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Supervised by : Dr. D. Juan José Ródenas Garćıa
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Abstract

The Department of Mechanical and Materials Engineering has developed a 2D

Finite Element code based on geometry independent Cartesian grids (cgFEM)

capable of solving shape optimization problems as well as making patient-

specific analyses using medical images. A similar code in 3D (FEAVox) is

currently under development. Both codes are implemented in MATLABr, a

simple and intuitive programming language but with a higher computational

cost than compiled languages such as C++ or FORTRAN.

The objective of this Thesis is to develop programming procedures to improve

the performance of the existing and the currently under development software.

Among other optimization techniques this Thesis will focus on the use of

Graphics Processing Units (GPU) for high performance computing.

The use of these techniques has led to a software that, despite being imple-

mented with MATLABr, improves the computational efficiency of commercial

software which is developed using compiled programming languages.

I





Resumen

El Departamento de Ingenieŕıa Mecánica y de Materiales ha desarrollado un

código de Elementos Finitos 2D basado en mallados Cartesianos independi-

entes de la geometŕıa (cgFEM) capaz de resolver problemas de optimización

topológica y de realizar análisis espećıficos de paciente a partir de imágenes

médicas. Se está desarrollando actualmente un código similar 3D (FEAVox).

Ambos códigos están implementados en MATLABr, un lenguaje de progra-

mación sencillo e intuitivo pero menos eficiente computacionalmente que otros

lenguajes compilados como C++ o FORTRAN.

El objetivo de este Trabajo Fin de Máster es desarrollar procedimientos de

programación que permitan aumentar el rendimiento computacional del soft-

ware que ha sido o está siendo desarrollado en el Departamento. De entre las

técnicas de optimización disponibles, se hará hincapié en el uso de tarjetas

gráficas (GPU) como medio de computación de alto rendimiento.

La utilización de estas técnicas ha permitido obtener un software de EF que,

pese a estar implementado en MATLABr, mejora el rendimiento computa-

cional de software comercial desarrollado con lenguajes de programación com-

pilados.
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Resum

El Departament d’Enginyeria Mecànica i de Materials ha desenvolupat un

codi d’Elements Finits 2D basat en mallats Cartesians independents de la ge-

ometria (cgFEM) capaç de resoldre problemes d’optimització topològica i de

realitzar anàlisis espećıfics de pacient a partir d’imatges mèdiques. Actual-

ment s’està treballant en un codi similar 3D (FEAVox). Ambdós codis estan

implementats en MATLABr, un llenguatge de programació senzill i intuitiu

però menys eficient computacionalment que altres llenguatges compil·lats com
C++ o FORTRAN.

Aquest Treball Fi de Màster té com a objectiu desenvolupar procediments

de programació que permeten millorar el rendiment computacional del soft-

ware que ha sigut o està sent desenvolupat al Departament. De les tècniques

d’optimització disponibles, aquest Treball es centrarà en l’utilització de tar-

getes gràfiques (GPU) com a mitjà de computació d’alt rendiment.

L’ús d’aquestes tècniques ha permés obtindre un software d’EF que, a pesar

d’estar implementat en MATLABr, millora el rendiment computacional del

software comercial elaborat amb llenguatges de programació compil·lats.
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Chapter 1

Introduction

The Finite Element Method (FEM) has become an important tool for the in-

dustry. Nowadays less prototypes have to be manufactured while launching a

new product because multiple simulation tools are available for designers. For

example, with the combination between optimization algorithms with FEM it

is possible to achieve an optimal shape of a component under given boundary

conditions. This means reducing the amount of material employed in manu-

facturing the component, and the corresponding product cost reduction.

FEM is also starting to be applied in scientific fields that are not related to

the classical manufacturing industries, like medical science. For example, sur-

gical teaching paradigm is undergoing a major change with the appearance of

surgery simulators. While years ago surgeon students learned how operate on

patients by the “watch and learn” paradigm, nowadays they can try to operate

on a simulator without compromising a real patient’s health. FEM analysis

can be performed in these simulators in order to give a physical feedback

through a joystick.
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1. Introduction

However, the main difficulty to overcome in all these cases is the high computa-

tional cost of the numerical analysis. Even with High Performance Computing

(HPC) workstations some analyses with a huge amount of degrees of freedom

(DOFs) can take hours to be solved. In other cases, like real time simulations,

the available time to solve each problem is not enough to reach a sufficiently

accurate solution.

1.1 cgFEM

As FEM provides the industry with several benefits, a lot of resources have

been invested in order to improve all aspects of the FEM, and specially those

regarding computational cost. Following this research line, the approach made

by the Department of Mechanical and Material Engineering of the Universitat

Politécnica de Valencia has been exploring the possibilities and limits of geome-

try independent Cartesian grids, developing a 2D FEM code called cgFEM [9],

[7].

The FE mesh is usually constructed in 2D by the division of the real domain

into a group of linear or curved, triangular and/or quadrilateral subdomains

that have no overlapping between them. cgFEM instead uses two different

meshes (Fig. 1.1). The mesh used for the FEM approximation is called the

approximation mesh. The only requirement of this mesh is that it has to cover

all the problem’s domain (Fig. 1.1a). The second one is called the integration

mesh. All the numerical integrations are performed on this mesh. The inte-

gration mesh is created by dividing the elements of the approximation mesh

that are intersected by the domain into integration subdomains. A Delau-

nay triangulation is performed using the internal nodes and some intersection

points of the boundary (Fig. 1.1b and 1.1c). Then, cgFEM implicitly takes

2 José Manuel Navarro Jiménez



1.1. cgFEM

into account the geometry of the problem’s domain through the numerical

integration process.

(a) Approximation mesh. (b) Integration mesh.

(c) Detail of the integration mesh.

Figure 1.1: Different meshes used in cgFEM.

Internal elements, those fully located in the interior of the domain, are treated

as standard FEM elements, whose integrals are evaluated using a Gauss quadra-

Optimization of a FEM code. Usage of GPUs in parallel computing. 3



1. Introduction

ture for quadrilaterals common for all elements. Boundary elements are in-

tegrated using a triangle Gauss quadrature in all of the subdomains created

with the Delaunay triangulation, as shown in Figure 1.2.

t
1

t
2

t
3

t
4

Figure 1.2: Integration subdomain generation.

cgFEM uses a set of Cartesian grids hierarchically structured that allows for

a great computational cost reduction. Each mesh is composed by regular

quadrilaterals. The 0-level mesh includes one single element that covers the

whole calculation domain. Next levels are created by splitting the previous

level elements into 4 new elements. Therefore, level 1 will have 4 elements,

level 2 will have 16 elements, and so forth. Generally, the n-level mesh will

have 22n elements. Due to the hierarchical structure of the Cartesian grid, it

is trivial to calculate geometrical properties of each element like coordinates,

topology or size. Then, it is not mandatory to store all this information, thus

allowing for a considerable reduction of RAM memory usage.

Figure 1.3 shows an example of the hierarchical mesh structure in cgFEM.

The calculation domain is initially superimposed on the Cartesian grid pile

(Fig. 1.3a). Then the approximation mesh that cgFEM will use for solving

4 José Manuel Navarro Jiménez



1.1. cgFEM

(a) Cartesian grid pile.

ki j

(b) Analysis mesh. ◦ nodes with multi-
point constrais for C0 continuity.

Figure 1.3: Difference between the Cartesian grids pile and the analysis mesh.

the problem is a combination of elements from each of the Cartesian grid

levels so that the final mesh (also known as calculation mesh) includes the

whole calculation domain without overlapping elements (Fig. 1.3b).

All analyses start with a uniform mesh. There are three different refinement

options available in cgFEM. The first option is a geometrical refinement that

adapts the mesh depending on the domain’s curvature. There is also a h-

adaptive refinement based on the numerical solution’s precision in each part

of the domain evaluated by means of error estimation techniques. The last

option is onlyfor the analysis of a medical image. The refinement is then

performed based on statistical values related to the gray-level distribution of

the image’s pixels within each element [2].

It is worth to highlight that when different Cartesian grids are combined, there

are some nodes belonging to the smaller elements that are located on the side

Optimization of a FEM code. Usage of GPUs in parallel computing. 5



1. Introduction

of other bigger element (see Fig. 1.3b). These nodes are called hanging nodes.

In order to ensure C0 continuity along these sides, a relation between hanging

nodes’ displacements and displacements of the nodes located on the same

side of the adjacent element has to be added to the equation system. These

constraining equations are called Multi-Point Constrains (MPC), thus, this

hanging nodes are also called MPC nodes.

cgFEM has been used by the research group in the Department as the basic

FEM code for developing new features like a displacement-based error esti-

mator (SPR-CD, [7]), an error estimator based on quantities of interest [8]

or a new efficient nested solver [11]. cgFEM is also able to directly create

FEM models using medical images and mix them with geometrical entities

that simulate surgical implants [2], [12].

According to [1], a study at Sandia National Laboratories (USA) revealed that

the generation of the finite element numerical model, this is, creating a geome-

try suitable for a FEM analysis and generating a proper calculation mesh, uses

80% of the total time spent on the analysis, whereas only 20% is devoted to

the numerical analysis. The Cartesian elements together with the hierarchical

structure make cgFEM a highly efficient methodology in terms of computa-

tional cost, as generating h-adapted meshes even for complex geometries is a

simple task in this case.

1.2 FEAVox

A 2D FEM program is of little use for industrial applications, as almost all real

problems are 3D problems. Therefore, after several years acquiring experience

and knowledge developing the 2D code cgFEM, the Department has decided

to take the next step by implementing a new FEM code in 3D named FEAVox.

6 José Manuel Navarro Jiménez



1.2. FEAVox

The aim is to use all this know-how to implement in 3D all the features existing

in cgFEM.

It is thought that the computational cost of the analysis made in cgFEM can

be reduced by optimizing the code. As the chosen programming language,

MATLABr, is not a compiled language, one trivial optimization decision could

be translating all the code to a compiled language such as C or C++. How-

ever, this change is not likely to happen in the short term due to two main

reasons. First, MATLABr is an excellent programming language for the fast

implementation of new algorithms. There are plenty of very efficient high level

tools for numerical analysis that allows the programmer to concentrate in the

algorithm itself rather than in the coding formalisms of other programming

languages. Second, most of the students that helped in the development of

cgFEM have a good background in mechanical engineering, extremely useful

for the development of the code, but a very limited experience on C, C++ or

FORTRAN.

