power law.

formation distance. Here, the amplitude is lower compared to second harmonic due
to nonlinear generation. In this case, for a given Gol’dberg ratio the differences in
the harmonic amplitude between different power laws increases, mainly due to the
increasing in the attenuation coefficient at third harmonic frequency. Moreover,
if the attenuation of each harmonic amplitude is compensated, as shown in right
hand side of Fig. 8.10, the behavior is the similar than the observed to the second
harmonic efficiency.

8.6 Phase changes induced by dispersion

From the dispersion relations for power law media, showed in Fig.8.1, it is appre-
ciable that second harmonic component propagates, for 0 < γ < 2, faster than
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Figure 8.11: Waveforms calculated for (left) dispersive power law media at distance σ = 3 and
(right) artificial dispersionless only taken into account power law absorption. From up to down
the power law exponents ranges are γ = [1, 1.5, 2]

fundamental wave. The second harmonic that is generated near the source, after
propagation, will sum with the harmonics at higher distances. Due to the locally
generated second harmonic waves are in phase with fundamental wave, there ex-
ist a phase difference between the forced (locally generated) and the background
propagation second harmonic wave. This phase shift can be predicted from dis-
persion relations, as is dependent to phase matching conditions (Eq.8.8). In the
case of second harmonic, a complete phase shift between propagating and forced
waves occurs every x = 2xc. In this way, as explained in Section 8.5, these pro-
cesses modify the efficiency of the nonlinear generation in frequency power law
attenuation media.

In addition, these phase changes also modify the shape of the nonlinear wave-
forms in frequency power law media. The shape of a nonlinear waveform is de-
termined by its specific harmonic balance, but also the relative phase between
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Figure 8.12: Waveform evolution calculated for linear power law (γ = 1). (Left) dispersive
propagation. (Right) nondispersive simulation for comparison using artificial dispersionless power
law absorption. From up to bottom the ratio between nonlinear and attenuation (Γγ) effects is
increased.

spectral components. In nondispersive media, the harmonic balance is a compe-
tition between nonlinearity and absorption processes. As seen in this Chapter,
dispersion of power law media modifies this balance. Moreover, the relative phase
between spectral components will be also modified due to dispersion and it will
change the shape of the waveform.

To study these effects, we use a k-space pseudospectral method (Treeby et al.,
2010; Treeby et al., 2012) to evaluate one dimensional nonlinear propagation. This
method, through the spectral representation of the field, provides an efficient way
to evaluate the linear integro-differential operator based fractional Laplacian that
introduces frequency power law attenuation. This also provides a way to eliminate
dispersion and evaluate only a nondispersive version of the frequency power law
operator.
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Thus, Fig. 8.11 shows the nonlinear waveforms measured at distance σ = 3
including dispersion and an artificial nondispersive version of the frequency power
law attenuation operator in the k-space. As can be seen, the specific shape of
the waveform depends on the exponent of power law: it provides a balance in
the harmonic magnitude through attenuation processes and the above described
changes on the efficiency through dispersion processes.

However, if the power law attenuation is maintained but dispersion is artifi-
cially not included in the calculations, there can be seen that the waveforms shape
presents several changes. Thus, as Fig. 8.11 shows, dispersion breaks the sym-
metry of the nonlinear waveforms. In the case of nondispersive propagation the
waveforms for Γγ � 1 converge to the well-known sawtooth waves as predicted
by the Fubini-Blackstock-Fay solution (Hamilton et al., 1998a). For intermediate
Γγ values, due to different balance in harmonic attenuation during propagation,
the shape of the final waveforms is also slightly changed. However, in this case
of artificially nondispersive propagation, the shape of the waveforms conserve the
symmetry between compression and rarefaction cycles typical of sawtooth waves.

In contrast, this symmetry is broken for the waveforms generated including
dispersion, in the same sense as in other dispersive systems as mono-relaxing fluids
(Hamilton et al., 1998a). A more detailed frame for γ = 1 is presented in Fig. 8.12,
where the complete evolution of the waveforms is represented in each frame. Here
it can be seen how the shock front is smoothed in the compression phase, while
remains sharp in the negative rarefaction phase.

8.7 Conclusions

In this chapter we have revised the fundamental problem of the competition be-
tween nonlinear and attenuation effects in frequency power law attenuation media,
with special emphasis in the effects of the weak dispersion. We have derived sim-
ple expressions in order to quantify the role of the exponent of the power law in
the balance between nonlinearity, dispersion and attenuation. The results show
that the dispersion effects present more relevance in the nonlinear propagation for
media obeying γ ≈ 1.2, where the ratio between nonlinear characteristic distance
and weak dispersion characteristic distance present its minimum. Detailed numer-
ical examples are given in agreement with this predictions. This situation is of
special interest due to most soft tissues typically present values of the power law
exponents around this critical value.

The efficiency in the harmonic generation is studied numerically, showing that
power law dispersion modifies the cumulative energy transfer to higher harmon-
ics. Thus, considering a media with same attenuation value at the fundamental
component, more energy remains in the fundamental harmonic component in the
cases of nearly linear power law. On the other hand, in frequency power law
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media attenuation effects are of higher importance in the nonlinear propagation
than weak dispersion effects. However, we have shown that the waveform shape
also strongly depends on the weak dispersion, where the characteristic asymmetric
profile is observed for dispersive frequency power law attenuation.

