TRABAJO FIN DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PROYECTO ESTRUCTURAL DE EDIFICIO INDUSTRIAL DE 2240 M2 SITUADO EN HUÉRCAL-OVERA (ALMERÍA)

AUTOR: JESÚS GARCÍA CABRERA
TUTOR: JOSÉ MIGUEL MONTALVA SUBIRATS
COTUTOR: TOMÁS SANTIAGO SERRANO FALCÓ

Curso Académico: 2014-15
Índice

Memoria.. 3

1. Objeto del trabajo. ... 3

2. Introducción al proyecto. .. 3
 2.1 Antecedentes. ... 3
 2.2 Motivación. .. 4
 2.3 Justificación... 4

3. Situación y emplazamiento... 5

4. Normativa aplicada. .. 7

5. Requerimientos espaciales y constructivos. .. 8

6. Acciones. ... 9
 6.1 Permanentes .. 9
 6.2 Variables. .. 9
 6.3 Accidentales... 11

7. Descripción de la solución adoptada... 11
 7.1 Materiales .. 11
 7.2 Actuaciones previas. ... 13
 7.3 Cimentación... 13
 7.4 Elementos Estructurales. .. 15
 7.5 Elementos Constructivos. .. 20
 7.6 Instalaciones, ventilación y pluviales.. 22

8. Bibliografía. ... 23

Anexo 1. Normativa urbanística ... 25

Anexo 2. Cálculo Estructural ... 27

1. Descripción general de la estructura... 27

2. Pórtico interior tipo. .. 28
 2.1 Comprobaciones en barras.. 29
 2.2 Uniones... 34

3. Pórtico Fachada .. 48
 3.1 Comprobaciones en barras.. 48
 3.2 Uniones... 49

4. Fachada Lateral... 58
4.1 Comprobaciones en barras ... 58
4.2 Uniones .. 60
5. Cubierta ... 65
5.1 Comprobaciones en barras ... 65
6. Cimentaciones ... 67
6.1 Elementos de cimentación aislados ... 67
6.2 Vigas ... 70
7. Correas .. 73
7.1 Correas de cubierta .. 73
7.2 Correas laterales ... 78

Presupuesto ... 85
1. Aplicación de precios .. 85
2. Resumen .. 94

Planos ... 97
Memoria.

1. Objeto del trabajo.

El presente trabajo trata sobre la elaboración de un proyecto estructural de un edificio industrial efectuado a base de pórticos a dos aguas. El uso destinado para esta nave es recreativo. Se ha diseñado con el fin de obtener un amplio espacio para la colocación de un parque recreacional, lejos del bullicio convencional de cualquier municipio o ciudad, en este caso en el municipio de Huércal-Overa. A continuación se muestra una perspectiva global de la estructura que podrá ser analizada con más detalle en el plano 4.

![Ilustración 1. Perspectiva global de la estructura.](image)

2. Introducción al proyecto.

2.1 Antecedentes.

Debido a la petición de un cliente que tenía como objetivo implantar un parque recreativo sin ánimo de lucro para satisfacer las necesidades crecientes de disponer de un lugar para que los más pequeños puedan disfrutar, en una nave industrial situada en el polígono industrial del municipio, he sido encargado de la parte de elaboración del proyecto para la materialización del edificio industrial.
2.2 Motivación.

Con el fin de acabar los estudios de Grado en Ingeniería Industrial y aplicar ciertos conocimientos adquiridos a lo largo de los años, realizo este trabajo final de grado como punto y seguido en mi carrera académica para poder continuar con mi formación en el Máster de Ingeniería Industrial.

2.3 Justificación.

En la síntesis de todo el proceso de elaboración de este proyecto se han confeccionado una serie de documentos para su efectiva justificación.

Para esto contamos con: memoria descriptiva, anexos, planos y presupuesto.

En la memoria descriptiva se relatan las particularidades y características globales de la nave y la solución adoptada acorde a su propósito, incluyendo todas las normas aplicables a dicha nave.

Continuamos con los anexos en los cuales se dispone tanto de la normativa urbanística en el anexo número 1 como los elementos necesarios y las comprobaciones de los mismos para su correcto funcionamiento en el anexo número 2.

En el documento del presupuesto, incluiremos todas las partidas necesarias para que dicho proyecto tenga un desglose de todos los gastos y podamos concluirlo con un precio de ejecución por contrata.

Por último en la parte de planos, podemos observar de forma gráfica todas y cada una de las partes que forman la estructura incluyendo su situación, emplazamiento y replanteo.
3. Situación y emplazamiento.

La nave industrial se situará en la provincia de Almería (Andalucía), concretamente en el pequeño municipio de Huércal-Overa que cuenta con alrededor de 18.000 habitantes, con una superficie de 318 km2 y situada a 280 metros sobre el nivel del mar. En la siguiente imagen podemos ver la localización del municipio en el sudeste de España, situado entre la provincia de Almería y Murcia. En los planos 1 y 2 se puede observar tanto la situación como el emplazamiento donde hemos situado nuestra nave.

Ilustración 2. Área geográfica del municipio obtenida de Google Maps.

Dicho municipio cuenta con un polígono industrial que inicialmente disponía de una sola fase. Actualmente y debido a las necesidades recientes, tuvo que aumentarse la capacidad de dicho polígono, disponiendo de una segunda fase. Esta segunda fase se colocó a continuación de la primera, formando un polígono de mayores dimensiones.
En la siguiente imagen observamos una vista aérea del conjunto del polígono.

![Imagen aérea del polígono](image1.png)

Ilustración 3. Imagen aérea del polígono obtenida de Google Maps.

Tan solo 3 km separan la localización de nuestro edificio del centro del municipio. Si nos encontramos dentro de la localidad podemos llegar fácilmente circulando por la carretera A-327 en dirección Santa María de Nieva. Cabe destacar que la autovía A-7 cuenta con la salida 553 procedente desde Almería o Murcia hacia el municipio, que intercepta con la carretera A-327 y siguiendo dirección Santa María de Nieva a unos 1,5 kilómetros nos encontramos el polígono industrial. A continuación podemos comprobar la cercanía entre el municipio y el polígono y cómo la autovía del mediterráneo pasa junto a la localidad.

![Situación del polígono respecto al municipio](image2.png)

Ilustración 4. Situación del polígono respecto al municipio obtenida de Google Maps.
Situaremos la nave dentro la Fase 1, la cual se divide en diferentes zonas y hemos elegido la zona 2A, exactamente las parcelas C.07, C.08, C.09, C.10, C.11, C.12, C.13, C.14, C.15, C.16, C.17 y C.18 situadas entre las calles Juan Antonio Gómez Guerrero y Pedro Martínez Fernández.

Mostramos una imagen donde se puede ver a grandes rasgos como se divide el polígono en pequeñas parcelas.

Ilustración 5. Distribución por parcelas.

Con dichas parcelas dispondremos de una superficie total de 8076 m², de los cuales, tomando los retranqueos apropiados al vial, se nos quedan 6800 m² para situar la nave.

Con respecto a la normativa correspondiente a todos los elementos utilizados en la estructura metálica aplicaremos el Código Técnico de la Edificación (CTE), el cual viene expuesto en el Real Decreto 314/2006. En este código podemos observar todas las características geométricas y mecánicas de dichos elementos para el dimensionamiento y cálculo de la estructura.
Para los elementos estructurales de hormigón de cimentaciones y estructura aplicamos la **Instrucción de Hormigón Estructural (EHE)** aprobada por el **Real Decreto del 18 de Julio de 2008**.

Además de estas dos normativas, se incluye la norma urbanística del municipio de Huércal-Overa, que viene reflejada en el BOJA del 7 de Junio del 2007, para la adecuada situación del edificio en el polígono. Más adelante se explicarán todos los puntos a cumplimentar por nuestro proyecto. Esto vendrá expuesto en el **anexo 1**, de normativa urbanística.

5. **Requerimientos espaciales y constructivos.**

El parque recreativo a colocar en el interior del edificio constará de (dimensiones en metros):

- Zona de bolas de dimensiones 12x4.
- Zona de toboganes de dimensiones 12x4.
- Zona de animación de dimensiones 5,2x3.
- Zona videojuegos de dimensiones 5,2x2.
- Aseo para chicos de dimensiones 2,4x2.
- Aseo para chicas de dimensiones 2,4x2.
- Recepción de dimensiones 6x4.
- Ropero de dimensiones 3,2x2.
- Zona de espera de dimensiones 6x2,4.
- Tienda de 3,2 metros de diámetro.

Mostramos una vista de la situación en planta de todos los elementos a disponer.

Ilustración 6. Distribución en planta.
Debido a las zonas y espacios necesarios en el interior de nuestro edificio, dispondremos de un edificio de 80 metros de largo y 28 metros de ancho para satisfacer estos requerimientos.

En las fachadas laterales dispondremos de dos puertas en cada una, simétricamente situadas de dimensiones 6 metros de largo por 4,5 metros de alto.

Y en cada fachada frontal tendremos dos puertas de 0,8 metros de ancho por 2 metros de alto.

6. Acciones.

6.1 Permanentes.

Dentro de estas acciones sólo tenemos en cuenta el peso propio, el cual calculamos de manera exacta con los valores de las densidades del acero (78,5 Kn/m3) y hormigón (masa= 24 Kn/m3, armado= 25 Kn/m3), a este debemos sumarle el cerramiento en cubierta y el cerramiento lateral cuyo valor es 0,15 Kn/m2 para ambos casos.

6.2 Variables.

6.2.1 Uso.

Su categoría de uso asociada es G1 para cubiertas ligeras sobre correas accesibles únicamente para mantenimiento y no concomitante con el resto de acciones variables, con ellos obtenemos los valores de 4 Kn/m2 para carga uniforme superficial y 1 Kn para carga concentrada.

6.2.2 Nieve.

En este tipo de acción la correspondiente zona climática en la que se encuentra la nave es zona 6, con una altitud de 280 metros y suponiendo una cubierta sin resaltos. Debido a que la construcción no está protegida la acción del viento no podemos reducir la carga nieve un 20%. La carga de nieve correspondiente a dicha altitud y zona climática es de $S_{c}=0,2$ Kn/m2. Tendremos tres casos de nieve en función de la distribución de la nieve la cual es transportada debido a
la acción del viento. El primer estado es el inicial en el cual el coeficiente de forma es multiplicado por la unidad en ambos lados, en el segundo el coeficiente de forma de una parte de la estructura será multiplicado por 0,5 y el otro por 1 y el tercer caso será al contrario que en el segundo.

6.2.3 Viento.

La zona en la que se encuentra nuestro edificio industrial le corresponde un grado de aspereza IV (Zona urbana, industrial o forestal), con una presión dinámica correspondiente a la zona A, es decir Q_b = 0,42 Kn/m². Su período de servicio se ha supuesto de 50 años. El coeficiente de exposición se calcula a partir de los parámetros obtenidos gracias al grado de aspereza, obtenemos k=0,22, L=0,3 m, Z=5 m. Calculando a partir de estos datos obtenemos un Coeficiente de exposición = 1,8096.

Para determinar el grado por el cual cada parte de la estructura se ve afectada por el viento, se determinan unos coeficientes llamados coeficientes eólicos, uno por cada zona en que se divide la nave, que dependen de una serie de parámetros. Nuestro programa calcula dichos coeficientes eólicos para determinar la acción del viento sobre el edificio.

6.2.4 Térmica.

Estas acciones afectan a todos los elementos de la estructura deformándolos debido a las variaciones de temperatura exterior. En nuestra estructura los más afectados son los pilares situados en los extremos.

Debido a que nuestro edificio tiene una longitud total de 80 metros, tenemos la necesidad de disponer una junta de dilatación que permita al edificio contraerse y dilatarse libremente y no generar tensiones y agrietamientos y debido a la disposición de esta junta podemos no considerar estas acciones.
6.3 Accidentales.

Este tipo de acciones son las menos habituales debido a la poca probabilidad que tienen de ocurrir, pero son muy a tener en cuenta debido a su alta intensidad.

6.3.1 Sismo.

Esta acción viene reflejada en la Norma de Construcción Sismorresistente NCSE-02.

Nuestra zona sísmica es de importancia especial por lo que hemos incluido su cálculo y comprobación en el Anexo 2, y su método de cálculo ha sido mediante espectros de respuesta.

6.3.2 Fuego.

Hemos optado por no incluir este tipo de acción en el cálculo de la estructura de nuestro edificio. Solo cabe destacar que viene reflejada en dos normativas.

• DB-SI: Seguridad en caso de incendio.
• RSCIEI-04: Reglamento de seguridad contra incendios en establecimientos industriales.

7. Descripción de la solución adoptada.

7.1 Materiales.

Los materiales utilizados en el proceso de construcción de la nave son Acero y Hormigón.

Acero:

• S275: El acero laminado en caliente S275 de límite elástico 275 N/mm², es el utilizado para las barras de la estructura metálica de toda la nave.
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

- **S235**: El acero conformado en frío S235 de límite elástico 235 N/mm², es el utilizado en las correas de cubierta de la nave.

Ambos con un coeficiente parcial de seguridad de $\gamma_{m_{0.1}} = 1,05$ para estados límites últimos y con un coeficiente parcial de seguridad de la unidad para estados límites de servicio. Tienen un módulo de elasticidad $E = 210.000$ N/mm², un coeficiente de poisson $\nu = 0,3$, una densidad de 78500 N/m³, un coeficiente de dilatación térmica de $1,2 \cdot 10^{-5}$ m/m°C entre sus principales características.

- **B500S**: Se han utilizado barras corrugadas de este tipo de material para los pernos soldados. Tienen un límite elástico de 500 N/mm² y un coeficiente parcial de seguridad $\gamma_m = 1,15$.

Hormigón:

- **HA-25/B/20/IIa**: Este tipo de hormigón es el utilizado en las zapatas, vigas de atado y en la capa de hormigón situada en la solera sobre la capa de zahorra, cuya resistencia característica de proyecto es 25 N/mm² con un coeficiente parcial de seguridad $\gamma_c = 1,5$.

Para este material, tenemos que definir la clase general de exposición del hormigón y la clase específica si fuera necesaria. En cuanto a la clase específica cabe destacar que un hormigón puede tener una, ninguna o varias mientras que un hormigón armado solamente tiene una clase general.

Empezaremos con la clase general del hormigón armado, la cual es relativa a la corrosión de las armaduras. Definiremos clase normal y subclase humedad alta cuya designación es IIa. Está referido para procesos de corrosión de origen diferente que los cloruros mientras que su uso está definido para sótanos no ventilados, cimentaciones y elementos de hormigón en cubierta de los edificios.

Otro aspecto a definir es la consistencia del hormigón, que es la facilidad que tiene el hormigón fresco para deformarse. Un factor influyente en este parámetro es la cantidad de agua. El tipo de consistencia de nuestro hormigón es **blanda** con un asentamiento en el cono de Abrams de unos 6-9 cm. Este tipo de consistencia viene reflejado en el tipo de hormigón por la letra B.

Por último cabe definir el tamaño máximo de árido, el cual será de 20 mm en nuestro caso.
• **HL-150/B/20:** Hormigón utilizado como capa de hormigón de limpieza con un tamaño máximo de árido de 20 mm.

7.2 Actuaciones previas.

Para el comienzo de la construcción de la nave, en primer lugar necesitamos la retirada de toda la vegetación existente en la parcela y el acondicionamiento del terreno para dejarlo en óptimas condiciones, y de esta manera aseguraremos una buena ejecución.

En el acondicionamiento del terreno debemos de disponer de una capa de hormigón de limpieza de espesor mínimo 10 cm, situado debajo de cada zapata y viga de atado. Este hormigón tiene como fin evitar la desecación del hormigón estructural durante su vertido, su contaminación inicial y proporcionar un apoyo uniforme a las zapatas. Para ello utilizamos HL-150, es decir que la dosificación mínima del hormigón es 150 kg/m³.

7.3 Cimentación.

La cimentación es un punto muy importante de la construcción de un edificio. Gracias a esta, las cargas de dicha edificación son transmitidas al terreno consiguiendo la seguridad necesaria y aportando estabilidad a la estructura.

Según el documento básico de seguridad estructural-cimentaciones el cual está recogido en el CTE cuando las condiciones lo permitan utilizaremos **cimentaciones directas**, es decir repartir las cargas en un plano de apoyo horizontal. Habitualmente se construyen a poca profundidad por lo que también son llamadas **cimentaciones superficiales**.

Se emplean para transmitir al terreno, las cargas de:

- Uno o varios pilares de la estructura.
- De los muros de carga o de contención de tierras en los sótanos.
- Los forjados.
- Toda la estructura.

Con respecto a la solución adoptada de zapatas, hemos optado por disponer de zapata rectangular excéntrica, zapatas rectangular centrada y zapatas cuadradas. Estas zapatas están compuestas por
hormigón armado HA-25 el cual está expuesto más detalladamente con sus características generales en el plano 5.1.

A continuación mostramos un tipo de zapata, que corresponde al apoyo de la puerta lateral y una tabla resumen. Podemos encontrar toda la información necesaria de todas las zapatas en los planos 5.2 y 5.3. Las comprobaciones de su efectivo funcionamiento vienen expuestas en el anexo de cálculo 2.

Ilustración 7. Detalle de zapata.

Las dimensiones de la siguiente tabla vienen expuestas en metros.

<table>
<thead>
<tr>
<th>ZAPATAS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Número</td>
<td>Espesor</td>
<td>Largo</td>
<td>Ancho</td>
</tr>
<tr>
<td>Pórtico 1 y 11</td>
<td>10</td>
<td>0.6</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Pórticos 2-6 y 10</td>
<td>12</td>
<td>1.25</td>
<td>3.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Pórticos 7 y 9</td>
<td>4</td>
<td>0.75</td>
<td>3.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Pórtico 8</td>
<td>2</td>
<td>0.75</td>
<td>3.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Tabla 1. Dimensión y número de zapatas.
Por otra parte también disponemos de vigas de atado que se encargan de unir las zapatas. La función principal de esta viga es absorber las acciones horizontales que nuestra cimentación pueda recibir, de forma que garantice su equilibrio y por otra parte compatibilizar los asientos de las zapatas.

Todas nuestras vigas de atado serán de dimensiones 0.4 x 0.4 metros y a continuación mostramos una vista de la misma. En el anexo de planos podremos visualizarla mejor.

Por otra parte también disponemos de vigas de atado que se encargan de unir las zapatas. La función principal de esta viga es absorber las acciones horizontales que nuestra cimentación pueda recibir, de forma que garantice su equilibrio y por otra parte compatibilizar los asientos de las zapatas.

