
End-of-Degree Project

Bachelor’s Degree in Informatics
Engineering

2014/2015

X-GSD: Cross-Platform Game
Skeleton (Data-Driven)

A basic data-driven C++ game engine built upon SFML

Official name (Spanish): Motor de videojuegos en

C++ sobre SFML

Author:
Andrés Ruiz Bernabeu

Supervisor:
Jordi Joan Linares Pellicer

June, 2015

Abstract

The purpose of this end-of-degree project report is to
explain some general concepts about video game program-
ming, game engines and their utility, and how X-GSD is
built around some of these ideas, including: types of game
loop and simulation, resource management, scene graph,
entity-component system, events and basic physics.

Nowadays, game engines have become very popular
and a fundamental part for many game developers. De-
spite their benefits, this tendency comes with costs: As
the most popular engines are proprietary, game developers
become reliant on closed third-party software, which could
lead —among others— to a deadlock of their projects in
the worst case. This and more against-reasons regard-
ing popularity of proprietary and big game engines are
discussed along this work.

X-GSD stands for Cross-platform Game Skeleton (Data-
Driven), a basic data-driven C++ game engine built upon
SFML1. It is a totally free and open basic game engine
which aims to solve some of the problems of proprietary
game engines, or being a starting point for custom solu-
tions. It can also serve as an academic example of how to
start building the core of a game, or a game engine.

-

Keywords: Video games, game engine, programming, SFML, X-GSD.

1Simple and Fast Media Library

Contents

0 Abbreviations and Symbols 1

1 Introduction 3

1.1 Previous research . 4

1.1.1 Bibliographic review . 5

1.1.2 State of the art . 6

1.2 Objectives . 9

2 Methodology 11

2.1 Cross-platform targeting . 11

2.2 Data-driven engine . 13

2.3 Free software and open-source . 15

2.4 Example game . 15

3 Development 17

3.1 Game class . 17

3.1.1 Interface review . 18

3.1.2 The Game Loop . 22

3.1.3 Basic fixed delta time . 24

3.1.4 Variable delta time . 26

3.1.5 Semi fixed delta time . 29

3.1.6 Fixed delta time with variable rendering frame rate 30

3.1.7 The game’s entry point . 32

3.2 Scenes, the scene graph and its nodes 32

3.2.1 Scene class . 33

3.2.2 SceneGraphNode class . 41

3.3 Entity-Component system . 46

3.3.1 Entity class . 47

3.3.2 Component class . 50

3.3.3 ComponentSprite . 51

3.3.4 ComponentRigidBody . 53

3.3.5 ComponentCollider . 55

3.3.6 Controllers: User-defined Components 57

3.4 Example game . 60

4 Conclusion 67

5 Improvement proposals 68

6 Appendix 70
6.1 Debug utils . 70
6.2 Time utils . 71
6.3 Event wrapper class and CustomEvent 71
6.4 ResourceManager class . 72
6.5 PhysicState class . 74
6.6 PhysicsEngine class . 76

4

X-GSD Section 0 ABBREVIATIONS AND SYMBOLS

0 Abbreviations and Symbols

1. X-GSD : Cross-Platform Game Skeleton (Data-Driven), the name of the game
engine developed along this work.

2. OOP : Object Oriented Programming. A programming paradigm based in
the encapsulation of data and behaviour on logic structures called objects.

3. C++: Programming language invented by Bjarne Stroustrup on 1983. It is
one of the most popular[1] programming languages, including games devel-
opment.

4. RAII : Resource Acquisition Is Initialization, an idiom which encourages to
manage all memory on constructors and destructors.

5. SFML: Simple and Fast Media Library. A multi-purpose modular cross-
platform framework. It is the abstraction layer used by X-GSD to achieve
cross-platform targeting.

6. SDL: Simple DirectMedia Layer. A very popular abstraction layer similar to
SFML, but older and less object-oriented.

7. API : Application Programming Interface. This are the public operations and
data which can be used to program a software application without knowing
about the underlying implementation.

8. SDK : Software Development Kit. Software suite with a range of tools for
developing on a particular platform or system.

9. IDE : Integrated Development Environment. Software that integrates differ-
ent development tools (even a whole SDK) into a single application.

10. FPS : Frames Per Seconds, which refers to the rendering frequency of the
portion of the screen where the game is shown.

11. JSON : JavaScript Object Notation. A widely-supported lightweight data-
interchange format. [19]

12. YAGNI : You Ain’t Gonna Need It. An idiom which warns to avoid antic-
ipating the future by implementing features that might be needed, keeping
the focus on the features that are actually needed at the present.

[1] LangPop. Programming language popularity. http://langpop.com/.

1

http://langpop.com/

Section 0 ABBREVIATIONS AND SYMBOLS X-GSD

13. WYSIWYG :What You See Is What You Get, which means that the resulting
product will look the same as it looked in the editor.

14. AAA: Common term to refer to video games mega-productions.

2

X-GSD Section 1 INTRODUCTION

1 Introduction

Game development can be still considered as a very new area of knowledge and an
emerging industry. Moreover, university studies related to video games and game
development are still too young —when the author of this work began its bachelor’s
degree, university studies related to video games did not even exist in Spain—
and there are no clear standards. The video games industry has been utterly
hermetic for many years, especially the most technical parts as programming.
Therefore, only those who were into it —working for some big company— had
proven knowledge on which programming decisions are better for which scenarios,
and companies would not allow their workers to reveal any information, making
almost impossible to generate a collective and public knowledge base with regards
to game development. This can be seen as one of the causes of game developers
deciding to buy a proprietary game engine license, as these game engines handle
big part of the game core programming itself and frees the programmer of this
task to focus on developing games.

These proprietary game engines are very robust and helpful in general, plenty
of tools and editors which make game development easier and faster. But most
of these developers forget the price they pay for it —appart from the license,
which generally does not fit everyone’s budget—, which is becoming dependant
on a closed and proprietary third-party technology. This may lead to face some
problems such as:

• Targeting to a platform which is not compatible with this particular game
engine.

• The need of low-level details control (for optimization or any other matters),
which this particular game engine does not allow.

• A new version of the game engine is needed to target to a new platform, but
this new version introduce drastic changes and deprecations. The project
might stay on older platforms and engine’s version, or need to invest time in
deep refactoring.

• A distribution platform the team is using requires some mandatory updates
(e.g. Apple required 64 bit compatible binaries for iOS apps[2]), but the
game engine has not been updated yet and therefore the game or its updates
cannot be published. May cause temporal deadlock of the project (or total
if that update never happens).

• The proprietary company closes and/or the game engine gets discontinued.
May cause total deadlock of the project.

• The programmer could become too much dependant to that particular en-
gine workflow and may stop learning other technologies —a special word of
caution on this: a job change can occur to a company where that particular
engine is not used—.

[2] Apple Inc. 64-bit and ios 8 requirements for app updates. https://developer.apple.

com/news/?id=12172014b.

3

https://developer.apple.com/news/?id=12172014b
https://developer.apple.com/news/?id=12172014b

Section 1 INTRODUCTION X-GSD

In contrast, if using an open game engine and some of these problems would
appear, the whole community of that game engine could take action to solve the
issues as anyone can see, modify and compile the engine’s code. This is also true
if the programmer is using its own technology —although there may not be any
community and the problem has to be solved by the programmer itself—. The
point is the project does not totally depend on a closed proprietary third-party
software which could —in the worst case— deadlock it.

This report of end-of-degree project shows how one could build its own tech-
nology or game engine, either by serving as an academic example or by being a
possible basic solution to the problems stated before.

1.1 Previous research

Fortunately, with the arrival and growth of the Internet —as many other aspects
of people’s lives— this hermetic tendency of the games industry has been chang-
ing: free and open-source game engines and tools appeared on the web for anyone
to look inside or freely download and use; on-line collaborative systems —see
GitHub[3]— have revolutionised the way free software and open source is under-
stood as anyone can very easily look how a particular part of a specific application
or project has been made, and even try to enhance it and collaborate with the
author of that project; There are also personal websites, blogs, social networks
and wikis which are filled with information from people who want to share their
knowledge about this topic all around the world. The combination of all these
phenomenons with digital distribution have resulted in the appearance of the so-
called “Indie developers” —small teams of developers that can now afford to get
into the industry and create very innovative and/or artistic game experiences as
opposed to big companies’ AAA2 games—. Maybe because of the origin and na-
ture of these Indie developers, or because they do not have the pressure of a big
company that forbids sharing information, they are generally very transparent
and give very valuable information to the community —sales data, programming
advices, reports detailing all the development process... Gamasutra[4] is a mine
of them—. It is truly encouraging to see how much the games development sce-
nario has changed, becoming more accessible. However, despite the rise of this
knowledge-for-everyone epoch the Internet has brought, the fact is that there are
no clear standards for game programming yet.

As it was stated above, the games development scenario has been changing and
information sharing is more common. There are free and open game engines and
tools to look into their code and some valuable documentation sources available
for anyone. Therefore, it is a good starting point to look at what others have done
in this field.

2Common term to refer to millionaire mega-productions.

[3] GitHub Inc. Github · build software better, together. https://github.com/, February
2008.

[4] UBM TechWeb. Gamasutra - the art & business of making games. http://www.

gamasutra.com/, 1997.

4

https://github.com/
http://www.gamasutra.com/
http://www.gamasutra.com/

X-GSD Section 1 INTRODUCTION

1.1.1 Bibliographic review

The most valuable information sources for the development of this work are refer-
enced in this section with brief descriptions and the reasons why they have been
taken into account.

• SFML Game Development book [18]

This introductory book to SFML is from where most initial key ideas have
been taken and the main source of inspiration of this project. It is an almost
perfect starting point for building a game from scratch —provided the reader
has enough C++ knowledge—.

The book covers the concepts of game loop, basic vector algebra, resource
management, error handling, entities, scenes, input handling and many other
topics which are out of the scope of this work, such as on-line multiplayer.
It also recommends some best practises using C++11 new features, such as
smart pointers in combination of RAII3.

• A Tour of C++ (C++ in Depth Series) book [36]

As the title suggests, the book does a review of C++ with special attention
to the new features of the C++11 standard. Recommended to programmers
who need to refresh their knowledge of C++ or are new to it, but have
knowledge of OOP4.

• Gaffer on Games website [11]

This website features many technical interesting articles regarding game
programming. The first two of them, Integration basics [12] and Fix your
timestep! [10] have been specially useful to implement the core of X-GSD:
The game loop and how objects advance in the simulation through integra-
tion.

• OpTank development blog [33]

A blog with good game development design articles which were useful to
implement the Entity-Component system of X-GSD. It also encourages good
habits and principles like YAGNI5

• Game Programming Patterns book/website [25]

This book has been a recent discovery and therefore most of the brilliant
ideas and concepts of this book were not included on the project. It is a
gem of game programming that any game developer should take a look at.
The web version[26] is free. But please, if you find it really helpful, consider
buying the book or eBook.

3Resource Acquisition Is Initialization, an idiom which encourages to manage all memory on
constructors and destructors.

4Object Oriented Programming. A programming paradigm based in the encapsulation of
data and behaviour on logic structures called objects.

5You Ain’t Gonna Need It. An idiom which warns to avoid anticipating the future by im-
plementing features that might be needed, keeping the focus on the features that are actually
needed at the present.

5

Section 1 INTRODUCTION X-GSD

• SFML website/forum [16]

SFML website has a Learn section plenty of specific tutorials and the API
documentation of different versions of SFML. The forum is a good source of
information too as it has a good and active community and the developers
of SFML participate very often to answer to doubts and read suggestions.

• SFML GitHub wiki [17]

Another good source of official information and social collaboration with
tutorials, FAQs and resources made by the community with the supervision
of SFML authors.

1.1.2 State of the art

The term game engine may have many definitions depending of the point of view,
but they all coincide in that game engines are software frameworks or tools which
hide low-level programming and hardware details so that game developers can
operate on a higher level of abstraction, resulting in better productivity.

The game engines and frameworks listed below are some of the most popular
and accessible engines at the time of writing:

• Unity

“Unity is a game development ecosystem: a powerful rendering engine fully
integrated with a complete set of intuitive tools and rapid workflows to cre-
ate interactive 3D and 2D content; easy multiplatform publishing; thousands
of quality, ready-made assets in the Asset Store and a knowledge-sharing
community.

For independent developers and studios, Unity’s democratizing ecosystem
smashes the time and cost barriers to creating uniquely beautiful games. They
are using Unity to build a livelihood doing what they love: creating games that
hook and delight players on any platform.” [38]

Unity has become the most popular proprietary 3D game engine of today
among indie developers. The main reasons would be the easiness of use
thanks to a powerful WYSIWYG6 and drag-and-drop editor, the availabil-
ity of a free version, almost automatic cross-platform building, the Asset
Store —a marketplace of any type of resource compatible with Unity, scripts
included— and an affordable royalty-free license while other similar full-
featured engines may cost more than a hundred times its price or have a
high percentage of royalties —or at least that was when it came out. The
market has been changing so much that Unity have become one of the most
expensive engines right now—. New full 2D support has been added recently.

• Unreal Engine

“Unreal Engine 4 is a complete suite of game development tools made by
game developers, for game developers. From 2D mobile games to console

6What You See Is What You Get, which means that the resulting product will look the same
as it looked in the editor.

6

X-GSD Section 1 INTRODUCTION

blockbusters, Unreal Engine 4 gives you everything you need to start, ship,
grow and stand out from the crowd.” [9]

Epic Games Inc. is the company behind one of the most known proprietary
3D game engines of all-time, aging 17 years old at the time of writing (the first
version was released in 1998). Countless games have been build upon this
engine, most of them being big productions, retail games and many AAA’s
[39]. Unreal Engine features cross-platform targeting with high-end quality
graphics and technologies. Written in C++, it also features Blueprints, a
graphic programming and debugging tool for faster development iterations,
in addition to a proprietary solution to C++ code hot-swapping.

Previous versions of the engine required a very expensive license —around a
six or seven figure range of dollars, plus a percentage of royalties depending
on the type of license— only affordable by big companies. Then, Epic Games
adapted their business plan to target indies and general public too, giving
access to the engine, tools and source code by paying a cheap monthly fee
(USD 19) plus a little percentage of the revenue of a UE4-derived project
or game in royalties (5%). After that, they removed the monthly fee and
distributed the complete engine for free, but maintaining the 5% of royalties
if a project reaches USD 3,000 of revenue.

• CryEngine

“CRYENGINE is the leading all-in-one game development solution with truly
scalable computation and benchmark graphics technologies for console, PC
and mobile devices. By choosing CRYENGINE, developers can be assured
that they’re ready for the future of gaming, and empowered to create standout
experiences for PlayStation R©4, Xbox oneTM, Wii UTM, Windows, Linux,
iOS and Android.”

“CRYENGINE is the only game engine that provides multi-award winning
graphics, state-of-the-art lighting, realistic physics, intuitive visual scripting,
high fidelity audio, designer friendly AI, an efficient 3D stereoscopic solu-
tion across all platforms and much more - straight out of the box. DirectX
11 (DX 11) support significantly enhances the capabilities of CRYENGINE’s
powerful real-time renderer, allowing for some of the best visuals ever seen.”
[7]

CryEngine is another proprietary high-end 3D graphics engine with cross-
platform targeting. It is not as popular as Unity or Unreal Engine among
small studios and indie developers, but several AAA games have used it
proving its strength. Not only Crytek’s engine pricing has been similarly
prohibitive to Unreal Engine, but also competes with it in their new monthly
pricing plans (USD 9 with no royalties, but some limitations) to reach indie
and general public.

• ShiVa

7

Section 1 INTRODUCTION X-GSD

“Cross Platform Development made easy. ShiVa3D is a 3D game and ap-
plication development suite that comes in an easy to use, yet very powerful
WYSIWYG (what you see is what you get) editor. Consider ShiVa the glue
between your creative ideas, your art, your code, and the hardware you are
targeting.” [35]

This proprietary 3D graphics cross-platform engine is one of the most target-
platform compatible —over 20 different platforms—. Scripts can be written
in LUA or C++ depending on wether developers prefer easy and fast script-
ing or exploiting full potential of the hardware. ShiVa Technologies SAS
provides a free version of their engine, and a much cheaper license pricing
than Unity. However, updates and community seem inactive compared to
the previously mentioned engines.

• GameMaker: Studio

“GameMaker: Studio caters to entry-level novices and seasoned game devel-
opment professionals equally, allowing them to create cross-platform games
in record time and at a fraction of the cost of conventional tools!

In addition to making game development 80 percent faster than coding for
native languages, developers can create fully functional prototypes in just a
few hours, and a full game in just a matter of weeks.” [40]

GameMaker: Studio is a cross-platform proprietary 2D game engine by YoYo
Games —although the company has been bought by PlayTech recently—
with great popularity among developers and many successful games have
been developed with it. The engine features an easy to use graphical envi-
ronment with many tools, a custom scripting language —GML, which stands
for Game Maker Language— and a free limited version to try and start learn-
ing. License pricing vary depending on the exporting modules needed, but
it can be considered as affordable.

• Cocos2D-X

“Cocos2d-x is an open source game framework written in C++, with a thin
platform dependent layer. It can be used to build games, apps and other cross
platform GUI based interactive programs. The Cocos2d-x renderer is opti-
mized for 2D graphics with OpenGL. It supports Skeletal Animation, Sprite
Sheet Animation, Coordinate systems, Effects, multi-resolution devices, Tex-
tures, Transitions, TileMaps and Particles. It adopts a RenderQueue design.
Performance: supports auto-batching, auto-culling and caching transform,
games are running 1x 20x faster. C++ 11 features: take advantage of the
awesome Lambda functions, override and final, template container, auto,
threads, smart pointers and move semantics. ” [6]

Cocos2D-X started its development in 2010 as a C++ cross-platform port of
the popular Cocos2D-iPhone game engine —which in turn is another port

8

X-GSD Section 1 INTRODUCTION

of many from the original Cocos engine written in Python—. It is totally
free, open-source and industry-proven. In 2013, Chukong Technologies ac-
quired the engine leaving its original MIT license untouched, and invested in
its development. This resulted in a great development boost, which added
new features such as 3D —although the engine still has ‘2D’ in its name—,
enhanced the API and performance, and good documentation in English
started being available. They also maintain a LUA binding so that one can
decide to use C++ or LUA for scripting, a JavaScript/HTML5 port named
Cocos2D-JS and some development tools such as Cocos IDE and Cocos Stu-
dio.

• Construct 2

“Construct 2 is a powerful ground breaking HTML5 game creator designed
specifically for 2D games. It allows anyone to build games — no coding re-
quired!” [34]

Construct 2 is a proprietary HTML5-based7 game engine for building 2D
games with their own IDE and tools with special focus on the “no coding
required” philosophy. Because of being HTML5-based, games built with this
engine may run on web browsers or as an application —which in fact would
be a web view which runs embedded web files instead of obtaining them from
a server, simulating a native application—, and may require extra power and
resources in exchange of the flexibility and portability it offers. Its license
pricing is affordable for the quality and quantity of tools and features the
engine provides.

Although the next game engines are not very popular yet, the author of this
work believed that they deserved a mention because of their potential, and for
being free and open-source:

• Blender [4]: Although this full-featured 3D suite has its popularity, it is not
widely known that it includes an integrated game engine.

• Godot [29]: This engine released a robust 1.0 version by the end of 2014, fea-
turing a complete Unity-like graphical environment to build cross-platform
2D and 3D games.

• Phaser [30]: A simple and easy-to-use HTML5 games framework for making
2D games in JavaScript or TypeScript.

1.2 Objectives

The main goal of the project is to build a free and open-source cross-platform game
engine from scratch with basic features in order to serve as an academic example
or as a starting point for custom solutions.

7Refers to a combination of web standard technologies, mainly HTML5 and JavaScript.