In real situations, where other phenomena must to be included (beam diffrac-
tion, tissue scattering and inhomogeneities, ...), it becomes far more complicated
to study the role of each effect in the nonlinear propagation. Thus, plane wave
propagation offers the possibility to isolate some of the physical mechanisms that
governs nonlinear propagation (in this case attenuation and dispersion) and to
understand the balance between them. The results presented in this chapter, far
from present completely new physics, offers detailed calculations and a broad view
of this fundamental problem.
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Chapter 9

Nonlinear Acoustic Radiation
Forces in Biological Media

Abstract

In this Chapter we present the finite-amplitude dependence of the
acoustic radiation force (ARF) in a soft tissue-like media. The acous-
tic radiation force is calculated in media with different exponent of
the frequency power law attenuation. Numerical results are obtained
for one dimensional propagation, where the spatial distribution of the
force field is studied. The results obtained show that the nonlinear de-
pendence of the acoustic radiation force sharply depends on the tissue
attenuation model for both, weakly and strong nonlinear regime. We
also show the underestimation of the momentum transfer in the non-
linear regime by calculating the ARF by using the wave intensity. Con-
siderations due to nonlinear absorption are included and the relation
between the momentum transfer and energy deposition is underlined.
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9.1 Introduction

Waves carry energy and momentum. Propagation trough lossless homogeneous
media implies the absence of interaction between the medium and the wave. How-
ever, if scattering or absorption processes are present, the energy and momentum
can be transferred from the wave to the medium. In this sense, the radiation force
is an universal wave phenomenon related to the momentum transfer from a wave
to the medium. It has been demonstrated to exist for electromagnetic (Lebedew,
1901), acoustic waves (Faraday, 1831; Rayleigh, 1902), and also by phonons in
crystal lattices (Sorbello, 1972) as those presented in Chapter 1.

In the case of acoustic waves, acoustic radiation forces (ARF) appear when a
gradient in the acoustic energy density is produced by scattering or absorption
processes. We refer to the critical review of Sarvazyan et al. (2010) for a broad
historical references and a clear description of the ARF in the acoustic context.
The acoustic radiation force is a time-average second-order process. In the case of
a continuous monochromatic wave, steady state acoustic radiation forces appear
when the wave is scattered by an object, reflected by a rigid surface or an interface
between two media, or absorption is produced in the propagation. In all these
situations, some momentum is transferred from the wave to the medium, and the
consequence is that the acoustic radiation tensor Beyer (1978) is no longer spatially
constant. In these cases, the bulk of the medium is time average stressed. The
radiation forces are only one of the consequences of this stresses. In fluids, the
acoustic radiation stresses induce time average movements or streams. In solids
and elastic media in general, time average stresses induce constant strains, being
the material deformed in the direction of the wave but also in the transversal
direction. In fluids with inclusions, the scatterers can be statically compressed,
deformed, pushed, and also rotated by the induced acoustic radiation stress.

Therefore, is no surprising the huge amount of practical applications that ex-
ploit the phenomena related acoustic radiation stresses due to the extremely broad
possibilities for interacting with the media using acoustic waves.

In the case of biological media and medical ultrasound applications, the use of
acoustic radiation force includes the power calibration of High Intensity Focused
Ultrasound (HIFU) devices by radiation force balances (Wood et al., 1927); acous-
tical tweezers and levitation for particle and cell manipulation (Wu, 1991; Lee et
al., 2006; Hultström et al., 2007); stimulation of sensory receptors by ultrasound
radiation force or improving targeted drug and gene delivery (Sarvazyan et al.,
2010). On the other hand, acoustic streaming can be used for stirring and mixing
liquids (Sarvazyan et al., 2009), remote assessment of biological fluids (Nightingale
et al., 1995) and microfluidics applications (Laurell et al., 2007; Hultström et al.,
2007). It is worth noting here that in some of these techniques the effects of the
acoustic radiation force and streaming are closely linked.

One important remark is that the time averaging of the acoustic radiation
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stresses can be modulated by a slowly varying time function. If the wave amplitude
presents a low frequency modulation (compared to the acoustic variations), the
radiation stresses are also modulated in time, leading to oscillating radiation forces
inside the media. In elastic media, these stresses dynamically deform the bulk of
the medium in axial and also in transversal direction. Thus, time varying shear
deformations induce shear waves at the modulation frequency, that propagates
transversely to the direction of the wave.

A huge amount of ultrasound medical diagnostic techniques have been devel-
oped in order to asset the media elasticity by measuring the mechanical response of
the tissues under the action of acoustic radiation stresses. In general, the elasticity
can be evaluated by measuring in some way the strains induced by the ultrasound
field. These techniques include vibroacoustography (VA) (Fatemi et al., 1998; Ur-
ban et al., 2011), shear wave elasticity imaging (SWEI) (Sarvazyan et al., 1998),
acoustic radiation force impulse imaging (ARFI) (Nightingale et al., 2001; Trahey
et al., 2004), supersonic shear imaging (SSI) (Bercoff et al., 2004), harmonic mo-
tion imaging (HMI) (Konofagou et al., 2003; Vappou et al., 2009) and real time
monitoring of lesion formation in HIFU therapy (Maleke et al., 2008). Also, the
induced tissue deformations can be tracked with other imaging techniques as mag-
netic resonances (Fowlkes et al., 1995; Manduca et al., 2001). Acoustic streaming
can be used to assessment and detecting fluid-filled lesions or cysts (Nightingale et
al., 1995; Nightingale et al., 1999) or monitoring blood coagulation by sonorheom-
etry (Viola et al., 2004). We refer to the reviews (Sarvazyan et al., 2010; Palmeri
et al., 2011; Doherty et al., 2013) and references therein for further details.