Todas nuestras vigas de atado serán de dimensiones 0.4 x 0.4 metros y a continuación mostramos una vista de la misma. En el anexo de planos podremos visualizarla mejor.

<table>
<thead>
<tr>
<th>CUADRO DE VIGAS DE ATADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>Arm. sup.: 2Ø20</td>
</tr>
<tr>
<td>Arm. inf.: 2Ø20</td>
</tr>
<tr>
<td>Estribos: 1xØ8c/30</td>
</tr>
</tbody>
</table>

Ilustración 8. Detalle viga de atado.

7.4 Elementos Estructurales.

Nuestra estructura está compuesta por un total de 11 pórticos a dos aguas, con una separación de 8 metros y una altura de pilar de 9 metros.

Lós porticos interiores están situados desde la alineación 2 hasta la 10 y estan todos compuestos por los mismos elementos. También disponemos de otro tipo de pórtico diferente al interior, que es el situado en la alineación 1 y 11 denominado pórtico de fachada, el cual es diferente porque está formado por cinco pilares empotrados en la base y apoyados en la cabeza cuya función es conseguir apoyos para la jácena de fachada. Los apoyos en la cabeza de los pilares se proporcionan gracias al siguiente elemento explicado, la Viga Contraviento. Además disponemos de Cruces de San Andrés que explicaremos la función que tienen.

La Viga Contraviento (VCV) situada en la cubierta entre la jácena del pórtico de fachada y la jácena del pórtico interior contiguo, tiene como función proporcionar los apoyos de las cabezas de los pilares de fachada y canalizar el conjunto de acciones proporcionadas por el viento frontal hacia sus extremos. Para hacer frente tanto al viento
frontal de succión como de presión disponemos de una viga tipo Pratt con diagonales duplicadas, es decir en ambas direcciones.

Esta VCV, a su vez se debe apoyar en sus extremos y para disponer de estos apoyos contamos con la Cruz de San Andrés (CSA), que situamos entre el pilar extremo de pórtico de fachada y el pilar del pórtico interior contiguo. A la vez disponemos de dos VCV interiores, entre los pórticos 4-5 y 6-7, para combatir la acción térmica. Igual que hemos comentado antes, estas VCV se apoyan en sus respectivas CSA situadas entre los respectivos pórticos.

A la vez que estas CSA sirven de apoyo a la VCV, están dispuestas junto a la Viga Perimetral, que está constituida por dos perfiles IPE que enlazan la cabeza de cada uno de los pilares de los pórticos interiores, para asegurar el arriostramiento del Pórtico Interior en el plano de fachada lateral y así evitamos el movimiento de la cabeza del pilar.

En el pórtico de fachada disponemos de CSA en los extremos cuya función es arriostrar frente al viento lateral que sufre la nave y que esta se comporte se forma adecuada.

A continuación mostramos una vista 3D para observar los diferentes elementos que acabamos de explicar.

Los elementos estructurales que forman nuestra nave son los siguientes:
7.4.1 Pórticos Interiores.

Nuestro edificio tiene un total de 9 pórticos de este tipo los cuales tienen una separación de 8 metros. Dicho pórtico y sus uniones pueden observarse en el plano 6.1. Así mismo las comprobaciones necesarias están dispuestas en el anexo de cálculo 2.

Cada pórtico interior está formado por dos pilares IPE 500 y dos jácenas IPE 450. Las placas de anclaje utilizadas en dichos pórticos son de tipo 2. A continuación mostramos una vista del tipo de placa de anclaje utilizada.
7.4.2 Pórticos de Fachada.

Este tipo de pórtico está situado en cada una de las dos fachadas frontales de nuestra nave y como puede observarse está compuesto por cinco pilares con una crujía de 7 metros. Podremos atender con más detalle en el plano 7.1 y 7.2 y sus comprobaciones en el anexo de cálculo 2.

![Ilustración 12. Pórtico de fachada.](image)

Disponemos de dos pórticos de fachada, ambos formados por cinco pilares IPE 270 y dos jácenas IPE 180. Además los montantes de la Cruz de San Andrés son de tipo SHS 120x3 y las diagonales tanto superiores como inferiores son L 100x100x6. Las placas de anclaje de estos pórticos son del tipo 1. Mostramos una vista de las mismas a continuación.

![Ilustración 13. Zapata tipo 1.](image)
7.4.3 Sistema contraviento.

El sistema contraviento utilizado para el arriostramiento completo de la nave está compuesto por los elementos citados a continuación.

7.4.3.1 Viga contraviento.

Anteriormente hemos explicado la función de dicha viga la cual está formada por diagonales L 110x110x8 y montantes SHS 120x3.

7.4.3.2 Cruz de San Andrés.

Otro de los elementos necesarios es la cruz de San Andrés formada por diagonales y montantes. Disponemos de ella tanto en fachada frontal como en fachada lateral. En fachada lateral las diagonales superiores de la Cruz de San Andrés son L 90x90x6 y las inferiores L 100x100x6 junto a las diagonales de fachada frontal. Los montantes de fachada lateral son SHS 140x4 y los de fachada frontal SHS 120x3.

7.4.3.3 Viga perimetral.

Está formada por dos perfiles IPE 220 que enlanzan las cabezas de los pilares de los pórticos interiores. Con esta viga y las CSA en fachada lateral garantizamos el arriostramiento de los pórticos interiores en el plano de fachada lateral.
A continuación se muestra una vista del lateral de la nave, el cual podremos ver detalladamente en el plano 8.

7.5 Elementos Constructivos.

7.5.1 Solera.

Según la normativa técnica de la edificación el ámbito de aplicación de la solera “es el revestimiento de suelos naturales en el interior de edificios con capa resistente de hormigón, cuya superficie superior quedará vista o recibirá un revestimiento de acabado”.

El tipo de especificación según el criterio de diseño elegido para nuestro caso es RSS 4- Solera ligera y se utilizará en locales con una sobrecarga estática máxima de 1 t/m².

Nuestra solera está formada por una capa de zahorra artificial, que es un material formado por áridos, de 15 cm sobre la superficie de terreno y sobre ella se sitúa una capa de HA-25 de otros 15 cm.

A continuación podemos observar una imagen del tipo de solera dispuesta en nuestro caso.
7.5.2 Cerramientos.

Las soluciones adoptadas para los cerramientos de **Fachada** son:

- **Bloques de hormigón**: Utilizado para los primeros tres metros y medio de la fachada por motivos de mayor seguridad de la estructura. Se han empleado bloques de hormigón armado, nervados aligerados, con espesor de aislamiento de 14 cm y un espesor del panel de 24 cm. Estos paneles tienen un acabado lavado con ácido de color gris a una cara con tipo de montaje horizontal.

- **Chapa de aluminio**: La altura restante de fachada ha sido configurada con paneles tipo sándwich de aluminio de 50 mm de espesor. El exterior de la chapa es aluminio de 0,8 mm de espesor y el interior de la chapa de acero de 0,5 mm de espesor. Contiene un aislamiento térmico de poliuretano de densidad media 50 kg/m3. Hemos dispuesto de 6 ventanas en cada fachada de dimensiones 5,8x0,75 metros cada una, las cuales han sido resueltas mediante doble acristalamiento incoloro cuyos vidrios tanto interior como exterior tienen un espesor de 4mm y cámara intermedia de aire de 6 mm de espesor.

Hay que añadir que disponemos de **correas laterales** tanto en fachada lateral como en fachada frontal de tipo IPE 160. La primera correa inferior está situada a 3,5 metros del suelo debido a que esa primera parte se compondrá de bloque de hormigón. Dispondremos de un total de 5 correas de tipo IPE 160, situando la correa superior a una distancia de 0,6 metros de la cabeza de pilar. La separación de correas es de 1,1 metros y tipo de acero es S27.
7.5.3 Cubierta.

La solución adoptada para el cerramiento de **Cubierta** ha sido paneles tipo sándwich del tipo lacado + aislante + galvanizado con un espesor de 40mm. A continuación mostramos cómo sería un panel tipo sándwich utilizado en la cubierta de un edificio industrial.

![Ilustración 17. Panel tipo Sándwich.](image)

Disponemos de correas de cubierta, un total de 18 correas de tipo CF 275x3.0 con una separación entre ellas de 1,68 metros y tipo de acero S235. La primera correa exterior está situada a 0,5 metros del borde.

7.6 Instalaciones, ventilación y pluviales.

Hemos dispuesto de 6 ventanas en cada fachada lateral de dimensiones 5,8x0,75 metros cada una, las cuales han sido resueltas mediante doble acristalamiento incoloro cuyos vidrios tanto interior como exterior tienen un espesor de 4mm y cámara intermedia de aire de 6 mm de espesor. Además dispondremos de dos puertas de entrada de una hoja de espesor 52 mm en cada fachada frontal de dimensiones 0,8 x 2 metros. En la fachada norte hemos optado por colocar dos ventanas del mismo tipo que las de fachada lateral de dimensiones 6 x 0,5 metros y en la fachada sur, cuatro ventanas de las mismas dimensiones.

En la cubierta hemos optado por disponer de 12 lucernarios a un agua revestido con placas alveolares de policarbonato celular incolora de dimensiones 8 x 2 metros y espesor 6 mm cada uno.
Respecto a los dos huecos situados en cada fachada lateral de dimensiones 6x4,5 metros, hemos colocado un cierre enrollable de acero galvanizado con apertura automática en cada uno de ellos.

También dispondremos de dos canalones de acero galvanizado en los extremos de cubierta, para ello hemos dejado 0,5 metros a cada lado. A esto le sumamos dos bajantes exteriores de aguas pluviales y residuales de PVC.

En cuanto a instalaciones de urbanización interior contaremos con una cubierta metálica de chapa de acero galvanizado para las plazas de aparcamiento, unas instalaciones provisionales de higiene y una señalización provisionales de obras.

8. Bibliografía.

Entre los documentos y páginas web utilizadas para la confección de esta memoria nos encontramos los siguientes:

Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).
Anexo 1. Normativa urbanística.

En primer lugar cabe destacar que según la subzona I-2a en la que se encuentra nuestro edificio, los usos permitidos son los siguientes:

- Obtención y transformación de materias primas (almacénado, envasado, venta, transporte y distribución)
- Carácter comercial:
 - Uso comercial.
 - Recreativo.
 - Bares.
 - Restaurantes.
 - Cafeterías.
 - Diversiones.

Según esta norma, se establecen los siguientes parámetros a cumplimentar en la construcción de nuestro edificio:

- Parcela mínima: 500m².
- Lado mínimo de parcela: 15m.
- Lado mínimo área edificada: 15m.
- Diámetro circulo inscrito: 15m.
- Altura máxima pilar: 11m.
- Número de plantas: 2.
- Retranqueo a vial: 5m.
- Ocupación planta baja: 90%.
- Ocupación planta alta: 30%.
- Edificabilidad: 0,94 m²/m².

La ocupación y edificabilidad se refieren a la parcela bruta por lo tanto nuestra edificabilidad sería de 7591,44 m² ya que disponemos de un área de 8076m². La ocupación de la planta baja sería de 7268,2 m².

A continuación definiremos algunos de los conceptos anteriores según viene reflejado en el documento citado anteriormente:

Ocupación: Se define la ocupación como la parte de parcela que se puede construir en cada planta.
Edificabilidad máxima: Se define la edificabilidad máxima en m2/m2 como el total de la superficie de uso industrial que puede construirse sobre cada parcela. A efectos de cálculo de edificabilidad serán computables todos los espacios construidos cerrados situados 1,00 m. por encima de la rasante de la acera.

Altura de la edificación: La altura de las edificaciones se limita en función del número de plantas y de su altura en metros. Se define la altura en metros como la longitud comprendida entre la rasante de la acera en el punto más bajo de la fachada de la parcela y la proyección sobre su vertical del punto más elevado de la edificación.

Alineaciones y retranqueos: La edificación deberá respetar un retranqueo mínimo de 5 m, desde la alineación oficial a vía pública, entendiéndose ésta como la línea exterior de la calle que hace frente a la parcela, definida en los planos.

En cuanto a las plazas de aparcamiento mínimas que debe disponer dicho edificio industrial en la parcela, viene determinado por una plaza cada 135 m2 construidos, y las dimensiones de las mismas deben de ser 5 metros x 2,2 metros excepto un 2% de las plazas necesarias que tendrán las dimensiones de 5 metros por 3 metros para usuarios minusválidos. Por lo tanto debemos de disponer de un mínimo de 17 plazas de las cuales, una de ellas deberá tener las dimensiones para minusválidos. Hemos optado por disponer de 32 plazas de aparcamiento de normales y 6 plazas de aparcamiento para minusválidos.

Todo lo expuesto anteriormente puede verse reflejado en el plano número 3 denominado *plano de replanteo*.
Anexo 2. Cálculo Estructural.

1. Descripción general de la estructura.

Se trata de un edificio estructural situado en Huércal-Overa, provincia de Almería (Andalucía). Su dimensión en planta es de 28 metros de luz, profundidad de nave de 80 metros con una separación de pórticos tipo de 8 metros formando un total de 10 vanos. Dicha estructura está formada por un total de 11 pórticos simples a dos aguas. Disponemos de una altura de pilar de 9 metros con una pendiente del 10% por lo que la altura de cubierta alcanza 10,4 metros. El pórtico de fachada está compuesto por 5 pilares cuya crujiá es 7 metros. El sistema de arriostramiento utilizado en el pórtico interior en el plano de fachada lateral con el que conseguimos anular el movimiento de la cabeza del pilar dado que el pilar quedaría empotrado en la base y apoyado en su cabeza siempre en el plano perpendicular al plano del pórtico es la combinación de la viga perimetral junto con la cruz de San Andrés con una beta de pandeo de 0,7. En el pórtico de fachada disponemos de pilares empotrados en la base y con un apoyo simple en la jácena, conseguido gracias al contravento en la cubierta, la cual se apoya en sus extremos y que, gracias a la CSA dispone de estos apoyos en cabeza de pilar. En las placas de anclaje con las que transmitimos esfuerzos hemos optado por utilizar pernos soldados a la base. En cimentaciones, las zapatas dispuestas son de dos tipos, rectangulares excéntricas las cuales crecen preferentemente en el ancho y, y también zapatas cuadradas.

En la elaboración de este proyecto, hemos utilizado la plataforma CYPE 2015 para sacar la información necesaria acerca de la estructura, cimentaciones, mediciones, comprobaciones, planos y todo lo necesario para comprobar su correcto funcionamiento, así como para la realización de la nave. En la parte de presupuesto hemos optado por calcularlo a través del programa Arquímedes, que nos ha proporcionado un banco de precios para todas y cada una de los capítulos y subcapítulos necesarios.
En la siguiente imagen se muestra la estructura del proyecto de nuestra nave industrial.

Ilustración 18. Vista global de la estructura.

2. Pórtico interior tipo.

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

2.1 Comprobaciones en barras.

2.1.1 Estados límites de servicio.

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

Flechas

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Pos. (m)</th>
<th>Flecha activa relativa xy</th>
<th>Flecha activa relativa xz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N26/N27</td>
<td>8.798</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8.798</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>N27/N30</td>
<td>8.218</td>
<td>7.600</td>
<td>8.798</td>
</tr>
<tr>
<td></td>
<td>7.600</td>
<td>6.218</td>
<td>8.798</td>
</tr>
</tbody>
</table>

2.1.2 E.L.U. (Resumido)

2.1.3 Sismo

Norma utilizada: NCSE-02

Norma de Construcción Sismorresistente NCSE-02

Método de cálculo: Análisis mediante espectros de respuesta (NCSE-02, 3.6.2)
2.1.3.1- Espectro de cálculo

2.1.3.1.1.- Espectro elástico de aceleraciones

Donde:

es el espectro normalizado de respuesta elástica.

El valor máximo de las ordenadas espectrales es 0.476 g.