9

Section 1 INTRODUCTION X-GSD

The objective is to show how games developers could build their own game en-
gine from free technologies with the requirements they need, aiming for dynamic
and data-driven architectures for flexibility. In addition, this may help the pro-
grammer to get autonomy and self-confidence to develop own solutions instead of
constantly relying on closed third-party software and its associated problems.

To accomplish that objective, X-GSD will be designed and built with C++
and SFML, explaining every aspect of the engine and the reasons behind each
decision. Finally, basic example games will be developed in order to show the
engine capabilities.

10

X-GSD Section 2 METHODOLOGY

2 Methodology

This work’s title —X-GSD: Cross-platform Game Skeleton (Data-Driven), a basic
data-driven C++ game engine built upon SFML— may sound weird and definitely
does not look branded, but it encloses the main points of the engine in one sen-
tence. This section will introduce and explain the motivation behind each of the
features the title refers to, making emphasis on the used technologies to achieve
it.

Figure 1: Stack of abstraction levels and technologies.

2.1 Cross-platform targeting

The X part of X-GSD stands for “Cross-platform”, which in general terms is the
ability to code once and produce a program that runs on several platforms. That
is one of the most valuable features a game engine often features, as it can re-
duce the development time drastically. Thanks to the combination of C++ and
SFML, this feature can be achieved at code level: the code is written once, but
as C++ is a compiled programming language each target platform need its own
executable. Other (interpreted8) programming languages such as Java achieve
cross-platforming of applications at run level —the same executable runs on every
Java-compatible platform—, which is possible thanks to the JVM (Java Virtual
Machine). That virtual machine is responsible to translate Java bytecode —the
intermediate code generated as a result of compiling Java code— to the specific
hardware where it is running on.

It is obvious that the process involves an important overhead, and among others
that is the main reason because of interpreted languages are not usually recom-
mended for developing games where performance is critical. However, a common

8An interpreted programming language, in general, does not need the source code to be
compiled, and the translation from high-level code to machine code is done at run time. However,
there are some programming languages such as Java that do both compiling and interpreting:
The source code is compiled to an intermediate bytecode, and then a virtual machine translates
it to machine code at run time.

11

Section 2 METHODOLOGY X-GSD

Figure 2: Comparison between compiled and interpreted code phases.

approach is to build the core and the most critical parts of the game —that usually
is the engine— in a compiled programming language as C++, and let the user of
the engine to “script” the game in a (partially or totally) interpreted language as
C#, Java, JavaScript or LUA because —among other qualities such as automated
memory management— these type of programming languages usually permit code
hot-swapping9 which translates in more flexibility, faster development iterations
and better integration with IDEs or editor tools. However, building such systems
can be complex and therefore —for simplicity— X-GSD is entirely built with C++.

The problem is that each target platform has its own API on some partic-
ular programming language. This translates in different ways of handling input
devices, rendering, application and window behaviour, threading facilities, file sys-
tems, etc. And there is where SFML comes in: SFML provides a generic API
which hides the platform-specific part to the programmer. Therefore, loading a
texture, for example, becomes as easy as invoking a SFML procedure which does
all the platform-specific work: look for the texture file on a particular file system,
communicate with the graphics card and load the texture in its memory. And that
line of code would produce the same result on Windows, Mac OS X, GNU/Linux,
iOS or Android —the main platforms that SFML can target to—. The main rea-
son to choose SFML instead of other well known libraries with the same purpose,
such as the industry proven SDL10, is that SFML has a very clear, organised and
modular API with C++ OOP in mind, as opposed to SDL which exposes a C in-

9In software, hot-swapping refers to the ability to modify the code while running, where code
changes materialize without the need of re-compiling and relaunching the program.

10Simple DirectMedia Layer

12

X-GSD Section 2 METHODOLOGY

terface. Moreover, SFML has a very active development and community, whereas
SDL looks stalled.

Figure 3: Comparison between programming with native APIs and with an abstraction
layer API.

2.2 Data-driven engine

The “Data-Driven” part of X-GSD referrs to the ability of the code to produce
different results depending on some input data. In an extreme case, the entire pro-
gram flow would depend on data. For instance, a music player software produces
different sounds as output —the music— depending on a particular input data
—that song’s file and its meta-data—, while the code of the music player remains
unaltered. A more data-driven music player would accept, for example, a play list
file that the music player would follow song per song.

Figure 4: Comparison between non data-driven and data-driven programs.

In the game engines field, data-driven behaviour is an increasing demand by
developers as it provides faster iterations for tuning particular parts of a game in

13

Section 2 METHODOLOGY X-GSD

development —generally, there is no need to recompile after some changes—. This
can be achieved by storing and loading the needed values from configuration files,
which in turn provides and encourages decoupling —the game may be organised
in some logic units the engine provides—. This is totally opposed to hardcoding
values in code. Of course, this more dynamic behaviour involve an overhead, al-
though this trade-off is reasonable in most cases.

With regard to X-GSD, this feature is achieved by a structure of Scenes, Enti-
ties and Components which are stored in and loaded from a JSON11 file per scene
and a general configuration file of the game.

Scenes are a set of a name, a scene graph node, some managers (resources,
physics and controllers) and other properties. They can be considered as a con-
tainer of entities and their resources. When a scene is loaded from a JSON file,
every entity described on it is created and attached to the scene, and every spec-
ified resource is loaded into memory; after a basic fade-out/fade-in transition (if
enabled), the previous scene is deleted from memory and the new scene begins.

Figure 5: Representation of a scene and the scene graph.

Entities can be seen as the fundamental units of the scene. They are a combi-
nation of a name, a scene graph node —which in turn stores a collection of zero
or more scene graph nodes or Entities as children and spatial information such as
position, scale and rotation— and a collection of zero or more components.

Components give particular properties and behaviour to entities, so they can
have visual representation —a sprite12— by attaching a ComponentSprite to it;
or physics-related components —ComponentCollider and ComponentRigidBody—
and even custom components that the user of X-GSD can write to add custom
behaviour to the entity, known as controllers —the “scripting” part of the engine—.

11JavaScript Object Notation. It is a lightweight data-interchange format.[19]
12Graphical object of the scene (the character, a bullet, etc.)

14

X-GSD Section 2 METHODOLOGY

Figure 6: Representation of an Entity and its Components.

2.3 Free software and open-source

Free software and open-source have an important role nowadays: They encourage
transparency, free and accessible learning, collaboration and altruism. Thanks to
these philosophies, countless projects and technologies have seen the light of day
for the benefit of the whole Internet community, which at the same time has an
influence on people’s lives. X-GSD would not have been possible without SFML
or a similar free and open-source project, which in turn is made with C++ —also
free of use—.

Because of that, and as stated before, X-GSD is released in a permisive zlib/png
license —the same used by SFML— with full access to source code. Therefore,
anyone can look into X-GSD classes and files to investigate how it is built and/or
modify it freely, be it to enhance or completely change a particular part of the
engine, be it because of simple curiosity.

At its current state, this game engine is functional with basic features. The
project is available on a GitHub repository[2] so that anyone can collaborate and
improve the engine by adding functionality, enhance some parts, optimise algo-
rithms, etc.

2.4 Example game

Once all the X-GSD development is explained, a little example game will be de-
veloped so that one can see how to use X-GSD easily, covering all the needed
parts:

• How to create the configuration file and its options.

• The game’s entry point in the main.cpp file and how to start its execution
with the invocation of a game run method.

• The creation and loading of scene files (with some resources and entities)

15

Section 2 METHODOLOGY X-GSD

• How to write custom components (the controllers previously mentioned) to
add logic and behaviour to the game.

16

X-GSD Section 3 DEVELOPMENT

3 Development

This section will present each part of X-GSD, class by class, explaining their
interface and functionality of each and some annotations about the corresponding
code if it takes place. Some fragments of code (include guards, header includes,
namespaces, etc.) will be omitted for better readability and focus on the interesting
parts. Code fragments will start with a single-line comment that indicate the
source file from which code has been extracted, if any (the .hpp extension hints a
header file, which generally corresponds to the interface or API; The .cpp extension
is for implementation files) and can contain a “...” code ellipsis indicators. For
more details, full source code is available as attached files of this work or on the
GitHub repository[2]. It is plenty of comments and comes with some examples of
use in order to make it easier to dive into it and understand each little part. Note
that the presented fragments of code have a line numbering as visual aid, but it
may not coincide with the source code’s as these code fragments may be adapted
and some parts omitted.

3.1 Game class

This class is the responsible to load the game’s initial configuration, keep the game
running in a specific game loop, handle resources and subsystems such as physics
engine or events, and serve as a global point of access to these resources and
subsystems. In order to achieve this functionality, the Game class is implemented
similarly to the infamous singleton pattern[27] —but for a good reason: it offers
accessibility while avoiding similar global state in other classes13—.

1 // Game.hpp

2
3 class Game

4 {

5 // Methods

6 public:

7 static Game& instance() { return globalInstance; }

8
9 ...

10
11 private:

12 // Private constructor to ensure the static globalInstance is the only one

13 Game();

14 ...

15
16 // Variables (member / properties)

17 private:

18 static Game globalInstance;

19
20 ...

21 };

22
23
24 // Game.cpp

25
26 Game Game::globalInstance; // Static initialization of the Game globalInstance

13“The goal of removing all global state is admirable, but rarely practical. Most codebases will
still have a couple of globally available objects, such as a single Game or World object representing
the entire game state.”[27]

17

Section 3 DEVELOPMENT X-GSD

The static method instance() returns a reference to the Game globalInstance.
Game() constructor is set as private in order to ensure that the class cannot be
instantiated besides the global instance. Any other class including Game’s header
file can get the game’s instance simply by calling Game::instance().

1 // Some class .cpp or .hpp

2
3 #include <X-GSD/Game.hpp>

4
5 // Retrieve the global instance, store its reference and do something with it

6 Game *myGame = Game::instance();

7 myGame->someMethod();

8
9 // Or simply use it directly

10 Game::instance()->someMethod();

3.1.1 Interface review

The state of the Game class is given by the following member variables:

1 // Game.hpp

2
3 class Game

4 {

5 // Typedefs and enumerations

6 private:

7 typedef std::unordered_map<std::string, std::string> StringDataStore;

8
9 ...

10
11 // Variables (member / properties)

12 private:

13 static Game globalInstance;

14
15 xgsd::HiResDuration mTimeSinceStart;

16 sf::RenderWindow* mWindow;

17 bool mVSync;

18 xgsd::Scene* mScene;

19 sf::Event mEvent;

20 xgsd::PhysicsEngine mPhysicsEngine;

21
22 // Resources managers

23 xgsd::FontManager mFontManager;

24 xgsd::TextureManager mTextureManager;

25 xgsd::SoundManager mSoundManager;

26
27 #ifdef DEBUG

28 // Statistics

29 bool mDebugRendering;

30 bool mEnableStatistics;

31 sf::RectangleShape mStatisticsBackground;

32 sf::Text mStatisticsText;

33 xgsd::HiResDuration mStatisticsUpdateTime;

34 std::size_t mStatisticsNumFrames;

35 std::size_t mStatisticsNumSimulationSteps;

36 #endif

37
38 public:

39 StringDataStore DataStore;

40 };

From top to bottom:

• mTimeSinceStart holds the amount of time the game has been running.

18

X-GSD Section 3 DEVELOPMENT

• mWindow points to a sf::RenderWindow, an SFML class which represents the
portion of the screen where the game will render and which have information
about resolution/size of the window, video mode, etc.

• mVSync is a boolean which stores the vertical synchronization option.

• The mScene member variable is one of the most important of Game class.
This xgsd::Scene* points to the current scene of the game. The Scene class
contains all the scene-related behaviour and state which make possible to
modularize the game in scenes, switch between them, load specific resources,
etc. It will be explained in detail in its own section.

• mEvent is an sf::Event, another SFML class which represents a system
event —generally, input-related such as mouse, keyboard or joystick input,
or window-related such as closing or resizing the window—.

• The mPhysicsEngine member, of type xgsd::PhysicsEngine, is an object
which handles basic collision detection.

• Resource managers of the Game class are useful to store global resources.
For example, if the same font is used in all or a fair amount of the game’s
scenes, it is better to place it in xgsd::FontManager of this class to avoid
loading, unloading and reloading the same font scene after scene. For more
information, see (Appendix 6.4) or source code.

• All the variables between #ifdef DEBUG and #endif preprocessor directives
will only be available if DEBUG symbol has been defined. They have statistic
purposes such as displaying the frames per second in debug mode.

• Finally, DataStore is a StringDataStore which is a type definition of
std::unordered map<std::string, std::string>. This unordered map
can be used to pass basic information in form of std::strings between ob-
jects of the game. For example, in a game with two levels and a class for
each, level1 scene could store points and remaining lives before loading level2
scene so that the latter can know that information:

1 // level_1_scene.cpp

2 // Store player’s lives in a "lives" record of the DataStore (from level1 scene)

3 Game::instance().DataStore["lives"] = std::to_string(mLives);

4
5 // level_2_scene.cpp

6 // Load player’s lives from "lives" of DataStore (in level2 scene)

7 mLives = std::stod(Game::instance().DataStore["lives"]);

The behaviour of the Game class is defined with these methods:

1 // Game.hpp

2
3 class Game

4 {

5 ...

6
7 // Methods

8 public:

9 static Game& instance() { return globalInstance; }

19

Section 3 DEVELOPMENT X-GSD

10
11 void runFixedDeltaTime(int stepsPerSecond = 60);

12 void runVariableDeltaTime();

13 void runSemiFixedDeltaTime(int simulationFrequency = 60, int stepLimit = 3);

14 void runFixedSimulationVariableFramerate(int simulationFrequency = 60);

15
16 Scene& getSceneManager() { return *mScene; }

17 ControllersManager& getControllersManager() { return mScene->getControllersManager(); }

18 PhysicsEngine& getPhysicsEngine() { return mPhysicsEngine; }

19 FontManager& getGlobalFontManager() { return mFontManager; }

20 TextureManager& getGlobalTextureManager() { return mTextureManager; }

21 SoundManager& getGlobalSoundManager() { return mSoundManager; }

22 FontManager& getLocalFontManager() { return mScene->getLocalFontManager(); }

23 TextureManager& getLocalTextureManager() { return mScene->getLocalTextureManager(); }

24 SoundManager& getLocalSoundManager() { return mScene->getLocalSoundManager(); }

25 sf::RenderWindow& getWindow() { return *mWindow; }

26 HiResDuration getRunningTime() { return mTimeSinceStart; }

27
28 void broadcastEvent(const Event& event);

29
30 #ifdef DEBUG

31 bool isDebugRenderingEnabled() { return mDebugRendering; }

32 void updateStatistics(const HiResDuration& elapsedTime);

33 #endif

34
35 private:

36 // Private constructor to ensure the static globalInstance is the only one

37 Game();

38 void loadConfigurationFromFile();

39 void update(const HiResDuration& dt);

40 void render();

41 void handleEvents();

42
43 ...

44 };

All methods starting with ‘get’ —known as getters— return a reference to a
subsystem such as Scene, ControllersManager, PhysicsEngine, resource man-
agers (global, which belong to the Game; and local, which belong to the current
scene) or the game’s sf::RenderWindow. The method getRunningTime returns
the amount of time the game has been running. There is also a
isDebugRenderingEnabled method in debug mode to know whether debug ren-
dering is active (for example, print on screen rendering information such as FPS,
or visualize colliders of entities which have one).

broadcastEvent can be invoked from any class in order to inform to Entities
belonging to the scene graph (and their Components/Controllers, if any) that a cer-
tain event occurred. It can be an xgsd::Event (a wrapper class of sf::Event. See
Appendix 6.3) of type xgsd::Event::EventType::System —the system events ex-
plained before— or a custom event of type xgsd::Event::EventType::Custom,
which are user-defined events such as PlayerDied or GameWon.

The rest of the methods (starting with ‘run’, updateStatistics and those de-
fined as private) need a more detailed explanation, which will be developed below.

Starting with loadConfigurationFromFile, this is the first method called by
Game when it is instantiated. That is, it is called in its constructor:

1 // Game.cpp

2
3 // Constructor

20

X-GSD Section 3 DEVELOPMENT

4 Game::Game()

5 : mVSync(false)

6 , mTimeSinceStart(0)

7 {

8 // Load configuration (window properties, first scene to load...)

9 loadConfigurationFromFile();

10
11 ...

12 }

In this method, a JSON file named gameconfig.json will be read in order to
get the initial configuration of the game. These are the JSON elements to load:

• windowName (as string). Default value: empty string.

• windowSize (as object, containing width and height as integers). Default
value: 800, 600.

• fullscreen (as bool). Default value: false.

• vsync (as bool). Default value: true.

• keyRepetition (as bool). Default value: false.

• mouseCursorVisible (as bool). Default value: true.

• debugFont (as string). Default value: empty string. Only in Debug mode.

• icon (as string). Default value: empty string.

• initialScene (as string). No default value: Valid initialScene is required.

Here is a valid example of the gameconfig.json file:

1 {

2 "windowName" : "Example Game",

3 "windowSize" : {

4 "width" : 720,

5 "height" : 480

6 },

7 "fullscreen" : true,

8 "vsync" : true,

9 "keyRepetition" : false,

10 "mouseCursorVisible" : false,

11 "debugFont": "fonts/PressStart2P.ttf",

12 "icon" : "textures/ballSpriteRed.png",

13 "initialScene" : "scenes/TitleMenuScene.json"

14 }

The following gameconfig.json file is also valid. Note that initialScene is
the only configuration parameter that is compulsory as it cannot have a default
value.

1 {

2 "initialScene" : "InitialScene.json"

3 }

21

Section 3 DEVELOPMENT X-GSD

Loading these elements from the JSON file is done with the JsonCpp[5] library.
Implementation details can be found in Game.cpp source code file, but it is not
explained here as it is out of the scope of this work to explain the use of JsonCpp
library.

Note that debugFont, icon and initialScene are file paths, not only file
names. The specified path is relative to the resource path, and this resource path
must be returned by the function resourcePath, defined in ResourcePath.hpp.
As the implementation depends on the operating system, the user must provide
a different implementation for each targeted operating system. Boost’s filesystem
library[6] can be useful to write cross-platform code regarding file system and paths.
SFML’s website provide Xcode templates for SFML projects, which also generate
an Objective-C implementation for Mac OS X and iOS. This implementation has
been used in the development of the example games for simplicity.

3.1.2 The Game Loop

The game loop is the main loop that keeps the game running, performing all the
needed operations in a specific order. It is responsible of invoking update, render
and input handling procedures among others.

Generally, the update procedure manages all the logic of the game —physics
and scripts included—, the render procedure is responsible to draw objects on
screen, and the input handling procedure checks if there is any input in order to
take appropiate actions.

For example, supposing that all entities are stored in entitiesContainer, one
could implement the following methods:

1 // Game.cpp

2
3 void Game::update(const xgsd::HiResDuration& dt)

4 {

5 // Update calls here

6
7 // Call each entity’s own update method

8 for (auto &entity : entitiesContainer) {

9 entity.update(dt);

10 }

11 }

12
13 void Game::render()

14 {

15 // Draw calls here

16
17 // Clear the window before drawing a new frame

18 mWindow->clear();

19
20 // Call each entity’s own draw method

21 for (auto &entity : entitiesContainer) {

22 entity.draw();

23 }

24
25 // Display the frame on screen

26 mWindow->display();

27 }

28

[5] Baptiste Lepilleur. Jsoncpp. https://github.com/open-source-parsers/jsoncpp.

[6] Beman Dawes and Rene Rivera. Boost filesystem library. http://www.boost.org/doc/

libs/1_36_0/libs/filesystem/doc/index.htm.