In this Thesis, MATLABr special features for code performance improvement

are studied and then applied to cgFEM code. Among all optimization tech-

niques available it is worth to outline the usage of Graphics Processing Units

(GPU) for parallel computation, as it is a relatively new technique with lots

of possibilities in the field of numerical computation.

The research made in this Thesis is intended to provide the Department with

the technical know-how on GPU computing as well as other optimization pro-

cedures for MATLABr programming language. As the new 3D code imple-

mentation is currently in progress, the conclusions obtained in this Thesis will

set the programming basis for an optimal implementation of FEAVox in terms

of computational cost.

Optimization of a FEM code. Usage of GPUs in parallel computing. 7





Chapter 2

Optimizing code using

MATLABr

The performance enhancement can be achieved by acting on different lev-

els. All computer applications have two main areas in which one can make

modifications, hardware and software. It is trivial that an upgrade on the

workstation’s components can produce a performance improvement. A faster

CPU provides faster calculations and more RAM memory allows to perform

bigger analysis in terms of DOF avoiding the use of the hard disk drive.

The first improvement regarding the software is the programming language.

MATLABr language needs no compiler, as it works as an interpreted language.

This is, each time a code line is executed, MATLABr “translates” the line into

machine code and then the instruction is executed. This particular feature of

interpreted languages make them slower than other compiled codes like C,

C++ or FORTRAN, specially when programs grow bigger and more complex.

For this reason, MATLABr is often used to create simple programs that solve
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2. Optimizing code using MATLABr

small problems, and when it comes to High Performance Computing (HPC)

compiled programming languages like C++ are used.

As said in the MathWorksr overview web page [4], “MATLABr is a high-level

language and interactive environment for numerical computation, visualiza-

tion, and programming.”. MATLABr is able to deal with matrices and arrays

and operate with them in a highly effective way (actually the name stands for

Matrix Laboratory). This feature makes this language very suitable for nu-

merical computation. Actually, the usage of MATLABr is widespread among

diverse engineering and science fields such as mechanical engineering, biology,

signal and image processing, control systems and so on.

Despite having that handicap in comparison with complied languages, users

can reach a reasonable performance of MATLABr code by taking advantage

of the special features like high efficiency in handling arrays and parallel com-

putation. In this chapter a series of techniques and optimization procedures

are given in order to improve any MATLABr-based program’s performance.

It is worth to outline that the first way to improve the efficiency of a com-

puter program should be changing the main “philosophy” on which the code

is based. For example, the usage of Cartesian grids in FEM represents an

important philosophy change with respect to the classical FEM implementa-

tion. This different point of view led to the construction of a highly effective

data structure that provides with multiple possibilities to enhance the code’s

performance.

After the programming language and the main “philosophy” are established

it is important to check if the algorithms used to accomplish the function’s

objectives are optimal or could be improved. This will be explained in section

2.1. Once the proper algorithm is selected it is time to take advantage of the

chosen programming language. In this case, the benefits of “vectorizing” with

10 José Manuel Navarro Jiménez



2.1. Algorithm change

MATLABr are explained in section 2.2. The last optimizing technique that

this Thesis covers is a mix between a hardware and a software improvement,

this is, the usage of GPU for parallel computation. Finally, section 2.4 shows

a basic example comparing all optimization techniques.

2.1 Algorithm change

Usually when working with big complex programs it is not trivial to find an

algorithm that fits current function’s purpose. In addition, it is very common

that the first algorithm designed is inefficient, so it has to be improved in a

second step. And even when the algorithm has been optimized one could still

find a different algorithm that could be much more efficient than the first one.

An example of algorithm change that leads to a considerable performance im-

provement is shown in [10]. The first objective of that project was to improve

the refinement routine of cgFEM, as it was the most important bottleneck in

the program (the refinement process consumed up to 85% of the whole com-

putation time in some large problems).

The old refinement procedure is shown in Algorithm 2.1.1. The input variable,

SubN, contains the number of all the elements to refine and the number of times

that it has to be split. Split2D algorithm only splits one element at a time,

so the algorithm has to be run each time for each element times the number

of times to be split.

Optimization of a FEM code. Usage of GPUs in parallel computing. 11



2. Optimizing code using MATLABr

Algorithm 2.1.1: Split2D(Element)

Active←Active elements in the calculation mesh

Neighb←neighbors of Element of the same mesh level

Parent←parent elements of Neighb

Step 1: Check if active neighbors of Element must be refined

for iSide← 1 to 4

do



if ∃Neighb[iSide]

then


iNeighb← Neighb[iSide]

if (Active[iNeighb] = false )

and (Active[Parent[iNeighb]] = true )

then Split2D(Parent[iNeighb])

Step 2: Split current Element and activate new elements

Children←Children elements of Element

Active[Element]← false

for i← 1 to 4

do Active[Children[i]]← true

∗This algorithm is executed once for each element and refinement level

The main disadvantage of this algorithm was the recursive structure that it

had to check if neighbor elements of the element to refine had to be also refined

in order to obtain a suitable mesh. Also the splitting task was a sequential

process for all elements, dramatically increasing the computation time for fine

meshes. Moreover, cgFEM only stored the information of neighbor elements

in the hierarchical structured meshes, so to find which were the neighbor ele-

ments of a given one in the calculation mesh several calls to sparse matrices

and logical conditions were used. Although MATLABr sparse matrices have

12 José Manuel Navarro Jiménez



2.1. Algorithm change

several features to enhance memory saving and accelerate some matrix oper-

ations, reading a single value of a big sparse matrix is likely to be slow.

The new algorithm proposed as solution for the problem consisted of two main

blocks. The first block obtained the mesh neighbor elements of any set of ac-

tive elements in an efficient way. This function is called FindRealNeighbors.

Figure 2.1 shows all possible neighbors of a given element and the chosen ar-

bitrary numeration of them.

(a) Linear element (b) Quadratic element

Figure 2.1: Relative position between an element and its neighbors in the mesh.

It can be noticed that there are up to two possible neighbors at each side of

the element. This is because the level difference of two contiguous elements is

forced to be not greater than one, and it will be the only requirement to refine

an element. The initial mesh in cgFEM is composed by elements of uniform

size. As the refinement routine will enforce this maximum level difference, all

the following meshes will have it too. Also it is remarkable to say that if a

neighbor element is greater than the given one, it should occupy two neighbor

positions in the neighbor’s vector.

Optimization of a FEM code. Usage of GPUs in parallel computing. 13



2. Optimizing code using MATLABr

cgFEM includes a function that returns all the elements attached to a node of

the calculation mesh, i.e., nodal connectivity. The indexation of the elements

is shown in Figure 2.2. Getting the nodal connectivity of all the element’s

nodes and mixing both indexations in Figures 2.1 & 2.2 we can obtain a re-

lationship between neighbor position and value in nodal connectivity (Table

2.1), then gathering and reordering the information in nodal connectivity the

neighbor elements vector is obtained.

1 2

34

1 2

34

1 2

34

1 2

34

N1 N2

N3

N4

N5N6

N7

N8

Nodal Connectivity

Element

Neighbor position

Figure 2.2: Nodal connectivity and neighbor indexation.

Neighbor position 1 2 3 4 5 6 7 8

Vertex node 1 2 2 3 3 4 4 1

Nodal connectivity 2 1 3 2 4 3 1 4

Table 2.1: Relationship between neighbor element and nodal connectivity index.

The second block of the new algorithm performs the refinement of the mesh.

The input to this function is the same as the old routine, SubN. In order to

provide a better understanding of the new refinement procedure, Figure 2.3

contains a graphical example of a random mesh refinement process.

14 José Manuel Navarro Jiménez



2.1. Algorithm change

(a) Initial mesh and required re-
finement. Each iteration refines
the mesh one level.

(b) First refinement, only one
level. Dark gray element has to
be refined as well.

(c) The mesh requirement is ful-
filled. Elements with 1 are split.

(d) Second iteration. Dark gray
elements have to be refined as well.

(e) The mesh requirement is ful-
filled. Elements with 1 are split.

(f) Final mesh. Only two itera-
tions were needed.

Figure 2.3: Mesh refinement example

Optimization of a FEM code. Usage of GPUs in parallel computing. 15



2. Optimizing code using MATLABr

As each element contained in SubN might need a different number of refine-

ments (Figure 2.3a), the new refinement algorithm will be performed in an

iterative loop. Each iteration will refine all elements that need to be split at

least once, together with all neighbor elements that must be split as well in

order to fulfill the mesh level requirement (Figures 2.3b & 2.3c). After that,

SubN vector is updated (Figure 2.3d) and the algorithm is executed again

(Figure 2.3e) until there are no elements remaining in SubN, so the mesh is

successfully refined (Figure 2.3f). The algorithm used to refine the mesh each

iteration is shown in Algorithm 2.1.2.

Algorithm 2.1.2: CreateNewMesh(Elements)

Active←Active elements in the calculation mesh
Neighb← FindRealNeighbors(Elements)
Finish← false

Step 1: Add all additional elements that need refinement
while Finish = false

do



Level←Level of Elements
NeighbLevel←Level of Neighb
NewElements←Neighbor elements where NeighbLevel < Level
if NewElements is not empty

then


NewNeighb← FindRealNeighbors(NewElements)
Elements← Elements ∪NewElements
Neighb← Neigb ∪NewNeighb

else Finish← true

Step 2: Split current Elements and activate new elements
Children←Children elements of Elements
Active[Elements]← false
Active[Children]← true

∗This algorithm is executed only once for each refinement level

16 José Manuel Navarro Jiménez



2.1. Algorithm change

It is very important to outline that the new algorithm is only executed as

many times as the maximum number of refinements of all elements in SubN.

This number is usually between 1 and 5, depending on the refinement param-

eters, and is independent of the number of elements to refine. That feature

makes this algorithm much more suitable for fine meshes than the older one,

because the increase in the number of elements to refine only affects the size

of the vectors, but the number of operations remains the same. Therefore, the

computational cost increase is negligible.

A model of a hollow cylinder under internal pressure shown in Figure 4.1 was

used as a toy problem in order to compare refinement performance by means

of computation time:

Figure 2.4: Hollow cylinder under internal pressure model.