NCSE-02 (2.2, 2.3 y 2.4)

Parámetros necesarios para la definición del espectro

\(a_c\): Aceleración sísmica de cálculo (NCSE-02, 2.2) \(a_c = 0.174 \text{ g}\)

\(a_b\): Aceleración básica (NCSE-02, 2.1 y Anejo 1) \(a_b = 0.140 \text{ g}\)

\(\rho\): Coeficiente adimensional de riesgo

Tipo de construcción: Construcciones de importancia normal

\(S\): Coeficiente de amplificación del terreno (NCSE-02, 2.2) \(S = 1.24\)

\(C\): Coeficiente del terreno (NCSE-02, 2.4)

Tipo de suelo (NCSE-02, 2.4): Tipo III

\(\nu\): Coeficiente dependiente del amortiguamiento (NCSE-02, 2.5) \(\nu = 1.09\)

\(\Omega\): Amortiguamiento (NCSE-02, Tabla 3.1) \(\Omega = 4.00 \%\)

\(T_A\): Período característico del espectro (NCSE-02, 2.3) \(T_A = 0.16 \text{ s}\)

\(K\): Coeficiente de contribución (NCSE-02, 2.1 y Anejo 1) \(K = 1.00\)

\(C\): Coeficiente del terreno (NCSE-02, 2.4)

Tipo de suelo (NCSE-02, 2.4): Tipo III

\(T_B\): Período característico del espectro (NCSE-02, 2.3) \(T_B = 0.64 \text{ s}\)
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

\[\text{K: Coeficiente de contribución (NCSE-02, 2.1 y Anejo 1)} \quad \text{K} : 1.00 \]
\[\text{C: Coeficiente del terreno (NCSE-02, 2.4)} \quad \text{C} : 1.60 \]

Tipo de suelo (NCSE-02, 2.4): Tipo III

2.1.3.1.2.- Espectro de diseño de aceleraciones

El espectro de diseño sísmico se obtiene reduciendo el espectro elástico por el coeficiente \((\mu)\) correspondiente a cada dirección de análisis.

\[\beta: \text{Coeficiente de respuesta} \quad \beta : 0.55 \]
\[\nu: \text{Coeficiente dependiente del amortiguamiento (NCSE-02, 2.5)} \quad \nu : 1.09 \]

\[\Omega: \text{Amortiguamiento (NCSE-02, Tabla 3.1)} \quad \Omega : 4.00 \% \]
\[\mu: \text{Coeficiente de comportamiento por ductilidad (NCSE-02, 3.7.3.1)} \quad \mu : 2.00 \]
\[\text{Ductilidad (NCSE-02, Tabla 3.1): Ductilidad baja} \]
\[a_c: \text{Aceleración sísmica de cálculo (NCSE-02, 2.2)} \quad a_c : 0.174 \text{ g} \]
\[\text{K: Coeficiente de contribución (NCSE-02, 2.1 y Anejo 1)} \quad \text{K} : 1.00 \]
\[\text{C: Coeficiente del terreno (NCSE-02, 2.4)} \quad \text{C} : 1.60 \]
\[\text{T}_A: \text{Período característico del espectro (NCSE-02, 2.3)} \quad \text{T}_A : 0.16 \text{ s} \]
\[\text{T}_B: \text{Período característico del espectro (NCSE-02, 2.3)} \quad \text{T}_B : 0.64 \text{ s} \]
2.1.3.2.- Coeficientes de participación

<table>
<thead>
<tr>
<th>Modo</th>
<th>T</th>
<th>L_x</th>
<th>L_y</th>
<th>M_x</th>
<th>M_y</th>
<th>Hipótesis X(1)</th>
<th>Hipótesis Y(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo 1</td>
<td>12.403</td>
<td>1</td>
<td>0</td>
<td>28.37 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 727.206 mm</td>
<td>R = 2, A = 0.187 m/s², D = 727.206 mm</td>
</tr>
<tr>
<td>Modo 2</td>
<td>12.397</td>
<td>1</td>
<td>0</td>
<td>0.02 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.396 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.396 mm</td>
</tr>
<tr>
<td>Modo 3</td>
<td>12.397</td>
<td>1</td>
<td>0</td>
<td>0.1 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.418 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.418 mm</td>
</tr>
<tr>
<td>Modo 4</td>
<td>12.397</td>
<td>1</td>
<td>0</td>
<td>0.03 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.411 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.411 mm</td>
</tr>
<tr>
<td>Modo 5</td>
<td>12.397</td>
<td>1</td>
<td>0.0001</td>
<td>0 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.397 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.397 mm</td>
</tr>
<tr>
<td>Modo 6</td>
<td>12.397</td>
<td>1</td>
<td>0</td>
<td>0.01 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.427 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.427 mm</td>
</tr>
<tr>
<td>Modo 7</td>
<td>12.397</td>
<td>1</td>
<td>0</td>
<td>0.01 %</td>
<td>0 %</td>
<td>R = 2, A = 0.187 m/s², D = 726.388 mm</td>
<td>R = 2, A = 0.187 m/s², D = 726.388 mm</td>
</tr>
<tr>
<td>Modo 8</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 9</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 10</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 11</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 12</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 13</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 14</td>
<td>0.813</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
<td>9.46 %</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
<td>R = 2, A = 1.84 m/s², D = 30.7943 mm</td>
</tr>
<tr>
<td>Modo 15</td>
<td>0.946</td>
<td>0.0045</td>
<td>1</td>
<td>0 %</td>
<td>0.11 %</td>
<td>R = 2, A = 1.58 m/s², D = 35.7845 mm</td>
<td>R = 2, A = 1.58 m/s², D = 35.7845 mm</td>
</tr>
<tr>
<td>Modo 16</td>
<td>0.945</td>
<td>0.0003</td>
<td>1</td>
<td>0 %</td>
<td>26.77 %</td>
<td>R = 2, A = 1.58 m/s², D = 35.7715 mm</td>
<td>R = 2, A = 1.58 m/s², D = 35.7715 mm</td>
</tr>
<tr>
<td>Modo 17</td>
<td>0.719</td>
<td>1</td>
<td>0.0059</td>
<td>1.8 %</td>
<td>0 %</td>
<td>R = 2, A = 2.077 m/s², D = 27.2127 mm</td>
<td>R = 2, A = 2.077 m/s², D = 27.2127 mm</td>
</tr>
<tr>
<td>Modo 18</td>
<td>0.769</td>
<td>0.0532</td>
<td>0.9986</td>
<td>0 %</td>
<td>0 %</td>
<td>R = 2, A = 1.944 m/s², D = 29.1387 mm</td>
<td>R = 2, A = 1.944 m/s², D = 29.1387 mm</td>
</tr>
<tr>
<td>Modo 19</td>
<td>0.695</td>
<td>0.9943</td>
<td>0.1064</td>
<td>1.71 %</td>
<td>0.02 %</td>
<td>R = 2, A = 2.154 m/s², D = 26.3293 mm</td>
<td>R = 2, A = 2.154 m/s², D = 26.3293 mm</td>
</tr>
<tr>
<td>Modo</td>
<td>T</td>
<td>Lx</td>
<td>Ly</td>
<td>Mx</td>
<td>My</td>
<td>Hipótesis X(1)</td>
<td>Hipótesis Y(1)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.1106</td>
<td>0.9939</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.6762</td>
<td>0.7368</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.2732</td>
<td>0.962</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.0645</td>
<td>0.9979</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.9062</td>
<td>0.4229</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.769</td>
<td>0.0062</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>R = 2 A = 1.944 m/s²</td>
<td>R = 2 A = 1.944 m/s²</td>
</tr>
<tr>
<td></td>
<td>0.443</td>
<td>1</td>
<td>0.0017</td>
<td>65.39</td>
<td>0</td>
<td>R = 2 A = 2.333 m/s²</td>
<td>R = 2 A = 2.333 m/s²</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>97.44</td>
<td>93.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T: Período de vibración en segundos.

Lx, Ly: Coeficientes de participación normalizados en cada dirección del análisis.

Mx, My: Porcentaje de masa desplazada por cada modo en cada dirección del análisis.

R: Relación entre la aceleración de cálculo usando la ductilidad asignada a la estructura y la aceleración de cálculo obtenida sin ductilidad.

A: Aceleración de cálculo, incluyendo la ductilidad.

D: Coeficiente del modo. Equivale al desplazamiento máximo del grado de libertad dinámico.

Representación de los periodos modales

Se representa el rango de periodos abarcado por los modos estudiados, con indicación de los modos en los que se desplaza más del 30% de la masa:
<table>
<thead>
<tr>
<th>Hipótesis Sismo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipótesis modal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modo 26</td>
</tr>
</tbody>
</table>

2.2 Uniones

2.2.1 Especificaciones

Norma:

Materiales:
- Perfiles (Material base): S275.
- Material de aportación (soldaduras): Las características mecánicas de los materiales de aportación serán en todos los casos superiores a las del material base. (4.4.1 CTE DB SE-A)

Disposiciones constructivas:
1) Las siguientes prescripciones se aplican a uniones soldadas donde los espesores de las piezas a unir sean al menos de 4 mm.
2) Los cordones de las soldaduras en ángulo no podrán tener un espesor de garganta inferior a 3 mm ni superior al menor espesor de las piezas a unir.
3) Los cordones de las soldaduras en ángulo cuyas longitudes sean menores de 40 mm o 6 veces el espesor de garganta, no se tendrán en cuenta para calcular la resistencia de la unión.
4) En el detalle de las soldaduras en ángulo se indica la longitud efectiva del cordón (longitud sobre la cual el cordón tiene su espesor de garganta completo). Para cumplirla, puede ser necesario prolongar el cordón rodeando las esquinas, con el mismo espesor de garganta y una longitud de 2 veces dicho espesor. La longitud efectiva de un cordón de soldadura deberá ser mayor o igual que 4 veces el espesor de garganta.
5) Las soldaduras en ángulo entre dos piezas que forman un ángulo b deberán cumplir con la condición de que dicho ángulo esté comprendido entre 60 y 120 grados. En caso contrario:
- Si se cumple que $\beta > 120$ (grados): se considerará que no transmiten esfuerzos.

- Si se cumple que $\beta < 60$ (grados): se considerarán como soldaduras a tope con penetración parcial.

Comprobaciones:

a) Cordones de soldadura a tope con penetración total:

En este caso, no es necesaria ninguna comprobación. La resistencia de la unión será igual a la de la más débil de las piezas unidas.

b) Cordones de soldadura a tope con penetración parcial y con preparación de bordes:

Se comprueban como soldaduras en ángulo considerando un espesor de garganta igual al canto nominal de la preparación menos 2 mm (artículo 8.6.3.3b del CTE DB SE-A).

c) Cordones de soldadura en ángulo:

Se realiza la comprobación de tensiones en cada cordón de soldadura según el artículo 8.6.2.3 CTE DB SE-A.

Se comprueban los siguientes tipos de tensión:

Tensión de Von Mises

Tensión normal

Donde $K = 1$.

Los valores que se muestran en las tablas de comprobación resultan de las combinaciones de esfuerzos que hacen máximo el aprovechamiento tensional para ambas comprobaciones, por lo que es posible que aparezcan dos valores distintos de la tensión normal si cada aprovechamiento máximo resulta en combinaciones distintas.

2.2.2.- Referencias y simbología

a[mm]: Espesor de garganta del cordón de soldadura en ángulo, que será la altura mayor, medida perpendicularmente a la cara exterior, entre todos los triángulos que se pueden inscribir entre las superficies de las piezas
que hayan alcanzado la fusión y la superficie exterior de las soldaduras. 8.6.2.a CTE DB SE-A

L[mm]: longitud efectiva del cordón de soldadura

Método de representación de soldaduras

Referencias:
1: línea de la flecha
2a: línea de referencia (línea continua)
2b: línea de identificación (línea a trazos)
3: símbolo de soldadura
4: indicaciones complementarias
U: Unión

El cordón de soldadura que se detalla se encuentra en el lado opuesto al de la flecha. El cordón de soldadura que se detalla se encuentra en el lado de la flecha.

Referencia 3

<table>
<thead>
<tr>
<th>Designación</th>
<th>Ilustración</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura en ángulo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura a tope en "V" simple (con chaflán)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura a tope en bisel simple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura a tope en bisel doble</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura a tope en bisel simple con talón de raíz amplio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Representación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soldadura realizada en todo el perímetro de la pieza</td>
</tr>
<tr>
<td></td>
<td>Soldadura realizada en taller</td>
</tr>
<tr>
<td></td>
<td>Soldadura realizada en el lugar de montaje</td>
</tr>
</tbody>
</table>

Referencia 4

2.2.2.- Memoria de cálculo

2.2.2.1.- Tipo 3

a) Detalle
b) Descripción de los componentes de la unión

Perfiles

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría Esquema</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>(f_y) (MPa)</th>
<th>(f_u) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar</td>
<td>IPE 500</td>
<td></td>
<td>500</td>
<td>200</td>
<td>16</td>
<td>10.2</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 220</td>
<td></td>
<td>220</td>
<td>110</td>
<td>9.2</td>
<td>5.9</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 450</td>
<td></td>
<td>450</td>
<td>190</td>
<td>14.6</td>
<td>9.4</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
</tbody>
</table>

Elementos complementarios

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Geometría Esquema</th>
<th>Ancho (mm)</th>
<th>Canto (mm)</th>
<th>Espesor (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>(f_y) (MPa)</th>
<th>(f_u) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidizador</td>
<td></td>
<td>470.3</td>
<td>90</td>
<td>22</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
<tr>
<td>Chapa de refuerzo</td>
<td></td>
<td>415.6</td>
<td>423</td>
<td>12</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
</tbody>
</table>
Comprobación de resistencia

1) Pilar IPE 500

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel</td>
<td>Esbeltez</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70.91</td>
</tr>
<tr>
<td></td>
<td>Cortante</td>
<td>kN</td>
<td>930.77</td>
<td>1388.12</td>
<td>67.05</td>
</tr>
<tr>
<td>Rigidizador superior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>236.81</td>
<td>261.90</td>
<td>90.42</td>
</tr>
<tr>
<td>Rigidizador inferior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>257.69</td>
<td>261.90</td>
<td>98.39</td>
</tr>
<tr>
<td>Rigidizador superior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>236.81</td>
<td>261.90</td>
<td>90.42</td>
</tr>
<tr>
<td>Rigidizador inferior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>257.69</td>
<td>261.90</td>
<td>98.39</td>
</tr>
<tr>
<td>Ala</td>
<td>Desgarro</td>
<td>N/mm²</td>
<td>76.77</td>
<td>261.90</td>
<td>29.31</td>
</tr>
<tr>
<td></td>
<td>Cortante</td>
<td>N/mm²</td>
<td>228.63</td>
<td>261.90</td>
<td>87.30</td>
</tr>
</tbody>
</table>

| Viga (c) IPE 220 | Punzonamiento | kN | 52.81 | 530.11 | 9.96 |
| Viga (b) IPE 220 | Punzonamiento | kN | 57.97 | 530.11 | 10.94 |

Cordones de soldadura

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>En ángulo</td>
<td>10</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>En ángulo</td>
<td>11</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>En ángulo</td>
<td>10</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>En ángulo</td>
<td>11</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura de la chapa de refuerzo al alma</td>
<td>En ángulo</td>
<td>7</td>
<td>1598</td>
<td>10.2</td>
<td>90.00</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas*
Comprobación de resistencia

Ref.		Tensión de Von Mises			Tensión normal							
		σ (N/mm2)	τ (N/mm2)	$\tau_{		}$ (N/mm2)	Valor (N/mm2)	Aprov. (%)	σ (N/mm2)	Aprov. (%)	f_y (N/mm2)	β_w
Soldadura del rigidizador superior a las alas		174.8	193.1	0.0	377.5	93.26	174.8	50.81	430.0	0.85		
Soldadura del rigidizador superior al alma		0.0	0.0	88.4	153.1	37.83	0.0	0.00	430.0	0.85		
Soldadura del rigidizador inferior a las alas		172.9	191.1	0.0	373.4	92.26	172.9	50.26	430.0	0.85		
Soldadura del rigidizador inferior al alma		0.0	0.0	96.2	166.6	41.17	0.0	0.00	430.0	0.85		
Soldadura del rigidizador superior a las alas		174.8	193.1	0.0	377.5	93.26	174.8	50.81	430.0	0.85		
Soldadura del rigidizador superior al alma		0.0	0.0	88.4	153.1	37.83	0.0	0.00	430.0	0.85		
Soldadura del rigidizador inferior a las alas		172.9	191.1	0.0	373.4	92.26	172.9	50.26	430.0	0.85		
Soldadura del rigidizador inferior al alma		0.0	0.0	96.2	166.6	41.17	0.0	0.00	430.0	0.85		
Soldadura de la chapa de refuerzo al alma										430.0	0.85	

La comprobación no procede.

2) Viga (a) IPE 450

Cordones de soldadura

Comprobaciones geométricas

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del ala superior</td>
<td>En ángulo</td>
<td>9</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>7</td>
<td>394</td>
<td>9.4</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
<td>En ángulo</td>
<td>9</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
</tbody>
</table>

a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

Comprobación de resistencia

Ref.	Tensión de Von Mises		Tensión normal								
	σ (N/mm2)	τ (N/mm2)	$\tau_{		}$ (N/mm2)	Valor (N/mm2)	Aprov. (%)	σ (N/mm2)	Aprov. (%)	f_y (N/mm2)	β_w
Soldadura del ala superior		191.5	173.3	0.3	356.1	87.98	191.5	55.67	430.0	0.85	
Soldadura del alma		165.0	165.0	20.7	332.1	82.05	165.1	47.98	430.0	0.85	
Soldadura del ala inferior		182.7	201.9	0.3	394.6	97.51	182.8	53.13	430.0	0.85	
3) Viga (c) IPE 220

Comprobaciones de resistencia

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>74.64</td>
<td>261.90</td>
<td>28.50</td>
</tr>
</tbody>
</table>

Cordones de soldadura

Comprobaciones geométricas

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Angulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>4</td>
<td>120</td>
<td>5.9</td>
<td>90.00</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
{l: Longitud efectiva
{t: Espesor de piezas

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>f_u (N/mm²)</th>
<th>β_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>38.9</td>
<td>38.9</td>
<td>1.1</td>
<td>77.8</td>
</tr>
</tbody>
</table>

4) Viga (b) IPE 220

Comprobaciones de resistencia

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>81.91</td>
<td>261.90</td>
<td>31.28</td>
</tr>
</tbody>
</table>

Cordones de soldadura

Comprobaciones geométricas

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Angulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>4</td>
<td>120</td>
<td>5.9</td>
<td>90.00</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
{l: Longitud efectiva
{t: Espesor de piezas

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>f_u (N/mm²)</th>
<th>β_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>42.7</td>
<td>42.7</td>
<td>1.1</td>
<td>85.4</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

d) Medición

Soldaduras

<table>
<thead>
<tr>
<th>f_u (MPa)</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En taller</td>
<td>En ángulo</td>
<td>5</td>
<td>3507</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1598</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>4</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>683</td>
</tr>
</tbody>
</table>

Chapas

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Dimensiones (mm)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S275</td>
<td>Rigidizadores</td>
<td>4</td>
<td>470x90x22</td>
<td>29.24</td>
</tr>
<tr>
<td></td>
<td>Chapas</td>
<td>1</td>
<td>415x423x12</td>
<td>16.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.80</td>
</tr>
</tbody>
</table>

2.2.3.2.- Tipo 4

a) Detalle
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

b) Descripción de los componentes de la unión

Perfiles

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría</th>
<th>Acero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Esquema</td>
<td></td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canto total (mm)</td>
<td>Ancho del ala (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
<td>190</td>
</tr>
</tbody>
</table>

Elementos complementarios

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Geometría</th>
<th>Ancho (mm)</th>
<th>Canto (mm)</th>
<th>Espesor (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapa frontal</td>
<td></td>
<td>220</td>
<td>490</td>
<td>15</td>
<td></td>
<td></td>
<td>S275</td>
<td>275.0</td>
</tr>
</tbody>
</table>

Comprobación

1) Chapa frontal

<table>
<thead>
<tr>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interacción flexión - cortante</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.00</td>
</tr>
<tr>
<td>Deformación admisible</td>
<td>mRad</td>
<td>--</td>
<td>2</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2) Viga (a) IPE 450

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del ala superior</td>
<td>En ángulo</td>
<td>7</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>5</td>
<td>394</td>
<td>9.4</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
<td>En ángulo</td>
<td>7</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
</tbody>
</table>

| a: Espesor garganta |
| l: Longitud efectiva |
| t: Espesor de piezas |

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ (N/mm²)</td>
<td>τ (N/mm²)</td>
</tr>
<tr>
<td>Soldadura del ala superior</td>
<td>133.5</td>
<td>147.5</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>Aprov.</th>
<th>(f_u) (N/mm²)</th>
<th>(\beta_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma) (N/mm²)</td>
<td>(\tau) (N/mm²)</td>
<td>(\tau_{</td>
<td></td>
<td>}) (N/mm²)</td>
</tr>
<tr>
<td>Soldadura del alma</td>
<td>121.5</td>
<td>121.5</td>
<td>0.5</td>
<td>243.1</td>
<td>60.06</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
<td>133.6</td>
<td>120.9</td>
<td>0.4</td>
<td>248.3</td>
<td>61.36</td>
</tr>
</tbody>
</table>