22

https://github.com/open-source-parsers/jsoncpp
http://www.boost.org/doc/libs/1_36_0/libs/filesystem/doc/index.htm
http://www.boost.org/doc/libs/1_36_0/libs/filesystem/doc/index.htm

X-GSD Section 3 DEVELOPMENT

29 void Game::handleEvents()

30 {

31 // Ask mWindow for events and process them if any

32 while (mWindow->pollEvent(mEvent))

33 {

34 // Create an event wrapper and use it after

35 Event eventWrapper(mEvent);

36
37 // Perform different actions depending on the event type

38 switch (mEvent.type)

39 {

40 // The window has been closed

41 case sf::Event::Closed:

42 mWindow->close();

43 break;

44
45 // A key has been pressed

46 case sf::Event::KeyPressed:

47 // Do something or check for specific key code

48 break;

49
50 // A joystick button has been pressed

51 case sf::Event::JoystickButtonPressed:

52 // Do something or check for specific button code

53 break;

54
55 // Etc.

56 }

57 }

58 }

However, the user of X-GSD would need to modify these methods to make
custom update, render and input handling, which would be unpractical —not to
mention that a game engine or any other framework is generally made to han-
dle these implementation details without the user needing to know about them,
presenting only an interface—. In order to solve this, X-GSD defines these meth-
ods in different levels: Game, Scene, Entity and Component (or Controller, which
is a user-defined Component). Thanks to that structure, these methods can be
invoked in cascade, that is: the Game calls update on the Scene, which in turn
calls update on each of its children scene nodes or Entities; and finally, each En-
tity calls update on its Components. Therefore, the default implementation is
to call the next level’s update method until it reaches the end of the chain. In
most cases, that end point will be a Component, which can implement a custom
update method —generally, that is how scripting is done: The user of X-GSD can
create Controllers inheriting from Component and implementing a custom update
method—. The same applies to render and input handling.

1 // Game.cpp

2
3 void Game::update(const xgsd::HiResDuration& dt)

4 {

5 mScene->update(dt); // Update the scene

6 }

7
8 void Game::render()

9 {

10 mWindow->clear(); // Clear the window before drawing the new frame

11 mScene->render(); // Draw the scene

12 mWindow->display(); // Display the frame

13 }

14
15
16 void Game::handleEvents()

17 {

23

Section 3 DEVELOPMENT X-GSD

18 // Ask mWindow for events and process them if any

19 while (mWindow->pollEvent(mEvent))

20 {

21 // Create an event wrapper and use it after

22 Event eventWrapper(mEvent);

23
24 // Propagate the event to the scene

25 mScene->handleEvent(eventWrapper);

26 }

27 }

In the case of Game::handleEvents, a previous filter can be done as shown in
the first code fragment so that only the desired events propagate to the scene and
its entities.

As it was stated before, the game loop is responsible of calling these procedures
in a specific order. For example, a basic game loop may proceed in this order:

Figure 7: Basic game loop execution flow.

X-GSD provide four different game loop variations with different features and
purposes which will explained below. The following implementations are based on
the Glenn Fiedle’s great article Fix your timestep! [10].

3.1.3 Basic fixed delta time

Updates at a fixed delta time, that is, the game’s time advances in discrete delta
time periods. The game’s time must be synchronized with the real time in order
for it to behave correctly. A simulation frequency value can be provided (if not,
default value 60 is used). The implementation (simplified, without debug code) is
the following:

24

X-GSD Section 3 DEVELOPMENT

1 // Game.cpp

2
3 void Game::runFixedDeltaTime(int simulationFrecuency)

4 {

5 HiResDuration simulationFixedDuration(ONE_SECOND/simulationFrecuency); // Simulation time step

6
7 ...

8
9 while (mWindow->isOpen())

10 {

11 ...

12
13 handleEvents();

14 update(simulationFixedDuration);

15 render();

16 }

17 }

First of all, the HiResDuration and ONE SECOND types (and others as HiResTime
and HiResClock, used later in other loops) are defined in Time.hpp as typedefs of
std::chrono for easier time handling. For more information, see Appendix 6.2 or
source code.

For better understanding of this first type of game loop, the key concepts will
be explained. In the same way, a deep explaining of this fist type of game loop is
needed to understand the other game loop variations.

• The game’s simulation time —or game time— may not be equivalent to the
real time. The game time advances at each update call by the amount of
time specified in that call. That amount of time is generally called time step
or delta time, although its meaning may vary depending on the type of game
loop.

• Each loop iteration is composed of three important procedures: update,
handleEvents and render. As all three procedures are called one after
the other, being render the responsible of producing the visual result —the
frame—, it is also common to use the term ‘frame’ for referring to a loop
iteration. Each procedure costs a certain amount of time to complete, and
the sum of the three is known as frame time.

• It is common to measure the amount of frames produced in one second and
call it FPS, which stands for Frames Per Second.

• For simplicity when comparing with FPS, the game’s simulation time step
will be indicated in frequency (measured in Hertz, from the SI14, abbreviated
Hz) instead of time: 1 Hz = 1 cycle / 1 second. For example, a time step
—or delta time— of 0.05 seconds can be expressed as a frequency of 20 Hz
(1 cycle / 0.05 s = 20 Hz).

• Because of how this loop is coded, every iteration the game’s simulation
advances one step in the prefixed time and a frame is rendered. Therefore, the
game time depends directly on the relation between the simulation frequency
and the FPS —if expressed in frequency—, or the time step and the frame
time —if expressed in time—.

14International System of Units

25

Section 3 DEVELOPMENT X-GSD

• Vertical Synchronization is a graphics-level property which can be enabled to
limit the FPS to the display rate (if a display can output 60 Hz, the graphics
card will limit the FPS to 60).

It is easy to mislead what the parameter of the runFixedDeltaTime method
is, but it is required to understand it correctly before proceeding to explaining the
game loop variations. As it was stated above, the game’s simulation time may
not match the real time because it is directly related to the frame time. The key
concept is that the method’s parameter determines the time that the game will
advance in each iteration, and not the interval in which the update method will
be invoked.

A parameter value of 30 will indicate that the simulation frequency is 30 Hz, so
1 cycle / 30 Hz = 0.0333 seconds is the amount of time that the game’s world will
advance each loop iteration. However, the time that takes to complete a full iter-
ation —the frame time— is unknown in most cases because it depends on several
factors such as the computation power of the machine, the available resources, the
complexity of the game (number of entities and operations, etc.), some operating
system settings or even hardware configurations, among others. Suppose a set of
circumstances that make the iteration to complete in 0.0083 seconds (120 Hz or
FPS, approximately). Then, the loop will complete 120 iterations each second,
and each iteration will invoke update with a time of 0.0333 seconds, four times the
time interval in which the update method is called, which results in a game’s time
advancement of four times the real world’s, making the game to look accelerated.
On the opposite, if FPS are lower than the simulation frequency, it would slow
down.

Vertical Synchronitzation can fix half of the problem: For example, if a given
scenario produces 500 FPS, it will be limited down to 60 FPS, so that the simula-
tion frequency can be easily synchronized setting it to 60 Hz, making the game to
run at a normal speed. However, it should not be considered as a good solution as
this technique might not be available in some devices, or the operating system and
even the user may disable it. Furthermore, the other half of the problem, the game
running at lower FPS than the simulation frequency, can still occur. The need for
other game loop type or variation in order to solve these problems becomes obvious.

Although this fixed delta time loop presents such problems, it can be used
in some scenarios: With Vertical Synchronization activated, it can be suitable
for mobile platforms where system events (notifications, updates, incoming call...)
could break the game experience. As with this kind of time step the game would
slowdown, the player can react to these system events interruptions.

3.1.4 Variable delta time

The main motivation behind this variation of the first game loop is to achieve a
normal speed of simulation regardless of the machine in which the game is run.
The key concept is that the delta time becomes variable instead of being a fixed
value, and the game time will advance in different amounts of time depending on
the frame time. The simplest method to achieve this is to measure the frame time
and pass that time to the update method:

26

X-GSD Section 3 DEVELOPMENT

1 // Game.cpp

2
3 void Game::runVariableDeltaTime()

4 {

5 HiResDuration lastRenderDuration(0); // Will contain the frame time which is the delta time

in this kind of loop

6
7 HiResTime lastTimeMeasure = HiResClock::now(); // Initial time measure

8 HiResTime newTimeMeasure;

9
10 while (mWindow->isOpen())

11 {

12 newTimeMeasure = HiResClock::now(); // Time measure at the beginning of the iteration

13 lastRenderDuration = newTimeMeasure - lastTimeMeasure; // Calculation of the last

iteration (or frame) duration

14 lastTimeMeasure = newTimeMeasure; // Update the last time measure

15
16 handleEvents();

17 update(lastRenderDuration); // Pass the last frame time to advance the simulation in that

amount

18 ...

19 render();

20
21 ...

22 }

23 }

This way, each frame or loop iteration will last a specific time which is mea-
sured and passed to update as its argument. Therefore, if a frame only takes 0.002
seconds (that would be 500Hz or FPS), the simulation will advance in only 0.002
seconds too (the simulation frequency would be 500Hz, coinciding with the FPS).
On the contrary, if a frame takes much more time, then the simulation will advance
in that much time too, making possible for the game to run always at the same
simulation speed independently of the machine and circumstances in which the
game runs.

Although this loop seems to be bulletproof for any kind of scenario, the ugly
truth is that it is in fact very dangerous to use it for the physics part of the game.
In order to illustrate the problem, suppose a scenario in which the game runs at
60 or more FPS and where the player shoots a bullet against an enemy, and each
frame the physics engine will check if the objects collided15. For simplicity, the
enemy will be considered as a sphere of 5 meters of radius. The bullet has a velocity
of, for example, 400m/s and the enemy is standing at a distance of 20m from the
player. The frame after the bullet was shot, update is invoked with the last frame
time, which is 0.016 seconds. The update call propagates to scene children, with
the bullet being one of them, and the bullet updates its position according to its
velocity and the simulation time passed:

0.016s · 400m/s = 6.4m

Then, the next frame lasts the same as before (0.016 seconds) and the bullet
advances 6.4m again, having travelled 12.8m so far. A third frame and travelling
of the same values would imply that the bullet would have travelled 19.2m, which

15This is a simple example to illustrate the problem of this loop. In the reality, there are
several collision detection methods for aiming different scenarios. For fast-moving objects such
as bullets, it is common to use ray-casting methods instead of overlapping colliders.

27

Section 3 DEVELOPMENT X-GSD

would be considered as a hit because the enemy has a radius of 5m.

Figure 8: Movement of a bullet with variable delta time loop. Part 1

However, some random circumstance of the operating system (e.g. a software
update notification) made that third frame to last longer than expected, and it
takes 0.08s to complete. Then, update gets called with that time passed as its
argument, and the simulation advances in 0.08s. Therefore, the bullet travels
more distance than before:

0.08s · 400m/s = 32m

Then, the bullet’s new position is at 12.8m+32m = 44.8m, which is far beyond
the distance of 20m± 5m of radius that separated the player from the enemy, and
the bullet did not hit him.

Figure 9: Movement of a bullet with variable delta time loop. Part 2

The consequence of that random performance drop is a collision not happen-
ing, which results in undesired behaviour of the game. Now suppose what would
happen if another random event cause a performance drop and the delta time ac-
cumulates one second. That is just a simple example, but in a real game, a high
delta time for the physics update could break the entire game, making the player
and objects to fall through the floor or pass through walls, among other undesired
effects. Therefore, this game loop variation can be considered even more unreliable
than the previous, and other solutions become necessary.

Note that in this case Vertical Synchronization would only lower FPS and
simulation frequency to the display’s rate, but as the delta time is variable, the

28

X-GSD Section 3 DEVELOPMENT

game would still run at normal speed without needing to synchronize frequencies
as it was the case with fixed delta time loop.

3.1.5 Semi fixed delta time

With the fixed delta time the problem was to simulate at normal speed in different
machines and conditions, but physics behaved correctly —at least if a good enough
simulation frequency was specified—. The variable delta time solved the problem
of the speed, but lacked a consistent enough simulation. Taking the best of both
worlds is the aim of the semi fixed delta time, which will be explained after the
code:

1 // Game.cpp

2
3 void Game::runSemiFixedDeltaTime(int minSimulationFrequency, int stepLimit)

4 {

5 // stepLimit must be at least 1, or it would not update the simulation

6 assert(stepLimit > 0);

7
8 HiResDuration simulationFixedDuration(ONE_SECOND/minSimulationFrequency); // Simulation delta

time

9
10 const short multipleStepLimit = stepLimit; // Limit of steps to consume the frame time.

Needed to avoid the spiral of death effect. Tuning is recommended

11 short multipleStepCounter = 0;

12
13 HiResDuration lastRenderDuration;

14 HiResDuration simulationDuration;

15
16 HiResTime lastTimeMeasure = HiResClock::now();

17 HiResTime newTimeMeasure;

18
19 while (mWindow->isOpen())

20 {

21 newTimeMeasure = HiResClock::now();

22 lastRenderDuration = newTimeMeasure - lastTimeMeasure;

23 lastTimeMeasure = newTimeMeasure;

24
25 ...

26
27 while (lastRenderDuration > HiResDuration::zero() && multipleStepCounter <

multipleStepLimit)

28 {

29 simulationDuration = std::min(lastRenderDuration, simulationFixedDuration);

30
31 handleEvents();

32 update(simulationDuration);

33
34 lastRenderDuration -= simulationDuration;

35 ...

36 ++multipleStepCounter;

37 }

38 multipleStepCounter = 0;

39
40 render();

41 }

42 }

The idea is that one can provide a simulation frequency —as it was possible
with the fixed delta time—, while the frame time is also measured. Then, before
updating, the minimum of the two times is selected to be passed as the argument
of update. This way, if the FPS are high, the simulation frequency will be high
as well; but on the contrary, if the FPS are low or a load spike or random event
occurs and affect the game’s FPS, the simulation is guaranteed to update at least

29

Section 3 DEVELOPMENT X-GSD

at a specific frequency. This can prevent the physics from breaking and leaving the
game in an undesired state. However, if the iteration —especially the simulation
update— takes too many time to complete, having a guaranteed minimum sim-
ulation frequency could lead to a worse slow down, which would result in longer
iterations, and the cycle repeats making performance to drop heavily. To avoid
this, a multiple simulation step limit can be added. With it, in the worse scenario
the game would still run slower, but at least it would not fall into that undesired
cycle.

To achieve this, another loop is needed (see line 27) in order to handle the
process. Each iteration of the outer loop measures the time of the last iteration
and enters the inner loop. This inner loop is responsible for:

• Check the remaining frame time and the multiple step counter against the
limit.

• Selecting the minimum time between the last frame time and the provided
fixed delta time.

• Handle events and update with the previously selected delta time.

• Subtract the simulated time from the frame time.

• Raise the multiple step counter.

Therefore, when the minimum simulation time that is selected coincides with
the frame time, this inner loop will perform a single iteration and it will behave as
the variable delta time in favorable conditions. On the contrary, if the frame time
is higher than the provided simulation fixed time, the simulation will advance in
that fixed time, subtract it from the frame time, raise the multiple step counter and
repeat the loop until the frame time is zero or the counter reach the specified limit.

Although this game loop variation still has some drawbacks, it is arguably
better than the fixed or variable delta time loops, and it will work well in most
cases. It may also be appropriate for particular targets as mobile platforms for
the same reasons given on the fixed delta time: Any condition that can affect
performance may slow down the game instead of performing big simulation or
physics steps, and therefore the player can react to these events.

3.1.6 Fixed delta time with variable rendering frame rate

The previously discussed game loop variation is one of the best and is suitable
and good enough for a wide range of games. However, it does not feature a deter-
ministic simulation —that is, each execution is guaranteed output the same exact
results for the same exact input values, independently of the FPS—, which may be
a needed or desirable behaviour. This is because the simulation duration passed
as argument of the update call is not always a fixed time. The fixed delta time
game loop provided this feature, but at the cost of strongly coupling FPS and
simulation frequency which derived in other problems.

30

X-GSD Section 3 DEVELOPMENT

The last game loop variation that will be presented on this work is the fixed
delta time with variable frame rate. This game loop achieves deterministic sim-
ulation while running at normal speed by decoupling simulation and rendering.
In order to understand it better, one can think of render as a producer of time
and of update as the consumer of that time. The loop will measure the time the
renderer took to generate a frame and accumulate it, and then an inner loop will
advance the simulation in fixed delta time steps until that time is consumed:

1 // Game.cpp

2
3 void Game::runFixedSimulationVariableFramerate(int simulationFrequency)

4 {

5 HiResDuration accumulatedRenderTime(0); // Accumulator of render time to be consumed by

simulations

6 HiResDuration simulationFixedDuration(ONE_SECOND/simulationFrequency); // Fixed simulation

delta time

7
8 HiResDuration lastRenderDuration; // Frame Time

9
10 HiResTime lastTimeMeasure = HiResClock::now();

11 HiResTime newTimeMeasure;

12
13 while (mWindow->isOpen())

14 {

15 newTimeMeasure = HiResClock::now();

16 lastRenderDuration = newTimeMeasure - lastTimeMeasure;

17 lastTimeMeasure = newTimeMeasure;

18
19 accumulatedRenderTime += lastRenderDuration;

20
21 while (accumulatedRenderTime >= simulationFixedDuration)

22 {

23 accumulatedRenderTime -= simulationFixedDuration;

24
25 handleEvents();

26 update(simulationFixedDuration);

27 }

28 ...

29
30 render();

31 }

32 }

For example, if the simulation frequency has been set to 120Hz and the game
outputs 60 FPS, the inner loop will iterate and update the simulation twice each
frame. On the opposite, with 60Hz for the simulation and 120 FPS, the inner
loop would perform one iteration each 2 frames because time must be consumed
in fixed delta time durations, and therefore the first attempt will not enter the
inner loop but the time will be accumulated and consumed at the second attempt.

In the case of non exact divisions between simulation frequency and FPS, as
for example 100Hz and 60 FPS, some temporal aliasing16 can appear because of
an alternation between the inner loop executing and consuming the accumulated
time and not executing and accumulating time. Following with the same example,
60 FPS ∼ 0.0166s, and 100Hz = 0.01s. Therefore, each frame will add 0.0166s
to the accumulator and the inner loop will run once and subtract 0.01s from the
accumulator, leaving 0.0066s that cannot be consumed yet. Then, the renderer
will produce another 0.0166s, making a total of 0.0232s, and the inner loop will

16An undesired visual effect of stuttering.

31

Section 3 DEVELOPMENT X-GSD

iterate twice, subtracting 0.01s each iteration and leaving 0.0032s as remainder,
which will accumulate with subsequent remainders until it reaches 0.01s and gets
consumed by the inner simulation loop.

In order to avoid the temporal aliasing problem, one can set Vertical Synchro-
nization on and configure a simulation frequency which results in an exact division
(60 FPS and 30Hz or 120Hz, for example). The problem with this is the depen-
dency on Vertical Synchronization. There is a better approach to correct that
temporal aliasing, which consists in performing a linear interpolation between the
previous and new state with the remainder time left in the accumulator. However,
this is not implemented in X-GSD as it goes out of the academic scope of the
project, and the previous solutions work fairly well for almost all scenarios.

3.1.7 The game’s entry point

All C++ programs require at least one function called main from which the pro-
gram will start. Therefore, the simplest manner to start the game is to include
the Game class in the file which will contain the main function, and then invoke a
run method of the four previously explained:

1 // main.cpp

2
3 #include <X-GSD/Game.hpp>

4
5 int main()

6 {

7 /* Invoke one of these

8 xgsd::Game::instance().runFixedDeltaTime();

9 xgsd::Game::instance().runVariableDeltaTime();

10 xgsd::Game::instance().runSemiFixedDeltaTime();

11 xgsd::Game::instance().runFixedSimulationVariableFramerate();

12 */

13
14 xgsd::Game::instance().runFixedSimulationVariableFramerate(30);

15 }

Excepting the runVariableDeltaTime method, an argument can be passed to
these methods for tuning purposes. In the example above, a value of 30 has been
passed as an argument indicating the desired simulation frequency. If no argument
is provided, a default value is set (that value would be 60Hz in the example). See
the previous sections for more details.