Optimization of a FEM code. Usage of GPUs in parallel computing. 17



2. Optimizing code using MATLABr

An h-adaptive procedure was performed with both linear and quadratic el-

ements in order to reach fine meshes. Finest meshes reached 3.75 and 3.45

million of degrees of freedom respectively for linear and quadratic cases. The

results are shown in Figure 2.5. It is clear that the computational cost has

been drastically reduced, specially in the linear case.

Figure 2.5: Performance test of the new refinement routine.

2.2 Vectorization

As it has been said before, MATLABr is able to deal with matrices and arrays

and operate with them in a highly effective way. This statement involves

not only typical mathematical operations like additions, multiplications or

evaluation of trigonometric functions, but also the reading and writing of

elements inside an array or a matrix.
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2.2. Vectorization

For example, let A be a random n ×m matrix. The standard procedure to

read an entire column of that matrix in C should be a for loop through all

the rows of the desired column. However, MATLABr has the colon opera-

tor (:) so you can read an entire column of a given matrix by just typing

A[:,Column]. Also if you want to read several columns you can substitute

the number in the Column variable for an array with all the columns wanted.

This particular way of accessing elements in an array is called Matrix Indexing.

Further information about different types of matrix indexing can be found in

MATLABr Documentation Center [4].

By changing the code above to read matrix data we are vectorizing the code.

Quoting [4]: “The process of revising loop-based, scalar-oriented code to use

MATLABr matrix and vector operations is called vectorization”. Some of the

main benefits of vectorizing are the code becoming easier to understand, as it

is shorter, as well as the fact that vectorized code in MATLABr language is

frequently faster than a code with loops.

Vectorizing is not only an improvement technique but a whole programming

philosophy while coding in MATLABr language. This means that it is needed

a change of mind for a programmer that starts using this language in order to

reach high code performance, but after that learning process vectorizing should

be like one more rule to follow while programming, like the language’s syn-

tax rules. The following sections explain different ways of vectorization with

general examples in order to have a better understanding of this technique.

2.2.1 Modify some values of an array.

Taking a look again at the second step of algorithms 2.1.1 & 2.1.2 the only

difference is that there is no for loop in the new algorithm. This is because
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the operation of writing the value 1 on multiple positions of the vector Active

can be done in one single step by using matrix indexation. Also remember that

the old algorithm worked for a unique element and one split at a time, while

the new algorithm splits once all elements that require refinement. Thus, the

variable Elements is not an scalar but an array, so the same matrix indexation

is performed.

2.2.2 Transform scalar operations’ loop into array operations.

Here some general examples are presented in order to give a full sight of

vectorization possibilities regarding scalar operations. Chapter 3 will show

more practical examples, taking into account both Finite Element Method

and cgFEM code distinctive features.

Parallel dot product of arrays The first and easiest way of vectorizing

scalar operations can be found in the dot product of an array. Let a,b be

random vectors with the same number of components. The resulting dot

product of these two vectors (vector c) fulfills ci = ai × bi. This can be

easily performed by using MATLABr’s array operations, this is, introducing a

period (.) before the operators ∗, / or ∧. In this example, the code should be

something like c=a.*b. The only requirement to perform these array operation

is that both arrays must have the same dimensions. This means that a and b

can be N−dimension matrices. The resulting variable will be of the dimension

and size of a and b.

Scalar operations between arrays with different dimensions This

is another common situation when performing numerical computations. For
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example, let {x1,x2...xn} be column vectors with the same number of compo-

nents, and {λ1, λ2...λn} different scalars. Finally, let {y1,y2...yn} be vectors

resulting from the following operation:

yi = xiλi i = 1, 2, ...n (2.1)

This operation should be performed with a loop through all vectors, but there

is a faster way to achieve the same results, specially if the number of elements

grows higher. The first step is to concatenate all vectors and scalars in order

to apply vectorization:

Y = [y1,y2...yn] X = [x1,x2...xn] λ = [λ1, λ2...λn] (2.2)

In this case an array operation would not work since both arrays X and λ have

different number of dimensions, but there is a MATLABr built-in function that

can solve this problem, bsxfun. This function performs array operations be-

tween different size matrices provided that only one dimension has a different

size. The syntax to perform this operation should be Y=bsxfun(@times,X,λ).

It can be noticed that when using bsxfun the desired element-wise operation

must be introduced as a function handle, that has to be a MATLABr built-in

function. A list of the available functions is shown in Table 2.2. To perform

more complex, element-wise operations between arrays we can use arrayfun.

This function acts like bsxfun but it works with any function handle that

contains a set of scalar operations (like a series of sums and multiplications).
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@plus @atan2d

@minus @hypot

@times @eq

@rdivide @ne

@ldivide @lt

@power @le

@max @gt

@min @ge

@rem @and

@mod @or

@atan2 @xor

Table 2.2: MATLABr built-in functions available for bsxfun, [4]

Matrix-vector multiplications The last vectorization case concerns mul-

tiplications between a common matrix and different vectors. This situation

occurs often in FEM as it will be explained in Chapter 3. Take for example

the relationship between stress and strain by means of the elasticity theory in

the linear elasticity case:

σ = D (ϵ− ϵ0) + σ0 (2.3)

where:

ϵ = {ϵx ϵy ϵz γxy γyz γzx}T : strain field.

D: material properties matrix.

ϵ0,σ0: initial strain and stress.

if initial strain and stress are not considered, assuming that the strain is al-

ready calculated at all points, the stress calculation at each point p becomes

a simple multiplication:

σp = Dpϵp (2.4)
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This operation would be normally worked out with a loop through points per-

forming that multiplication. However, one can code a for loop for the different

materials (different mechanical properties, means different D matrices). The

number of materials is always much lower than the number of points and the

for loop will result in a much better performance in terms of computation

time.

As in the previous example, the first step is to concatenate arrays in order to

perform the vectorization. The stress of all points with the common material

i is calculated as follows:

σi = [σp1

i , ...,σpn

i ] ϵi = [ϵp1

i , ..., ϵpn

i ]

σi = Diϵi i = 1, ..., NMaterials

(2.5)

where σi contains the stress evaluated at all points that have material i prop-

erties.

Resolution of multiple systems of equations The previous procedure

can be applied when it comes to solving linear systems of equations that have a

common coefficient matrix. This occurs when solving the FE equation system

with multiple load cases and some other cases explained in Chapter 3. The

vectorized FE equation system considering all load cases has exactly the same

shape of the original, this is:

KU = F (2.6)
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However, in this case F is not a vector but a matrix that contains each dif-

ferent load case in each column. MATLABr’s solving command (\) has a

better performance solving this “vectorized equation system” than if all dif-

ferent equation systems were solved in a for loop where each iteration had a

different load case. It is easy to understand why it is more efficient vectorizing

equation systems: when the system is vectorized the coefficient matrix has to

be factorized only once, while an inverse substitution is performed for each

load case. It is widely known that factorizing the coefficient matrix is the

hardest step while solving an equation system in terms of computational cost,

specially when equation systems have a high amount of variables, so reducing

the number of times the matrix has to be factorized becomes in a reduction

of computing time.

2.3 Parallel computation through GPU

2.3.1 General-Purpose Graphics Processing Unit

At present, Graphics Processing Units (GPUs) are used not only for graphi-

cal rendering, but also as a co-processing device for massive computations in

different fields such as mechanical computation, medical imaging or financial

analysis. This new generation of devices are called General-purpose GPU, or

GPGPU.

Almost all personal computers are provided with a GPU. These devices were

originally created for 3D rendering, specially for video-games. As the gaming

industry grew up, graphic rendering became more complex and there was a

huge development in GPUs. In order to achieve more complex visual effects,
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the first application programming interfaces (APIs) for GPUs, like OpenGL

or Direct3D (inside DirectX), were deployed. However, these APIs were still

graphics-oriented, and it was very hard for programmers to develop software

for general-purpose computations.

NVIDIAr was the first company that introduced a specific technology for

General-purpose computing with GPUs, it is called CUDA (compute unified

device architecture). CUDA was originally designed to work in C language,

but currently there are other programming languages that allow GPU com-

puting through NVIDIAr CUDA, such as C++ or MATLABr. The main

competitor in GPU sector, AMD (former ATI), also developed a lower level

API for GPUPU called Stream SDK. This API was not successful at all and

finally AMD opted joining the open source project OpenCL. NVIDIAr GPUs

can also work with OpenCL, but a comparison made in paper [5] shows that

CUDA is slightly more effective than OpenCL when using NVIDIAr hard-

ware. Despite being a registered technology that only works with the same

company’s GPU devices, CUDA has become a standard when using GPUPU

applied to scientific computation.

A program developed with CUDA is usually divided into two parts. The

CPU handles with the data management, memory transfers between different

devices and sets the GPU execution settings, whereas the GPU acts as a co-

processing device performing massive parallel computations through special

functions called kernels.

The main idea behind GPGPU is that instead of having a handful of powerful

processing units, like modern CPUs which have between 4-8 cores, GPU de-

vices are provided with a huge amount of small processors (between one and

two thousand in nowadays’ devices) that are only able to execute the same

instructions all at a time. This special feature makes GPU devices very suit-
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able for all kinds of parallel computations, like adding a constant number to

all the components of a vector.

Figure 2.6 shows the hardware structure of a CUDA GPU device. Each pro-

cessing unit inside a GPU has some memory slots exclusively associated to

it (registers). A processing unit together with its corresponding registers is

called a thread. Threads can also be organized in blocks. When any code

is executed on a GPU device, a copy of this code is sent to each block, and

all threads run all the instructions contained in the code at the same time.

This means that if there are any conditional statements in the code (like if or

while), threads that do not fulfill the statement will not continue executing the

next instructions until all other threads have finished running the instructions

given inside the conditional statement.

Block

Thread

Figure 2.6: GPU grid configuration.

The configuration of threads and blocks define the computation grid. These

grid has to be configured for each kernel run, and the performance of the

program can be improved by choosing a near-optimal setting for each kernel

[6].

26 José Manuel Navarro Jiménez
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CPUs have a hierarchical memory structure composed by registers, cache

memory, RAM memory and hard drives. Similarly to the CPU memory struc-

ture, GPUs have the following hierarchical memory structure:

Registers: Each thread can only access its own registers. It is a

small but fast memory.

