Resumen

En este proyecto se plantea la propuesta de mejora del rendimiento de la suspensión delantera entregada por parte de la organización de Motostudent y la implementación de un sistema mediante el cual se pueda modificar el avance de la rueda delantera para así obtener una mejor adaptabilidad al circuito y poder hacer que el piloto esté lo más cómodo posible encima de la moto.

Para ello analizamos los diferentes sistemas de suspensiones para escoger la que mejor se adapte a nuestras limitaciones, ya que debido a la normativa de la organización no se puede modificar todo lo queramos.

Una vez analizados las diferentes opciones procedemos al diseño de nuestra suspensión utilizando diversos software CAD como el Creo y el SolidWorks. Una vez diseñado el prototipo procedemos al estudio económico de la fabricación de este.

Palabras clave: diseño, motocicleta, suspensiones, MEF, Motostudent.
This project considers the proposal for improving the performance of the front suspension delivered by the Organization of ideas and the implementation of a system through which the trail of the front wheel can modify to obtain better adaptability to the circuit and to make sure the pilot is comfortable on the bike.

To analyze the different systems of suspensions to choose which best suits our limitations, since due to the rules of the Organization cannot be changed all want it.

Once analyzed different options proceed to the our suspension design using various CAD as the PTC and the SolidWorks software. Once designed prototype we proceed to do the ecocnomic study of our prototype.

Keywords: design, motorbike, suspension, MEF, Motostudent.
Contenido

1. Objetivos ... 9

2. Antecedentes e introducción .. 10
 2.1 ASPECTOS GENERALES .. 10
 2.2 LA SUSPENSION ... 11
 2.2.1 CONCEPTOS BÁSICOS ... 11
 2.2.1.1 Masa suspendida y masa no suspendida .. 11
 2.2.1.2 Frecuencia de la suspensión.. 12
 2.2.1.3 Altura de marcha y precarga ... 13
 2.2.1.4 El Sag ... 14
 2.2.1.5 Amortiguador (“Damper”) .. 15
 2.2.1.6 Avance de la rueda delantera ... 16
 2.2.2 LA SUSPENSIÓN DELANTERA .. 17
 2.2.2.1 Horquillas con pipa de dirección ... 19
 2.2.2.2 Otros tipos de suspensiones ... 22
 2.2.3 FUNCIONAMIENTO DE LA SUSPENSIÓN ... 28
 2.2.3.1 Horquillas tradicionales ... 28
 2.2.3.2 Horquillas de cartucho ... 30

3. Metodología del TFG ... 34
 3.1 HERRAMIENTAS UTILIZADAS ... 35

4. Cálculos y resultados ... 38
 4.1 ELECCIÓN DEL SISTEMA DE LA SUSPENSIÓN ... 38
 4.2 SELECCIÓN DEL MUELLE .. 40
 4.2.1 Regulaciones añadidas a las suspensiones ... 42
 4.2.2 Válvulas .. 44
 4.2.3 Arandelas Belleville .. 47
 4.3 SISTEMA DE VARIACIÓN DEL AVANCE DE LA RUEDA DELANTERA 50
 4.3.1 Las pletinas ... 51
 4.3.1.1 Simulación de las pletinas .. 51
 4.3.1.1.1 Frenada ... 51
 4.3.1.1.2 Giro del manillar ... 52
 4.3.1.1.3 Fuerzas aplicadas a las pletinas .. 56
 4.3.1.1.3.1 Fuerza de frenada ... 56
4.3.1.1.3.2 Fuerzas al girar el manillar ... 57
4.3.1.1.4 Simulación .. 58
4.3.2 Los rodamientos ... 62
4.3.3 Las excéntricas ... 63
4.4 ANÁLISIS DE TOLERANCIAS .. 66
5. Estudio económico .. 72
6. Conclusiones .. 79
7. Normativa ... 81
8. Bibliografía ... 82
9. Anexo I ... 83

Contenido figuras
Figura 1: Prueba frenado .. 10
Figura 2: Gymkhana ... 10
Figura 3: Prueba aceleración .. 11
Figura 4: Esquema masa, muelle y amortiguador .. 12
Figura 5: Precarga .. 13
Figura 6: El sag ... 15
Figura 7: El amortiguador ... 16
Figura 8: Avance de la rueda delantera .. 16
Figura 9: La mejora de las suspensiones ... 17
Figura 10: Horquilla girder .. 18
Figura 11: Pipa dirección .. 19
Figura 12: Problemas horquilla telescopica .. 20
Figura 13: Avance rueda delantera en frenada ... 21
Figura 14: Avance negativo de la rueda delantera ... 22
Figura 15: Fuerzas en avance negativo .. 22
Figura 16: Esquema suspensiones por rueda empujada ... 23
Figura 17: Esquema suspension por rueda tirada ... 23
Figura 18: Horquilla Girder .. 24
Figura 19: Horquilla tipo hub centre .. 24
Figura 20: Suspensión Difazio ... 25
Figura 21: Suspensión Bimota .. 25
Figura 22: Esquema suspension doble brazo articulado .. 26
Figura 23: Suspensión doble brazo articulado ... 26
Figura 24: Suspensión tipo McPherson ... 26
Figura 25: Suspensión Saxon/Motad ... 27
Figura 26: Telelever de BMW .. 27
Figura 27: Suspensión Killeen .. 27
Figura 28: Sistema con eje de dirección virtual ... 28
Figura 29: Recorrido compresión de baja velocidad (izq.) y baja velocidad (der.) 29
Figura 30: Recorrido de extensión ... 29
Figura 31: Horquillas de cartucho ... 30
Figura 32: Recorrido compresión de baja velocidad (izq.) y baja velocidad (der.) 31
Figura 33: Recorrido extensión ... 31
Figura 34: Cartucho de baño cerrado ... 32
Figura 35: Cartucho de baño abierto .. 33
Figura 36: Logo PTC Creo ... 35
Figura 37: Logo SolidWorks .. 35
Figura 38: Torno ... 36
Figura 39: Fresadora .. 36
Figura 40: Medición con pie de rey .. 36
Figura 41: Medición con micrómetro .. 37
Figura 42: Regla .. 37
Figura 43: Rujosímetro y su medición ... 37
Figura 44: Vista explosiónada de la suspensión otorgada por la organización 38
Figura 45: Catálogo muelles .. 41
Figura 46: Regulación baja velocidad .. 43
Figura 47: Regulación de alta velocidad a compresión .. 44
Figura 48: Regulación de alta velocidad a extensión ... 44
Figura 49: Arandelas forma piramidal ... 45
Figura 50: Arandelas forma no piramidal ... 45
Figura 51: Simulación shims .. 46
Figura 52: Arandelas Belleville y muelle .. 48
Figura 53: Arandelas Belleville .. 49
Figura 54: Regulación arandelas Belleville ... 50
Figura 55: Pipa dirección otorgada por la organización ... 50
Figura 56: Fuerza deceleración motocicletas del mercado ... 52
Figura 57: Giro manillar .. 53
Figura 58: Rádio de giro de la motocicleta .. 54
Figura 59: Fuerza centrípeta .. 54
Figura 60: Momento producido por la fuerza centrípeta .. 55
Figura 61: Esquema cálculo fuerza frenado en pletinas .. 56
Figura 62: Esquema fuerzas al girar el manillar ... 57
Figura 63: Esquema fuerza giro barra derecha ... 57
Figura 64: Esquema fuerza de giro barra izquierda .. 58
Figura 65: Restricciones y fuerzas para la simulación de la pletina superior 59
Figura 66: Mallado pletina superior ... 59
Figura 67: Resultado simulación pletina superior (deformación) 60
Figura 68: Resultado simulación pletina superior (Von Misses) 60
Figura 69: Restricciones y fuerzas para la simulación de la pletina inferior 60
Figura 70: Mallado pletina inferior .. 61
Figura 71: Resultado simulación pletina inferior (deformación) 61
Figura 72: Resultado simulacion pletina inferior (Von Misses) ... 62
Figura 73: Rodamiento de bolas a rótula .. 63
Figura 74: Rodamiento de rodillos cónicos... 63
Figura 75: Esquema ángulo de avance ... 64
Figura 76: Excéntrica ... 64
Figura 77: Posición 1 de las excéntricas ... 65
Figura 78: Posición 2 de las excéntricas ... 65
Figura 79: Posición 3 de las excéntricas ... 65
Figura 80: Posición 4 de las excéntricas ... 66
Figura 81: Regulación compresión donde se realizará el análisis de tolerancia 66
Figura 82: Regulación extensión donde se realizará el análisis de tolerancia 66
Figura 83: Superficies análisis de tolerancia (regulación de compresión) 67
Figura 85: Diagrama de bloques del análisis de tolerancia 1 .. 68
Figura 86: Resultados análisis de tolerancia (regulación de compresión) 69
Figura 87: Superficies análisis de tolerancia (regulación de extensión) 69
Figura 88: Diagrama de bloques análisis de tolerancia 2 .. 70
Figura 89: Resultados análisis de tolerancia (regulación de extensión) 70
Figura 90: Superficies análisis de tolerancia (píston principal) .. 71
Figura 91: Diagrama de bloques análisis de tolerancia 3 .. 71
Figura 92: Resultados análisis de tolerancia (píston principal) .. 71
Figura 93: Ejemplo pieza para DFM .. 73
Figura 94: Coste material ... 73
Figura 95: Coeficiente de desperdicio de material ... 74
Figura 96: Coeficiente de idoneidad del material con el proceso de fabricación 75
Figura 97: Coeficiente complegidad geométrica .. 75
Figura 98: Coeficiente de tamaño ... 75
Figura 99: Coeficiente de tolerancia ... 76
Figura 100: Coeficiente acabado superficial ... 76
Figura 101: Coeficiente coste básico del proceso de fabricación .. 77
Figura 102: Diferencias entre las dos suspensiones ... 79
Figura 103: Conjunto pletinas .. 80
Figura 104: Conjunto horquilla.. 80

Contenidos gráficas
Gráfica 2: Precarga .. 14
Gráfica 3: Diagrama temporal del proyecto (duración en días) .. 34
Gráfica 4: Diferencias entre muelles .. 41
Gráfica 5: Precarga muelles seleccionados ... 42
Gráfica 6: Resultados deformaciones arandelas forma no piramidal 46
Gráfica 7: Resultados deformaciones arandelas forma piramidal ... 47
Gráfica 8: Diferencias entre muelle y arandelas Bellevile ... 49
Contenido tablas

Tabla 1: Ventajas y desventajas del sistema tradicional ... 39
Tabla 2: Ventajas y desventajas sistema de cartucho .. 39
Tabla 3: Ventajas y desventajas del cartucho de baño abierto .. 39
Tabla 4: Ventajas y desventajas sistema de cartucho de baño cerrado 40
Tabla 5: Ventajas e inconvenientes utilización de un muelle .. 47
Tabla 6: Ventajas e inconvenientes utilización arandelas Belleville ... 48
Tabla 7: Método dispersiones .. 67
Tabla 8: Presupuesto .. 78
1. Objetivos

El objetivo principal de este proyecto es el estudio y diseño de un sistema de amortiguación delantero para una motocicleta de competición, de la categoría pre-moto3 según la normativa técnica de la RFEM. Debe de realizar el análisis de los componentes internos y el diseño de nuevos componentes que optimicen el comportamiento de la suspensión delantera.

Para ello llevara a cabo las siguientes actividades:

- Estudio de las características mecánicas de las suspensiones
- Metrológica dimensional de los distintos componentes de un sistema de suspensión
- Selección de materiales, procesos y tratamientos superficiales
- Diseño de los distintos componentes mecánicos del sistema de suspensión, mediante software CAD 3D
- Estudio y análisis estructural de los componentes diseñados, mediante métodos numéricos de elementos finitos (FEA)
- Desarrollo de planos, acotación y definición de tolerancias
2. Antecedentes e introducción

2.1 ASPECTOS GENERALES
Este proyecto surge de la participación de la Universidad Politécnica de Valencia (Campus Alcoy) en la competición MotoStudent, promovida por la fundación Moto Engineering Foundation, la competición es un desafío entre estudiantes de distintas universidades. El desafío consiste en que el equipo simule formar parte de una empresa destinada al diseño de motos de competición en la que se deben llevar diversas tareas tales como el diseño, la fabricación, la puesta a punto y estrategias de venta de una moto de competición, el resultado de este trabajo será una moto de pequeña cilindrada que correrá en el circuito de Motorland contra las motos de las demás universidades.

Par valorar los diferentes aspectos mencionados, la organización plantea una serie de pruebas para evaluar el comportamiento dinámico y las prestaciones de la moto fabricada, así como la destreza de los equipos en mecánica y Organización. Las pruebas son las siguientes:

- **Prueba de frenado**: La prueba de frenado consistirá en una evaluación de la distancia necesaria para detener la moto por completo a partir de una velocidad mínima de 80 km/hora.