This instruction is the entry point of the game, and it will remain running in
the specified loop until the end of execution.

3.2 Scenes, the scene graph and its nodes

Almost every game can be separated in scenes. A scene can be considered as an
organization unit in which one can place objects —or Entities, which will be ex-
plained on the next section— with some relation that end up conforming a part
of a game: The main menu, a battle, a mini game or a level are some examples of
typical parts of a game which conform a scene.

32

X-GSD Section 3 DEVELOPMENT

Figure 10: Example of a game organized in scenes.

3.2.1 Scene class

In X-GSD, a Scene is the owner of the root SceneGraphNode of the scene graph17

and some properties (name, paused, camera, a reference to the game’s window
and others related to transitions) and managers for elements that are specific to
that scene such as resources and physics. These resource managers are the same
as the Game class, but the difference relies on their life cycle: The scene’s resource
managers will load/unload specific resources for that scene at its loading/unload-
ing, while Game’s resource managers will remain until the game ends. For more
information about resource managers, see Appendix 6.4 or source code.

1 // Scene.hpp

2
3 ...

4
5 // Typedefs and enumerations

6 public:

7 typedef std::unique_ptr<Scene> Ptr;

8
9 ...

10
11 // Variables (member / properties)

12 private:

13 std::string mName;

14 SceneGraphNode::Ptr mSceneGraph;

15 sf::RenderWindow& mWindow;

16 sf::View mSceneView; // Camera

17 std::string mNextScenePath;

18 bool mSceneChangeRequest;

19 bool mPaused;

20
21 // Resources managers

22 FontManager::Ptr mFontManager;

23 TextureManager::Ptr mTextureManager;

24 SoundManager::Ptr mSoundManager;

25
26 ControllersManager mControllersManager;

27
28 PhysicsEngine& mPhysicsEngine;

29
30 bool mTransitionEnabled;

31 TransitionState mTransitionState;

32 HiResDuration mTransitionTime;

17A scene graph, despite its name, is commonly implemented with a tree structure in which
all the elements of a scene are stored or referenced in a specific order. It generally determines
the simulation and rendering order of the objects belonging to the scene.

33

Section 3 DEVELOPMENT X-GSD

33 HiResDuration mTransitionDuration;

34 sf::RectangleShape mTransitionFadingRectangle;

35 };

The behaviour of the Scene class can be separated in the following methods:

1 // Scene.hpp

2
3 ...

4
5 // Methods

6 public:

7 Scene(sf::RenderWindow& window);

8 ~Scene();

9
10 void update(const HiResDuration &dt);

11 void render();

12 void handleEvent(const Event &event);

13
14 std::string getName();

15 FontManager& getLocalFontManager() { return *mFontManager; }

16 TextureManager& getLocalTextureManager() { return *mTextureManager; }

17 SoundManager& getLocalSoundManager() { return *mSoundManager; }

18 ControllersManager& getControllersManager() { return mControllersManager; }

19
20 void addNode(SceneGraphNode::Ptr node);

21
22 void loadSceneFromFile(std::string jsonPath);

23
24 bool isTransitionEnabled();

25 void setTransitionEnabled(bool option);

26 void pauseGame();

27 void resumeGame();

28
29 private:

30 void readJsonSceneFile(std::string jsonPath);

31 void performSceneChange();

32 void unloadScene();

33
34 void updateTransition(const HiResDuration &dt);

35 void renderTransition();

36
37 ...

The constructor only requires a sf::RenderWindow, which is a reference of the
game’s window.

As it was mentioned earlier (section 3.1.2), update, render and handleEvent

methods of Scene are invoked from the Game class with a specific order in the
game loop. Then, the Scene invoke the same methods of its root SceneGraphNode
—that is, they are propagated to the next level—. See the implementation:

1 // Scene.cpp

2
3 void Scene::update(const HiResDuration &dt)

4 {

5 if (mPaused)

6 mSceneGraph->onPause(dt);

7
8 // If a scene change is requested, do not update

9 else if (!mSceneChangeRequest) {

10 mPhysicsEngine.checkCollisions();

11 mSceneGraph->update(dt);

12 mSceneGraph->performPendingSceneGraphOperations();

13 }

14
15 // Perform the scene change transition when requested

34

X-GSD Section 3 DEVELOPMENT

16 else if (mTransitionEnabled)

17 updateTransition(dt);

18 }

19
20 void Scene::render()

21 {

22 // If a scene change is requested, do not render the transition instead of the scene graph

23 if (!mSceneChangeRequest)

24 mWindow.draw(*mSceneGraph);

25 else if (mTransitionEnabled)

26 renderTransition();

27 }

28
29 void Scene::handleEvent(const Event &event)

30 {

31 mSceneGraph->handleEvent(event);

32 }

The update method checks if the game is paused, in which case it will in-
voke onPause on the SceneGraphNode instead of update so that nodes can per-
form tasks when the game is paused such as a pause menu. Because of a Scene
could receive a request for changing to another scene, the update method also
checks that condition. If neither paused nor requested to change the scene, the
Scene will ask the physics engine to check for collisions, invoke update on the
scene graph and perform some scene graph operations (both checkCollisions

and performPendingSceneGraphOperations methods are explained later on Ap-
pendix 6.6 and Section 3.2.2). The last part will only be executed if a scene change
occurs and the transition effect is enabled. In fact, this part is responsible to up-
date the forementioned transition.

The render method also checks if the scene has been requested to change in
order to render the transition effect. The rest of the time it will invoke the draw
method of the window passing a pointer to the root scene graph node as an argu-
ment. This will result in SFML invoking draw on the root scene graph node, which
is possible because the SceneGraphNode class inherits from sf::Drawable —any
class that is intended to render something on the game’s window must inherit from
it—.

Finally, the handleEvent method just propagates the call to the scene graph.

Returning to the Scene’s behaviour interface, the next methods are simple get-
ters of the aforementioned managers. The addNode method simply attaches a
SceneGraphNode (or derived classes, such as Entity) as a child of the root scene
graph node (this will be explained in the next section).

The loadSceneFromFile method, along with the auxiliary private methods
performSceneChange, unloadScene and readJsonSceneFile, is responsible of
loading and switching to a new scene. If the transition is disabled, it immediately
calls performSceneChange. Otherwise it will be called at transition end —but it
will not be shown for simplicity. For more details on transition implementation,
see source code—. In any case, performSceneChange will call unloadScene in
order to release resources and unload the entire scene graph, and finally invoke
readJsonSceneFile which will parse the new scene’s json file and generate the
new scene graph and load the needed resources. See the implementation:

35

Section 3 DEVELOPMENT X-GSD

1 // Scene.cpp

2
3 void Scene::loadSceneFromFile(std::string jsonPath)

4 {

5 mSceneChangeRequest = true;

6 mNextScenePath = jsonPath;

7
8 if (!mTransitionEnabled)

9 performSceneChange();

10 else

11 mTransitionState = out;

12 }

13
14 void Scene::performSceneChange()

15 {

16 // Unload current scene’s resources, nodes, values, etc.

17 unloadScene();

18
19 // Load the new scene’s resources, entities, etc.

20 readJsonSceneFile(mNextScenePath);

21
22 mNextScenePath = "";

23 }

24
25 void Scene::unloadScene()

26 {

27 mName = "";

28
29 // Reset the scene graph

30 mSceneGraph.reset(new SceneGraphNode);

31
32 // Reset resources managers

33 mFontManager.reset(new FontManager);

34 mTextureManager.reset(new TextureManager);

35 mSoundManager.reset(new SoundManager);

36 }

The readJsonSceneFile method reads a JSON file as the loadConfigurationFromFile
from the Game class did: It uses the JsonCpp[21] parser in order to collect all the
needed information. In X-GSD, a scene is described with the following JSON
structure:

name (as string). No default value: a valid name for the scene is required.

entities (as list of objects). Default value: empty list.

• name (as string). No default value: a valid name for the entity is required.

• parentEntityName (as string). Default value: ”root”. Name of the entity
to which this one will be added as child.

• transform (as object). Default value: a default-initialized transform.

– origin (as object). Default value: default-initialized components.

• x (as float). Default value: 0.

• y (as float). Default value: 0.

– position (as object). Default value: default-initialized components.

• relative (as bool). Default value: false. If true, values are interpreted as
a ratio of the view’s width and height. For example, x:0.5 is equivalent
to view.width*0.5.

• x (as float). Default value: 0.

• y (as float). Default value: 0.

36

X-GSD Section 3 DEVELOPMENT

– scale (as object). Default value: default-initialized components.

• x (as float). Default value: 1.

• y (as float). Default value: 1.

– rotation (as float). Default value: 0.

• components (as object). Default value: null.

– ComponentSprite (as object). Default value: null.

• globalTexture (as bool). Default value: false. Determines whether the
texture will be fetched from the local texture manager or the Game’s
global one.

• texture (as string). No default value: a texture identifier (from ’tex-
tures’ of ’resources’) is needed.

• textureRect (as object). Default value: a rectangle containing the
complete texture. This can be used to select part of a texture such as a
spritesheet.

· top (as int). Default value: 0.

· left (as int). Default value: 0.

· width (as int). Default value: 0.

· height (as int). Default value: 0.

– ComponentCollider (as object). Default value: null.

• boundsRect (as object). Default value: default-initialized compo-
nents. It represents the bounding box of an entity which detect col-
lisions.

· top (as int). Default value: 0.

· left (as int). Default value: 0.

· width (as int). Default value: 0.

· height (as int). Default value: 0.

– ComponentRigidBody (as object). Default value: null.

• kinematic (as bool). Default value: false. If true, forces do not affect
this rigid body.

– controllers (as list of objects). Default value: empty list.

• type (as string). No default value: A valid user-controller identifier is
needed.

resources (as object). Default value: null.

• textures (as list of objects). Default value: empty list.

– name (as string). No default value: An identifier is needed.

– path (as string). No default value: The path of the resource file is needed
(relative to the resources folder).

• fonts (as list of objects). Default value: empty list.

– name (as string). No default value: An identifier is needed.

– path (as string). No default value: The path of the resource file is needed
(relative to the resources folder).

• sounds (as list of objects). Default value: empty list.

37

Section 3 DEVELOPMENT X-GSD

– name (as string). No default value: An identifier is needed.

– path (as string). No default value: The path of the resource file is needed
(relative to the resources folder).

Notice that it is a very basic scene description with few properties and obvious
room for improvement, although it offers enough functionality to start making
games with X-GSD.

Here is a valid example of a scene JSON file:

1 {

2 "name": "AnExampleScene",

3
4 "entities": [

5 {

6 "name": "ExampleEntity1"

7 },

8
9 {

10 "name": "ExampleEntity2",

11 "parentEntityName": "ExampleEntity1",

12 "transform": {

13 "origin": {

14 "x": 0,

15 "y": 0

16 },

17 "position": {

18 "relative": false,

19 "x": 100,

20 "y": 100

21 },

22 "scale": {

23 "x": 1,

24 "y": 1

25 },

26 "rotation": 0

27 },

28 "components": {

29 "ComponentSprite": {

30 "globalTexture": false,

31 "texture": "ExampleTexture"

32 },

33 "controllers": [

34 {

35 "type": "ExampleController1"

36 }

37]

38 }

39 }

40],

41
42 "resources": {

43 "textures": [

44 {

45 "name": "ExampleTexture",

46 "path": "exampleTexture.png"

47 }

48],

49 "fonts": [

50 {

51 "name": "ExampleFont",

52 "path": "exampleFont.ttf"

53 }

54],

55 "sounds": [

56 {

57 "name": "ExampleSound",

58 "path": "exampleSound.wav"

59 }

38

X-GSD Section 3 DEVELOPMENT

60]

61 }

62 }

Returning to the readJsonSceneFile method, it will parse the specified JSON
file collecting all the needed data for the creation of the scene. The explanation is
focused on the implementation aside from JSON operations. Full implementation
details can be found in Scene.cpp source code file.

The method is separated in three parts: Loading some properties of the scene
and its resources, creating entities and components and finally performing some
final operations and checks. The following code is plenty of comments to be self-
explanatory (the “...” parts represent omitted code, mostly JSON-related):

1 // Scene.cpp

2
3 void Scene::readJsonSceneFile(std::string jsonPath)

4 {

5 // Read the json file

6
7 ...

8
9 ///

10 // 1.- Fill scene info and load resources //

11 ///

12
13 ...

14
15 // Iterate through textures array from JSON

16 for (auto texture : textures) {

17
18 ...

19
20 // Load texture into the scene’s texture manager

21 mTextureManager->load(name, path);

22 }

23
24 // The same procedure is done for sounds and fonts loading with the appropriate resource

managers

25
26 ...

27
28 //

29 // 2.- Create entities and components //

30 //

31
32 // Collection to store entities whose parent entity was not available at its time of

creation. They will try to attach to its parents again after all entities load.

33 std::vector<std::pair<Entity::Ptr, std::string>> delayedAttachmentEntities;

34
35 // Temporary map to store entity-parent names to check and prevent circle parent reference

between entities (a.parent = b, b.parent = a)

36 std::unordered_map<std::string, std::string> entitiyParentRelations;

37
38 // Register user-defined controllers

39 ControllersRegistration controllersRegistration;

40 controllersRegistration.registerControllers(mControllersManager);

41
42 ...

43
44 // Iterate through entities from JSON

45 for (auto entity : entities) {

46
47 ...

48
49 // Create a new entity and fill its data

50 Entity::Ptr newEntity(new Entity(name));

39

Section 3 DEVELOPMENT X-GSD

51
52 ...

53
54 // Look for X-GSD defined components (Sprite, Collider and RigidBody) in the JSON. If

found, add them to the entity. For example, a ComponentCollider:

55
56 ...

57
58 // Create the component and fill its properties

59 Component::Ptr componentCollider(new ComponentCollider(...));

60 // Add it to the entity

61 newEntity->addComponent(std::move(componentCollider));

62
63 ...

64
65 // Iterate through controllers from JSON and add them to the entity (if any)

66 for (auto controller : controllers) {

67 ...

68
69 // Create the controller and add it to the entity

70 Component::Ptr newController(mControllersManager.getController(type));

71 newEntity->addComponent(std::move(newController));

72 }

73
74
75 // And finally, add this entity to the scene’s root node or the specified parent entity

76 ...

77
78 if (parentEntityName == "root")

79 mSceneGraph->requestAttach(std::move(newEntity));

80 else {

81 // Look for the parent entity

82 auto parentEntity = Entity::getEntityNamed(parentEntityName);

83
84 if (!parentEntity) {

85 // If the specified parent has not been found, store this entity in a temporal

collection in order to retry later

86 delayedAttachmentEntities.push_back(std::make_pair(std::move(newEntity),

parentEntityName));

87 }

88 else

89 parentEntity->requestAttach(std::move(newEntity));

90 }

91
92 // Store parent name for circular parent reference checking

93 if (parentEntityName != "root")

94 entitiyParentRelations[name] = parentEntityName;

95
96 } // End of entities loop

97
98
99 ///

100 // 3.- Perform final operations and checks //

101 ///

102
103
104 // Try to attach again the stored entities whose parent entities were not available

105 for (auto iter = delayedAttachmentEntities.begin(); iter != delayedAttachmentEntities.end();

++iter) {

106 // Look for the parent entity

107 auto parentEntity = Entity::getEntityNamed(iter->second);

108
109 // If the parent entity is not found at this point, it does not exist. Throw an error

110 if (!parentEntity)

111 throw std::runtime_error("The specified parent entity ... does not exist");

112 parentEntity->requestAttach(std::move(iter->first));

113 }

114
115
116 // Check circle parent reference between entities (a.parent = b, b.parent = a)

117 for (auto iter = entitiyParentRelations.begin(); iter != entitiyParentRelations.end(); ++iter)

118 {

119 std::string entityName = iter->first;

120 std::string parentName = iter->second;

121

40

X-GSD Section 3 DEVELOPMENT

122 // If a circular parent reference is found, throw an error

123 if (entitiyParentRelations[parentName] == entityName)

124 throw std::runtime_error(... "Circular parent reference" ...);

125 }

126
127 // Ensure scene graph operations (attachments) get done

128 mSceneGraph->performPendingSceneGraphOperations();

129 }

With this, the Scene class has been covered, although many concepts need from
the next sections to be fully understood.

3.2.2 SceneGraphNode class

This class takes the main ideas from the SceneNode class of the SFML Game De-
velopment Book [15], with several additions and adaptions.

The SceneGraphNode is the core element of the Scene and a key element of the
game: All entities inherit from SceneGraphNode, and therefore they are in fact
SceneGraphNodes with added functionality. Because of that, several methods are
marked as virtual, which mean that derived classes can override SceneGraphN-
ode’s implementation.

The purpose of this class is to serve as a data structure to describe a node
of a scene graph and provide some functionality: handle scene graph operations
such as children attachment and detachment; continue with the update, draw and
handleEvent method chains; and give flexibility for customization —that is, in-
heritance and method overriding—.

Notice the inheritance of this class: sf::Drawable, which forces the class to
implement a SFML-standard draw method, and sf::NonCopyable, which disables
copy constructor and assign operator for this class in order to avoid potential un-
desired behaviour.

Here is the interface:

1 // SceneGraphNode.hpp

2
3 class SceneGraphNode : public sf::Drawable, private sf::NonCopyable

4 {

5 // Typedefs and enumerations

6 public:

7 typedef std::unique_ptr<SceneGraphNode> Ptr;

8
9 // Methods

10 public:

11 SceneGraphNode();

12 virtual ~SceneGraphNode();

13
14 void requestDetach(SceneGraphNode* child);

15 void requestAttach(Ptr child);

16 void requestDestroy();

17 void performPendingSceneGraphOperations(); // Attach, detach, destroy

18
19 void onAttach();

20 void onDetach();

21 void onPause(const HiResDuration &dt);

22 void update(const HiResDuration& dt);

23 void draw(sf::RenderTarget& target, sf::RenderStates states) const override;

24 void handleEvent(const Event& event);

41

Section 3 DEVELOPMENT X-GSD

25
26 sf::Vector2f getWorldPosition() const;

27 sf::Transform getWorldTransform() const;

28 SceneGraphNode& getParent();

29 bool isDestroyPending();

30
31 private:

32 virtual void onAttachThis();

33 void onAttachChildren();

34
35 virtual void onDetachThis();

36 void onDetachChildren();

37
38 virtual void onPauseThis(const HiResDuration& dt);

39 void onPauseChildren(const HiResDuration& dt);

40
41 virtual void updateThis(const HiResDuration& dt);

42 void updateChildren(const HiResDuration& dt);

43
44 virtual void handleEventThis(const Event& event);

45 void handleEventChildren(const Event& event);

46
47 virtual void drawThis(sf::RenderTarget& target, sf::RenderStates states) const;

48 void drawChildren(sf::RenderTarget& target, sf::RenderStates states) const;

49
50 void attachChild(Ptr child);

51 Ptr detachChild(SceneGraphNode& child);

52 void destroy();

53
54 // Variables (member / properties)

55 public:

56 sf::Transformable mTransformable;

57
58 private:

59 std::vector<Ptr> mChildren;

60 SceneGraphNode* mParent;

61
62 std::vector<SceneGraphNode*> mPendingDetachments;

63 std::vector<Ptr> mPendingAttachments;

64 bool mPendingDestruction;

65 };

Starting with the data of this class, the mTransformable variable is a pub-
lic sf::Transformable —an SFML element that provide functionality on top
of a transformations matrix18—, mChildren is a collection of children nodes and
mParent is a reference to a node containing this node as a child (or nullptr if that
is not the case). There are also two additional collections, mPendingDetachments
and mPendingAttachments, and a flag variable called mPendingDestructions

which are needed for safe handling of attachments and detachments.

The behaviour of this class can be divided in three main parts: methods to
manage the relationships parent-child between nodes, methods related with the
game loop and life cycle of the node and some getters.