Shared memory: All the threads in the same block have a shared

memory so that they can interact between them.

Constant memory: Read-only, fast memory that all threads of

the GPU can access.

Texture memory: Special memory related to graphics rendering

structure.

Global memory: All threads of the GPU can access this slots,

but the read-write speed is rather slow compared to the pre-

vious memory types.

As the read and write speed of each type of memory is different, having an

optimal memory management between all types can be critical in terms of

computing time.

SHARED MEMORY

CONSTANT  MEMORY

GLOBAL  MEMORY

BLOCK 1 BLOCK 2

GRID

REGISTERS

THREAD 1
THREAD 2 THREAD 3

REGISTERS REGISTERS REGISTERS

THREAD 1 THREAD 2 THREAD 3

REGISTERS REGISTERS

SHARED MEMORY

Figure 2.7: Hierarchical memory structure of a GPU.
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2.3.2 Using GPU in MATLABr

MATLABr’s Parallel Computing Toolbox lets users take advantage of GPU

computing features to improve programming efficiency specially when process-

ing large amounts of data. However, MATLABr does not allow the program-

mer to manage the GPU grid configuration, or handling with all different types

of memory explained before. The parameters available in MATLABr are total

device memory and free device memory, so GPU will act as a black box that

performs the desired operations with an unknown configuration of the grid.

This makes programming more simple but less effective, as the calculation

grid will usually be non-optimal. If the GPU kernel is programmed in C, it

can be introduced in MATLABr as a mex file. In this case it is possible to set

the grid configuration, but this option will not be considered in this thesis, as

it involves programming in a different language.

GPU functions in MATLABr MATLABr’s function gpuDeviceCount

returns the number of devices that are available. Typing gpuDevice(i)

MATLABr returns all the information of GPU device number i, like the

name of the device, available memory, free memory, CUDA version, maximum

number of threads and maximum number of blocks.

Any MATLABr statement whose variables are stored in a GPU device will be

performed in the GPU (Figure 2.8 shows the available built-in functions for

GPU computing). To transfer data from the CPU to the GPU the command

gpuArray is used. For example, to transfer variable a to the GPU memory,

just type a = gpuArray(a) (as the name of the variable remains the same, the

original a variable in CPU memory will be erased). Also the typical commands

used to create special arrays like rand, zeros, ones, eye have their GPU

version just by adding ”‘gpuArray.”’ before the standard command, so that
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typing gpuArray.zeros(5) will create a 5 by 5 random matrix in the GPU

memory.

Figure 2.8: MATLABr built-in functions available for GPU computing, [4].

After the calculations are performed the data has to be usually transferred

back to the CPU to be stored, as the GPU has less memory than the available

in the RAM and hard disk drives. The command used to transfer a variable

from GPU to CPU memory is gather. It is very important to use as less as
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possible both gpuArray and gather, because the overheads between CPU and

GPU can become the bottleneck of the program.

The special functions bsxfun and arrayfun presented in section 2.2 also work

with GPU variables providing a boost in vectorized operations, as the cal-

culations in the GPU are performed in parallel. There is also another spe-

cial function only available for GPU computing, pagefun. This function is

similar to bsxfun. The inputs are 3D matrices, and pagefun performs a

MATLABr built-in function to all the pages of these matrix. For example let

{A1,A2...Ak} be m × n arrays, and let {B1,B2...Bk} be n × p arrays. We

group all Ai and Bi matrices in 3D matrices so that the size of A is m×n× k

and the size of B is n×p×k. Then we use pagefun with the mtimes function

(this performs a matrix multiplication) by typing pagefun(@mtimes,A,B).

The result is a matrix (C) with a size of m× p× k where Ci = Ai ×Bi. This

feature allows to vectorize not only the dot product between arrays (shown in

section 2.2), but also matrix multiplications between arrays if the user has a

GPU device.

Memory management GPU cards usually have less available memory

than a CPU. It is common to have between 8 to 32 gigabytes of RAM available

for the CPU, and modern GPUs have between 1 and 3 gigabytes of memory.

In addition, if the CPU runs out of RAM memory it may temporarily use

part of the hard drive space. If the GPU runs out of memory it will not use

the hard drive space and an error will occur in the program, so it is strongly

advisable to check if the GPU memory is enough to perform all calculations

before executing the operations. If there is not enough memory available in

the GPU the data will have to be split into smaller pieces so that each piece of

data can be processed by the GPU. Therefore, in these cases, the whole data

will have to be processed using a for loop.
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Using multiple GPUs When calculations become large enough, increasing

the number of GPU devices can be a remarkable option for upgrading the cal-

culation workstation with a relatively low cost. MATLABr needs that every

GPU is controlled by a different processing unit. As modern CPUs usually

have between 4 and 8 core processors and the maximum number of GPUs that

fit in a motherboard are 4, this should not be a problem for any machine. To

assign each GPU to a different core a MATLABr parallel pool is created with

the number of workers (meaning parallel processors) equal to the number of

GPUs available, then each GPU is assigned to a worker.

NVIDIAr has also developed the SLI technology, which essentially is a con-

necting hardware for multiple GPUs, so that the computer only detects one

device, but it has the memory capacity and calculation power of all GPUs

connected. Working with SLI connected GPUs in MATLABr is exactly the

same as working with only one GPU, because the device’s available parameters

are still total memory and free memory. In the case of SLI connected GPUs

the user cannot distribute the data between the GPUs, so again the grid con-

figurations might be non-optimal. However, this is still a powerful and very

simple way to enhance the efficiency of the workstation with no changes in the

code.

This thesis has been focused on exploring the possibilities of GPU computing

in MATLABr with only one device. Nevertheless, researching the capabilities

and performance improvement of using multiple GPUs in MATLABr, with

or without SLI technology, is one of the future investigation objectives in the

researching group.
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2.4 Code optimization example

In order to clarify the use of the optimization techniques and to give an idea

about how can a code be optimized step by step, a complete example of a code

optimization process is given here. It is remarkable to say that this example

should only be used as a guide about what can be done while programming in

MATLABr and to give some figures to the performance improvements men-

tioned in previous sections of this Chapter. Nevertheless, there is no need to

go through this code optimization process while programming new code, as all

vectorization and GPU techniques can be implemented at the very first time

of the programming phase.

The function created in this example performs operations that are very simi-

lar to some FEM typical calculations, like the stress calculation at integration

points and the evaluation of the strain energy for each element. We will as-

sume that all the elements have some common properties as the same number

of integration points located at the same local coordinates, but each element

will have random material properties and random displacements. These as-

sumptions are only made in order to have a simple piece of code that takes

into account the features of FEM operations.

To calculate stress we start from equation 2.4, which is repeated below for

convenience:

σp = Dpϵp
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where mechanical strains are produced by the displacements at nodes which

is the solution of the FE problem. Applying the FE interpolation, strain can

be calculated as follows

ϵ = Lu = LNue → ϵ = Bue B = LN (2.7)

where:

L: Matrix that contains the derivative operators.

N: Shape functions used to interpolate the displacements inside

the element from the nodal displacement values.

ue: Values of the displacements at the nodes of the elements. So-

lution of the FE system of equations.

then FE stress can be calculated at any point using the displacement solution

at nodes with this expression:

σ = DBue (2.8)

where, in these code example, assuming 2D case:

D: 3×3×Number of elements. 2D Material properties matrix.

Each element will have its random properties.

B: 3 × 8 × Number of integration points. Derivatives of the

shape functions at the integration points. This data will be

common for all elements in order to simplify the example.

ue: 8 × Number of elements. Displacements at nodes of each

element.
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Regarding strain energy, a more detailed explanation about its calculation will

be given in Chapter 3, and here we will perform a simple version with alge-

braic operations similar to those used in these kind of calculations. To sum up,

strain energy at elements is calculated as a numerical integration of the strain

energy inside the element. Here we will disregard the numerical integration

features (weights and jacobian matrix) because including them should be only

a matter of repeating the same kind of operations. Instead, we will consider

this equation to calculate the strain energy-like value at each element that will

be called the accumulative value Ee:

Ee =
nIP∑
i

σe
i ϵ

e
i (2.9)

where, in these code example:

Ee: 1 × Number of elements. Accumulative value E at each

element.

nIP : Number of integration points per element. Constant in this

example.

σe: Number of elements × (Number of integration points ×
3). Each row has the stress at all integration points of each

element.

ϵe: Number of elements× (Number of integration points× 3).

Each row has the strain at all integration points of each ele-

ment.
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The example is divided into three parts: the first one contains which is sup-

posed to be the original piece of code to improve, then in the second part the

code is improved by means of vectorization, and finally in the third part GPU

computation is brought in to go a step further in the optimization process.

After those three parts there are some results showing the performance com-

parison between different versions.
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2.4.1 Original Code

This is the initial function that performs the established calculations. The

code is shown in Listing 2.1. The structure is very similar to a C-code func-

tion. Initial variables simulate the available data in the program and are

created as random variables. Then both output variables are pre-allocated

in memory, and finally calculations are performed in a loop through elements

and integration points inside elements.
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Listing 2.1: Optimization example. Original code.

1 % I n i t i a l data

DOFperNode = 2;

3 Comp = 3;

IntegrPts = 4;

5 NodesPerElem = 4;

NumElements = 1000; % This i s t he parameter to sweep

7 D = rand(Comp ,Comp ,NumElements);

B = rand(Comp ,NodesPerElem*DOFperNode ,IntegrPts);

9 u = rand(NodesPerElem*DOFperNode ,NumElements);

epsilon = rand(NodesPerElem *( DOFperNode +1),NumElements);

11

% Output v a r i a b l e s

13 sigma1 = zeros(NumElements ,IntegrPts*Comp);

E_def = zeros(NumElements ,1);

15

% Ca l c u l a t i o n . Element l oop

17 for iElement = 1: NumElements

uElem = u(:,iElement);

19 DElem = D(:,:, iElement);

epsilonElem = epsilon(:,iElement);

21 for iPoint = 1: IntegrPts

% S t r e s s

23 stress=DElem*B(:,:,iPoint)*uElem;

sigma1(iElement ,(iPoint -1)*Comp +1: iPoint*Comp) =

stress;

25 % Accumulat ive va l u e E

E_def(iElement) = E_def(iElement)+...