![Figura 1](image1.png)

- **Gymkhana**: La segunda prueba consistirá en una pequeña gymkhana (circuito marcado con conos) cronometrada. En el siguiente plano se refleja el recorrido a seguir y la acotación de este.

![Figura 2](image2.png)

- **Mejor aceleración**: En esta prueba se medirá la aceleración máxima de cada moto desde parado en una recta de 150m.
Prueba de mecánica para equipos: Esta prueba consiste en valorar la rapidez de trabajo en el box por parte del equipo, así como si se ha tenido en cuenta este aspecto a la hora de diseñar la moto.

Velocidad máxima en Sped Trap: Esta prueba consiste en obtener la máxima velocidad en un punto determinado del Circuito.

Pole position: Esta prueba consiste en obtener el tiempo más rápido en dar una vuelta al circuito de velocidad.

Carrera: Esta prueba consiste en obtener la mejor posición en una tanda de ciertas vueltas determinada

Además de las pruebas dinámicas también existen pruebas administrativas. Es una fase demostrativa en la que los equipos participantes deberán mostrar y explicar el diseño del prototipo realizado y el proyecto de industrialización para su producción en serie. Esta fase pretende ser una oportunidad para que los alumnos participantes puedan aplicar los conocimientos adquiridos durante su formación en un proyecto “real”, demostrando los aspectos y dificultades que puede conllevar un proceso de fabricación industrial y el lanzamiento de un producto al mercado. Además, también se valora las innovaciones que se implanten en la moto.

2.2 LA SUSPENSIÓN

Una vez determinado para que se utilizara el prototipo procedemos a definir y explicar los diferentes tipos de suspensiones y mecanismos que existen actualmente en el mercado.

2.2.1 CONCEPTOS BÁSICOS

2.2.1.1 Masa suspendida y masa no suspendida

Se define como masa suspendida a la que está apoyada en la parte superior de la suspensión, siendo en una motocicleta toda la moto menos las ruedas, los frenos y parte de los componentes de la suspensión. De esta forma, la masa no suspendida estará compuesta por la masa total de la moto menos la masa suspendida, es decir que estará compuesta por las ruedas, los frenos, y parte de los componentes de la suspensión.

Cuando se buscan las máximas prestaciones de la suspensión, lo que importa es la relación entre la masa suspendida y la no suspendida, interesando que ésta relación sea la mayor posible, siendo difícil de conseguir este aspecto en motocicletas ligeras. Pero esto no suele cumplirse en todos los casos, debido a que las demandas de agarre en carretera y las del confort suelen ser opuestas. El agarre requiere la mínima variación dinámica de la fuerza vertical que existe entre el neumático y la carretera, para ello interesa que la masa no suspendida sea lo más pequeña posible. Sin embargo para mejorar el confort se querrá que se transmita la mínima fuerza posible a la masa suspendida, viéndose favorecido este fenómeno.
si la masa no suspendida es muy grande cuando se alcanza un bache que sube hacia arriba (no ocurre lo mismo con las cavidades).

Para tener un buen agarre a la carretera (una respuesta rápida de la masa no suspendida) se necesita que esta relación entre ambas masas sea lo más grande posible, sin embargo existe un límite a la hora de tratar de aligerar la masa no suspendida y por lo tanto un incremento de la masa suspendida y de la constante del muelle mejorará el agarre en las carreteras que se encuentren bacheadas y también aumenta la velocidad de respuesta de la masa no suspendida, teniendo por tanto las ruedas un mejor contacto con la superficie.

Considerando ahora el caso en el que se tiene un neumático entre la carretera y la llanta (masa no suspendida) que conduce a que con una masa no suspendida mayor aumenta el confort de la persona que conduce la motocicleta cuando la rueda impacta contra un bache, debido a que se reduce el impacto que llega al centro de gravedad. Suponiendo ahora que la rueda en infinitamente pesada; al impactar contra un bache, el neumático se deformaría para absorber el impacto pero la rueda no se movería y al no moverse no transmitiría ninguna perturbación al piloto. El otro caso extremo ocurre cuando la masa no suspendida es nula el impacto pasaría hasta el piloto a través de la rigidez del neumático actuando en serie con la rigidez de la suspensión. Para mejorar el confort del piloto, tanto la rueda como el neumático deben soportar grandes cargas. Cuando neumático ha alcanzado la parte superior del bache, la mayor masa de la rueda tiende a seguir subiendo pudiendo llegar a despegarse del suelo, en detrimento del agarre a la carretera.

Después de todo lo anterior se llega a una solución de compromiso teniendo normalmente la relación entre la masa suspendida y la no suspendida un valor entorno a 4.5.

2.2.1.2 Frecuencia de la suspensión
Se considera un sistema formado por una masa, un muelle y un amortiguador.

![Figura 4](image)

Con frecuencias de perturbación mucho menores que la frecuencia natural de la suspensión, la masa suspendida se mueve con una magnitud cercana a la de la perturbación, a pesar de tener el amortiguamiento.

Por otro lado la respuesta es menor cuando la frecuencia aplicada es varias veces mayor que la frecuencia natural, así para conseguir una conducción más suave sobre un mayor rango de condiciones posibles, habrá que tener una suspensión con una frecuencia natural baja, es decir, muelles blandos.
2.2.1.3 Altura de marcha y precarga

Los amortiguadores suelen incorporar un ajuste para la longitud inicial del muelle (precarga); si existe en ellos un desplazamiento debido a la carga estática, este ajuste alterará la altura de marcha.

Debido a los efectos de transferencia de carga y a diversas respuestas dinámicas, al frenar y al acelerar, cada rueda puede ver reducida su carga. Durante la levantada de una de las ruedas, la delantera o la trasera, tanto la suspensión delantera como la trasera se estiran hasta llegar a sus topes de extensión y sería de esperar que el nivel de precarga de los muelles tuviese un efecto significativo en las respuestas transitorias de la suspensión durante este tipo de maniobras. Si los muelles de la suspensión están precargados, habrá dos aspectos principales a tener en cuenta:

- La posición estática de la suspensión, que cuando está cargadas está más cerca del tope de extensión y por tanto existe menos recorrido de suspensión disponible (recorrido libre).
- La fuerza de precarga implica que cuando la suspensión hace tope lo hará de forma más violenta.
- Si se precarga los muelles, tanto la rueda delantera como la trasera se despegarán del suelo pudiéndose llegar incluso, en el caso de la rueda delantera a tener que soltar el freno, debido a que comenzaría a reboblar la rueda de forma creciente.

Figura 5

![Diagrama de altura libre y precarga](image)
Podemos observar que al añadir una precarga a un muelle, podemos aumentar la fuerza del muelle a un determinado desplazamiento. A expensas de disminuir el recorrido libre del muelle.

La precarga se varía de diferentes formas dependiendo del tipo de suspensión que tengamos. En suspensiones con muelle, esto se realiza comprimiendo en mayor o menor medida el muelle mediante elementos fijos como arandelas o suplementos rígidos. En suspensiones neumáticas, la precarga se ajusta principalmente con la presión.

2.2.1.4 El Sag

El sag o también llamado pre hundimiento de una suspensión es el hundimiento de las suspensiones provocado solamente por el peso de la motocicleta y del motorista; tanto quito como en marcha y sin las acciones de las irregularidades del terreno ni la absorción de impactos. Es un concepto ligado a la precarga, ya que a mayor precarga, menor sag, menor hundimiento.

Aunque también intervienen más factores como la inercia, la velocidad o los distintos tipos de suspensiones del mercado a la hora de analizar el comportamiento de un amortiguador u horquilla, pongamos un ejemplo muy simple de entender. Imaginemos que vamos rodando con nuestra motocicleta y pasamos sobre un enorme agujero en el suelo; sin SAG, toda la motocicleta (nosotros incluidos) caerá dentro del agujero, mientras que con SAG solamente caerá la rueda mientras que el resto de la motocicleta continuará al mismo nivel, con lo que la suspensión habrá funcionado correctamente.
2.2.1.5 Amortiguador ("Damper")

Para muchos técnicos y diseñadores, este concepto es un de lo más críticos. Es un concepto complexo, por eso vamos a empezar con lo básico. El amortiguamiento es la fricción debido a la viscosidad. La energía cinética se transforma en calorífica y solo es sensible en la velocidad de amortiguamiento y no en la posición de la suspensión. Por lo tanto es completamente diferente al muelle ya que la energía del muelle se nota con la posición de la horquilla.

El amortiguamiento en los componentes de las suspensiones modernas de motocicletas es creado en diferentes sectores, pero siempre influye en el fluido. La configuración es tan simple como forzar a pasar el aceite por pequeños agujeros, o puede ser más sofisticado si añadimos diversos sistemas de ajuste.

Todas las formas de amortiguamiento llegan a un mismo fin, disminuir el movimiento de la suspensión.

Figura 6
2.2.1.6 Avance de la rueda delantera

A simple vista, observamos una peculiaridad en la parte delantera de una moto. La horquilla delantera no está en posición perpendicular al suelo. Esto es lo que se denomina ángulo de ataque o de avance de la dirección, que es lo que da estabilidad a la moto en marcha. A mayor ángulo de avance mayor estabilidad en marcha pero menor maniobrabilidad, por ejemplo, una moto custom. Y a menor ángulo de avance menor estabilidad en marcha pero mejor maniobrabilidad, por ejemplo una moto de cross. Otra cosa que vemos es que el eje de la rueda no está alineado con el eje de la dirección. Esto es el avance de la dirección y permite que la moto vaya en línea recta cuando la moto está rodando, y no varía mucho de un tipo de motocicleta a otro.
2.2.2 LA SUSPENSIÓN DELANTERA

Una vez visto unos cuantos conceptos básicos podemos proceder a realizarnos la pregunta de: ¿Por qué se utilizan las suspensiones? Básicamente es porque al añadir este sistema mejoramos el confort y facilitamos la conducción. Una forma rápida y sencilla de entender el porqué de la utilización de estos sistemas en motocicletas es viendo las siguientes imágenes donde se observa como varía la posición del sistema cuando no tenemos ningún tipo de suspensión, cuando añadimos un muelle y cuando además se añade un amortiguador.
Se observa que cuando no hay ningún tipo de sistema de amortiguación los rebotes se trasmiten al centro de masas sin tener ninguna disminución de la oscilación. Cuando añadimos el muelle, observamos que aumentamos la amplitud de las oscilaciones que se transmiten al centro de gravedad debido a la fuerza del muelle pero la rueda se mantiene más tiempo sobre el suelo y por lo tanto tenemos más adherencia. Finalmente vemos que al añadir el amortiguador observamos que este se encarga de disminuir las oscilaciones producidas por el muelle sobre el centro de gravedad (haciéndolas casi nulas) y además erradicamos el problema de que la rueda se despegue del suelo (en mayor medida).

A pesar de todos los modelos que han existido de suspensión delantera, solo un pequeño número de diseños han sido aceptados para ser fabricados en serie, entre ellos la horquilla tipo girder fue la primera. Luego en los primeros años 50, la horquilla telescópica fue estableciéndose debido a que mejoraba la conducción respecto a las girders sin amortiguación o con amortiguación mediante fricción.

![Figura 10](image)

Con todos los defectos que pueda tener las horquillas telescópicas, se puede decir que es el sistema más empleado en motocicletas y que en términos de producción es el que ha dominado de forma prácticamente absoluta desde alrededores de 1950 y aunque BMW y Yamaha se han atrevido a probar con una alternativa, al final todos o vuelven al modelo telescópico o mantienen su apariencia.

Son muchos los diferentes tipos de suspensiones delanteras que se han intentado desarrollar y en términos generales se pueden separar en dos grandes grupos:

- Aquellos que requieren una pipa de dirección convencional para definir el eje de dirección y que usan horquillas. Aquí se encuentra incluida la horquilla telescópica, las suspensiones por rueda tirada y las horquillas tipo girder.
- Aquellos en los que el chasis no tiene pipa de dirección. Dentro de este grupo existe una amplia variedad de diseños, donde destaca los sistemas llamados hub-center.
2.2.2.1 Horquillas con pipa de dirección

Todos estos sistemas de suspensión/dirección tienen la característica de que se montan y giran alrededor de una pipa de dirección. El esquema siguiente muestra cómo cualquier flexión lateral de las barras de la horquilla permite que la huella de contacto del neumático se mueva alejándose del eje de dirección. Este desalineamiento puede provocar wobbles (mas adelantes serán explicados en detalle) o aumentar seriamente su magnitud, tanto en carreteras con buen firme circulando a una velocidad determinada, como circulando a cualquier velocidad sobre una superficie bacheada. Existen otros muchos problemas que provienen del empleo de la horquilla telescópica pero quizás el más importante viene dado por esta posibilidad de desplazamiento lateral de la huella de contacto. Otra desventaja es el gran brazo de palanca que existe sobre la pipa de dirección, especialmente al frenar. Esto da lugar a fuerzas muy grandes que tiene que resistir un robusto y pesado chasis.

