

Curso Académico:

ÍNDICE GENERAL

• Documento 1: Memoria

• Documento 2 : Anexo de Cálculo

Documento 3: Planos

Documento 4: Presupuesto

Índice de la memoria

1	OBJ	ETO DEL TRABAJO	1
2	INTE	RODUCCIÓN AL PROYECTO	1
	2.1	Antecedentes	1
	2.2	Motivación	1
3	SITU	ACIÓN Y EMPLAZAMIENTO	2
4	NOF	MATIVA APLICADA	4
5	REQ	UERIMIENTOS ESPACIALES Y CONSTRUCTIVOS	5
	5.1	Distribución en planta	5
6	DES	CRIPCIÓN DE LA SOLUCIÓN ADOPTADA	6
	6.1	Actuaciones previas	7
	6.2	Cimentación	7
	6.3	Solera	7
	6.4	Cerramientos	8
	6.5	Materiales	9
	6.5.3	l Aceros	9
	6.5.2	2 Hormigón	11
	6.6	Estructura	12
	6.6.2	1 Pórtico interior	12
	6.6.2	2 Pórtico de fachada	13
	6.6.3	3 Fachada lateral	13
	6.6.4	4 Cubierta	14
	6.7	Instalaciones. Ventilación y pluviales	15
7	RIRI	IOGRAFÍA	16

Índice del anexo de cálculo

1.	. Mod	delo e	estructural	1
2.	. Mat	erial	es	1
	2.1.	Acei	ros	1
	2.2.	Hori	migón	3
3.	. Acci	ones	sobre el edificio	4
	3.1.	Carg	gas permanentes	4
	3.2.	Sobi	recargas de uso	4
	3.3.	Carg	gas de viento	5
	3.4.	Carg	gas de nieve	9
	3.5.	Pue	nte grúa	11
	3.6.	Sism	no	13
4.	Lista	ado s	obre elementos estructurales	.14
	4.1.	Corr	eas	14
	4.2.	Pórt	ico interior	18
	4.2.	1.	Resultados	18
	4.3.	Pórt	ico de fachada	28
	4.3.	1.	Resultado	28
	4.4.	Fach	nada lateral	37
	4.4.	1.	Resultados	37
	4.5.	Fald	ones	43
	4.5.	1.	Resultados	43
	16	Cim	entación	17

Índice de planos

1.	Plano 1.1 : Plano de localización
2.	Plano 1.2 : Plano de localización
3.	Plano 1.3 : Plano de localización
4.	Plano 2 : Replanteo
5.	Plano 3.1 : Plano de cimentación
6.	Plano 3.2 : Plano de cimentación
7.	Plano 4 : Vista del modelo estructural 3D
8.	Plano 5.1 : Pórtico interior
9.	Plano 5.2 : Pórtico interior
10.	Plano 6 : Pórtico de fachada
11.	Plano 7 : Estructura de fachada lateral
12.	Plano 8 : Estructura de cubierta
13.	Plano 9 : Cerramiento del pórtico de fachada
14.	Plano 10 : Cerramiento de cubierta

15. Plano 11 : Cerramiento de fachada lateral

Índice de presupuesto

Cuadro de precios descompuestos	
Capítulo 1: Adecuación de parcela	
Capítulo 2: Cimentación	3
Capítulo 3: Estructura	5
Capítulo 4: Cerramientos	9
Capítulo 5: Elementos de carpintería y instalaciones	11
Capítulo 6: Equipo Industrial	14
Capítulo 7: Gestión de residuos	14
Indicadores y resumen general del presupuesto	15

RESUMEN

El proyecto consta del diseño de un edificio de estructura metálica con puente grúa para mantenimiento de maquinaria. Abarca el estudio de la parcela adecuada, el diseño y dimensionamiento de los elementos de la estructura metálica con la viga carrilera además de sus elementos de cimentación. Se definen los cerramientos de fachada, de cubierta y la solera.

El proyecto consta de 4 documentos, la memoria descriptiva, el anexo de cálculo, los planos y el presupuesto total del proyecto.

RESUM

El projecte consta del disseny de un edifici metàl·lic de estructura metàl·lica amb pont grua per a manteniment de maquinaria. Abarca el estudi de la parcel·la adequada, el disseny y el dimensionament dels elements de la estructura metàl·lica amb la biga carrilera inclosa a mes dels elements de cimentació. Es defineixen els tancaments de façana, de coberta y la solera.

El projecto consta de 4 documents, la memòria descriptiva, l'annex de càlcul, els plànols y el pressupost total de del projecte.

ABSTRACT

The project consists of designing a building steel structure with bridge crane for maintenance of machinery. Includes the study of the right parcel, the design and sizing of the elements of the metal structure with the runway beam in addition to its foundation elements. Enclosures facade, roof and the floor are defined.

The project consists of 4 documents, specification, calculation Annex, the planes and the total project budget.

Curso Académico:

Índice de la memoria

1	OBJE	TO DEL TRABAJO	1
2	INTR	ODUCCIÓN AL PROYECTO	1
	2.1	Antecedentes	1
	2.2	Motivación	1
3	SITU	ACIÓN Y EMPLAZAMIENTO	2
4	NOR	MATIVA APLICADA	4
5	REQ	UERIMIENTOS ESPACIALES Y CONSTRUCTIVOS	5
	5.1	Distribución en planta	5
6	DESC	CRIPCIÓN DE LA SOLUCIÓN ADOPTADA	6
	6.1	Actuaciones previas	7
	6.2	Cimentación	7
	6.3	Solera	7
	6.4	Cerramientos	8
	6.5	Materiales	9
	6.5.1	L Aceros	9
	6.5.2	2 Hormigón	11
	6.6	Estructura	12
	6.6.1	L Pórtico interior	12
	6.6.2	Pórtico de fachada	13
	6.6.3	B Fachada lateral	13
	6.6.4	1 Cubierta	14
	6.7	Instalaciones. Ventilación y pluviales	15
7	BIBL	IOGRAFÍA	16

1 OBJETO DEL TRABAJO

Este documento es parte del Trabajo Final de Grado (TFG) para la titulación Grado de Tecnologías Industriales.

El objeto del trabajo es el diseño de un edificio industrial con puente grúa, cálculos necesarios, dimensionamiento de la cimentación necesaria y definición de cerramientos de fachada cubierta y solera, situándolo en el polígono industrial del municipio de Xeraco (Valencia).

2 INTRODUCCIÓN AL PROYECTO

2.1 Antecedentes

Una empresa privada quiere construir una nave industrial para la gestión, tratamiento y preparación de cítricos, en concreto naranjas, para su comercialización. Por lo tanto para cumplir con las exigencias de la empresa y de su proceso productivo se construirá un edificio industrial de 1960 m^2 .

2.2 Motivación

La motivación de este trabajo es completar el último curso de grado de la titulación de Ingeniería de Tecnologías Industriales de la Universidad Politécnica de Valencia para poder así tener acceso al Master. Además de que siempre me ha generado interés las asignaturas relativas a la resistencia de materiales y en concreto Tecnología de la Construcción.

3 SITUACIÓN Y EMPLAZAMIENTO

La parcela escogida por la empresa para la realización del proyecto está situada en el municipio Xeraco en la comarca de la Safor y provincia de Valencia, éste municipio se encuentra a unos 60km de la capital Valencia y a unos 8 km de Gandía.

Figura 3.1 Localización 1

Figura 3.2 Localización 2

Figura 3.3 Localización del polígono industrial de Xeraco

Se puede acceder a este municipio desde Valencia por la N-332, además de disponer de una salida de autopista, la AP-7 que está cerca, entre Xeraco y su localidad vecina Xeresa. También se puede acceder por el cercanías de RENFE.

La parcela idónea para la realización del proyecto de construcción de la nave ha sido llamada la Parcela 18.2 que tiene una superficie $7686,41~\text{m}^2$ y un perímetro de 353,91m.

4 NORMATIVA APLICADA

A lo largo del proyecto se han hecho uso y aplicado diferentes normas.

Se ha hecho uso del **Código Técnico de la Edificación** (CTE). El CTE es un conjunto de normas que se aprobaron el 17 de marzo de 2006 en el Real Decreto 314/2006. En el código técnico de la edificación son las normas que establecen los requisitos que se deben cumplir de seguridad y habitabilidad definidas en la Ley de Ordenación de la Edificación.

En la realización del proyecto se ha hecho más hincapié en la aplicación de los siguientes documentos del CTE:

- DB-SE (Documento Básico de Seguridad Estructural)
 - o DB-SE AE (Acciones en la Edificación)
 - o DB-SE A (Acero)

La Instrucción Española del Hormigón Estructural (EHE-08), es el nombre que recibe la normativa española acerca del cálculo y seguridad en estructuras de hormigón. La EHE-08 fue aprobada en el Real Decreto 1247/2008.

- "Barras corrugadas de acero soldable para uso estructural en armaduras de hormigón armado." UNE 36068 del 2011.
- "Construcciones metálicas. Caminos de rodadura de puentes grúa. Bases de cálculo."
 (UNE 76201:1988)

También se ha hecho uso de la normativa urbanística industrial del municipio: Proyecto de plan parcial suelo industrial en Xeraco.

Condiciones de la edificación				
Edificabilidad bruta	$0,50 m^2/m^2$			
Ocupación máxima de parcela	70%			
Retranqueo a fachada	5,00 m			
Retranqueo a lindes	3,00 m			
Altura máxima	12 m			
Reserva aparcamiento interior parcela	1 plaza por cada $100m^2$ construidos			

Tabla 4.1 Condiciones de la edificación del anexo: Cuadro estadístico de la normativa urbanística industrial de Xeraco.

5 REQUERIMIENTOS ESPACIALES Y CONSTRUCTIVOS

5.1 Distribución en planta

Según las necesidades impuestas por el cliente en cuanto al proceso y la superficie requerida para éstos son los siguientes.

El proceso llevado a cabo en la nave empezara con la recepción de los cítricos, que se depositarán en el almacén de materia prima que necesitará $150\ m^2$. Después los cítricos se procederán a lavarse y secarse requiriendo así $49\ m^2$ y $100\ m^2$ respectivamente. A continuación se lleva a cabo la elección del género en buen estado y su ordenación por tamaños dónde se necesitarán $343\ m^2$. Para finalizar los cítricos se envasaran y luego se almacenarán para su posterior transporte a los clientes de ésta empresa, estos dos últimos pasos del proceso exigirán $200\ m^2$ para cada uno.

Además se requerirán: $100m^2$ para control de calidad y los laboratorios, $147~m^2$ para el trabajo administrativo, $100m^2$ para vestuarios y 49 m^2 para cuartos de baño. Sumando todo lo nombrado anteriormente nos da unos 1438 m^2 y con la exigencia de 522 m^2 de espacio para pasillos, nos da un total de 1960 m^2

Con todas las exigencias espaciales, el diseño de la nave y el proceso productivo se procederá a la distribución en planta que describe la Figura 5.1 que podemos observar debajo.

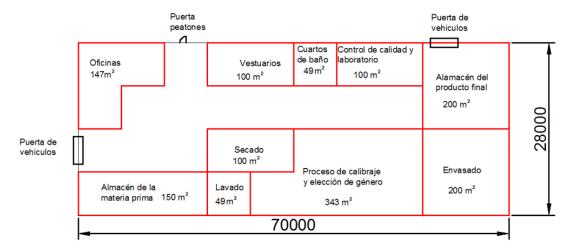


Figura 5.1 Distribución en planta

6 DESCRIPCIÓN DE LA SOLUCIÓN ADOPTADA

La empresa quiere una superficie de nave de 1960 m^2 .

El edificio a proyectar es una nave industrial de estructura metálica, con cubierta a dos aguas y cerramiento con chapa metálica de tipo sándwich en cubierta y paneles de hormigón prefabricado. La nave dispondrá de un puente grúa con una capacidad de 5 toneladas para el mantenimiento de las máquinas o para el trasporte dentro de la nave de material si fuera necesario.

Las dimensiones de la nave son las descritas a continuación.

La nave tendrá una luz de 28 metros, con una profundidad de 70 metros. La altura en cabeza de pilar será de 9 metros, los pilares interiores dispondrás de una ménsula para la viga carrilera a 7,5 metros de altura, la longitud de dicha ménsula será de 0,5 metros. La pendiente de la cubierta de la nave será del 10% dando así una altura en cumbrera de 10,4 metros. La separación entre pórticos de la nave será de 7 metros y a su vez la separación de los pilares de fachada también serán 7 metros.

Existen dos tipologías de pórticos los de fachada y los denominados interiores.

La nave esta además arriostrada con las vigas contraviento tipo Pratt y con arriostramientos formando la Cruz de San Andrés. Además se han arriostrado pórticos interiores tal como indica la Figura 6.1 Nave 3D representada sin figuras por efectos de dilatación.

La cimentación es de zapatas cuadradas y éstas están unidas con vigas de atado. Aquí tenemos una vista general de la nave industrial.

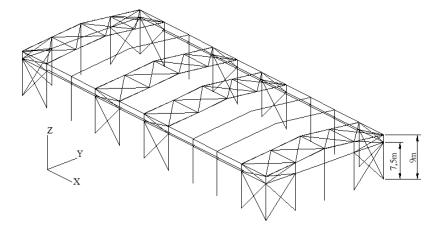


Figura 6.1 Nave 3D representada sin figuras

La nave se va a construir en el polígono industrial de Xeraco, municipio de la provincia de Valencia.

6.1 Actuaciones previas

Disponemos de una parcela sin construcciones previas. Por tanto, primero de todo se deberá realizar el desbroce de la parcela quitando la capa vegetal desde cualquier tipo de planta hasta arbustos, a continuación se procederá a la excavación y extracción de tierra. Una vez hecho esto se nivelara el terreno.

Después de esto se rellenará de zahorra y se compactará para poder así colocar la solera de la nave y el pavimento de la parcela. Para finalizar se transportara la tierra sobrante al vertedero correspondiente más cercano.

6.2 Cimentación

La cimentación constará de zapatas cuadradas unidas entre ellas por vigas de atado. Como se puede distinguir en los planos de cimentación, se distingues 3 tipos de zapatas las de las esquinas, las 3 centrales de las fachadas y el resto es otro tipo de zapatas. Se usara HA-30/B/20/IIa

Las zapatas de las esquinas son de tamaño 220x220x50 con armadura de acero corrugado B 500S de 12 cm de diámetro, que le daremos en los planos el nombre C.

Las 6 zapatas de la fachada que restan serán de 270x270x60 con armadura de 12 cm de diámetro y las zapatas restantes serán de 320x320x65, que nombraremos como A y B respectivamente.

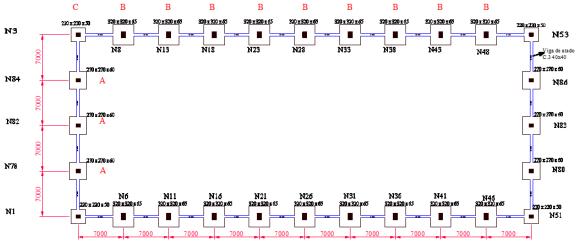


Figura 6.2 Cimentación de la estructura.

6.3 Solera

Para la solera primero se extraerán 784 m^3 de tierra que son lo correspondiente a 1960 m^2 con 40 cm de profundidad. Una vez nivelado el terreno se rellenara con 20 cm de zahorra que son 392 m^3 y luego se creara una solera con 392 m^3 de HM-25 distribuidos sobre la superficie de la nave creando una capa de 20 cm, esta solera tendrá un acabado superficial de fratasado.

6.4 Cerramientos

Por lo referente a cerramientos de cubierta se colocara una cubierta metálica de tipo sándwich con aislante como puede ser de Incoperfil del tipo INCO 30.5 o similares, encima de las correas ZF-200x3.0.

Para los cerramientos verticales colocaremos paneles de hormigón prefabricado de 12 cm de espesor de ancho estándar de 1,5m.

Por encima de las ventanas se colocara chapa lateral haciendo así una vista de fachada cuadrada. Además colocaremos dos puertas para acceso a vehículos una en el pórtico de fachada y otra en la fachada lateral con una puerta para personas tal como se observa en la Figuras 6.2 y Figura 6.3.

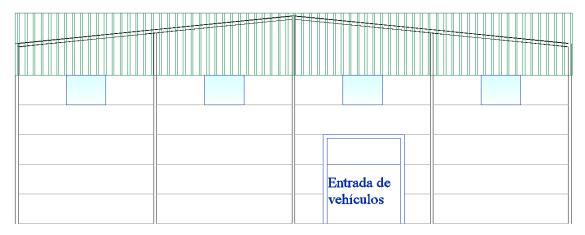


Figura 6.3 Cerramientos en fachada. Alineación 1.

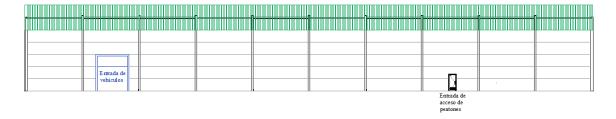


Figura 6.4 Cerramientos en fachada lateral. Alineación E.

6.5 Materiales

6.5.1 Aceros

Para la realización de la estructura metálica vamos a utilizar distintos tipos de aceros: S275, B500S y S235.

Según el Documento Básico SE-A, las características mecánicas mínimas de los aceros UNE EN 10025

	Espesor nominal t (mm)					
DESIGNACIÓN	Tensión de límite elástico f _y (N/mm²)			Tensión de rotura f _u (N/mm²)		
_	t ≤ 16	16 < t ≤ 40	40 < t ≤ 63	3 ≤ t ≤ 100		
S235JR						
S235J0	235	225	215	360		
S235J2						
S275JR						
S275J0	275	265	255	410		
S275J2						

3 Las siguientes son características comunes a todos los aceros:

-	módulo de Elasticidad: E	210.000	N/mm ²
-	módulo de Rigidez: G	81.000	N/mm ²
-	coeficiente de Poisson: ν	0,3	
-	coeficiente de dilatación térmica: α	1,2·10 ⁻⁵	(°C) ⁻¹
_	densidad: ρ	7.850	kg/m ³

Figura 6.5 Características mecánicas mínimas de los acero UNE EN 10025

Los coeficientes parciales de seguridad son:

 γ MO = 1,05 coeficiente parcial de seguridad relativo a la plastificación del material. Para la ELU Resistencia.

γM1 = 1,05 coeficiente parcial de seguridad relativo a los fenómenos de inestabilidad. Para ELU Pandeo.

A lo referente al B500S, las características mecánicas según la UNE 36068 del 2011 y la EHE-08 artículo 32.

Características mecánicas Designación		Tipo de acero		
		B 400 S	B 500 S	
Límite elástico, R _e (Mpa) ^a		≥ 400	≥ 500	
Resistencia a la tracción, $R_{ m m}$ (Mpa) ^a		≥ 440	≥ 550	
Alargamiento de rotura, A_5 (%)		≥ 14	≥12	
Alargamiento total bajo carga	Barra recta	≥ 5,0	≥ 5,0	
máxima, $A_{\rm gt}$ (%)	Rollo ^c	≥ 7,5	≥ 7,5	
Relación $R_{ m m}/R_{ m e}^{\ m b}$		≥ 1,05	≥ 1,05	

^a Para el cálculo de los valores unitarios se debe utilizar la sección nominal.

Figura 6.6 Tabla de características mecánicas de los aceros corrugados

Situación de proyecto	Hormigón Yc	Acero pasivo y activo
Persistente o transitoria	1,5	1,15
Accidental	1,3	1,0

Figura 6.7 Coeficientes parciales de seguridad de los materiales para Estados Límite Últimos según la Tabla 15.3 EHE-

El acero S235 ha sido utilizado en las correas de cubierta de la nave industrial, para los elementos de hormigón armado se ha utilizado el acero corrugado B500S y para toda la estructura metálica como son los pilares, jácena, diagonales, montantes y las correas laterales utilizados el acero S275.

b Relación admisible entre la carga unitaria de rotura y el límite elástico obtenidos en cada ensayo.

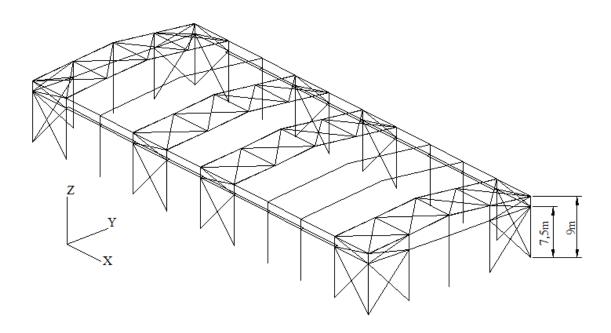
En el caso de aceros procedentes de suministros en rollo, los resultados pueden verse afectados por el método de preparación de la muestra para su ensayo. Por este motivo, pueden aceptarse aceros que presenten valores característicos que sean inferiores en un 0,5% a los que recoge la tabla para estos casos.

6.5.2 Hormigón

Para el hormigón se ha usado las normas del EHE-08.

La clase general de exposición escogida, según la definición de la tabla 8.2.2 del EHE-08, ha sido la lla

CLASE GENERAL DE EXPOSICIÓN		DESCRIPCIÓN	EJEMPLOS		
Clase	Subclase	Designación	Tipo de proceso	DESCRIPCION	EJEMPLUS
No agresiva		I	Ninguno	 Interiores de edificios, no sometidos a condensaciones. Elementos de hormigón en masa. 	 Elementos estructurales de edificios, incluido los forja- dos, que estén protegidos de la intemperie.
Normal Humedad alta		lla	Corrosión de origen diferente de los cloruros	Interiores sometidos a humedades relativas medias altas (> 65%) o a condensaciones. Exteriores en ausencia de cloruros, y expuestos a llu- via en zonas con precipitación media anual superior a 600 mm. Elementos enterrados o sumergidos.	Elementos estructurales en sótanos no ventilados. Cimentaciones. Estribos, pilas y tableros de puentes en zonas, sin impermeabilizar con precipitación media anual superior a 600 mm. Tableros de puentes impermeabilizados, en zonas con sales de deshielo y precipitación media anual superior a 600 mm. Elementos de hormigón, que se encuentren a la intemperie o en las cubiertas de edificios en zonas con precipitación media anual superior a 600 mm. Fonjados en cámara sanitana, o en interiores en cocinas y baños. o en cubierta no rorteoida.


Figura 6.8 Tabla 8.2.2 del EHE-08

Hemos seleccionado debido a la norma el hormigón armado HA-30/B/20/IIa. Tanto como para zapatas y vigas de atado.

Para el Hormigón de limpieza hemos escogido el HL-150/B/20.

También se ha hecho uso de hormigón en masa de resistencia 25N/mm² (HM-25) para la solera.

6.6 Estructura

La estructura de la nave industrial la separaremos en: Pórtico interior, pórtico de fachada, fachada lateral y estructura cubierta.

6.6.1 Pórtico interior

El pórtico interior está compuesto por pilares del tipo IPE 500 de 9 metros de altura con una luz de 28 metros. A 7,5 metros se encuentra la ménsula, de perfil IPE 500 m, donde está apoyada la viga carrilera de perfil IPE 450. Por lo que hace referencia a la cubierta, la jácena es un IPE 500 con una inclinación de cubierta del 10%. Además las correas laterales IPE 140 están dispuestas separadas entre sí un metro y las correas de cubierta ZF200x3.0 separadas cada 1,7 metros tal como se observa en la figura siguiente.

Las placas de anclaje de los pórticos interiores serán de tamaño 500x800x30 con 6 pernos y cartelas tal como se describen en los planos de cimentación, en concreto el plano 3.1.

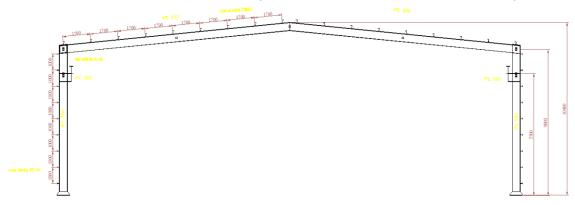


Figura 6.9 Pórtico interior

6.6.2 Pórtico de fachada

El pórtico de fachada está compuesto por 5 pilares IPE 330 y la jácena compuesta por IPE 180, con 10% de pendiente.

El pórtico de fachada está arriostrado tal como se ve en la imagen inferior, las diagonales son perfiles L110x110x8 y la barra horizontal que está arriostrando son un perfil tubular del tipo SHS 120x3.0.

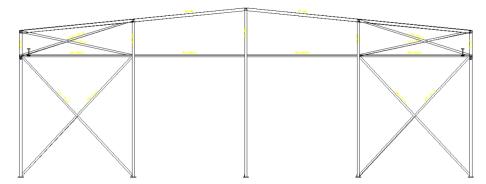


Figura 6.10 Pórtico de fachada

Las placas de anclaje en el pórtico de fachada son dos, las esquinas y las centrales.