27 sum(stress ’* epsilonElem ((iPoint -1)*Comp +1: iPoint*

Comp));

end

29 end
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2.4.2 CPU optimized code

This optimized version is focused on vectorizing all possible operations to get

rid of as most single operations inside loops as possible. The vectorized code is

shown in Listing 2.2. The most clear example is with the accumulative value

(line 28). The accumulative value at each point is calculated with a single

scalar product, so performing a dot product with stress and strain data ma-

trices we vectorize this operation. The next step is to accumulate the values

at each element, therefore we perform an addition of the point’s values matrix

through the first dimension, so we get a vector that has the total accumulative

value at each element.

Stress calculation cannot be fully vectorized because it involves matrix-vector

multiplications without a common matrix (D matrices were set as random for

each element with this purpose), but there is still some work that can be done.

The stress is a result of the multiplication of two matrices and one vector. If

we use the whole matrix u instead of the corresponding column for each ele-

ment we will perform all operations for all elements at a time. Moreover we

said that B matrices were the same for each local integration point, so we can

make a previous loop (lines 17-19) where we compute the product Bu for all

points, and then the only operation performed in the element’s loop would be

a matrix multiplication. The product matrices Bu are stored as a 3D matrix

where, after a permutation (line 20), each page has the matrices corresponding

to each element, just like matrix D.
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Listing 2.2: Optimization example. CPU optimized code.

1 % I n i t i a l data . Same as in the o r i g i n a l code

DOFperNode = 2;

3 Comp = 3;

IntegrPts = 4;

5 NodesPerElem = 4;

NumElements = 1000; % This i s t he parameter to sweep

7 D = rand(Comp ,Comp ,NumElements);

B = rand(Comp ,NodesPerElem*DOFperNode ,IntegrPts);

9 u = rand(NodesPerElem*DOFperNode ,NumElements);

epsilon = rand(NodesPerElem *( DOFperNode +1),NumElements);

11

% Output v a r i a b l e s . E de f2 memory pre−a l l o c a t i o n i s not

needed anymore .

13 sigma2 = zeros(NumElements ,IntegrPts*Comp);

15 % Stre s s , s t e p 1 . Loop through d i f f e r e n t l o c a l i n t e g r a t i o n

po i n t s .

B_u = zeros(Comp ,NumElements ,IntegrPts);

17 for iPoint = 1: IntegrPts

B_u(:,:,iPoint) = B(:,:,iPoint)*u;

19 end

B_u = permute(B_u ,[1 3 2]);

21 % Stre s s , s t e p 2 . Loop through e l ement s .

for iElement = 1: NumElements

23 DBu = D(:,:, iElement)*B_u(:,:, iElement);

sigma2(iElement ,:) = DBu (:);

25 end

27 % Accumulat ive va l u e E. Vec to r i z ed ope ra t i on

E_def2 = sum(sigma2 ’.* epsilon ,1) ’;
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2.4.3 GPU optimized code

The last optimization step includes GPU computation in the code. As it has

been said, it is very easy to introduce GPU in MATLABr language, since

there are only a few changes to make. First of all, the variables are now ini-

tialized directly in the GPU device, by adding gpuArray to the functions rand

and zeros. In case the variables already exist in the CPU the transfer would

be as easy as typing GPUVariable=gpuArray(CPUVariable). The same thing

happens when the calculations are finished, this is, we need to transfer the

data back into the CPU using the command gather(). Listing 2.3 shows this

last optimized code.

Just by performing the same calculations on the GPU we could have some

gain. For example, the calculation of the accumulative value (l. 24) is exactly

the same line as in listing 2.2, and its computing time is lower. But we can

also add some important features in order to gain efficiency, like multiplying

matrices in parallel. Using pagefun we multiply all matrices B and u, and

then all element multiplication of D × Bu, so we just get rid of both loops

that were still in the CPU-optimized code.
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Listing 2.3: Optimization example. GPU optimized code.

% I n i t i a l data . Va r i a b l e s are now c r ea t e d in the GPU memory

2 DOFperNode = 2;

Comp = 3;

4 IntegrPts = 4;

NodesPerElem = 4;

6 NumElements = 1000; % This i s t he parameter to sweep

B = gpuArray.rand(Comp ,NodesPerElem*DOFperNode ,IntegrPts);

8 u = gpuArray.rand(NodesPerElem*DOFperNode ,NumElements);

epsilon = gpuArray.rand(NodesPerElem *( DOFperNode +1),

NumElements);

10 D = gpuArray.rand(Comp ,Comp ,NumElements);

12 % Output v a r i a b l e s

sigma3 = gpuArray.zeros(IntegrPts*Comp ,NumElements);

14

% Stre s s , s t e p 1 . Loop s u b s t i t u t e d by page fun .

16 B_u = pagefun(@mtimes ,B,u);

B_u = permute(B_u ,[1 3 2]);

18 % Stre s s , s t e p 2 . Loop s u b s t i t u t e d by page fun .

DBu = pagefun(@mtimes ,D,B_u);

20 sigma3 (:) = DBu;

% Trans fer s t r e s s data from GPU to CPU memory

22 cpu_sigma = gather(sigma3 ’);

24 % Accumulat ive va l u e E at each e lement and data t r a n s f e r to

CPU

E_def3 = gather(sum(sigma3 .*epsilon ,1) ’);
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2.4.4 Performance test

The performance comparison test consisted in executing all three different

codes with an increasing number of elements. Computing time of each code

version is measured using MATLABr’s tic and toc functions. In the GPU

case the function wait(gpuDevice) was used in order to avoid stopping the

CPU timer while the GPU device is still performing operations. In addition,

GPU code was executed and measured three times for each parameter value,

and the mean value between those three times is used to calculate the speed-up

ratio. CPU and GPU speed-up ratio over the original routine are evaluated

as follows:

RatioCPU =
TimeOriginal

TimeCPU
RatioGPU =

TimeOriginal

TimeGPU

(2.10)

The test can be divided into two parts: the first one involves low number

of elements (from 103 to 106), and the second part goes from 106 to 2 × 107

elements. During the first part of the test the GPU device’s memory is not

saturated and all the data can be processed at once. As we reach 5 million

elements the GPU’s memory is not big enough to perform all the calculations.

Therefore, as said in section 2.3, some memory management work has to be

done in order to split all data into smaller pieces, so that each data block can

be processed by the device.

Figures 2.9 and 2.10 show the results of this test. The first highlighting result

is that vectorized code has an almost constant speed-up ratio, between 7.66x

and 8x. The independence of the speed-up with the number of elements in

the arrays shows that this computing improvement has been achieved because

MATLABr is capable of dealing with array operations in a more efficient way

than performing for loops with scalar operations, as said before.
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2.4. Code optimization example

Regarding the GPU, in the first part of the test (Figure 2.9) the speed-up

rapidly escalates with the number of elements, and starting from around 3×105

the speed-up ratio varies between 90x and 100x. However in the GPU case

there are some considerable oscillations in the speed-up ratio as the number of

elements increases. These variations can be produced due to a non-optimal set-

ting of the GPU grid of blocks and threads. As these settings cannot be mod-

ified or read when using parallel computing features included in MATLABr

there is no way neither to find a near-optimal setting of the grid nor to demon-

strate this hypothesis. Nevertheless, this should be the most probable cause

of the oscillation because as it is said in [6] “gridification strongly impacts the

performance of algorithms”.
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Figure 2.9: Performance test, part 1. From 103 to 106 elements
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2. Optimizing code using MATLABr

At the second part of the test (2.10) there are two zones where the GPU

speed-up ratio drops to 60x. The minimum values of speed-up ratio occur at

1.45×107 and 1.95×107. As it was said before, the GPU device could calculate

all data in one step up to 5 million elements. From 5 to 10 million elements

two iterations were made to process all data. Then, with 10 million elements,

three iterations were performed. With 15 million elements the number of iter-

ations increased to four, and the last run with 20 million elements needed five

iterations. It can be noticed that the number of elements where the speed-up

dropped were the last ones where the calculations were performed in 3 and 4

iterations respectively, therefore when the device’s memory was about to be

fully consumed.
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Figure 2.10: Performance test, part 2. From 106 to 2× 107 elements
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2.4. Code optimization example

The results shown here clearly demonstrate that vectorizing and using GPU

can dramatically increase the efficiency in terms of computational cost when

using MATLABr for numerical computations. Despite having some limita-

tions regarding the device gridification that cause oscillation in the speed-up

ratio, the usage of GPU computing in MATLABr still provides an important

boost when performing single instruction multiple data operations.

Optimization of a FEM code. Usage of GPUs in parallel computing. 45





Chapter 3

Finite Element Method

optimization

Any standard Finite Element Method program can be divided into three main

blocks: pre-processing, resolution and post-processing. The pre-processing

block has the biggest amount of user interaction, as the geometry of the do-

main, the material properties and the settings and generation of the mesh

have to be defined. The FEM system of equations’ formulation and resolution

is included in the second block. Finally, in the post-processing block other re-

sults are calculated, such as stress and strain energy, and the error estimation

procedure is executed.

All the optimization techniques described in Chapter 2 are now going to be

applied to a FEM program. The special features of Cartesian grids and med-

ical image-based analysis will also be taken into account.
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3. Finite Element Method optimization

3.1 Pre-processing

The computational time spent in the operations that require user intervention

is negligible. Therefore, all the code regarding the definition of the geometry

and material properties and the set up of the analysis will be left apart in this

Thesis.

3.1.1 Intersection procedure

As cgFEM works with geometry independent Cartesian grids, it is trivial to

obtain the topology and location of the elements in the mesh. However, the

intersection of the problem’s domain with the set of Cartesian grids has a high

computational cost when the number of intersected elements rises.

The intersection procedure is as follows. The border of the domain is composed

by curves. The algorithm selects one point on the contour to start with the

boundary intersection process. This point corresponds to the 1st point of

the 1st curve used to define the boundary. The intersection routine starts

locating that point in the Cartesian grid pile. After that, the routine follows

the contour counterclockwise from the current element to the next one, until

it reaches again the starting point. At this stage, the whole contour has been

intersected.