El uso de la horquilla telescópica es prácticamente universal en todas las motocicletas excepto en algunos scooters y pequeñas motos utilitarias. Su éxito no se justifica en bases de diseño e ingeniería, debido a que tiene varias características adversas; su bajo coste tampoco es una explicación válida (a veces se suele decir esto basándonos en que los principales componentes se fabrican en serie). El motivo principal por el cual la horquilla telescópica es la suspensión delantera más importante se debe al miedo colectivo que existe en los departamentos de marketing de los principales fabricantes a que el aficionado no acepte un cambio de apariencia estética del tren delantero aunque también existen otros factores a su favor y es por ejemplo el largo periodo de desarrollo y la evolución que posee con el que no puede competir cualquiera de los diseños alternativos.

La horquilla telescópica tradicional comprende un par de botellas de aluminio o acero en las que se ajustan unas barras hechas con tubo de acero cromado que se anclan en unas tijas situadas en la parte superior e inferior de la columna de dirección. Normalmente los muelles que montan son de un diámetro menor que el de las botellas y están metidos dentro de ellas. En el interior de las botellas se incorpora un sistema de amortiguación hidráulica y el aceite de amortiguación sirve también como lubricante.

Ahora se consideran algunos de los principales problemas que son inherentes a la horquilla telescópica:
• Cuando la horquilla está totalmente extendida existe una sujeción mínima de las botellas, de forma que el efecto de la holgura existente aumenta considerablemente en la zona del eje de la rueda.
• Las barras se pueden mover de forma independiente excepto por el efecto de refuerzo del eje de la rueda en la parte inferior.
• Si se consideran las cargas y los brazos de palanca que soportan, as barras tienen un diámetro muy pequeño (normalmente de unos 32-38mm).
• Este tipo de horquillas suelen estar sometidas a un gran hundimiento en las frenadas.
• Debido al ángulo de avance, aparecen cargas a flexión en las barras de la horquilla, debidas a cargas estáticas, dando lugar a un rozamiento al inicio del movimiento, que endurece la respuesta ante pequeños baches. Con un ángulo de avance normal, el simple hecho de soportar el peso de la motocicleta produce una fuerza que es perpendicular a la botella, dando lugar a un incremento de la fricción y una reducción de sensibilidad ante baches pequeños.

![Diagrama de horquilla telescópica](image)

Figura 12

Estas características se unen al hecho de que una horquilla es relativamente flexible en casi todas las direcciones, y como se dijo anteriormente, la flexión lateral puede empeorar la estabilidad.

Al frenar, las horquillas telescópicas se hunden, y aunque este efecto se atribuye únicamente a la transferencia de carga hacia la parte delantera, para un ángulo de lanzamiento normal,
existe otro factor que es componente de la fuerza de frenado que tiende a comprimir la horquilla (esta componente se igual a \(F \cdot \sin \theta \)). Cuando se frena, el ángulo de avance hace que parte de la fuerza de frenada esté compensada por un incremento de la fuerza del muelle. De tal forma, tanto la compresión del muelle como el hundimiento tienen un valor mayor que el debido solamente a la transferencia de pesos. Cabe destacar que en frenadas fuertes, la carga sobre la suspensión puede llegar al triple que en el caso de la carga estática.

En horquillas telescópicas se suele decir que el avance permanece constante a lo largo de toda la trayectoria que sigue la moto pero si esto realmente fuera así, primeramente esto supondría que el avance constante es algo deseable (cosa que no es cierta) y, en segundo lugar, que no existe ninguna variación en la posición del resto de la moto mientras la horquilla se comprime porque varía la altura del suelo que está debajo de la rueda delantera. Esto puede verse en la siguiente figura, donde se observan todas las condiciones necesarias para que el avance pueda permanecer constante al comprimirse la horquilla (esquema de la izquierda). A la derecha se muestra la reducción del avance debido al hundimiento de la parte delantera a frenar.

La horquilla normalmente se comprime debido a que o existe un hundimiento de la parte delantera al frenar (en cuyo caso existe una reducción del ángulo de lanzamiento y el avance disminuye) o bien porque se alcanza un bache, provocando que la huella de contacto se mueva hacia delante, reduciendo de esta forma el avance pudiendo incluso llegar a hacerse negativo, como es el caso que puede ver en la siguiente figura.
Conforme la rueda va avanzando por el bache, el avance primero vuelve a su valor estático y luego se hace mayor conforme la huella de contacto se mueve hacia atrás, volviendo a recuperar su valor inicial sólo cuando la rueda recupera el nivel de la carretera. Con lo dicho es difícil suponer que una horquilla telescópica (o de cualquier otro tipo) pueda mantener el avance constante.

Los baches en la carretera provocan una fuerza longitudinal en las ruedas, aparte de la fuerza vertical. El movimiento hacia atrás de la rueda delantera cuando la horquilla se comprime, ayuda a absorber esta fuerza, mejorando tanto el confort como el control sobre la motocicleta.

2.2.2.2 Otros tipos de suspensiones
Aparte de la suspensión mediante horquilla telescópica, existen otros sistemas de suspensión, aunque esto no se verá con detenimiento debido a que no serán montados en los modelos de motocicleta de este proyecto.
• Suspensiones por rueda empujada: En líneas generales, consiste en una estructura tubular o de acero estampado que conecta la columna de dirección con los brazos articulados, y que incorporan también anclajes para los amortiguadores. Los brazos articulados pueden ser independientes o tener forma de U alrededor de la parte trasera de la rueda. Los beneficios de este tipo de horquilla dependen en gran medida de la calidad del diseño de detalle. En algunos aspectos, una suspensión por rueda empujada que esté bien diseñada puede tener algunos beneficios sobre la horquilla telescópica, por ejemplo, se puede conseguir una mayor rigidez, que beneficiará la estabilidad y un mejor control. También tendrá una mayor sensibilidad ante baches pequeños debido a la reducción del rozamiento estático y será posible diseñarla para cualquier grado de anti hundimiento ante frenadas fuertes. La trayectoria que sigue la rueda en el recorrido de la suspensión depende de la altura relativa entre el eje del pivote del brazo articulado y el eje de la rueda, como puede verse en la siguiente figura. Debido a la trayectoria que sigue la rueda, que es curvilínea, estas horquillas no son adecuadas para los movimientos de las motocicletas.

Figura 16

• Suspensión por rueda tirada: Las suspensiones por rueda tirada se diferencian de las de rueda empujada en que los brazos articulados quedan por delante del eje de la rueda, en vez de por detrás. Su desventaja es que posee una mayor inercia alrededor del eje de dirección, ya que la mayor parte de la masa está relativamente lejos del eje de la dirección.

Figura 17
• Horquillas Girder: En su día este tipo de horquillas fueron de un uso tan amplio como el que hoy en día posee las telescópicas. Estructuralmente este tipo de horquillas es muy recomendable si se diseñan bien pero su comportamiento estaba limitado debido a que se empleaban amortiguadores de fricción, muy toscos si se compara con los amortiguadores hidráulicos que actualmente se usan. Las articulaciones que permitían el movimiento de la suspensión eran muy cortas y sólo permitían movimientos de suspensión pequeños.

![Figura 18](image18)

• Otras alternativas a la horquilla que se monta en la pipa de dirección: Existen varias posibilidades para dividir este grupo en categorías, por ejemplo en estos cuatro grupos:
 o Tipo hub centre: Este tipo tiene el anclaje principal y el sistema de dirección montada en el interior del buje de la rueda.

![Figura 19](image19)
• Ner-a-Car: Ejemplo de sistema hub-center que tenía algo equivalente a un basculante delantero (realmente un basculante en forma de U, con el extremo cerrado hacia adelante) que soportaba un eje de dirección inclinado que estaba en el centro de la rueda. La rueda giraba alrededor del eje de dirección y el brazo oscilante del interior del buje estaba conectado mediante otro miembro a un brazo un 20% más largo, situado en la parte inferior de la columna de dirección, de forma que había cierta relación de transmisión en el giro de la dirección.

• Difazio: Este es el modelo más conocido de sistemas hub-centre. A partir de este diseño salieron otros como el sistema “Mead y Tomkinson” o “Bimota Tesi”.

Figura 20

Figura 21
- Doble brazo articulado: Es parecido al sistema de doble brazo utilizado que se usa en los automóviles, pero girado 90 grados. Hay varios tipos de modelos basados en este sistema. Entre ellos: Elf, Hossack, Fior, Foale...

Figura 22

Figura 23

- Tipo McPherson: Ésta combina un amortiguador con un resorte en una misma unidad. Esto otorga una suspensión más compacta y ligera.

Figura 24

- Saxon/Motad: Corresponde a una adaptación del sistema McPherson. Solo utiliza un brazo oscilante y un punto fijo en la parte superior. La rueda está sujeta mediante dos guías longitudinales similares a las de una horquilla telescópica aunque la función de la suspensión se lleva a cabo externamente por medio de un amortiguador separado.
- **Telelever de BMW**: Sistema muy similar al Saxon/Motad. Un brazo oscilante con forma de “A” se ancla a las botellas justo por encima de la rueda. Existe una pieza similar a la tija superior de una horquilla que se monta en una pipa de dirección falsa a través de un rodamiento flotante.

- **Killeen**: También pertenece a la familia de sistemas McPherson, debido a la geometría de su movimiento. Es muy parecido al Saxon y al BMW, excepto en que el brazo oscilante está montado a la altura del eje de la rueda, en lugar de estar montado encima de la misma.
• Sistema con eje de dirección virtual: Sistema en el que el eje instantáneo de la dirección queda definido por el centro virtual de un sistema de cuatro barras. Esto proporcionaba un movimiento de la dirección tal que conforme la rueda iba girando, el eje de dirección se movía lateralmente a la vez que también tenía lugar un pequeño movimiento longitudinal.

![Diagrama de suspensión telescópica](image)

Figura 28

2.2.3 Funcionamiento de la Suspensión

Debido a normativas de la competición en la cual formaremos parte, tenemos que elegir la horquilla telescópica y por lo tanto nos vamos a centrar en el funcionamiento de este tipo de suspensión.

Las suspensiones delanteras normalmente están formadas por una horquilla telescópica, pero dentro de ellas se pueden distinguir dos grandes familias: Las horquillas tradicionales y las horquillas más modernas de cartucho.

2.2.3.1 Horquillas tradicionales

Las horquillas tradicionales disponen de un muelle interior y de un sistema hidráulico formado por una barra fija a la parte inferior de la botella de la horquilla, sobre la que normalmente se sujeta el muelle, que se apoya en el otro extremo en la parte superior de la barra.

- **Recorrido de compresión:** Cuándo la horquilla se comprime, la porción de la barra de la horquilla que se introduce en la botella reduce el volumen disponible para el aceite en la zona inferior. Este es obligado a pasar por los orificios de la barra del hidráulico a su interior y de ahí a la parte superior de la horquilla. Al mismo tiempo, una pequeña cámara situada entre el extremo superior de la barra del hidráulico y el final de la barra de horquilla se llena de aceite por efecto de la sobrepresión a que es sometida la cámara inferior de la horquilla. Estos movimientos de aceite provocan un freno a la acción de compresión del muelle, y hay que ajustar los diferentes taladros y densidades de aceite a la retención hidráulica que se desee.
Recorrido de extensión: En la carrera de extensión el efecto es el contrario. La barra sube y deja espacio libre en la zona inferior de la horquilla, lo que obliga por una parte a que el aceite situado en la zona superior pase al exterior de la zona inferior atravesando los taladros inferiores, al tiempo que el aceite almacenado en la cámara superior, al verse presionado por la subida de la barra de la horquilla, se introduzca en el interior de la barra del hidráulico por unos taladros. El principal defecto de este sistema es la falta de regulación. Para variar el efecto hidráulico hay que modificar el tamaño de los taladros o la densidad del aceite, lo que significa realizar cambios permanentes.
2.2.3.2 Horquillas de cartucho

Las horquillas actuales funcionan con el sistema de cartucho, aunque para ello el diámetro mínimo de las barras debe ser de unos 39 o 40 mm. En este caso el funcionamiento es completamente diferente. La horquilla dispone en su interior de un cilindro anclado a la parte inferior llamado cartucho, que es recorrido durante el recorrido de la suspensión por un embolo sujeto a la parte superior. Tanto al final del embolo como en la parte inferior del cartucho están emplazadas unas cajas de láminas, que permiten con una cierta dificultad el paso del aceite en un sentido, pero lo mantienen completamente libre en la otra dirección de desplazamiento. En el recorrido de compresión el embolo superior se desplaza hacia abajo dejando pasar el aceite a la zona superior, pero el volumen que va ocupando la barra que lo soporta obliga al aceite del interior del cartucho a salir por la parte inferior. Antes de este desagüe está intercalado el paquete de láminas de compresión, que causa el efecto hidráulico.