Las placas de las esquinas son de tamaño 350x500x20 con 4 pernos. Las placas restantes del pórtico de fachada son de 350x500x20 con 6 pernos y cartelas tal como se detalla en los planos de cimentación.

6.6.3 Fachada lateral

En el pórtico de fachada lateral, la viga perimetral está compuesta por un perfil IPE 180. Por lo referente a los arrostramientos laterales las diagonales superiores están formadas por dos perfiles L 75x75x5 y un perfil horizontal de tipo tubular SHS 120 X 3.0, los arriostramientos inferiores están formados por perfiles en L del tipo L110 x 110x 8. En la figura 6.11 se observa con detalle.

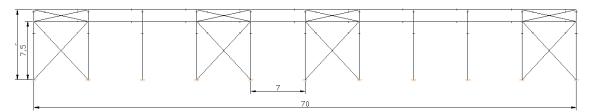


Figura 6.11 Fachada lateral completa

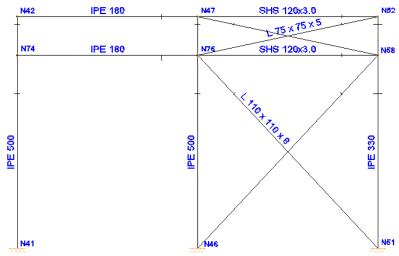


Figura 6.12 Figura 6.13 Mitad de fachada lateral al detalle

6.6.4 Cubierta

La viga contraviento es de tipo Pratt con perfiles L 75 x 75x 5 como diagonales y como montantes perfiles tubulares del tipo SHS 120x3.0 en las siguientes figuras se ve como están dispuestos estos arrostramientos a lo largo del faldón y con mas detalle.

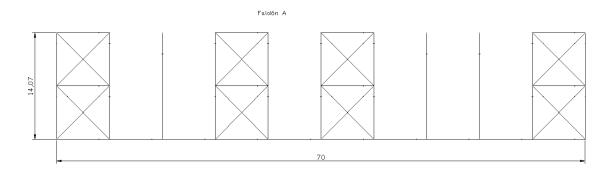


Figura 6.14 Faldón A completo

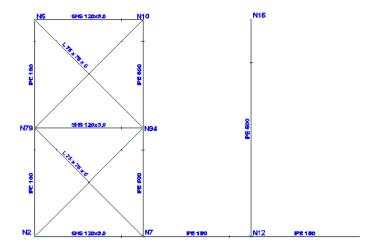


Figura 6.15 Faldón A al detalle

6.7 Instalaciones. Ventilación y pluviales

Se han seguido las directrices de la normas NTE QTS, normas tecnológicas de la edificación. Para la superficie de iluminación necesitada se ha realizado el siguiente cálculo $\mathcal{C}=a.b\frac{S}{100}$, que viene indicado en dicha norma.

Siendo a y b dos coeficientes definidos por ésta con valores de 18,5 y 0,86 respectivamente. Dado que la superficie a iluminar es de 1960 m^2 necesitaremos una superficie de iluminación de C=311.836 m^2 , es decir 312 m^2 .

Para el cálculo del canalón de evacuación pluvial se ha usado las mismas normas tecnológicas .La superficie en m^2 de cubierta que vierte el tramo es de 196 m^2 y como la zona pluvial es del tipo Z tal como se define en dicha norma se necesitara una sección de canalón de evacuación de 160 cm^2 .

Siguiendo la imagen siguiente.

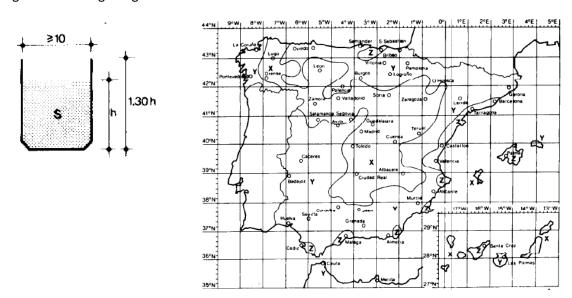


Figura 6.16 Dimensión del canalón extraída de la norma NTE-QTS sección 6.

Dimensionaremos el canalón con 13cm de amplitud y h=13cm. Además daremos 5 cm más de altura a la parte interior para evitar desbordamientos puntuales al interior de la nave. En la figura 6.16 se observan las dimensiones.

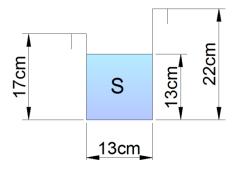


Figura 6.17 Dimensiones del canalón

7 BIBLIOGRAFÍA

- "Apuntes de la Asignatura de Tecnología de la Construcción" (Unidad Docente de Construcciones Industriales) de la ETSII de UPV.
- "Código técnico de la edificación (CTE)" del Real Decreto 314/2006
- Instrucción española de hormigón estructural (EHE-08). Aprobada en el Real Decreto 1247/2008.
- "Curso básico de CYPE 3D" manual de la asignatura Cad para el Cálculo de Estructuras Industriales.
- Norma Tecnológica de la edificación (NTE QTS).
- Normativa urbanística del polígono industrial de Xeraco (Valencia).
- "Productos laminados en caliente de aceros para estructuras. Parte 2: Condiciones técnicas de suministro de los aceros estructurales no aleados." UNE EN 10025.
- "Barras corrugadas de acero soldable para uso estructural en armaduras de hormigón armado." UNE 36068 del 2011.
- "Construcciones metálicas. Caminos de rodadura de puentes grúa. Bases de cálculo."
 (UNE 76201:1988)
- Catálogos de INCOPERFIL: Dossier técnico de cerramientos metálicos.
- http://www.generadordeprecios.info/
- https://www.google.es/maps/

Curso Académico:

Indice del anexo de cálculo

1.	Mod	odelo estructural	1
2.	Mat	ateriales	1
	2.1.	Aceros	1
	2.2.	Hormigón	3
3.	Acci	ciones sobre el edificio	4
	3.1.	Cargas permanentes	4
	3.2.	Sobrecargas de uso	4
	3.3.	Cargas de viento	5
	3.4.	Cargas de nieve	9
	3.5.	Puente grúa	11
	3.6.	Sismo	13
4.	Lista	tado sobre elementos estructurales	14
	4.1.	Correas	14
	4.2.	Pórtico interior	18
	4.2.	2.1. Resultados	18
	4.3.	Pórtico de fachada	28
	4.3.	3.1. Resultado	28
	4.4.	Fachada lateral	37
	4.4.	l.1. Resultados	37
	4.5.	Faldones	43
	4.5.	5.1. Resultados	43
	4.6.	Cimentación	47

1. Modelo estructural

Para el dimensionamiento de los elementos estructurales de la nave industrial y para su posterior comprobación, es decir, para la realización del anexo de cálculo se ha llevado a cabo el uso de software informático. En éste se ha usado el CYPE 2015 software de cálculo de estructuras desarrollado por CYPE ingenieros S.A. con licencia que ha sido otorgada por parte de la Universidad Politécnica de Valencia.

2. Materiales

2.1. Aceros

Para la realización de la estructura metálica vamos a utilizar distintos tipos de aceros: S275, B500S y S235.

Según el Documento Básico SE-A, las características mecánicas mínimas de los aceros UNE EN 10025

	Espesor nominal t (mm)				
DESIGNACIÓN	Tensión de límite elástico f _y (N/mm²)			Tensión de rotura f _u (N/mm²)	
	t ≤ 16	16 < t ≤ 40	40 < t ≤ 63	3 ≤ t ≤ 100	
S235JR					
S235J0	235	225	215	360	
S235J2					
S275JR					
S275J0	275	265	255	410	
S275J2					

3 Las siguientes son características comunes a todos los aceros:

-	módulo de Elasticidad: E	210.000	N/mm ²
-	módulo de Rigidez: G	81.000	N/mm ²
-	coeficiente de Poisson: v	0,3	
_	coeficiente de dilatación térmica: α	1,2.10-5	(°C)-1
_	densidad: p	7.850	kg/m ³

Figura 2.1 : Características mecánicas mínimas de los acero UNE EN 10025

Los coeficientes parciales de seguridad son.

γM0 = 1,05 coeficiente parcial de seguridad relativo a la plastificación del material. Para la ELU Resistencia.

γM1 = 1,05 coeficiente parcial de seguridad relativo a los fenómenos de inestabilidad. Para ELU Pandeo.

A lo referente al B500S, las características mecánicas según la UNE 36068 del 2011 y la EHE-08 artículo 32

Características mecánicas Designación		Tipo d	e acero
		B 400 S	B 500 S
Limite elástico, R _e (Mpa) ^a		≥ 400	≥ 500
Resistencia a la tracción, R _m (Mpa) ^a		≥ 440	≥ 550
Alargamiento de rotura, A5 (%)		≥ 14	≥12
Alargamiento total bajo carga máxima, Ag (%)	Barra recta	≥ 5,0	≥ 5,0
	Rollo ^c	≥ 7,5	≥ 7,5
Relación R _m /R _e ^b		≥ 1,05	≥ 1,05

Para el cálculo de los valores unitarios se debe utilizar la sección nominal.

Figura 2.2 Tabla de características mecánicas de los aceros corrugados

Situación de proyecto	Hormigón Yc	Acero pasivo y activo
Persistente o transitoria	1,5	1,15
Accidental	1,3	1,0

Figura 2.3 Coeficientes parciales de seguridad de los materiales para Estados Límite Últimos según la Tabla 15.3 EHE-08

Belación admisible entre la carga unitaria de rotura y el limite elástico obtenidos en cada ensayo.

En el caso de aceros procedentes de suministros en rollo, los resultados pueden verse afectados por el método de preparación de la muestra para su ensayo. Por este motivo, pueden aceptarse aceros que presenten valores característicos que sean inferiores en un 0,5% a los que recoge la tabla para estos casos.

El acero S235 ha sido utilizado en las correas de cubierta de la nave industrial. Perfiles del tipo ZF200x3.0

Para los elementos de hormigón armado se ha utilizado el acero corrugado B500S.

Para toda la estructura metálica como son los pilares, jácena, diagonales, montantes y las correas laterales utilizados el acero S275.

TIPO DE PERFIL	ELEMENTO
IPE 500	Pilar del pórtico interior.
IPE 450	Viga carrilera.
IPE 330	Pilares del pórtico de fachada.
IPE 180	Jacena del pórtico de facada y viga perimetral.
lpe 140	Correas laterales.
L110x110x8	Diagonal del arriostrmiento del pórtico de fachada.
L 75x75x5	Diagonales superiores del arriostramiento de la fachada lateral y de la viga contraviento
SHS 120x3.0.	Montantes del arriostramiento de la fachada lateral, de la viga contraviento y del pórtico de fachada.

Tabla 2.1 Tipo de perfil de los elementos de la nave.

2.2. Hormigón

Para el hormigón se ha usado las normas del EHE-08.

La clase general de exposición escogida, según la definición de la tabla 8.2.2 del EHE-08, ha sido la IIa.

	CLASE CENE	RAL DE EXPOSICIÓN		DESCRIPCIÓN	EJEMPLOS
Class	Sebclase	Designación	Tipo de proceso	DESCRIPTION.	Searces .
No agresiva		1	Ninguno	Interiores de edificios, no sometidos a condensaciones. Elementos de hormigón en masa.	 Elementos estructurales de edificios, incluido los forja- dos, que estén protegidos de la intemperie.
Normal	Humedad alta	Ta .	Corrosión de origon diferente de los cloruros	Interiores sometidos a humidades relativas medias altas (> 65%) o a condensaciones. Edeforées en assencia de cloruros, y expuestos a iluvia en zonas con precipitación media anual superior a 600 mm. Elementos enterrados o sumergidos.	Elementos estructurales en aditanos no ventilados. Crimentaciones. Estribos, pilas y tableros de puentes en zonas, sin impermeabilizar con precipitación media anual superior a 600 mm. Tableros de puentes impermeabilizados, en zonas con sales de deshielo y precipitación media anual superior a 600 mm. Elementos de homigón, que se encuentren a la intemperio en las cubientas de edificios en zonas con precipitación media anual superior a 600 mm. Forjados en climara sanitaria, o en interiores en cocinas y barios, o en cubiertan oprotegida.

Figura 2.4 Tabla 8.2.2 del EHE-08

Hemos seleccionado debido a la norma el hormigón armado HA-30/B/20/IIa. Tanto como para zapatas y vigas de atado.

Para el Hormigón de limpieza hemos escogido el HL-150/B/20. Se utiliza tal como nos indica la EHE, con objetico de evitar la desecación o proteger la contaminación del hormigón estrucutral que se vertirá más tarde.

3. Acciones sobre el edificio

Las acciones quedan definidas en el documenta básico de seguridad estructural acciones de la edificación (CTE-DB-SE AE).

3.1. Cargas permanentes

El peso propio a tener en cuenta es el de los elementos estructurales, los cerramientos y elementos separadores, la tabiquería, todo tipo de carpinterías, revestimientos (como pavimentos, guarnecidos, enlucidos, falsos techos), rellenos (como los de tierras) y equipo fijo.

Se ha usado como carga de cerramiento 0.15kN/m²

El programa informático utilizado de Cype, Cype 3D, calcula estas automáticamente.

3.2. Sobrecargas de uso

Según el documenta básico de seguridad estructural acciones de la edificación (CTE-DB-SE AE), la sobrecarga de uso es el peso de todo lo que puede gravitar sobre el edificio por razón de su uso.

Categ	goría de uso	Subca	itegorías de uso	Carga uniforme [kN/m²]	Carga concentrada [kN]
	Cubiertas accesibles	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20º	1(4)(6)	2
G	únicamente para con-	GI	Cubiertas ligeras sobre correas (sin forjado) (5)	0.4(4)	1
	servación (3)	G2	Cubiertas con inclinación superior a 40º	0	2

Figura 3.1 Valores característicos de las sobrecargas de uso de la tabla 3.1 del CTE-DB-SE AE

La sobrecarga de uso utilizada ha sido la G1con una carga uniforme de $0.4 \ kN/m^2$

3.3. Cargas de viento

Según el DB-SE-AE la acción del viento genera una fuerza perpendicular a la superficie o una presión estática, que el código técnico la nombra como q_e , esta tiene la siguiente expresión:

$$q_e = q_b \,.\, c_e \,.\, c_p$$

Parámetros definidos como:

 q_b : Es la presión dinámica del viento, depende del emplazamiento geográfico. Definida en el anejo D del documento mencionado arriba. Tiene la expresión de $q_b=0.5\times\delta\times v_b$. La nave está situada en el municipio de Xeraco (Valencia) y por tanto zona eólica A, que corresponde con una v_b de 26 m/s. La densidad del viento δ en general puede adoptarse el valor de 1,25 kg/m3. Por tanto $q_b=0.42~kN/m^2$

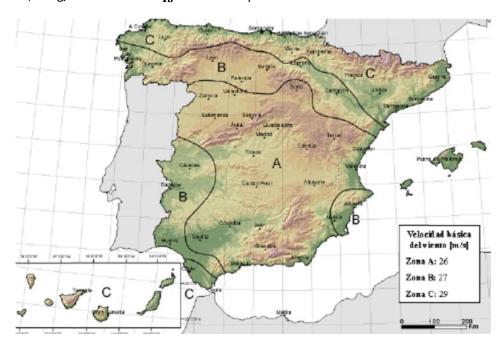


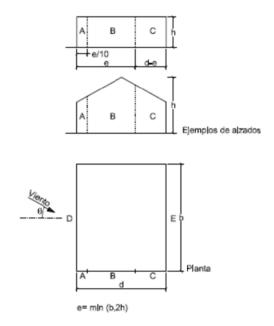
Figura 3.2 Valor básico de la velocidad del viento, Figura D.1 del CTE-DB-SE AE

 c_e : El coeficiente de exposición, variable con la altura del punto considerado, en función del grado de aspereza del entorno donde se encuentra ubicada la construcción. Así pues es Grado de aspereza: IV. Zona urbana, industrial o forestal

			-					
Grado de aspereza del entorno		Altura	del	punto	cons	idera	do (m)
Grado de aspereza del entorno	3	6	9	12	15	18	24	30
40.40								
IV Zona urbana en general, industrial o forestal	1,3	1.4	1,7	1,9	2,1	2,2	2,4	2,6

Figura 3.3 Valores del coeficiente de exposición \mathcal{C}_e , Tabla 3.4 del CTE-DB-SE AE.

Como la altura de coronación son 10,4 metros el valor de $c_{\rm e}$ son 1,8.


 c_p : El coeficiente eólico o de presión, dependiente de la forma y orientación de la superficie respecto al viento, y en su caso, de la situación del punto respecto a los bordes de esa superficie; un valor negativo indica succión.

La tabla D.3 de la norma, permite calcular el coeficiente eólico en todos los paramentos verticales (cerramientos de fachada) de la nave.

Los coeficientes de presión exterior o eólicos, c_p , dependen de:

- La dirección relativa del viento, (h/d)
- La forma del edificio (f,α) , (formas canónicas)
- La posición de elemento considerado (Zona)
- El área de influencia A del elemento que se calcula

Por lo que representa el Viento lateral, dirección del viento $-45^{\circ} \le \theta \le 45$

A	h/d	Zon	a (según	figura),	-45° < θ	< 45°
(m ²)	n/a	A	В	C	D	E
≥ 10	5	-1,2	-0,8	-0,5	0,8	-0,7
	1	**	**	**	**	-0,5
	≤0,25	44	-		0,7	-0,3
5	5	-1,3	-0,9	-0,5	0,9	-0,7
	1	**	-	-	**	-0,5
	≤0,25	**	-		0,8	-0,3
2	5	-1,3	-1,0	-0,5	0,9	-0,7
	1	"	**	."	**	-0,5
	≤0,25	44	**	*	0,7	-0,3
≤1	5	-1,4	-1,1	-0,5	1,0	-0,7
	1	44	-	*		-0,5
	≤0,25	**		**	**	-0,3

Figura 3.4 Representación de paramentos verticales tabla D.3 del CTE-DB-SE AE

Tenemos que la e tiene un valor de 20.8 lo que provoca que $\rm A>10m^2$

$$h = 10.4m; \ d = 28m; \ \frac{h}{d} = 0.371428571$$

Α	В	С	D	E	
-1.2	-0.8	-0.5	0.71619	-0.33238	

Tabla 3.1

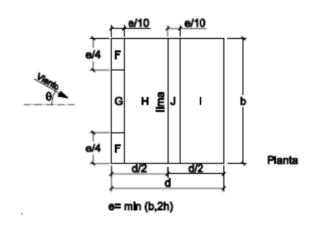


Figura 3.5 Cubiertas a dos aguas dirección -45º ≤ θ ≤ 45º. Tabla D.6 del CTE-DB-SE AE

En nuestro caso la pendiente de la cubierta es10%

Pendiente de la	A (m²)	A (m²) Zona (según figura)						
cubierta α	A (m ²)	F	G	Н	- 1	J		
50	≥ 10	-1,7 +0,0	-1,2 +0,0	-0,6 +0,0	-0,6	0,2 -0,6		
5°	≤ 1	-2,5 +0,0	-2 +0,0	-1,2 +0,0	-0,6	0,2 -0,6		
150	≥ 10	-0,9 0,2	-0,8 0,2	-0,3 0,2	-0,4 +0,0	-1 +0,0		
15°	≤ 1	-2 0,2	-1,5 0,2	-0,3 0,2	-0,4 +0,0	-1,5 +0,0		

Figura 3.6 Tabla de la cubierta a dos aguas dirección -45 $^\circ$ \leq θ \leq 45 $^\circ$. Tabla D.6 del CTE-DB-SE AE

Como a es 10%

F	G	Н	T	J	
-1,3	-1	-0,45	-0,5	-0.4	
0,1	0,1	0,1	-0,3	-0.3	

Tabla 3.2

Por lo que representa al viento frontal, dirección del viento $45^{\circ} \le \theta \le 135^{\circ}$.

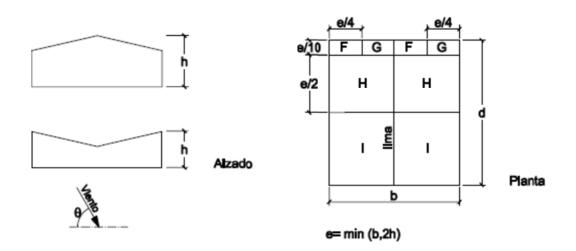


Figura 3.7 Cubiertas a dos aguas dirección 45º ≤ θ ≤ 135º. Tabla D.6 del CTE-DB-SE AE

Pendiente de la	A (m2)		Zona (según figu	ra), -45° ≤ θ ≤ 45°	
cubierta α	A (m²)	F	G	Н	I
5° —	≥ 10	-1,6	-1,3	-0,7	-0,6
5-	≤1	-2,2	-2,0	-1,2	-0,6
150	≥ 10	-1,3	-1,3	-0,6	-0,5
15° —	≤1	-2,0	-2,0	-1,2	-0,5

Figura 3.8 Tabla de la cubierta a dos aguas dirección 45º ≤ θ ≤ 135º. Tabla D.6 del CTE-DB-SE AE

F	G	Н		J	
-1.45	-1.3	-1.3	-0.65	-0.55	

Tabla 3.3

Aquí tenemos las distintas hipótesis de carga de viento:

- V(0°) H1: Viento a 0°, presión exterior tipo 1 sin acción en el interior.
- -V(0°) H2: Viento a 0°, presión exterior tipo 2 sin acción en el interior.
- V(90°) H1: Viento a 90°, presión exterior tipo 1 sin acción en el interior.
- V(180°) H1: Viento a 180°, presión exterior tipo 1 sin acción en el interior.
- V(180°) H2: Viento a 180°, presión exterior tipo 2 sin acción en el interior.
- V(270°) H1: Viento a 270°, presión exterior tipo 1 sin acción en el interior.

3.4. Cargas de nieve

Según el CTE la distribución y la intensidad de la carga de nieve sobre un edificio, o en particular sobre una cubierta, depende del clima del lugar, del tipo de precipitación, del relieve del entorno, de la forma del edificio o de la cubierta, de los efectos del viento, y de los intercambios térmicos en los paramentos exteriores.

Como valor de carga de nieve por unidad de superficie en proyección horizontal, q_n , puede tomarse:

$$q_n = \mu \cdot s_k$$

Siendo: µ coeficiente de forma de la cubierta.

s_k El valor característico de la carga de nieve.

La zona invernal del municipio de Xeraco es 5 y la altura topográfica son 3 metros. Con estos datos según el CTE-DB-SE-AE en la tabla E.2 del anejo E, $S_k=0.2~\frac{kN}{m2}$

Se tienen en cuenta tres hipótesis de distribución asimétrica de la nieve debidas al trasporte de la nieve por efecto del viento.

Una en que es simétrica la carga de nieve, otra que tiene toda la carga a un faldón y la mitad en el otro; y la tercera la recíproca de la última.

Hipótesis aplicadas:

1 - N(EI): Nieve (estado inicial)

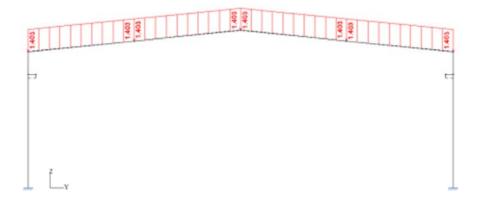


Figura 3.9 Distribución de carga N(EI): Nieve (estado inicial) en Pórtico interior

2 - N(R) 1: Nieve (redistribución) 1

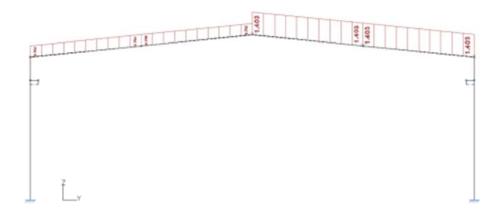


Figura 3.10 Distribución de carga N(R) 1: Nieve (redistribución) 1 en Pórtico interior

3 - N(R) 2: Nieve (redistribución) 2

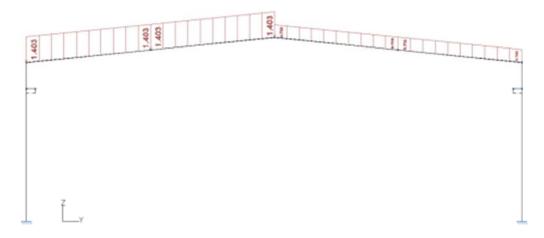


Figura 3.11 Distribución de carga N(R) 2: Nieve (redistribución) 2 en Pórtico interior

3.5. Puente grúa

La nave industrial dispone de un puente grúa. La carga del puente grúa queda excluida explícitamente del CTE en el punto 2 del apartado 1.1 del Documento Básico SE-AE.