As it was stated before, update, draw and handleEvent methods are present in
this class too in order continue the propagation of the invocations from the Scene,
which in turn get its invocations from the Game class —in the game loop—. Only
one node will receive the invocations from the Scene, which is the scene root node
that the Scene has as member variable, and it will propagate them through the
entire scene graph. That is possible because, in this class, each of these methods
will invoke two private methods: -This, which performs the corresponding opera-

18A transformation matrix is a widely-used representation of geometric transformations in
computer graphics such as position, scale and rotation.

42

X-GSD Section 3 DEVELOPMENT

tions in this node, and -Children, which will invoke the same method on all the
children of this node. For example, see the update method implementation:

1 // SceneGraphNode.cpp

2
3 void SceneGraphNode::update(const HiResDuration& dt)

4 {

5 updateThis(dt);

6 updateChildren(dt);

7 }

8
9 void SceneGraphNode::updateThis(const HiResDuration& dt)

10 {

11 // Do nothing by default. Override this on a derived class or a custom Component controller

12 }

13
14 void SceneGraphNode::updateChildren(const HiResDuration& dt)

15 {

16 for(Ptr& child : mChildren)

17 child->update(dt);

18 }

The methods finishing with -This are empty by default, and they were marked
as virtual on the interface file. Therefore, derived classes as Entity can override
those methods to implement custom behaviour. If a derived class does not override
and implement them, the invocation chain will stop at this point.
In the case of draw, there is a subtle difference:

1 // SceneGraphNode.cpp

2
3 void SceneGraphNode::draw(sf::RenderTarget& target, sf::RenderStates states) const

4 {

5 // Apply transform of current node

6 states.transform *= mTransformable.getTransform();

7
8 // Draw the node and its children

9 drawThis(target, states);

10 drawChildren(target, states);

11 }

In order to render nodes in a parent-child hierarchy properly, the transfor-
mations matrix must be multiplied before performing the rendering to apply the
transformations of previous nodes in the scene graph. Then it is stored and passed
along through a sf::RenderState context variable to the next level of children
nodes.

In addition to these methods, this class adds three more, onAttach, onDetach
and onPause, with the same structure as the aforementioned: One public method
which call two private methods -This —also marked as virtual so that it can
be overridden and implemented in derived classes— and -Children. The first
two methods get invoked at attachment/detachment time, which can be useful to
perform initialization/cleaning actions that cannot be done in the constructor/de-
structor. For example, any operation that needed the parent node reference can
be postponed to be done on attachment instead of the constructor. The case of
onPause is more obvious: It will be called when the game is in pause state, so that
some operations can still be done such as managing a pause menu or displaying
an animation.

43

Section 3 DEVELOPMENT X-GSD

The second part of the behaviour of the SceneGraphNode class manages the
relationships between nodes. It divides into public methods (those starting with
request-), and private methods:

1 // SceneGraphNode.cpp

2
3 // public methods

4 void SceneGraphNode::requestAttach(Ptr child)

5 {

6 mPendingAttachments.push_back(std::move(child));

7 }

8
9 void SceneGraphNode::requestDetach(SceneGraphNode* child)

10 {

11 mPendingDetachments.push_back(child);

12 }

13
14 void SceneGraphNode::requestDestroy()

15 {

16 mPendingDestruction = true;

17 }

18
19 void SceneGraphNode::performPendingSceneGraphOperations()

20 {

21 // Perform delayed node attachment/detachment/destruction, when it is safe

22
23 // Invoke the same method on children first

24 for (auto childIter = mChildren.begin(); childIter != mChildren.end(); ++childIter) {

25 (*childIter)->performPendingSceneGraphOperations();

26 }

27
28 // Perform delayed node attachments

29 for (auto nodeIter = mPendingAttachments.begin(); nodeIter != mPendingAttachments.end();

++nodeIter) {

30 attachChild(std::move(*nodeIter));

31 }

32 mPendingAttachments.clear();

33
34 // Perform delayed node detachments

35 for (auto nodeIter = mPendingDetachments.begin(); nodeIter != mPendingDetachments.end();

++nodeIter) {

36 detachChild(**nodeIter);

37 }

38 mPendingDetachments.clear();

39
40 // Perform delayed destruction of this node

41 if (mPendingDestruction) {

42 destroy();

43 }

44 }

45
46 // private methods

47 void SceneGraphNode::attachChild(Ptr child)

48 {

49 // Set this node as the parent reference for the new child and add it to the children

collection

50 child->mParent = this;

51 child->onAttach();

52 mChildren.push_back(std::move(child));

53 }

54
55 SceneGraphNode::Ptr SceneGraphNode::detachChild(SceneGraphNode& child)

56 {

57 // Look for the child node to detach

58 auto found = std::find_if(mChildren.begin(), mChildren.end(), [&] (Ptr& p) { return p.get()

== &node; });

59 assert(found != mChildren.end());

60
61 child.onDetach();

62
63 // Delete the parent reference, the node from the children collection and return it

44

X-GSD Section 3 DEVELOPMENT

64 Ptr result = std::move(*found);

65 result->mParent = nullptr;

66 mChildren.erase(found); % TODO: Update if changed in source code

67 return result;

68 }

69
70 void SceneGraphNode::destroy()

71 {

72 assert(mParent && "Attempted to destroy the root scene graph node, or a node which has not

been attached as a child of another yet!"); % TODO: Cambiar por warning? Detectar si es el

root de otro modo?

73 // Clear the collection of children and request the parent of this node to detach it

74 this->mChildren.clear();

75 mParent->requestDetach(this);

76 this->mParent = nullptr;

77 }

These public request- methods store the nodes to attach, references of nodes
to detach or set the flag of pending destruction. But the real operations —calling
the private methods— are delayed to be done all at once, when the node get its
performPendingSceneGraphOperations method invoked (the Scene class is the
responsible to do it. See the update and loadSceneFromFile methods implemen-
tation of Scene for more details). Delaying such actions provides consistency to
the scene graph, so that it does not change in middle of an update.

Finally, this class offers some getters, of which these two require an explanation:

1 // SceneGraphNode.cpp

2
3 sf::Transform SceneGraphNode::getWorldTransform() const

4 {

5 sf::Transform worldTransform = sf::Transform::Identity;

6
7 // Navigate through the scene graph in reverse order (from this node to the root) and

multiply their transforms

8 for (const SceneGraphNode* node = this; node != nullptr; node = node->mParent)

9 worldTransform = node->mTransformable.getTransform() * worldTransform;

10
11 // The transform is now in coordinates of the ’world’ (the scene root node)

12 return worldTransform;

13 }

14
15 sf::Vector2f SceneGraphNode::getWorldPosition() const

16 {

17 return getWorldTransform() * sf::Vector2f();

18 }

Every node has its own transform, and the information that it contains is con-
sidered as local (for example, being at position x=2, y=3). However, if a node is
child of another node, its final ‘state’ does not depend only on its own transform,
but its parent’s too, and the parent of its parent, and so forth. Continuing with
the example, suppose that the previous node is attached to another with a local
position of x=1, y=1. Then, although the previous node is locally at x=2, y=3,
it would be at x=3, y=4 in world coordinates. Then, if a comparison of positions
would be necessary for any reason (for example, collision detection), it is non-sense
to compare local values. This problem is even worse if the nodes to be compared
do not even pertain to the same parent-children hierarchy.

This may look tedious to solve. However, the fact is that using matrices for

45

Section 3 DEVELOPMENT X-GSD

Figure 11: Local and global positions of nodes.

describing transformations has the purpose to facilitate these operations, as it can
be seen in the getWorldTransform and getWorldPosition methods: By multi-
plying the transfoms until reaching the scene root node, the resulting transform is
in coordinates of the world, and therefore comparisons become possible now.

3.3 Entity-Component system

In the previous section it was introduced that Entity is a derived class of Scene-
GraphNode, and therefore, it has the same functionality with some additions.
Essentially, those are: having a name as an identifier and serving as a container of
Components, which are the final links of the chain of invocations used all along X-
GSD. Components are intended to implement the behaviour of different elements,
such as rendering a visual representation (a Sprite) or the logic of a character
(moving, jumping, shooting, etc.).

Entities and Components are two fundamental high-abstraction-level elements
for the user of X-GSD in the sense that a user of X-GSD is unlikely to use bare
Scene or SceneGraphNode objects, but instead use high-level options as creating
JSON files describing scenes and the entities-components inside them. A user
would also create Entity and Component-derived objects programmatically or im-
plement a new type of Component (or Controller). For example:

• Describe a simple Scene in a JSON file:

– Load needed resources

– An Entity for the player’s character with these Components:

• A Sprite so that the character has a visual representation (using a
texture specified at resources loading)

• A Collider in order to detect collisions between the character and
other elements (floor, enemies...)

46

X-GSD Section 3 DEVELOPMENT

• A custom PlayerController where to implement the logic related to
the character (controls, actions, movement, life...)

– Some more Entities for several elements of the world (floor, walls, ene-
mies...) with the needed Components for each.

• Create the PlayerController class, inheriting from ComponentController. Im-
plement the character-related logic within this class. For example, a Shoot
action:

– Implement the action of shooting in a Shoot method, in which a new
Entity (and the needed Components) representing a bullet is created
programmatically.

– Override the handleEvent method. In its implementation, check if some
specific button or key has been pressed in order to invoke the Shoot
method.

This example shows how a user of X-GSD can create a simple game without the
need of (directly) using other X-GSD classes apart from Entity and Component-
derived.

3.3.1 Entity class

As usual, here is the class inteface:

1 // Entity.hpp

2
3 class Entity : public SceneGraphNode

4 {

5 // Typedefs and enumerations

6 public:

7 typedef std::unique_ptr<Entity> Ptr;

8
9 // Methods

10 public:

11 Entity(std::string name);

12 ~Entity();

13
14 void onAttachThis() override;

15 void onDetachThis() override;

16 void onPauseThis(const HiResDuration &dt) override;

17
18 void updateThis(const HiResDuration& dt) override;

19 void drawThis(sf::RenderTarget& target, sf::RenderStates states) const

override;

20 void handleEventThis(const Event& event) override;

21
22 void addComponent(Component::Ptr component);

23 template <typename T>

24 std::unique_ptr<T> removeComponent();

25 template <typename T>

26 T* getComponent();

27
28 void collisionHandler(Entity* theOtherEntity, sf::FloatRect collision);

29
30 std::string getName();

31 static Entity* getEntityNamed(std::string name);

32
33 // Variables (member / properties)

34 private:

35 std::map<std::type_index, Component::Ptr> mComponents;

36 std::string mName;

37
38 static std::unordered_map<std::string, Entity*> entities;

47

Section 3 DEVELOPMENT X-GSD

39 };

In order to provide the aforementioned functionality of an Entity, this class
has to inherit from SceneGraphNode and hold a mName string and mComponents,
a collection of Component::Ptr —an alias typedef for Component wrapped into
std::unique ptr—. This collection is a std::map in which the key is a particular
std::type index, and therefore an Entity can only hold one instance per type.

The behaviour of the Entity class divides in methods which override those
marked as virtual in SceneGraphNode, methods for Component handling, the
collisionHandler callback method and a pair of getters.

All overridden methods limit to propagate the invocation to all components of
the Entity, if any. For example, this is the onPauseThis implementation:

1 // Entity.cpp

2
3 void Entity::onPauseThis(const HiResDuration& dt)

4 {

5 // Perform update call of components/controllers

6 for (auto iter = mComponents.begin(); iter != mComponents.end(); ++iter)

7 {

8 iter->second->onPause(dt);

9 }

10 }

The collisionHandler method’s implementation follows the same structure,
although it does not override any method. This method is used as a callback by
the PhysicsEngine if a collision occurs. More details will be given later in its sec-
tion.

The addComponent, removeComponent and getComponent methods are respon-
sible of handling the mComponents collection accordingly and notifying the Com-
ponent of attachment/detachment events. For an in-depth explanation, read the
comments of the implementation:

1 // Entity.cpp

2
3 void Entity::addComponent(Component::Ptr component)

4 {

5 // Add this entity’s reference to the component’s pointer

6 component->entity = this;

7
8 // Notify the component that it has been added to an entity

9 component->attachedToEntity();

10
11 // Store the component according to its type

12 mComponents[std::type_index(typeid(*component))] = std::move(component);

13 }

14
15
16 // Entity.hpp

17
18 template <typename T>

19 std::unique_ptr<T> Entity::removeComponent()

20 {

21 // Retrieve the type_index of T

22 std::type_index index(typeid(T));

23
24 // Ensure that a component with type T exists in the collection

48

X-GSD Section 3 DEVELOPMENT

25 assert(mComponents.count(std::type_index(typeid(T))) != 0);

26
27 // Retrieve it from the collection and cast it back to the T polymorphic type

28 T *tmp = static_cast<T*>(mComponents[index].get());

29
30 // Remove it from the collection and return it

31 std::unique_ptr<T> removedComponent(tmp);

32 mComponents[index].release();

33 mComponents.erase(index);

34
35 // Notify the component that it has been removed from an entity

36 removedComponent->detachedFromEntity();

37
38 // Finally, return the component. If no ownership is claimed, it will be destroyed.

39 return removedComponent;

40 }

41
42 template <typename T>

43 T* Entity::getComponent()

44 {

45 // Retrieve the type_index of T

46 std::type_index index(typeid(T));

47
48 // If it exists in the collection, retrieve it, cast it back to the T polymorphic type and

return it

49 if (mComponents.count(std::type_index(typeid(T))) != 0) {

50 return static_cast<T*>(mComponents[index].get());

51 }

52 // Otherwise, a nullptr is returned

53 else {

54 return nullptr;

55 }

56 }

Finally, the Entity class offer a simple mechanism of retrieving any Entity
anywhere in code only by specifying its name. A static collection of entities (a
map of string as keys and Entity pointers as values) is filled/emptied as instances
of Entity are constructed/destructed.

1 // Entity.cpp

2
3 // Static initialization

4 std::unordered_map<std::string, Entity*> Entity::entities;

5
6 // Static method

7 Entity* Entity::getEntityNamed(std::string name)

8 {

9 // Look for an specific entity by its name in the entities collection

10 auto found = entities.find(name);

11 if (found != entities.end())

12 return found->second;

13 else

14 return nullptr;

15 }

16
17 // Constructor

18 Entity::Entity(std::string name)

19 : mName(name)

20 {

21 // Insert a reference of the new Entity in a collection of pairs name-entityPointer

22 auto inserted = entities.insert(std::make_pair(name, this));

23
24 if (inserted.second == false)

25 throw std::runtime_error("Insertion of entity with name [" + name + "] failed.");

26 }

27
28 // Destructor

29 Entity::~Entity()

30 {

31 // Delete this entity’s pointer from the entities collection

49

Section 3 DEVELOPMENT X-GSD

32 auto found = Entity::entities.find(mName);

33 assert(found != Entity::entities.end());

34 Entity::entities.erase(mName);

35 }

Then, from any place one can retrieve a pointer to a specific Entity using the
getEntityNamed static method:

1 // Some class .cpp or .hpp

2
3 Entity *playerEntity = Entity::getEntityNamed("player");

3.3.2 Component class

This class mainly serves as the base class from which to inherit when implementing
a specific Component, such as ComponentSprite. The derived class must override
the desired methods and implement their behaviour. If a method is not overridden,
the Component’s implementation of that method will be used instead, which is
an empty method. The Component class, similarly to the SceneGraphNode class,
inherits from sf::NonCopyable and therefore its copy constructor is disabled,
making it less error-prone.

1 // Component.hpp

2
3 class Component : sf::NonCopyable

4 {

5 // Typedefs and enumerations

6 public:

7 typedef std::unique_ptr<Component> Ptr;

8
9 // Methods

10 public:

11 Component();

12 virtual ~Component();

13
14 virtual void attachedToEntity();

15 virtual void detachedFromEntity();

16
17 virtual void onEntityAttach();

18 virtual void onEntityDetach();

19 virtual void onPause(const HiResDuration& dt);

20
21 virtual void update(const HiResDuration& dt);

22 virtual void draw(sf::RenderTarget& target, sf::RenderStates states) const;

23 virtual void handleEvent(const Event& event);

24
25 // Callbacks for other common components

26 virtual void collisionHandler(Entity* theOtherEntity, sf::FloatRect collision);

27
28 // Variables (member / properties)

29 public:

30 Entity* entity;

31
32 };

Regarding the data of the class, it only stores a pointer to the Entity holding
this Component. The available methods are mostly the already known update,
draw, handleEvent, onPause and collisionHandler; two renamed methods from
Entity: onEntityAttach and onEntityDetach (called onAttach and onDetach

50

X-GSD Section 3 DEVELOPMENT

in the Entity class) and a new pair of methods with names attachedToEntity

and detachedFromEntity. These last two get invoked when the Component
is attached to or detached from an Entity, which should not be confused with
onEntityAttach and onEntityDetach because these are invoked when a Scene-
GraphNode or Entity is attached to or detached from another SceneGraphNode
or Entity —but it is interesting to have them in Component so that actions can
be taken in response to these events—.

X-GSD already provides three Component-derived classes integrated with the
engine: ComponentSprite, ComponentRigidBody and ComponentCollider. They
offer very basic functionality with much room for improvement, but sufficient for
the scope of this project and for building some example games. There exists also
the option for the user to create their own custom components —the Controllers—,
so that custom behaviour can be implemented and then added to entities.

Figure 12: UML diagram of Component-derived classes.

3.3.3 ComponentSprite

The term sprite has already been explained along this work, but as a remainder:
it is a graphical representation (in 2D) of some object of the game, such as the
character. There is almost no game without graphics, and therefore a Component
to implement such behaviour is compulsory.

SFML already provides this functionality with the sf::Sprite class, so the
ComponentSprite class is a simple wrapper of it. Its interface is fairly simple: A
private sf::Sprite of which some properties can be accessed through some getters
and setters, two different constructors which vary in the number of arguments, and
an override of the draw method.

1 // ComponentSprite.hpp

51

Section 3 DEVELOPMENT X-GSD

2
3 class ComponentSprite : public Component

4 {

5 // Methods

6 public:

7 ComponentSprite(const sf::Texture& texture);

8 ComponentSprite(const sf::Texture& texture, sf::IntRect textureRect);

9 ~ComponentSprite();

10
11 void draw(sf::RenderTarget& target, sf::RenderStates states) const

override;

12
13 sf::FloatRect getGlobalBounds();

14 sf::Color getColor();

15 const sf::Texture& getTexture();

16 sf::IntRect getTextureRect();

17
18 void setColor(sf::Color color);

19 void setTexture(sf::Texture& texture);

20 void setTextureRect(sf::IntRect textureRect);

21
22
23 // Variables (member / properties)

24 private:

25 sf::Sprite mSprite;

26 };

The sf::Texture argument of both constructors and the setter represents the
texture —the picture from which the sprite will draw pixels—. One of the con-
structors and a setter expect a sf::IntRect, which is an SFML data structure to
hold a rectangle (a point and a size), and in this case represents the portion of the
texture19 which will be used to render the sprite. If no texture rect is given, the
entire texture is used for rendering the sprite. More advanced implementations
could configure the texture of the sprite from a configuration file generated by a
texture-packing software.

Figure 13: Texture atlas and single texture files.

Finally, getGlobalBounds return a rectangle in which the sprite is contained,

19In games development is very common to optimize the GPU operations by putting many
textures together in the same file —called texture atlas, sprite sheet or tile set depending on their
contents— so that the texture is uploaded to the GPU memory only once. Then, each object
hold the coordinates and the size of the desired texture in the texture atlas.