Figura 31

- En el recorrido de compresión, el volumen despejado por la salida de la barra que soporta el embolo debe llenarse de aceite, y este vuelve a pasar por el desagüe inferior, y por las láminas del paquete de compresión, que en este caso no ofrecen resistencia. Sin embargo, el aceite de la parte superior del cartucho tiene que pasar por el paquete de láminas de extensión sujeto al embolo, que en este caso produce el freno.
La ventaja de estos sistemas es que pueden regularse con facilidad, ya que los paquetes de láminas se pueden auxiliar con sistemas formados por conductos estrechos, sobre los que una aguja puede variar su efecto fácilmente.
Dentro de este tipo de sistema, existen dos grandes grupos. Por una parte tenemos el sistema de cartucho de baño abierto y por otro lado tenemos el sistema de cartucho de baño cerrado:

- Cartucho de baño cerrado: En las horquillas de baño cerrado, el aceite está alojado dentro de un área presurizada al final del cartucho. El cartucho contiene el sistema de amortiguamiento que está sellado. El aceite que lubrica todos los componentes (muelles y juntas) no está mezclado con el aceite del cartucho. Este sistema ofrece mayor consistencia de amortiguamiento debido a la presurización del cartucho. Problemas como la cavitation (turbulencias relacionadas con la mezcla de aire detrás del pistón) quedan disminuidos e incluso erradicados. Además, funciona mucho mejor en condiciones extremas. Debido a la separación de los dos aceites, el aceite del interior del cartucho está menos contaminado de partículas producidas por la fricción de los muelles, juntas... Este sistema ayuda a mantener el amortiguamiento a altas velocidades de absorción (por lo tanto este tipo de sistemas sería ideal para el off road donde las velocidades de amortiguación son muy grandes). Por otra parte tenemos las desventajas de este tipo de horquillas. El sistema de estas horquillas es más complejo que las de baño abierto por lo tanto se necesita más tiempo y conocimientos para mantenerlas, y además, se tiene que ir con mucho cuidado ya que un pequeño error en los aprietes o ajustes puede incluso llegar a romper la horquilla. Se necesita hacer chequeos regularmente.

- Cartucho de baño abierto: En las horquillas de baño cerrado, el aceite que lubrica los componentes y que hace de amortiguación es el mismo. El cartucho está situado al final de la horquilla y está lubricado por el aceite todo el tiempo. Por lo tanto solo hay una cámara común de aceite. Este sistema tiende a transmitir mejor confort que el sistema de baño cerrado. Además, en este sistema el aceite va mezclado con aire, esto significa que el amortiguamiento no siempre va a ser preciso y consistente como el sistema de baño cerrado. Otra ventaja de este sistema es que más barato que el otro.
3. Metodología del TFG

Para la realización de este proyecto he seguido los siguientes pasos:

- Tarea 1: Estudio de las características mecánicas de las suspensiones.
- Tarea 2: Metrología dimensional de los distintos componentes de un sistema de suspensión.
- Tarea 3: Diseño de los distintos componentes mecánicos del sistema de suspensión, mediante la utilización de los software PTC y SolidWorks.
- Tarea 4: Ensamblaje de los componentes con los sistemas de CAD 3D mencionados.
- Tarea 5: Estudio y análisis estructural de los componentes diseñados, mediante métodos numéricos de elementos finitos (FEA).
- Tarea 6: Selección de materiales, procesos y tratamientos superficiales.
- Tarea 7: Desarrollo de los planos, acotación y definición de tolerancias.
- Tarea 8: Estudio económico
- Tarea 9: Redacción del proyecto
3.1 HERRAMIENTAS UTILIZADAS
Para la realización de este proyecto hemos utilizado las siguientes herramientas. Por una parte tenemos los softwares CAD.

- **PTC Creo:** PTC Creo es un conjunto ampliable y compatible de aplicaciones de diseño de productos que ofrece obtención rápida de valor. Ayuda a los equipos a crear, analizar, ver y aprovechar los diseños de productos en fases posteriores utilizando modelado CAD 2D, CAD 3D, paramétrico y directo.

- **SolidWorks:** SOLIDWORKS ofrece sencillez de uso, un rendimiento óptimo y unas consistentes funciones de diseño en 3D. No solo le permite crear piezas, ensamblajes y dibujos para entornos de producción totalmente detallados, sino que le ofrece acceso a todas las herramientas necesarias para generar superficies complejas, chapas desplegadas de chapa metálica y ensamblajes soldados estructurales. Además, incluye asistentes para automatizar los diseños, realizar análisis de tensión y determinar el impacto medioambiental de los componentes. También contiene bibliotecas de piezas y cierres estándares, herramientas para calcular los costes de fabricación de forma automática, y para ayudar a convertir la geometría importada y utilidades para buscar errores en los diseños. Renderice sus diseños de forma realista con el software PhotoView 360 y, a continuación, compártalos con otros usuarios mediante eDrawings® Professional. Además, SOLIDWORKS también incluye herramientas de gestión de archivos que almacenan de forma segura toda la información del proyecto y registran todas las modificaciones del diseño.

Por otra parte tenemos los utensilios y máquinas utilizadas en la fabricación de las diferentes piezas. La mayoría de los procesos de fabricación van a ser por mecanizado debido a la naturaleza de las diversas piezas. Los utensilios y máquinas utilizados son:
• **Torno:** Conjunto de máquinas y herramientas que permiten mecanizar, cortar, fisurar, trapeciar, y ranurar piezas de forma geométrica por revolución.

![Figura 38](image1)

• **Fresadora:** Máquina herramienta utilizada para realizar mecanizados por arranque de viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada fresa.

![Figura 39](image2)

• **Herramientas de medición:**
 o **Pié de rey:** Instrumento utilizado para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros.

![Figura 40](image3)
- **Micrómetro**: Sirve para valorar el tamaño de un objeto con gran precisión, en un rango del orden de centésimas o de milésimas de milímetro.

 ![Figura 41](image)

- **Regla**: Instrumento de medición con forma de plancha delgada y rectangular que incluye una escala graduada dividida en unidades de longitud con una precisión del orden de milímetros.

 ![Figura 42](image)

- **Rugosímetro**: Dispositivo dotado de un palpador de diamante que, moviéndose una cierta longitud sobre el material, es capaz de ampliar el paisaje de crestas y valles que presenta su superficie real y que no puede ser observada por el ojo humano.

 ![Figura 43](image)
Además, gracias a que estoy haciendo prácticas en una empresa de reparación de suspensiones dispongo de todas las accesibilidades a un taller completo como puedan ser las herramientas de montaje y desmontaje de la suspensión (Allen, destornilladores...).

4. Cálculos y resultados

4.1 ELECCIÓN DEL SISTEMA DE LA SUSPENSIÓN

Antes de empezar con la selección de nuestro sistema de suspensión, observamos detenidamente la suspensión otorgada por la organización.

![Componentes de la suspensión](image)

Figura 44

Se observa que es una suspensión con sistema tradicional con ningún tipo de regulación.

Como ya se ha nombrado anteriormente, debido a exigencias de la organización, debemos centrarnos en la horquilla telescópica.

En una primera fase teníamos que elegir entre el sistema de cartucho o el sistema tradicional, debido a las múltiples ventajas del sistema de cartucho decidimos sin pensarlo demasiado que este sería nuestro sistema elegido.

- **Ventajas y desventajas del sistema tradicional.**

<table>
<thead>
<tr>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema sencillo</td>
<td>Poca sensibilidad</td>
</tr>
<tr>
<td>Bajo coste</td>
<td>Pocas opciones de regulación</td>
</tr>
<tr>
<td>Bajo mantenimiento</td>
<td>Poca adaptabilidad a la superficie</td>
</tr>
</tbody>
</table>
• Ventajas y desventajas del sistema de cartucho

<table>
<thead>
<tr>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayor sensibilidad</td>
<td>Más caro</td>
</tr>
<tr>
<td>Mayor posibilidad de regulación</td>
<td>Mayor mantenimiento</td>
</tr>
<tr>
<td>Mayor adaptabilidad al terreno</td>
<td>Sistema más complicado</td>
</tr>
<tr>
<td>Mayores prestaciones</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2

Tenemos que recalcar que esta horquilla se ha diseñado para la competición. Por lo tanto, la mayoría de las desventajas del sistema de cartucho no se tienen en cuenta, ya que por ejemplo en competición la horquilla se desmontan en cada carrera y son técnicos especializados en la materia los que se encargan de hacerlo.

Como hemos nombrado en apartados anteriores, dentro del sistema de cartucho hay dos opciones. El sistema de cartucho de baño abierto y el sistema de cartucho de baño cerrado. Procedemos a ver las desventajas y desventajas de cada una y así poder elegir la que más se adapte a nuestras exigencias.

• Ventajas y desventajas del cartucho de baño abierto:

<table>
<thead>
<tr>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema más sencillo</td>
<td>Se ensucia el aceite con facilidad</td>
</tr>
<tr>
<td>Menor coste de fabricación</td>
<td>Posibilidad de cavitation debido a la mezcla aire-aceite</td>
</tr>
<tr>
<td>Mejores para superficies llanas</td>
<td>Debido a la cavitation hay la posibilidad de la imprecisión del amortiguamiento.</td>
</tr>
<tr>
<td>Proporciona mayor confort</td>
<td>Menores prestaciones en condiciones extremas</td>
</tr>
<tr>
<td>No se necesita muchos conocimientos para manipularlas</td>
<td></td>
</tr>
<tr>
<td>Bajo mantenimiento</td>
<td></td>
</tr>
<tr>
<td>Se necesita menor número de piezas</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3

• Ventajas y desventajas de sistema de cartucho de baño cerrado:

<table>
<thead>
<tr>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se ensucia el aceite de amortiguamiento</td>
<td>Sistema complejo</td>
</tr>
<tr>
<td>Imposibilidad de cavitation</td>
<td>Mayores costes de fabricación</td>
</tr>
<tr>
<td>Alta precisión de amortiguamiento</td>
<td>Mejores para superficies bacheadas</td>
</tr>
<tr>
<td>Mayores prestaciones en condiciones extremas</td>
<td>Proporciona menor confort</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Se necesita mantener regularmente</td>
<td>Necesidad de un técnico especializado para la manipulación</td>
</tr>
<tr>
<td></td>
<td>Se necesita mayor número de piezas</td>
</tr>
</tbody>
</table>

Tabla 4

Una vez enumerado las ventajas y desventajas del los dos sistemas llegamos a la conclusión de que el sistema de baño abierto se adapta mejor a nuestras exigencias. Los motivos de esta elección son los siguientes:

- Al ser un sistema más sencillo, el equipo no tiene que tener amplios conocimientos para poder manipularla
- Al formar parte en la competición de Motostudent tenemos que contener los costes al máximo ya que es una de las exigencias de la competición. Por lo tanto elegimos este sistema por su menor coste
- Este tipo funcionan mejor en superficies llanas que es donde competiremos.
- Proporciona mayor confort al piloto el cual puede ir más rápido.

4.2 SELECCIÓN DEL MUELLE

Para la elección del muelle tenemos que tener en cuenta el peso de la moto más el del piloto. Aproximadamente el reparto de pesos es de un 50% sobre la rueda delantera y otro 50% sobre la rueda trasera.

El peso soportado en la parte delantera lo aguantan las dos barras que se reparten el peso equitativamente.

Buscamos por catálogos los diferentes muelles que nos podrían servir para sustituir el que tenemos ya que es demasiado largo y pesado. La selección la hacemos comparando el peso que aguantan y rigidez de los distintos muelles. Con este criterio hacemos la primera selección.

Una vez hecha esta selección procedemos a una selección más detallada comparando la longitud libre del muelle con la fuerza que aguantan y finalmente seleccionamos el muelle idóneo.

Uno de los objetivos principales en la competición es aligerar el peso lo máximo posible, pero tenemos que tener en cuenta las restricciones de espacio, por eso decidimos utilizar dos muelles en serie para llegar a una rigidez parecida a la que tenemos en el muelle que nos facilitó la organización de Motostudent.

A partir del catalogo de “World Wide Solution”, elegimos los muelles que más se apropien a nuestras necesidades. Los muelles seleccionados son:
De estos tres la combinación que mejor se adapta es la formada por los que están seleccionados en rojo ya que es la que mayor rigidez nos aporta. Esto se puede observar en la siguiente gráfica, donde comparamos la fuerza del muelle en función del desplazamiento utilizando la siguiente fórmula:

\[F = K_{eq} \times (D + P_r) \]

Donde “D” corresponde al desplazamiento de los muelles, “Pr” la precarga y \(K_{eq} \) la constante de los dos muelles situados en serie.

\[K_{eq} = \frac{1}{\frac{1}{K_1} + \frac{1}{K_2}} \]

Donde “\(K_1 \)” y “\(K_2 \)” corresponde a las constantes de los dos muelles (proporcionado por el proveedor).

![Gráfica 3](attachment:image.png)
Observamos que la combinación azul aguanta mucha menos fuerza que la combinación roja.

Como hemos enunciado anteriormente, la fuerza se reparte al 50% entre las dos barras, por lo que en total, tendremos una fuerza por parte de los muelles de aproximadamente 2600 Newtons en su máxima compresión. Esto corresponde a 260 Kilogramos que como veremos más adelante es más que suficiente.