As it happened in the old refinement routine (section 2.1), the task of finding

the active neighbors of an element in the calculation mesh implied several

accesses to sparse matrices, which are likely to be slow, specially if the matrices

have a considerable size.
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3.1. Pre-processing

The new algorithm proposed in section 2.1, FindRealNeighbors, has also been

used in the intersection routine. Before starting the intersection of the first

point of the boundary with the mesh, FindRealNeighbors is executed with

all active elements as input. Therefore, the connectivity of all elements in the

mesh is available in a full matrix (not sparse), and no logical statements have

to be executed to determine which neighbor element in the Cartesian grid pile

is the active one.

The comparison tests shown in Chapter 4 report up to a 90% improvement

of the intersection routine. This improvement ratio is achieved in tests with

linear elements and a high amount of degrees of freedom, as it occurred with

the improvement of the refinement routine.

In the new 3D code, FEAVox, the intersection of the geometry with the Carte-

sian grid pile is completely different from the cgFEM procedure. The bound-

ary entities are now surfaces instead of lines, so a sequential procedure start-

ing from a point and following the contour cannot be performed anymore.

In FEAVox a ray-tracing procedure analogous to the ones used in rendering

applications is performed. Ray-tracing is the usual task that a GPU performs

while executing a video-game, so this intersection procedure is likely to be

computed in parallel with GPU devices, which is one of the future works of

this Thesis. Nevertheless, the intersection routine in 3D has already been im-

plemented taking into account the vectorizing techniques.

3.1.2 h-adaptive refinement

The h-adaptive refinement improvement shown in section 2.1 should also be

included in this block. This procedure is executed after the recovery techniques
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3. Finite Element Method optimization

are applied and the error of the solution is estimated in the post-processing

block. With the information of estimated error at each element, the refinement

routine generates a new calculation mesh in order to solve a new problem, so

the block sequence starts again from the intersection of the geometry with the

new mesh.

FEAVox, the 3D version of cgFEM is also capable of creating h-adapted

meshes from CAT scans such as cgFEM does. Figure 3.1 shows a 3D mesh

obtained from a dental computed tomography (CT) scan. The whole mesh

contains near 3 million elements. Thanks to the new refinement algorithm

that has been adapted to the 3D code this procedure took about two minutes.

Figure 3.1: Cross section of a 3D mesh obtained from a dental CT scan.
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3.2. FEM problem resolution

3.2 FEM problem resolution

Once the calculation mesh is created it is time to formulate and solve the FEM

system of equations, which was already presented in equation 2.6:

KU = F (3.1)

This global system of equations is created from the assembly of element ma-

trices ke, that depend on material property and the geometry of the domain,

and element vectors f e which depend on the boundary conditions. The opti-

mization of this block has been focused on the creation of the element stiffness

matrices, although some minor improvements were made in the integration of

the boundary conditions to create vectors f e.

Although minor changes regarding vectorization have been made in the rou-

tine that creates element vectors f e, this section will focus on the improvement

of the element stiffness matrices integration.

3.2.1 Stiffness matrix integration.

The element stiffness matrices is defined as:

ke =

∫
Ae

BTDBdA (3.2)
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3. Finite Element Method optimization

The 0-level mesh element in cgFEM is called the reference element. All ele-

ments in the Cartesian grid pile of meshes are geometrically similar, they are

all square elements, whose only difference is their size. Thus, it is possible

to set some relation between the reference element’s characteristics, such as

the element stiffness matrix, Jacobian matrix, etc. Ródenas et al. defined in

[13] 5 hierarchical properties that relate the element matrices of geometrically

similar elements. The parameter relating the elements is the relative elements

size, ς.

In the cgFEM framework ς = 2−L, being L the level of the element. Then,

we could easily relate all the following properties with those of the reference

element, indicated with the sub-index 0.

• Jacobian matrix : J = ςJ0.

• Inverse Jacobian: J−1 = 1
ς J

−1
0 .

• Jacobian: |J| = ςD |J|0, where D is the problem dimension (2 for 2D).

• Shape function derivatives matrix : B = 1
ςB0.

• Stiffness matrix : k = ςD−2k0, for D being constant.

Therefore, in cgFEM, the element stiffness matrix is equal for elements fully

located into the domain that have the same material. Thus, only one stiffness

matrix is calculated for all those elements.

However, there are multiple materials within the elements of a medical image-

based analysis, so all the element stiffness matrices have to be calculated one

52 José Manuel Navarro Jiménez



3.2. FEM problem resolution

by one. The numerical integration that takes place to calculate this matrix is

the following one:

ke =

NIP∑
i=1

BT (ξi, ηi)D(ξi, ηi)B(ξi, ηi)|J(ξi, ηi)|ωi (3.3)

where:

NIP : Number of integration points. In this case the pixels of the

image will be considered integration points as well.

(ξi, ηi): Local coordinates of the integration points expressed in

the local reference system of the element.

D(ξi, ηi): Material properties associated to each integration point.

As the one integration point will be associated to each pixel

in the image, the material properties of each integration point

will correspond to those of the gray level of the corresponding

pixel.

|J(ξi, ηi)|: The determinant of the jacobian matrix evaluated at

(ξi, ηi).

ωi: Weights associated to the integration points, depending on the

integration quadrature used. A Riemann integration will be

used in this case, so all weights will be the same within an

element.

The bounding box of the initial mesh of a medical image analysis is calculated

so that all mesh levels have an integer number of pixels inside, until the mesh
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3. Finite Element Method optimization

level that has one pixel per element. This is made by adding “black” pixels

(meaning pixels with null material properties) until the size of the image con-

tains N ×N pixels, being N a power of two. The size of the pixels is constant

for all the image, so it is known that NIP = N×N
22p

, being p the mesh level of

the element.

If elements of the same level contain the same amount of integration points,

located at the same local coordinates, then B(ξi, ηi), |J(ξi, ηi)| and ωi will

be common for all elements of the same level. Therefore, it seems that an

efficient way of calculating the stiffness matrices in a medical image analysis

would be to use a loop through different mesh levels and a second loop inside

through local integration points. These two loops do not imply an increase in

the computational cost as the number of elements rises, because the number

of iterations is smaller (the more elements in the mesh, the less integration

points/pixels within each element).

The only way to avoid a third loop through elements is using GPUs, because

the operations for the stiffness matrix calculation include two matrix multipli-

cations. The evaluation of the material properties matrices (D(ξi, ηi)) for each

integration point is also performed in parallel with GPU. If the workstation

does not have a GPU device, a third loop will be run calculating the matrix for

each element, andD matrices will be gathered through a vectorized procedure.

Section 4.3 shows the results of both changes. The improvement in the in-

tegration of the stiffness matrices for medical image analyses has allowed to

rapidly implement and test different integration methods shown in paper [3].
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Integration data structure In cgFEM, all the information of the stiffness

matrix calculation (stiffness matrix, local coordinates of integration points,

B matrices of each integration point, material associated to each integration

point) is stored in a struct type variable called MatK. Table 3.1 shows how the

integration data is stored for each element in cgFEM.

Field Type Description

Ke Float Element stiffness matrix

IntegrType Int Flag that indicates if it is an internal (0) or boundary element
(1)

OrigLev Int Level of the element where the integration of ke has been per-
formed

BPtG Float Stores matrix B = LN evaluated at each integration point

PsiEtaG Float Local coordinates of the integration points in the element

AreaGauss Float Area associated to each integration point

Triangs Float Global coordinates of the triangulation vertices. Only for bound-
ary elements

PsiEtaVert Float Local coordinates of the triangulation vertices. Only for bound-
ary elements

MaterialTr Float Material associated to each integration point

Table 3.1: Information stored for each element.

The structure shown in table 3.1 is repeated for each element stiffness matrix

that is calculated during the analysis. Therefore, MatK is not only a struct

type variable, but a vector of struct variables. The information related to the

reference element of each different material existing in the model is stored in

the first positions of this structure. Therefore, all internal elements will point

to the corresponding reference element information, saving a high amount of

repeated data. However, each boundary element has its own data stored in

MatK. As the vector grows higher (when the number of boundary elements

increases) the time spent accessing and writing values of MatK becomes the

most time-consuming task in the stiffness matrix creation.

The improvement of the stiffness matrix integration when analyzing medical

images stores the calculated data in an auxiliary variable and then transfers
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3. Finite Element Method optimization

the data of multiple elements to the MatK variable at the same time using

vectorization techniques, thus reducing the number of accesses to the struct

variable.

A vector of struct type variables is difficult to manipulate. Gathering all the

values of a given field and storing new data are complex, time-consuming tasks.

In addition, some of the stored data in MatK (mainly the local coordinates, the

material ID and the B matrices) are necessary to make some calculations that

could be easily vectorized if the data were stored in another type of variable.

Taking this features into account, the data structure of the integration has

been changed for the FEAVox code. MatK variable has been split into two

different matrices: KMatrix and IntegrationPoints. The first matrix has

the element stiffness matrix for all elements stored as columns. This matrix is

only used for the assembly of the global stiffness matrix K, so the storage of

the element matrices as columns may also help with the vectorization of the

assembly task.

The second variable, IntegrationPoints, is a standard matrix that contains

in each row all the information of all the integration points, such as the element

that the point belongs to, global and local coordinates, associated material,

integration sub-domain in case of boundary elements, and results like stress,

displacements and energy norms evaluated at each point.

This modification completely changes the calculating procedure for any mag-

nitude. Instead of having an iterative loop through elements and calculating

the desired magnitude, the operation can be performed in a vectorized way

(and furthermore, using GPU computation) for all the integration points in

the calculation mesh, regardless of the element that they belong to.
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3.2.2 System of equations’ resolution

The resolution of the system of equations is usually one of the most expen-

sive procedures in terms of computational cost, specially when it comes to

3D problems. Although MATLABr’s command “\” can be computed with

GPU variables, MATLABr still cannot handle with sparse variables in the

GPU, so at the moment there is no chance to solve the system of equations

with the GPU device, as the global stiffness matrix K is a sparse matrix.

Preliminary tests in FEAVox show that the resolution of the 3D system of

equations will have a high computational cost when the number of degrees

of freedom increase, so implementing iterative solving procedures using GPU

parallel computation in FEAVox is one of the future research lines.