Human soft tissues show strong acoustic attenuation processes, but also in-
ternal scattering due to micro-inhomogeneity. It is commonly accepted that the
contribution to the acoustic radiation force in the bulk of soft tissues is mainly
caused by absorption rather than scattering processes (Doherty et al., 2013). In
order to obtain high amplitude acoustic radiation force fields and induce detectable
deformations, the amplitude of the ultrasonic excitation is commonly high enough
to excite nonlinear effects in some degree (Carstensen et al., 1980), even in diag-
nostic techniques (Sarvazyan et al., 2010). On the other hand, although radiation
forces are observed also for small amplitude waves, the acoustic radiation force
is a second order process and therefore requires solutions to the nonlinear model
equations.

At ultrasound frequencies, soft tissues do not effectively support shear wave
propagation. The typical shear wave speed in soft tissue is around two orders of
magnitude lower that the longitudinal acoustic wave speed. Shear waves generated
by low frequency modulated acoustic radiation forces, present different spatio-
temporal scale to the longitudinal waves. The common approach is to model first
the acoustic radiation force generated by the ultrasonic longitudinal waves. Then,
shear waves and the corresponding tissue strain are treated as uncoupled problem:
the time-varying acoustic radiation force field is used as an excitation of some
elastic model, commonly a linear elastic or viscoelastic solid model. Therefore, the
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constitutive equations for nonlinear acoustics are accurate to describe the nonlinear
generation of acoustic radiation force, provided that the proper attenuation and
dispersion are included in the model as a frequency power law.

The aim of this Chapter is to study the acoustic radiation forces induced by
intense waves in soft tissue. Thus, we present the nonlinear dependence of the
acoustic radiation force by solving numerically the constitutive equations for non-
linear acoustics in a broad range of frequency power law attenuation media. We
show special emphasis in the effects of the power law frequency attenuation.

9.2 One dimensional acoustic radiation force

The problem of accurately solve the acoustic radiation force is associated to the
knowledge of the full acoustic field variables: pressure p, density ρ and particle
velocity vector v. For plane waves in a lossless homogeneous media, the relation
between these quantities is well-known, but in this case no acoustic radiation
force appears. The inclusion of some frequency dependent attenuation and its
corresponding dispersion induce a phase shift between the acoustic variables and
its relationship becomes more complicated.

For the sake of simplicity, we start by review the acoustic radiation force gen-
erated by plane waves. We first expand in series the acoustic magnitudes, p, ρ, v
as in Refs (Sarvazyan et al., 2010; Doherty et al., 2013). Thus, each term includes
a high-order correction to to the steady-state solutions p0, ρ0, v0. For a quiescent
homogeneous fluid, v0 = 0 and p0 and ρ0 are time independent, p1, ρ1 and v1

are the first order approximations to the acoustic field, and p2, ρ2 and v2 are the
second order corrections. Thus, the field can be expressed as

p = p0 + p1 + p2 + · · · (9.1)

ρ = ρ0 + ρ1 + ρ2 + · · · (9.2)

v = 0 + v1 + v2 + · · · (9.3)

assuming that each term is small that the preceding one.

The problem of modeling the acoustic radiation force FV (per unit volume),
reduces to obtain the time-average of the change in momentum for a fluid as

FV = −
〈
ρ

Dv

Dt

〉
. (9.4)

It is important to note that the period average (indicated as 〈〉) of the first
order magnitudes (p1, ρ1, v1) is zero. However, the time average of the momentum
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does not vanish due to the nonlinearity in material derivative of the momentum
Eq.(9.4). Substitution of Eqs.(9.1-9.3) into the momentum equation, and keeping
up to second order terms leads to (Doherty et al., 2013)

FV = −
〈
ρ

Dv

Dt

〉
= −

〈
ρ0
∂v2

∂t
+
∂ρ1v1

∂t
+ ρ0 (v1∇ · v1 + v1 · ∇v1)

〉
. (9.5)

The period average of the first two terms of the right hand side is zero, but
the last 2 terms, that account for the nonlinearity of the material derivative, does
not vanish. Thus, for a plane wave propagating in the x direction, the acoustic
radiation force per unit volume reads

FVx = −
〈
ρ0
∂v2

1

∂x

〉
. (9.6)

Then the volume radiation force for a decaying plane harmonic wave with
instantaneous intensity I ′ = p1v1 = ρ0c0v

2
1 , traveling in an homogeneous-lossy

media can be expressed as

FVx = − ∂

∂x

〈
I ′

c0

〉
, (9.7)

or in terms of the time-average intensity I in a period T = 2π/ω

I =
1

T

∫ t+T

t

I ′ dt = 〈I ′〉 , (9.8)

the volume radiation force is proportional to the gradient of the intensity divided
by the sound speed

FVx = − ∂

∂x

(
I

c0

)
. (9.9)

Here we shall recognize that the quantity I/c0 can be expressed as

I

c0
=

1

2
ρ0v

2 +
1

2

p2

ρ0c20
, (9.10)

where it is evident that is the total energy density for a plane wave. Thus, is clear
that Eq. (9.9) essentially states that an acoustic radiation force must appears when
a spatial change in the energy density distribution is produced. The derivation
of this equation was developed for homogeneous media, thus, strictly speaking a
change of the energy density can only be produced by absorption processes. How-
ever, it is well-known that acoustic radiation forces also appear when a change of
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the energy density is produced by reflection between media with different acoustic
properties. Here, we ignore these contributions and assume a homogeneous ab-
sorbing soft tissue media, where the contribution of the tissue attenuation to the
absorption of the wave is dominant compared to the internal scattering processes.