3) Viga (b) IPE 450

Cordones de soldadura

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>(a) (mm)</th>
<th>(l) (mm)</th>
<th>(t) (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del ala superior</td>
<td>En ángulo</td>
<td>7</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>5</td>
<td>394</td>
<td>9.4</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
<td>En ángulo</td>
<td>7</td>
<td>190</td>
<td>14.6</td>
<td>84.29</td>
</tr>
</tbody>
</table>

* a: Espesor garganta
 * l: Longitud efectiva
 * t: Espesor de piezas

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>Aprov.</th>
<th>(f_u) (N/mm²)</th>
<th>(\beta_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma) (N/mm²)</td>
<td>(\tau) (N/mm²)</td>
<td>(\tau_{</td>
<td></td>
<td>}) (N/mm²)</td>
</tr>
<tr>
<td>Soldadura del ala superior</td>
<td>133.5</td>
<td>147.5</td>
<td>0.4</td>
<td>288.3</td>
<td>71.25</td>
</tr>
<tr>
<td>Soldadura del alma</td>
<td>121.5</td>
<td>121.5</td>
<td>0.5</td>
<td>243.1</td>
<td>60.06</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
<td>133.6</td>
<td>120.9</td>
<td>0.4</td>
<td>248.3</td>
<td>61.36</td>
</tr>
</tbody>
</table>

d) Medición

<table>
<thead>
<tr>
<th>(f_u) (MPa)</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En taller</td>
<td>En ángulo</td>
<td>5</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>741</td>
</tr>
<tr>
<td></td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>5</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>741</td>
</tr>
</tbody>
</table>

Soldaduras

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Dimensiones (mm)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S275</td>
<td>Chapas</td>
<td>1</td>
<td>220x490x15</td>
<td>12.69</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>12.69</td>
</tr>
</tbody>
</table>

Página 44
2.2.3.3.- Tipo 5

a) Detalle

![Diagrams of sections A-A, B-B, and C-C showing details of structural components.]

b) Descripción de los componentes de la unión

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar</td>
<td>IPE 500</td>
<td>500</td>
<td>500</td>
<td>200</td>
<td>16</td>
<td>10.2</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 220</td>
<td>220</td>
<td>220</td>
<td>110</td>
<td>9.2</td>
<td>5.9</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
</tbody>
</table>
c) Comprobación

1) Pilar IPE 500

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viga (a) IPE 220 Alma</td>
<td>Punzonamiento</td>
<td>kN</td>
<td></td>
<td>18.04</td>
<td>530.11</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td></td>
<td>9.12</td>
<td>130.95</td>
<td>6.96</td>
</tr>
<tr>
<td>Viga (b) IPE 220 Alma</td>
<td>Punzonamiento</td>
<td>kN</td>
<td></td>
<td>18.05</td>
<td>530.11</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td></td>
<td>9.12</td>
<td>130.95</td>
<td>6.96</td>
</tr>
</tbody>
</table>

2) Viga (a) IPE 220

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td></td>
<td>25.64</td>
<td>261.90</td>
<td>9.79</td>
</tr>
</tbody>
</table>

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>4</td>
<td>120</td>
<td>5.9</td>
<td>90.00</td>
</tr>
</tbody>
</table>

a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
<th>Ref.</th>
<th>σ (N/mm²)</th>
<th>τ (N/mm²)</th>
<th>Tensión de Von Mises (N/mm²)</th>
<th>Aprov. (%)</th>
<th>f (N/mm²)</th>
<th>Tensión normal (N/mm²)</th>
<th>Aprov. (%)</th>
<th>τ (N/mm²)</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>13.3</td>
<td>13.3</td>
<td>0.9</td>
<td>26.7</td>
<td>6.59</td>
<td>13.3</td>
<td>3.87</td>
<td>430.0</td>
<td>0.85</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Página 46
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

3) Viga (b) IPE 220

Comprobaciones de resistencia

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>25.64</td>
<td>261.90</td>
<td>9.79</td>
</tr>
</tbody>
</table>

Cordones de soldadura

Comprobaciones geométricas

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>4</td>
<td>120</td>
<td>5.9</td>
<td>90.00</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>f_u (N/mm²)</th>
<th>t_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>13.3 13.3 0.9 26.7 3.87 430.0</td>
<td>13.3 3.87 430.0</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>

Medición

<table>
<thead>
<tr>
<th>f_u (MPa)</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>4</td>
<td>480</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

3. Pórtico Fachada

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

![Diagrama del Pórtico Fachada](image)

Ilustración 20. Vista del pórtico de fachada.

3.1 Comprobaciones en barras.

3.1.1 E.L.S.

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Flecha máxima absoluta xy</th>
<th>Flecha máxima relativa xy</th>
<th>Flecha máxima absoluta xz</th>
<th>Flecha máxima relativa xz</th>
<th>Flecha activa absoluta xy</th>
<th>Flecha activa relativa xy</th>
<th>Flecha activa absoluta xz</th>
<th>Flecha activa relativa xz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N51/N52</td>
<td>3.476</td>
<td>18.70</td>
<td>3.476</td>
<td>1.29</td>
<td>6.252</td>
<td>34.21</td>
<td>3.476</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>3.090</td>
<td>L/347.7</td>
<td>3.476</td>
<td>L/(>1000)</td>
<td>3.090</td>
<td>L/347.7</td>
<td>3.476</td>
<td>L/(>1000)</td>
</tr>
<tr>
<td></td>
<td>2.790</td>
<td>L/(>1000)</td>
<td>2.790</td>
<td>L/516.8</td>
<td>2.790</td>
<td>L/(>1000)</td>
<td>2.790</td>
<td>L/516.8</td>
</tr>
<tr>
<td>N51/N8</td>
<td>8.132</td>
<td>0.00</td>
<td>8.132</td>
<td>8.132</td>
<td>0.00</td>
<td>8.712</td>
<td>0.00</td>
<td>8.712</td>
</tr>
<tr>
<td></td>
<td>L/(>1000)</td>
<td>-</td>
<td>L/(>1000)</td>
<td>-</td>
<td>L/(>1000)</td>
<td>-</td>
<td>L/(>1000)</td>
<td>-</td>
</tr>
</tbody>
</table>
3.1.2 E.L.U.

Notación:
- \(\lambda \): Limitación de esbeltez
- \(h_{ab} \): Abolladura del alma inducida por el ala comprimida
- \(N_c \): Resistencia a tracción
- \(N_r \): Resistencia a compresión
- \(M_{fY} \): Resistencia a flexión eje Y
- \(M_{fZ} \): Resistencia a flexión eje Z
- \(V_{fY} \): Resistencia a cortante eje Y
- \(V_{fZ} \): Resistencia a cortante eje Z
- \(M_{fY} \): Resistencia a momento flector Y y fuerza cortante Z combinados
- \(M_{fZ} \): Resistencia a momento flector Z y fuerza cortante Y combinados
- \(N,M,V \): Resistencia a flexión y axil combinados
- \(N,M,V,f \): Resistencia a flexión, axil y cortante combinados
- \(M_{r} \): Resistencia a torsión
- \(V_{r} \): Resistencia a cortante Z y momento torsor combinados
- \(V_{r} \): Resistencia a cortante Y y momento torsor combinados
- \(x \): Distancia al origen de la barra
- \(\eta \): Coeficiente de aprovechamiento (%)
- N.P.: No procede

Comprobaciones que no proceden (N.P.):
1. La comprobación no procede, ya que no hay momento torsor.
2. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
3. La comprobación no procede, ya que no hay axil de compresión.
4. La comprobación no procede, ya que no hay momento flector.
5. La comprobación no procede, ya que no hay esfuerzo cortante.
6. No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
7. No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
8. No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

3.2 Uniones
3.2.1 Memoria de cálculo

3.2.1.1.- Tipo 6

a) Detalle

![Diagrama de secciones A-A, B-B y C-C](image)

b) Descripción de los componentes de la unión

<table>
<thead>
<tr>
<th>Perfiles</th>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar</td>
<td>IPE 270</td>
<td>Pilar IPE 270</td>
<td>[Image]</td>
<td>270</td>
<td>135</td>
<td>10.2</td>
<td>6.6</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 180</td>
<td>Viga IPE 180</td>
<td>[Image]</td>
<td>180</td>
<td>91</td>
<td>8</td>
<td>5.3</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
</tbody>
</table>
c) Comprobación

1) Pilar IPE 270

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viga (a) IPE 180</td>
<td>Punzonamiento</td>
<td>kN</td>
<td>34.95</td>
<td>286.89</td>
<td>12.18</td>
</tr>
<tr>
<td>Viga (b) IPE 180</td>
<td>Punzonamiento</td>
<td>kN</td>
<td>34.95</td>
<td>286.89</td>
<td>12.18</td>
</tr>
<tr>
<td>Viga (a) IPE 180</td>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td>7.28</td>
<td>34.74</td>
<td>20.96</td>
</tr>
<tr>
<td>Viga (b) IPE 180</td>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td>7.28</td>
<td>34.74</td>
<td>20.96</td>
</tr>
</tbody>
</table>

2) Viga (a) IPE 180

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>68.28</td>
<td>261.90</td>
<td>26.07</td>
</tr>
</tbody>
</table>

Cordones de soldadura

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>3</td>
<td>100</td>
<td>5.3</td>
<td>90.00</td>
</tr>
</tbody>
</table>

3) Viga (b) IPE 180

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>68.28</td>
<td>261.90</td>
<td>26.07</td>
</tr>
</tbody>
</table>

Cordones de soldadura

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>3</td>
<td>100</td>
<td>5.3</td>
<td>90.00</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

d) Medición

<table>
<thead>
<tr>
<th>Soldaduras</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_u (MPa)</td>
</tr>
<tr>
<td>430.0</td>
</tr>
</tbody>
</table>

3.2.1.2.- Tipo 7

a) Detalle
b) Descripción de los componentes de la unión

<table>
<thead>
<tr>
<th>Perfiles</th>
<th>Geometría</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar IPE 270</td>
<td>Esquema</td>
<td>270</td>
<td>135</td>
<td>10.2</td>
<td>6.6</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
<tr>
<td>Viga IPE 180</td>
<td>Esquema</td>
<td>180</td>
<td>91</td>
<td>8</td>
<td>5.3</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
</tbody>
</table>

Elementos complementarios

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Geometría</th>
<th>Ancho (mm)</th>
<th>Canto (mm)</th>
<th>Espesor (mm)</th>
<th>Acero</th>
<th>Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapa frontal</td>
<td>Esquema</td>
<td>140</td>
<td>270</td>
<td>11</td>
<td>S275</td>
<td>275.0</td>
<td></td>
<td>430.0</td>
</tr>
<tr>
<td>Rigidizador</td>
<td>Esquema</td>
<td>164.8</td>
<td>40</td>
<td>7</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
<td></td>
</tr>
</tbody>
</table>

c) Comprobación

1) Viga IPE 180

Comprobaciones de resistencia

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidizadores</td>
<td>Cortante</td>
<td>kN</td>
<td>19.38</td>
<td>167.05</td>
<td>11.60</td>
</tr>
<tr>
<td></td>
<td>Tracción</td>
<td>kN</td>
<td>19.38</td>
<td>60.50</td>
<td>32.03</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>Soldadura del rigidizador al alma</td>
</tr>
<tr>
<td>Soldadura del rigidizador a las alas</td>
</tr>
<tr>
<td>Soldadura de la chapa a los bordes exteriores del ala</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soldadura del rigidizador al alma</td>
</tr>
<tr>
<td>Soldadura del rigidizador a las alas</td>
</tr>
<tr>
<td>Soldadura de la chapa a los bordes exteriores del ala</td>
</tr>
</tbody>
</table>

2) Pilar IPE 270

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componente</td>
</tr>
<tr>
<td>Chapa frontal</td>
</tr>
<tr>
<td>Alma</td>
</tr>
</tbody>
</table>

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
</tbody>
</table>
d) Medición

Soldaduras

<table>
<thead>
<tr>
<th>f_u (MPa)</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En taller</td>
<td>En ángulo</td>
<td>3</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>3</td>
<td>280</td>
</tr>
</tbody>
</table>

Chapas

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Dimensiones (mm)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S275</td>
<td>Rigidizadores</td>
<td>2</td>
<td>164x40x7</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Chapas</td>
<td>1</td>
<td>140x270x11</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>3.99</td>
</tr>
</tbody>
</table>

3.2.1.3.- Tipo 8

a) Detalle
b) Descripción de los componentes de la unión

<table>
<thead>
<tr>
<th>Perfiles</th>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría Esquema</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilar</td>
<td>IPE 270</td>
<td>![Image]</td>
<td>270</td>
<td>135</td>
<td>10.2</td>
<td>6.6</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
<tr>
<td></td>
<td>Viga</td>
<td>IPE 180</td>
<td>![Image]</td>
<td>180</td>
<td>91</td>
<td>8</td>
<td>5.3</td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
</tbody>
</table>

c) Comprobación

1) Pilar IPE 270

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viga IPE 180 Alma Punzonamiento</td>
<td>kN</td>
<td>24.35</td>
<td>286.89</td>
<td>8.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td>24.35</td>
<td>34.74</td>
<td>70.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Viga IPE 180

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma Tensión de Von Mises N/mm²</td>
<td></td>
<td>53.88</td>
<td>261.90</td>
<td>20.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>l (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del alma</td>
<td>En ángulo</td>
<td>3</td>
<td>100</td>
<td>5.3</td>
<td>90.00</td>
</tr>
</tbody>
</table>

a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
<th>f_u</th>
<th>f_w</th>
</tr>
</thead>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Soldadura del alma</th>
<th>$\sigma_{\perp} (\text{N/mm}^2)$</th>
<th>$\tau_{\perp} (\text{N/mm}^2)$</th>
<th>$\tau_{\parallel} (\text{N/mm}^2)$</th>
<th>Valor (N/mm²)</th>
<th>Aprov. (%)</th>
<th>$\alpha_{\perp} (\text{N/mm}^2)$</th>
<th>Aprov. (%)</th>
<th>$f_{\text{u}} (\text{N/mm}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28.1</td>
<td>29.3</td>
<td>14.3</td>
<td>63.1</td>
<td>15.60</td>
<td>29.3</td>
<td>8.53</td>
<td>430.0</td>
</tr>
</tbody>
</table>

d) Medición

<table>
<thead>
<tr>
<th>$f_{\text{u}} (\text{MPa})$</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>3</td>
<td>200</td>
</tr>
</tbody>
</table>

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

Ilustración 21. Vista de la fachada lateral.

4.1 Comprobaciones en barras.

4.1.1 E.L.S

Referencias:

- **Pos.:** Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.
- **L.:** Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

<table>
<thead>
<tr>
<th>Flechas</th>
<th>Número del Grupo</th>
<th>Pos. (m)</th>
<th>Flecha (mm)</th>
<th>Flecha máxima absoluta xy</th>
<th>Flecha máxima relativa xy</th>
<th>Pos. (m)</th>
<th>Flecha (mm)</th>
<th>Flecha máxima absoluta xz</th>
<th>Flecha máxima relativa xz</th>
<th>Pos. (m)</th>
<th>Flecha (mm)</th>
<th>Flecha activa absoluta xy</th>
<th>Flecha activa relativa xy</th>
<th>Pos. (m)</th>
<th>Flecha (mm)</th>
<th>Flecha activa absoluta xz</th>
<th>Flecha activa relativa xz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N74/N76</td>
<td>6.000</td>
<td>0.00</td>
<td>0.00</td>
<td>4.000</td>
<td>2.38</td>
<td>0.00</td>
<td>4.000</td>
<td>0.00</td>
<td>2.38</td>
<td>4.00</td>
<td>2.38</td>
<td>4.008</td>
<td>2.38</td>
<td>4.00</td>
<td>2.38</td>
<td>4.008</td>
<td>2.38</td>
</tr>
<tr>
<td>N76/N58</td>
<td>4.916</td>
<td>2.11</td>
<td>3.933</td>
<td>3.933</td>
<td>1.26</td>
<td>4.424</td>
<td>3.78</td>
<td>4.916</td>
<td>3.933</td>
<td>3.441</td>
<td>1.47</td>
<td>4.008</td>
<td>2.38</td>
<td>4.00</td>
<td>2.38</td>
<td>4.008</td>
<td>2.38</td>
</tr>
<tr>
<td>N51/N76</td>
<td>7.399</td>
<td>0.00</td>
<td>9.249</td>
<td>9.249</td>
<td>0.00</td>
<td>9.866</td>
<td>9.866</td>
<td>0.00</td>
<td>9.249</td>
<td>9.249</td>
<td>0.00</td>
<td>4.008</td>
<td>2.38</td>
<td>4.00</td>
<td>2.38</td>
<td>4.008</td>
<td>2.38</td>
</tr>
<tr>
<td>N58/N47</td>
<td>6.522</td>
<td>0.00</td>
<td>5.519</td>
<td>5.519</td>
<td>0.00</td>
<td>8.027</td>
<td>0.00</td>
<td>8.027</td>
<td>5.519</td>
<td>5.519</td>
<td>0.00</td>
<td>4.008</td>
<td>2.38</td>
<td>4.00</td>
<td>2.38</td>
<td>4.008</td>
<td>2.38</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

4.1.2 E.L.U.

NOTACIÓN:
- $\tilde{\lambda}$: Limitación de esbeltez
- λ_{α}: Abolladura del alma inducida por el ala comprimida
- N_s: Resistencia a tracción
- N_c: Resistencia a compresión
- M_s: Resistencia a flexión eje Y
- M_c: Resistencia a corte Z
- M_{Vs}: Resistencia a momento flector Y y fuerza cortante Z combinados
- M_{Vc}: Resistencia a momento flector Z y fuerza cortante Y combinados
- N_{Ms}: Resistencia a flexión, axil y cortante combinados
- M: Distancia al origen de la barra
- η: Coeficiente de aprovechamiento (%)
- N.P.: No procede

Comprobaciones que no proceden (N.P.):
1. La comprobación no procede, ya que no hay momento flector.
2. La comprobación no procede, ya que no hay esfuerzo cortante.
3. No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
4. La comprobación no procede, ya que no hay momento torsor.
5. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
6. La comprobación no procede, ya que no hay axil de compresión.
7. No hay interacción entre momento flector y momento flector ni entre momentos flexores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
8. No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Barras

COMPROBAÇIONES (CTE DB SE-A)