Una parte a tener en cuenta es la precarga ya que con ella podemos aumentar la fuerza del muelle a expensas de disminuir la longitud libre del muelle. Una forma fácil de ver y entender este concepto es con una gráfica aplicada a nuestra opción.

![Gráfica 4](image)

Observamos que si añadimos más precarga (en este caso en porcentaje, siendo el 100% cuando utilizamos toda la longitud libre del muelle), mayor resistencia a la compresión tenemos a expensas de tener menos recorrido.

El fabricante nos aconseja que haya una precarga de entre un 8%-20% para el correcto funcionamiento del muelle, ya que si es menor al 8% el muelle puede quedar suelto y si es mayor al 20% se reduce considerablemente la longitud libre del muelle. Por lo tanto escogemos la opción de 15% de precarga que nos ofrece mayor rigidez.

4.2.1 Regulaciones añadidas a las suspensiones

Uno de los principales objetivos de este proyecto es la mejora de las prestaciones de la suspensión.

La horquilla otorgada por la organización no tenía ningún sistema de regulación lo cual hacía que no se pudiera optimizar el funcionamiento de esta, por lo que gran parte de este proyecto se centra en añadirle las máximas regulaciones (que se puedan) a la moto para así poder
optimizar el funcionamiento de esta y adaptarse de la mejor manera a las condiciones del circuito.

Pero como ya hemos comentado antes, no todas las piezas se pueden reemplazar por lo que el espacio que tenemos no nos deja añadir todas las regulaciones que queríamos.

Las regulaciones que hemos podido añadir al prototipo son las siguientes:

- Regulación de baja velocidad: Esta regulación regulará el paso del aceite cuando las velocidades de absorción sean bajas. El sistema se compone de una aguja cónica que se incrusta dentro de la canalización por donde pasa el aceite a baja velocidad. Esta regulación se regula desde la parte superior de las barras mediante el roscado y des roscado de un vástago que une la aguja cónica y la parte superior de la barra. En la parte inferior se le añade un muelle para mantener en la posición deseada la aguja cónica. En la parte inferior del pistón, zona inaccesible para poder regular debido al poco espacio, se colocan una serie de válvulas las cuales se explicaran más adelante.

- Regulación de alta velocidad a compresión: Esta regulación regulará el paso de aceite cuando las velocidades de absorción sean altas pero solamente cuando se esté comprimiendo la suspensión. Estará situada en la parte inferior de la botella derecha y se regulará mediante el roscado o des roscado del tornillo el cual precargará más o menos las arandelas Belleville y por lo tanto dificultaremos en mayor o en menor medida el paso del aceite por las cavidades del pistón. Se puede observar que en la parte derecha del pistón se sitúa una arandela (“chek valve” o válvula anti retorno) la cual lo único que hace es impedir el movimiento del aceite por los orificios no deseados a la hora de comprimir la suspensión y que a la hora de expandirse no haga ningún esfuerzo en contra del aceite.
• Regulación de alta velocidad en extensión: Esta regulación regulará el paso de aceite cuando las velocidades de absorción sean altas pero solamente cuando se esté expandiendo la suspensión. Al igual que la anterior regulación estará situada en la parte inferior, pero en este caso de la botella izquierda, y se regulará de la misma manera, simplemente se intercambia la colocación de las arandelas Belleville y la “chek valve” para que actúen cuando se está expandiendo la suspensión.

4.2.2 Válvulas

Una de las partes fundamentales para que la suspensión funcione correctamente es la selección y disposición de las válvulas que permiten el flujo del aceite cuando se producen grandes impactos.

Estas válvulas son las que están situadas en la parte de abajo del pistón principal. Lugar que queda inaccesible para poder regularlo debido al poco espacio que tenemos.

Para elegir y posicionar las válvulas, vimos que era lo más utilizado en el mercado y analizar el porqué era así. Era obvio que la primera arandela tenía que tapar los agujeros por los cuales pasa el aceite cuando se producen impactos fuertes, pero: ¿En qué secuencia y posicionamiento estarían las siguientes válvulas? Tenemos dos opciones:
• La primera, y menos utilizada en el mercado, es la disposición en forma piramidal de las arandelas la cual nos permite una fuerza de apertura constante durante toda su deformación. Pero sin duda este es el principal problema ya que sería conveniente que como se vayan deformando las válvulas vaya aumentando la rigidez de estas para que no se llegue a la deformación plástica de la primera.

Figura 49

• La segunda opción, y más utilizada en el mercado, es la disposición en forma no piramidal la cual nos permite variar la fuerza de apertura que soportan las arandelas según la apertura que tengan. De esta forma, la primera arandela, al entrar en contacto con la tercera, se produce un aumento de la rigidez y por lo tanto la deformación aumenta mas poco a poco para así poder evitar la deformación plástica de la primera arandela.

Figura 50
¿Pero porque la segunda opción es la más utilizada en el mercado? Debido a la complejidad del problema decidimos simplificarlo simulando la deformación que sufrían las arandelas aplicándoles diferentes cargas. Para la simulación utilizamos el programa SolidWorks. A continuación podemos ver una simulación de cada disposición de arandelas aplicando una carga de 300N:

Figura 51

Los resultados fueron los siguientes.

Gráfica 5
Podemos observar como en la forma no piramidal hay un cambio de pendiente de la gráfica de desplazamiento máximo de los extremos, que se corresponde a cuando entra en acción la tercera válvula. Cosa que no pasa en la disposición piramidal. Este cambio de pendiente corresponde también a que aumenta la rigidez a deformación de las válvulas ya que al haber más rigidez se ralentiza la deformación de los extremos de las válvulas

Una vez sabido el porqué de que la segunda opción sea la más utilizada en el mercado, decidimos escoger esta opción. Pero una vez seleccionada esta opción nos surgió un problema. Este problema era: ¿Cómo sabíamos que la disposición y tamaño de las arandelas eran las correctas para nuestra suspensión? La solución fue la de coger las secuencias que utilizaban las demás suspensiones y adaptarlas a nuestros tamaños.

4.2.3 Arandelas Belleville

Una regulación que añadiremos a la suspensión será la de compresión a alta velocidad, la cual irá situada en la parte inferior de la botella la cual se podrá regular sin necesidad de desmontar la horquilla.

Para llevar a cabo esta regulación teníamos dos alternativas:

-Utilización de un muelle:

<table>
<thead>
<tr>
<th>Ventajas</th>
<th>Inconvenientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplio rango de regulación</td>
<td>Ocupa mucho espacio</td>
</tr>
<tr>
<td>Barato</td>
<td>Demasiado rango de aplicación</td>
</tr>
<tr>
<td>Perfectos para superficie muy bacheadas</td>
<td>Rigidez constante</td>
</tr>
</tbody>
</table>

Tabla 5

-Utilización de arandelas Belleville
Ventajas

<table>
<thead>
<tr>
<th>Ocupan poco espacio</th>
<th>Caras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfectas para superficies lisas</td>
<td>Posibilidad de deformación plástica</td>
</tr>
<tr>
<td>Rigidez variable dependiendo de la colocación</td>
<td>Necesidad de un soporte donde situarlas</td>
</tr>
<tr>
<td>Mayor rigidez</td>
<td>Selección de la rigidez</td>
</tr>
</tbody>
</table>

Tabla 6

Como estamos haciendo una suspensión para una moto que rodará en un circuito donde las superficies son llanas y las suspensiones trabajan la mayoría del tiempo a bajas velocidades, decidimos coger el método de las arandelas Belleville.

A continuación exponemos una gráfica donde comparamos la rigidez del muelle con las de las de los diferentes tipos de arandelas que se acoplan a nuestro modelo. La diferencia entre las diferentes arandelas es la carga a deflexión (Fd) que soportan.

Para calcular la fuerza en función de las arandelas se ha utilizado la siguiente fórmula:

\[F = R \times (D + P) \]

Donde “R” es la rigidez del conjunto de arandelas, “D” el desplazamiento que tienen y “P” la precarga.

La rigidez por su parte se calcula de la siguiente manera:

\[R = \left(\frac{1}{C_d} \right)^{-1} \]

Donde “Cd” es la carga a deflexión de cada arandela (suministrado por el proveedor), “Na” el número de arandelas y “Dmax” la deformación máxima que podrá tener el conjunto de las arandelas.

La fórmula en el caso del muelle es:

\[F = K \times (Desp \times Pr) \]

Donde “K” es la constante del muelle, “Desp” el desplazamiento y “Pr” la precarga.
Gráfica 7

Se puede observar cómo el muelle, con el desplazamiento reducido que tenemos, la fuerza de deflexión se mantiene prácticamente constante. Mientras que las arandelas aumentan mucho su fuerza de deflexión.

La disposición de las arandelas que estamos considerando es la siguiente que es la que aconsejan los suministradores de este tipo de arandelas:

Para regular las arandelas lo que se ha hecho es lo siguiente. Cada arandela se puede deformar, hasta su forma plana, 0.45 milímetros. Por otra parte la rosca que ancla al adaptador que rosca a la botella se le ha hecho un paso de 0.5 milímetros por lo que con un giro del tornillo tendremos un poco más de una arandela completamente plana. De esta forma tendremos la regulación controlada sin el uso de reglas métricas.
4.3 SISTEMA DE VARIACIÓN DEL AVANCE DE LA RUEDA DELANTERA

La motocicleta está enfocada a la competición Motostudent en la cual se realiza una competición en el circuito Motorland de Aragón. Pero no todo el resultado se traduce en la victoria de una carrera sino que tenemos varias pruebas. Estas pruebas, descritas anteriormente, tiene diversos objetivos, por lo tanto la moto se tiene que adaptar lo mejor posible a cada prueba.

Para hacer que la moto fuera lo más adaptable posible al terreno y a las diferentes pruebas se nos ocurrió la idea de hacer un sistema mediante el cual se pudiera variar el avance de la rueda delantera para así poder cambiar el comportamiento de la moto y además poder hacer que el piloto este lo más cómodo posible.

El sistema estará compuesto por dos pletinas unidas mediante la pipa de la dirección, dos excéntricas y dos rodamientos que permitan soportar el desplazamiento y las cargas deseadas.

Para poder llevar a cabo este sistema, lo primero que tuvimos que eliminar fue la tija que nos venía con la horquilla. El motivo de la eliminación de este elemento fue debido a que con el no podíamos llegar a realizar nuestro sistema y además que la tija que nos venía era muy pesada. Como sabéis en la competición se busca reducir al máximo el peso para poder ser los más rápidos posibles. Por lo tanto no dudamos en ningún momento la eliminación de este elemento.
Una vez quitada esta parte, para poder hacer el sistema de cambio del avance de la rueda delantera teníamos que anclar la horquilla directamente a la pipa de la dirección (al chasis). Para ello fabricamos dos pletinas la cual una irá en la parte de debajo de la pipa de dirección y la otra encima.

4.3.1 Las pletinas
Las dos pletinas deben de ser rediseñadas completamente ya que deberán soportar los diferentes esfuerzos durante la conducción y poder almacenar todos los componentes necesarios para que el sistema funcione. Debido a restricciones del proyecto y disponibilidad del material, las dos pletinas se fabricarán usando el Aluminio 6063-T4. Una parte importante es, como he descrito antes, es el reducir el peso, por lo tanto esto será un factor importante a la hora de diseñarlas.

Por una parte tenemos la pletina inferior la cual tiene que ser más grande que la pletina superior debido a que soporta más carga ya que puede llegar a soportar todo el peso de la moto en situaciones extremas como puede ser en el levantamiento de la rueda trasera. Además, también se encarga de soportar parte de la carga por flexión que se produce al tomar las curvas o cuando se pasa un bache (explicado anteriormente).

Por otra parte, la pletina superior puede ser más pequeña debido a que la carga que debe soportar es mucho menor que la que tiene que soportar la pletina inferior y esto es debido a que no tiene que soportar el peso de la moto. Esta pletina es la encargada de soportar la mayor parte de la flexión que se produce a la hora de tomar una curva o un bache y de las flexiones que se producen en el chasis.

4.3.1.1 Simulación de las pletinas
Para asegurarnos de que las pletinas aguantan las cargas que se generan a la hora de conducir procedemos a realizar una simulación de ambas.

Para la realización de esta simulación, nos centramos en los momentos más críticos en los cuales se verán implicadas ambas pletinas. Estos momentos son: durante la frenada (donde en los casos más críticos podemos tener todo el peso de la moto sobre la parte delantera) y cuando se produce un giro en el manillar de la motocicleta.