Small amplitude waves

Thus, if considering an absorbing-media with an attenuation coefficient α, a monochro-
matic plane wave traveling will present a mean intensity as

I = ρ0c0V
2
0 exp(2αx)/2, (9.11)

with V0 the excitation particle velocity.

Substituting the intensity of Eq. (9.11) in Eq. (9.9), the time average force per
unit volume reads

FVx,lin = 2α
I

c0
= α

p′
2

ρc20
, (9.12)

that is the most common approach to calculate the acoustic radiation force in
absorbing media. We shall note some peculiarities of this simple expression. It
can be observed that the resulting force is proportional to the wave intensity and
the attenuation coefficient. For diagnostic ultrasound frequencies the absorption
coefficient is typically high, around 1 dB/cm or even higher, and for the commonly
used intensities the magnitude of the acoustic radiation force is weak. Therefore,
the induced displacements are had to detect (< 1µm) (Doherty et al., 2013).
Thus, for induce detectable displacements (typically from 1 to 10 µm) two basic
mechanisms are used. First is focusing. By increasing the gain of the source the
intensity can be increased locally inducing higher ARF and displacements. On the
other hand, the intensity of the field can be increased directly by increasing the
amplitude of the excitation. However, for both approaches the calculation of the
radiation force becomes complex.

In the first place, Eq. (9.12) was derived for plane waves and therefore, the
calculation of the acoustic radiation force for more complex fields by using this
expression is not accurate. For directional beams this expression is valid for low
focused fields and only at the focal, where the wavefront can be considered quasi-
plane. However, for strongly focused fields the assumption of planes waves no
longer holds. For an accurate description of the acoustic radiation force the spatial
features of the beam must be included. In the case of paraxial beams analytic
approaches can be obtained for intense waves (Rudenko et al., 1996; Ostrovsky
et al., 2007; Ostrovsky, 2008), but for strongly focused sources a better theoretical
foundation is needed. Approaches include calculating the full radiation stress
tensors numerically or by indirect measurement of the acoustic radiation forces,
e.g. by estimating streaming in frequency power law absorbing fluids.
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Nonlinear regime

Secondly, if the source amplitude is increased, nonlinear effects can be produced.
In the case of weakly nonlinear effects, the absorption of each harmonic is differ-
ent following the tissue frequency power law attenuation. If Eq. (9.12) is used the
force can be calculated by the sum of the contributions of each harmonic sepa-
rately. However, strictly speaking this equation is not exact in nonlinear regime.
The main reason is that in nonlinear regime the intensity distribution of the wave
is not exactly the given by Eq. (9.11). As long the energy is transferred to the
higher harmonics, and the higher spectral components present higher attenuation,
the intensity decay is not exponential, leading to the so-called nonlinear absorp-
tion. Thus, in the nonlinear regime these processes leads to a increasing rate
of momentum transfer from the wave to the media, and therefore the acoustic
radiation force is increased.

If the losses are caused by thermo-viscous effects, alternatively the nonlinear
acoustic radiation force can be calculated directly using the expression (Rudenko
et al., 1996)

FVx,thermo =
b(β′ + 1)

c50ρ
3
0

〈(
∂p′

∂t

)2
〉
, (9.13)

where β′ is the nonlinear compressibility (often neglected) and the dissipation
coefficient, b, is given by

b =
4

3
µ+ µB + κ

(
1

CV
− 1

Cp

)
, (9.14)

that accounts for the quadratic frequency attenuation caused sound thermo-viscous
diffusion processes, being µ the shear viscosity, µB the bulk viscosity, κ the thermal
conductivity and CV and Cp the specific heats at constant volume and pressure
respectively.

Equation (9.13) is valid in both, linear and nonlinear regimes. In the first
case, substitution of a monochromatic wave in Eq. (9.13) gives Eq. (9.12). On
the other hand, Eq. (9.13) states that for complex nonlinear acoustic fields with
sharp waveforms, as those containing shock waves, the squared time-derivative
of the pressure will have a non negligible period average value. Therefore, the
nonlinear acoustic radiation force is increased when sharp waveforms are present
in the domain.

Sawtooth regime

If the nonlinear processes are strong enough to produce very sharp wave steepening,
the wave can be described by the a sawtooth waveform. This regime occurs at
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distances σ > 3 and Gol’dberg ratios Γ >> 1. Thus, an analytic expression
can be obtained for waveforms containing shock waves by substituting a sawtooth
waveform in Eq. (9.13). The substitution of a sawtooth profile into Eq. (9.13)
gives (Pishchalnikov et al., 2002; Rudenko et al., 2004)

FVx,saw =
2π2

3
(β′ + 1)

2
ω
ρ0

c20
u3

0 (x) , (9.15)

where u0(x) is the amplitude of the particle velocity in one period of the sawtooth.
It is important to note that in the sawtooth regime the acoustic radiation force
does not depend on the absorption of the media. This effect is due to the nonlinear
intensity absorption dominates over the tissue attenuation in the sawtooth regime.
On the other hand, the cubic amplitude dependence, instead of the quadratic one
for the linear estimation, evidences the great potential of the sharp waveform to
enhance acoustic radiation force in the nonlinear regime.