<table>
<thead>
<tr>
<th>Barra</th>
<th>λ</th>
<th>x</th>
<th>N_s</th>
<th>N_c</th>
<th>M_s</th>
<th>M_c</th>
<th>M_{Vs}</th>
<th>M_{Vc}</th>
<th>N_{Ms}</th>
<th>N_{Ms}</th>
<th>M_{Vc}</th>
<th>M_{Vc}</th>
<th>M_s</th>
<th>M_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>N74/N76</td>
<td>≥ 2.0</td>
<td>Cumple</td>
<td>$h_s = 2.1$</td>
<td>$h_s = 3.5$</td>
<td>0.00 N.P.</td>
<td>CUMPLE $\eta = 3.8$</td>
</tr>
<tr>
<td>N76/N58</td>
<td>≥ 2.0</td>
<td>Cumple</td>
<td>$h_s = 1.7$</td>
<td>$h_s = 6.1$</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>7.865</td>
<td>CUMPLE $\eta = 61.0$</td>
</tr>
</tbody>
</table>

Barras

COMPROBAÇIONES (CTE DB SE-A)

<table>
<thead>
<tr>
<th>Barra</th>
<th>λ</th>
<th>x</th>
<th>N_s</th>
<th>N_c</th>
<th>M_s</th>
<th>M_c</th>
<th>M_{Vs}</th>
<th>M_{Vc}</th>
<th>N_{Ms}</th>
<th>N_{Ms}</th>
<th>M_{Vc}</th>
<th>M_{Vc}</th>
<th>M_s</th>
<th>M_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS1/N76</td>
<td>≥ 4.0</td>
<td>Cumple</td>
<td>$h_s = 4.1$</td>
<td>$h_s = 0.0$ N.P.</td>
<td>0.00 N.P.</td>
<td>CUMPLE $\eta = 41.4$</td>
</tr>
<tr>
<td>NS5/N47</td>
<td>≥ 4.0</td>
<td>Cumple</td>
<td>$h_s = 34.4$</td>
<td>$h_s = 0.0$ N.P.</td>
<td>0.00 N.P.</td>
<td>CUMPLE $\eta = 34.4$</td>
</tr>
</tbody>
</table>
4.2 Uniones

4.2.1 Memoria de cálculo

4.2.1.1.- Tipo 18

a) Detalle

![Diagrama de la unión](image)

b) Descripción de los componentes de la unión

<table>
<thead>
<tr>
<th>Perfiles</th>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría</th>
<th>Canto total (mm)</th>
<th>Ancho del ala (mm)</th>
<th>Espesor del ala (mm)</th>
<th>Espesor del alma (mm)</th>
<th>Acero Tipo</th>
<th>f_y (MPa)</th>
<th>f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilar</td>
<td>IPE 500</td>
<td>Esquema</td>
<td>500</td>
<td>200</td>
<td>16</td>
<td>10.2</td>
<td></td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 220</td>
<td>Esquema</td>
<td>220</td>
<td>110</td>
<td>9.2</td>
<td>5.9</td>
<td></td>
<td>S275</td>
<td>275.0</td>
<td>430.0</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Descripción</th>
<th>Geometría</th>
<th>Acero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Esquema</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canto total (mm)</td>
<td>Ancho del ala (mm)</td>
</tr>
<tr>
<td>Viga</td>
<td>IPE 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
<td>190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pieza</th>
<th>Geometría</th>
<th>Acero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esquema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ancho (mm)</td>
<td>Canto (mm)</td>
</tr>
<tr>
<td>Rigidizador</td>
<td>470.3</td>
<td>90</td>
</tr>
<tr>
<td>Chapa de refuerzo</td>
<td>415.6</td>
<td>423</td>
</tr>
</tbody>
</table>

c) Comprobación

1) Pilar IPE 500

<table>
<thead>
<tr>
<th>Componente</th>
<th>Comprobación</th>
<th>Unidades</th>
<th>Pésimo</th>
<th>Resistente</th>
<th>Aprov. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel</td>
<td>Esbeltez</td>
<td></td>
<td></td>
<td></td>
<td>70.91</td>
</tr>
<tr>
<td></td>
<td>Cortante</td>
<td>kN</td>
<td>935.19</td>
<td>1388.12</td>
<td>67.37</td>
</tr>
<tr>
<td>Rigidizador superior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>237.88</td>
<td>261.90</td>
<td>90.83</td>
</tr>
<tr>
<td>Rigidizador inferior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>259.01</td>
<td>261.90</td>
<td>98.89</td>
</tr>
<tr>
<td>Rigidizador superior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>238.00</td>
<td>261.90</td>
<td>90.87</td>
</tr>
<tr>
<td>Rigidizador inferior</td>
<td>Tensión de Von Mises</td>
<td>N/mm²</td>
<td>258.89</td>
<td>261.90</td>
<td>98.85</td>
</tr>
<tr>
<td>Ala</td>
<td>Desgarro</td>
<td>N/mm²</td>
<td>123.50</td>
<td>261.90</td>
<td>47.16</td>
</tr>
<tr>
<td></td>
<td>Cortante</td>
<td>N/mm²</td>
<td>229.78</td>
<td>261.90</td>
<td>87.73</td>
</tr>
<tr>
<td>Viga IPE 220</td>
<td>Punzonamiento</td>
<td>kN</td>
<td>50.04</td>
<td>530.11</td>
<td>9.44</td>
</tr>
<tr>
<td>Alma</td>
<td>Flexión por fuerza perpendicular</td>
<td>kN</td>
<td>50.04</td>
<td>73.34</td>
<td>68.23</td>
</tr>
</tbody>
</table>

Cordones de soldadura
Comprobaciones geométricas

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tipo</th>
<th>a (mm)</th>
<th>I (mm)</th>
<th>t (mm)</th>
<th>Ángulo (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>En ángulo</td>
<td>10</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>En ángulo</td>
<td>11</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>En ángulo</td>
<td>10</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>En ángulo</td>
<td>11</td>
<td>74</td>
<td>16.0</td>
<td>84.29</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>En ángulo</td>
<td>5</td>
<td>438</td>
<td>10.2</td>
<td>90.00</td>
</tr>
<tr>
<td>Soldadura de la chapa de refuerzo al alma</td>
<td>En ángulo</td>
<td>7</td>
<td>1598</td>
<td>10.2</td>
<td>90.00</td>
</tr>
</tbody>
</table>

*a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas*

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tensión de Von Mises</th>
<th>Tensión normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_t (N/mm²)</td>
<td>σ_{ult}(N/mm²)</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>175.6</td>
<td>194.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>173.8</td>
<td>192.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior a las alas</td>
<td>175.7</td>
<td>194.1</td>
</tr>
<tr>
<td>Soldadura del rigidizador superior al alma</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior a las alas</td>
<td>173.7</td>
<td>192.0</td>
</tr>
<tr>
<td>Soldadura del rigidizador inferior al alma</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Soldadura de la chapa de refuerzo al alma</td>
<td>La comprobación no procede.</td>
<td></td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

2) Viga IPE 450

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Soldadura del ala superior</td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
</tr>
</tbody>
</table>

a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Soldadura del ala superior</td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
<tr>
<td>Soldadura del ala inferior</td>
</tr>
</tbody>
</table>

3) Viga IPE 220

<table>
<thead>
<tr>
<th>Comprobaciones de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componente</td>
</tr>
<tr>
<td>Alma</td>
</tr>
</tbody>
</table>

Cordones de soldadura

<table>
<thead>
<tr>
<th>Comprobaciones geométricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
</tbody>
</table>

a: Espesor garganta
l: Longitud efectiva
t: Espesor de piezas

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Soldadura del alma</td>
</tr>
</tbody>
</table>
d) Medición

Soldaduras

<table>
<thead>
<tr>
<th>f_u (MPa)</th>
<th>Ejecución</th>
<th>Tipo</th>
<th>Espesor de garganta (mm)</th>
<th>Longitud de cordones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.0</td>
<td>En taller</td>
<td>En ángulo</td>
<td>5</td>
<td>3507</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1598</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>En el lugar de montaje</td>
<td>En ángulo</td>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>683</td>
</tr>
</tbody>
</table>

Chapas

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Dimensiones (mm)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S275</td>
<td>Rigidizadores</td>
<td>4</td>
<td>470x90x22</td>
<td>29.24</td>
</tr>
<tr>
<td></td>
<td>Chapas</td>
<td>1</td>
<td>415x423x12</td>
<td>16.56</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>45.80</td>
</tr>
</tbody>
</table>
5. Cubierta.

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

Ilustración 22. Vista de la cubierta.

5.1 Comprobaciones en barras.

5.1.1 E.L.S.

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.
L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

<table>
<thead>
<tr>
<th>Flechas</th>
<th>Grupo</th>
<th>Flecha máxima absoluta xy</th>
<th>Flecha máxima relativa xy</th>
<th>Flecha activa absoluta xy</th>
<th>Flecha activa relativa xy</th>
<th>Flecha activa absoluta xz</th>
<th>Flecha activa relativa xz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos. (m)</td>
<td>Flecha (mm)</td>
<td>Pos. (m)</td>
<td>Flecha (mm)</td>
<td>Pos. (m)</td>
<td>Flecha (mm)</td>
<td>Pos. (m)</td>
<td>Flecha (mm)</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Flechas

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Posición (m)</th>
<th>Flecha absoluta xy (mm)</th>
<th>Flecha máxima relativa xy (mm)</th>
<th>Flecha absoluta xz (mm)</th>
<th>Flecha máxima relativa xz (mm)</th>
<th>Flecha absoluta Y (mm)</th>
<th>Flecha máxima relativa Y (mm)</th>
<th>Flecha absoluta V (mm)</th>
<th>Flecha máxima relativa V (mm)</th>
<th>Flecha absoluta Z (mm)</th>
<th>Flecha máxima relativa Z (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N81/N94</td>
<td>3.000</td>
<td>1.08</td>
<td>L/(>1000)</td>
<td>3.500</td>
<td>L/(>1000)</td>
<td>3.000</td>
<td>L/(>1000)</td>
<td>1.65</td>
<td>L/(>1000)</td>
<td>3.500</td>
<td>L/(>1000)</td>
</tr>
<tr>
<td></td>
<td>N7/N81</td>
<td>3.267</td>
<td>0.00</td>
<td>9.801</td>
<td>L/(>1000)</td>
<td>0.00</td>
<td>L/(>1000)</td>
<td>6.534</td>
<td>L/(>1000)</td>
<td>9.147</td>
<td>0.00</td>
</tr>
</tbody>
</table>

5.1.2 E.L.U.

<table>
<thead>
<tr>
<th>Barras</th>
<th>COMPROBACIONES (CTE DB SE-A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N81/N94</td>
<td>(\eta < 2.0) Cumple (\eta = 10.4)</td>
</tr>
<tr>
<td>N7/N81</td>
<td>(\eta = 10.4)</td>
</tr>
</tbody>
</table>

Notación:
- \(\lambda \): Limitación de esbeltez
- \(\eta \): Abolladura del alma inducida por el ala comprimida
- \(N_c \): Resistencia a tracción
- \(N_f \): Resistencia a compresión
- \(M_{Y} \): Resistencia a flexión eje Y
- \(M_{Z} \): Resistencia a flexión eje Z
- \(V_{Y} \): Resistencia a cortante Y
- \(V_{Z} \): Resistencia a cortante Z
- \(M_{VY} \): Resistencia a momento flector Y y fuerza cortante Z combinados
- \(M_{VZ} \): Resistencia a momento flector Z y fuerza cortante Y combinados
- \(NM_{Y} \): Resistencia a flexión y axil combinados
- \(NM_{VY} \): Resistencia a cortante Y y momento torsor combinados
- \(NM_{VZ} \): Resistencia a cortante Z y momento torsor combinados
- \(x \): Distancia al origen de la barra
- \(\eta \): Coeficiente de aprovechamiento (%)
- \(N.P. \): No procede

Comprobaciones que no proceden (N.P.):
1. La comprobación no procede, ya que no hay axil de compresión.
2. La comprobación no procede, ya que no hay momento flector.
3. La comprobación no procede, ya que no hay esfuerzo cortante.
4. No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
5. No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
6. No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
7. La comprobación no procede, ya que no hay momento torsor.
8. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
6. Cimentaciones.

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

Ilustración 23. Vista en planta de cimentación.

6.1.- Elementos de cimentación aislados

6.1.1.- Descripción

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Geometría</th>
<th>Armado</th>
</tr>
</thead>
<tbody>
<tr>
<td>N8, N13, N18, N23, N28 y N48</td>
<td>Zapata rectangular excéntrica Ancho inicial X: 110.0 cm Ancho inicial Y: 37.5 cm Ancho final X: 110.0 cm Ancho final Y: 282.5 cm Ancho zapata X: 220.0 cm Ancho zapata Y: 320.0 cm Canto: 125.0 cm</td>
<td>Sup X: 12Ø20c/27 Sup Y: 8Ø20c/27 Inf X: 12Ø20c/27 Inf Y: 8Ø20c/27</td>
</tr>
<tr>
<td>N3, N84, N78, N80, N1, N51, N82, N79, N86 y N53</td>
<td>Zapata rectangular excéntrica Ancho inicial X: 140.0 cm Ancho inicial Y: 140.0 cm Ancho final X: 140.0 cm Ancho final Y: 140.0 cm Ancho zapata X: 280.0 cm Ancho zapata Y: 280.0 cm Canto: 60.0 cm</td>
<td>Sup X: 14Ø12c/20 Sup Y: 14Ø12c/20 Inf X: 14Ø12c/20 Inf Y: 14Ø12c/20</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Geometría</th>
<th>Armado</th>
</tr>
</thead>
<tbody>
<tr>
<td>N6, N11, N16, N21, N26 y N46</td>
<td>Zapata rectangular excéntrica Ancho inicial X: 110.0 cm Ancho inicial Y: 282.5 cm Ancho final X: 110.0 cm Ancho final Y: 37.5 cm Ancho zapata X: 220.0 cm Ancho zapata Y: 320.0 cm Canto: 125.0 cm</td>
<td>Sup X: 12Ø20c/27 Sup Y: 8Ø20c/27 Inf X: 12Ø20c/27 Inf Y: 8Ø20c/27</td>
</tr>
<tr>
<td>(N33 - N114), (N43 - N140), (N41 - N138) y (N31 - N112)</td>
<td>Zapata rectangular centrada Ancho zapata X: 230.0 cm Ancho zapata Y: 390.0 cm Canto: 75.0 cm</td>
<td>Sup X: 13Ø16c/29 Sup Y: 8Ø16c/29 Inf X: 13Ø16c/29 Inf Y: 8Ø16c/29</td>
</tr>
<tr>
<td>(N38 - N132 - N136) y (N36 - N130 - N134)</td>
<td>Zapata rectangular centrada Ancho zapata X: 260.0 cm Ancho zapata Y: 370.0 cm Canto: 75.0 cm</td>
<td>Sup X: 13Ø16c/29 Sup Y: 9Ø16c/29 Inf X: 13Ø16c/29 Inf Y: 9Ø16c/29</td>
</tr>
</tbody>
</table>

6.1.2.- Medición

<table>
<thead>
<tr>
<th>Referencias: N8, N13, N18, N23, N28 y N48</th>
<th>B 500 S, Ys=1.15</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de armado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado X</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>12x2.56</td>
<td>12x6.31</td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado Y</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>8x3.56</td>
<td>8x8.78</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado X</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>12x2.72</td>
<td>12x6.71</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado Y</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>8x3.72</td>
<td>8x9.17</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>12x2.56</td>
<td>12x6.31</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referencias: N3, N84, N78, N80, N1, N51, N82, N79, N86 y N53</th>
<th>B 500 S, Ys=1.15</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de armado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado X</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado Y</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado X</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado Y</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>14x2.64</td>
<td>14x2.34</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>Longitud (m)</td>
<td>Peso (kg)</td>
</tr>
<tr>
<td>16x2.64</td>
<td>16x2.34</td>
<td></td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Referencias: N6, N11, N16, N21, N26 y N46

B 500 S, Ys=1.15 Total

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Ø20</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parrilla inferior - Armado X</td>
<td>Longitud (m)</td>
<td>12x2.56</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado Y</td>
<td>Longitud (m)</td>
<td>8x3.56</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado X</td>
<td>Longitud (m)</td>
<td>12x2.72</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado Y</td>
<td>Longitud (m)</td>
<td>8x3.72</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>Longitud (m)</td>
<td>121.60</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>Longitud (m)</td>
<td>133.76</td>
</tr>
</tbody>
</table>

Referencias: (N33 - N114), (N43 - N140), (N41 - N138) y (N31 - N112)

B 500 S, Ys=1.15 Total

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Ø16</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parrilla inferior - Armado X</td>
<td>Longitud (m)</td>
<td>13x2.50</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado Y</td>
<td>Longitud (m)</td>
<td>8x4.10</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado X</td>
<td>Longitud (m)</td>
<td>13x2.60</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado Y</td>
<td>Longitud (m)</td>
<td>8x4.20</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>Longitud (m)</td>
<td>132.70</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>Longitud (m)</td>
<td>145.97</td>
</tr>
</tbody>
</table>

Referencias: (N38 - N132 - N136) y (N36 - N130 - N134)

B 500 S, Ys=1.15 Total

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Ø16</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parrilla inferior - Armado X</td>
<td>Longitud (m)</td>
<td>13x2.80</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla inferior - Armado Y</td>
<td>Longitud (m)</td>
<td>9x3.90</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado X</td>
<td>Longitud (m)</td>
<td>13x2.90</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Parrilla superior - Armado Y</td>
<td>Longitud (m)</td>
<td>9x4.00</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>Longitud (m)</td>
<td>145.20</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>Longitud (m)</td>
<td>159.72</td>
</tr>
<tr>
<td></td>
<td>Peso (kg)</td>
<td></td>
</tr>
</tbody>
</table>
Resumen de medición (se incluyen mermas de acero)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ø12</th>
<th>Ø16</th>
<th>Ø20</th>
<th>Total</th>
<th>HA-25</th>
<th>Limpieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referencias: N8, N13, N18, N23, N28 y N48</td>
<td>6x329.88</td>
<td>6x8.80</td>
<td>6x0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referencias: N3, N84, N78, N80, N1, N51, N82, N79, N86 y N53</td>
<td>10x144.36</td>
<td>10x4.70</td>
<td>10x0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referencias: N6, N11, N16, N21, N26 y N46</td>
<td>6x329.88</td>
<td>6x8.80</td>
<td>6x0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referencias: (N33 - N114), (N43 - N140), (N41 - N138) y (N31 - N112)</td>
<td>4x230.40</td>
<td>4x6.73</td>
<td>4x0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referencias: (N38 - N132 - N136) y (N36 - N130 - N134)</td>
<td>2x252.09</td>
<td>2x7.21</td>
<td>2x0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>1443.60</td>
<td>1425.78</td>
<td>3958.56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Longitud (m)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armado viga - Armado inferior</td>
<td>2x8.54</td>
<td>17.08</td>
</tr>
<tr>
<td></td>
<td>2x21.06</td>
<td>42.12</td>
</tr>
<tr>
<td>Armado viga - Armado superior</td>
<td>2x8.70</td>
<td>17.40</td>
</tr>
<tr>
<td></td>
<td>2x21.46</td>
<td>42.91</td>
</tr>
</tbody>
</table>