3.3 FEM solution post-processing

As the FEM formulation used in cgFEM and FEAVox is based on displace-

ments, the solution obtained after solving the system of equations is the dis-

placement field of the domain. However, this results are usually less interesting

for the industry than the stress field. It is also important to evaluate the error

of the current solution, as the FEM solution is always an approximation of

the real solution. All these tasks are suitable for vectorization and for the

introduction of GPU computation, as there are simple operations performed

on large amounts of data.
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3.3.1 Stress calculation

Earlier in section 2.4 an optimization example of a code that calculated stresses

and an accumulative value was given. Equation 2.8 , which is repeated here

for convenience showed how stresses could be calculated at integration points:

σ = DBue

It has been said before that in cgFEM there is a relationship between the

reference element’s characteristics and the internal element’s ones. Regarding

the stress calculations, the relationship between the shape function derivatives

matrix is B = 1
ςB0, where ς is a value related to the element’s level. Then,

the stress value for the integration points of an internal element is:

σe = DB
1

ςe
ue (3.4)

The displacements and scaling factor of all internal elements can be multiplied

using bsxfun as it was shown in section 2.2.2. Then, D and B matrices are

common for all elements, so the stress at all integration points of all internal

elements is calculated by vectorizing the matrix-vector multiplication, as it

was also shown in section 2.2.2.

When it comes to medical image analyses B matrices are common but each

integration point has a different D matrix. In this case, the stress at all

integration points can be calculated at once through GPU parallel computing.

If the GPU is not available in the workstation, a loop through all integration

58 José Manuel Navarro Jiménez



3.3. FEM solution post-processing

points has to be performed, just like in the calculation of element stiffness

matrices.

Stress calculation is already vectorized in FEAVox for internal elements. How-

ever, boundary elements have different number of integration points so a for

loop is needed for those elements. GPU computation has been applied to com-

pute all boundary elements at once using pagefun. A test problem with up

to 150000 boundary integration points showed a speed-up of 18x in this task.

3.3.2 Error estimation

After the FE solution of the first analysis mesh has been obtained, new meshes

are created following a h-adaptive refinement procedure that aims to minimize

the error in energy norm of the solution. The exact error in energy norm of

the solution is given by:

|||e|||2Ω :=

∫
Ω
(σ − σh)TD−1(σ − σh) dΩ (3.5)

where σh is the FE stress field and σ is the exact stress field, which is usually

unknown. In order to estimate the error in energy norm cgFEM uses the

Zienkiewicz & Zhu (ZZ) error estimator (3.6), presented in [14], where σ∗ is

an improved stress field, more accurate than σh.

|||e|||2Ω ≈ E 2
ZZ :=

∫
Ω
(σ∗ − σh)TD−1(σ∗ − σh) dΩ (3.6)
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3. Finite Element Method optimization

Particularizing (3.6) at each element domain the estimation of the error in

energy norm at element level can be obtained. This information will determine

if an element has to be refined or not. The numerical integration required to

calculate the error in energy norm at each element is as follows:

|||e|||2e ≈
NIP∑
i=1

(σ∗
i − σh

i )
TD−1(σ∗

i − σh
i )|J(ξi, ηi)|ωi (3.7)

cgFEM calculates, at the same routine, not only the error in energy norm,

but also the energy norm of both the FE solution and the recovered solution,

given by:

∣∣∣∣∣∣∣∣∣uh
∣∣∣∣∣∣∣∣∣2

Ω
=

∫
Ω
(σh)TD−1σh dΩ∣∣∣∣∣∣∣∣∣uh∗

∣∣∣∣∣∣∣∣∣2
Ω
=

∫
Ω
(σ∗)TD−1σ∗ dΩ

(3.8)

The calculation of all these magnitudes has been optimized using both vector-

ization techniques and GPU computing reporting up to a 90% computation

time reduction in this specific routine in cases with a high number of degrees

of freedom (around 2-3 million).

SPR technique The ZZ error estimator requires obtaining an improved

stress field σ∗. This improved field is calculated using the Super-convergent

Patch Recovery (SPR) technique, presented also by Zienkiewicz & Zhu [15].

This technique, first defines a patch of elements P i, that is a set of elements

60 José Manuel Navarro Jiménez
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sharing a vertex node i, this node is also called the patch assembly node, see

Figure 3.2.

Figure 3.2: Representation of a patch of linear triangular elements. The black points
indicates the nodes of the mesh and the red node is the patch assembly node. The
transparent surfaces indicate the FE stress field σh. The super-convergent points are
indicated by blue crosses.

As shown in Figure 3.3, a polynomial surface per component (3.9) (of the

same degree as the FE interpolation) is fitted to the FE stress values at the

super-convergent points of the patch by using a least square approach:

σ̂∗
k(x) = p(x)ak k = xx, yy, xy (3.9)

where p(x) = {1, x, y} for the linear case, p(x) =
{
1, x, y, x2, xy, y2

}
for the

quadratic case, and ak are the corresponding coefficients for each stress com-

ponent. In this case, each component k of the stress field could be recovered
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independently by minimizing the following functional:

ΦSPR =
NGP∑
gp

(p(xgp)ak − σh
k(xgp))

2 (3.10)

yielding a linear system of equations per component Mak = Hk, where NGP

indicates the number of integration (sample) points and:

M =

NGP∑
l

pT (xl)p(xl)

Hk =
NGP∑

l

pT (xl)σ
h
k(xl)

(3.11)

Figure 3.3: Representation of the least squares fitted polynomial surface. The pink
line represents the stress value at the assembly node, the only one that is retained in
the stantard SPR.

The recovered stresses σ̂∗
i at each node are obtained particularizing these

surfaces at the assembly node. Finally, following the same process at each

assembly node of the mesh we end up with a nodal stress representation.
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It can be noticed that matrix M contains coordinates of the elements within

the patch. Therefore, this matrix will be equal for all patches with a com-

mon location of the integration points. In the cgFEM framework, due to the

topological features of Cartesian grids and the maximum level difference be-

tween adjacent elements, there are only 19 possible configurations of patches

composed by internal elements. Figure 3.4 represents all these possible con-

figurations of internal patches.

It was shown in section 2.2.2 that multiple systems of equations can be vector-

ized if the coefficient matrix is common for all of them. This improvement has

been performed in the SPR routine, vectorizing the construction of the vectors

Hk corresponding to all patches with the same shape and resolving all these

patches at once. Performance tests have reported up to a 40% improvement

in the SPR technique function.

Figure 3.4: Possible configurations of internal patches in 2D.
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3. Finite Element Method optimization

The cgFEM code implements the SPR-CD technique [7] developed at the

CIMM that provides locally equilibrated stress fields by taking into account

the equilibrium and compatibility equations using constrain equations during

the process. The subroutines of this more advanced recovery technique have

been also implemented using vectorization techniques.
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Chapter 4

Overall performance tests

The last part of this Thesis consists of several tests to measure the overall

computational cost improvement in cgFEM associated to the code optimiza-

tion process.

The optimization improvements have been grouped into two main groups,

CPU improvements (meaning vectorization) and GPU improvements. Thus,

the structure of the performance tests is similar to the one used in section

2.4.4. A first execution of the program without code improvements is run to

set the reference time. After that, the CPU vectorization changes are applied

in a second run. Finally, GPU computing is activated in the last run of the

code.

The changes in the h-adaptive routine are taken into account in the first run

that sets the reference time, so the performance improvement due to this new

refinement is not considered in these results.

65



4. Overall performance tests

The workstation used to measure all computing times in this Thesis had a

Intel Xeon E5-2609 CPU with 16GB RAM memory. The GPU device used for

parallel computing was a ASUS GeForce GTX780 with 3GB RAM memory.

Although the performance improvement results in this Thesis are expressed

as speed-up ratios, it is worth to outline that the CPU and GPU device are

decisive parameters that affect the absolute computational cost. In fact, some

of the examples shown here have been tested in a different workstation with

a Intel i7-4770K CPU and the same RAM memory and GPU, reporting com-

putation times twice as fast as the times shown in this chapter in all cases.

The benchmark problems that are going to be used to test the performance

of the cgFEM code are a hollow cylinder under internal pressure, a flywheel

under external torque and a medical image-based analysis. At the end of the

Chapter a qualitative comparison is made between cgFEM and a commercial

FE code, ANSYSr .

4.1 Hollow cylinder under internal pressure

The model of this problem was already used to test the new refinement routine

in section 2.1, and is shown again in Figure 4.1 for convenience.

Two different tests have been made using this model, one with linear elements

and other with quadratic elements. A h-adaptive analysis was executed for

both tests, with the aim to reach non-uniform meshes with a high number of

degrees of freedom (dofs). The last iterations of both tests had 760× 103 dofs

for the linear element case and over 1.2 × 106 dofs in the case of quadratic

elements. Tables 4.1 and 4.2 show the number of dofs and the estimated error

in energy norm of each mesh in the h-adaptive process.
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4.1. Hollow cylinder under internal pressure

Figure 4.1: Hollow cylinder under internal pressure model.

DOF Estimated error in energy norm (%)

5542 3.0315
14734 1.0975
106094 0.4017
760206 0.1685

Table 4.1: Hollow cylinder analysis. Linear elements.

Time results for the test with linear elements are shown in Figure 4.2. The

three coloured areas at the bars correspond to the three different blocks in

which the FEM program was divided in Chapter 3. It can be noticed that

the vectorization process has provided an important improvement in the pre-

processing and post-processing blocks. The enhanced intersection procedure

has led to a 60% time reduction. Moreover, the GPU implementations have

an 82% total improvement of the post-processing block with respect to the

original code. The overall time results report a 64% reduction in computation

time with the usage of GPUs.
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4. Overall performance tests

DOF Estimated error in energy norm (%)

62572 0.0463
72066 0.0129
132098 0.0038
405240 0.0011
1239678 0.0003

Table 4.2: Hollow cylinder analysis. Quadratic elements.

The results of the test for the quadratic element’s case are shown in Figure

4.3. On the one hand the overall performance improvement reaches only a

20%, which is a significantly lower reduction compared to the one achieved in

the case with linear elements. But, on the other hand, the computation time

of the original code with linear elements is similar to the time elapsed in the

quadratic element’s case, despite doubling the number of dofs.

Quadratic element meshes need less elements to obtain the same amount of

dofs than meshes with linear elements. As many operations in cgFEM are

performed element-wise, the computational cost in this case increases not with

the number dofs but with the number of elements. This explains why the

original code had a worse efficiency when using linear elements than when

using quadratic ones, because all element-wise operations were performed in

sequential loops. By applying vectorization techniques the dependence of the

computational cost with the number of elements has decreased, and now the

effectiveness of cgFEM is similar with both types of element.