Thus, the acoustic radiation force for plane waves is well understood in the
case of thermo-viscous losses, where the magnitude of the force varies between to
limits (1) the small amplitude regime, where the force decays exponentially with
distance, and (2) the nonlinear absorption regime, where the ARF is proportional
to the cube of the sawtooth peak particle vibration.

9.3 Nonlinear radiation force in tissue-like media

In the case of frequency power law absorption media, the acoustic radiation force
for small amplitude waves is equivalent by selecting the appropriate attenuation
coefficient and the intensity of each spectral component. However, Eq. (9.13) is no
longer valid for media with non-quadratic frequency dependent attenuation, and
therefore the calculation of the ARF in the nonlinear regime becomes complex.
Here, we calculate the ARF using the mean change in momentum by solving
numerically the full constitutive relation of nonlinear acoustics by using the method
described in Chapter 7.

The aim of our work is to understand the role of the frequency dependent
attenuation in the nonlinear generation of acoustic radiation forces.

We start presenting the intensity of a plane wave in two absorbing media, for
thermo-viscous absorption, where the exponent of the frequency power law is γ = 2
and for tissue absorption, γ = 1. Figure 9.1 shows the intensity distribution for
these two attenuation models, where each curve represents a different Gol’dberg
ratio: for Γ >> 1 the nonlinear effects dominate over attenuation and the propa-
gation can be considered lossless, and for Γ→ 0 the nonlinear effects are negligible
and the propagation can be assumed linear. The analytical intensity for a lossless
media is also presented (Hamilton et al., 1998a), were it can be appreciated the
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Figure 9.1: Spatial distribution of the nonlinear intensity in (top) viscous media and (bottom)
tissue for increasing ratio between nonlinear and attenuation effects (Γ is the Gol’dberg ratio).

well-known distribution: in the shock-free region the intensity is constant and be-
yond σ > 1 the nonlinear absorption activates and the intensity drops, even for
lossless media.

For lower Gold’berg ratios the intensity decays exponentially in both lossy
media. However, for higher wave amplitudes, when Γ >> 1 the intensity does not
decays exponentially and appreciable differences can be observed between thermo-
viscous and tissue model. Only for the very high nonlinear regimes the intensity
distribution in both models converges to the lossless case. In these cases the
nonlinear effects develop fast and the attenuation have no appreciable effect. Also,
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Figure 9.2: Spatial distribution of the normalized acoustic radiation force (ARF) for different
Gold’berg ratios (Γ). The distribution of the ARF is calculated for (black continuous line)
soft-tissue and for (black dotted line) thermo-viscous media. The limiting case of linear ARF
calculation using Eq. (9.12) is shown in blue line, while the sawtooth regime using Eq. (9.15
(valid for σ > 3 ) is shown in red lines.

in all cases it can be seen that the intensity distribution have different shape in
the shock-free region and beyond the shock formation distance.

Thus, as long the media is homogeneous and sound speed is constant, is evi-
dent that there exist differences in the gradient of the energy density. Therefore
the resulting acoustic radiation force is amplitude dependent, and also different
between attenuation models.

A close view can be observed in Fig. 9.2. There, the acoustic radiation force
is shown for four selected amplitudes, being Γ = (2, 10, 15, 20) respectively. The
limiting cases of linearized calculation using Eq. (9.12), and the sawtooth regime
using Eq. (9.15) are shown in blue and red lines respectively. First, for Γ = 2,
the propagation is nonlinear, but the attenuation processes still comparable to the
nonlinear processes. In this case, the intensity decay is almost exponentially, and
therefore the ARF is proportional to the attenuation coefficient and wave intensity.
The ARF in this case decays also almost exponentially and the expression (9.12),
although not exact, is accurate to describe the ARF generation for both, thermo-
viscous and absorbing media.
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Figure 9.3: Peak acoustic radiation force value and its location in σ coordinate as a function
of the Gol’dberg ratio for (continuous line) soft-tissue model and (dotted line) thermo-viscous
lossy medium.

However, if wave amplitude is increased, i.e. for Γ = (10, 15, 20) in Fig. 9.2, the
ARF distribution is no longer accurately described by Eq. (9.12). Moreover, there
exist remarkable differences between tissue and thermo-viscous models. First, we
set the same attenuation coefficient at the fundamental frequency for both models.
Therefore, due to the attenuation is given by α = α0ω

γ , in the case of thermo-
viscous model the high spectral components present high overall attenuation than
in the tissue model. Thus, in the nonlinear regime high spectral components are
generated in both models, but in the thermo-viscous model they are attenuated
faster and close to the source. The momentum transfer is increased near the source.
By contrast, in the tissue model the attenuation of higher spectral components is
lower, and therefore the momentum transfer is weaker near the source.

On the other hand, at distances near the shock formation distance this situation
is inverted. At these distances, the amplitude of the harmonics in the tissue
model is higher than in the thermo-viscous model due to the weaker high-frequency
absorption. Thus, when nonlinear absorption activates and strongly dominates
over tissue absorption, the momentum transfer of the tissue model is remarkable
higher than in thermo-viscous lossy media.

Finally, for higher distances, and very strong nonlinearity, the ARF observed
in both models converge to the sawtooth profile given by Eq. (9.15). This fact
evidences that also in tissue model, the momentum transfer for waves including
shocks is governed by the nonlinear absorption processes and almost independent
of the tissue properties: the attenuation value and the exponent of the frequency
power law attenuation. However, we remark that for intermediate distances at
which there exists shocks, but the sawtooth profile is not yet developed, let say
1 < σ < 3, the specific tissue power law strongly affects the acoustic radiation
force generation.