6.2.- Vigas

6.2.1.- Descripción

<table>
<thead>
<tr>
<th>Referencias</th>
<th>Geometría</th>
<th>Armado</th>
</tr>
</thead>
</table>

6.2.2.- Medición
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

| B 500 S, Ys=1.15 |

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Ø8</th>
<th>Ø20</th>
<th>Longitud (m)</th>
<th>Peso (kg)</th>
<th>Longitud (m)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armado viga - Estribo</td>
<td>20x1.3</td>
<td>3</td>
<td>20x0.5</td>
<td>2</td>
<td>26.60</td>
<td>10.50</td>
</tr>
<tr>
<td>Totales</td>
<td>26.60</td>
<td>10.50</td>
<td>34.48</td>
<td>85.03</td>
<td>95.53</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>29.26</td>
<td>11.55</td>
<td>37.93</td>
<td>93.53</td>
<td>105.0</td>
<td></td>
</tr>
</tbody>
</table>

| Referencias: C [N53-N86], C [N86-N79], C [N79-N82], C [N82-N51], C [N1-N80], C [N80-N78], C [N78-N84] y C [N84-N3] |
| B 500 S, Ys=1.15 |

<table>
<thead>
<tr>
<th>Nombre de armado</th>
<th>Ø8</th>
<th>Ø20</th>
<th>Longitud (m)</th>
<th>Peso (kg)</th>
<th>Longitud (m)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armado viga - Armado inferior</td>
<td>2x7.54</td>
<td>9</td>
<td>2x18.5</td>
<td>9</td>
<td>15.0</td>
<td>8</td>
</tr>
<tr>
<td>Armado viga - Armado superior</td>
<td>2x7.70</td>
<td>9</td>
<td>2x18.9</td>
<td>9</td>
<td>15.4</td>
<td>0</td>
</tr>
<tr>
<td>Armado viga - Estribo</td>
<td>15x1.3</td>
<td>2</td>
<td>15x0.5</td>
<td>2</td>
<td>19.9</td>
<td>5</td>
</tr>
<tr>
<td>Totales</td>
<td>19.95</td>
<td>7.87</td>
<td>30.48</td>
<td>75.17</td>
<td>83.04</td>
<td></td>
</tr>
<tr>
<td>Total con mermas (10.00%)</td>
<td>21.95</td>
<td>8.66</td>
<td>33.53</td>
<td>82.68</td>
<td>91.34</td>
<td></td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

Resumen de medición (se incluyen mermas de acero)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ø8</th>
<th>Ø20</th>
<th>Total</th>
<th>HA-25, Yc=1.5</th>
<th>Limpieza</th>
</tr>
</thead>
</table>

| Referencias: C [N53-N86], C [N86-N79], C [N79-N82], C [N82-N51], C [N1-N80], C [N80-N78], C [N78-N84] y C [N84-N3] | 8x8.65 | 8x82.69 | 730.72 | 8x0.67 | 8x0.17 |
| Totales | 300.20 | 2532.12 | 2832.32 | 22.98 | 5.74 |
7. Correas.

En los documentos extraídos de CYPE hemos optado por sacar un resumen de las comprobaciones que hace por no hacer muy extenso el presente anexo.

Podemos observar con más detalles las correas que hemos dispuesto tanto en fachada lateral y frontal como en cubierta más adelante en el Plano 4.

7.1 Correas de cubierta.

<table>
<thead>
<tr>
<th>Tipo acero</th>
<th>Acero</th>
<th>Lim. elástico (MPa)</th>
<th>Módulo de elasticidad (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero conformado</td>
<td>S235</td>
<td>235</td>
<td>210</td>
</tr>
<tr>
<td>Acero laminado</td>
<td>S275</td>
<td>275</td>
<td>210</td>
</tr>
</tbody>
</table>

Datos de pórticos

<table>
<thead>
<tr>
<th>Pórtico</th>
<th>Tipo exterior</th>
<th>Geometría</th>
<th>Tipo interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dos aguas</td>
<td>Luz izquierda: 14.00 m</td>
<td>Pórtico rígido</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luz derecha: 14.00 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alero izquierdo: 9.00 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alero derecho: 9.00 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altura cumbrera: 10.40 m</td>
<td></td>
</tr>
</tbody>
</table>

Datos de correas de cubierta

<table>
<thead>
<tr>
<th>Descripción de correas</th>
<th>Parámetros de cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de perfil: CF-275x3.0</td>
<td>Límite flecha: L / 300</td>
</tr>
<tr>
<td>Separación: 1.71 m</td>
<td>Número de vanos: Un vano</td>
</tr>
<tr>
<td>Tipo de Acero: S235</td>
<td>Tipo de fijación: Fijación rígida</td>
</tr>
</tbody>
</table>

Comprobación de resistencia

El perfil seleccionado cumple todas las comprobaciones. Aprovechamiento: 86.45 %
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Barra pésima en cubierta.

Perfiles: CF-275x3.0
Material: S235

<table>
<thead>
<tr>
<th>Nudos</th>
<th>Características mecánicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td>0.851, 9.085</td>
<td>8.000, 9.085</td>
</tr>
</tbody>
</table>

Notas:
(1) Inercia respecto al eje indicado
(2) Momento de inercia a torsión uniforme
(3) Coordenadas del centro de gravedad

Pandeo

<table>
<thead>
<tr>
<th>Plano XY</th>
<th>Plano XZ</th>
<th>Ala sup.</th>
<th>Ala inf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Lk</td>
<td>0.00</td>
<td>8.000</td>
<td>0.000</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Notación:
β: Coeficiente de pandeo
Lk: Longitud de pandeo (m)
C1: Factor de modificación para el momento crítico

Comprobaciones (CTE DB SE-A)

<table>
<thead>
<tr>
<th>Barra</th>
<th>COMPROBACIONES</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>pésima en cubierta</td>
<td>b / t</td>
<td>(\dot{\lambda})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notación:
b / t: Relación anchura / espesor
\(\dot{\lambda} \): Limitación de esbeltez
Nt: Resistencia a tracción
Nc: Resistencia a compresión
My: Resistencia a flexión. Eje Y
Mz: Resistencia a flexión. Eje Z
M My: Resistencia a flexión biaxial
Vx: Resistencia a corte Y
Vy: Resistencia a corte Z
N My Mz: Resistencia a tracción y flexión
N M My: Resistencia a compresión y flexión
NM Mz Vy Vz: Resistencia a cortante, axil y flexión
MNM My Mz Vy Vz: Resistencia a torsión combinada con axil, flexión y cortante
x: Distancia al origen de la barra
η: Coeficiente de aprovechamiento (%)
N.P.: No procede

Comprobaciones que no proceden (N.P.):
(1) La comprobación no procede, ya que no hay axil de compresión ni de tracción.
(2) La comprobación no procede, ya que no hay axil de tracción.
(3) La comprobación no procede, ya que no hay axil de compresión.
(4) La comprobación no procede, ya que no hay momento flector.
(5) La comprobación no procede, ya que no hay flexión biaxial para ninguna combinación.
(6) La comprobación no procede, ya que no hay esfuerzo cortante.
(7) No hay interacción entre axil de tracción y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.
(8) No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.
(9) No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
(10) La comprobación no procede, ya que no hay momento torsor.
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Relación anchura / espesor (CTE DB SE-A, Tabla 5.5 y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 5.2)

Se debe satisfacer:

\[
\frac{h}{t} : 87.7 \checkmark
\]
\[
\frac{b}{t} : 22.7 \checkmark
\]
\[
\frac{c}{t} : 6.3 \checkmark
\]

Los rigidizadores proporcionan suficiente rigidez, ya que se cumple:

\[
\frac{c}{b} : 0.279
\]

Donde:
- \(h \): Altura del alma. \(h = 263.00 \) mm
- \(b \): Ancho de las alas. \(b = 68.00 \) mm
- \(c \): Altura de los rigidizadores. \(c = 19.00 \) mm
- \(t \): Espesor. \(t = 3.00 \) mm

Nota: Las dimensiones no incluyen el acuerdo entre elementos.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)
La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Resistencia a tracción (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.2)
La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.3)
La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión. Eje Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)
Se debe satisfacer:

\[
\eta = 0.865 \checkmark
\]
Para flexión positiva:

\[M_{V,Ed}^+ : 0.00 \text{ kN} \cdot \text{m} \]

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 4.000 m del nudo 0.851, 8.000, 9.085, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(0°) H1.

\[M_{V,Ed}^- : 21.08 \text{ kN} \cdot \text{m} \]

La resistencia de cálculo a flexión \(M_{c,Rd} \) viene dada por:

\[M_{c,Rd} : 24.38 \text{ kN} \cdot \text{m} \]

Donde:

\[W_{eff} : \text{Módulo resistente eficaz correspondiente a la fibra de mayor tensión.} \quad W_{eff} : 108.94 \text{ cm}^3 \]
\[f_{yb} : \text{Límite elástico del material base. (CTE DB SE-A, Tabla 4.1)} \quad f_{yb} : 235.00 \text{ MPa} \]
\[\gamma_{M0} : \text{Coeficiente parcial de seguridad del material.} \quad \gamma_{M0} : 1.05 \]

Resistencia a pandeo lateral del ala superior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que no hay momento flector.

Resistencia a pandeo lateral del ala inferior: (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.2.4)

La comprobación a pandeo lateral no procede, ya que la longitud de pandeo lateral es nula.

Resistencia a flexión. Eje Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay momento flector.

Resistencia a flexión biaxial (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.4.1)

La comprobación no procede, ya que no hay flexión biaxial para ninguna combinación.

Resistencia a corte Y (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Z (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.5)

Se debe satisfacer:
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

\[\eta = 0.131 \]

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.851, 0.000, 9.085, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(0°) H1.

\[V_{Ed} : 10.97 \text{ kN} \]

El esfuerzo cortante resistente de cálculo \(V_{b,\text{Rd}} \) viene dado por:

\[V_{b,\text{Rd}} : 83.53 \text{ kN} \]

Donde:

- \(h_w \): Altura del alma. \(h_w = 269.36 \text{ mm} \)
- \(t \): Espesor. \(t = 3.00 \text{ mm} \)
- \(\phi \): Ángulo que forma el alma con la horizontal. \(\phi = 90.0 \text{ grados} \)
- \(f_{bv} \): Resistencia a cortante, teniendo en cuenta el pandeo. \(f_{bv} = 108.54 \text{ MPa} \)

Siendo:

- \(\lambda_w \): Esbeltez relativa del alma. \(\lambda_w = 1.04 \)

Donde:

- \(f_{yb} \): Límite elástico del material base. (CTE DB SE-A, Tabla 4.1) \(f_{yb} = 235.00 \text{ MPa} \)
- \(E \): Módulo de elasticidad. \(E = 210000.00 \text{ MPa} \)
- \(\gamma_{M0} \): Coeficiente parcial de seguridad del material. \(\gamma_{M0} = 1.05 \)

Resistencia a tracción y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.8 y 6.3)

No hay interacción entre axil de tracción y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a compresión y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículos 6.1.9 y 6.2.5)

No hay interacción entre axil de compresión y momento flector para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante, axil y flexión (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.10)

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Resistencia a torsión combinada con axil, flexión y cortante (CTE DB SE-A y Eurocódigo 3 EN 1993-1-3: 2006, Artículo 6.1.6)

La comprobación no procede, ya que no hay momento torsor.

7.2 Correas laterales.

<table>
<thead>
<tr>
<th>Perfil: IPE 160</th>
<th>Material: S275</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nudos</td>
<td>Longitud (m)</td>
</tr>
<tr>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td>0.000, 0.550</td>
<td>80.000, 0.550</td>
</tr>
</tbody>
</table>

Notas:
- (1) Inercia respecto al eje indicado
- (2) Momento de inercia a torsión uniforme

<table>
<thead>
<tr>
<th>Pandeo</th>
<th>Pandeo lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano XY</td>
<td>Plano XZ</td>
</tr>
<tr>
<td>(\beta) 0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>(L_K) 0.000</td>
<td>8.000</td>
</tr>
<tr>
<td>(C_m) 1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>(C_1) -</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Notación:
- \(\beta\): Coeficiente de pandeo
- \(L_K\): Longitud de pandeo (m)
- \(C_m\): Coeficiente de momentos
- \(C_1\): Factor de modificación para el momento crítico

Datos de correas laterales

<table>
<thead>
<tr>
<th>Descripción de correas</th>
<th>Parámetros de cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de perfil: IPE 160</td>
<td>Límite flecha: L / 300</td>
</tr>
<tr>
<td>Separación: 1.10 m</td>
<td>Número de vanos: Un vano</td>
</tr>
<tr>
<td>Tipo de Acero: S275</td>
<td>Tipo de fijación: Fijación rígida</td>
</tr>
</tbody>
</table>

Comprobación de resistencia

<table>
<thead>
<tr>
<th>Comprobación de resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>El perfil seleccionado cumple todas las comprobaciones. Aprovechamiento: 31.57 %</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

Comprobación de flecha

El perfil seleccionado cumple todas las comprobaciones. Porcentajes de aprovechamiento:

- Flecha: 97.80%

Coordenadas del nudo inicial: 0.851, 80.000, 9.085
Coordenadas del nudo final: 0.851, 72.000, 9.085
El aprovechamiento pésimo se produce para la combinación de hipótesis 1.00*G1 + 1.00*G2 + 1.00*V(0°) H1 a una distancia 4.000 m del origen en el primer vano de la correa.
(Iy = 1532 cm⁴) (Iz = 113 cm⁴)

Barra pésima en lateral

<table>
<thead>
<tr>
<th>Barra</th>
<th>COMPROBACIONES (CTE DB SE-A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nt</td>
</tr>
<tr>
<td>pésima en lateral</td>
<td>1.333</td>
</tr>
</tbody>
</table>

Notación:

- λ: Limitación de esbeltez
- λw: Abolladura del alma inducida por el ala comprimida
- Nt: Resistencia a tracción
- Nc: Resistencia a compresión
- Mx: Resistencia a flexión eje Y
- Mz: Resistencia a flexión eje Z
- Vx: Resistencia a corte Y
- Vz: Resistencia a corte Z
- MYVZ: Resistencia a momento flector Y y fuerza cortante Z combinados
- MMYVZ: Resistencia a momento flector Z y fuerza cortante Y combinados
- N.M: Resistencia a flexión, axil y cortante combinados
- M.V: Resistencia a cortante Z y momento torsor combinados
- M.V: Resistencia a cortante Y y momento torsor combinados
- x: Distancia al origen de la barra
- η: Coeficiente de aprovechamiento (%)
- N.P.: No procede

Comprobaciones que no proceden (N.P.):

1. La comprobación no procede, ya que no hay axil de compresión ni de tracción.
2. La comprobación no procede, ya que no hay axil de tracción.
3. La comprobación no procede, ya que no hay momento flector.
4. La comprobación no procede, ya que no hay esfuerzo cortante.
5. No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
6. No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.
7. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
8. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
9. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.
10. No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La comprobación no procede, ya que no hay axil de compresión ni de tracción.

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

\[
29.04 \leq 250.58\]

Donde:

- \(h_w\): Altura del alma.
- 145.20 mm
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

- \(t_w \): Espesor del alma.
- \(A_w \): Área del alma.
- \(A_{fc,ef} \): Área reducida del ala comprimida.
- \(k \): Coeficiente que depende de la clase de la sección.
- \(E \): Módulo de elasticidad.
- \(f_{yd} \): Límite elástico del acero del ala comprimida.

Siendo:

<table>
<thead>
<tr>
<th>(t_w)</th>
<th>(A_w)</th>
<th>(A_{fc,ef})</th>
<th>(k)</th>
<th>(E)</th>
<th>(f_{yd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00 mm</td>
<td>7.26 cm²</td>
<td>6.07 cm²</td>
<td>0.30</td>
<td>210000 MPa</td>
<td>275.00 MPa</td>
</tr>
</tbody>
</table>

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

\[\eta = 0.316 \checkmark \]

Para flexión positiva:

\[M_{Ed}^+ \]: Momento flector solicitante de cálculo pésimo.

\[M_{Ed}^+ = 0.00 \text{ kN·m} \]

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 4.000 m del nudo 0.000, 80.000, 0.550, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(90°) H1.

\[M_{Ed}^- = 10.25 \text{ kN·m} \]

El momento flector resistente de cálculo \(M_{c,Rd} \) viene dado por:

\[M_{c,Rd} = 32.48 \text{ kN·m} \]

Donde:

- **Clase**: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.
- \(W_{pl,y} \): Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.
- \(f_{yd} \): Resistencia de cálculo del acero.

\[W_{pl,y} = 124.00 \text{ cm}^3 \]

\[f_{yd} = 261.90 \text{ MPa} \]

Siendo:

- \(f_y \): Límite elástico. (CTE DB SE-A, Tabla 4.1)
- \(f_y = 275.00 \text{ MPa} \)
- \(\gamma_{Mo} \): Coeficiente parcial de seguridad del material.
- \(\gamma_{Mo} = 1.05 \)

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

No procede, dado que las longitudes de pandeo lateral son nulas.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)
La comprobación no procede, ya que no hay momento flector.

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)
Se debe satisfacer:

\[\eta \geq 0.046 \]

El esfuerzo solicitante de cálculo pésimo se produce en el nudo 0.000, 80.000, 0.550, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(90°) H1.