Necesitamos un puente grúa de 5 toneladas. Hemos escogido el puente grúa 5000 kg Polipasto de cable GM 1050 H6 FEM 2m Polipasto V =0.8/5 m/min , del fabricante ABUS o un puente grúa de similares características. El puente grúa se apoya con sus dos ruedas a cada lado a la viga carrilera. Ésta a su vez trasmite las cargas a la ménsula

El fabricante nos proporciona esta ficha técnica:

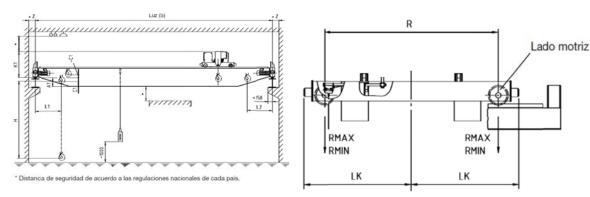


Figura 3.12: Ilustracion del puente grúa de ABUS

Figura 3.13: Ficha técnica del puente grúa escogido de ABUS

											Carga ru	
Polipasto ¹⁾	m	mm	mm	mm	mm	mm	mm	mm	mm	mm	R max	Rmin
0.0,011,11111	28	700	870	-150	660	660	180	9000	4600	2650	53.2	26.8

Figura 3.14 : Ficha técnica del puente grúa escogido de ABUS

Siendo la horizontal un 10% de las verticales.

Tenemos la mayor reacción sobre el pórtico interior cuando las ruedas del puente grúa están separadas simétricamente a R/2 de la ménsula.

Así también tenemos la máxima reacción en la viga carrilera cuando la rueda del puente grúa este a una distancia del pilar de $\,s_p/2+R/2\,$

Introduciendo la categoría de uso E: zona de tráfico y aparcamiento de vehículos ligeros.

En el programa se ha nombrado la hipótesis como: "Puente grúa". Creando 4 disposiciones de carga incompatibles entre sí:

- PG Izq. Puente grúa sobre el apoyo, reacción máxima a la izquierda. 53.2Kn como cargas puntual simétricas a R/2 de la ménsula sobre la viga carrilera, es decir a 2,3m de ésta. 26,8kN como cargas puntual simétricas al lado opuesto del pórtico a R/2 de la ménsula sobre la viga carrilera, es decir a 2,3m de ésta. Como horizontales sobre el mismo punto que las anteriores con valor de una décima de su vertical en dirección hacia la carga máxima, 5.32kN la máxima horizontal y 2.68kN la mínima horizontal.
- PG Der. Puente grúa sobre el apoyo, reacción máxima a la derecha.
 Es el mismo caso que el PG Izq., pero en el lado opuesto del pórtico, en la ménsula opuesta.
- PG Izq Carril. Puente grúa centro de viga carrilera, reacción máxima a la izquierda.
 53.2 kN como cargas puntuales a una distancia R entre éstas, 4.6m, centradas en la viga carrilera respecto las dos ménsulas, es decir, a 1.2m de las ménsulas.
 26.8 kN como cargas puntuales a una distancia R entre éstas, 4.6m, centradas en la viga carrilera respecto las dos ménsulas, es decir, a 1.2m de las ménsulas. En el lado opuesto de la máxima.

Las reacciones horizontales son una décima parte de las verticales aplicadas en el mismo punto que las verticales en dirección hacia la máxima. Tienen un valor de 5.32kN la máxima y 2.68kN la mínima.

 PG Der Carril. Puente grúa centro de viga carrilera, reacción máxima a la derecha. Es el mismo caso que PG Izq Carril, pero en el lado opuesto del pórtico.

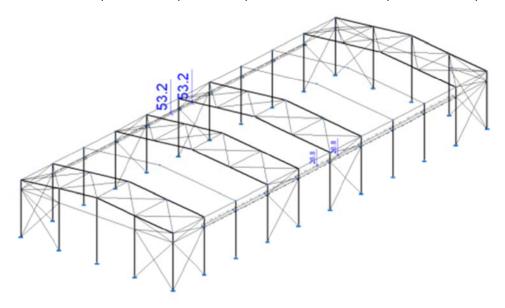


Figura 3.15 Ejemplo del caso PG Der

3.6. Sismo

Un sismo es una sacudida de la tierra producida por la liberación de energía en forma de ondas que produce vibraciones tanto en la superficie como en el interior del suelo. Las causas de estas sacudidas pueden ser naturales, como movimiento de placas tectónicas o más bien artificiales como son explosiones.

Las acciones sísmicas están reguladas en la NSCE, Norma de construcción sismorresistente: parte general y edificación.

Según el NCSE-02 se comprobarán los estados limite últimos con las combinaciones de acciones, incluyendo la acción sísmica, que fijen las diferentes instrucciones, normas y reglamentos para cada tipo de material. Se utilizaran los coeficientes de seguridad y simultaneidad establecidos en ellas.

Aquí tenemos el listado de datos introducidos en el Cype 3D.

Norma utilizada: NCSE-02

Norma de Construcción Sismorresistente NCSE-02

Método de cálculo: Análisis mediante espectros de respuesta (NCSE-02, 3.6.2)

Datos generales de sismo

Caracterización del emplazamiento

a _b : Aceleración básica (NCSE-02, 2.1 y Anejo 1)	$\mathbf{a_b} : \underline{0.070} \mathbf{g}$
K: Coeficiente de contribución (NCSE-02, 2.1 y Anejo 1)	K : 1.00
Time to see to (NICCE 02 2 4), Time III	

Tipo de suelo (NCSE-02, 2.4): Tipo III

Sistema estructural

Ductilidad (NCSE-02, Tabla 3.1): Ductilidad baja

W: Amortiguamiento (NCSE-02, Tabla 3.1) W: 4.00 %

Tipo de construcción (NCSE-02, 2.2): Construcciones de importancia normal

Parámetros de cálculo

Número de modos de vibración que intervienen en el análisis: Según norma

Fracción de sobrecarga de uso : 1.00Fracción de sobrecarga de nieve : 0.50

No se realiza análisis de los efectos de 2º orden

4. Listado sobre elementos estructurales

Para el cálculo del listado de comprobaciones se estudiaran las barras tipo de cada sistema más desfavorable en cada caso. Además se obviaran las comprobaciones que no sean necesarias en cada caso según el CTE DB SE-A.

4.1. Correas

Para las correas se ha utilizado acero S235 para las correas en cubierta de tipo ZF (ZF-200x3.0) y acero S275 para los perfiles IPE(IPE 140) para las correas laterales.

Hemos colocado 20 correas laterales, 10 a cada lado de la nave, separadas a 1m de distancia.

Hemos colocado 18 correas de tipo ZF en la cubierta, 9 a cada lado de la cubierta, están a una distancia entre ellas de 1.7m y a 20cm de distancia tanto en cumbrera como en la cabeza de los pilares.

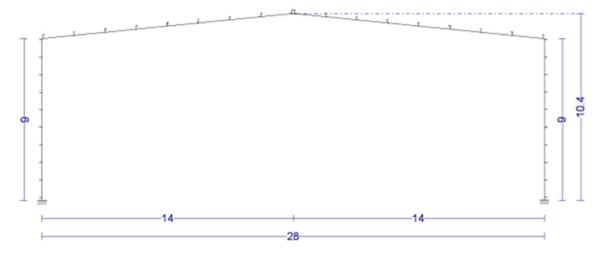
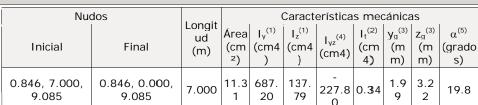


Figura 4.1 Distribución de correas


A continuación se ha adjuntado el listado de comprobación de las correas obtenido con el generador de pórticos del software CYPE.

Datos de correas de cubierta									
Descripción de correas	Parámetros de cálculo								
Tipo de perfil: ZF-200x3.0	Límite flecha: L / 300								
Separación: 1.70 m	Número de vanos: Tres vanos								
Tipo de Acero: S235	Tipo de fijación: Fijación rígida								

Comprobación de resistencia
El perfil seleccionado cumple todas las comprobaciones.
Aprovechamiento: 80.30 %

Barra pésima en cubierta

Perfil: ZF-200x3.0 Material: S235

- Notas:
 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme
 - (3) Coordenadas del centro de gravedad
 - (4) Producto de inercia
 - (5) Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario.

	Pan	deo	Pandeo lateral				
	Plano XY	Plano XZ	Ala sup.	Ala inf.			
β	0.00	1.00	0.00	0.00			
L _K	0.000	7.000	0.000	0.000			
C ₁		-	1.00	00			

Notación:

- β: Coeficiente de pandeo L_K: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

		COMPROBACIONES (CTE DB SE-A)												
Barra	b / t	$\bar{\lambda}$	N _t	N _c	M _y	Mz	M_yM_z	Vy				$NM_vM_zV_v$ V_z	$M_t N M_v M_z V_v V_z$	Estado
pésima en cubierta	b / t ≤ (b / t) _{Máx.} Cumple	N.P. (N.P. (N.P. (x: 0 m η = 80.3	N.P. (N.P. (N.P. (x: 0 m η = 13.6		N.P. ⁽⁸⁾	N.P. ⁽⁹⁾	N.P. ⁽¹⁰⁾	CUMPL E η = 80.3

- b / t: Relación anchura / espesor
- λ̄: Limitación de esbeltez
- N_i: Resistencia a tracción
- M_c: Resistencia a tacción M_y: Resistencia a compresión M_y: Resistencia a flexión. Eje Y M_z: Resistencia a flexión Eje Z M_yM_z: Resistencia a flexión biaxial

- Nyme, Resistencia a corte IV; Resistencia a corte IV; Resistencia a corte ZV; Resistencia a corte ZNM, Mr. Resistencia a tracción y flexión Nr.M, Resistencia a tracción y flexión Nr.M, V.V.; Resistencia a cortente, axil y flexión Mr.M, V.V.; Resistencia a cortante, axil y flexión Mr.M, M.V.V.; Resistencia a torsión combinada con axil, flexión y cortante x: Distancia al origen de la barra
- Coeficiente de aprovechamiento (%) N.P.: No procede

- N.F.: No procede

 Comprobaciones que no proceden (N.P.):

 (1) La comprobación no procede, ya que no hay axil de compresión ni de tracción.
 (2) La comprobación no procede, ya que no hay axil de tracción.
 (3) La comprobación no procede, ya que no hay axil de compresión.
 (4) La comprobación no procede, ya que no hay momento flector.
 (5) La comprobación no procede, ya que no hay flexión biaxial para ninguna combinación.
 (6) La comprobación no procede, ya que no hay esfuerzo cortante.
 (7) No hay interacción entre axil de tracción y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.
 (8) No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.
 - (8) No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.
 (9) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
 (10) La comprobación no procede, ya que no hay momento torsor.

Relación anchura / espesor (CTE DB SE-A, Tabla 5.5 y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 5.2)

Se debe satisfacer:

h/**t** ≤ 250

 $b_1/t \le 90$

 $c_1/t \le 30$

 $b_2/t \le 60$

 $c_2/t \le 30$

h/t: *62.7* **√** b₁ / t : 22.7

c₁ / t: 6.3

b₂ / t: 19.3

c₂ / t: 5.3

Resistencia a flexión. Eje Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

Se debe satisfacer:

$$\eta = \frac{M_{\text{Ed}}}{M_{c,\text{Rd}}} \leq 1$$

η: <u>0.803</u> 🗸

Resistencia a corte Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{b,Rd}}} \leq 1$$

η: ___0.136_____

Comprobación de flecha

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento:

- Flecha: 88.23 %

Coordenadas del nudo inicial: 27.154, 63.000, 9.085 Coordenadas del nudo final: 27.154, 70.000, 9.085

El aprovechamiento pésimo se produce para la combinación de hipótesis 1.00*G1 + 1.00*G2 + 1.00*V(180°) H1 a una distancia 3.500 m del origen en el tercer vano de la correa.

(Iy = 687 cm4) (Iz = 138 cm4)

Datos de correas laterales									
Descripción de correas	Parámetros de cálculo								
Tipo de perfil: IPE 140	Límite flecha: L / 300								
Separación: 1.00 m	Número de vanos: Un vano								
Tipo de Acero: S275	Tipo de fijación: Fijación rígida								

Comprobación de resistencia
El perfil seleccionado cumple todas las comprobaciones.
Aprovechamiento: 32.45 %

Barra pésima en lateral

Perfil: IPE 140 Material: S275									
		Nuc	dos	Longitu	Características mecánicas				
z		Inicial	Final	d (m)	Área (cm²)	(' '	I _z ⁽¹⁾ (cm4	I _t ⁽²⁾ (cm4	
	0.00	00, 70.000, 0.500	0.000, 63.000, 0.500	7.000	16.4 0	541.0 0	44.9 0	2.45	
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme								
ү			Pandeo		Pandeo lateral				
		Plano XY	no XY Plano XZ		Ala sup.		Ala inf.		
	β	0.00	1.00	C	0.00		0.00		
	L _K	0.000	7.000	0	.000		0.00	0	
	C _m	1.000	1.00	1	1.000		1.00	0	
545	C_1 - 1.000 Notación: β : Coeficiente de pandeo L_{k} : Longitud de pandeo (m) C_m : Coeficiente de momentos C_1 : Factor de modificación para el momento crítico								

Ì		COMPROBACIONES (CTE DB SE-A)								Estad							
	Barra	$\overline{\lambda}$	λ_{w}	N _t	N _c	M _Y	Mz	Vz	V _Y	M_YV_Z	_		NM_YM_Z V_YV_Z	M _t	M_tV_Z	M_tV_Y	0
	pésima en lateral	N.P.	$\begin{array}{c} \text{X:} \\ \text{1.167} \\ \text{m} \\ \lambda_{\text{w}} \leq \\ \lambda_{\text{w,max}} \\ \text{Cumple} \end{array}$	N _{Ed} = 0.00 N.P. ⁽²⁾	N _{Ed} = 0.00 N.P. (3)	x: 3.5 m η = 32.5	M _{Ed} = 0.00 N.P. (4)	x: 0 m η = 4.6	V _{Ed} = 0.00 N.P. (5)	x: 1.167 m η < 0.1	N.P.	N.P.	N.P. ⁽⁸⁾	M _{Ed} = 0.00 N.P. ⁽⁹⁾	N.P. (N.P. (CUMP LE η = 32.5

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

$$\eta = \frac{M_{\text{Ed}}}{M_{c,\text{Rd}}} \leq 1$$

0.325

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{c,Rd}}} \leq 1$$

η: 0.046 🗸

Comprobación de flecha

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento:

- Flecha: 95.53 %

4.2. Pórtico interior

Para el listado de cálculos de que nos da CYPE 3D del pórtico tipo hemos seleccionado como barras a estudiar los pilares, la jácena y la viga carrilera.

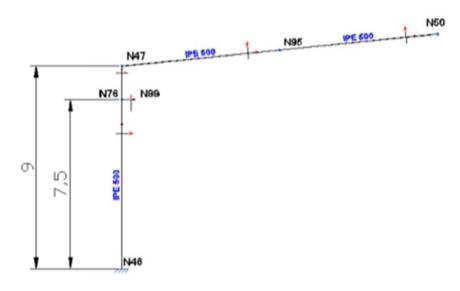


Figura 4.2 Mitad del pórtico interior.

4.2.1. Resultados

4.2.1.1 Barras

Comprobaciones E.L.U. (Completo)

Barra N46/N76

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\lambda} = \sqrt{\frac{A_{\text{ef}} \cdot f_{y}}{N_{\text{cr}}}}$$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N46, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDer)(E)+0.75·N(EI).

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{C,Pd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.05·Q(E)+1.5·V(180°)H2+0.75·N(R)1.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{vd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{ol,y} \cdot f_{vd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{ol,z} \cdot f_{vd}} \leq 1$$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 7.000 m del nudo N46, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

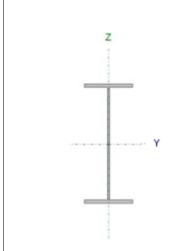
Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

$$V_{\text{Ed,z}} \leq \frac{V_{c,Rd,z}}{2}$$

 $80.89 \text{ kN} \le 385.58 \text{ kN}$

Donde:

 $\mathbf{V}_{\mathbf{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo.


 $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 80.89 kN **V**_{c,Rd,z}: 771.16 kN

Barra N76/N47

Perfil: IPE 500

Material: Acero (S275)

	Nud	os	1 14 1	C	Características	mecánicas	
In	icial	Final	Longitud (m)	Área (c ²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
Ν	176	N47	1.500	116.00	48200.00	2142.00	89.30

Notas:

(1) Inercia respecto al eje indicado

(2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral				
	Plano XY	Plano XZ	Ala sup.	Ala inf.			
β	1.00	1.00	0.00	0. 0			
L _K	1.500	1.500	0.000	0.000			
C_{m}	1.000	1.000	1.000	1.000			
C ₁		_	1.00	00			

Notación:

β: Coeficiente de pandeo

L_K: Longitud de pandeo (m)

C_m: Coeficiente de momentos

C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A_{ef} \cdot f_y}{N_{cr}}}$$

λ̄: 0.39 ✓

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,\text{Ed}}}{N_{c,\text{Rd}}} \leq 1$$

η: <u>0.044</u> ✓

$$\eta = \frac{N_{c,Ed}}{N_{b,Pd}} \le 1$$

η: 0.047 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N76, para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGIzq)(E) + 0.75 \cdot N(EI)$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{C,Rd}} \le 1 \qquad \qquad \eta : \quad \underline{\quad \textit{0.105} \quad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGIzq)(E)+0.75·N(EI).

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

$$\eta : \underline{\quad o.001 \quad \checkmark}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.05·PuenteGrua(PGDer)(E)+1.5·V(0°)H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : ____1.48___ kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

$$\mathbf{V}_{c,Rd} = A_V \cdot \frac{f_{yd}}{\sqrt{2}}$$
 $\mathbf{V}_{c,Rd} : \underline{1032.23} \text{ kN}$

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\begin{split} & \eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ & \eta : \underline{\qquad \qquad \qquad } 0.814 \underline{\qquad \qquad } \checkmark \\ & \eta = \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + K_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot K_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ & \eta : \underline{\qquad \qquad } 0.811 \underline{\qquad } \checkmark \end{split}$$

 $\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{pl,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \le 1$ $\eta : \underline{ 0.510}$ The sequences solicitantes de cálculo pésimos se producen en un punto situado a

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 1.273 m del nudo N76, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

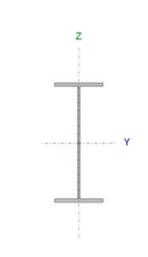
Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGIzq)(E) + 0.75 \cdot N(EI)$.

$$V_{\text{Ed,z}} \leq \frac{V_{c,Rd,z}}{2}$$

 $81.28 \text{ kN} \le 384.79 \text{ kN}$

Donde:

V_{Ed.z}: Esfuerzo cortante solicitante de cálculo pésimo.


V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

kΝ $V_{Ed,z}$: 81.28 **V**_{c,Rd,z}: 769.57 kΝ

Barra N47/N95

Perfil: IPE 500

Material: Acero (S275)

Nuc	los	Longitud	C	Características	mecánicas	
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N47	N95	7.035	116.00	48200.00	2142.00	89.30

- (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral			
	Plano XY	Plano XZ	Ala sup.	Ala inf.		
β	1.00	1.00	0.00	0.00		
L _K	7.035	7.035	0.000	0.000		
C_{m}	1.000	1.000	1.000	1.000		
C ₁		-	1.00	00		

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- C_m: Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A_{ef} \cdot f_y}{N_{cr}}}$$

 $\overline{\lambda}$: 1.83

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\pmb{\eta} = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.252 m del nudo N47, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGIzq)(E) + 0.9 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{CRd}} \le 1 \qquad \qquad \eta : \quad \underline{\qquad 0.142 \qquad \checkmark}$$

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.252 m del nudo N47, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

$$\eta < \underline{\quad o.001 \quad \checkmark}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.5 \cdot V(0^{\circ})H1 + 0.75 \cdot N(R)1$.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\begin{split} & \eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ & \eta : \underline{\qquad o.784 \qquad \checkmark} \\ & \eta = \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ & \eta : \underline{\qquad o.790 \qquad \checkmark} \\ & \eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{pl,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ & \eta : \underline{\qquad o.588 \qquad \checkmark} \end{split}$$

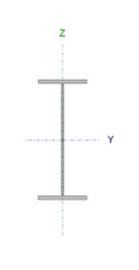
Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.252 m del nudo N47, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGDerCarril)(E) + 0.75 \cdot N(EI)$.

$$V_{Ed,z} \le \frac{V_{c,Rd,z}}{2}$$
 109.47 kN \le 384.64 kN


Donde:

 $V_{\text{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{\text{Ed,z}}$: 109.47 kN $V_{\text{c,Rd,z}}$: Esfuerzo cortante resistente de cálculo. $V_{\text{c,Rd,z}}$: 769.29 kN

Barra N95/N50

Perfil: IPE 500

Material: Acero (\$275)

_								
	Nud	ludos		Características mecánicas				
	Inicial	Final	Longitud (m)	Área cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
	N95	N50	7.035	116.00	48200.00	2142.00	89.30	

- Notas:

 (1) Inercia respecto al eje indicado

 iniciale a torsión un (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.00	3.98	.00	.00	
L _K	0.000	28.000	0.000	0.000	
C_{m}	1.000	1.000 0.560		1.000	
C ₁		-	1.00	00	

Notación:

β: Coeficiente de pandeo

L_K: Longitud de pandeo (m)

C_m: Coeficiente de momentos

C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A_{\text{ef}} \cdot f_{y}}{N_{\text{cr}}}}$$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{\text{c,Ed}}}{N_{\text{c,Rd}}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N95, para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGIzg)(E) + 0.9 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{c,Rd}}} \leq 1$$

0.065

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N95, para la combinación de acciones

 $1.35 \cdot PP + 1.5 \cdot Q(E) + 1.5 \cdot PuenteGrua(PGDerCarril)(E) + 0.75 \cdot N(EI)$.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{CRd}} \le 1$$

$$\eta < \underline{\quad 0.001 \quad \checkmark}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(0°)H1.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\begin{split} \eta &= \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ \eta &= \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + K_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot K_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ \eta &= \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot K_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{pl,y} \cdot f_{yd}} + K_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ \eta &: \underbrace{0.352} \checkmark \end{split}$$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 5.980 m del nudo N95, para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGIzqCarril)(E)+0.75·N(EI).

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·Q(E)+1.5·PuenteGrua(PGDerCarril)(E)+0.75·N(EI).

$$\begin{aligned} \textbf{V}_{\text{Ed,z}} &\leq \frac{\textbf{V}_{\text{c,Rd,z}}}{2} \\ \textbf{V}_{\text{Ed,z}} &: \text{ Esfuerzo cortante solicitante de cálculo pésimo.} \end{aligned} \qquad \begin{aligned} \textbf{V}_{\text{Ed,z}} &: \underline{\textbf{50.47 kN}} \leq \textbf{384.76 kN} \\ \textbf{V}_{\text{Ed,z}} &: \underline{\textbf{50.47}} &\text{kN} \\ \textbf{V}_{\text{c,Rd,z}} &: \underline{\textbf{769.52}} &\text{kN} \end{aligned}$$

Barra N76/N99

Perfil: IPE 500

Material: Acero (S275)

Nudos		1		Características	mecánicas	
Inicial	Final	Longitud (m)	Área cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N76	N99	0.500	116.00	48200.00	2142.00	89.30

Notas:

(1) Inercia respecto al eje indicado
(2) '- ipercia a torsión un

(2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	1.00 1.00		.00	
L _K	0.500	0.500	0.000	0.000	
C _m	1.000	1.000 1.000		1.000	
C_1		-	1.000		

Notación:

β: Coeficiente de pandeo

 L_K : Longitud de pandeo (m)

C_m: Coeficiente de momentos

C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\lambda} = \sqrt{\frac{A_{\text{ef}} \cdot f_{y}}{N_{\text{cr}}}}$$

0.13

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{\text{c,Ed}}}{N_{\text{c,Rd}}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones PP+0.6 PuenteGrua(PGIzqCarril)(E)+0.3 SX+SY.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{c,Rd}}} \leq 1$$

0.005

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.250 m del nudo N76, para la combinación de acciones 1.35-PP.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1 \qquad \qquad \eta : \quad \underline{\quad \textit{0.003} \quad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot PuenteGrua(PGDer)(E) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(R)2$.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\begin{split} \eta &= \frac{N_{t,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ \eta &= \frac{M_{ef,Ed}}{M_{b,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ \eta &= \frac{0.045}{M_{b,Rd,y}} \end{split}$$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N99, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.05 \cdot PuenteGrua(PGDer)(E) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(R)2$.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·PuenteGrua(PGDer)(E).

$$V_{Ed,z} \le \frac{V_{c,Rd,z}}{2}$$
 4.20 kN \le 384.27 kN \checkmark

Donde: $\label{eq:VEd_z} \textbf{V}_{\text{Ed,z}} \text{: Esfuerzo cortante solicitante de cálculo pésimo.}$

 $V_{\text{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{\text{Ed,z}}$: $\underbrace{4.20}_{\text{KN}}$ kN $V_{\text{c,Rd,z}}$: Esfuerzo cortante resistente de cálculo. $\underbrace{V_{\text{c,Rd,z}}}_{\text{c,Rd,z}}$: $\underbrace{768.54}_{\text{KN}}$

4.3. Pórtico de fachada

Se seleccionaran para el cálculo la jácena del pórtico de fachada, el pilar central y una barra del arriostramiento inferior, en concreto para este listado las barras N2/N5, N82/N5 y N1/N90 respectivamente.