52

X-GSD Section 3 DEVELOPMENT

and the -Color getter and setter let the user to access and modify the tint colour
of the sprite —a colour which will be added to the texels20

The implementation will not be shown here as it simply consists on calling the
same setters and getters of sf::Sprite on the mSprite private variable, excepting
the draw method that finally uses the sf::RenderTarget& reference that has been
passed around all these classes to render the sprite:

1 // ComponentSprite.cpp

2
3 void ComponentSprite::draw(sf::RenderTarget& target, sf::RenderStates states) const

4 {

5 // Draw the sprite on the render target

6 target.draw(mSprite, states);

7 }

3.3.4 ComponentRigidBody

This component can be added to an Entity with needs for physics simulation. That
is, the Entity will get its position updated according to several physics properties
such as mass, velocity and force. Such physics properties are represented by the
PhysicState class (see Appendix 6.5). Besides, if the Entity also holds a Compo-
nentCollider —the class is explained on the next section—, the PhysicsEngine (see
Appendix 6.6) will track it and call its collisionHandler method if a collision
occurs.

1 // ComponentRigidBody.hpp

2
3 class ComponentRigidBody : public Component

4 {

5 // Methods

6 public:

7 ComponentRigidBody(bool isKinematic);

8 ~ComponentRigidBody();

9
10 void onEntityAttach() override;

11 void update(const HiResDuration& dt) override;

12
13 void returnToLastPhysicsState();

14
15 PhysicState& getPhysicsState();

16
17 void pausePhysics();

18 void resumePhysics();

19
20 // Variables (member / properties)

21 private:

22 bool mKinematic; // If true, the Entity’s position does not get affected by

physics, but still triggers collisions

23 bool mPausedPhysics;

24
25 PhysicState mPhysics;

26
27 PhysicState mLastPhysicsState;

28 sf::Transformable mLastTransformable;

29 };

20Texture elements, similarly to the concept of pixel or picture elements, are the individual
coloured square-dots that conform the texture.

53

Section 3 DEVELOPMENT X-GSD

The state of this class is primarily defined by the PhysicState mPhysics vari-
able. There are also two boolean mKinematic and mPausedPhysics properties
which indicate, respectively, if the rigid body is kinematic —this means the physics
simulation will not be performed, normally because the Entity will be manually
moved; but still can trigger collisions—, or if the simulation has been manually
paused and therefore it should not be updated. The two remaining variables
are another PhysicState called mLastPhysicsState and a sf::Transformable

called mLastTransformable whose purpose is to store the previous PhysicState
and transform, needed for the returnToLastPhysicsState method to work.

With regard to its behaviour: the constructor take an argument to indicate
whether the rigid body is kinematic or not, and also set a default gravity force;
returnToLastPhysicsState is an experimental method that returns the Entity
to its previous physics state and transform; getPhysicsState returns a refer-
ence of mPhysics from which physics properties can be accessed and modified;
and pausePhysics and resumePhysics methods are used to pause or resume the
physics simulation. See the implementation:

1 // ComponentRigidBody.cpp

2
3 ComponentRigidBody::ComponentRigidBody(bool isKinematic)

4 : mKinematic(isKinematic)

5 , mPausedPhysics(false)

6 {

7 mPhysics.setForce(sf::Vector2f(0.f, 9.8f*20)); // Default force simulating gravity

8 }

9
10 void ComponentRigidBody::returnToLastPhysicsState()

11 {

12 mPhysics = mLastPhysicsState;

13 entity->mTransformable = mLastTransformable;

14 }

15
16 PhysicState& ComponentRigidBody::getPhysicsState()

17 {

18 return mPhysics;

19 }

20
21 void ComponentRigidBody::pausePhysics()

22 {

23 if (mKinematic)

24 DBGMSGC("Warning: Tried to pause the physics simulation of a kinematic

ComponentRigidBody.");

25 else

26 mPausedPhysics = true;

27 }

28
29 void ComponentRigidBody::resumePhysics()

30 {

31 if (mKinematic)

32 DBGMSGC("Warning: Tried to resume the physics simulation of a kinematic

ComponentRigidBody.");

33 else

34 mPausedPhysics = false;

35 }

The class also overrides two methods from Component, onEntityAttach and
update. The first method checks if the Entity does already have a Component-
Collider in order to set it as dynamic —this will be explained on next section—.
The latter method will advance the physics state and transform according to the

54

X-GSD Section 3 DEVELOPMENT

physics simulation, unless the ComponentRigidBody is marked as kinematic or its
physics simulation is paused. That physics step is done with the help of the RK4
integration method of the PhysicsEngine class (see Appendix 6.6).

1 // ComponentRigidBody.cpp

2
3 void ComponentRigidBody::onEntityAttach()

4 {

5 // Check if the Entity has a collider attached

6 if (auto collider = entity->getComponent<ComponentCollider>()) {

7 collider->setStatic(false); // If it existed, make it dynamic now

8 }

9 else {

10 DBGMSGC("WARNING: a RigidBody has been attached to " << entity->getName() << " but it has

no Collider. This may cause undesired behaviour.");

11 }

12 }

13
14 void ComponentRigidBody::update(const HiResDuration &dt)

15 {

16 // Do not update physics if is kinematic or physics simulation is paused

17 if (mKinematic || mPausedPhysics)

18 return;

19
20 // Advance the physics with RK4 integration

21 PhysicsEngine::integrateRK4(mPhysics, mLastPhysicsState, entity->mTransformable,

mLastTransformable, dt);

22 }

Note that this class offers very basic functionality and has much room for
improvement. For example, an easier API for accessing and operating with the
physics; an override of the collisionHandler method for an automatic collision
response modifying the PhysicState accordingly; or even improve its integration
with the Scene’s JSON loading so that more properties could be loaded from file.

3.3.5 ComponentCollider

The ComponentCollider class defines a component which can be added to an en-
tity in order to give it a collider —a determined region of the space that reacts
in a specific manner when another collider overlaps, or collides, with it—. The
PhysicsEngine will periodically check for collisions and call collisionHandlers.
The Collider can be static or dynamic depending on the use of the Entity:

• A ComponentCollider is marked as static (mStatic = true) if the Entity
has no ComponentRigidBody. The main use of these type of colliders is
for static elements of the game, such as the floor or some walls. Another
common use is for ”trigger areas”, e.g. the player enters a specific room
and a cutscene should start at that event. The PhysicsEngine will not check
collisions between static colliders in order to optimize the collision detection
process.

• A ComponentCollider is marked as dynamic (mStatic = false) if the En-
tity already holds a ComponentRigidBody. The main use of dynamic col-
liders is for dynamic elements of the game, such as the player, the enemies,
bullets, etc. that may need to react when collisions happen between them
(e.g. the player looses life if a bullet collides with him, and the bullet de-
stroys). The PhysicsEngine will check collisions between dynamic colliders

55

Section 3 DEVELOPMENT X-GSD

(e.g. a bullet hits the player), and between dynamic and static colliders (e.g.
the player walks over the floor, touches a wall, etc.).

The area of the collider is represented by an sf::FloatRect, which is a rect-
angle.

Figure 14: Two Entities with ComponentColliders.

As many other parts of X-GSD, this class is simple and enough for the scope of
this work, with much room for improvement. For example, one could add circle-
based colliders, composite colliders based on the composition of rectangles and
circles, etc.

1 // ComponentCollider.hpp

2
3 class ComponentCollider : public Component

4 {

5 // Methods

6 public:

7 ComponentCollider(sf::FloatRect rectBounds = sf::FloatRect());

8 ~ComponentCollider();

9
10 void onEntityAttach() override;

11 void update(const HiResDuration& dt) override;

12 void draw(sf::RenderTarget& target, sf::RenderStates states) const override;

13 void handleEvent(const Event& event) override;

14
15 void collisionHandler(Entity* theOtherEntity, sf::FloatRect collision)

override;

16 void setStatic(bool option);

17 bool isStatic();

18 void setRectBounds(sf::FloatRect rect);

19 sf::FloatRect getRectBounds();

20
21 // Variables (member / properties)

22 private:

23 bool mStatic;

24 sf::FloatRect mRectBounds;

25
26 ...

27 };

56

X-GSD Section 3 DEVELOPMENT

Regarding the implementation, it is fairly simple: update, draw, handleEvent
and collisionHandler overridden methods only perform debug actions, and there-
fore they have been omitted. That debug functionality includes a visual represen-
tation of the collider (see source code for details). The rest of methods are simple
getters/setters or their implementation can be understood trough the comments
in code:

1 // ComponentCollider.cpp

2
3 void ComponentCollider::onEntityAttach()

4 {

5 // Check if the entity has a RigidBody component or not and decide the type of collider

(static or dynamic). Add a pointer of this collider to the corresponding PhysicsEngine’s

collection of collider pointers.

6 if (entity->getComponent<ComponentRigidBody>()) {

7 Game::instance().getPhysicsEngine().addDynamicCollider(this);

8 mStatic = false;

9 }

10 else {

11 Game::instance().getPhysicsEngine().addStaticCollider(this);

12 mStatic = true;

13 }

14
15 // Check if the entity has a Sprite component and mRectBounds has not been set yet

16 if (mRectBounds == sf::FloatRect()) {

17 if (auto sprite = entity->getComponent<ComponentSprite>()) {

18 // Set the collider bounds to the sprite’s

19 mRectBounds = sprite->getGlobalBounds();

20 ...

21 }

22 }

23 ...

24 }

25
26 void ComponentCollider::setStatic(bool option)

27 {

28 // If mStatic is equal to option, there is no need to do anything as the Collider is already

the desired type

29 if (mStatic != option) {

30
31 // Swap the collider from one type to the other

32 if (option) {

33 Game::instance().getPhysicsEngine().addStaticCollider(this);

34 Game::instance().getPhysicsEngine().deleteDynamicCollider(this);

35 }

36 else {

37 Game::instance().getPhysicsEngine().addDynamicCollider(this);

38 Game::instance().getPhysicsEngine().deleteStaticCollider(this);

39 }

40 }

41
42 }

43
44 ComponentCollider::~ComponentCollider()

45 {

46 // Cleanup

47 if (mStatic)

48 Game::instance().getPhysicsEngine().deleteStaticCollider(this);

49 else

50 Game::instance().getPhysicsEngine().deleteDynamicCollider(this);

51 }

3.3.6 Controllers: User-defined Components

One with access to X-GSD’s source code could implement new types of components
inheriting from Component, overriding the needed methods and providing an im-

57

Section 3 DEVELOPMENT X-GSD

plementation. In fact, in order to give Entities some custom and specific behaviour
—the script—, e.g. the logic of the game or the controls of the player, it should be
done in a Component. Then that Component should be added to the desired Enti-
ties. However, that procedure is not ideal for a user of the engine, because it would
require him/her to access the engine’s source code and make some modifications,
which would contradict some of the goals of a game engine such as making the
user to forget about the inner game engine implementation details and focus on
the game. For example, the loadSceneFromFile method of the Scene class would
require specific code in order to load the new Component-derived class from JSON.

Controllers are user-defined components that can integrate with the engine
without the need of that much trouble for the user. In order to provide the
controllers integration with the engine, a ControllersManager class is necessary:

1 // ControllersManager.hpp

2
3 #pragma once

4
5 #include <X-GSD/Component.hpp>

6
7 #include <unordered_map>

8 #include <stdexcept>

9
10 namespace xgsd {

11
12 class ControllersManager

13 {

14 // Methods

15 public:

16 template <typename T>

17 void registerController(std::string controllerName);

18
19 Component::Ptr getController(std::string controllerName);

20
21 // Variables (member / properties)

22 private:

23 std::unordered_map<std::string, std::function<Component::Ptr()>> mControllerFactories;

24 };

25
26
27 // Template implementation

28 template <typename T>

29 void ControllersManager::registerController(std::string controllerName)

30 {

31 mControllerFactories[controllerName] = [] ()

32 {

33 return std::move(Component::Ptr(new T()));

34 };

35 }

36
37 } // namespace xgsd

38
39
40 // ControllersManager.cpp

41
42 #include <X-GSD/ControllersManager.hpp>

43
44 using namespace xgsd;

45
46 Component::Ptr ControllersManager::getController(std::string controllerName)

47 {

48 auto found = mControllerFactories.find(controllerName);

49 if(found == mControllerFactories.end())

50 throw std::runtime_error("Attempt to load an unknown controller: " + controllerName);

51
52 return std::move(found->second()); // Call the needed functor to constructor

53 }

58

X-GSD Section 3 DEVELOPMENT

This class contains methods to register and create ControllerComponents in
a dynamic manner. The registerController template method can be used to
store a pointer to the constructor method of that type of controller associated
with a name string. Then, getController can be used to create controllers of the
desired type.

There is another class, ControllersRegistration, that is provided with X-GSD
but that should be with the game’s project files. Is inside this class where the user
should register their controllers:

1 // ControllersRegistration.hpp

2
3 #pragma once

4
5 #include <X-GSD/ControllersManager.hpp>

6
7 // Include all controllers

8 #include "MenuController.hpp"

9 #include "Level1Controller.hpp"

10 #include "PlayerController.hpp"

11 #include "EnemyController.hpp"

12 ...

13
14 class ControllersRegistration {

15
16 public:

17 void registerControllers(xgsd::ControllersManager& controllersManager) {

18
19 // Register the controllers

20 controllersManager.registerController<MenuController>("MenuController");

21 controllersManager.registerController<Level1Controller>("Level1Controller");

22 controllersManager.registerController<PlayerController>("PlayerController");

23 controllersManager.registerController<EnemyBallController>("EnemyController");

24 ...

25 }

26
27 };

The Scene class will call the registerControllers method with a controllers-
Manager object from the Game class, and therefore they will be accessible from
anywhere after that (including the scene loading from file method, so controllers
can be added to entities in scene JSON files):

1 // Some-class.cpp

2
3 auto controllersManager = Game::instance().getControllersManager();

4 auto playerController = controllersManager.getController("PlayerController");

5 anEntity->addComponent(std::move(playerController));

6
7 // Or in one line:

8 anEntity->addComponent(Game::instance().getControllersManager().getController("PlayerController"));

Finally, there is a header file which packs the most common headers needed by
controllers so that a user can include only that header and start coding:

1 // ControllersHeaders.hpp

2
3 #pragma once

4
5 #include <X-GSD/Component.hpp>

6 #include <X-GSD/ComponentSprite.hpp>

59

Section 3 DEVELOPMENT X-GSD

7 #include <X-GSD/ComponentRigidBody.hpp>

8 #include <X-GSD/ComponentCollider.hpp>

9 #include <X-GSD/Entity.hpp>

10 #include <X-GSD/Event.hpp>

11 #include <X-GSD/Game.hpp>

12 #include <X-GSD/Debug.hpp>

13 #include <X-GSD/Time.hpp>

14
15 #include <SFML/Graphics.hpp>

16 #include <SFML/Audio.hpp>

17 #include <SFML/System/Vector2.hpp>

This solution is far from ideal and lacks some features such as being able
to configure some values of the controllers in scene JSON files or make modifi-
cations to scripts without recompiling. Dynamic libraries were considered, but
their compatibility through different platforms and operating systems depend on
their native APIs, and therefore the decision was not to use dynamic libraries for
simplicity. However, one could implement that feature, or rely in a library like
Poco.sharedLibrary [28]

With this, all aspects and elements of X-GSD have been finally covered.

3.4 Example game

The next section will explain step by step how to create an example game with
X-GSD. Here is a list of the steps to be done:

1. Install dependencies and tools (SFML, IDE, compiler, etc.)

2. Create a new project (directory structure, X-GSD files, etc.)

3. Modify the contents of gameconfig.json

4. Create a TitleScene.json file and add the necessary resources

5. Create and implement a TitleSceneController

6. Modify the ControllersRegistration.hpp after each Controller creation

7. Create a GameScene.json file and add the necessary resources

8. Create and implement a GameSceneController

9. Create and implement a PlayerController

10. Create and implement an AsteroidController

11. Build and run!

First of all, SFML must be installed as it is the main dependency of X-GSD.
There is a learn[7] section in the SFML website with instructions for installing the
library and configure a IDE/compiler. X-GSD is developed with SFML 2.1, but
there should not be a problem to use newer versions. However, if that is the case,
it can be solved installing SFML 2.1, or looking into the error messages and trying

[7] Laurent Gomila. SFML. http://www.sfml-dev.org/learn.php.

60

http://www.sfml-dev.org/learn.php

X-GSD Section 3 DEVELOPMENT

to fix them.

The project creation depends on the platform, IDE and personal preferences.
The tutorials in the SFML website also offer project templates for some IDEs in
order to create new SFML projects easily. Once the project is created, the X-GSD
files must be referenced or copied into the project. The recommended directory
structure is the following:

If the decision was to reference X-GSD, it is still recommended to copy the
ControllersRegistration.hpp file into GameProject/include/Game/ and the
Main.cpp file into GameProject/src/Game and use these. If not, modifying these
would result in side effects for other projects using X-GSD also in referenced mode.

The next step is to create the gameconfig.json file in GameProject/resources/configuration/.
For the example, this configuration will be used:

{

"windowName" : "X-GSD Example Game",

"windowSize" : {

"width" : 720,

"height" : 480

},

61

Section 3 DEVELOPMENT X-GSD

"fullscreen" : false,

"vsync" : false,

"keyRepetition" : false,

"mouseCursorVisible" : false,

"debugFont": "PressStart2P.ttf",

"icon" : "playerShip.gif",

"initialScene" : "TitleScene.json"

}

This configuration file will make the game to run in windowed mode of reso-
lution 720x480, without vsync (if the OS allows that), no key repetition, invisible
mouse cursor, a custom icon, a font for debug information on screen and an initial
scene called TitleScene.json. The needed resources (the icon, font and scene)
must be placed correctly in their directories as explained before.

The initial scene TitleScene.json must be created and added to the scenes
directory:

{

"name": "TitleScene",

"entities": [

{

"name": "levelControllersContainer",

"components": {

"controllers": [

{

"type": "TitleController"

}

]

}

},

{

"name": "logo",

"parentEntityName": "root",

"transform": {

"origin": {

"x": 128,

"y": 128

},

"position": {

"relative": true,

"x": 0.5,

"y": 0.35

},

"scale": {

"x": 2,

"y": 2

}

},

"components": {

"ComponentSprite": {

"globalTexture": false,

"texture": "titleLogoTexture"

},

"controllers": []

}

}

],

"resources": {

"textures": [

{

"name": "titleLogoTexture",

"path": "logoSprite.png"

}

],

"fonts": [

{

"name": "mainFont",

62

X-GSD Section 3 DEVELOPMENT

"path": "PressStart2P.ttf"

}

],

"sounds": [

{

"name": "selectionSound",

"path": "selection.ogg"

}

]

}

}

This file declares some dependencies: A texture, a font, a sound and a Con-
troller of type TitleController. All these must be added to the appropriate
directories.

The the header and implementation files of the TitleController are the fol-
lowing:

// TitleScene.hpp

#pragma once

#include <X-GSD/ControllerHeaders.hpp>

using namespace xgsd;

/*

Controller for the logic of the TitleScene.