<table>
<thead>
<tr>
<th>(V_{Ed})</th>
<th>Esfuerzo cortante solicitante de cálculo pésimo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.59 kN</td>
<td></td>
</tr>
</tbody>
</table>

El esfuerzo cortante resistente de cálculo \(V_{c,Rd} \) viene dado por:

\[V_{c,Rd} = \frac{29.04}{64.71} \]

| \(V_{c,Rd} \) | 120.97 kN |

Donde:

<table>
<thead>
<tr>
<th>(A_v)</th>
<th>Área transversal a cortante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Siendo:

<table>
<thead>
<tr>
<th>(h)</th>
<th>Canto de la sección.</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.00 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(t_w)</th>
<th>Espesor del alma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f_{yd})</th>
<th>Resistencia de cálculo del acero.</th>
</tr>
</thead>
<tbody>
<tr>
<td>261.90 MPa</td>
<td></td>
</tr>
</tbody>
</table>

Siendo:

<table>
<thead>
<tr>
<th>(f_y)</th>
<th>Límite elástico. (CTE DB SE-A, Tabla 4.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.00 MPa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma_M)</th>
<th>Coeficiente parcial de seguridad del material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)
Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

\[29.04 < 64.71 \]

<table>
<thead>
<tr>
<th>(\lambda_w)</th>
<th>Esbeltez del alma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.04</td>
<td></td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

| \(\lambda_{\text{máx}} \): Esbeltez máxima. | \(\lambda_{\text{máx}} \) : 64.71 |
| \(\varepsilon \): Factor de reducción. | \(\varepsilon \) : 0.92 |

Siendo:
- \(f_{\text{ref}} \): Límite elástico de referencia. \(f_{\text{ref}} \) : 235.00 MPa
- \(f_y \): Límite elástico. (CTE DB SE-A, Tabla 4.1) \(f_y \) : 275.00 MPa

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo \(V_{\text{Ed}} \) no es superior al 50% de la resistencia de cálculo a cortante \(V_{c,Rd} \).

\[3.57 \text{ kN} \leq 60.48 \text{ kN} \checkmark \]

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 1.333 m del nudo 0.000, 80.000, 0.550, para la combinación de acciones 0.80*G1 + 0.80*G2 + 1.50*V(90°) H1.

- \(V_{\text{Ed}} \): Esfuerzo cortante solicitante de cálculo pésimo. \(V_{\text{Ed}} \) : 3.57 kN
- \(V_{c,Rd} \): Esfuerzo cortante resistente de cálculo. \(V_{c,Rd} \) : 120.97 kN

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre momento flector y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

No hay interacción entre axil y momento flector ni entre momentos flectores en ambas direcciones para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

No hay interacción entre momento flector, axil y cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)
La comprobación no procede, ya que no hay momento torsor.

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)
No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)
No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Comprobación de flecha.

Coordenadas del nudo inicial: 0.000, 80.000, 0.550
Coordenadas del nudo final: 0.000, 72.000, 0.550
El aprovechamiento pésimo se produce para la combinación de hipótesis 1.00*G1 + 1.00*G2 + 1.00*V(90°) H1 a una distancia 4.000 m del origen en el primer vano de la correa.

(Iy = 869 cm4) (Iz = 68 cm4)

<table>
<thead>
<tr>
<th>Comprobación de flecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>El perfil seleccionado cumple todas las comprobaciones.</td>
</tr>
<tr>
<td>Porcentajes de aprovechamiento:</td>
</tr>
<tr>
<td>- Flecha: 93.36 %</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m2 situado en Huécal-Overa (Almería).
Presupuesto.

1. Aplicación de precios.

A continuación se muestra un desglose de los capítulos y subcapítulos del presupuesto que se muestra más adelante:

1. Cimentación.
 1.1 Limpieza del terreno.
 1.2 Hormigón de limpieza.
 1.3 Zapatas.
 1.4 Vigas de atado.

2. Elementos estructurales.
 2.1 Acero.

3. Elementos constructivos.
 3.1 Solera.
 3.2 Cerramientos.
 3.3 Cubierta.

4. Instalaciones.
 4.1 Canalones.
 4.2 Bajantes.
 4.3 Instalación provisional.
 4.4 Señalización.
 4.5 Aparcamientos.

Una vez definidos los puntos en los que se divide nuestro presupuesto, se muestra el presupuesto total con sus capítulos, subcapítulos y partidas necesarias, así mismo como las mediciones de todas y cada una de ellas.

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo</th>
<th>Ud</th>
<th>Resumen</th>
<th>Cantidad</th>
<th>Precio (€)</th>
<th>Importe (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capítulo</td>
<td>Cimentación</td>
<td>4,060,496</td>
<td>40,604.96</td>
<td>40,604.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capítulo</td>
<td>Limpieza del terreno</td>
<td>8,722.08</td>
<td>8,722.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL005</td>
<td>Partida</td>
<td>8,076.000</td>
<td>1.08</td>
<td>8,722.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mq01pan010a</td>
<td>Maquinaria</td>
<td>0.022</td>
<td>40.130</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mo111</td>
<td>Mano de obra</td>
<td>0.009</td>
<td>16.300</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>1.030</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL005</td>
<td>8,076.000</td>
<td>1.08</td>
<td>8,722.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>8,722.08</td>
<td>8,722.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2 Capítulo

<table>
<thead>
<tr>
<th>Partida</th>
<th>Carga</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Coste</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRL030</td>
<td>Material</td>
<td>Hormigón de limpieza HL-150/B/20</td>
<td>m³</td>
<td>0.105</td>
<td>60.420</td>
</tr>
<tr>
<td>mo044</td>
<td>Mano de obra</td>
<td>Oficial 1ª estructurista, en trabajos de puesta en obra del hormigón.</td>
<td>h</td>
<td>0.066</td>
<td>18.200</td>
</tr>
<tr>
<td>mo090</td>
<td>Mano de obra</td>
<td>Ayudante estructurista, en trabajos de puesta en obra del hormigón.</td>
<td>h</td>
<td>0.066</td>
<td>17.700</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td></td>
<td></td>
<td>2.000</td>
<td>8.710</td>
</tr>
</tbody>
</table>

Costes directos complementarios

<table>
<thead>
<tr>
<th>Partida</th>
<th>Carga</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRL030</td>
<td>276.880</td>
<td>9.15</td>
</tr>
</tbody>
</table>

1.3 Capítulo

<table>
<thead>
<tr>
<th>Partida</th>
<th>Carga</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Coste</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSZ030</td>
<td>Material</td>
<td>Zapata de cimentación de hormigón armado, realizada con hormigón HA-25/B/20/IIa fabricado en central y vertido con cubilote, y acero UNE-EN 10080 B 500 S, cuantía 32.5 kg/m³.</td>
<td>m³</td>
<td>1.100</td>
<td>72.270</td>
</tr>
<tr>
<td>mo041</td>
<td>Mano de obra</td>
<td>Oficial 1ª estructurista.</td>
<td>h</td>
<td>0.415</td>
<td>18.200</td>
</tr>
<tr>
<td>mo087</td>
<td>Mano de obra</td>
<td>Ayudante estructurista.</td>
<td>h</td>
<td>0.415</td>
<td>17.700</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td></td>
<td></td>
<td>2.000</td>
<td>127.940</td>
</tr>
</tbody>
</table>

Costes directos complementarios

<table>
<thead>
<tr>
<th>Partida</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSZ030</td>
<td>193.982</td>
</tr>
</tbody>
</table>

1.4 Capítulo

<table>
<thead>
<tr>
<th>Partida</th>
<th>Carga</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Coste</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV030</td>
<td>Material</td>
<td>Viga de atado</td>
<td>m³</td>
<td>2.3560</td>
<td>138.98</td>
</tr>
<tr>
<td>mo041</td>
<td>Mano de obra</td>
<td>Oficial 1ª estructurista.</td>
<td>h</td>
<td>0.149</td>
<td>18.200</td>
</tr>
<tr>
<td>mo087</td>
<td>Mano de obra</td>
<td>Ayudante estructurista.</td>
<td>h</td>
<td>0.149</td>
<td>17.700</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td></td>
<td></td>
<td>2.000</td>
<td>132.280</td>
</tr>
</tbody>
</table>

Costes directos complementarios

<table>
<thead>
<tr>
<th>Partida</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV030</td>
<td>23.560</td>
</tr>
</tbody>
</table>

2 Capítulo

2.1 Capítulo

<table>
<thead>
<tr>
<th>Partida</th>
<th>Carga</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Coste</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAM040</td>
<td>Material</td>
<td>Acero S275JR en estructura metálica, con piezas simples de perfiles laminados en caliente de la serie Cold Formed SHS, con uniones soldadas en obra.</td>
<td>kg</td>
<td>3.455.760</td>
<td>7.844.58</td>
</tr>
</tbody>
</table>

Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).
<table>
<thead>
<tr>
<th>Partida</th>
<th>Material</th>
<th>kg</th>
<th>Acero laminado UNE-EN 10025 S275JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.</th>
<th>1.050</th>
<th>0.990</th>
<th>1.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>mt27pfi010</td>
<td>Material</td>
<td>l</td>
<td>Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.</td>
<td>0.050</td>
<td>4.800</td>
<td>0.24</td>
</tr>
<tr>
<td>mq08sol020</td>
<td>Maquinaria</td>
<td>h</td>
<td>Equipo y elementos auxiliares para soldadura eléctrica.</td>
<td>0.016</td>
<td>3.100</td>
<td>0.05</td>
</tr>
<tr>
<td>mo046</td>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1º montador de estructura metálica.</td>
<td>0.023</td>
<td>18.200</td>
<td>0.42</td>
</tr>
<tr>
<td>mo092</td>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de estructura metálica.</td>
<td>0.023</td>
<td>17.700</td>
<td>0.41</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>2.160</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>EAM040b</td>
<td>Partida</td>
<td>kg</td>
<td>Acero S275JR en estructura metálica, con piezas simples de perfiles laminados en caliente de la serie IPE, con uniones soldadas en obra.</td>
<td>62,647.16</td>
<td>2.27</td>
<td>142,209.05</td>
</tr>
<tr>
<td>mt07ala010h</td>
<td>Material</td>
<td>kg</td>
<td>Acero laminado UNE-EN 10025 S275JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.</td>
<td>1.050</td>
<td>0.990</td>
<td>1.04</td>
</tr>
<tr>
<td>mt27pfi010</td>
<td>Material</td>
<td>l</td>
<td>Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.</td>
<td>0.050</td>
<td>4.800</td>
<td>0.24</td>
</tr>
<tr>
<td>mq08sol020</td>
<td>Maquinaria</td>
<td>h</td>
<td>Equipo y elementos auxiliares para soldadura eléctrica.</td>
<td>0.016</td>
<td>3.100</td>
<td>0.05</td>
</tr>
<tr>
<td>mo046</td>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1º montador de estructura metálica.</td>
<td>0.023</td>
<td>18.200</td>
<td>0.42</td>
</tr>
<tr>
<td>mo092</td>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de estructura metálica.</td>
<td>0.023</td>
<td>17.700</td>
<td>0.41</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>2.160</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>EAM040c</td>
<td>Partida</td>
<td>kg</td>
<td>Acero S275JR en estructura metálica, con piezas simples de perfiles laminados en caliente de la serie L, con uniones soldadas en obra.</td>
<td>7,887.600</td>
<td>2.27</td>
<td>17,904.85</td>
</tr>
<tr>
<td>mt07ala010h</td>
<td>Material</td>
<td>kg</td>
<td>Acero laminado UNE-EN 10025 S275JR, en perfiles laminados en caliente, piezas simples, para aplicaciones estructurales.</td>
<td>1.050</td>
<td>0.990</td>
<td>1.04</td>
</tr>
<tr>
<td>mt27pfi010</td>
<td>Material</td>
<td>l</td>
<td>Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.</td>
<td>0.050</td>
<td>4.800</td>
<td>0.24</td>
</tr>
<tr>
<td>mq08sol020</td>
<td>Maquinaria</td>
<td>h</td>
<td>Equipo y elementos auxiliares para soldadura eléctrica.</td>
<td>0.016</td>
<td>3.100</td>
<td>0.05</td>
</tr>
<tr>
<td>mo046</td>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1º montador de estructura metálica.</td>
<td>0.023</td>
<td>18.200</td>
<td>0.42</td>
</tr>
<tr>
<td>mo092</td>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de estructura metálica.</td>
<td>0.023</td>
<td>17.700</td>
<td>0.41</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>2.160</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>EAM040d</td>
<td>Partida</td>
<td>kg</td>
<td>Acero S235JRC en estructura metálica, con piezas simples de perfiles conformados en frío de la serie C, con uniones soldadas en obra.</td>
<td>15,772.10</td>
<td>2.18</td>
<td>34,383.18</td>
</tr>
<tr>
<td>mt07ali020a</td>
<td>Material</td>
<td>kg</td>
<td>Acero UNE-EN 10025 S235JR, en perfiles conformados en frío, piezas simples, para aplicaciones estructurales.</td>
<td>1.050</td>
<td>0.910</td>
<td>0.96</td>
</tr>
<tr>
<td>mt27pfi010</td>
<td>Material</td>
<td>l</td>
<td>Imprimación de secado rápido, formulada con resinas alquídicas modificadas y fosfato de zinc.</td>
<td>0.050</td>
<td>4.800</td>
<td>0.24</td>
</tr>
<tr>
<td>mq08sol020</td>
<td>Maquinaria</td>
<td>h</td>
<td>Equipo y elementos auxiliares para soldadura eléctrica.</td>
<td>0.016</td>
<td>3.100</td>
<td>0.05</td>
</tr>
<tr>
<td>mo046</td>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1º montador de estructura metálica.</td>
<td>0.023</td>
<td>18.200</td>
<td>0.42</td>
</tr>
<tr>
<td>mo092</td>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de estructura metálica.</td>
<td>0.023</td>
<td>17.700</td>
<td>0.41</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>2.080</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>EAM040d</td>
<td>Partida</td>
<td>Ud</td>
<td>Placa de anclaje de acero S275JR en perfil plano, con rigidizadores, de 450x750 mm y espesor 25 mm, con 6 pernos de acero corrugado UNE-EN 10080 B 500 S de 25 mm de diámetro y 103,781 cm de longitud total, soldados.</td>
<td>18.000</td>
<td>402.61</td>
<td>7.246.98</td>
</tr>
<tr>
<td>mo046</td>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1ª montador de estructura metálica.</td>
<td>3.325</td>
<td>18.200</td>
<td>60.52</td>
</tr>
<tr>
<td>mo092</td>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de estructura metálica.</td>
<td>3.325</td>
<td>17.700</td>
<td>58.85</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>383.220</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>EAS030</td>
<td>Partida</td>
<td>Ud</td>
<td>Placa de anclaje de acero S275JR en perfil plano, con rigidizadores, de 350x500 mm y espesor 18 mm, con 6 pernos de acero corrugado UNE-EN 10080 B 500 S de 20 mm de diámetro y 63,2248 cm de longitud total, soldados.</td>
<td>10.000</td>
<td>161.80</td>
<td>1,618.00</td>
</tr>
<tr>
<td>ANE010</td>
<td>Partida</td>
<td>m²</td>
<td>Encachado de 15 cm en caja para base de solera, con aporte de grava de cantera de piedra caliza, Ø40/70 mm, y compactación mediante equipo manual con bandeja vibrante.</td>
<td>2,240.000</td>
<td>6.92</td>
<td>15,500.80</td>
</tr>
<tr>
<td>ANS010b</td>
<td>Partida</td>
<td>m²</td>
<td>Solera de hormigón armado de 15 cm de espesor, realizada con hormigón HA-25/B/20/la fabricado en central, y vertido desde camión, extendido y vibrado manual, y malla electrosoldada ME 20x20 Ø 5-5 B 500 T 6x2,20 UNE-EN 10080 sobre separadores</td>
<td>2,240.000</td>
<td>25.15</td>
<td>56,336.00</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Udad</th>
<th>Separador homologado para soleras.</th>
<th>2.000</th>
<th>0.040</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>m²</td>
<td></td>
<td>Malla electrosoldada ME 20x20 Ø 5-5 B 500 T 6x2.20 UNE-EN 10080.</td>
<td>1.200</td>
<td>1.530</td>
<td>1.84</td>
</tr>
<tr>
<td>Material</td>
<td>m³</td>
<td></td>
<td>Hormigón HA-25/B/20/lla. fabricado en central.</td>
<td>0.158</td>
<td>72.270</td>
<td>11.42</td>
</tr>
<tr>
<td>Material</td>
<td>m³</td>
<td></td>
<td>Panel rígido de poliestireno expandido, según UNE-EN 13163, mecanizado lateral recto, de 20 mm de espesor, resistencia térmica 0.55 m²K/W, conductividad térmica 0.036 W/(mK), para junta de dilatación.</td>
<td>0.050</td>
<td>1.340</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Material	m		Masilla bicomponente. resistente a hidrocarburos y aceites, para sellado de juntas de retracción en soleras de hormigón.	0.800	1.020	0.82
Maquinaria	h		Dumper de descarga frontal de 2 t de carga útil.	0.030	9.250	0.28
Maquinaria	h		Regla vibrante de 3 m.	0.085	4.860	0.40
Maquinaria	h		Fratasadora mecánica de hormigón.	0.545	5.600	2.76
Maquinaria	h		Equipo para corte de juntas en soleras de hormigón.	0.099	9.480	0.94
Mano de obra	h	Oficial 1ª construcción.	0.126	17.330	2.18	
Mano de obra	h	Ayudante construcción.	0.126	16.860	2.12	
Mano de obra	h	Peón ordinario construcción.	0.063	16.300	1.03	
%			Costes directos complementarios	2.000	23.940	0.48
			ANS010b	2.240.000	25.15	56,336.00
			3.1	71,836.80	71,836.80	
			3.2	197,722.68	197,722.68	
			3.2.1	97,485.88	97,485.88	
			FPP020	651.600	149.61	97,485.88