Una vez establecido los momentos sobre los cuales realizaremos el estudio, procedemos a la determinación de las cargas a las que estarán sometidas las pletinas

4.3.1.1.1 Frenada
Durante la frenada existen dos tipos de cargas:

- Por una parte tenemos las debidas al peso de los diferentes componentes de la moto y del peso del motorista, restando la rueda delantera. Por lo tanto nos queda una fuerza debido al peso de 1930N la cual será aplicada únicamente a la pletina inferior.
- Por otra parte tenemos las cargas debidas a las inercias. Para determinar este tipo de cargas nos fijamos en estudios anteriores en los cuales se comparan las inercias de frenado de varias motos del mercado y así poder determinar de forma sencilla cuál será la inercia que existe durante una frenada. En la gráfica que se muestra a continuación se muestra la deceleración que se produce al frenar y reducir la
velocidad desde aproximadamente 100Km/h hasta 0Km/h y unos 50m de frenada. Este estudio fue realizado con un sofisticado equipo de radar (Datos sacados de Motorcycle Consumer News).

Figura 56

Este estudio se basa en motos mucho más pesadas que la nuestra ya que la nuestra pesa 110 Kg y la mayoría de las que se estudian no bajan de los 170Kg. Además, estudios realizados por el departamento de motor del equipo nos desvelaron que la velocidad máxima que podía alcanzar nuestra moto era de no más de 150Km/h. Por lo que en esta gráfica podemos tener una orientación de cuál será la fuerza que se produce a la hora de frenar. Los cálculos para nuestra moto serán:

\[a = \left(V_i^2 - V_f^2 \right) \frac{0.5}{D} \]

Donde “a” es la deceleración, “Vi” es la velocidad inicial (en este caso 150 Km/h o lo que es lo mismo 41.67 m/s), “Vf” es la velocidad final (en nuestro caso 0 Km/h) y “D” es la distancia de frenado (50 m). Sustituyendo estos valores en la ecuación 1, nos queda que:

\[a = \frac{41.67^2 - 0^2}{50} \]
\[a = \frac{225 \text{ m/s}^2}{50} \]

Como hemos supuesto un peso de 110 Kg de la moto y 85 Kg del piloto esto supone que tenemos un total de 195 Kg. Dividiendo el valor de la aceleración entre el peso tendremos los G que soporta la parte delantera en una frenada y por correlación la fuerza:

\[F = \frac{225}{195} G = 1.15 G \]

 Esto corresponde a una fuerza de 2250 Newtons.

4.3.1.1.2 Giro del manillar

El giro del manillar es una acción que se produce al intentar tomar una curva o al maniobrar la moto.

Para girar, a baja velocidad, tiene suficiente con orientar el manillar hacia donde quiere virar para que la motocicleta siga la trayectoria curva deseada. De hecho, este es exactamente lo...
mismo que hacen los coches para girar. Como la rueda está girada, al rodar sobre el pavimento el punto de contacto se va desplazando hacia el lado hacia el que mira la rueda. Por lo tanto, la rueda se irá desviando hacia ese lado, seguida del resto de la moto.

Siempre que haya algo que cambia de dirección, debe haber una fuerza lateral, llamada fuerza centrípeta. En este caso, como casi siempre en automoción, es la fricción con el suelo quien proporciona dicha fuerza. Recuerden que la fuerza de rozamiento entre dos sólidos siempre se opone al movimiento incipiente.

Imaginad que giramos el manillar a la izquierda. Como la rueda está girando en este plano inclinado hacia la izquierda, fijaos que el punto inferior (el que está en contacto con el suelo) intenta desplazarse hacia atrás y a la derecha. La fuerza de fricción, por lo tanto, tendrá el sentido opuesto: hacia adelante y la izquierda.

Es decir, al inclinar el manillar hacia un lado, aparece una fuerza de fricción en las ruedas hacia ese lado. Esta es la fuerza que hace que la moto vaya girando.

Para el cálculo de esta fuerza suponemos que la moto no se inclina, es decir, que gira simplemente por el efecto de giro del manillar. Ademá y, suponemos una velocidad de 80 Km/h ya que a esta velocidad aun podemos tener un ángulo de giro del manillar relativamente grande (5 grados) que serán los grados que cogeremos para el cálculo de esta fuerza ya que será la situación más desfavorable.

Para proceder al cálculo de la fuerza de torsión que se produce lo primero que tenemos que hacer es calcular el radio de giro de la moto.

![Figura 57](image)

Por trigonometría podemos calcular el radio de giro (r).

\[
\sin 5 = \frac{1400}{r} \\
r = \frac{1400}{\sin 5} \\
r \approx 16063 \text{ mm}
\]

Por lo tanto tenemos un radio de giro de 16 metros aproximadamente.
Al producirse el giro la rueda se descentrará del eje que pasa entre las dos ruedas completamente rectas y el centro de gravedad.

En nuestro caso tenemos un avance de 25mm y, como ya hemos mencionado antes un giro de 5 grados. Usando trigonometría podemos calcular la distancia entre los dos ejes (y):

\[
\cos 85 = \frac{y}{25}
\]

\[
y = 25 \times \cos 85
\]

\[
y = 2.18 \text{ mm}
\]

Esta será la distancia entre los dos ejes que tendremos.

Una vez calculado el radio de giro y la distancia entre los dos ejes, procedemos a calcular la fuerza centrípeta (Fc). Esta fuerza irá desde el centro de gravedad del sistema moto-motorista al centro del radio de giro. Para este cálculo suponemos que el centro de gravedad está situado en la mitad de la distancia entre centros (700mm).

\[
Fc = \frac{m \times v^2}{r}
\]

\[
Fc = \frac{195 \times 22.22^2}{16.063}
\]

\[
Fc = 5993.7 \text{ N}
\]

Pero este resultado lo tenemos en valor absoluto por lo tanto procedemos a descomponer la fuerza para así poder calcular la fuerza que se produce en las pletinas.
Calculamos el ángulo sobre la horizontal para saber el sentido y dirección de la fuerza centrípeta y así poder descomponerla:

\[
\tan \beta = \frac{700}{16063} \quad \text{(Ec. 7)}
\]

\[
\beta = \tan^{-1} \left(\frac{700}{16063} \right)
\]

\[
\beta = 2.5^\circ
\]

Por lo tanto nos queda que:

\[
F_{cx} = F_c \times \cos \beta
\]

\[
F_{cy} = F_c \times \sin \beta
\]

Sustituyendo los valores:

\[
F_{cx} = 5988 \, N
\]

\[
F_{cy} = 261.44 \, N
\]

Pero esta fuerza está aplicada sobre el centro de gravedad y no sobre la pletina. Pero como dijimos anteriormente el reparto de peso es del 50% por lo que sobre la pletina tendremos la mitad de la fuerza, teniendo en cuenta que la rueda trasera no opone fuerza en la componente “y” de la fuerza centrípeta. Por lo que nos queda:

\[
F_{cxp} = 2994 \, N
\]

Finalmente, procedemos a calcular el momento que se produce en el eje de la dirección, y por consecuencia en las pletinas, la fuerza centrípeta.

![Figura 60](image)

\[
M = 2.18 \times F_{cy} + 24.9 \times F_{cxp}
\]

\[
M = 75.12 \, Nm
\]
4.3.1.1.3 Fuerzas aplicadas a las pletinas
Las fuerzas anteriormente calculadas están aplicadas sobre el centro del eje de la rueda, por lo que tenemos que calcular estas fuerzas sobre las pletinas. Para ellos simplificamos el sistema separando las dos barras y suponiendo que tenemos una barra biempotrada

4.3.1.1.3.1 Fuerza de frenada
Como hemos enunciado la fuerza de frenada calculada anteriormente, está calculada sobre el centro del eje de la rueda. La carga se distribuye al 50% entre las dos barras, por lo que en cada barra tendremos una fuerza de 1125 néwtones y las reacciones serán iguales para los dos anclajes de las dos barras.

En este caso el esquema para calcular las fuerzas sobre las pletinas sería el siguiente:

Aplicamos las ecuaciones de equilibrio (suponiendo que el eje horizontal es el X):

\[\sum F_x = 0 = R_{XPS} + R_{XPI} - 1125 \]

\[\sum M_A = 0 = 238 \cdot R_{XPI} - 789 \cdot 1125 \]

Resolviendo las dos ecuaciones anteriores tenemos que:

\[R_{XPS} = -2604.52N \]
\[R_{XPI} = 3729.52N \]
4.3.1.3.2 Fuerzas al girar el manillar

En este caso, debido a que es una torsión, en las dos barras existirán las mismas fuerzas pero en signos opuestos. Procedemos a calcular las fuerzas que ejerce el momento sobre las dos barras.

La separación entre las dos barras, como se puede ver en el esquema anterior, es de 180 mm. Además como el momento está aplicado sobre el centro de la distancia entre barras (90mm) las dos fuerzas resultantes serán iguales:

\[F_1 = F_2 \]

Por lo tanto podemos calcular las fuerzas en las barras de la siguiente manera:

\[M = 2 \times 90 \times F_1 \]

Sustituyendo los valores y resolviendo la ecuación nos queda que:

\[F_1 = \frac{75120}{2 \times 90} = 417.33 \text{ N} \]

Una vez calculada la fuerza que se produce en cada barra, procedemos a calcular la que se produce en las pletinas. A continuación se muestra los esquemas de la barra izquierda y derecha respectivamente:

Figura 62

Figura 63
Como podemos observar a partir de los esquemas, las reacciones que se producirán en cada barra serán igual pero de signo contrario.

Aplicamos las ecuaciones de equilibrio (suponiendo que el eje horizontal es el X):

\[
\sum F_x = 0 = M_{XPS} + M_{XPI} - 417.33
\]

\[
\sum M_A = 0 = 238 \times M_{XPI} - 789 \times 417.33
\]

Resolviendo el sistema obtenemos unas reacciones en las pletinas debido a la barra izquierda de:

\[
M_{XPS} = -966.17 \text{ N}
\]
\[
M_{XPI} = 1383.5 \text{ N}
\]

En el caso de la barra derecha serán:

\[
M_{XPS} = 966.17 \text{ N}
\]
\[
M_{XPI} = -1383.5 \text{ N}
\]

4.3.1.1.4 Simulación

Una vez determinadas las fuerzas que actúan sobre las pletinas procedemos a simularlas para poder verificar que serán capaces de soportar las fuerzas determinadas anteriormente. Para la simulación nos ayudamos del programa informático PTC Creo Parametric, en concreto, utilizando el bloque “Creo Simulate”.

Primero procedemos a simular la pletina superior.

Para empezar la simulación establecemos las restricciones, fuerzas en la pletina y el material:
Además de la restricción de movimiento debida a la pipa de dirección le añadimos restricciones en los agujeros de los tornillos ya que la rigidez que tienen los tornillos es mucho mayor al de la pletina y podemos considerar que no hay desplazamiento. Las fuerzas añadidas a la simulación son las calculadas anteriormente.

Una vez situadas las cargas y las restricciones de movimiento procedemos a realizar el mallado de las pletinas.

Para que el resultado sea lo más exacto posible refinamos al máximo el mallado en aquellos lugares más críticos. Para determinar estos sitios más críticos hacemos una simulación con el mallado que el mismo programa nos facilita. Una vez situados estos sitios se refina el mallado y se procede a la simulación.

Los resultados obtenidos en la simulación son los siguientes:
Observamos que para la pletina superior la deformación máxima que se produce es 0.056mm. Hay que tener en cuenta que esta deformación máxima se produciría en un momento puntual y no de forma constante. Por lo tanto es un desplazamiento aceptable.

En cuanto a la Tensión de Von Mises observamos que no pasa en ningún caso de 165MPa. Si tenemos en cuenta el límite elástico del material que vamos a utilizar, podemos ver que tenemos un coeficiente de seguridad de 2. Podemos ver que hay un pico de 636MPa pero esto es debido al mallado que se ha hecho ya que en los puntos donde es máxima la tensión es donde debido al mallado no hay ningún tipo de movimiento.

Una vez simulada la pletina superior, procedemos a simular la pletina inferior. Procedemos con la misma secuencia de pasos que para la pletina superior.

Establecemos las restricciones y fuerzas que soporta esta pletina y el material.
Se colocan las mismas restricciones que para la pletina de arriba. En el caso de las fuerzas, aparte del valor nominal de estas, tenemos que añadirle el peso de la motocicleta ya que es esta la que soporta todo el peso.

Una vez situadas las cargas y las restricciones de movimiento procedemos a realizar el mallado de las pletinas.

Finalmente ejecutamos la simulación. Los resultados obtenidos son los siguientes:
Observamos que para la pletina superior la deformación máxima que se produce es 0.045mm. Hay que tener en cuenta que esta deformación máxima se produciría en un momento puntual y no de forma constante por lo tanto es un desplazamiento aceptable.

En cuanto a la Tensión de Von Mises observamos que no pasa en ningún caso de 95MPa. Si tenemos en cuenta el límite elástico del material que vamos a utilizar, podemos ver que tenemos un coeficiente de seguridad de 3. Podemos ver que hay un pico de 239MPa pero esto es debido al mallado que se ha hecho ya que en los puntos donde es máxima la tensión es donde debido al mallado no hay ningún tipo de movimiento.

4.3.2 Los rodamientos

Necesitamos unos rodamientos los cuales puedan trabajar cuando haya una desalineación.