*/

class TitleMenuController : public Component

{

// Typedefs and enumerations

private:

// Methods

public:

TitleMenuController();

~TitleMenuController();

void onEntityAttach() override;

void update(const HiResDuration& dt) override;

void draw(sf::RenderTarget& target, sf::RenderStates states) const override;

void handleEvent(const Event& event) override;

// Variables (member / properties)

private:

sf::Text mTextPressAnyKey;

sf::RectangleShape mBackground;

sf::Sound mMenuSound;

HiResDuration mPressAnyKeyTime;

};

#include "TitleController.hpp"

TitleMenuController::TitleMenuController()

: mBackground()

{

// Load resources here (RAII)

}

void TitleMenuController::onEntityAttach()

{

// Sound

mMenuSound.setBuffer(Game::instance().getLocalSoundManager().get("selectionSound"));

63

Section 3 DEVELOPMENT X-GSD

// Font

sf::Font& mainFont = Game::instance().getLocalFontManager().get("mainFont");

mTextPressAnyKey.setFont(mainFont);

// String

mTextPressAnyKey.setString("Press any key to start");

// Size

mTextPressAnyKey.setCharacterSize(14);

// Positioning

sf::Vector2f viewSize = Game::instance().getWindow().getView().getSize();

sf::FloatRect textRect = mTextPressAnyKey.getLocalBounds();

mTextPressAnyKey.setOrigin(textRect.left + textRect.width/2.0f,

textRect.top + textRect.height/2.0f);

mTextPressAnyKey.setPosition(viewSize.x / 2.0f, viewSize.y / 1.2f);

// Color

mTextPressAnyKey.setColor(sf::Color::Transparent);

// Background

mBackground.setSize(viewSize);

mBackground.setFillColor(sf::Color(50, 100, 200));

}

void TitleMenuController::update(const HiResDuration& dt)

{

// Update "Press any key" blinking animation

mPressAnyKeyTime += dt;

if (mPressAnyKeyTime > ONE_SECOND / 2) {

if (mTextPressAnyKey.getColor() == sf::Color::White)

mTextPressAnyKey.setColor(sf::Color::Transparent);

else

mTextPressAnyKey.setColor(sf::Color::White);

mPressAnyKeyTime = xgsd::HiResDuration(0);

}

}

void TitleMenuController::draw(sf::RenderTarget &target, sf::RenderStates states) const

{

// Draw background

target.draw(mBackground, states);

// Draw text on top of everything

target.draw(mTextPressAnyKey, states);

}

void TitleMenuController::handleEvent(const Event& event)

{

if (event.type == Event::System) {

auto systemEvent = event.systemEvent;

// Perform appropiate actions

if (systemEvent.type == sf::Event::KeyPressed ||

systemEvent.type == sf::Event::JoystickButtonPressed)

{

// Pressing Esc will close the game

if (systemEvent.key.code == sf::Keyboard::Escape) {

Game::instance().getWindow().close();

return;

}

// Any other key or button:

mMenuSound.play();

// Load Game scene

Game::instance().getSceneManager().loadSceneFromFile("GameScene.json");

}

}

}

64

X-GSD Section 3 DEVELOPMENT

TitleMenuController::~TitleMenuController()

{

// Cleanup

}

This Controller must be added to ControllersRegistration.hpp

#pragma once

#include <X-GSD/ControllersManager.hpp>

// Include all of your controllers

#include "TitleController.hpp" // <- Added line

class ControllersRegistration {

public:

void registerControllers(xgsd::ControllersManager& controllersManager) {

// Register controllers this way

controllersManager.registerController<TitleMenuController>("TitleController"); // <- Added

line

}

};

This is the result:

The following steps would be creating a JSON scene file for the game scene,
implement a Controller for the logic of that scene, create and implement other two
Controllers for the player and the enemies, modify the ControllersRegistration.hpp
file to include these and finally build and run the game.

65

Section 3 DEVELOPMENT X-GSD

Figure 15: Example game running with debug rendering activated.

The code for the remaining steps will be omitted for simplicity. It can be found
in the attached files of this work and the GitHub repository[2].

66

X-GSD Section 4 CONCLUSION

4 Conclusion

The game development field is relatively new and continuously evolving. With
each new game and with every new technology or platform, many new program-
ming challenges emerge. Game engines can help developers to worry less about
technologies and platforms and focus more on the development of the game, work-
ing on a higher level of abstraction. However, being bound to a closed third-party
game engine can be a problem —the reasons were explained at the beginning of
this work—. Besides, the fact that game engines handle the low level details does
not mean the programmer should not know about them: After all, a programmer
who has understandings of the game engine internals will probably do better than
a programmer who does not.

In one hand, the exercise of creating a game engine can help a programmer to
understand how game engines work, to think of the vast amount of possibilities
behind every single feature and to reason about each decision-making. In that
sense it is clear that facing such challenge has a beneficial learning value for the
programmer.

On the other hand, to create a game engine with plans for using it in real-world
projects in mind can also be dangerous if the magnitude of the project and required
features are not measured properly, or the team is too small or inexpert in this
field, because it could lead to undesired results or be too much time-consuming.

One could consider creating its own game engine to meet the requirements of
some project for several reasons. But if the game to be developed needs cutting-
edge features and the team is not capable of developing them or it is not worth-
while, it may be wiser to use an industry-proven game engine. If that is the
decision, one should then preferably look for an open-source engine so that one
could modify it, be it for features addition, error fixing or even being able to react
at some unfortunate event such as those listed at the introduction of this work
without having to rely on external factors.

All along this work, a simple game engine has been successfully developed with
the goals of cross-platform targeting, data-oriented programming, free software and
simplicity, although it does offer few features with much room for improvement.
Because of these and other reasons explained in the methodology section, C++,
SFML and JSON were selected to develop the engine, X-GSD.

The structure of the engine consist of a continuous simulation loop combined
with a simple scene graph implemented by a tree structure and a scene-entity-
component organization hierarchy. Such structure can be seen as a mix of the one
proposed at the SFML Game Development Book [14] and a organization hierarchy
similar to some popular engines as Unity, which would be easy to understand and
result familiar to some of the users of those engines.

Due to the dangers of creating a game engine stated above, some of the ini-
tial plans were cancelled: more components such as GUI-related ones and more
features for the existing components as automatic reaction to collisions for Com-
ponentRigidBody.

The game engine is working and available for free on a GitHub repository[2]
with the hope of being useful for those interested in learning about games pro-
gramming, or even grow with the contributions of different people.

67

Section 5 IMPROVEMENT PROPOSALS X-GSD

5 Improvement proposals

Aiming to build a full-featured game engine by oneself is both hard and unreal-
istic. Even with this taken into account, several features were implemented in a
very basic manner and others were cancelled due to lack of time. Besides, even
the most complete engines continue evolving, adding features, enhancing several
parts and fixing many errors.

With this in mind, a list of improvement proposals —with no specific order—
has been elaborated:

• Graphical editor: Because positioning elements with a scene editor is always
clearer and easier. The editor would read and write scene JSON files with
the format presented in this work or an enhanced one.

• Provide more built-in Components: At least basic components such as GUI-
related (texts, buttons, etc.), light sources and particle emitters.

• Enhance the ComponentSprite, ComponentCollider and ComponentRigid-
Body: There are details on what parts could be enhanced in their sections.

• Actions and callbacks for Entities, with easing options.

• Input bindings instead of hard-coded values for the controls of the game.

• Add a Z-index property to SceneGraphNodes. The renderer should get a
collection of drawable references in the desired order of rendering. In order
for this to work, drawables should be decoupled from the scene graph (may
be in a separate binary tree, with references between them).

• Enhance the physics engine or integrate an open-source solution.

• Enhance the resources managing system (see [8]).

• Let the user to specify options and values of their controllers in scene JSON
files (see [9]).

• Introduce a runtime-compiled C++ system (see [10] and [11] or a scripting
language compatibility such as LUA or JavaScript for faster development
iterations.

• Introduce threading/multi-core features (SFML does provide a Thread class).

[8] Sean Middleditch. Dangers of std::shared ptr. http://seanmiddleditch.com/

dangers-of-stdshared_ptr/.

[9] Stefan Reinalter. Schema-based entity-component data for fast iter-
ation times. https://molecularmusings.wordpress.com/2014/02/21/

schema-based-entity-component-data-for-fast-iteration-times/#more-484.

[10] Doug Binks, Adam Rutkowski, Matthew Jack, and Juliette Foucaut. Runtime-compiled
c++. http://runtimecompiledcplusplus.blogspot.co.uk/.

[11] Stefan Reinalter. Using runtime-compiled c++ code as a scripting language:
under the hood. https://molecularmusings.wordpress.com/2014/05/10/

using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/

#more-487.

68

http://seanmiddleditch.com/dangers-of-stdshared_ptr/
http://seanmiddleditch.com/dangers-of-stdshared_ptr/
https://molecularmusings.wordpress.com/2014/02/21/schema-based-entity-component-data-for-fast-iteration-times/##more-484
https://molecularmusings.wordpress.com/2014/02/21/schema-based-entity-component-data-for-fast-iteration-times/##more-484
http://runtimecompiledcplusplus.blogspot.co.uk/
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/##more-487
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/##more-487
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/##more-487

X-GSD Section 5 IMPROVEMENT PROPOSALS

• Network-related features (SFML also provides networking classes and utili-
ties).

69

Section 6 APPENDIX X-GSD

6 Appendix

Full source code is available as attached files of this work or on the GitHub
repository[2].

6.1 Debug utils

This header file contains macros (based on a Late Developer’s blog article[5]) for
making debugging messages easier and only available if the DEBUG preprocessor
symbol is defined. This is useful for release builds in which that symbol should be
undefined so that debug instructions are not included in the final binary.

1 // Debug.hpp

2
3 #pragma once

4
5 #include <iostream>

6 #include <string.h>

7
8 #define INFO_MAX_LENGTH 40

9
10 // Macro for shortening the __FILE__ result. It hides the path and only shows the file name

11 #define FILE_WITHOUT_PATH (strrchr(__FILE__, ’/’) ? strrchr(__FILE__, ’/’) + 1 : __FILE__)

12
13 #define DEBUG_INFO(os) { std::string info = "DBG: "; info.append(FILE_WITHOUT_PATH);

info.append("("); \

14 info.append(std::to_string(__LINE__)); info.append("): "); \

15 (os) << info; \

16 int infoLength = (int)info.length(); \

17 for (int i = 0; i < INFO_MAX_LENGTH - infoLength; i++){ (os) << " ";}\

18 }\

19
20 // Macro for debugging a certain variable to a specific output stream

21 #ifdef DEBUG

22 #define DBGVAR(os, var) do { \

23 DEBUG_INFO(os)\

24 (os) << #var << " = [" << (var) << "]" << std::endl; } while(false)

25 #else

26 #define DBGVAR(os, var) do { } while (false)

27 #endif

28
29 // Macro for debugging with a message to a specific output stream

30 #ifdef DEBUG

31 #define DBGMSG(os, msg) do { \

32 DEBUG_INFO(os)\

33 (os) << msg << std::endl; } while(false)

34 #else

35 #define DBGMSG(os, msg) do { } while (false)

36 #endif

37
38 // Macro for debugging a certain variable to standard output stream

39 #ifdef DEBUG

40 #define DBGVARC(var) do { \

41 DEBUG_INFO(std::cout)\

42 std::cout << #var << " = [" << (var) << "]" << std::endl; } while(false)

43 #else

44 #define DBGVARC(var) do { } while (false)

45 #endif

46
47 // Macro for debugging with a message to standard output stream

48 #ifdef DEBUG

49 #define DBGMSGC(msg) do { \

50 DEBUG_INFO(std::cout)\

51 std::cout << msg << std::endl; } while(false)

52 #else

53 #define DBGMSGC(msg) do { } while (false)

54 #endif

70

X-GSD Section 6 APPENDIX

6.2 Time utils

This utility header file is for use in other X-GSD classes that require time handling.
Defines some short names for std::chrono types:

• HiResTime defines a time point of a high resolution clock.

• HiResDuration is a time duration in nanoseconds. Used to store the differ-
ence between two HiResTime points.

• HiResClock is a high resolution clock that can be used to get the time and
store it in HiResTime variables.

• ONE MILLISECOND, ONE SECOND, ONE MINUTE and ONE HOUR are time dura-
tions that can be used directly or mathematically operated to specify time
durations.

1 // Time.hpp

2
3 #pragma once

4
5 #include <chrono>

6
7 /* This header defines some shortcurts for types of high resolution clock in std::chrono */

8
9 // One second, minute and hour in nanoseconds. You can operate with them to get the desired time

10 // Example: ONE_SECOND * 5 is 5 seconds, ONE_HOUR / 2 is 30 minutes

11 #define ONE_MILLISECOND

(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::milliseconds(1)))

12 #define ONE_SECOND (std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)))

13 #define ONE_MINUTE (std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::minutes(1)))

14 #define ONE_HOUR (std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::hours(1)))

15
16 namespace xgsd {

17
18 // std::chrono typedefs

19 typedef std::chrono::time_point<std::chrono::high_resolution_clock> HiResTime;

20 typedef std::chrono::nanoseconds HiResDuration;

21 typedef std::chrono::high_resolution_clock HiResClock;

22
23 } // namespace xgsd

6.3 Event wrapper class and CustomEvent

This Event class is a wrapper class of sf::Event which adds a CustomEvent type
with two basic string fields: name (compulsory) and data (optional). They can be
used to broadcast custom events or messages to the Entities in the scene graph.
For example, an enemy can broadcast an enemyDestroyed event at its destruction
so that any interested Entity can take actions or just ignore the event, such as a
levelController that would decrement an enemies counter and win the game if that
counter reaches zero.

1 // Event.hpp

2
3 #pragma once

4
5 #include <SFML/Window/Event.hpp>

6

71

Section 6 APPENDIX X-GSD

7 namespace xgsd {

8
9 class Event

10 {

11 public:

12 ~Event() {}

13
14 struct CustomEvent

15 {

16 CustomEvent(std::string name, std::string data = "") : name(name), data(data) { }

17
18 std::string name;

19 std::string data;

20 };

21
22 enum EventType

23 {

24 System,

25 Custom

26 };

27
28 // Constructors

29 Event(sf::Event systemEvent) : type(System), systemEvent(systemEvent) { }

30 Event(CustomEvent customEvent) : type(Custom), customEvent(customEvent) { }

31
32 // Type of the event

33 EventType type;

34
35 union {

36 sf::Event systemEvent;

37 CustomEvent customEvent;

38 };

39
40 };

41
42 } // namespace xgsd

6.4 ResourceManager class

Modified version from the SFML Game Development Book [14].

This class template is useful to store any type of resources that implement
a loadFromFile(std::string path) method and give them identifiers. A STL
map is used in combination with smart pointers to store the resources, and there-
fore memory management is safe and transparent to the user.

1 // ResourceManager.hpp

2 // Modified version of ResourceHolder.hpp from SFML Game Development Book

3
4 #pragma once

5
6 /*

7 ResourcePath.hpp is not provided with X-GSD because its

8 implementation is OS-dependent.

9 You can easily create your own as an envelop of the OS specific

10 function to reach the resource folder.

11 You can also use the implementation provided with SFML templates

12 for specific platforms-OSs (for example, they provide one for

13 Xcode in their downloads section of SFML webpage).

14 */

15 #include "ResourcePath.hpp"

16
17 #include <SFML/Graphics/Font.hpp>

18 #include <SFML/Graphics/Texture.hpp>

19 #include <SFML/Audio/SoundBuffer.hpp>

20

72

X-GSD Section 6 APPENDIX

21 #include <map>

22 #include <string>

23 #include <memory>

24 #include <stdexcept>

25 #include <cassert>

26
27 namespace xgsd {

28
29 /* Class template to store and manage resources: Textures, sounds, fonts, etc.

30
31 You can create instances of this resource manager, each of

32 which will store their own resources and have no relation or

33 communication.

34
35 Local version instances at scenes ensures that each scene will load / free

36 from memory their required resources on creation / destruction

37 of the scene (RAII), while the general (Game’s instances) resources will last

38 until the game ends or manual unload is invoked.

39 */

40 template <typename Resource, typename Identifier>

41 class ResourceManager

42 {

43 public:

44
45 typedef std::unique_ptr<ResourceManager<Resource, Identifier>> Ptr;

46
47 void load(Identifier id, const std::string& filename);

48
49 template <typename Parameter>

50 void load(Identifier id, const std::string& filename, const Parameter&

secondParam);

51
52 void unload(Identifier id);

53
54 Resource& get(Identifier id);

55 const Resource& get(Identifier id) const;

56
57 private:

58 void insertResource(Identifier id, std::unique_ptr<Resource> resource);

59
60 private:

61 std::map<Identifier, std::unique_ptr<Resource>> mResourceMap;

62 };

63
64 // Specific resource managers (textures, fonts, audio...)

65 typedef ResourceManager<sf::Texture, std::string> TextureManager;

66 typedef ResourceManager<sf::Font, std::string> FontManager;

67 typedef ResourceManager<sf::SoundBuffer, std::string> SoundManager;

68
69
70
71 /////////////////////////////

72 // Template implementation //

73 /////////////////////////////

74
75
76 ////// LOAD //////

77
78 template <typename Resource, typename Identifier>

79 void ResourceManager<Resource, Identifier>::load(Identifier id, const std::string& filename)

80 {

81 // Create and load resource

82 std::unique_ptr<Resource> resource(new Resource());

83 if (!resource->loadFromFile(resourcePath() + filename))

84 throw std::runtime_error("ResourceManager::load - Failed to load " + resourcePath() +

filename);

85
86 // If loading successful, insert resource to map

87 insertResource(id, std::move(resource));

88 }

89
90 template <typename Resource, typename Identifier>

91 template <typename Parameter>

92 void ResourceManager<Resource, Identifier>::load(Identifier id, const std::string& filename,

const Parameter& secondParam)

73

Section 6 APPENDIX X-GSD

93 {

94 // Create and load resource

95 std::unique_ptr<Resource> resource(new Resource());

96 if (!resource->loadFromFile(resourcePath() + filename, secondParam))

97 throw std::runtime_error("ResourceManager::load - Failed to load " + resourcePath() +

filename);

98
99 // If loading successful, insert resource to map

100 insertResource(id, std::move(resource));

101 }

102
103
104 ////// UNLOAD //////

105
106 /* Use unload for special resource management. For general purpose, see description at the

beggining of this file. */

107 template <typename Resource, typename Identifier>

108 void ResourceManager<Resource, Identifier>::unload(Identifier id)

109 {

110 auto found = mResourceMap.find(id);

111 assert(found != (mResourceMap.end()));

112 mResourceMap.erase(found);

113 }

114
115
116 ////// GET //////

117
118 template <typename Resource, typename Identifier>

119 Resource& ResourceManager<Resource, Identifier>::get(Identifier id)

120 {

121 auto found = mResourceMap.find(id);

122 assert(found != mResourceMap.end());

123
124 return *found->second;

125 }

126
127 template <typename Resource, typename Identifier>

128 const Resource& ResourceManager<Resource, Identifier>::get(Identifier id) const

129 {

130 auto found = mResourceMap.find(id);

131 assert(found != mResourceMap.end());

132
133 return *found->second;

134 }

135
136 ////// INSERT //////

137
138 template <typename Resource, typename Identifier>

139 void ResourceManager<Resource, Identifier>::insertResource(Identifier id,

std::unique_ptr<Resource> resource)

140 {

141 // Insert and check success

142 auto inserted = mResourceMap.insert(std::make_pair(id, std::move(resource)));

143 assert(inserted.second);

144 }

145
146 } // namespace xgsd

6.5 PhysicState class

This class defines a basic physics state, with velocity, force and mass. It is needed
by the ComponentRigidBody class and the PhysicsEngine class.

1 // PhysicState.hpp

2
3 #pragma once

4
5 #include <SFML/System/Vector2.hpp>

74

X-GSD Section 6 APPENDIX

6 #include <SFML/Graphics/Transformable.hpp>

7
8 #include <cassert>

9
10 namespace xgsd {

11
12 // Needed struct by ComponentRigidBody and PhysicsEngine classes

13 class PhysicState

14 {

15 // Methods

16 public:

17 PhysicState();// Constructor

18
19 void setVelocity(sf::Vector2f velocity);

20 void setForce(sf::Vector2f force);

21 void setMass(float mass);

22
23 sf::Vector2f getVelocity() const;

24 sf::Vector2f& getVelocityRef();

25 sf::Vector2f getForce() const;

26 float getMass() const;

27
28 // Variables (member / properties)

29 private:

30 sf::Vector2f mVelocity;

31 sf::Vector2f mForce;

32 float mMass;

33 };

34
35 } // namespace xgsd

The implementation:

1 // PhysicState.cpp

2
3 #include <X-GSD/PhysicState.hpp>

4
5 using namespace xgsd;

6
7 // Constructor

8 PhysicState::PhysicState()

9 : mVelocity()

10 , mForce()

11 , mMass(1.f)

12 {

13 }

14
15 void PhysicState::setVelocity(sf::Vector2f velocity)

16 {

17 mVelocity = velocity;

18 }

19
20 sf::Vector2f PhysicState::getVelocity() const

21 {

22 return mVelocity;

23 }

24
25 sf::Vector2f& PhysicState::getVelocityRef()

26 {

27 return mVelocity;

28 }

29
30 void PhysicState::setForce(sf::Vector2f force)

31 {

32 mForce = force;

33 }

34
35 sf::Vector2f PhysicState::getForce() const

36 {

37 return mForce;

38 }

75

Section 6 APPENDIX X-GSD

39
40 void PhysicState::setMass(float mass)

41 {

42 assert(mass > 0);

43 mMass = mass;

44 }

45
46 float PhysicState::getMass() const

47 {

48 return mMass;

49 }

6.6 PhysicsEngine class

This class provide a simple collision detection mechanism based on axis-aligned
bounding boxes intersection, taking advantage of the intersects method of SFML’s
sf::Rect<typename T> class. For more advanced collision detection techniques,
see these two articles: N Tutorial A - Collision Detection and Response[22], N
Tutorial B - Broad-Phase Collision[23].