<table>
<thead>
<tr>
<th>Material</th>
<th>Partida</th>
<th>m²</th>
<th>Cerramiento de fachada formado por paneles prefabricados, nervados aligerados, con aislamiento de 14 cm, de hormigón armado de 24 cm de espesor, 3 m de anchura y 14 m de longitud máxima, acabado lavado con ácido de color gris a una cara, montaje horizontal.</th>
<th>651.600</th>
<th>149.61</th>
<th>97,485.88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>m²</td>
<td></td>
<td>Panel prefabricado, nervado aligerado, con aislamiento de 14 cm, de hormigón armado de 24 cm de espesor, 3 m de anchura y 14 m de longitud máxima, acabado lavado con ácido de color gris a una cara, para formación de cerramiento.</td>
<td>1.000</td>
<td>114.990</td>
<td>114.99</td>
</tr>
<tr>
<td>Material</td>
<td>kg</td>
<td></td>
<td>Masilla caucho-asfáltica para sellado en frío de juntas de paneles prefabricados de hormigón.</td>
<td>1.400</td>
<td>1.960</td>
<td>2.74</td>
</tr>
<tr>
<td>Material</td>
<td>m³</td>
<td></td>
<td>Tablón de madera de pino, dimensiones 20x7.2 cm.</td>
<td>0.002</td>
<td>305.000</td>
<td>0.61</td>
</tr>
<tr>
<td>Material</td>
<td>Ud</td>
<td></td>
<td>Puntal metálico telescópico, de hasta 3 m de altura.</td>
<td>0.040</td>
<td>13.370</td>
<td>0.53</td>
</tr>
<tr>
<td>Maquinaria</td>
<td>h</td>
<td></td>
<td>Grúa autopropulsada de brazo telescópico con una capacidad de elevación de 30 t y 27 m de altura máxima de trabajo.</td>
<td>0.185</td>
<td>66.840</td>
<td>12.37</td>
</tr>
<tr>
<td>Mano de obra</td>
<td>h</td>
<td>Oficial 1º montador de paneles prefabricados de hormigón.</td>
<td>0.321</td>
<td>17.910</td>
<td>5.75</td>
<td></td>
</tr>
<tr>
<td>Mano de obra</td>
<td>h</td>
<td>Ayudante montador de paneles prefabricados de hormigón.</td>
<td>0.321</td>
<td>16.860</td>
<td>5.41</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>142.400</td>
<td>2.85</td>
</tr>
</tbody>
</table>

| FPP020 | | | 651.600 | 149.61 | 97,485.88 |
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

3.2.1

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Detalle</th>
<th>Partida</th>
<th>Material</th>
<th>Costo</th>
<th>Instalado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel tipo sandwich</td>
<td>Cerramiento de fachada formado por panel sándwich aislante para fachadas, de 50 mm de espesor y 600 mm de ancho, formado por dos paramentos, el exterior de chapa de aluminio de 0,8 mm de espesor y el interior de chapa de acero de 0,5 mm de espesor y alma aislante de poliuretano de densidad media 50 kg/m³, con sistema de fijación oculto.</td>
<td>m²</td>
<td>1,157.000</td>
<td>75.92</td>
<td>87,839.44</td>
</tr>
</tbody>
</table>

3.2.2

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Detalle</th>
<th>Partida</th>
<th>Material</th>
<th>Costo</th>
<th>Instalado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel tipo sandwich</td>
<td>Panel sándwich aislante para fachadas, de 50 mm de espesor y 600 mm de ancho, formado por dos paramentos, el exterior de chapa de aluminio de 0,8 mm de espesor y el interior de chapa de acero de 0,5 mm de espesor y alma aislante de poliuretano de densidad media 50 kg/m³, con junta diseñada para fijación con tornillos ocultos.</td>
<td>m²</td>
<td>1.000</td>
<td>53.000</td>
<td>53.00</td>
</tr>
</tbody>
</table>

3.2.3

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Detalle</th>
<th>Partida</th>
<th>Material</th>
<th>Costo</th>
<th>Instalado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventanas</td>
<td>Doble acristalamiento estándar, 5/6/4, con calzados y sellado continuo.</td>
<td>m²</td>
<td>70.200</td>
<td>43.91</td>
<td>3,082.48</td>
</tr>
</tbody>
</table>

3.2.4

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Detalle</th>
<th>Partida</th>
<th>Material</th>
<th>Costo</th>
<th>Instalado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puertas</td>
<td>Puerta de entrada de acero galvanizado de una hoja, 790x2040 mm de luz y altura de paso, troquelada con cuarterón superior y otro inferior a dos caras, acabado pintado con resina de epoxi color blanco, cerradura con tres puntos de cierre, y premarco.</td>
<td>Ud</td>
<td>2.000</td>
<td>450.12</td>
<td>900.24</td>
</tr>
</tbody>
</table>

Nota: Los costes directos complementarios se han calculado con un porcentaje del 12%.
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Medida</th>
<th>Unidad</th>
<th>Coste Directo Complementario</th>
</tr>
</thead>
<tbody>
<tr>
<td>mt26pec010jaaa</td>
<td>Puerta de entrada de una hoja de 52 mm de espesor, 790x2040 mm de luz y altura de paso, acabado pintado con resina de epoxi color blanco formada por dos chapas de acero galvanizado de 1 mm de espesor, plegadas, troqueladas con un cuarterón superior y otro inferior a dos caras, ensambladas y montadas, con cámara intermedia rellena de poliuretano, sobre cerco de acero galvanizado de 1,5 mm de espesor con garras de anclaje a obra, incluso bisagras de acero latonado con regulación en las tres direcciones, según UNE-EN 1935, bulones antipalanca, mirilla, cerradura de seguridad embutida con tres puntos de cierre, cilindro de latón con llave, escudo de seguridad tipo roseta y pomo tirador para la parte exterior y escudo y manivela de latón para la parte interior.</td>
<td>1.000</td>
<td>Ud</td>
<td>341.210</td>
</tr>
<tr>
<td>mt26pec015a</td>
<td>Premarco de acero galvanizado, para puerta de entrada de acero galvanizado de una hoja, con garras de anclaje a obra.</td>
<td>1.000</td>
<td>Ud</td>
<td>50.000</td>
</tr>
<tr>
<td>mt15sja100</td>
<td>Cartucho de masilla de silicona neutra.</td>
<td>0.200</td>
<td>Ud</td>
<td>3.130</td>
</tr>
<tr>
<td>mo019</td>
<td>Oficial 1ª construcción.</td>
<td>0.511</td>
<td>h</td>
<td>17.330</td>
</tr>
<tr>
<td>mo111</td>
<td>Peón ordinario construcción.</td>
<td>0.511</td>
<td>h</td>
<td>16.300</td>
</tr>
<tr>
<td>mo017</td>
<td>Oficial 1ª cerrajero.</td>
<td>0.562</td>
<td>h</td>
<td>17.610</td>
</tr>
<tr>
<td>mo057</td>
<td>Ayudante cerrajero.</td>
<td>0.562</td>
<td>h</td>
<td>16.920</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>%</td>
<td>428.440</td>
</tr>
<tr>
<td>PEM010</td>
<td></td>
<td>2.000</td>
<td>%</td>
<td>450.12</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Capítulo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDC010</td>
<td>Cierre metálico</td>
<td>4.000</td>
<td>Ud</td>
<td>2,103.66</td>
</tr>
<tr>
<td>mt26cec010a</td>
<td>Cierre metálico enrollable de lamas de chapa de acero galvanizado, panel ciego, acabado sendzimir, 600x450 cm, apertura automática.</td>
<td>31.050</td>
<td>m²</td>
<td>41.020</td>
</tr>
<tr>
<td>mt26eem020</td>
<td>Cerradura de seguridad al suelo para cierre enrollable.</td>
<td>1.000</td>
<td>Ud</td>
<td>135.680</td>
</tr>
<tr>
<td>mt26eem010</td>
<td>Equipo de motorización para apertura y cierre automático, de cierre enrollable, incluso kit electrofreno, cuadro básico, tarjeta receptora, emisor monocanal y accesorios.</td>
<td>1.000</td>
<td>Ud</td>
<td>509.900</td>
</tr>
<tr>
<td>mo019</td>
<td>Oficial 1ª construcción.</td>
<td>0.107</td>
<td>h</td>
<td>17.330</td>
</tr>
<tr>
<td>mo111</td>
<td>Peón ordinario construcción.</td>
<td>0.107</td>
<td>h</td>
<td>16.300</td>
</tr>
<tr>
<td>mo017</td>
<td>Oficial 1ª cerrajero.</td>
<td>0.250</td>
<td>h</td>
<td>17.610</td>
</tr>
<tr>
<td>mo057</td>
<td>Ayudante cerrajero.</td>
<td>0.250</td>
<td>h</td>
<td>16.920</td>
</tr>
<tr>
<td>mo002</td>
<td>Oficial 1ª electricista.</td>
<td>2.040</td>
<td>h</td>
<td>17.910</td>
</tr>
<tr>
<td>mo100</td>
<td>Ayudante electricista.</td>
<td>2.040</td>
<td>h</td>
<td>16.830</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td>2.000</td>
<td>%</td>
<td>2,002.340</td>
</tr>
<tr>
<td>FDC010</td>
<td></td>
<td>4.000</td>
<td>%</td>
<td>2,103.66</td>
</tr>
<tr>
<td>3.3</td>
<td>Capítulo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cubierta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>109,212,51</td>
<td></td>
<td>109,212,51</td>
</tr>
</tbody>
</table>
3.3.1 | Capítulo | Panel tipo sandwich | 52,655.07 | 52,655.07 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QTA010b</td>
<td>Partida</td>
<td>m²</td>
<td>1,157.000</td>
</tr>
<tr>
<td>mt13dgo010c</td>
<td>Material</td>
<td>m²</td>
<td>1,100</td>
</tr>
<tr>
<td>mt13cgg020h</td>
<td>Material</td>
<td>m²</td>
<td>0.300</td>
</tr>
<tr>
<td>mt13cgg020k</td>
<td>Material</td>
<td>m²</td>
<td>0.200</td>
</tr>
<tr>
<td>mt13cgg020l</td>
<td>Material</td>
<td>m²</td>
<td>0.150</td>
</tr>
<tr>
<td>mt13cgg030d</td>
<td>Material</td>
<td>Ud</td>
<td>3.000</td>
</tr>
<tr>
<td>mo050</td>
<td>Mano de obra</td>
<td>h</td>
<td>0.208</td>
</tr>
<tr>
<td>mo006</td>
<td>Mano de obra</td>
<td>h</td>
<td>0.208</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>QTA010b</td>
<td></td>
<td></td>
<td>1,157.000</td>
</tr>
</tbody>
</table>

3.3.2 | Capítulo | Lucernarios | 56,557.44 | 56,557.44 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QLL010</td>
<td>Partida</td>
<td>m²</td>
<td>192.000</td>
</tr>
<tr>
<td>mt21ipe010b</td>
<td>Material</td>
<td>m²</td>
<td>1.000</td>
</tr>
<tr>
<td>mt21ipe020b</td>
<td>Material</td>
<td>m²</td>
<td>1.000</td>
</tr>
<tr>
<td>mt21ipc010a</td>
<td>Material</td>
<td>m²</td>
<td>1.050</td>
</tr>
<tr>
<td>mt21ipc020</td>
<td>Material</td>
<td>m</td>
<td>2.000</td>
</tr>
<tr>
<td>mt21ipc030</td>
<td>Material</td>
<td>Ud</td>
<td>1.500</td>
</tr>
<tr>
<td>mo010</td>
<td>Mano de obra</td>
<td>h</td>
<td>3.026</td>
</tr>
<tr>
<td>mo078</td>
<td>Mano de obra</td>
<td>h</td>
<td>3.026</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td></td>
<td>2.000</td>
</tr>
<tr>
<td>QLL010</td>
<td></td>
<td></td>
<td>192.000</td>
</tr>
</tbody>
</table>

3.3 | | Instalaciones | 109,212.51 | 109,212.51 |
| 3 | | | 378,771.99 | 378,771.99 |

4 | Capítulo | Canalones | 3,411.20 | 3,411.20 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC010</td>
<td>Partida</td>
<td>m</td>
<td>160.000</td>
</tr>
<tr>
<td>mt38csg010b</td>
<td>Material</td>
<td>m</td>
<td>1.100</td>
</tr>
</tbody>
</table>
Proyecto estructural de edificio industrial de 2240 m² situado en Huércal-Overa (Almería).

<table>
<thead>
<tr>
<th>Partida</th>
<th>Material</th>
<th>Unidad</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>mo007</td>
<td>Material auxiliar para canalones y bajantes de instalaciones de evacuación de chapa de acero galvanizado.</td>
<td>h</td>
<td>Oficial 1º fontanero.</td>
<td>0.284</td>
<td>17.910</td>
<td>5.09</td>
</tr>
<tr>
<td>mo105</td>
<td>Material auxiliar para canalones y bajantes de instalaciones de evacuación de chapa de acero galvanizado.</td>
<td>h</td>
<td>Ayudante fontanero.</td>
<td>0.284</td>
<td>16.830</td>
<td>4.78</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td>%</td>
<td></td>
<td>2.000</td>
<td>20.290</td>
<td>0.41</td>
</tr>
<tr>
<td>ISC010</td>
<td>160.000</td>
<td>21.32</td>
<td>3.411.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>3.411.20</td>
<td>3.411.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Capítulo</td>
<td>Bajantes</td>
<td>444.24</td>
<td>444.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB011</td>
<td>Partida</td>
<td>m</td>
<td>Bajante exterior de la red de evacuación de aguas residuales, formada por PVC, serie B, de 125 mm de diámetro, unión pegada con adhesivo.</td>
<td>18.000</td>
<td>24.68</td>
<td>444.24</td>
</tr>
<tr>
<td>mt36tit400hi</td>
<td>Material auxiliar para montaje y sujeción a la obra de las tuberías de PVC, serie B, de 125 mm de diámetro.</td>
<td>Ud</td>
<td></td>
<td>1.000</td>
<td>1.620</td>
<td>1.62</td>
</tr>
<tr>
<td>mt36tit010hi</td>
<td>Tubo de PVC, serie B, de 125 mm de diámetro y 3,2 mm de espesor, según UNE-EN 1329-1, con el precio incrementado el 40% en concepto de accesorios y piezas especiales.</td>
<td>m</td>
<td></td>
<td>1.000</td>
<td>15.170</td>
<td>15.17</td>
</tr>
<tr>
<td>mt11var009</td>
<td>Liquido limpiador para pegado mediante adhesivo de tubos y accesorios de PVC.</td>
<td>l</td>
<td></td>
<td>0.046</td>
<td>11.850</td>
<td>0.55</td>
</tr>
<tr>
<td>mt11var010</td>
<td>Adhesivo para tubos y accesorios de PVC.</td>
<td>l</td>
<td></td>
<td>0.023</td>
<td>18.060</td>
<td>0.42</td>
</tr>
<tr>
<td>mo007</td>
<td>Oficial 1º fontanero.</td>
<td>h</td>
<td></td>
<td>0.218</td>
<td>17.910</td>
<td>3.90</td>
</tr>
<tr>
<td>mo105</td>
<td>Ayudante fontanero.</td>
<td>h</td>
<td></td>
<td>0.109</td>
<td>16.830</td>
<td>1.83</td>
</tr>
<tr>
<td>%</td>
<td>Costes directos complementarios</td>
<td>%</td>
<td></td>
<td>2.000</td>
<td>23.490</td>
<td>0.47</td>
</tr>
<tr>
<td>ISC011</td>
<td>18.000</td>
<td>24.68</td>
<td>444.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>444.24</td>
<td>444.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Capítulo</td>
<td>Instalaciones provisionales</td>
<td>2,060.00</td>
<td>2,060.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YPX010</td>
<td>Partida</td>
<td>Ud</td>
<td>Conjunto de instalaciones provisionales de higiene y bienestar, necesarias para el cumplimiento de la normativa vigente en materia de Seguridad y Salud en el Trabajo.</td>
<td>2.000</td>
<td>1,030.00</td>
<td>2,060.00</td>
</tr>
<tr>
<td>4.3</td>
<td>2,060.00</td>
<td>2,060.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Capítulo</td>
<td>Señalización</td>
<td>206.00</td>
<td>206.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSX010</td>
<td>Partida</td>
<td>Ud</td>
<td>Conjunto de elementos de balizamiento y señalización provisional de obras, necesarios para el cumplimiento de la normativa vigente en materia de Seguridad y Salud en el Trabajo.</td>
<td>2.000</td>
<td>103.00</td>
<td>206.00</td>
</tr>
<tr>
<td>4.4</td>
<td>206.00</td>
<td>206.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Capítulo</td>
<td>Aparcamientos</td>
<td>6,278.38</td>
<td>6,278.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCM010</td>
<td>Partida</td>
<td>m²</td>
<td>Estructura para cobertura de plazas de aparcamiento situadas al aire libre, compuesta de: cimentación de hormigón armado, realizada con hormigón HRA-25/B/20/Illa fabricado en central y vertido desde camión, y acero UNE-EN 10080 B 500 S; pórticos de acero S275JR, en perfiles laminados en caliente y cubierta metálica formada con chapa de acero galvanizado de 0,6 mm de espesor.</td>
<td>106.000</td>
<td>59.23</td>
<td>6,278.38</td>
</tr>
<tr>
<td>mt10hmfl011bb</td>
<td>Hormigón de limpieza HL-150/B/20, fabricado en central.</td>
<td>m³</td>
<td></td>
<td>0.010</td>
<td>60.420</td>
<td>0.60</td>
</tr>
<tr>
<td>mt10hes100nea</td>
<td>Hormigón HRA-25/B/20/Illa, con un porcentaje máximo de áridos reciclados del 20%, fabricado en central.</td>
<td>m³</td>
<td></td>
<td>0.100</td>
<td>65.800</td>
<td>6.58</td>
</tr>
</tbody>
</table>
2. Resumen.

En la tabla siguiente mostramos el precio de cada capítulo y el porcentaje al que corresponde en el presupuesto de ejecución material:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Precio (€)</th>
<th>Porcentaje(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cimentación</td>
<td>40,604.96</td>
<td>6,3150</td>
</tr>
<tr>
<td>2) Elementos estructurales</td>
<td>211,206.64</td>
<td>32,8479</td>
</tr>
<tr>
<td>3) Elementos constructivos</td>
<td>378,771.99</td>
<td>58,9085</td>
</tr>
<tr>
<td>4) Instalaciones</td>
<td>12,399.82</td>
<td>1,9284</td>
</tr>
</tbody>
</table>

Tabla 2. Desglose por capítulos.
Ahora vamos a proceder al cálculo del presupuesto total.

Presupuesto de ejecución material: ………. 642.983,41 €
13% gastos generales: ……………………… 83.587,84 €
6% beneficio industrial: …………………….. 38.579,00 €
Presupuesto de contrata: …………………….. 765.150,25 €
21% IVA: …………………………………… 160.681,55 €
Presupuesto TOTAL: …………………….. 925.831,80 €

A continuación mostramos un gráfico que ilustra la parte correspondiente a cada capítulo en el que hemos dividido el presupuesto.

Proyecto estructural de edificio industrial de 2240 m2 situado en Huércal-Overa (Almería).
Planos.

A continuación se muestra el listado de planos.

1. Situación.
2. Emplazamiento.
3. Replanteo.
4. Estructura 3D.
5. Cimentación.
 5.1 Planta.
 5.2 Detalles.
 5.3 Detalles.
 6.1 Vista y Uniones.
 6.2 Uniones.
7. Pórtico de Fachada.
 7.1 Vista.
 7.2 Uniones.
 8.1 Uniones.