The maximum value of the acoustic radiation force and its location is presented
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in Fig. 9.3. First, it can be seen that for low Gol’dberg ratios the acoustic radiation
force maximum in located at the source and the value is proportional to the source
intensity F0 = 2αI0/c0. In these situations the media attenuation is stronger than
the nonlinear absorption, and the ARF decays from its initial value. However, for
higher Gol’dberg ratios the strong nonlinear effects dominates over absorption. As
explained above the momentum transfer is increased due to nonlinear absorption
processes and the acoustic radiation force is strongly enhanced. For these plane
wave simulations, even without focusing, the nonlinearity increases the acoustic
radiation force a order of magnitude relative to the acoustic radiation force at
the source. On the other hand, an interesting feature is observed: due to the
maximum of the acoustic radiation force is produced before the sawtooth regime,
the maximum enhancing depends on the power law exponent.

Thus, this results evidences the importance of including soft tissue losses for
estimate acoustic radiation forces, even in situations with strong nonlinearities.
On the other hand, the maximum momentum transfer is located around σ = π/2,
where shocks are fully developed and the shock amplitude (the pressure jump at the
discontinuity) is maximum. It can be observed that in Eq. (9.13), the maximum
possible value of the time-derivative will be produced by a sharp time waveform.
Thus, the maximum value is obtained at the location where the discontinuity jump
reaches its maximum, for lossless propagation occurs exactly at σ = π/2.

9.4 Power law dependence

We have shown the nonlinear generation of the acoustic radiation force for the case
of linear frequency power law and for thermo-viscous losses. Here we extend the
analysis for intermediate values of the exponent of the frequency power law. Thus,
Fig. (9.4) presents an overview, where it is shown the acoustic radiation force gen-
erated as a function of the distance and as a function of the exponent of the power
law. In first place, Fig. (9.4) (top) presents a case where nonlinear effects are of
the order of the attenuation processes. Here, the ARF decays almost exponentially
and there does not exist remarkable differences between the frequency power law
attenuation models. The ARF is slightly greater for the higher exponents of the
power law due to the absorption of the generated high spectral components is
greater. Note in the linear regime the effects of the exponent of the power law are
negligible for monochromatic plane waves.

However, for high nonlinear regimes, there can be observed a high (an non-
trivial) dependence in the ARF and the exponent of the power law. There can be
seen that the maximum ARF are generated in the case of linear power law. For
thermo-viscous losses (γ = 2) the ARF is generated at higher rate near the source
and the peak value is lower than for the linear power law case. But for intermediate
values, there exist a trade-off between these effects: in one hand, the specific power
law increases the attenuation in the high frequency limit, the absorption of the
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spectral components is increased rising the ARF near the source. On the other
hand, when the power law exponent is increased, the nonlinear intensity absorption
is increased near the source and therefore the intensity of the wave when shocks are
produced is reduced. Thus, around σ = π/2 the wave amplitude strongly depends
on the attenuation produced before, near the source. Therefore the enhancement
of the ARF generated by the sharp waveforms beyond the shock formation distance
strongly depends on the trade-off between media absorption and the specific wave
amplitude due to cumulative nonlinear absorption processes.

Figure 9.5 shows the ARF at four distances as a function of the exponent,
where the above described effects can be observed. Near the source (σ = 0.5), the
momentum transfer is governed by the media attenuation. Higher the exponent
higher the momentum transfer for the superior harmonics and therefore, higher
the nonlinear acoustic radiation force. This behavior holds until the existence of
shocks in the solution, at σ = 1. For longer distances, the situation is inverted. At
the location where the discontinuity jump is maximum (σ = π/2) the maximum
of the ARF is achieved for linear frequency power laws. For higher exponents,
the value of the ARF is reduced. However the minimum is not located for the
thermo-viscous case, but slightly before, around γ = 1.8.

Here, we need to add another effect that we have omitted, that is the weak
dispersion of the frequency power law attenuation media. As seen in Chapter 8,
the efficiency in the harmonic generation is also dependent of the exponent of the
power law. Essentially, the energy transfer from fundamental to higher harmonics
is maximized for nondispersive case (γ = 2), and being reduced for nearly linear
power laws due to weak dispersion. Thus, the harmonic energy transfer is in-
creased for thermo-viscous losses, and due to its higher attenuation of the higher
spectral components the ARF is slightly increased. The competition between non-
linear generation, attenuation and dispersion effects, and the nonlinear intensity
absorption leads to the specific curves obtained numerically, where it is evident
the critical effect of the power law absorption to accurately describe the acoustic
radiation force. Differences between absorption models can lead to differences of
the ARF values (about 25%) and also strong differences in the spatial distribution.

9.5 Relation of nonlinear absorption and tissue
heating rate

Nonlinear absorption in tissue

One of the factors that are closely related to the nonlinear behavior of the acoustic
radiation force is the nonlinear intensity absorption. It is clear from Eq. (9.9), that
the acoustic radiation force is closely dependent on the intensity distribution. On
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the other hand, by the definition of the absorption we get

αf = −∇ · I
2I

. (9.16)

For small amplitude plane wave with I = I0 exp(−2αx), it reduces to

αf = − 1

2I

∂I

∂x
= α, (9.17)

that is the linear absorption coefficient. However, for finite amplitude waves the
effective intensity absorption is increased. For the lossless case, (equivalent to
Γ → ∞), the nonlinear absorption is a function of the shock amplitude, Psh,
(Hamilton et al., 1998a) as:

αf = −
2
3P

3
sh

π − σPsh + Psh cosσPsh + 2
3σP

3
sh

. (9.18)
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Figure 9.6: Nonlinear absorption for different Gol’dberg ratios. (Top) thermo-viscous absorp-
tion model, γ = 2, and (bottom) tissue absorption model, γ = 1.