The integration methods of this class have been implemented with the help of
this Integration Basics article[12].

1 // PhysicsEngine.hpp

2
3 #pragma once

4
5 #include <X-GSD/Time.hpp>

6 #include <X-GSD/PhysicState.hpp>

7 #include <X-GSD/ComponentCollider.hpp>

8
9 #include <SFML/System/Vector2.hpp>

10 #include <SFML/Graphics/Transformable.hpp>

11
12 #include <set>

13
14 namespace xgsd {

15
16 // Needed struct for RK4 method.

17 struct Derivative

18 {

19 sf::Vector2f dp; // dp/dt = velocity

20 sf::Vector2f dv; // dv/dt = acceleration

21 };

22
23 class PhysicsEngine

24 {

25 // Typedefs and enumerations

26 public:

27 typedef std::unique_ptr<PhysicsEngine> Ptr;

28
29 // Methods

30 public:

31 void checkCollisions();

32
33 void addStaticCollider(ComponentCollider* collider);

34 void addDynamicCollider(ComponentCollider* collider);

35 void deleteStaticCollider(ComponentCollider* collider);

36 void deleteDynamicCollider(ComponentCollider* collider);

37
38 private:

39 Derivative static evaluateRK4(const PhysicState& initialPhysics,

40 const sf::Transformable& initialTransf,

41 const HiResDuration& dt,

76

X-GSD Section 6 APPENDIX

42 const Derivative& d);

43
44 sf::Vector2f static accelerationRK4(const PhysicState&

45 physics);

46
47 // Class methods

48 public:

49 void static integrateEuler(PhysicState& physics,

50 PhysicState& lastPhysics,

51 sf::Transformable& transf,

52 sf::Transformable& lastTransf,

53 const HiResDuration& dt);

54
55 void static integrateRK4(PhysicState& physics,

56 PhysicState& lastPhysics,

57 sf::Transformable& transf,

58 sf::Transformable& lastTransf,

59 const HiResDuration& dt);

60
61 // Variables (member / properties)

62 private:

63 std::set<ComponentCollider*> staticColliders; // Colliders whose Entity does not have

a RigidBody

64 std::set<ComponentCollider*> dynamicColliders; // Colliders whose Entity has a

RigidBody

65 };

66
67 } // namespace xgsd

The implementation of the collision detection mechanism is plenty of comments
explaining each step. For better understanding of the integration methods, see the
aforementioned Integration Basics article.

1 // PhysicsEngine.cpp

2
3 #include <X-GSD/PhysicsEngine.hpp>

4
5 #include <SFML/Graphics/Rect.hpp>

6
7 using namespace xgsd;

8
9 // Very basic collision detection algorithm based on axis-aligned bounding boxes intersection

10 void PhysicsEngine::checkCollisions() {

11
12 // Check between dynamic colliders first (entities which have a collider and a rigidBody)

13 for (auto iterD = dynamicColliders.begin(); iterD != dynamicColliders.end(); ++iterD) {

14
15 // If the entity containing this collider is pending of destruction, skip it

16 if ((*iterD)->entity->isDestroyPending())

17 continue;

18
19 sf::FloatRect intersection;

20
21 // Get the global bounds rect of one entity

22 sf::FloatRect rectD =

(*iterD)->entity->getWorldTransform().transformRect((*iterD)->getRectBounds());

23
24 // Check between dynamic colliders (entities which have a collider and a rigidBody)

25 for (auto iterD2 = std::next(iterD); iterD2 != dynamicColliders.end(); ++iterD2) {

26
27 /* The starting point of the iterator is the next item of iterD because dynamic

colliders

28 must check collision between them avoiding repetition (1-2 is the same as 2-1). Also,

29 it avoids self-collision detecton (1-1, 2-2, etc).

30 */

31
32 // If the entity containing this collider is pending of destruction, skip it

33 if ((*iterD2)->entity->isDestroyPending() || (*iterD)->entity->isDestroyPending())

34 continue;

35

77

Section 6 APPENDIX X-GSD

36 // Get the global bounds rect of the other entity

37 sf::FloatRect rectD2 =

(*iterD2)->entity->getWorldTransform().transformRect((*iterD2)->getRectBounds());

38
39 // Check collision with SFML and call collisionHandler of both entities

40 if(rectD.intersects(rectD2, intersection)){

41 (*iterD)->entity->collisionHandler((*iterD2)->entity, intersection);

42 (*iterD2)->entity->collisionHandler((*iterD)->entity, intersection);

43 }

44 }

45
46 // Check between dynamic (entities which have a collider and a rigidBody) and static

colliders (entities which have a collider but no rigidBody)

47 for (auto iterS = staticColliders.begin(); iterS != staticColliders.end(); ++iterS) {

48
49 // If the entity containing this collider is pending of destruction, skip it

50 if ((*iterS)->entity->isDestroyPending() || (*iterD)->entity->isDestroyPending())

51 continue;

52
53 // Get the global bounds rect of the other entity

54 sf::FloatRect rectS =

(*iterS)->entity->getWorldTransform().transformRect((*iterS)->getRectBounds());

55
56 // Check collision with SFML and call collisionHandler of both entities

57 if(rectD.intersects(rectS, intersection)){

58 (*iterD)->entity->collisionHandler((*iterS)->entity, intersection);

59 (*iterS)->entity->collisionHandler((*iterD)->entity, intersection);

60 }

61 }

62 }

63 }

64
65 void PhysicsEngine::addStaticCollider(xgsd::ComponentCollider *collider)

66 {

67 auto inserted = staticColliders.insert(collider);

68 assert(inserted.second);

69 }

70
71 void PhysicsEngine::addDynamicCollider(xgsd::ComponentCollider *collider)

72 {

73 auto inserted = dynamicColliders.insert(collider);

74 assert(inserted.second);

75 }

76
77 void PhysicsEngine::deleteStaticCollider(xgsd::ComponentCollider *collider)

78 {

79 auto found = staticColliders.find(collider);

80 assert(found != staticColliders.end());

81 staticColliders.erase(collider);

82 }

83
84 void PhysicsEngine::deleteDynamicCollider(xgsd::ComponentCollider *collider)

85 {

86 auto found = dynamicColliders.find(collider);

87 assert(found != dynamicColliders.end());

88 dynamicColliders.erase(collider);

89 }

90
91 // Simple integrator. Cheap, but accumulates a lot of error as time advances.

92 void PhysicsEngine::integrateEuler(PhysicState& physics,

93 PhysicState& lastPhysics,

94 sf::Transformable& transf,

95 sf::Transformable& lastTransf,

96 const HiResDuration& dt)

97 {

98 float dtValue = ((float)dt.count()/ONE_SECOND.count());

99
100 // Save last physics state and transformable

101 lastPhysics = physics;

102 lastTransf = transf;

103 transf.setPosition(transf.getPosition() + physics.getVelocity() * dtValue);

104 physics.setVelocity(physics.getVelocity() + (physics.getForce() / physics.getMass()) *

dtValue);

105 }

106

78

X-GSD Section 6 APPENDIX

107 // More accurate than Euler, but a bit more resource-consuming.

108 void PhysicsEngine::integrateRK4(PhysicState& physics,

109 PhysicState& lastPhysics,

110 sf::Transformable& transf,

111 sf::Transformable& lastTransf,

112 const HiResDuration& dt)

113 {

114 float dtValue = ((float)dt.count()/ONE_SECOND.count());

115
116 // Save last physics state and transformable

117 lastPhysics = physics;

118 lastTransf = transf;

119
120 Derivative a,b,c,d;

121 Derivative initial;

122
123 a = evaluateRK4(physics, transf, HiResDuration::zero(), initial);

124 b = evaluateRK4(physics, transf, dt / 2, a);

125 c = evaluateRK4(physics, transf, dt / 2, b);

126 d = evaluateRK4(physics, transf, dt, c);

127
128 sf::Vector2f dpdt = 1.0f / 6.0f *

129 (a.dp + 2.0f * (b.dp + c.dp) + d.dp);

130
131 sf::Vector2f dvdt = 1.0f / 6.0f *

132 (a.dv + 2.0f * (b.dv + c.dv) + d.dv);

133
134 transf.setPosition(transf.getPosition() + dpdt * dtValue);

135 physics.setVelocity(physics.getVelocity() + dvdt * dtValue);

136 }

137
138 // Auxiliar function for RK4 integrator

139 Derivative PhysicsEngine::evaluateRK4(const PhysicState& initialPhysics,

140 const sf::Transformable& initialTransf,

141 const HiResDuration& dt,

142 const Derivative& d)

143 {

144 float dtValue = ((float)dt.count()/ONE_SECOND.count());

145
146 PhysicState physics;

147 sf::Transformable transf;

148 transf.setPosition(initialTransf.getPosition() + d.dp * dtValue); // Add the velocity to

position

149 physics.setVelocity(initialPhysics.getVelocity() + d.dv * dtValue); // Add the acceleration

to velocity

150 physics.setForce(initialPhysics.getForce());

151 physics.setMass(initialPhysics.getMass());

152
153 Derivative output;

154 output.dp = physics.getVelocity();

155 output.dv = accelerationRK4(physics);

156 return output;

157 }

158
159 // Auxiliar function for RK4 integrator

160 sf::Vector2f PhysicsEngine::accelerationRK4(const PhysicState& physics)

161 {

162 return physics.getForce() / physics.getMass();

163 }

79

Section REFERENCES X-GSD

References

[1] Apple Inc. 64-bit and ios 8 requirements for app updates. https://

developer.apple.com/news/?id=12172014b.

[2] Andrés Ruiz Bernabeu. X-gsd github repository. https://github.com/

AndresRuizBernabeu/X-GSD.

[3] Doug Binks, Adam Rutkowski, Matthew Jack, and Juliette Foucaut.
Runtime-compiled c++. http://runtimecompiledcplusplus.blogspot.

co.uk/.

[4] Blender Foundation. Blender. http://www.blender.org.

[5] Neil Butterworth. C++ debug macros. https://latedev.wordpress.com/

2012/08/09/c-debug-macros/.

[6] Cocos2d-x.org. Cocos2d-x. http://www.cocos2d-x.org/products#

cocos2dx.

[7] Crytek GmbH. Cryengine. http://cryengine.com/features.

[8] Beman Dawes and Rene Rivera. Boost filesystem library. http://www.boost.
org/doc/libs/1_36_0/libs/filesystem/doc/index.htm.

[9] Epic Games Inc. Unreal engine. https://www.unrealengine.com/

what-is-unreal-engine-4.

[10] Glenn Fiedler. Fix your timestep! http://gafferongames.com/

game-physics/fix-your-timestep/.

[11] Glenn Fiedler. Gaffer on games. http://gafferongames.com/.

[12] Glenn Fiedler. Integration basics. http://gafferongames.com/

game-physics/integration-basics/.

[13] GitHub Inc. Github · build software better, together. https://github.com/,
February 2008.

[14] Laurent Gomila. Github of the SFML game development
book, resourceholder class. https://github.com/LaurentGomila/

SFML-Game-Development-Book/blob/master/02_Resources/Include/

Book/ResourceHolder.hpp.

[15] Laurent Gomila. Github of the SFML game development book, sce-
nenode class. https://github.com/SFML/SFML-Game-Development-Book/

blob/master/03_World/Include/Book/SceneNode.hpp.

[16] Laurent Gomila. SFML. http://www.sfml-dev.org/learn.php.

[17] Laurent Gomila. SFML github wiki. https://github.com/LaurentGomila/
SFML/wiki.

[18] Jan Haller, Henrik Vogelius Hansson, and Artur Moreira. SFML Game De-
velopment. Packt Publishing, June 2013.

80

https://developer.apple.com/news/?id=12172014b
https://developer.apple.com/news/?id=12172014b
https://github.com/AndresRuizBernabeu/X-GSD
https://github.com/AndresRuizBernabeu/X-GSD
http://runtimecompiledcplusplus.blogspot.co.uk/
http://runtimecompiledcplusplus.blogspot.co.uk/
http://www.blender.org
https://latedev.wordpress.com/2012/08/09/c-debug-macros/
https://latedev.wordpress.com/2012/08/09/c-debug-macros/
http://www.cocos2d-x.org/products#cocos2dx
http://www.cocos2d-x.org/products#cocos2dx
http://cryengine.com/features
http://www.boost.org/doc/libs/1_36_0/libs/filesystem/doc/index.htm
http://www.boost.org/doc/libs/1_36_0/libs/filesystem/doc/index.htm
https://www.unrealengine.com/what-is-unreal-engine-4
https://www.unrealengine.com/what-is-unreal-engine-4
http://gafferongames.com/game-physics/fix-your-timestep/
http://gafferongames.com/game-physics/fix-your-timestep/
http://gafferongames.com/
http://gafferongames.com/game-physics/integration-basics/
http://gafferongames.com/game-physics/integration-basics/
https://github.com/
https://github.com/LaurentGomila/SFML-Game-Development-Book/blob/master/02_Resources/Include/Book/ResourceHolder.hpp
https://github.com/LaurentGomila/SFML-Game-Development-Book/blob/master/02_Resources/Include/Book/ResourceHolder.hpp
https://github.com/LaurentGomila/SFML-Game-Development-Book/blob/master/02_Resources/Include/Book/ResourceHolder.hpp
https://github.com/SFML/SFML-Game-Development-Book/blob/master/03_World/Include/Book/SceneNode.hpp
https://github.com/SFML/SFML-Game-Development-Book/blob/master/03_World/Include/Book/SceneNode.hpp
http://www.sfml-dev.org/learn.php
https://github.com/LaurentGomila/SFML/wiki
https://github.com/LaurentGomila/SFML/wiki

X-GSD Section REFERENCES

[19] json.org. Introducing json. http://www.json.org.

[20] LangPop. Programming language popularity. http://langpop.com/.

[21] Baptiste Lepilleur. Jsoncpp. https://github.com/open-source-parsers/

jsoncpp.

[22] Metanet Software. N tutorial a - collision detection and response. http:

//www.metanetsoftware.com/technique/tutorialA.html.

[23] Metanet Software. N tutorial b - broad-phase collision. http://www.

metanetsoftware.com/technique/tutorialB.html.

[24] Sean Middleditch. Dangers of std::shared ptr. http://seanmiddleditch.

com/dangers-of-stdshared_ptr/.

[25] Robert Nystrom. Game Programming Patterns. Genever Benning; 1 edition,
November 2014.

[26] Robert Nystrom. Game programming patterns. http://

gameprogrammingpatterns.com/, 2014.

[27] Robert Nystrom. Game programming patterns. singleton. http://

gameprogrammingpatterns.com/singleton.html, 2014.

[28] Günter Obiltschnig. Poco class sharedlibrary. http://pocoproject.org/

docs/Poco.SharedLibrary.html.

[29] Okam Studio. Godot game engine. http://www.godotengine.org/.

[30] Photon Storm Ltd. Phaser. http://phaser.io.

[31] Stefan Reinalter. Schema-based entity-component data for fast itera-
tion times. https://molecularmusings.wordpress.com/2014/02/21/

schema-based-entity-component-data-for-fast-iteration-times/

#more-484.

[32] Stefan Reinalter. Using runtime-compiled c++ code as a scripting language:
under the hood. https://molecularmusings.wordpress.com/2014/05/10/
using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/

#more-487.

[33] Stefan Schindler. Optank development. http://www.optank.org/

game-development-design/.

[34] Scirra Ltd. Construct 2. https://www.scirra.com/construct2.

[35] ShiVa Technologies SAS. Shiva. http://www.shivaengine.com/.

[36] Bjarne Stroustrup. A Tour of C++ (C++ in Depth Series). Addison Wesley,
September 2013.

[37] UBM TechWeb. Gamasutra - the art & business of making games. http:

//www.gamasutra.com/, 1997.

[38] Unity Technologies. Unity. http://unity3d.com/unity.

81

http://www.json.org
http://langpop.com/
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
http://www.metanetsoftware.com/technique/tutorialA.html
http://www.metanetsoftware.com/technique/tutorialA.html
http://www.metanetsoftware.com/technique/tutorialB.html
http://www.metanetsoftware.com/technique/tutorialB.html
http://seanmiddleditch.com/dangers-of-stdshared_ptr/
http://seanmiddleditch.com/dangers-of-stdshared_ptr/
http://gameprogrammingpatterns.com/
http://gameprogrammingpatterns.com/
http://gameprogrammingpatterns.com/singleton.html
http://gameprogrammingpatterns.com/singleton.html
http://pocoproject.org/docs/Poco.SharedLibrary.html
http://pocoproject.org/docs/Poco.SharedLibrary.html
http://www.godotengine.org/
http://phaser.io
https://molecularmusings.wordpress.com/2014/02/21/schema-based-entity-component-data-for-fast-iteration-times/#more-484
https://molecularmusings.wordpress.com/2014/02/21/schema-based-entity-component-data-for-fast-iteration-times/#more-484
https://molecularmusings.wordpress.com/2014/02/21/schema-based-entity-component-data-for-fast-iteration-times/#more-484
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/#more-487
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/#more-487
https://molecularmusings.wordpress.com/2014/05/10/using-runtime-compiled-c-code-as-a-scripting-language-under-the-hood/#more-487
http://www.optank.org/game-development-design/
http://www.optank.org/game-development-design/
https://www.scirra.com/construct2
http://www.shivaengine.com/
http://www.gamasutra.com/
http://www.gamasutra.com/
http://unity3d.com/unity

Section REFERENCES X-GSD

[39] Wikipedia. List of unreal engine games. http://en.wikipedia.org/wiki/

List_of_Unreal_Engine_games.

[40] YoYo Games Ltd. Gamemaker: Studio. https://www.yoyogames.com/

studio.

82

http://en.wikipedia.org/wiki/List_of_Unreal_Engine_games
http://en.wikipedia.org/wiki/List_of_Unreal_Engine_games
https://www.yoyogames.com/studio
https://www.yoyogames.com/studio

	Abbreviations and Symbols
	Introduction
	Previous research
	Bibliographic review
	State of the art

	Objectives

	Methodology
	Cross-platform targeting
	Data-driven engine
	Free software and open-source
	Example game

	Development
	Game class
	Interface review
	The Game Loop
	Basic fixed delta time
	Variable delta time
	Semi fixed delta time
	Fixed delta time with variable rendering frame rate
	The game's entry point

	Scenes, the scene graph and its nodes
	Scene class
	SceneGraphNode class

	Entity-Component system
	Entity class
	Component class
	ComponentSprite
	ComponentRigidBody
	ComponentCollider
	Controllers: User-defined Components

	Example game

	Conclusion
	Improvement proposals
	Appendix
	Debug utils
	Time utils
	Event wrapper class and CustomEvent
	ResourceManager class
	PhysicState class
	PhysicsEngine class