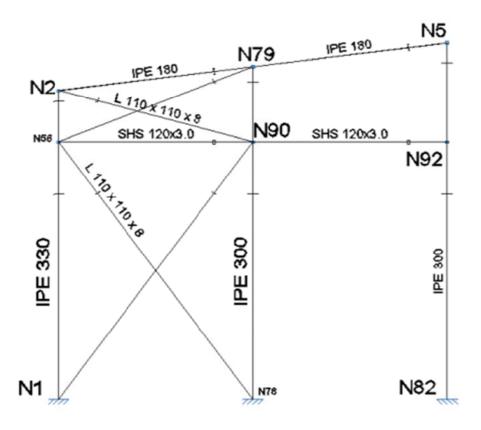
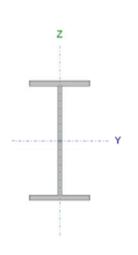


Figura 4.3 Mitad del pórtico de fachada

4.3.1. Resultado

4.3.1.1 Barras


	Flechas									
		ixima absoluta xy áxima relativa xy		áxima absoluta xz áxima relativa xz		,				
Grupo	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)		
N2/N5	3.320	12.18	2.988	13.67	3.320	20.78	2.988	21.21		
INZ/INS	3.320	L/593.4	2.988	L/508.0	3.320	L/593.4	2.988	L/508.0		
N82/N5	7.500	0.17	6.094	15.39	1.875	0.34	6.094	30.13		
1402/143	1.875	L/(>1000)	6.094	L/675.9	1.875	L/(>1000)	6.094	L/675.9		
N1/N90	9.540	0.00	9.540	0.00	9.540	0.00	9.540	0.00		
N 1/N90	-	L/(>1000)	-	L/(>1000)	-	L/(>1000)	-	L/(>1000)		

Comprobaciones E.L.U. (Completo)

Barra N2/N79

Perfil: IPE 180

Material: Acero (\$275)

Nud	os	Longitud	С	aracterística	s mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N2	N79	7.035	23.90	1317.00	101.00	4.79

- Notas:

 (1) Inercia respecto al eje indicado
 (1) inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.00	1.00	0.00	0.00	
L_K	0.000	7.035	0.000	0.000	
C _m	1.000	0.950	1.000 1.000		
C ₁		-	1.00	00	

Notación:

- β: Coeficiente de pandeo
- L_K : Longitud de pandeo (m)
- *C_m: Coeficiente de momentos*
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

1.09

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\pmb{\eta} = \frac{N_{c,\text{Ed}}}{N_{c,\text{Rd}}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

0.075

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N2, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.05 \cdot PuenteGrua(PGIzqCarril)(E) + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(R)2$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

η: 0.120

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 6.641 m del nudo N2, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 0.9 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{CRd}} \le 1$$

$$\eta : \underline{0.003} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N2, para la combinación de acciones 0.8·PP+1.5·V(0°)H2.

$$V_{Ed}$$
: Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.68 kN

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

$$\mathbf{V}_{c,Rd} = A_v \cdot \frac{f_{yd}}{\sqrt{3}}$$
 $\mathbf{V}_{c,Rd} : \underline{229.96} \text{ kN}$

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\begin{split} \eta &= \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1 \\ \eta &= \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1 \\ \eta &= \frac{0.511}{\sqrt{N_{pl,Rd}}} \end{split}$$

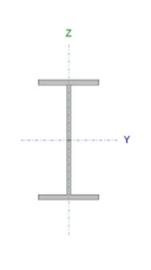
Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 6.641 m del nudo N2, para la combinación de acciones 0.8-PP+1.05-PuenteGrua(PGIzqCarril)(E)+1.5-V(90°)H1.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $V_{c,Rd}$.

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.332 m del nudo N2, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

$$V_{Ed,z} \le \frac{V_{c,Rd,z}}{2}$$
 8.98 kN \le 72.13 kN


V_{Ed,z}: 8.98 $V_{\text{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}: 144.26$

0.511

Barra N79/N5

Perfil: IPE 180

Material: Acero (\$275)

Nud	os	l a maritu d	Características mecánicas			
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N79	N5	7.035	23.90	1317.00	101.00	4.79

- Notas:

 (1) Inercia respecto al eje indicado
 intercia a torsión un
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.00	1.00	0.00	0.00	
L _K	0.000	7.035	0.000	0.000	
C_{m}	1.000	1.000 0.950		1.000	
C_1		-	1.000		

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- C_m: Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

1.09

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{\text{c,Ed}}}{N_{\text{c,Rd}}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.147 m del nudo N79, para la combinación de acciones PP+0.6·Q(E)+0.6·PuenteGrua(PGDerCarril)(E)+SX+0.3·SY.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{c,\text{Rd}}} \leq 1$$

0.123

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.147 m del nudo N79, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 0.9 \cdot V(0^{\circ})H2 + 0.75 \cdot N(R)2.$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

$$\eta : \underline{\qquad o.004 \qquad \checkmark}$$

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.147 m del nudo N79, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H2$.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{t,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \le 1$$

$$\eta : \underline{\qquad o.702 \qquad \checkmark}$$

$$\eta = \frac{M_{\text{ef,Ed}}}{M_{\text{b,Rd,y}}} + \frac{M_{z,Ed}}{M_{\text{pl,Rd,z}}} \le 1$$

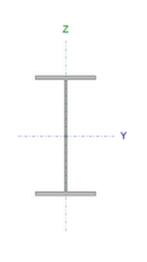
$$\eta: \quad \underline{\qquad 0.614 \qquad }$$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.147 m del nudo N79, para la combinación de acciones 1.35·PP+1.05·Q(E)+1.05·PuenteGrua(PGIzq)(E)+1.5·V(0°)H2+0.75·N(R)2.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.147 m del nudo N79, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 0.9 \cdot V(0^{\circ})H2 + 0.75 \cdot N(R)2$.

$$V_{Ed,z} \le \frac{V_{c,Rd,z}}{2}$$
 17.73 kN \le 72.13 kN


Donde

 $V_{\text{Ed,z}}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{\text{Ed,z}}$: $\begin{array}{ccc} 17.73 & \text{kN} \\ V_{\text{c,Rd,z}} : & 144.26 & \text{kN} \\ \end{array}$

Barra N82/N92

Perfil: IPE 300

Material: Acero (\$275)

Nudos		Longitud	С	aracterística	s mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N82	N92	7.500	53.80	8356.00	604.00	20.10

- Notas:

 (1) Inercia respecto al eje indicado

 '- borcia a torsión ur
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.70	0.97	0.00	0.00	
L _K	5.250	7.280	0.000	0.000	
C_{m}	1.000	1.000 0.550		1.000	
C_1		-	1.000		

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- C_m: Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A_{ef} \cdot f_y}{N_{cr}}}$$

 $\overline{\lambda}$: 1.79

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{\text{c,Ed}}}{N_{\text{c,Rd}}} \leq 1$$

0.039

$$\eta = \frac{N_{c,\text{Ed}}}{N_{b,\text{Rd}}} \leq 1$$

0.152

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N82, para la combinación de acciones 1.35·PP+1.5·Q(E)+0.9·V(180°)H2+0.75·N(EI).

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{c,Rd}}} \leq 1$$

η: 0.132

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N82, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(R)1.$

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{\text{c,Ed}}}{N_{\text{pl,Rd}}} + \frac{M_{\text{y,Ed}}}{M_{\text{pl,Rd,y}}} + \frac{M_{\text{z,Ed}}}{M_{\text{pl,Rd,z}}} \leq 1$$

$$\eta = \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

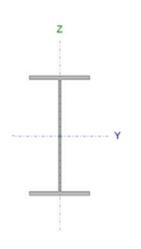
$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{pl,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N82, para la combinación de acciones 0.8·PP+1.05·PuenteGrua(PGIzq)(E)+1.5·V(0°)H1.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

$$\boldsymbol{V_{\text{Ed,z}}} \leq \frac{V_{c,Rd,z}}{2}$$


 $42.45 \text{ kN} \le 161.04 \text{ kN}$

Barra N92/N5

Perfil: IPE 300

Material: Acero (\$275)

Nudos		Longitud	С	aracterística	s mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N92	N5	2.900	53.80	8356.00	604.00	20.10

- Notas:

 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	2.51	0.00	0.00	
L _K	2.900	7.280	0.000	0.000	
C_{m}	1.000	0.550	1.000	1.000	
C_1		=	1.00	00	

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- *C_m: Coeficiente de momentos*
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\lambda} = \sqrt{\frac{A_{\text{ef}} \cdot f_{y}}{N_{\text{cr}}}}$$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \le 1$$

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N92, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot Q(E) + 0.9 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones 1.35·PP+1.05·Q(E)+1.5·V(180°)H2+0.75·N(EI).

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{C,Pd}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(180°)H2+0.75·N(R)1.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \leq 1$$

$$\boldsymbol{\eta} = \frac{N_{c,Ed}}{\chi_y \cdot A \cdot f_{yd}} + k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + \alpha_z \cdot k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

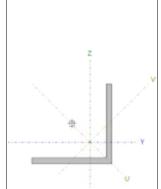
$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{pl,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N92, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.05 \cdot PuenteGrua(PGDerCarril)(E) + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N92, para la combinación de acciones 1.35·PP+1.05·Q(E)+1.5·V(180°)H2+0.75·N(EI).


$$\boldsymbol{V_{Ed,z}} \leq \frac{V_{c,Rd,z}}{2}$$

 $6.86 \text{ kN} \le 161.04 \text{ kN}$

Barra N1/N90

Perfil: L 110 x 110 x 8 Material: Acero (S275)

Nudos					Cara	cterística	as mec	ánicas		
Inicial		Longitud (m)	Area	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	- VZ	I _t ⁽²⁾ (cm4)	. <i>1</i> u	_u	α ⁽⁵⁾ (grados)
N1	N90	10.259	17.10	195.30	195.30	115.19	3.62	25.10	-25.10	-45.0

- Notas:

 (1) Inercia respecto al eje indicado
 (2) inercia a torsión ul
 - (2) Momento de inercia a torsión uniforme
 - (3) Coordenadas del centro de gravedad
 - ⁽⁴⁾ Producto de inercia
 - (5) Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.00	0.00	0.00	0.00	
L _K	0.000	0.000	0.000	0.000	
C _m	1.000	1.000	1.000	1.000	
C ₁		-	1.00	00	

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- *C_m: Coeficiente de momentos*
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{\textbf{A} \cdot \textbf{f}_y}{\textbf{N}_{cr}}}$$

 $\bar{\lambda} < 0.01$

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

$$\pmb{\eta} = \frac{N_{t,\text{Ed}}}{N_{t,\text{Rd}}} \leq 1$$

0.110

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot PuenteGrua(PGIzq)(E) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(R)2.$

4.4. Fachada lateral

Para la realización del listado de cálculo de la fachada lateral se han estudiado la barra perimetral, la barras del sistema de arriostramientos de perfil L tanto superior como inferior y además la barra del arriostramiento de tipo tubular. En concreto N74/N76, N76/N52, N51/N76 y N76/N58.

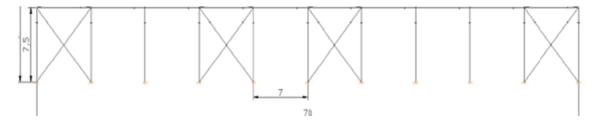


Figura 4.4 Fachada lateral completa

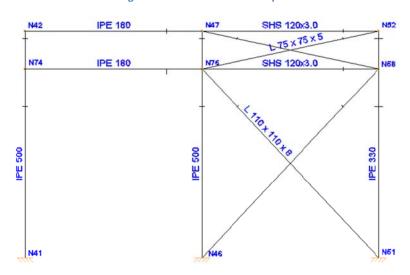
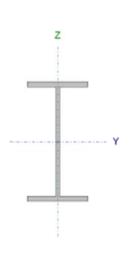


Figura 4.5 Mitad de fachada lateral al detalle

4.4.1. Resultados

4.4.1.1 Barras

Flechas


1											
	Flechas										
	Flecha máxima absoluta xy Flecha máxima relativa xy			Flecha máxima absoluta xz Flecha máxima relativa xz					-3		
Grupo	Pos. (m)	Flecha (mm)		Pos. (m)	Flecha (mm)		Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	
NI7 4 /NI7 /	4.375	C	0.00	3.500		2.10	4.375	0.0	0 3.500		2.10
N74/N76	-	L/(>1000)		3.500	L/(>1000)		-	L/(>1000)	3.500	L/(>1000)	
NI74 /NIEO	4.272	5	5.22	3.418		0.93	4.272	9.2	5 2.990		1.14
N76/N58	4.699	L/(>1000)		3.418	L/(>1000)		4.699	L/(>1000)	3.418	L/(>1000)	
N76/N52	0.823	C	0.00	4.116		0.00	0.823	0.0	0 4.116		0.00
N/0/N52	-	L/(>1000)		-	L/(>1000)		-	L/(>1000)	-	L/(>1000)	
N51/N76	7.451	C	0.00	9.313		0.00	8.692	0.0	0 9.313		0.00
	-	L/(>1000)		-	L/(>1000)		-	L/(>1000)	-	L/(>1000)	

Comprobaciones E.L.U. (Completo)

Barra N74/N76

Perfil: IPE 180

Material: Acero (\$275)

Nudos		Longitud	С	aracterística	s mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N74	N76	7.000	23.90	1317.00	101.00	4.79

- Notas:

 (1) Inercia respecto al eje indicado
 (2) inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	0.00	0.00	0.00	0.00	
L_K	0.000	0.000	0.000	0.000	
C _m	0.400	0.400	1.000	1.000	
C ₁		-	1.00	00	

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- *C_m: Coeficiente de momentos*
- C₁: Factor de modificación para el momento

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

 $\bar{\lambda} < 0.01 \checkmark$

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$$

0.015

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35 PP+1.05 Q(E)+1.05 PuenteGrua(PGIzqCarril)(E)+1.5 V(270°)H1+0.75 N(R)2.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

0.006

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N74, para la combinación de acciones 1.35-PP.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{t,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{pl,Rd,y}} + \frac{M_{z,Ed}}{M_{pl,Rd,z}} \le 1$$

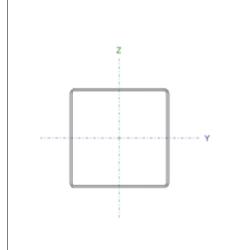
η: 0.058

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M² EN XERACO (VALENCIA)

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 3.500 m del nudo N74, para la combinación de acciones 1.35 PP+1.05 PuenteGrua(PGDer)(E)+1.5 V(0°)H1+0.75 N(R)1.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.438 m del nudo N74, para la combinación de acciones 1.35·PP.


$$V_{\text{Ed,z}} \leq \frac{V_{c,Rd,z}}{2}$$

 $0.76 \text{ kN} \le 72.13 \text{ kN}$

Barra N76/N58

Perfil: SHS 120x3.0 Material: Acero (\$275)

Nudos		Longitud	Características mecánicas						
Inicial	Final	Longitud (m)	Área (cm²)	I _v ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)			
N76	N58	7.000	13.80	311.98	311.98	487.70			

- Notas:

 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral			
	Plano XY	Plano XZ	Ala sup.	Ala inf.		
β	1.00	1.00	0.00	0.00		
L_K	7.000	7.000	0.000	0.000		
C_{m}	0.950	0.950	1.000	1.000		
C_1		-	1.000			

Notación:

- β: Coeficiente de pandeo
- L_K: Longitud de pandeo (m)
- C_m: Coeficiente de momentos
- C1: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

1.70

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,\text{Ed}}}{N_{c,\text{Rd}}} \leq 1$$

0.088

$$\pmb{\eta} = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

0.339

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.05·PuenteGrua(PGDer)(E)+1.5·V(270°)H1.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

$$\eta : \underline{0.006}$$

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 6.835 m del nudo N76, para la combinación de acciones 1.35·PP+1.05·Q(E)+1.05·PuenteGrua(PGDerCarril)(E)+1.5·V(180°)H2+0.75·N(R)1.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1 \qquad \qquad \eta : \quad \underline{\quad \textit{o.008} \quad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI)$.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{pl,Rd}} + \frac{M_{y,Ed}}{M_{el,Rd,z}} + \frac{M_{z,Ed}}{M_{el,Rd,z}} \le 1$$

$$\eta: \quad \boxed{\textbf{0.280}}$$

$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{el,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{el,z} \cdot f_{yd}} \leq 1$$

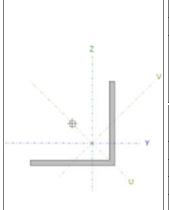
$$\eta : \underline{ \quad \textit{0.547} \quad }$$

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 6.835 m del nudo N76, para la combinación de acciones 1.35·PP+1.05·PuenteGrua(PGDer)(E)+1.5·V(270°)H1.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.5 \cdot V(0^{\circ})H2 + 0.75 \cdot N(EI)$.

$$V_{Ed,y} \le \frac{V_{c,Rd,y}}{2}$$
 0.87 kN \le 52.58 kN


Donde:

 $V_{\text{Ed,y}}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{\text{Ed,y}}$: 0.87 kN $V_{\text{c,Rd,y}}$: Esfuerzo cortante resistente de cálculo. $V_{\text{c,Rd,y}}$: 105.17 kN

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M² EN XERACO (VALENCIA)

Barra N76/N52

Perfil: L 75 x 75 x 5 Material: Acero (\$275)

Nuc	Nudos			Características mecánicas							
Inicial	Final	Longitud (m)			_			y _g ⁽³⁾ (mm)		α ⁽⁵⁾ (grados)	
N76	N52	7.159	7.34	38.77	38.77	22.81	0.60	17.40	-17.40	-45.0	

- Notas:
 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme
 - (3) Coordenadas del centro de gravedad

 - (d) Producto de inercia
 (5) Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario.

	Pan	deo	Pandeo lateral			
	Plano XY	Plano XZ	Ala sup.	Ala inf.		
β	0.00	0.00	000	0.00		
L_K	0.000	.000	0.000	0.000		
C_{m}	1.000	1.000	1.000	1.000		
C ₁		-	1.000			

Notación:

- β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{\pmb{A} \cdot \pmb{f}_y}{\pmb{N}_{cr}}}$$

 $\overline{\lambda}$ < 0.01 \checkmark

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

$$\eta = \frac{N_{t,Ed}}{N_{t,Rd}} \leq 1$$

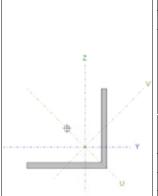
η: 0.106

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones PP+0.6·Q(E)+0.6·PuenteGrua(PGDerCarril)(E)+SX+0.3·SY.

N_{t.Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 20.30 kN

La resistencia de cálculo a tracción N_{t.Rd} viene dada por:


$$\mathbf{N}_{t,Rd} = \mathbf{A} \cdot \mathbf{f}_{yd}$$

 $N_{t,Rd}: 192.24 \text{ kN}$

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M² EN XERACO (VALENCIA)

Barra N51/N76

Perfil: L 110 x 110 x 8 Material: Acero (\$275)

Nu	dos	Longitud			Cara	cterística	as mec	ánicas		
Inicial	Fin I	Longitud (m)	Area	Y		I _{vz} ⁽⁴⁾ (cm4)				$\alpha^{(5)}$ (grados)
N51	N76	10.259	17.10	195.30	195.30	115.19	3.62	25.10	-25.10	-45.0

- Notas:

 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme
 - (3) Coordenadas del centro de gravedad
 - (4) Producto de inercia
 - (5) Es el ángulo que for a el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario.

	Pan	deo	Pandeo lateral			
	Plano XY	Plano XZ	Ala sup.	Ala inf.		
β	0.00	0.00	0.00	0.00		
L _K	0.000	0.000	0.000	0.000		
C _m	1.000	1.000	1.000	1.000		
C ₁		-	1.000			

Notación:

β: Coeficiente de pandeo

L_K: Longitud de pandeo (m)

 C_m : Coeficiente de momentos C_1 : Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

 $\bar{\lambda}$ < 0.01 \vee

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

$$\eta = \frac{N_{t,Ed}}{N_{t,Rd}} \leq 1$$

η: 0.098 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones PP+0.6 PuenteGrua(PGDer)(E)-SX-0.3 SY.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 43.76 kN

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

$$\mathbf{N}_{t,Rd} = A \cdot f_{yd}$$

 $N_{t,Rd}$: 447.86 kN

4.5. Faldones

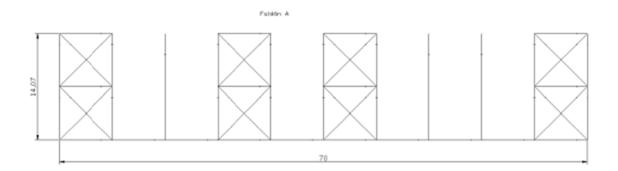


Figura 4.6 Faldón A completo

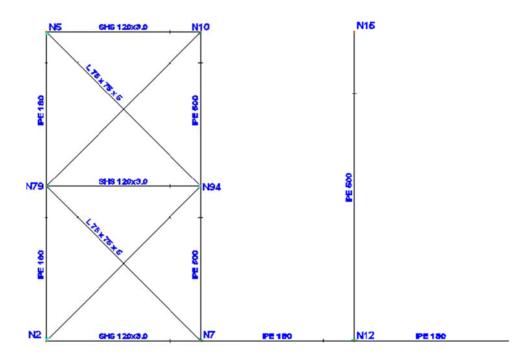


Figura 4.7 Faldón A al detalle

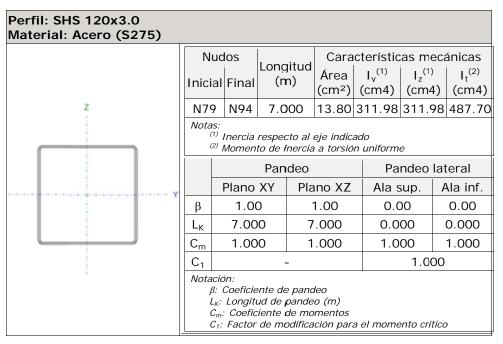
4.5.1. Resultados

4.5.1.1 Barras

Flechas

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.


L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M^2 EN XERACO (VALENCIA)

	Flechas											
				Flecha máxima absoluta xz Flecha máxima relativa xz								
Grupo	Pos. (m)	Flecha (mm)		Pos. (m)	Flecha (mm)		Pos. (m)	Flecha (mm)		Pos. (m)	Flech (mm	
N79/N94	2.188		3.44	3.063		8.51	2.188		5.74	3.063		15.31
11/9/11/94	2.188	L/(>1000)		3.063	L/822.4		2.188	L/(>1000)		3.063	L/822.4	
N2/N94	9.143		0.00	8.533		0.00	5.486		0.00	8.533		0.00
1112/11194	-	L/(>1000)		-	L/(>1000)		-	L/(>1000)		-	L/(>1000)

Comprobaciones E.L.U. (Completo)

Barra N79/N94

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{\pmb{A} \cdot \pmb{f}_y}{N_{cr}}}$$

īλ: 1.70 ✓

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$$

η: *0.087* ****

$$\eta = \frac{N_{c,Ed}}{N_{b,Rd}} \leq 1$$

η: *0.337* 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot PuenteGrua(PGIzq)(E) + 1.5 \cdot V(90^\circ)H1 + 0.75 \cdot N(R)2$.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1$$

$$\eta : \underline{\qquad 0.009 \qquad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N94, para la combinación de acciones 1.35·PP+1.5·V(0°)H2.