Las exigencias para nuestros rodamientos son las siguientes:

- Carga que deben soportar: Para la determinación de la carga que debían soportar nuestros rodamientos, supusimos el caso más desfavorable que se podía producir que es cuando se levanta la rueda delantera en plena frenada. En este caso la mayor parte del peso de la moto, del piloto y además, las inercias están siendo soportadas por los rodamientos. Por lo tanto, la suma de estos factores sería la que marcaría la resistencia de nuestros rodamientos.

\[
F = Peso Moto + Peso Motorista + Inercias \times \% \quad (N)
\]

Con un peso de la moto de 110Kg, un peso del motorista de 85 Kg y unas inercias de aproximadamente 2G, obtenemos una fuerza de aproximadamente 3800 Néwtones que deben soportar los rodamientos.

- Dimensiones: Debido al reducido espacio que tenemos en el lugar de alojamiento del rodamiento, el rodamiento no puede sobrepasar un diámetro exterior de 52mm y uno interior de 25mm. Además la altura del rodamiento no puede ser superior a 18mm

- Des alineamiento: En nuestro caso el rodamiento debe soportar un máximo de 3 grados. Esto es debido a la limitación de espacio que tenemos y sobre todo porque es el máximo des alineamiento que soportan la mayoría de los rodamientos
La primera opción que pensamos para llevar a cabo este sistema fue la elección de un rodamiento de bolas a rótula. Pero había un grave problema y es que no había ningún rodamiento que soportara la carga deseada y además pudiera adaptarse a nuestra geometría debido a que los rodamientos que soportaban nuestras exigencias de carga, eran demasiado grandes como para caber en nuestro emplazamiento.

Una vez descartada esta opción, nos pusimos en contacto con una empresa americana la cual fabrica rodillos (Enduro Bearings) y que nos facilito la información de un rodamiento el cual se adaptaba a nuestras exigencias. Se trata de un rodamiento de rodillos cónicos.

4.3.3 Las excéntricas
Una de las partes más importantes de este sistema son las excéntricas ya que gracias a ellas podremos cambiar el avance de la rueda delantera y ángulo de la dirección.

Lo primero que hicimos fue calcular la excentricidad que tenía que haber para poder llegar a los 3 grados de inclinación que soportan los rodamientos. Para ello recurrimos a la trigonometría con un esquema sencillo, suponiendo el máximo desalineamiento posible que se produce cuando las dos excéntricas están situadas opuestamente:
Con $\alpha=3$ grados y los 205 milímetros que es la longitud de la pipa, tenemos que:

$$X = \tan 3 \times 205 = 10.74\,mm$$

Por lo tanto se tendría que tener una excentricidad en cada excéntrica de 5.37 mm.

Para facilitar la fabricación de las excéntricas decidimos hacer una excentricidad de 5 mm a expensas de reducir el máximo ángulo que se pueda variar. Esta variación supondría una disminución del ángulo de 0.21 grados (7%) que se traduce en la reducción del avance de la rueda en 3.66 centímetros. Pero, recalcamos, se facilita la fabricación.

Cada excéntrica sólo va a poder tener dos posiciones debido a que si se quedan en posición intermedia la rueda delantera quedaría desplazada respecto a la trasera y no podría funcionar. Las posiciones de funcionamiento serán las siguientes:

- Las dos excéntricas situadas hacia la parte del chasis: En este caso lo que conseguimos es acortar la distancia entre ejes (respecto al hipotético caso de no utilizar excentricidad) par hacer una moto más ágil pero más nerviosa y difícil de conducir.
Las dos excéntricas situadas hacia la parte delantera: De esta manera conseguimos una moto más fácil de manejar pero menos ágil.

La excéntrica superior hacia la parte del chasis y la inferior hacia delante: Conseguimos mayor avance de la rueda delantera lo cual proporciona mayor estabilidad a altas velocidades pero menor estabilidad a bajas velocidades.
• La excéntrica superior hacia la parte delantera y la inferior hacia la parte del chasis. Conseguimos un menor avance de la rueda delantera lo cual proporciona mayor agilidad a bajas velocidades y menor estabilidad en altas velocidades.

![Figura 80](image)

4.4 ANÁLISIS DE TOLERANCIAS
Debido al ajuste que hay en estos tipos de ensamblajes, una parte fundamental para el correcto funcionamiento de la suspensión es el análisis de tolerancias ya que el mal acabado de una simple pieza puede hacer que no funcione la suspensión.

Tenemos dos sitios críticos en nuestra suspensión: los reguladores de abajo y el emplazamiento del pistón principal.

![Figura 81](image)

![Figura 82](image)
Para realizar el análisis de tolerancias procedemos a aplicar el método de las dispersiones a todos los casos.

En el primer caso tenemos que la medida crítica es desde la superficie 1 hasta la superficie 6.

 Una vez determinadas las superficies de referencia, procedemos a establecer la ecuación que nos permita calcular las tolerancias. Para ello debemos de establecer la matriz de dispersión:

<table>
<thead>
<tr>
<th>Pieza</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ΔI1A</td>
<td>ΔI2A</td>
<td>ΔI3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>ΔI3B</td>
<td>ΔI4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>ΔI4C</td>
<td>ΔI5C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>ΔI5D</td>
<td>ΔI7D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΔI6E</td>
<td>ΔI7E</td>
</tr>
<tr>
<td>F</td>
<td>ΔI1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΔI1A</td>
</tr>
</tbody>
</table>

Tabla 7
Como en este caso solo tenemos una cota funcional la realización de este método se simplifica a una sola ecuación. La ecuación es la siguiente:

\[IT_{1-6} \leq \Delta I_1^A + \Delta I_3^A + \Delta I_3^B + \Delta I_4^B + \Delta I_5^C + \Delta I_5^D + \Delta I_7^D + \Delta I_6^E + \Delta I_6^F \]

Establecemos \(IT_{1-6} = 0.22 \) y esto nos da un resultado de que cada dispersión tiene el valor de \(\Delta I = 0.04 \) (en valor absoluto).

Pero aquí se puede ver la limitación de utilizar este método y es que no tiene en cuenta la longitud de la pieza, además, establece las tolerancias de forma simétrica por lo que si se quiere una tolerancia asimétrica se tiene que valorar el valor nominal. Por este motivo procedemos a calcular los intervalos de tolerancia con la ayuda del programa Creo Parametric y su extensión “Tolerance Analysis Extension”.

Este método hace un análisis estadístico de las piezas que cumplirían nuestra restricción. Este método sí que tiene en cuenta la longitud sobre la cual se aplica la tolerancia por lo que podemos determinar la tolerancia ideal para cada pieza.

Empezamos el método al igual que el método de las dispersiones, es decir, determinando las cotas funcionales y las cadenas que la determinan.

![Figura 85]
Una vez determinada la cadena procedemos a establecer las tolerancias para cada una de las cotas. Debido a que hay piezas normalizadas, estas son las que primero vamos a establecer y posteriormente estableceremos las de las piezas que tenemos que fabricar (tolerancias especificadas en la imagen anterior).

Este método se basa en el tanteo por lo que como nosotros ya hemos calculado las tolerancias con el método anterior, cogemos como valores de referencia los valores calculados y modificamos sobre esos.

Los resultados obtenidos son los siguientes:

<table>
<thead>
<tr>
<th>Gráfico de variaciones</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caso más desfavorable máximo = 39,1500</td>
</tr>
<tr>
<td></td>
<td>Caso más desfavorable mínimo = 38,8500</td>
</tr>
<tr>
<td></td>
<td>Media = 38,9000</td>
</tr>
<tr>
<td></td>
<td>Desviación estándar = 0,0373</td>
</tr>
<tr>
<td></td>
<td>Sigma = 1,8783</td>
</tr>
<tr>
<td></td>
<td>% Rendimiento = 93,9659</td>
</tr>
<tr>
<td></td>
<td>DMUP = 60,341</td>
</tr>
</tbody>
</table>

Debido a que estamos en competición no necesitamos un rendimiento del 100% ya que lo que más importa en este ámbito de aplicación es el mejor funcionamiento.

En el segundo caso tenemos que la medida crítica es desde la superficie 1 hasta la superficie 10.
Procedemos con la misma secuencia que en el caso anterior pero esta vez ya sin hacer el método de las dispersiones debido a que en este caso necesitamos más precisión.

Determinamos las cotas funcionales y las cadenas que la determinan. Y posteriormente las tolerancias. Tenemos que tener en cuenta, además de las piezas normalizadas, que hay piezas que se han utilizado en el primer caso por lo que se tienen que mantener las tolerancias aplicadas anteriormente.

A continuación tenemos los resultados estadísticos obtenidos:

<table>
<thead>
<tr>
<th>Gráfico de variaciones</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso más desfavorable máximo = 60,4200</td>
<td></td>
</tr>
<tr>
<td>Caso más desfavorable mínimo = 59,5900</td>
<td></td>
</tr>
<tr>
<td>Media = 60,0050</td>
<td></td>
</tr>
<tr>
<td>Desviación estándar = 0,0493</td>
<td></td>
</tr>
<tr>
<td>Sigma = 2,0180</td>
<td></td>
</tr>
<tr>
<td>% Rendimiento = 95,8412</td>
<td></td>
</tr>
<tr>
<td>DNP = 43,588</td>
<td></td>
</tr>
</tbody>
</table>

Figura 88

Figura 89
Por último procedemos a realizar el análisis de tolerancias del tercer caso. En este caso tenemos que la medida crítica es desde la superficie 1 hasta la superficie 7.

Determinamos las cotas funcionales y las cadenas que la determinan. Y posteriormente las tolerancias.

A continuación mostramos los resultados estadísticos obtenidos:

<table>
<thead>
<tr>
<th>Gráfico de variaciones</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caso más desfavorable máximo = 21,8600</td>
</tr>
<tr>
<td></td>
<td>Caso más desfavorable mínimo = 21,6000</td>
</tr>
<tr>
<td></td>
<td>Media = 21,7300</td>
</tr>
<tr>
<td></td>
<td>Desviación estándar = 0,023</td>
</tr>
<tr>
<td></td>
<td>Sigma = 3,0270</td>
</tr>
<tr>
<td></td>
<td>% Rendimiento = 99,7350</td>
</tr>
<tr>
<td></td>
<td>DAK/C = 2,469,7</td>
</tr>
</tbody>
</table>

Figura 90

Figura 91

Figura 92
5. Estudio económico

Una de las partes más del proyecto Motostudent es el realizar un estudio industrial y económico de la motocicleta por lo cual es muy importante tener de forma organizada todas las piezas que se van a fabricar. Por eso, antes de empezar a fabricar decidimos realizar un llevar a cabo la elaboración de un código para nombrar las diferentes piezas. El código se estructura de la siguiente forma:

```
SP-PXXXX

D
C
SC
```

Las dos primeras letras corresponden a la empresa donde se ha llevado a cabo el proyecto (SP). A continuación tenemos cuatro opciones, las cuales son: (P) para cuando el archivo de 3D corresponde a una pieza (pieza), (D) para cuando el archivo que se va abrir es un plano (dibujo), (S) se utilizará para los ensamblajes (conjunto) y finalmente, la última opción que tenemos es la de (SC) que corresponde a un sub ensamblaje (Sub conjunto). Después de esta letra añadimos el número de la pieza de la forma 0001.

Una vez hecho el código, procedemos a elaborar el estudio económico del proyecto. Debido a las negativas de varias empresas a realizarnos un presupuesto aproximado de la fabricación de nuestra suspensión, lo que decidimos fue calcular el presupuesto utilizando el método DFM.

El DFM es un método simple el cual es aplicable a cualquier tipo de proceso de fabricación. Este método está basado en dos factores:

- Volumen pieza (coste del material):
 \[C_1 = V_{final} \cdot C_m \]
 Donde \(C_m \) corresponde al coste del material de la pieza y \(V_{final} \) al volumen de la pieza más el desperdicio de material.

- Proceso de fabricación:
 \[C_2 = \sum P_c \cdot R_c \]
 \[P_c = \alpha \cdot T + \beta / N \]
 \(\alpha \): Coste preparación y realización de un proceso específico
 \(\beta \): Coste herramientas para fabricación proceso ideal
 \(T \): Tiempo proceso
 \(N \): Producción anual Si no se disponen todos los parámetros
 \(P_c \) se puede obtener de gráficas según el número de piezas a producir.
\[R_C = C_{mp} \times C_t \times C_s \times C_f \]

Cmp: Coeficiente material-proceso
Cc: Coeficiente complejidad geométrica
Cs: Coeficiente tamaño
Ct: Coeficiente tolerancia
Cf: Coeficiente calidad superficial
Ctf: Valor más elevado entre Ct y Cf

Toda la relación de coeficientes se obtiene de tablas y/o gráficas como se podrá ver a continuación.

Finalmente el coste total se obtiene como la suma de los dos factores:

\[C_t = C_1 + C_2 \]

Para ver como se ha hecho el cálculo del coste de fabricación procedemos a hacer un ejemplo con una de nuestras piezas.

La pieza corresponde a la SP-P0001:

![Figura 93](image1)

A continuación procedemos con el cálculo del coste de fabricación.