The improvement of the GPU computed tasks in this case is a 38% with re-

spect to the original code. The decrease in this speed-up is due to the same

reason of the lower overall performance. GPU implementations are focused

on calculations performed for internal elements, while contour elements’ cal-

culations such as energy norm or SPR stress fields are still not vectorized.

Meshes with quadratic elements have also a lower ratio between internal and
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4.2. Flywheel under external torque

Original Code Improved Code CPU Improved Code GPU

Post-processing 492,367 278,36 87,745

FEM resolu!on 88,977 87,881 87,871

Pre-processing 548,494 212,667 212,662
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Figure 4.2: Hollow cylinder h-adaptive analysis. Time results for linear elements.

boundary elements, so the improvement achieved with GPU computation is

extended to a lower number of elements.

4.2 Flywheel under external torque

The next problem used to test cgFEM is the model of a flywheel subject to an

external torque. Figure 4.4 shows the model as it is introduced in the program.

This model has a higher ratio of contour per surface, so all calculation meshes

will have more boundary elements, and the intersection process will have an

increased computational cost.

Optimization of a FEM code. Usage of GPUs in parallel computing. 69



4. Overall performance tests

Original Code Improved Code CPU Improved Code GPU

Post-processing 624,279 526,965 390,155

FEM resolu!on 394,246 390,774 390,827

Pre-processing 187,135 185,604 185,366
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Figure 4.3: Hollow cylinder h-adaptive analysis. Time results for quadratic elements.

Again, both tests with linear and quadratic elements have been run. Tables

4.3 and 4.4 show the data of all the iterations in the analyses. It is worth

to highlight that this time the refinement parameters have been changed so

that the linear test had almost 3 million dofs in the last iteration. This is at

the moment the biggest analysis that cgFEM has been able to solve without

running out of RAM memory.

DOF Estimated error in energy norm (%)

18488 8.711
127834 1.619
2957774 0.294

Table 4.3: Flywheel analysis. Linear elements.
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4.2. Flywheel under external torque

Figure 4.4: Flywheel under external torque model.

The time results shown in Figure 4.5 confirm that the old intersection routine

becomes the main bottleneck in the program when the calculation mesh has

a large amount of elements. The intersection procedure in this test consumes

about 92% of the total analysis time with the original code. This bottleneck is

drastically reduced with the proposed vectorized solution, reducing 85% of the

whole computation time. GPU improvements are hidden because of the huge

computational cost of the intersections in the original code. This was the main

reason to include the new refinement algorithm in the original code, because

the results of the refinement improvement would cover all other optimizations.

Nevertheless, the new GPU calculations decrease 55% of the elapsed time of
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4. Overall performance tests

DOF Estimated error in energy norm (%)

15800 10.795
21414 2.610
39536 0.587
97238 0.148
296918 0.039
986956 0.012

Table 4.4: Flywheel analysis. Quadratic elements.

the post-processing block with respect to the original code, reaching an overall

86% speed-up of the program.

Original Code Improved Code CPU Improved Code GPU

Post-processing 1538,101 1099,441 699,577

FEM resolu!on 331,499 334,252 343,767

Pre-processing 24555,292 2254,343 2281,204
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Figure 4.5: Flywheel h-adaptive analysis. Time results for linear elements.

The results of the test with quadratic elements lead to the same conclusions

obtained in the cylinder test with quadratic elements. In this example the

improvement is even lower (overall 10%). This is because, as it has been said,

this model has a higher proportion of boundary elements in the calculation
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4.3. Femur analysis based on a medical image

meshes, and the vectorization of the calculations for internal elements has less

impact on the total computation time. One of the future tasks is to extend

some optimizations to the boundary element calculations (such as error in

energy norm or stress). However, this improvements also imply some changes

in the data structure, like the one exposed in section 3.2.1.

Original Code Improved Code CPU Improved Code GPU

Post-processing 694,937 676,224 576,039

FEM resolu!on 508,083 500,823 499,268

Pre-processing 114,663 107,188 107,168
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Figure 4.6: Flywheel h-adaptive analysis. Time results for quadratic elements.

4.3 Femur analysis based on a medical image

The final test in this Chapter consists of a medical image-based analysis. This

example will check the speed-up of the specific improvements made for this

special feature of cgFEM, particularly those made on the FEM resolution

block.
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4. Overall performance tests

Figure 4.7a shows the medical image on which the problem is based. The

boundary conditions are applied through curves defined by the user. In this

case there is a straight line where the Dirichlet constrain is imposed and a

pressure is applied on the arc on the top.

(a) (b)

Figure 4.7: Medical image of a femur and calculation mesh for the analysis.

There is no contour in this model to intersect with the Cartesian grid pile, and

the analysis consists of one only iteration because the h-adaptive refinement

based on the quality of the solution has not yet been implemented for medical

image analyses. Therefore the pre-processing block is negligible in terms of

computational cost, and only the resolution and the post-processing block

are considered. The element stiffness matrices procedure is shown here apart
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4.3. Femur analysis based on a medical image

from the rest of the resolution block, as major changes were performed in this

routine. The results of the test are shown in Figure 4.8.

Original Code Improved Code CPU Improved Code GPU

Post-processing 107,105 106,857 37,832

S!ffness matrix crea!on 75,672 14,941 2,684

FEM resolu!on 14,204 13,959 14,607
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Figure 4.8: Time results for a medical image-based analysis.

Some of the benefits of the Cartesian grids regarding the computational ef-

ficiency disappear when it comes to an analysis based on a medical image.

This is because all elements have different material properties. Therefore, the

element characteristics cannot be linked to the reference element’s characteris-

tics, as it happened with the internal elements in standard cgFEM. In this case

all elements have to be treated as if they were “boundary elements”, meaning

that all characteristics have to be calculated element-wise. This explains why

the original code test consumed almost 200 seconds to solve a 86× 103 thou-

sand dofs problem, which is a small amount of dofs considering the size of the

previous tests.

The vectorization of the element stiffness matrices report a 80% reduction on

the time consumed by this task. This result demonstrates that struct type
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4. Overall performance tests

variables are inefficient in the access of the data, and a change of this data

structure could provide an improvement on the computational cost of the

program.

The GPU implementations for medical image analysis procedures involve all

elements of the mesh. All element stiffness matrices, stresses and energy norms

can be calculated using GPU computation, so the impact of this improvements

is higher than in the other type of tests. GPU computing gives in this case

a total 71% time reduction, showing the potential of this techniques for high

performance computation.

4.4 Performance comparison with ANSYSr

The tests made in this section do not pretend to be an accurate comparison

between both codes, but a qualitative measure about where is cgFEM in terms

of computational cost with respect to commercial FE codes.

There were some tests performed in [7] that compared the efficiency of the old

cgFEM code with ANSYSr release 12.1. The results showed that cgFEM could

be up to two times faster than ANSYSr for fine meshes with a high amount

of degrees of freedom.

In this Thesis the new cgFEM code is compared with ANSYSr Academic Re-

search Mechanical, release 14.5. There has been a remarkable improvement in

the efficiency of ANSYSr through this time, so this test will show if cgFEM is

still as efficient as the new code of ANSYSr.
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4.4. Performance comparison with ANSYSr

The problem used to compare the performance of both codes was the hol-

low cylinder used in section 4.1. All analyses were performed using uni-

form meshes, because the mesh h-adaptive refinement procedures are not

robust enough in ANSYSr. Moreover, it is worth to remind that the post-

processing procedure used in cgFEM is considerably more accurate than the

post-processing routine of ANSYSr, as it is explained in [7].

The tests were performed using only one CPU core. In the case of cgFEM ,

both runs, with and without GPU computing, were executed. However, there

is no possibility to enable GPU computing on ANSYSr using the same GPU

devices. ANSYSr only allows NVIDIAr Tesla and Quadro GPU devices,

which are more powerful but considerably more expensive as well. Table 4.5

shows the results of the tests performed.

cgFEM time cgFEM time
Element type DOF with GPU without GPU

Linear 322446 156 239
Quadratic 965470 278 338

Element type DOF ANSYSr time

Linear (Plane42) 382128 286
Quadratic (Plane82) 1181468 335

Table 4.5: Comparison between ANSYSr and cgFEM

Some previous tests with a small amount of dofs report that ANSYSr is quite

more effective than cgFEM when meshes are coarse. But there is little dif-

ference when analyzing fine meshes with a large amount of dofs. Results

show that cgFEM is still, at least, as efficient as ANSYSr when using fine

meshes. As it was said, this comparison only pretends to establish how close

is cgFEM to commercial FE codes in a qualitative way. It is worth to remind

that cgFEM is implemented in an interpreted language, where as ANSYSr is
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4. Overall performance tests

implemented in a compiled language. Therefore, it seems that the cgFEM code

has a lot of potential regarding the reduction of the computational cost.
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Chapter 5

Conclusions

The results shown in this Thesis demonstrate that the efficiency of the cgFEM code

in terms of computational cost has been enhanced by improving all the dif-

ferent areas of the program: pre-processing, resolution and post-processing

routines. It is worth to remark that the effectiveness of cgFEM code for med-

ical image-based analyses has undergone a significant improvement thanks to

the usage of GPU computing.

The procedures shown in this Thesis have settled the basis for an efficient

programming of future developments in the Department of Mechanical and

Materials Engineering, and more specifically for the 3D version of cgFEM ,

FEAVox. Some optimization changes have already been performed on the

FEAVox code, as well as the introduction of GPU computing.
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5. Conclusions

It has been proven in this Thesis that the hierarchical structure of Carte-

sian grids existing in cgFEM is an appropriate environment to develop this

High Performance Computing technologies. Moreover, thanks to the research

made in this Thesis, the data structure of FEAVox has been changed from the

original structure in cgFEM to ease the application of vectorization and GPU

computing techniques.

Finally, some comparison tests with the commercial FE code ANSYSr show

that the cgFEM code, despite being implemented in an interpreted language,

is still in the same order of magnitude regarding computational cost than

commercial compiled codes.
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[8] E Nadal and O A Gonz. Error estimation and error bounding in quantities

of interest based on equilibrated recovered displacement fields. (Eccomas),

2012.
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