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

$$\eta = \frac{V_{Ed}}{V_{c,Rd}} \le 1 \qquad \qquad \eta : \quad \underline{\quad \textit{0.004} \quad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H2$.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + \alpha_y \cdot k_y \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{W_{el,y} \cdot f_{yd}} + k_z \cdot \frac{c_{m,z} \cdot M_{z,Ed}}{W_{el,z} \cdot f_{yd}} \leq 1$$

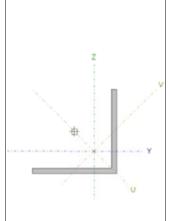
$$\eta : \underline{ 0.605}$$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N79, para la combinación de acciones

 $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.05 \cdot PuenteGrua(PGIzq)(E) + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(R)2.$

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.05 \cdot Q(E) + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(EI)$.


$$V_{Ed,z} \le \frac{V_{c,Rd,z}}{2}$$
 0.84 kN \le 49.96 kN

Donde:

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M² EN XERACO (VALENCIA)

Barra N2/N94

Perfil: L 75 x 75 x 5 Material: Acero (\$275)

Nud	Nudos Características mecánicas								;	
Inicial	Final	(m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _{yz} ⁽⁴⁾ (cm4)	I _t ⁽²⁾ (cm4)	y _g ⁽³⁾ (mm)	z _g ⁽³⁾ (mm)	$\alpha^{(5)}$ (grados)
N2	N94	9.924	7.34	38.77	38.77	22.81	0.60	17.40	-17.40	-45.0

- Notas:
 (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

 - (a) Coordenadas del centro de gravedad
 (b) Producto de inercia
 (c) Producto de inercia
 (d) Producto de inercia
 (e) Es el ángulo que forma el eje principal de inercia U respecto al eje Y, positivo en sentido antihorario.

	Pan	deo	Pandeo lateral			
	Plano XY	Plano XZ	Ala sup.	Ala inf.		
β	0.00	0.00	000	0.00		
L_K	0.000	0.000	0.000	0.000		
C_{m}	C _m 1.000	1.000	1.000	1.000		
C ₁		-	1.000			

Notación:

- β : Coeficiente de pandeo L_K : Longitud de pandeo (m) C_m : Coeficiente de momentos
- C₁: Factor de modificación para el momento crítico

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras de arriostramiento traccionadas no debe superar el valor 4.0.

$$\overline{\pmb{\lambda}} = \sqrt{\frac{\pmb{A} \cdot \pmb{f}_y}{N_{cr}}}$$

 $\bar{\lambda} < 0.01 \checkmark$

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

$$\eta = \frac{N_{t,\text{Ed}}}{N_{t,\text{Rd}}} \leq 1$$

η: 0.230 **V**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.05 \cdot PuenteGrua(PGIzq)(E) + 1.5 \cdot V(90^{\circ})H1 + 0.75 \cdot N(R)2.$

4.6. Cimentación

4.6.1. Elementos de cimentación aislados

Descripción

Referencias	Geometría	Armado
N3, N53, N51 y N1	Zapata rectangular excéntrica Ancho inicial X: 110.0 cm Ancho inicial Y: 110.0 cm Ancho final X: 110.0 cm Ancho final Y: 110.0 cm Ancho zapata X: 220.0 cm Ancho zapata Y: 220.0 cm Canto: 50.0 cm	Sup X: 10Ø12c/22 Sup Y: 10Ø12c/22 Inf X: 10Ø12c/22 Inf Y: 10Ø12c/22
N18, N13, N8, N28, N23, N38, N43, N48, N46, N41, N36, N31, N26, N21, N16, N11 y N6	Zapata rectangular excéntrica Ancho inicial X: 160.0 cm Ancho inicial Y: 160.0 cm Ancho final X: 160.0 cm Ancho final Y: 160.0 cm Ancho zapata X: 320.0 cm Ancho zapata Y: 320.0 cm Canto: 65.0 cm	Sup X: 18Ø12c/17 Sup Y: 18Ø12c/17 Inf X: 18Ø12c/17 Inf Y: 18Ø12c/17
N33	Zapata rectangular excéntrica Ancho inicial X: 160.0 cm Ancho inicial Y: 160.0 cm Ancho final X: 160.0 cm Ancho final Y: 160.0 cm Ancho zapata X: 320.0 cm Ancho zapata Y: 320.0 cm Canto: 65.0 cm	Sup X: 19Ø12c/16 Sup Y: 19Ø12c/16 Inf X: 19Ø12c/16 Inf Y: 19Ø12c/16
N78, N84, N82, N80, N83 y N86	Zapata rectangular excéntrica Ancho inicial X: 135.0 cm Ancho inicial Y: 135.0 cm Ancho final X: 135.0 cm Ancho final Y: 135.0 cm Ancho zapata X: 270.0 cm Ancho zapata Y: 270.0 cm Canto: 60.0 cm	Sup X: 14Ø12c/18 Sup Y: 14Ø12c/18 Inf X: 14Ø12c/18 Inf Y: 14Ø12c/18

Medición

	B 500 S, Ys=1.15	Total
	Ø12	
Longitud (m)	10x2.04	20.40
Peso (kg)	10x1.81	18.11
Longitud (m)	10x2.04	20.40
Peso (kg)	10x1.81	18.11
Longitud (m)	10x2.04	20.40
Peso (kg)	10x1.81	18.11
Longitud (m)	10x2.04	20.40
Peso (kg)	10x1.81	18.11
Longitud (m)	81.60	
Peso (kg)	72.44	72.44
Longitud (m)	89.76	
Peso (kg)	79.68	79.68
	Peso (kg) Longitud (m)	Discrete

PROYECTO DE ESTRUCUTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960 M^2 EN XERACO (VALENCIA)

Referencias: N18, N13, N8, N28, N23, N38, N43, N48, N46, N41, N36, N26, N21, N16, N11 y N6	6, N31,	B 500 S, Ys=1.15	Total
Nombre de armado		Ø12	
Parrilla inferior - Armado X	Longitud (m) Peso (kg)	18x3.04 18x2.70	-
Parrilla inferior - Armado Y	Longitud (m) Peso (kg)	18x3.04 18x2.70	
Parrilla superior - Armado X	Longitud (m) Peso (kg)	18x3.04 18x2.70	-
Parrilla superior - Armado Y	Longitud (m) Peso (kg)	18x3.04 18x2.70	-
Totales	Longitud (m) Peso (kg)	218.88 194.32	194.32
Total con mermas (10.00%)	Longitud (m) Peso (kg)	240.77 213.75	213.75

Referencia: N33		B 500 S, Ys=1.15	Total
Nombre de armado		Ø12	
Parrilla inferior - Armado X	Longitud (m)	19x3.04	57.76
	Peso (kg)	19x2.70	51.28
Parrilla inferior - Armado Y	Longitud (m)	19x3.04	57.76
	Peso (kg)	19x2.70	51.28
Parrilla superior - Armado X	Longitud (m)	19x3.04	57.76
	Peso (kg)	19x2.70	51.28
Parrilla superior - Armado Y	Longitud (m)	19x3.04	57.76
	Peso (kg)	19x2.70	51.28
Totales	Longitud (m) Peso (kg)	231.04 205.12	205.12
Total con mermas	Longitud (m)	254.14	225.63
(10.00%)	Peso (kg)	225.63	

eferencias: N78, N84, N82, N80, N83 y N86		B 500 S, Ys=1.15	Total
Nombre de armado		Ø12	
Parrilla inferior - Armado X	Longitud (m)	14x2.54	35.56
	Peso (kg)	14x2.26	31.57
Parrilla inferior - Armado Y	Longitud (m)	14x2.54	35.56
	Peso (kg)	14x2.26	31.57
Parrilla superior - Armado X	Longitud (m)	14x2.54	35.56
	Peso (kg)	14x2.26	31.57
Parrilla superior - Armado Y	Longitud (m)	14x2.54	35.56
	Peso (kg)	14x2.26	31.57
Totales	Longitud (m) Peso (kg)	142.24 126.28	126.28
Total con mermas (10.00%)	Longitud (m) Peso (kg)	156.46 138.91	138.91

Resumen de medición (se incluyen mermas de acero)

	B 500 S, Ys=1.15 (kg)	Hormigón (m³)	
Elemento	Ø12	HA-30, Yc=1.5	Limpieza
Referencias: N3, N53, N51 y N1	4x79.68	4x2.42	4x0.48
Referencias: N18, N13, N8, N28, N23, N38, N43, N48, N46, N41, N36, N31,N26, N21, N16, N11 y N6	17x213.75	17x6.66	17x1.02
Referencia: N33	225.63	6.66	1.02
Referencias: N78, N84, N82, N80, N83 y N86	6x138.91	6x4.37	6x0.73
Totales	5011.56	155.73	24.74

Juan Salvador Pellicer Roselló

4.6.2. Vigas

Descripción

Referencias	Geometría	Armado
C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33], C [N33-N38], C [N38-N43], C [N43-N48], C [N48-N53], C [N51-N80], C [N80-N83], C [N83-N86], C [N86-N53], C [N51-N46], C [N46-N41], C [N41-N36], C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N1-N78], C [N78-N82], C [N82-N84] y C [N84-N3]	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø20 Inferior: 2Ø20 Estribos: 1xØ8c/30

Medición

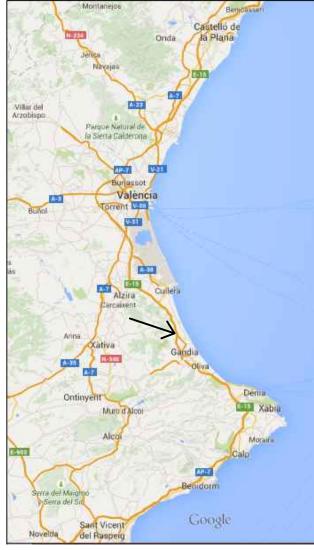
Referencias: C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33], C [N33-N38], C [N38-N43], C [N43-N48], C [N48-N53], C [N51-N80], C [N80-N83], C [N83-N86], C [N86-N53], C [N51-N46], C [N46-N41], C [N41-N36], C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N1-N78], C [N78-N82], C [N82-N84] y C [N84-N3]		B 500 S,	Ys=1.15	Total
Nombre de armado		Ø8	Ø20	-
Armado viga - Armado inferior	Longitud (m) Peso (kg)		2x7.48 2x18.45	
Armado viga - Armado superior	Longitud (m) Peso (kg)		2x7.62 2x18.79	
Armado viga - Estribo	Longitud (m) Peso (kg)	16x1.33 16x0.52		21.28 8.40
Totales	Longitud (m) Peso (kg)	21.28 8.40		82.87
Total con mermas (10.00%)	Longitud (m) Peso (kg)	23.41 9.24		91.16

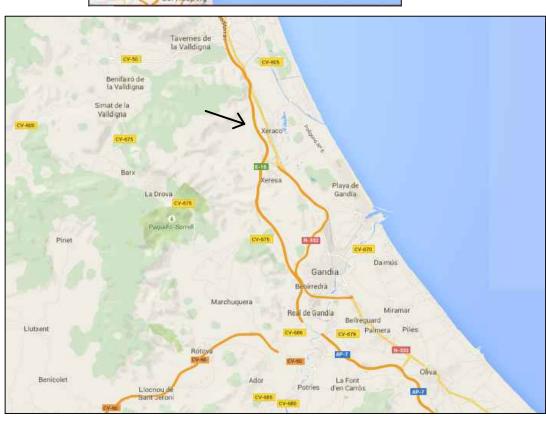
Resumen de medición (se incluyen mermas de acero)

	B 500	S, Ys=1.1	5 (kg)	Hormigón (m³)	
Elemento	Ø8	Ø20	Total	HA-30, Yc=1.5	Limpieza
Referencias: C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33], C [N33-N38], C [N38-N43], C [N43-N48], C [N48-N53], C [N51-N80], C [N80-N83], C [N83-N86], C [N86-N53], C [N51-N46], C [N46-N41], C [N41-N36], C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N1-N78], C [N78-N82], C [N82-N84] y C [N84-N3]		28x81.92	2552.48	28x0.69	28x0.17
Totales	258.72	2293.76	2552.48	19.26	4.82

4.6.3. Placas de anclaje

Referencias	Placa base	Disposición	Rigidizadores	Pernos
Tipo A Pilares centrales del pórtico de fachada	Ancho X: 350 mm Ancho Y: 500 mm Espesor: 20 mm	Posición X: Centrada Posición Y: Centrada	Paralelos X: - Paralelos Y: 2(150x55x10)	6Ø20 mm L=35 cm Patilla a 90 grados
Tipo B Pilares pórtico interior	Ancho X: 500 mm Ancho Y: 800 mm Espesor: 30 mm	Posición X: Centrada Posición Y: Centrada	Paralelos X: - Paralelos Y: 2(200x55x10)	6Ø32 mm L=45 cm Patilla a 90 grados
Tipo C Pilares de la esquina del pórtico de fachada	Ancho X: 350 mm Ancho Y: 500 mm Espesor: 20 mm	Posición X: Centrada Posición Y: Centrada	Paralelos X: - Paralelos Y: -	4Ø20 mm L=40 cm Patilla a 90 grados





Curso Académico:

Índice de planos

- 1. Plano 1.1 : Plano de localización
- 2. Plano 1.2 : Plano de localización
- 3. Plano 1.3 : Plano de localización
- 4. Plano 2 : Replanteo
- 5. Plano 3.1 : Plano de cimentación
- 6. Plano 3.2 : Plano de cimentación
- 7. Plano 4: Vista del modelo estructural 3D
- 8. Plano 5.1 : Pórtico interior
- 9. Plano 5.2 : Pórtico interior
- 10. Plano 6 : Pórtico de fachada
- 11. Plano 7 : Estructura de fachada lateral
- 12. Plano 8 : Estructura de cubierta
- 13. Plano 9 : Cerramiento del pórtico de fachada
- 14. Plano 10 : Cerramiento de cubierta
- 15. Plano 11: Cerramiento de fachada lateral

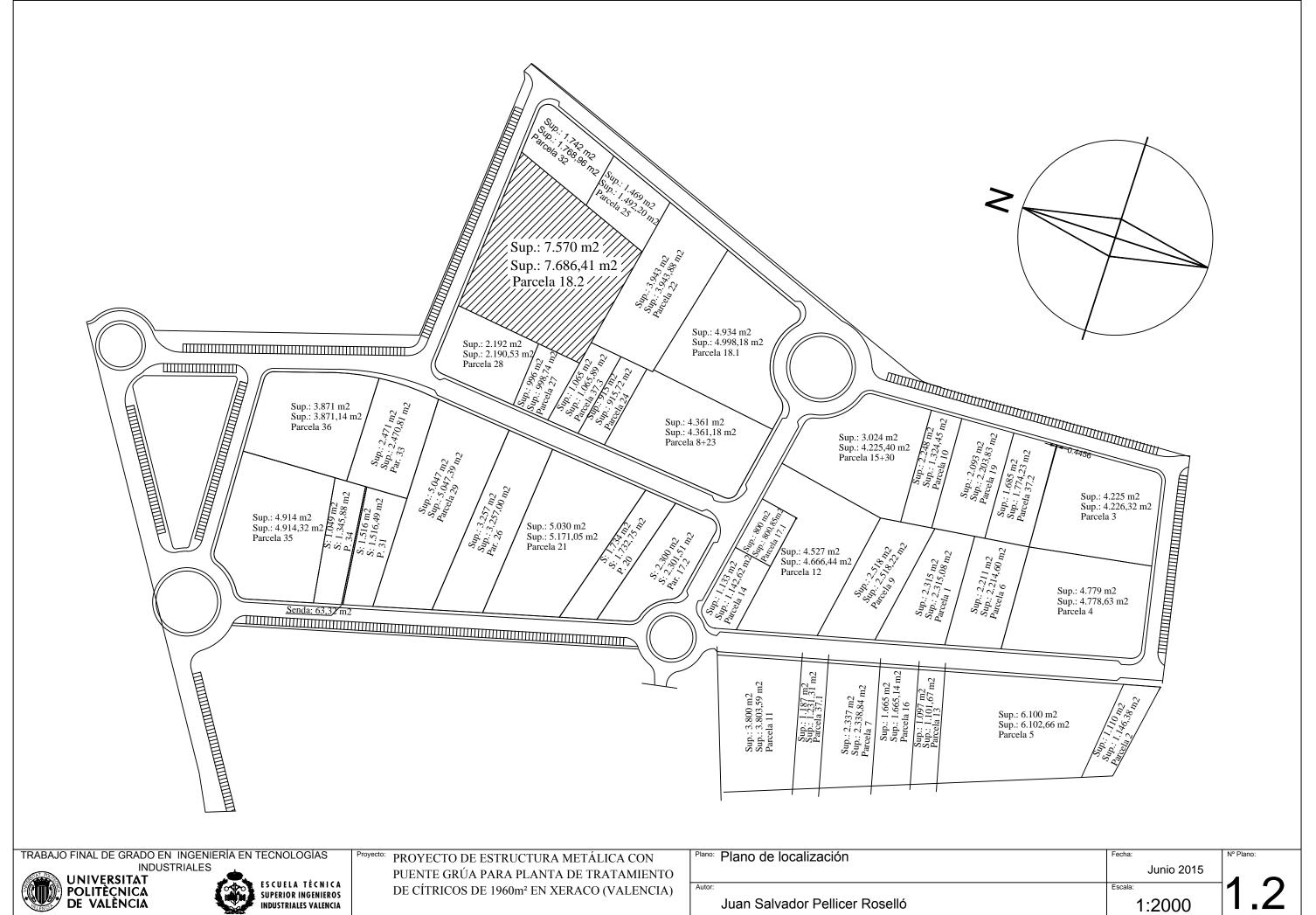
TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

UNIVERSITAT
POLITÈCNICA
DE VALÈNCIA

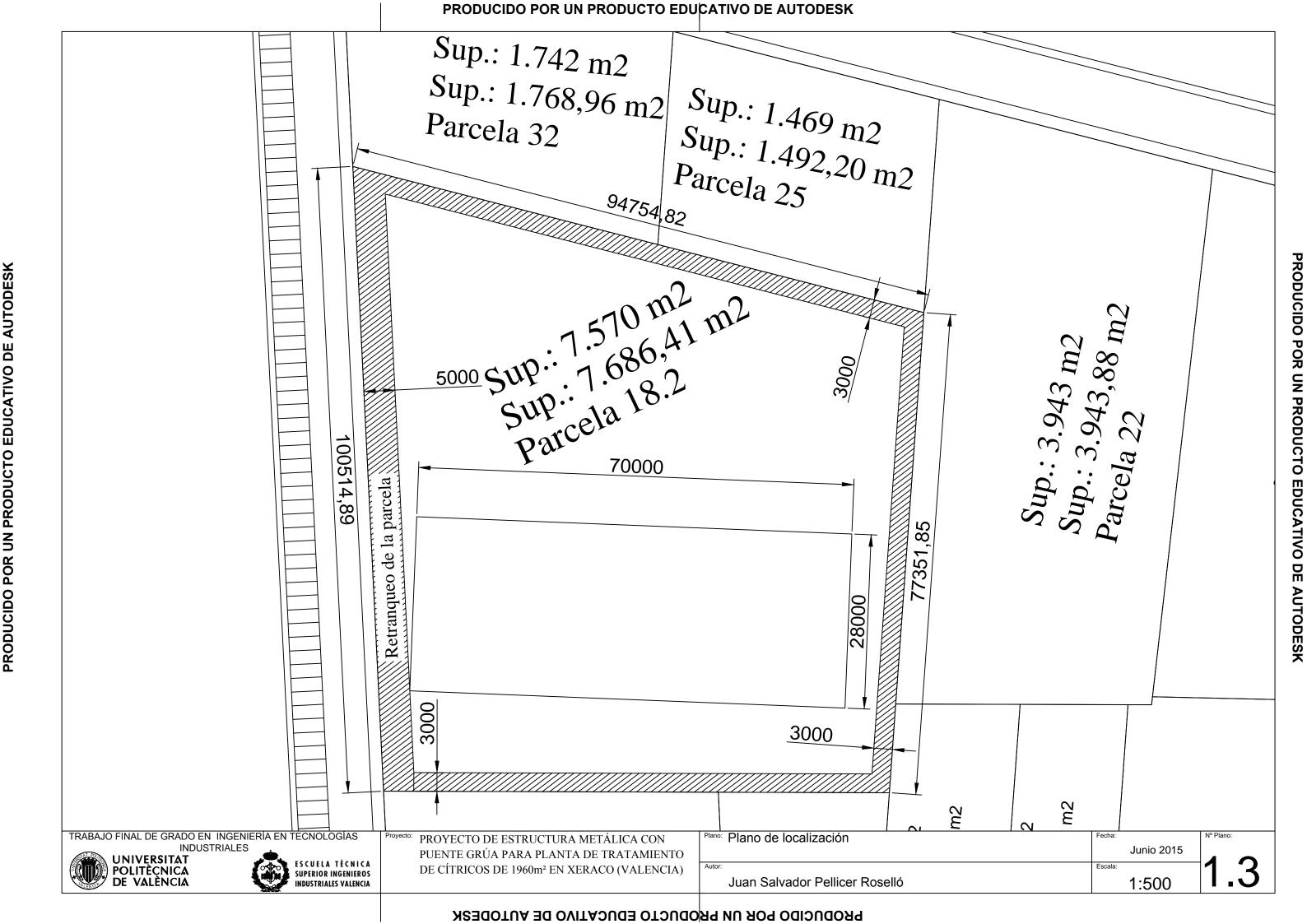
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

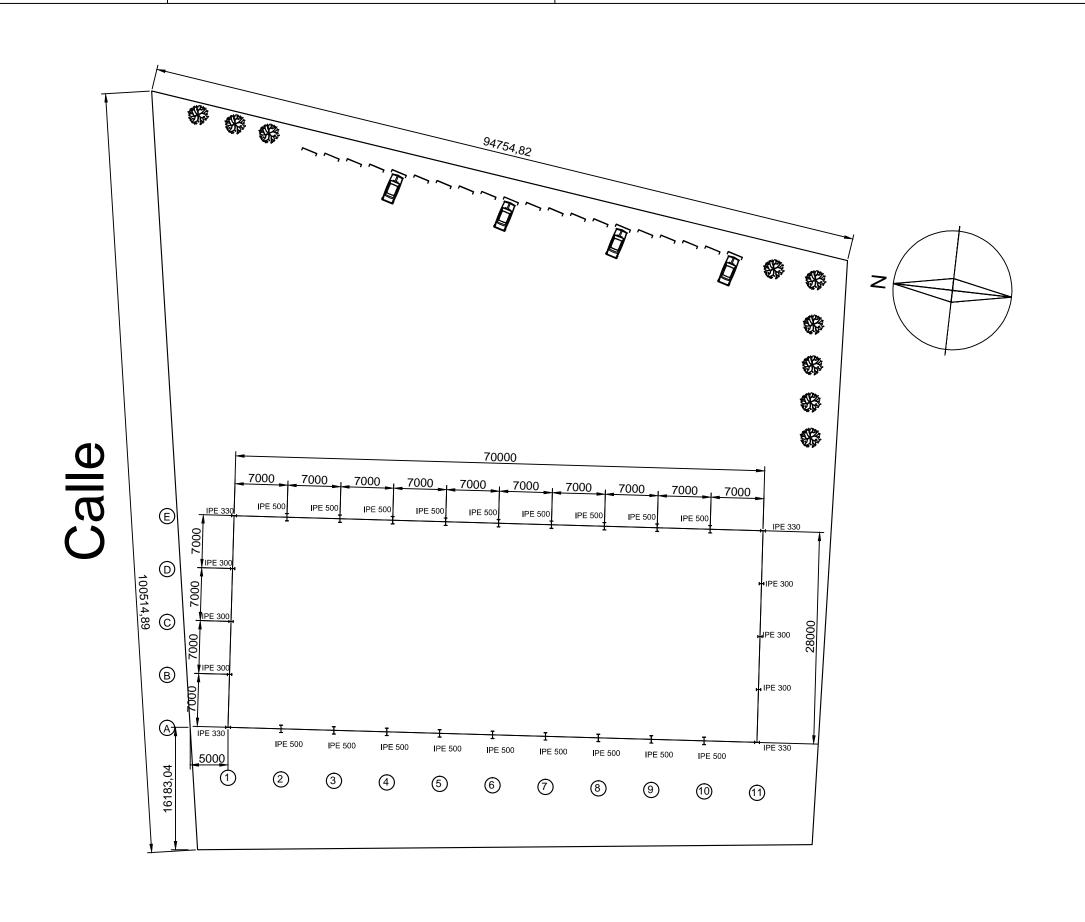
PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano de localización

Autor:


Junio 2015

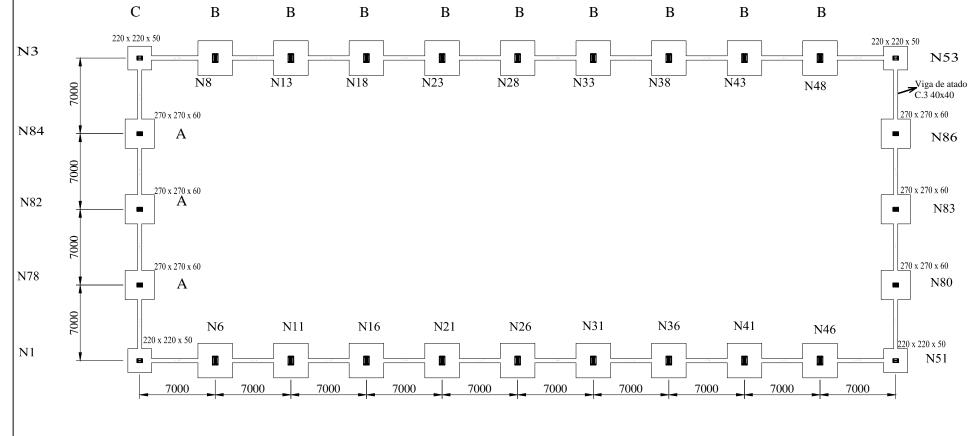
Escala:

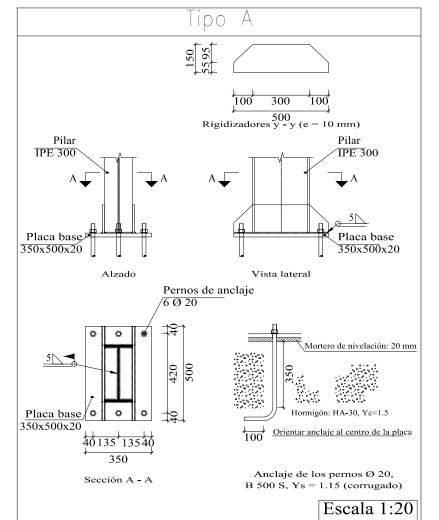

S.E


N° Plano:

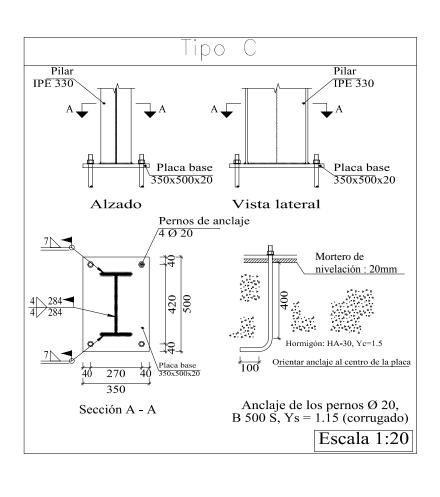
S.E

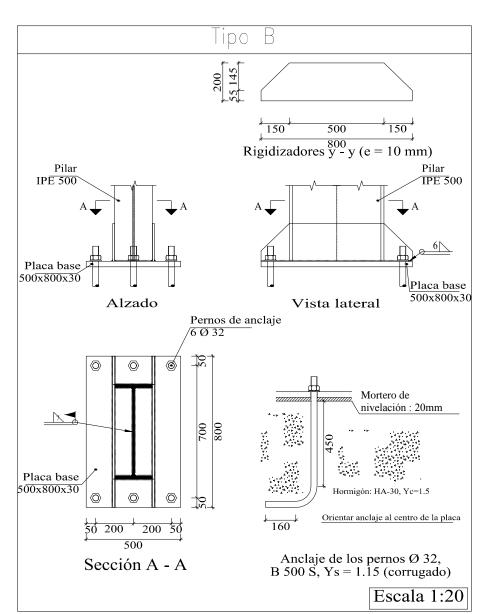
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

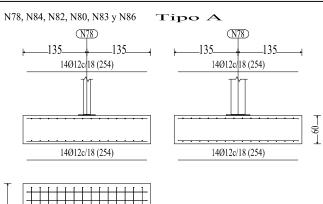

UNIVERSITAT POLITÈCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

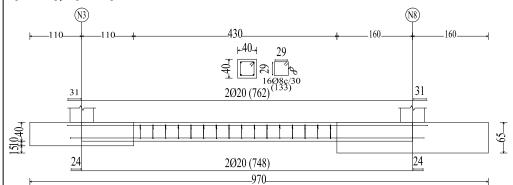

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano: Replanteo


| Fecha: Junio 2015 |
| Autor: Juan Salvador Pellicer Roselló | 1:500 |
| Fecha: Junio 2015 |
| Escala: 1:500 |

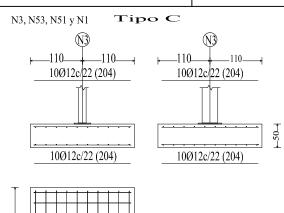
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

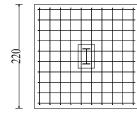


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS **INDUSTRIALES** UNIVERSITAT POLITÈCNICA DE VALÈNCIA

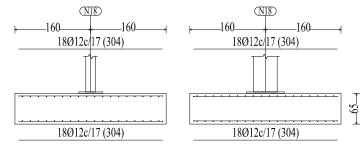

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano de cimentación Junio 2015 Juan Salvador Pellicer Roselló 1:350

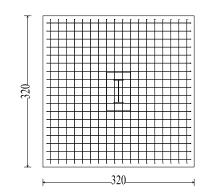
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK




PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

C [N3-N8], C [N8-N13], C [N13-N18], C [N18-N23], C [N23-N28], C [N28-N33], C [N33-N38], C [N38-N43], C [N43-N48], C [N48-N53], C [N51-N80], C [N80-N83], C [N83-N86], C [N86-N53], C [N51-N46], C [N46-N41], C [N41-N36], C [N36-N31], C [N31-N26], C [N26-N21], C [N21-N16], C [N16-N11], C [N11-N6], C [N6-N1], C [N1-N78], C [N78-N82], C [N82-N84] y C [N84-N3]




Resumen Acero Elemento, Viga y Placa de	e anclaje	Long. total (m)	Peso+10% (kg)	Total
B 500 S, Ys=1.15	Ø8	595.8	259	
	Ø12	5119.7	5000	
	Ø20	845.6	2294	7553

N18, N13, N8, N28, N23, N38, N43, N48, N46, N41, N36, N31, N26, N21, N16, N11 y Tipo B

	Cuadro de arranques	
Referencias	Pernos de Placas de Anclaje	Dimensión de Placas de Anclaje
N3, N53, N51 y N1	4 Pernos Ø 20	Placa base (350x500x20)
N18, N13, N8, N28, N23, N33, N38, N43, N48, N46, N41, N36, N31, N26, N21, N16, N11 y N6	6 Pernos Ø 32	Placa base (500x800x30)
N78, N84, N82, N80, N83 y N86	6 Pernos Ø 20	Placa base (350x500x20)

Características de los materiales - Zapatas de cimentación											
Materiales					Horm	igón			Acero		
Materiales			Cont	rol		Características Control Carac			cterísticas		
Elemento Zona/Planta	Nivel Control	Coef. Ponde.	Tipo	Consistencia	Tamaño máx. árido	Exposición Ambiente	Recubrimiento nominal	Recubrimiento nominal sobre el terreno	Nivel Control	Coef. Ponde.	Tipo
Zapatas	Estadístico	γ _{c=1.50}	HA-30	Plástica a blanda (9-15 cm)	30 mm	Ha	25mm	25mm	Normal	γ s=1.15	B500S
Vigas de atado	Estadístico	γ _{c=1.50}	HA-30	Plástica a blanda (9-15 cm)	30 mm	IIa	25mm	25mm	Normal	γ s=1.15	B500S
	Estadístico	γ _{c=1.50}	на	Plástica a blanda (9-15 cm)	30/40 mm				Normal	y s=1.15	BS
Ejecución (Acciones)	Normal	Normal G=1.35 Adaptado a la Instrucción EHE									

Control Estadístico en EHE, equivale a control normal Solapes según EHE El acero utilizado deberá estar garantizado con un distintivo reconocido: Sello CIETSID, CC-EHE,

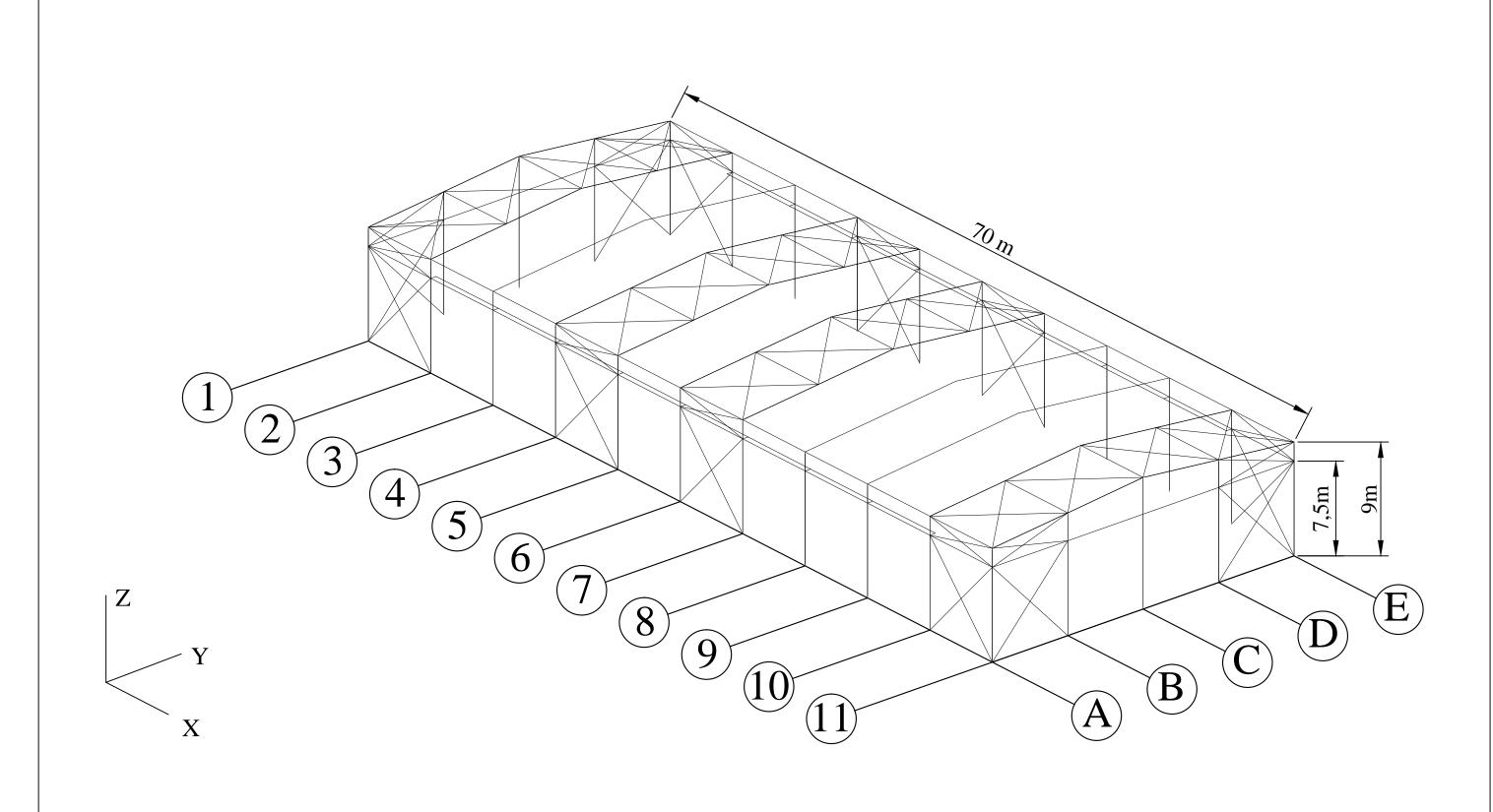
1a. - Recubrimiento inferior contacto terreno ≥ 8 cm.
 1b. - Recubrimiento con hormigón de limpieza 4 cm.
 2. - Recubrimiento superior libre 4/5 cm.
 3. - Recubrimiento lateral contacto terreno ≥ 8 cm.
 4. - Recubrimiento lateral libre 4/5 cm.

Datos geotécnicos

Tensión admisible del terreno considerada = 0.200 MPa (2.04Kg/cm2)

Longitudes	1	1			- 1	• 1	т 1
Longitudes	ae	solane	en	arrangu	ie de	nuares	ı n

Ш	Armadura	Sin accione	s dinámicas	Con accione	es dinámicas	1	
ı	Aimadura	B 400 S	B 500 S	B 400 S	B 500 S		
ı	Ø12	25 cm	30 cm	40 cm	50 cm		
ı	Ø14	40 cm	45 cm	50 cm		Nota: Válido para hori Si Fck ≥ 30 N/mm2:	
ı	Ø16	45 cm	50 cm	60 cm	70 cm		
ı	Ø20	60 cm	65 cm	80 cm	100 cm		
ı	Ø25	80 cm	100 cm	110 cm	130 cm		


CUADRO DE VIGAS DE ATADO C.3 Arm. sup.: 2Ø20 Arm. inf.: 2Ø20 Estribos: 1xØ8c/30

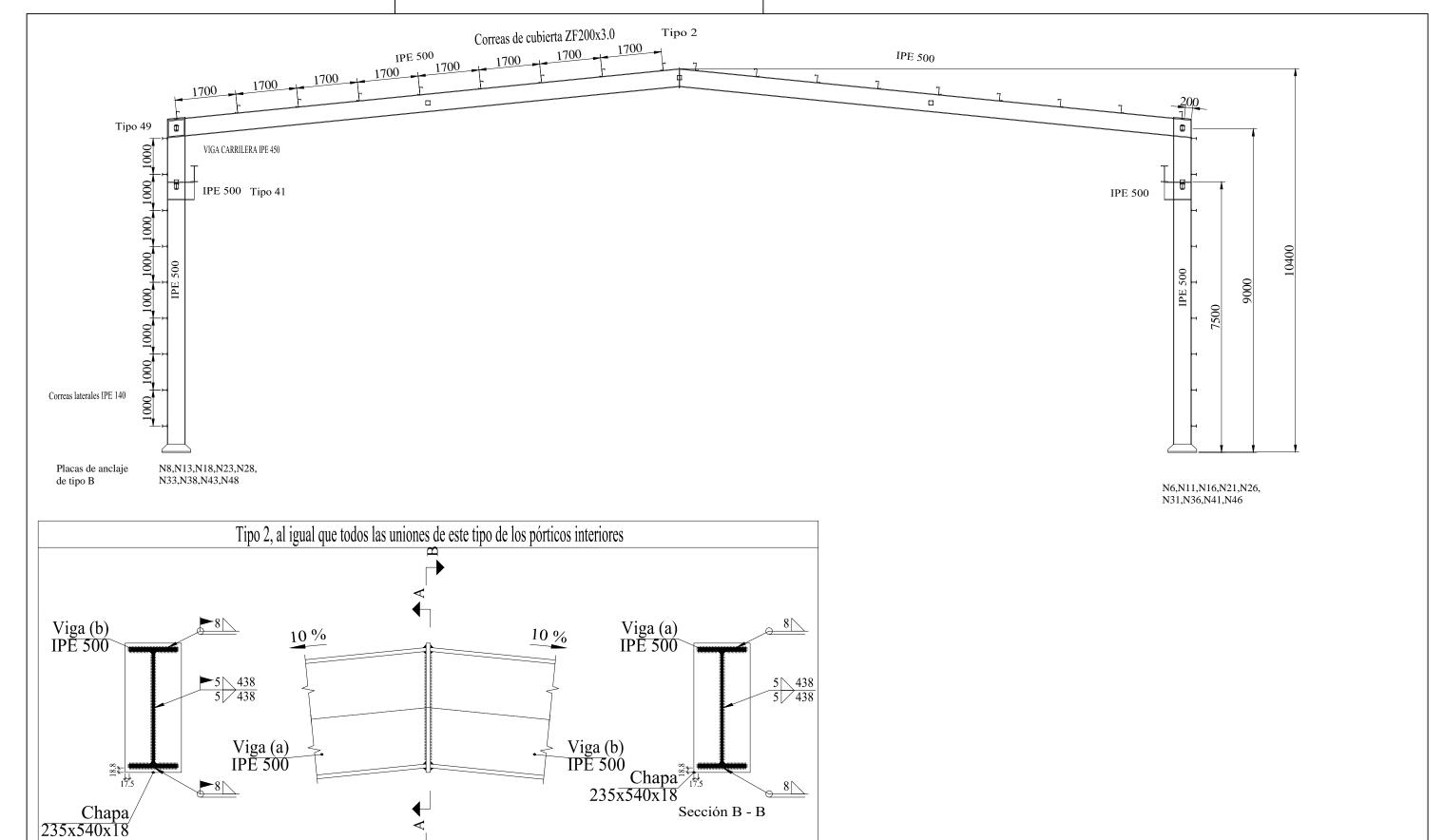
TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS **INDUSTRIALES**

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)

Plano: Plano de cimentación	Fecha: Junio 2015	Nº Plano:
Autor: Juan Salvador Pellicer Roselló	Escala: 1:8	3.2

Alineación 1 y 11	Pórtico de fachada
Alineación de 2 a 10	Pórticos interiores
Alineación A y E	Fachada lateral

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS
INDUSTRIALES
UNIVERSITAT
POLITÈCNICA
DE VALÈNCIA


TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS
INDUSTRIALES VALENCIA

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)

Plano: Vista del modelo estructural en 3D	Fecha: Junio 2015	Nº Plano:
Autor:	Escala:	
Juan Salvador Pellicer Roselló	1:300	—

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

UNIVERSITAT POLITÈCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

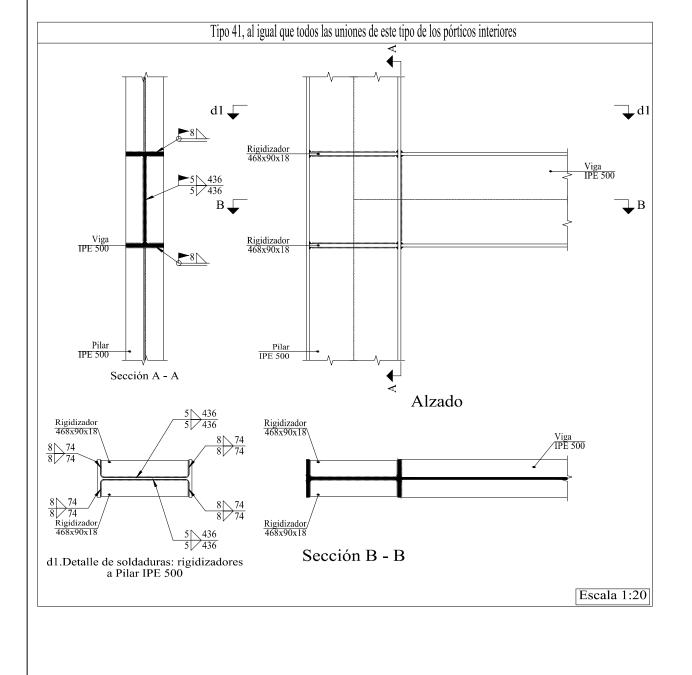
Sección A - A

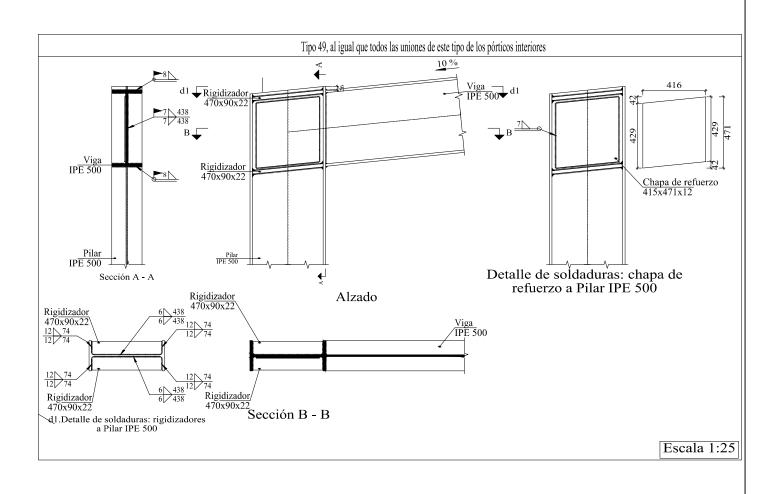
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)

Alzado

Plano: Pórtico Interior


Fecha:
Junio 2015


Sunio 2015

Escala:
1:100

Tunio 2015

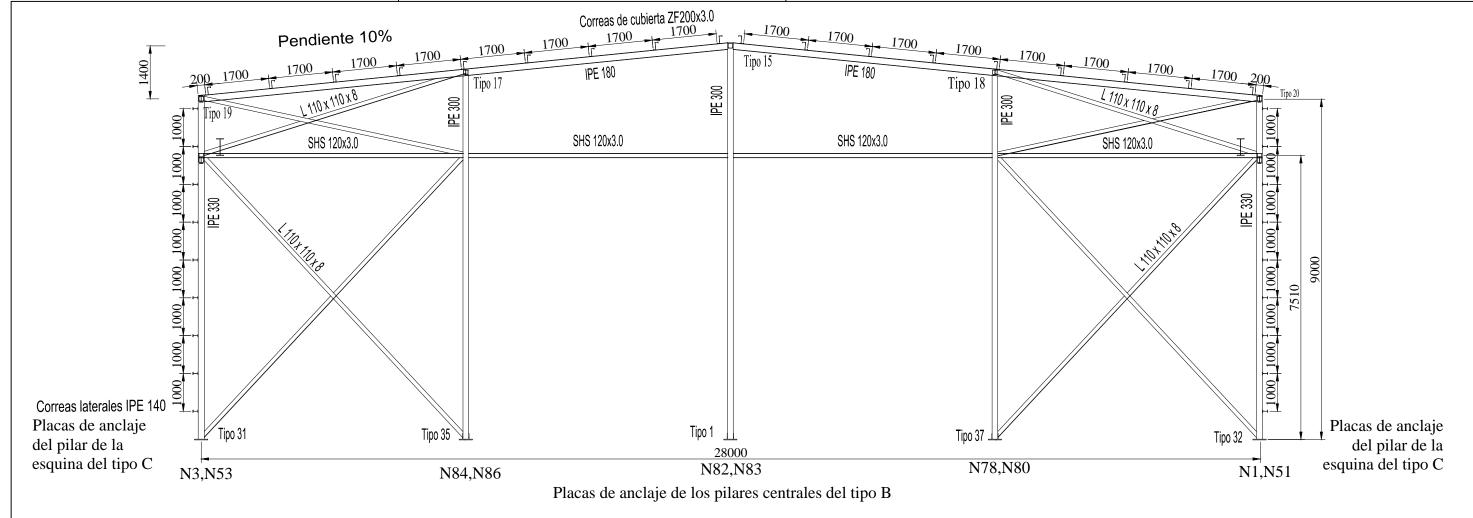
Escala 1:15

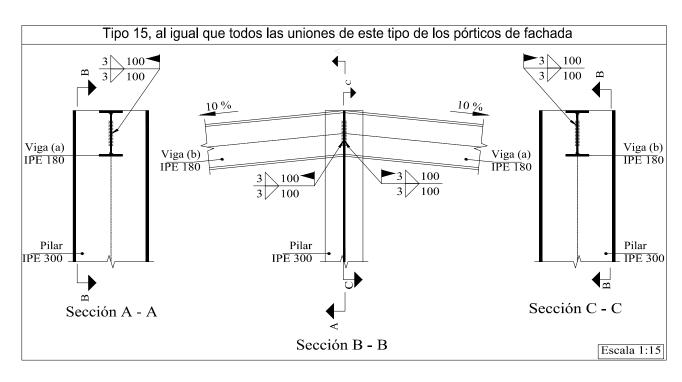
TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

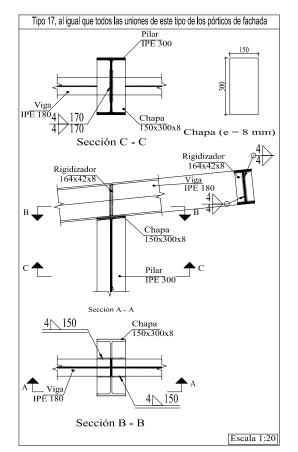
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

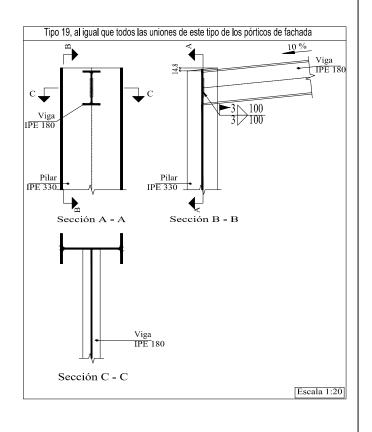
PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano: Pórtico Interior


Autor:


Junio 2015


Escala:


Varias

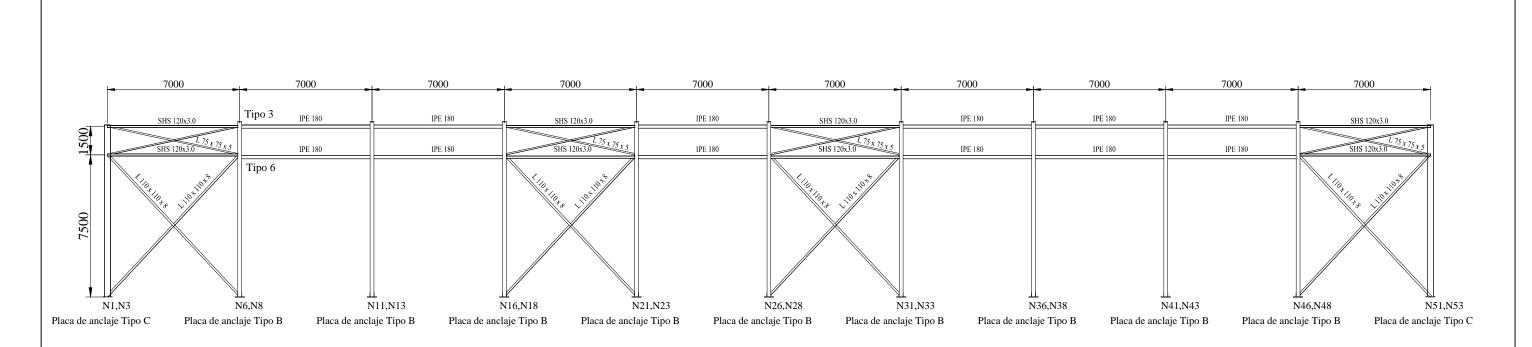
Varias

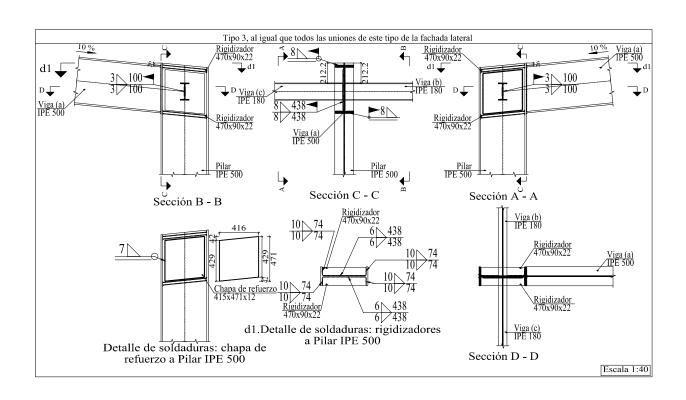
TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES .

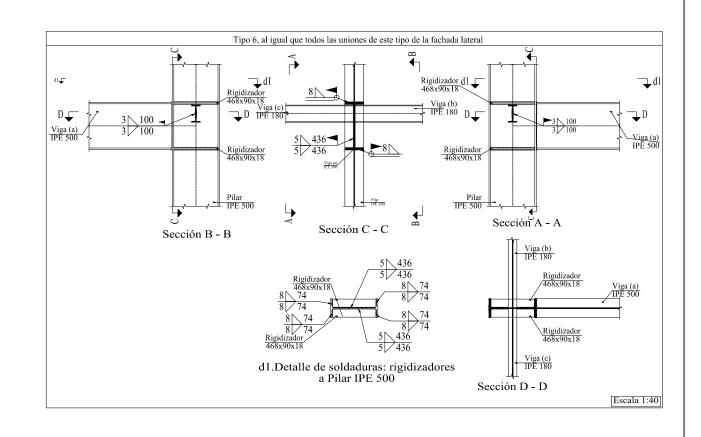
UNIVERSITAT
POLITÈCNICA
DE VALÈNCIA

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

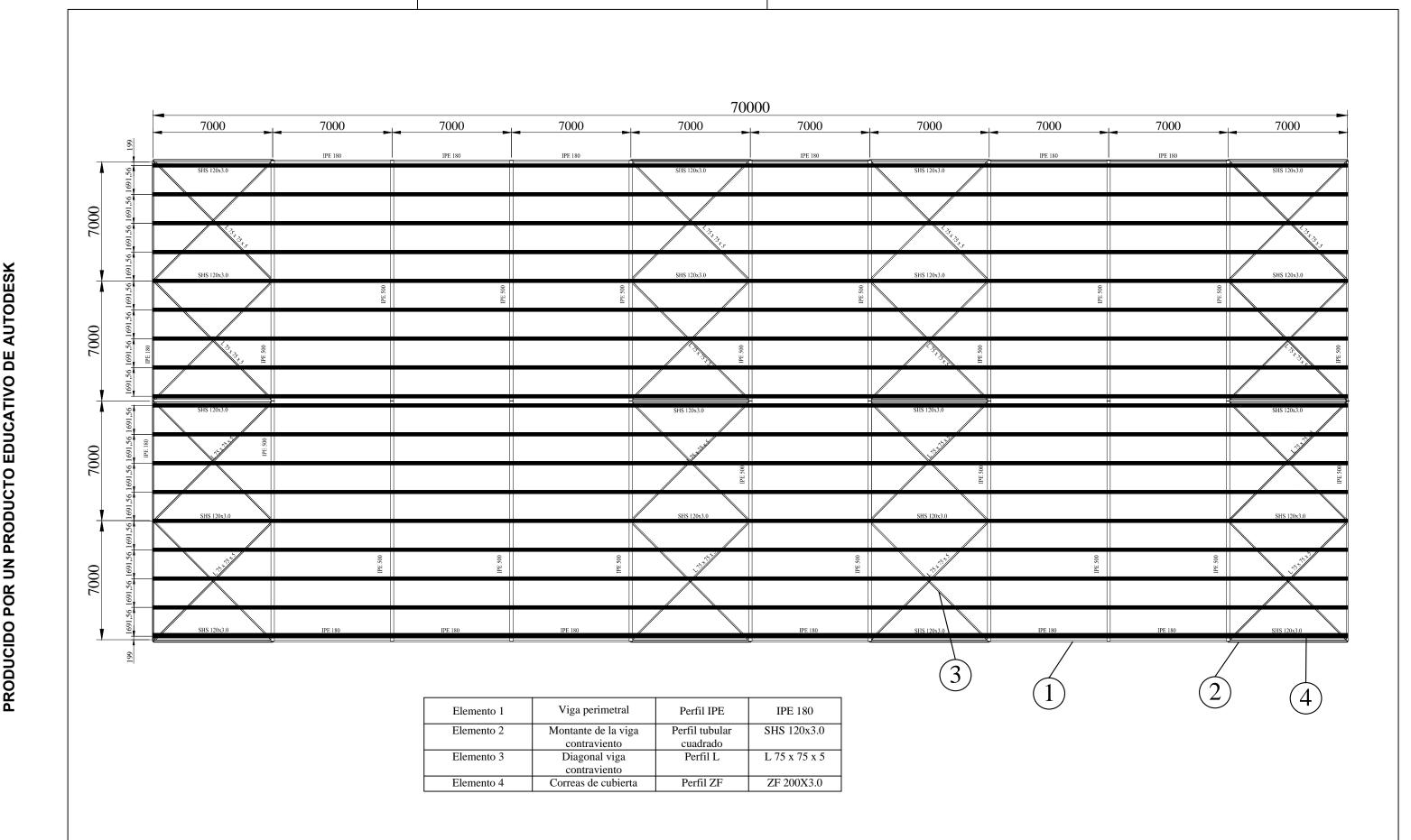

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano: Pórtico de fachada


Fecha:
Junio 2015


Fecha:
Junio 2015

Escala:

1:100

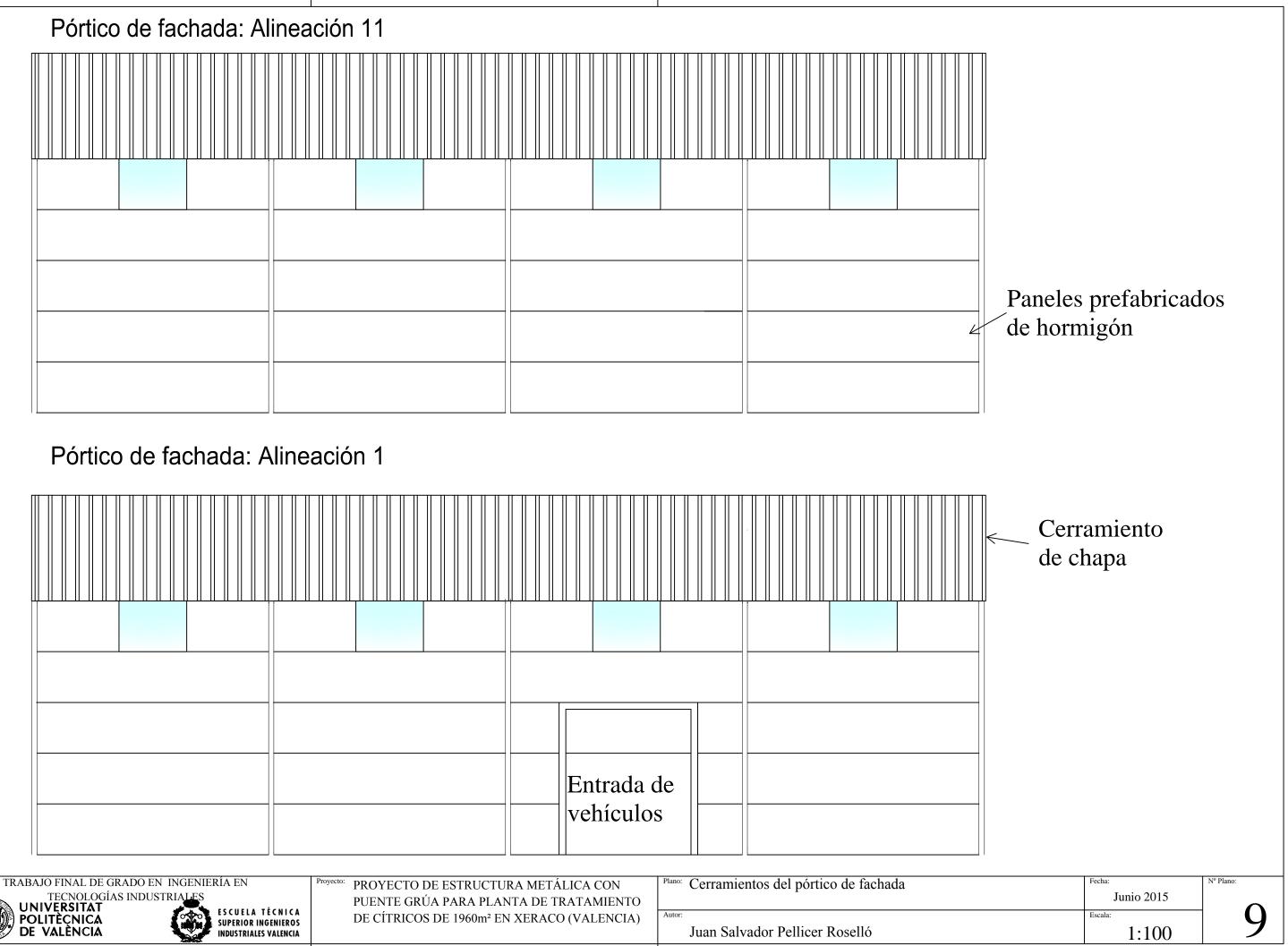


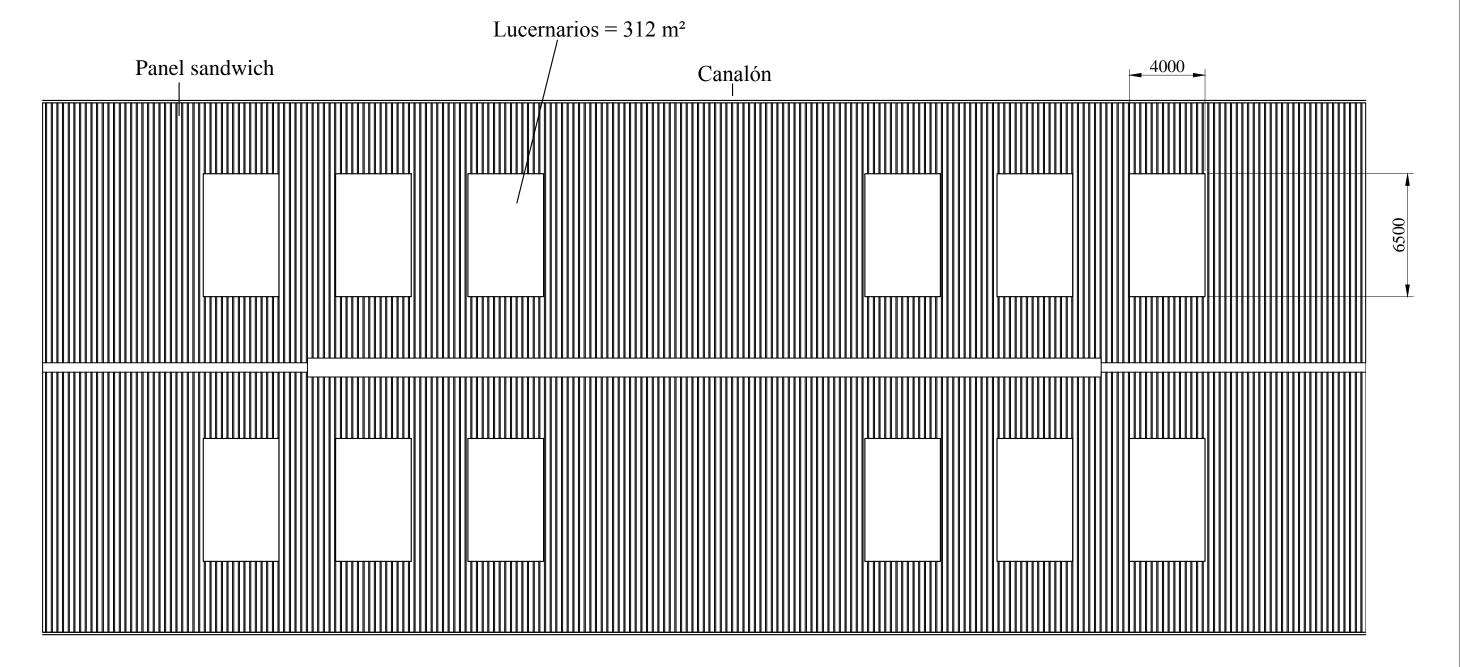
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE AUTODESK

ES CUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)

Plano: Estructura de Fachada lateral	Fecha: Junio 2015	Nº Plano:
Autor:	Escala:	' /
Juan Salvador Pellicer Roselló	1:200	/




TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

UNIVERSITAT
POLITÈCNICA
DE VALÈNCIA

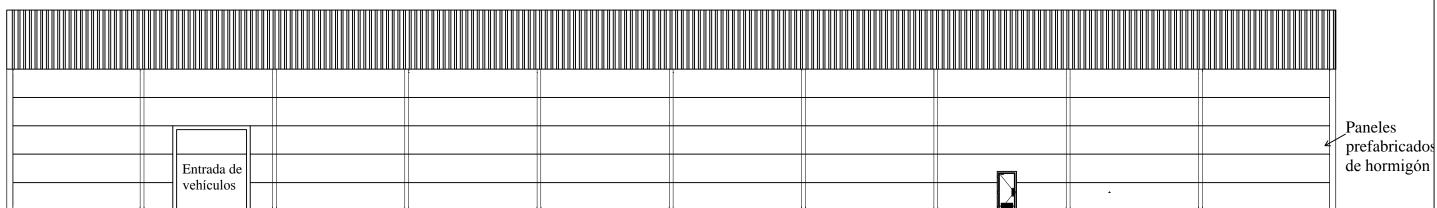
Proyecto: PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)

Plano:	Estructura en cubierta	Fecha: Junio 2015	Nº Plano:
Autor:		Escala:	
	Juan Salvador Pellicer Roselló	1:200	

Detalle del canalón

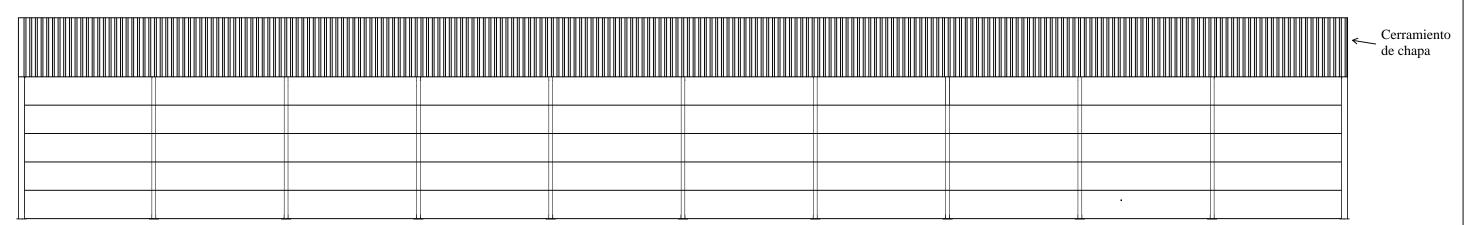
TRABAJO FINAL DE GRADO EN INGENIERÍA EN

TECNOLOGÍAS INDUSTRIALES


UNIVERSITAT
POLITÈCNICA
DE VALÈNCIA

TECNICA
SUPERIOR INGENIEROS
INDUSTRIALES VALENCIA

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA)


Plano: Cerramiento de cubierta	Fecha:	Nº Plano:
	Junio 2015	10
Autor:	Escala:	1 1 1 1
Juan Salvador Pellicer Roselló	1:200	IU

Fachada lateral : Alineación E

Entrada de acceso de peatones

Fachada lateral : Alineación A

TRABAJO FINAL DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ES CUELA TÉCNICA
SUPERIOR INGENIEROS
INDUSTRIALES VALENCIA

PROYECTO DE ESTRUCTURA METÁLICA CON PUENTE GRÚA PARA PLANTA DE TRATAMIENTO DE CÍTRICOS DE 1960m² EN XERACO (VALENCIA) Plano: Cerramiento fachada lateral

Autor:

Juan Salvador Pellicer Roselló

Fecha:

Junio 2015

Escala:

1:200

PRODUCIDO POR UN PRODUCTO EDUCATIVO DE

AUTODESK

Curso Académico:

PRESUPUESTO

Índice del Presupuesto

Cuadro de precios descompuestos	1
Capítulo 1: Adecuación de parcela	
Capítulo 2: Cimentación	
Capítulo 3: Estructura	
Capítulo 4: Cerramientos	
Capítulo 5: Elementos de carpintería y instalaciones	
Capítulo 6: Equipo Industrial	14
Capítulo 7: Gestión de residuos	14
Indicadores y resumen general del presupuesto	15

Para la realización del presupuesto se ha utilizado la herramienta de CYPECAD de CYPE, el programa Arquímedes y el generador de precios.

Cuadro de precios descompuestos

Capítulo 1: Adecuación de parcela

ADL010	m²	Desbroce y limpieza del terreno con arbustos.			1,59€			
	Desbroce y limpieza del terreno con arbustos, hasta una profundidad mínima de 20 cm, con medios mecánicos, retirada de los materiales excavados y carga a camión, sin incluir transporte a vertedero autorizado.							
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida			
mq09sie010	h	Motosierra a gasolina, de 50 cm de espada y 2 kW de potencia.	0,023	3	0,069			
mq01pan010a	h	Pala cargadora sobre neumáticos de 120 kW/1,9 m³.	0,014	40,13	0,5618			
mo111	h	Peón ordinario construcción.	0,055	15,92	0,875			
	%	Medios auxiliares	2	1,3	0,026			
	%	Costes indirectos	3	1,33	0,04			
				Total:	1,59			
Medición = 7686.	$41m^2$			IMPORTE TOTAL :	= 12221,3919			

ADE010	m³	Excavación de zanjas y pozos.			26,82 €
Excavación en zanjas para cimentaciones en suelo de arcilla semidura, con medios mecánicos, retirada de los materiales excavados y carga a camión.					
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mq01exn020b	h	Retroexcavadora hidráulica sobre neumáticos, de 115 kW.	0,434	48,54	21,07
mo111	h	Peón ordinario construcción.	0,280	15,92	4,46
	%	Medios auxiliares	2	25,53	0,51
	%	Costes indirectos	3	26,04	0,78
				Total:	26,82
$Medici\'on = 3074,$	564m ³			IMPORTE TOTAL :	= 82459,81

ADR030	m³	Relleno para base de pavimento.			25,33€
		eno a cielo abierto con zahorra vibrante de guiado manual.	artificial c	aliza, y compactació	n al 95% del
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt01zah010c	t	Zahorra de machaqueo o artificial, cantera caliza.	2,2	9,47	20,83
mq04dua020b	h	Dumper de descarga frontal de 2 t de carga útil.	0,115	9,27	1,07
mq02rod010d	h	Bandeja vibrante de guiado manual, de 300 kg, anchura de trabajo 70 cm, reversible.	0,172	6,39	1,10
mq02cia020j	h	Camión cisterna de 8 m³ de capacidad.	0,011	40,08	0,44
mo111	h	Peón ordinario construcción.	0,070	15,92	1,11
	%	Medios auxiliares	2	24,55	0,49
	%	Costes indirectos	3	25,04	0,75
			_	Total:	25,79
Medición = 1537	, 282 m ³			IMPORTE TOTAL :	= 39646,5

UXC020	m²	Pavimento continuo de hormigón tratado superficialmente con endurecedor o colorante, para exteriores.	34,29 €
Dovimente centinu	a avtariar da ba	ormigén armada, con juntos, do 20 am do concer para uso	naatanal

Pavimento continuo exterior de hormigón armado, con juntas, de 20 cm de espesor, para uso peatonal, realizado con hormigón HA-30/B/20/Illa fabricado en central, y vertido desde camión, extendido y vibrado manual, y malla electrosoldada ME 20x20 Ø 5-5 B 500 T 6x2,20 UNE-EN 10080; tratado superficialmente con capa de rodadura de rendimiento 3 kg/m², con acabado fratasado mecánico.

Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt10haf010Bna	m³	Hormigón HA-30/B/20/IIIa, fabricado en central.	0,21	85,05	17,86
mt07ame010d	m²	Malla electrosoldada ME 20x20 Ø 5-5 B 500 T 6x2,20 UNE-EN 10080.	1,2	1,53	1,84
mt07aco020j	Ud	Separador homologado para pavimentos continuos.	2	0,04	0,08
mt09wnc011eE	kg	Mortero decorativo de rodadura para pavimento de hormigón color blanco, compuesto de cemento, árido de sílice, aditivos orgánicos y pigmentos.	3	0,5	1,5
mq06vib020	h	Regla vibrante de 3 m.	0,032	4,66	0,15
mo040	h	Oficial 1ª construcción de obra civil.	0,287	17,24	4,95
mo085	h	Ayudante construcción de obra civil.	0,388	16,13	6,26
	%	Medios auxiliares	2	32,64	0,65
	%	Costes indirectos	3	33,29	1
Coste de mantenimien	to decenal	: 3,77€ en los primeros 10 años.		Total:	34,29
Medición = 5726,	$41 m^3$		IMPORTE	TOTAL =	196358,60

Total Capítulo 1 = 330.686,30 €

Capítulo 2: Cimentación

CRL010	m²	Capa de hormigón de limpieza.			9,55€
Capa de hormigón de li	mpieza HL-15	0/B/20, fabricado en central y	vertido de	esde camión, de 10 cm c	le espesor.
Descompuesto	Ud	Descomposición	Rend	Precio unitario	Precio partida
mt10hmf011bb	m³	Hormigón de limpieza HL-150/B/20, fabricado en central.	0,105	64,27	6,75
mo044	h	Oficial 1ª estructurista, en trabajos de puesta en obra del hormigón.	0,067	18,1	1,21
mo090	h	Ayudante estructurista, en trabajos de puesta en obra del hormigón.	0,067	16,94	1,13
	%	Medios auxiliares	2	9,09	0,18
	%	Costes indirectos	3	9,27	0,28
Coste de mantenimiento años.	o decenal: 0,1	9€ en los primeros 10		Total:	9,55
<i>Medici</i> ón = 292,78	$3m^2$			IMPORTE TOTAL =	2796,05

CSZ010	m³	Zapata de cimentación de hormigón armado.			145,09 €
		armado, realizada con hormi N 10080 B 500 S, cuantía 34,)/B/20/IIa fabricado en ce	ntral, y
Descompuesto	Ud	Descomposición	Rend	Precio unitario	Precio partida
mt07aco020a	Ud	Separador homologado para cimentaciones.	8	0,13	1,04
mt07aco010c	kg	Acero en barras corrugadas, UNE-EN 10080 B 500 S, elaborado en taller industrial, diámetros varios.	34,57	0,91	31,46
mt10haf010nna	m³	Hormigón HA- 30/B/20/IIa, fabricado en central.	1,1	82,65	90,92
mo041	h	Oficial 1ª estructurista.	0,419	18,1	7,58
mo087	h	Ayudante estructurista.	0,419	16,94	7,1
	%	Medios auxiliares	2	138,10	2,76
	%	Costes indirectos	3	140,86	4,22
Coste de mantenimiento años.	decenal: 4,2	3€ en los primeros 10		Total:	145,09
$Medici\'on = 155,73$	2 <i>m</i> ³			IMPORTE TOTAL =	22595,16

CAV010	m³	Viga entre zapatas.			230,77 €
Viga de atado de hormigó cubilote, y acero UNE-EN		ealizada con hormigón HA-3) S, cuantía 138,7 kg/m³.	0/B/20/IIa f	abricado en central, y ve	ertido con
Descompuesto	Ud	Descomposición	Rend	Precio unitario	Precio partida
mt07aco020a	Ud	Separador homologado para cimentaciones.	10	0,13	1,3
mt07aco010c	kg	Acero en barras corrugadas, UNE-EN 10080 B 500 S, elaborado en taller industrial, diámetros varios.	138,7	0,91	126,19
mt10haf010nna	m³	Hormigón HA- 30/B/20/IIa, fabricado en central.	1,05	82,65	86,78
mt11var300	m	Tubo de PVC liso para pasatubos, varios diámetros.	0,02	6,5	0,13
mo041	h	Oficial 1 ^a estructurista.	0,15	18,1	2,72
mo087	h	Ayudante estructurista.	0,15	16,94	2,54
	%	Medios auxiliares	2	219,66	4,39
·	%	Costes indirectos	3	224,05	6,72
Coste de mantenimiento años.	decenal: 9,2	1€ en los primeros 10		Total:	230,77
$Medici\'on = 18,2m^3$				IMPORTE TOTAL =	4200,01

Total Capítulo 2 = 29.591,22 €

Capítulo 3: Estructura

EAM040		k	g Cold Formed SHS			2,25€
	R en estructura con uniones sol		lica, con piezas simples de perf en obra.	iles lami	nados en caliente	de la serie Cold
Descompuest	0	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt07ala010h	Material	kg	Acero laminado UNE-EN 10025 S275JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.	1,050	0,99	1,04
mt27pfi010	Material	I	Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.	0,050	4,80	0,24
mq08sol020	Maquinaria	h	Equipo y elementos auxiliares para soldadura eléctrica.	0,016	3,10	0,05
mo046	Mano de obra	h	Oficial 1ª montador de estructura metálica.	0,023	18,10	0,42
mo092	Mano de obra	h	Ayudante montador de estructura metálica.	0,023	16,94	0,39
%		%	Costes directos complementarios	2,000	2,14	0,04
		%	Costes indirectos	3	2,18	0,065
				T	otal:	2,25
Medición =	= 2.730,600]	kg		IN	MPORTE TOTAL =	6.143,85

EAM040b		kg	IPE			2,25 €
Acero S275JR uniones soldad			álica, con piezas simples de	perfiles I	aminados en calien	te de la serie IPE, con
Descompuesto	U	d	Descomposición	Rend.	Precio unitario	Precio partida
mt07ala010h	Material	kg	Acero laminado UNE-EN 10025 S275JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.	1,050	0,99	1,04
mt27pfi010	Material	I	Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.	0,050	4,80	0,24
mq08sol020	Maquinari	ia h	Equipo y elementos auxiliares para soldadura eléctrica.	0,016	3,10	0,05
mo046	Mano d obra	le h	Oficial 1ª montador de estructura metálica.	0,023	18,10	0,42
mo092	Mano d obra	le h	Ayudante montador de estructura metálica.	0,023	16,94	0,39
%		%	Costes directos complementarios	2,000	2,14	0,04
		%	Costes indirectos	3	2,18	0,065
				Т	otal:	2,25
Medición = 73	873, 38 kg			II	MPORTE TOTAL =	166215,11

EAM040c		ı	kg	Perfiles L				2,25 €
Acero S275JR uniones soldad			metál	ica, con piezas simples	de	perfiles	laminados en calie	nte de la serie L, con
Descompuesto)	·	Ud	Descomposición		Rend.	Precio unitario	Precio partida
mt07ala010h	Material		1 la s	cero laminado UNE- 0025 S275JR, en perfi aminados en caliente, piez imples, para aplicacior structurales.	iles zas	1,050	0,99	1,04
mt27pfi010	Material		ra a	nprimación de seca ápido, formulada con resir Iquídicas modificadas osfato de zinc.		0,050	4,80	0,24
mq08sol020	Maquina	ıria		quipo y elementos auxilia ara soldadura eléctrica.	res	0,016	3,10	0,05
mo046	Mano obra	de		Oficial 1ª montador structura metálica.	de	0,023	18,10	0,42
mo092	Mano obra	de		yudante montador structura metálica.	de	0,023	16,94	0,39
%				Costes direc omplementarios	tos	2,000	2,14	0,04
			% C	Costes indirectos		3	2,18	0,065
						Т	otal:	2,25
Medición =	6573, 2	2 kg				II	MPORTE TOTAL =	14789,70

EAS030		Ud	Placas de anclaje Tipo B			370,89€
			JR en perfil plano, con rigidiz -EN 10080 B 500 S de 25 mm de			
Descompuesto		Ud	Descomposición	Rend.	Precio unitario	Precio partida
Descenipació		ou	Desceniposicien	itoria.	i redio armano	r redio partida
mt07ala011d	Material	kg	Pletina de acero laminado UNE-EN 10025 S275JR, para aplicaciones estructurales.	89,464	1,34	119,88
mt07aco010c	Material	kg	Acero en barras corrugadas, UNE-EN 10080 B 500 S, elaborado en taller industrial, diámetros varios.	130,094	0,91	118,39
mo046	Mano de obra	h	Oficial 1 ^a montador de estructura metálica.	3,275	18,10	59,28
mo092	Mano de obra	h	Ayudante montador de estructura metálica.	3,275	16,94	55,48
%		%	Costes directos complementarios	2,000	353,03	7,06
		%	Costes indirectos	3	360,09	10,80
				To	otal:	2,25
Medición =	18			IN	IPORTE TOTAL =	6676,02

EAS030b		Ud	Placas de anclaje Tipo C			66,06€
			5JR en perfil plano, de 300x4 S de 16 mm de diámetro y 64,33			
Descompuesto		Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt07ala011d	Material	kg	Pletina de acero laminado UNE-EN 10025 S275JR, para aplicaciones estructurales.	19,076	1,34	25,56
mt07aco010c	Material	kg	Acero en barras corrugadas, UNE-EN 10080 B 500 S, elaborado en taller industrial, diámetros varios.	16,248	0,91	14,79
mo046	Mano de obra	h	Oficial 1ª montador de estructura metálica.	0,643	18,10	11,64
mo092	Mano de obra	h	Ayudante montador de estructura metálica.	0,643	16,94	10,89
%		%	Costes directos complementarios	2,000	62,88	1,26
		%	Costes indirectos	3	64,14	1,92
				T	otal:	66,06
Medición =	4			IN	MPORTE TOTAL =	264,24

EAS030c	Ud		Placas de anclaje Tipo A			154,53 €
			5JR en perfil plano, con rigid -EN 10080 B 500 S de 20 mm c			
Descompuesto		Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt07ala011d	Material	kg	Pletina de acero laminado UNE-EN 10025 S275JR, para aplicaciones estructurales.	- ,-	1,34	45,58
mt07aco010c	Material	kg	Acero en barras corrugadas UNE-EN 10080 B 500 S elaborado en taller industrial diámetros varios.		0,91	51,08
mo046	Mano de obra	h	Oficial 1ª montador de estructura metálica.	1,439	18,10	26,05
mo092	Mano de obra	h	Ayudante montador de estructura metálica.	1,439	16,94	24,38
%		%	Costes directos complementarios	2,000	147,09	2,94
		%	Costes indirectos	3	150,03	4,5
				Т	otal:	154,53
Medición =	6			l!	MPORTE TOTAL =	927,18

EAT030	Kg		Correas cubierta			2,61 €
Acero S235JR0 galvanizado y o			álicas, con piezas simples de con tornillos.	perfiles	conformados en frí	o de las series C o Z,
Descompuesto)	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt07ali010a	Material	kg	Acero UNE-EN 10025 S235JRC, para correa formada por pieza simple, en perfiles conformados en frío de las series C o Z, galvanizado, incluso accesorios, tornillería y elementos de anclaje.	1,000	1,43	1,43
mo046	Mano de obra	h	Oficial 1ª montador de estructura metálica.	0,030	18,10	0,54
mo092	Mano de obra	h	Ayudante montador de estructura metálica.	0,030	16,94	0,51
%		%	Costes directos complementarios	2,000	2,48	0,05
		%	Costes indirectos	3	2,53	0,08
				-	Γotal:	2,61
Medición =	11264				MPORTE TOTAL =	29400,08

Total Capítulo 3 = 224.416,18 €

Capítulo 4: Cerramientos

QTM010	m²	Cubierta inclinada de paneles de acero con aislamiento incorporado.					
	Cubierta inclinada de paneles de acero con aislamiento incorporado, de 30 mm de espesor y 1150 mm de ancho, con una pendiente mayor del 10%.						
Descembusets	Ud	Docoommonición	Rend.	Precio unitario	Precio partida		
Descompuesto	Ua	Descomposición	Rena.	Precio unitario	Precio partida		
mt13dcp010qll	m²	Panel de acero con aislamiento incorporado, para cubiertas, de 30 mm de espesor y 1150 mm de ancho, formado por dos paramentos de chapa de acero estándar, acabado prelacado, de espesor exterior 0,5 mm y espesor interior 0,5 mm y alma aislante de lana de roca de densidad media 145 kg/m³, y accesorios.	1,05	34,18	35,89		
mt13ccg030d	Ud	Tornillo autorroscante de 6,5x70 mm de acero inoxidable, con arandela.	3	0,5	1,5		
mo050	h	Oficial 1 ^a montador de cerramientos industriales.	0,081	17,82	1,44		
mo096	h	Ayudante montador de cerramientos industriales.	0,081	16,13	1,31		
	%	Medios auxiliares	2	40,14	0,8		
	%	Costes indirectos	3	40,94	1,23		
Coste de manter	Coste de mantenimiento decenal: 12,23€ en los primeros 10 años. Total: 42,1						
Medición = 1	969,	8 m ²		IMPORTE TOTAL =	83066,466		

FPP030	m²	Fachada pesada de placa alveolar de 23,06 hormigón pretensado.					
Cerramiento de fachada formado por placas alveolares de hormigón pretensado, de 16 cm de espesor, 1,5 m de anchura y 9 m de longitud máxima, acabado en hormigón gris, montaje horizontal.							
Descompuesto	Ud	Descomposición	Ren d.	Precio unitario	Precio partida		
mt12ppp010a	m²	Placa alveolar de hormigón pretensado, de 16 cm de espesor, 1,2 m de anchura y 9 m de longitud máxima, acabado en hormigón gris, para formación de cerramiento. Según UNE-EN 1168.	1	17,97	17,97		
mt12pph011	kg	Masilla caucho-asfáltica para sellado en frío de juntas de paneles prefabricados de hormigón.	0,07	1,96	0,14		
mq07gte010c	h	Grúa autopropulsada de brazo telescópico con una capacidad de elevación de 30 t y 27 m de altura máxima de trabajo.	0,03 2	66,84	2,14		
mo049	h	Oficial 1 ^a montador de paneles prefabricados de hormigón.	0,05	17,82	0,89		
mo095	h	Ayudante montador de paneles prefabricados de hormigón.	0,05	16,13	0,81		
	%	Medios auxiliares	2	21,95	0,44		
	%	Costes indirectos	3	22,39	0,67		
Coste de manten	imien	to decenal: 1,61€ en los primeros 10 años.		Total:	23,06		
$Medici\'on = 1$	803.	2 m ²	IMPOR	TE TOTAL =	41581,792		

FLA010	m²	Fachada simple de panel de chapa perfilada de acero.			24,17 €
Cerramiento de 1 mm espesor y 30		la formado por paneles de chapa perfilada r altura de cresta.	nervada de	e acero S320 GD galva	anizado de 1,0
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt13ccg100j	m²	Chapa perfilada nervada de acero UNE-EN 10346 S320 GD galvanizado de 1 mm espesor y 30 mm altura de cresta.	1,05	9,45	9,92
mt13ccg020e	m²	Remate lateral de acero galvanizado, espesor 0,6 mm, desarrollo 500 mm.	0,34	4,45	1,51
mt13ccg030d	Ud	Tornillo autorroscante de 6,5x70 mm de acero inoxidable, con arandela.	1,5	0,5	0,75
mt13ccg040	m	Junta de estanqueidad para chapas de acero.	0,42	0,9	0,38
mt13ccg030f	Ud	Tornillo autorroscante de 4,2x13 mm de acero inoxidable, con arandela.	2,05	0,05	0,1
mq08sol020	h	Equipo y elementos auxiliares para soldadura eléctrica.	0,101	3,09	0,31
mo050	h	Oficial 1 ^a montador de cerramientos industriales.	0,296	17,82	5,27
mo096	h	Ayudante montador de cerramientos industriales.	0,296	16,13	4,77
	%	Medios auxiliares	2	23,01	0,46
	%	Costes indirectos	3	23,47	0,7
Coste de manter	nimien	to decenal: 2,66€ en los primeros 10 años.		Total:	24,17
Medición = 5	68, 4	m^2		IMPORTE TOTAL =	13738,228

RSI010	m²	Solera ,Pavimento industrial cementoso, sistema "BASF Construction Chemical".			36,04 €		
con hormigón HM mediante fratasad	Pavimento industrial cementoso con solera de hormigón en masa de 20 cm de espesor, realizada con hormigón HM-25/B/20/I fabricado en central y vertido desde camión, extendido y vibrado manual; acabado mediante fratasado mecánico y tratado superficialmente con mortero de rodadura, MasterTop 100 "BASF Construction Chemical", color Gris Natural, con áridos de cuarzo, pigmentos y aditivos, rendimiento 5 kg/m².						
Descompuesto	U	Descomposición	Rend.	Precio unitario	Precio partida		
mt10hmf010Nm	m³	Hormigón HM-25/B/20/I, fabricado en central.	0,21	74,87	15,72		
mt09bnc010s	kg	Mortero de rodadura, MasterTop 100 "BASF Construction Chemical", color Gris Natural, compuesto de cemento, áridos seleccionados de cuarzo, pigmentos orgánicos y aditivos, con una densidad aparente de 1330 kg/m³, una resistencia a la compresión de 75000 kN/m² y una resistencia a la abrasión con método Böhme UNE-EN 13892-3 de 10,9 cm³ / 50 cm².	5	0,49	2,45		
mq04dua020b	h	Dumper de descarga frontal de 2 t de carga útil.	0,039	9,25	0,36		
mq06vib020	h	Regla vibrante de 3 m.	0,032	4,66	0,15		
mq06fra010	h	Fratasadora mecánica de hormigón.	0,557	5,06	2,82		
mo019	h	Oficial 1ª construcción.	0,328	17,24	5,65		
mo111	h	Peón ordinario construcción.	0,449	15,92	7,15		
	%	Medios auxiliares	2	34,3	0,69		
	%	Costes indirectos	3	34,99	1,05		
Coste de manteni	miento	o decenal: 20,18€ en los primeros 10 años.		Total:	36,04		
Medición = 39	92 m ³	3	IMPORTE TO	OTAL =	14127,68		

Total Capítulo 4 = 152.514,17 €

Capítulo 5: Elementos de carpintería y instalaciones

LPA010	Ud	Puerta de paso de acero galvanizado.			91,31 €
Puerta de paso de con rejillas de ver		galvanizado de una hoja, 700x1945 mm de l n.	uz y altura	ı de paso, acabado (galvanizado,
Descompuesto	Ud	Descomposición	Rend.	Precio unitario	Precio partida
mt26ppa010adb	Ud	Puerta de paso de una hoja de 38 mm de espesor, 700x1945 mm de luz y altura de paso, acabado galvanizado formada por dos chapas de acero galvanizado de 0,5 mm de espesor con rejillas de ventilación troqueladas en la parte superior e inferior, de 200x250 mm cada una, plegadas, ensambladas y montadas, con cámara intermedia rellena de poliuretano, sobre cerco de acero galvanizado de 1,5 mm de espesor con garras de anclaje a obra, incluso bisagras soldadas al cerco y remachadas a la hoja, cerradura embutida de cierre a un punto, cilindro de latón con llave, escudos y manivelas de nylon color negro.	1	80,17	80,17
mo019	h	Oficial 1ª construcción.	0,202	17,24	3,48
mo075	h	Ayudante construcción.	0,202	16,13	3,26
	%	Medios auxiliares	2	86,91	1,74
	%	Costes indirectos	3	88,65	2,66
Coste de manteni	Coste de mantenimiento decenal: 10,04€ en los primeros 10 años.			Total:	91,3
Medición = 1			I	IMPORTE TOTAL =	91,31

LPG010	Ud	Puerta de acceso de vehículos			5257,5 €
Puerta basculante pre- panel liso acanalado, a	leva con co acabado bla	ntrapesos para garaje formada nco, de 450x450 cm, apertura au	por chap utomátic	oa plegada de acero galva a.	anizado,
Descompuesto	Ud	Descomposición	Re nd	Precio unitario	Precio partida
mt26pgb030x	Ud	Puerta basculante para garaje, pre-leva de compensación por contrapesos, 400x250 cm, formada por paneles de chapa plegada de acero galvanizado, lisa acanalada, acabado blanco, incluso accesorios. Según UNE 85101 y UNE-EN 13241-1.	1	3536,92	3536,92
mt26egm010gg	Ud	Equipo de motorización para apertura y cierre automático, de puerta de garaje basculante pre-leva de hasta 100 kg de peso.	1	762	762
mt26egm012	Ud	Accesorios (cerradura, pulsador, emisor, receptor y fotocélula) para automatización de puerta de garaje.	1	422	422
mo019	h	Oficial 1ª construcción.	1,4 63	17,24	25,5
mo111	h	Peón ordinario construcción.	1,4 63	15,92	23,33
mo017	h	Oficial 1ª cerrajero.	3,4	17,52	54,94
mo057	h	Ayudante cerrajero.	3,4 2	16,19	55,33
mo002	h	Oficial 1ª electricista.	6,9 75	17,82	124,3
	%	Medios auxiliares	2	5003,2	100,07
	%	Costes indirectos	3	5103,27	153,1
Coste de mantenimien años,	to decenal:	759,04€ en los primeros 10		Total:	3,795,21
Medición = 2				IMPORTE TOTAL =	10515

QLL010	m²	Lucernario de placas translúcidas,			288,32 €
Lucernario a un agua co celular incolora y 6 mm		náxima entre 3 y 8 m revestido con placa:	s alveolare	s de policarb	oonato
Descompuesto	Ud	Descomposición	Rend,	Precio unitario	Precio partida
mt21lpe010b	m²	Repercusión por m² de lucernario a un agua con una luz máxima entre 3 y 8 m de la estructura autoportante formada por perfilería de aluminio extrusionada con aleación 6063 y tratamiento térmico T-5,	1	92,08	92,08
mt21lpe020b	m²	Repercusión por m² de lucernario a un agua con una luz máxima entre 3 y 8 m de los elementos de remate, tornillería y piezas de anclaje del lucernario,	1	33,38	33,38
mt21lpc010a	m²	Placa alveolar translúcida, de policarbonato celular, espesor 6 mm, incolora,	1,05	22,16	23,27
mt21lpc020	m	Perfilería universal de aluminio, con gomas de neopreno, para cierres de juntas entre placas de policarbonato celular en lucernarios,	2	12,2	24,4
mt21lpc030	Ud	Material auxiliar para montaje de placas de policarbonato celular en lucernarios,	1,5	1,35	2,03
mo010	h	Oficial 1 ^a montador,	2,924	17,82	52,11
mo078	h	Ayudante montador,	2,924	16,13	47,16
	%	Medios auxiliares	2	274,43	5,49
	%	Costes indirectos	3	279,92	8,4
		96,06€ en los primeros 10 años,		Total:	288,32
$Medici\'on = 312 m^2$			IMPORT	E TOTAL =	89955,84

ISC010	m	Canalón de piezas 35,58 € preformadas,						
Canalón cuadrado de	Canalón cuadrado de aluminio lacado, de desarrollo 550 mm, de 0,68 mm de espesor,							
Descompuesto	Ud	Descomposición	Rend,	Precio unitario	Precio partida			
mt36cal010h	m	Canalón cuadrado de aluminio lacado, de desarrollo 550 mm y 0,68 mm de espesor, Incluso p/p de soportes, esquinas, tapas, remates finales, piezas de conexión a bajantes y piezas especiales,	1,1	17,92	19,71			
mt36cal030	Ud	Material auxiliar para canalones y bajantes de instalaciones de evacuación de aluminio,	0,25	2,24	0,56			
mo007	h	Oficial 1 ^a fontanero,	0,4	17,82	7,128			
mo105	h	Ayudante fontanero,	0,4	16,1	6,44			
	%	Medios auxiliares	2	33,84	0,68			
	%	Costes indirectos	3	34,51	1,035			
Coste de mantenimier	nto de	cenal: 2,31€ en los primeros 10 años,		Total:	35,58			
Medición = 140 1	m		IMPOR1	E TOTAL =	4981.2			

Total Capítulo 5 = 100.562,15 €

Capítulo 6: Equipo Industrial

EAM040	Ud	Puente grúa		17947,53 €				
Puente grúa o	Puente grúa de capacidad 5 toneladas con 28 metros de luz.							
Medición	= 1		IMPORTE TOTAL =	17947,53 €				

Total Capítulo 6 = 17947,53 €

Capítulo 7: Gestión de residuos

EAM040	m ³		Transport tierras	te de	-		6,21 €
•			ertedero específico, in atro de valorización d				•
Descompuesto		Ud	Descompo	osición	Rend.	Precio unitario	Precio partida
mq04cab010e	Maquinaria	h	Camión basculante de carga, de 213 kW,	e 20 t de	0,140	42,23	5,91
%		%	Costes complementarios	directos	2,000	5,91	0,12
		%	Costes indirectos		3	6,03	0,1806
					Т	otal:	6,21
Medición =	3, 074, 564	m ³			II	MPORTE TOTAL =	19093,04

Total Capítulo 7 = 19.093,04 €

Indicadores y resumen general del presupuesto

Capítulos	Importe
Capítulo 1: Adecuación de parcela	330.686,30 €
Capítulo 2: Cimentación	29.591,22 €
Capítulo 3: Estructura	224.416,18 €
Capítulo 4: Cerramientos	152.514,17 €
Capítulo 5: Elementos de carpintería y instalaciones	100.562,15 €
Capítulo 6: Equipo Industrial	17947,53 €
Capítulo 7: Gestión de residuos	19.093,04 €
Presupuesto ejecución material (PEM)	874.810,59 €

Asciende el presupuesto de ejecución material a la expresada cantidad de OCHOCIENTOS SETENTA Y CUATRO MIL OCHOCIENTOS DIEZ EUROS CON CINCUENTA Y NUEVE CÉNTIMOS.

Beneficio Industrial	6%	52.488,64 €
Gasto General	13%	113.725,38 €
IVA(PEM+GG+BI)	21%	218615,1664
Presupuesto ejecución por contrata (PEC)		1.259.639,77 €

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de UN MILLÓN DOSCIENTOS CINCUENTA Y NUEVE MIL SEISCIENTOS TREINTA Y NUEVE EUROS CON SETENTA Y SIETE CÉNTIMOS.

Xeraco, 19 junio de 2015.

Juan Salvador Pellicer Roselló

EL AUTOR DEL TRABAJO FINAL DE GRADO