Primero, calculamos \(C_1 \). Para obtener \(C_1 \) necesitamos conocer el coste de nuestro material empleado. En nuestro caso el aluminio. Hacemos uso de la siguiente gráfica:

![Figura 94](image2)
El coste oscila entre 3000 y 5000 $/m³. Debido a que no tenemos datos exactos, supondremos un coste medio. Por lo tanto nos queda que:

\[C_m = 4000 \text{ $/m}^3 \]

Para la determinación del volumen nos ayudaremos del dibujo en CAD. Obtenemos el siguiente volumen de la pieza:

\[V_p = 39743 \text{ mm}^3 \]

A este volumen se le tiene que añadir el desperdicio de material que se produce, por lo que:

\[V_f = V_p + W \]

Donde \(W \) es el coeficiente de desperdicio de material y se saca de la siguiente tabla:

<table>
<thead>
<tr>
<th>Material</th>
<th>AM</th>
<th>CCEM</th>
<th>CDF</th>
<th>CEP</th>
<th>CF</th>
<th>CH</th>
<th>CM12S</th>
<th>CM5</th>
<th>CN5</th>
<th>C5PM</th>
<th>SGC</th>
<th>HCEM</th>
<th>IC</th>
<th>IM</th>
<th>MM</th>
<th>PDC</th>
<th>PM</th>
<th>SC</th>
<th>SM</th>
<th>SMW</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Low Carbon Steel</td>
<td>1.4</td>
<td>1.4</td>
<td>1.1</td>
<td>1.3</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>1.1</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>2.5</td>
<td>2.2</td>
<td>2</td>
<td>2.2</td>
<td>1</td>
<td>1.3</td>
<td>2.5</td>
<td>2</td>
<td>2.5</td>
<td>2.1</td>
<td>1</td>
<td>1.3</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>Copper Alloy</td>
<td>4</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Aluminium Alloy</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Encl Alloys</td>
<td>1.2</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Thermoplastic</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Thermoset</td>
<td>1.2</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Electrolyze</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figura 95

\[W = 1.6 \]

\[V_f = V_p \times W = 39743 \times 1.6 = 63588.8 \text{ mm}^3 = 6.36 \times 10^{-5} \text{ m}^3 \]

Finalmente nos queda que:

\[C_1 = 4000 \times 6.36 \times 10^{-5} = 0.25\text{ $} = 0.24\text{ €} \]

Una vez calculado el primer coeficiente, procedemos a calcular el segundo \((C_2)\) a partir de los siguientes coeficientes:

- \(C_{mp}\): Tiene en cuenta la idoneidad del material con el proceso de fabricación.
C_{mp} = 1

- C_C: Complejidad geométrica

$C_C = 1$

- C_s: Coeficiente de tamaño

$C_s = 1.02$
- \(C_t \): Coeficiente de tolerancia

\(C_t = 1.2 \)

- \(C_f \): Coeficiente de acabado superficial

\(C_f = 2.2 \)

\[R_c = 1 \times 1.02 \times 1.2 \times 2.2 = 2.69 \]

- \(R_c \): Coste básico del proceso de fabricación:
Por lo tanto podemos calcular C_2:

$$C_2 = P_c \cdot R_c = 10 \cdot 2.69 = 26.9\$$$

Una vez calculados los dos coeficientes (C_1 y C_2), podemos calcular el coste total de la pieza:

$$C_T = C_1 + C_2 = 0.25 + 26.9 = 27.18\$ = 25.55\€$$

De esta forma hemos podido calcular de forma aproximada el coste de esta pieza. Este proceso se debe de repetir para todas las piezas que se desean fabricar.

Una vez realizado este método para todas las piezas, podemos obtener el coste total de fabricación del proyecto. Tener en cuenta que el precio de una suspensión de un equipo del mundial de Moto GP en la categoría de Moto3 es de alrededor de 4000\€ según el presupuesto que nos faciliton un equipo (no estamos autorizados a decir el nombre del equipo). El coste total es:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Numero pieza</th>
<th>Nombre Pieza</th>
<th>Pre. unidida</th>
<th>Pre. h. der.</th>
<th>Precio h. izq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0001</td>
<td>Cartucho</td>
<td>25,55 \€</td>
<td>25,55 \€</td>
<td>25,55 \€</td>
</tr>
<tr>
<td>P</td>
<td>0002</td>
<td>Varilla</td>
<td>24,46 \€</td>
<td>24,46 \€</td>
<td>24,46 \€</td>
</tr>
<tr>
<td>P</td>
<td>0003b</td>
<td>Pistón principal</td>
<td>36,40 \€</td>
<td>36,40 \€</td>
<td>36,40 \€</td>
</tr>
<tr>
<td>P</td>
<td>0003c</td>
<td>Pistón estático</td>
<td>36,40 \€</td>
<td>36,40 \€</td>
<td>36,40 \€</td>
</tr>
<tr>
<td>P</td>
<td>0004</td>
<td>Anclaje varilla arriba</td>
<td>22,57 \€</td>
<td>22,57 \€</td>
<td>22,57 \€</td>
</tr>
<tr>
<td>P</td>
<td>0005</td>
<td>Muelle</td>
<td>2,51 \€</td>
<td>2,51 \€</td>
<td>2,51 \€</td>
</tr>
<tr>
<td>P</td>
<td>0006</td>
<td>Muelle</td>
<td>2,51 \€</td>
<td>2,51 \€</td>
<td>2,51 \€</td>
</tr>
<tr>
<td>P</td>
<td>0007</td>
<td>Muelle interior</td>
<td>0,66 \€</td>
<td>0,66 \€</td>
<td>0,66 \€</td>
</tr>
<tr>
<td>P</td>
<td>0008</td>
<td>Regulador abajo</td>
<td>24,83 \€</td>
<td>24,83 \€</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0009</td>
<td>Anclaje botella</td>
<td>16,57 \€</td>
<td>16,57 \€</td>
<td>16,57 \€</td>
</tr>
<tr>
<td>P</td>
<td>0010</td>
<td>Tapon arriba barra</td>
<td>12,45 \€</td>
<td>12,45 \€</td>
<td>12,45 \€</td>
</tr>
<tr>
<td>P</td>
<td>0011</td>
<td>Regulador interior</td>
<td>21,06 \€</td>
<td>21,06 \€</td>
<td>21,06 \€</td>
</tr>
</tbody>
</table>

Figura 101

$P_c \approx 10$
<table>
<thead>
<tr>
<th>P</th>
<th>0012</th>
<th>Botella</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0013</td>
<td>Botella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0015</td>
<td>Varilla interior</td>
<td>23,78 €</td>
<td>23,78 €</td>
<td>23,78 €</td>
</tr>
<tr>
<td>P</td>
<td>0016</td>
<td>Arandela escalonada</td>
<td>7,90 €</td>
<td>7,90 €</td>
<td>7,90 €</td>
</tr>
<tr>
<td>P</td>
<td>0017</td>
<td>Muelle arandelas arriba</td>
<td>1,00 €</td>
<td>1,00 €</td>
<td>1,00 €</td>
</tr>
<tr>
<td>P</td>
<td>0018</td>
<td>Arandelas</td>
<td>0,20 €</td>
<td>1,60 €</td>
<td>1,60 €</td>
</tr>
<tr>
<td>P</td>
<td>0019</td>
<td>Tapón cartucho</td>
<td>33,10 €</td>
<td>33,10 €</td>
<td>33,10 €</td>
</tr>
<tr>
<td>P</td>
<td>0020</td>
<td>Barra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0021</td>
<td>Arandelas inclinadas</td>
<td>0,70 €</td>
<td>2,80 €</td>
<td>2,80 €</td>
</tr>
<tr>
<td>P</td>
<td>0022</td>
<td>Arandela inclinadas</td>
<td>0,20 €</td>
<td>0,20 €</td>
<td>0,20 €</td>
</tr>
<tr>
<td>P</td>
<td>0023</td>
<td>Apoyo arandelas</td>
<td>24,82 €</td>
<td>24,82 €</td>
<td>24,82 €</td>
</tr>
<tr>
<td>P</td>
<td>0024</td>
<td>Arandela arriba muelles</td>
<td>0,20 €</td>
<td>0,20 €</td>
<td>0,20 €</td>
</tr>
<tr>
<td>P</td>
<td>0025</td>
<td>Casquillo arriba muelles</td>
<td>8,02 €</td>
<td>8,02 €</td>
<td>8,02 €</td>
</tr>
<tr>
<td>P</td>
<td>0026</td>
<td>Soporte shims abajo</td>
<td>11,28 €</td>
<td>11,28 €</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0028</td>
<td>Regulador abajo inverso</td>
<td>24,83 €</td>
<td></td>
<td>24,83 €</td>
</tr>
<tr>
<td>P</td>
<td>0030</td>
<td>Pletina inferior</td>
<td>26,24 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0031</td>
<td>Pletina superior</td>
<td>25,80 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0032</td>
<td>Pipa dirección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0033</td>
<td>Excéntrica superior</td>
<td>23,38 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0035</td>
<td>Excéntrica inferior</td>
<td>23,38 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Juntas</td>
<td>10,00 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-clips</td>
<td>15,00 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodamientos</td>
<td>9,60 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>329,39 €</td>
</tr>
</tbody>
</table>

C	0001	Conjunto General			
SC	001	Subconjunto abajo			
SC	004	Arandelas montadas			
				TOTAL	803,48 €

Como podemos ver el coste total de fabricación de la suspensión es de aproximadamente 800€, muy por debajo del coste de las suspension de los equipos del mundial. Hay que tener en cuenta que no es la fabricación entera sino que esto corresponde al coste de la modificación.
6. Conclusiones

Como se ha podido observar, la evolución de la suspensión tanto a nivel visual como en prestaciones ha sido más que evidente. Gracias a esta evolución, tenemos una suspensión de altas prestaciones capaz de igualar a las mejores del mercado.

Empezamos desde lo más básico como fue la elección de los muelles de la suspensión hasta finalizar en lo más complejo como fue el añadir el sistema de avance de la suspensión o las diferentes regulaciones de la suspensión, teniendo en cuenta que todas estas mejoras se debían compenetrar a la perfección para el correcto funcionamiento de la suspensión.

Las dificultades más grandes que nos encontramos debido a la normativa que rige esta competición, fue el poco espacio que teníamos dentro de las botellas ya que estas no se pueden modificar. Esto marco en buena parte el devenir del proyecto ya que no se pudieron añadir todas las regulaciones deseadas a la suspensión para así poder mejorar al máximo sus prestaciones.

A continuación se pueden observar las diferencias que hay entre la suspensión con las especificaciones que entregaba la organización y la misma suspensión pero modificada.

Figura 102
Ahora tenemos una suspensión con gran capacidad de regulación y sobretodo de adaptación que dista mucho de la entregada por la organización, la cual no se puede regular de ninguna forma, ni siquiera adaptable al peso del piloto. Además, como se puede observar, la mayor parte del peso está situado en la parte inferior de la suspensión reduciendo así el centro de gravedad.

Una de las partes que más destaca del proyecto es la implantación del sistema para poder cambiar tanto la distancia entre ejes como el avance de la rueda delantera. El cual, en conjunto con todas las demás regulaciones, nos proporciona una adaptabilidad muy grande al terreno.

Se han abarcado muchos temas a lo largo de este proyecto las cuales han hecho que pueda entender desde el funcionamiento de las suspensiones, hasta el envío de estas a la fase de fabricación y montaje, pero sin duda la más extensa y complicada fue la del diseño pensando en la fabricación, debido a que no todo lo que se diseña se puede pasar a producción a causa de las imposibilidades físicas y mecánicas que pueden aparecer (tamaño de la herramienta, lugares inaccesibles...).

A continuación se observa como quedaría la suspensión:
7. Normativa

Debido a que es una suspensión destinada para una competición en concreto, la única normativa que se exige en este proyecto es la impuesta por la organización de Motostudent.

La normativa está a disposición de cualquiera en la página de la propia competición:

www.motostudent.com
8. Bibliografía

Índice planos
SP-P0001: Plano correspondiente al cartucho
SP-P0002: Plano correspondiente al vástago
SP-P0003: Plano correspondiente al pistón principal
SP-P0003c: Plano correspondiente al pistón secundario
SP-P0004: Plano correspondiente al anclaje varilla arriba
SP-P0008: Plano correspondiente al regulador de abajo
SP-P0009: Plano correspondiente a la pieza que ancla a la botella
SP-P0011: Plano correspondiente al regulador interior
SP-P0015: Plano correspondiente a la varilla
SP-P0023: Plano correspondiente a la pieza donde apoyan las arandelas
SP-P0030: Plano correspondiente a la pletina superior
SP-P0031: Plano correspondiente a la pletina inferior
SP-P0033: Plano correspondiente a la excéntrica superior
SP-P0034: Plano correspondiente a la excéntrica inferior
SP-C0001: Despiece horquilla
SP-C0004: Horquilla ensamblada con el sistema de avance