In the case of thermo-viscous absorption the intensity can be obtained ana-
lytically from th Mendousse solution (Hamilton et al., 1998a), and the nonlinear
absorption calculated using Eq. (9.16). In the case of other tissue model, the
nonlinear absorption is calculated by obtaining numerically the intensity and then
apply Eq. (9.16).

Thus, Fig. 9.6 shows the nonlinear absorption obtained for thermo-viscous and
tissue models. These results have been partially shown in the literature previously,
see e.g. the work of Kashcheeva et al. (2000), we review here for convenience. We
can see that the nonlinear absorption is present in all simulations. Near the source,
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Figure 9.7: (Left) Maximum value of the nonlinear absorption as a function of the Gol’dberg
ratio for (continuous line) tissue and (dotted line) thermo-viscous media. (Right) Location in
the σ coordinate as a function of the Gol’dberg ratio.

in the case of thermo-viscous losses the effective intensity absorption is higher than
in the linear power law due to strong attenuation at the higher spectral components
and when shocks are present, as explained above, the nonlinear absorption is higher
for linear power law. The nonlinear intensity converges to the lossless estimation
for very strong nonlinearities. In the case of linear power law the convergence is
faster due to the low effective attenuation near the source.

These features are consistent to the acoustic radiation force, higher the effec-
tive attenuation, higher the ARF value. However, the maximum of the acoustic
radiation force does not necessary coincide with the maximum of the nonlinear
absorption, even in plane waves. By comparing Eq. (9.9) and Eq. (9.16), it can
be appreciated the difference: the acoustic radiation force is proportional to the
change of the energy density, while the nonlinear absorption is proportional to the
change of the energy density normalized to the energy density. Note that in the
linear regime, the acoustic radiation force decreases exponentially while the effec-
tive absorption is constant in space. For weak nonlinear effects, as shown by the
lower curves in Fig. 9.6, the acoustic radiation force decays almost exponentially
and the maximum is located at the source, while the maximum of the nonlinear
absorption is always not at the source, but around π/2. See also Figs. 9.7 and
compare to Figs. 9.3. Both magnitudes are closely related though the momentum
transfer, energy deposition, and intensity reduction, but are not the same.

Nonlinear tissue heating rate

As studied above, the result of the momentum transfer from the wave to the
medium due to absorption processes is the appearance of a radiation force. On
the other hand, the result of the dissipation of the acoustic energy of the wave is
that the medium is heated. The heating rate per unit volume, Qv, at which the
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temperature T is increased is:

dT

dt
=

Qv
ρ0Cp

, (9.19)

where Cp is the specific heat capacity at constant pressure (per unit mass) of the
medium. On the other hand, the heating rate can be related to the wave intensity
as (Hamilton et al., 1998a):

dT

dt
= − 1

ρ0Cp
∇ · I . (9.20)

As can be seen by simple comparison with Eq. (9.9), for a plane wave the
heating rate of the medium is proportional to the acoustic radiation force as

dT

dt
=

c0
ρ0Cp

FVx . (9.21)

Therefore, for a plane wave the heating rate coefficient, Qv, is proportional to
the acoustic radiation force:

Qv = c0F
V
x . (9.22)

For linear plane waves this relation reduces to the widely expression Qv = 2αI.
However, as seen from the results of the preceding sections, for nonlinear waves
both the amplitude and the spatial distribution of the heating rate calculated from
Eq. (9.21) will not match the predictions using the linearized expression Qv = 2αI.
The prediction of heating rate using the linearized expression will underestimate
the temperature increasing in the nonlinear regime. Huge literature is devoted to
the heat deposition by nonlinear fields, most of them for HIFU therapy applications
and is well-known that the heat rate is increased by nonlinearity. However, most of
the literature works still modeling the heating rate using the linearized expression.

On the other hand, once the medium is locally heated over the ambient tem-
perature processes as diffusion, convection, conduction and radiation transfer heat
from warmer to cooler regions. For tissues, the blood flowing trough capillaries and
blood vessels redistributes heat. This process, known as tissue perfusion, and the
heat diffusion due to thermal conductivity can be modeled by the Pennes bioheat
transfer equation

dT

dt
= κ∇2T − (T − T0)

τ
+

Qv
ρ0Cp

, (9.23)

where κ is thermal diffusivity, τ is the constant for perfusion and T0 is the ambient
temperature. It is worth noting here that due to the Laplacian term, temperature
will spread strongly for sharp temperature distributions. Thus, the heat distri-
bution will depend initially to the specific acoustic radiation force field (acting as
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heat source) and in second term (but coupled in time) to the diffusion/perfusion
processes. As seen before, there exist remarkable differences on the (realistic) non-
linear estimation of the acoustic radiation force and its linearized approach (blue
curves in Fig.9.2). These differences, not only in the value but in the distribution
shape of the ARF, will lead to different heating patterns and must be included for
realistic heating models if nonlinear effects are strong.

In the case of finite amplitude acoustic beams, it was shown previously that
the peak intensity location does not necessary match the location of the ARF
maximum, see e.g. (Camarena et al., 2013b). Thus, the heating pattern will be
different using directlyQv = 2αI, or by estimating the energy deposition rate using
the momentum transfer, i.e. the nonlinear acoustic radiation force distribution in
the tissue.

9.6 Conclusions

In this Chapter we have calculated numerically the acoustic radiation force for
intense ultrasound plane waves in biological media. By neglecting diffraction, the
particular features of the acoustic radiation force in absorbing biological media
can be studied and clearly understood. Thus, the relevance of the exponent of
the frequency power law absorption is studied, showing that the correct tissue
attenuation model is critical, even in the case of very strong nonlinearity. On the
other hand, we have shown that in the nonlinear regime, accounting for the proper
acoustic radiation force calculation is critical in order to do not underestimate the
force value.

Furthermore, the relation of the acoustic radiation force to the effective or
nonlinear absorption in tissue model is presented. Also, considerations on the
effective heat deposition rate are also underlined, where it was shown that the
nonlinear acoustic radiation force accurately describe the heating rate in the tissue.

However, more complete study is needed for realistically describe the acoustic
radiation force in biomedical applications. In first place, in the case of acoustic
beams, including diffraction not only implies the calculation of the acoustic ra-
diation force in the direction of the beam, but also in the other directions. In
other words, if diffraction is included, the nonlinear stress tensor must be calcu-
lated (Rudenko et al., 1996; Ostrovsky et al., 2007; Ostrovsky, 2008). Of special
interest is the calculation of the nonlinear stress tensor for non-paraxial beams.
Moreover, other interest related problems are the accurate modeling of the shear
waves generated by nonlinear acoustic radiation force in tissue, and the acoustic
radiation force generated due to tissue internal reflections, heating patterns with
realistic blood streaming due to high intensity fields, or acoustic radiation force
interaction with microbubbles inside capillaries.
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Symbols
k-space method, 162, 196, 246

A
Acoustic radiation force, 183, 252
Advection, 51
Angular momentum transfer, 183
Anomalous dispersion, 213, 231
Archimedean spiral, 158
Artificial viscosity, 208
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B
Babinet’s principle, 161
Band structure, 111
Band-gap, 49, 69
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Burguers equation, 193

C
Castor oil, 218
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Coherence length, 66, 111, 233
Constitutive relations, 50, 195
Continuity equation, 50
Coulomb interaction, 8
Crowdion, 28
Cubic-like medium, 81, 90
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Detuning, 66
Diffraction order, 141
Discrete wave equation, 9
Dispersion management of solitons, 99
Dispersion relation, 47, 231
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Equation of motion, 50
Evanescent waves, 70
Extremally linear media, 88
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Fermat’s spiral, 158
Fermi-Pasta-Ulam lattice, 8
Fluorescence, 82
Focusing, 135
Fourier continuation method, 196
Fractional Laplacian, 196, 246
Free and forced waves, 65
Frequency conversion mirror, 85
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Fresnel zone plates, 135
Fubini solution, 60
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GaAs/AlAs lattice, 47
Gol’dberg ratio, 214, 260
Granular media, 47

H
Harmonic enhancement, 79
Heat diffusion, 268
Heating rate, 268
Helix field, 176
High Intensity Focused Ultrasound (HIFU),
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High order Bessel beam (HOBB), 159
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Interstitial defects, 40
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KdV soliton, 91
Khokhlov number, 220
Kinks, 6
Kramers-Kronig relationships, 214, 230
KZK equation, 194
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Lagrangian energy density, 54, 194
Lituus, 158
Localized nonlinear excitations, 4

M
Magic wave number, 16, 19
Mendousse solution, 214
Mica muscovite, 4
Multi-objective optimization, 205
Multilayered, 47
Multiple relaxation, 198

N
Neighbours interaction, 23
Nonlinear absorption, 265
Nonlinear coupling of Bloch modes, 113
Nonlinear focal shift, 149, 222
Nonlinear focusing, 148, 221
Nonlinear tissue heating rate, 268
Numerical dispersion, 204
Numerical stability, 204

O
One-way nonlinear models, 194
Optimization, 205

P
Pareto front, 207
Peierls-Nabarro potential, 37
Pennes bioheat transfer equation, 268
Perfectly matched layers (PML), 203
Periodicity, 46
Perturbation method, 65
Phase matching, 63, 66, 111, 233
Phonon dispersion, 9
Phonons, 46
Plane wave expansion method, 110

Q
Quodons, 4

R
Radiation, 34
Rayleigh-Sommerfeld integral, 161
Relaxation, 197
Resonance conditions, 63
Rotating wave approximation, 17
Runge-Kutta method, 202
Rytov formula, 48

S
Saser, 47
Sawtooth wave, 258
Second order nonlinear equation, 52
Second order wave eqaution, 54
Self-collimation, 106, 111
Shock amplitude, 265
Shock waves, 210
Short range potential, 26
Soft-tissue, 213, 232
Solid state nuclear track detectors, 4
Soliton, 91, 97
Sonic crystals, 46, 107
Spiral grating, 159, 170
State equation, 51
Strain, 14
Substrate potential, 30
Superlattices, 46
Supersonic ultra-discrete kinks, 13

T
Tail analisis, 10
Thermalization, 37
Topological charge, 183
Triangular waveform, 19, 22

V
Vortex, 163

W
Westervelt equation, 54, 194
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