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Abstract 

 

This thesis considers new applications of non-Gaussian mixtures in the framework of statistical 

signal processing and pattern recognition. The non-Gaussian mixtures were implemented by 

mixtures of independent component analyzers (ICA). The fundamental hypothesis of ICA is that 

the observed signals can be expressed as a linear transformation of a set of hidden variables, 

usually referred to as sources, which are statistically independent. This independence allows 

factoring the original M-dimensional probability density function (PDF) of the data as a product 

of one-dimensional probability densities, greatly simplifying the modeling of the data. ICA 

mixture models (ICAMM) provide further flexibility by alleviating the independency 

requirement of ICA, thus allowing the model to obtain local projections of the data without 

compromising its generalization capabilities. Here are explored new possibilities of ICAMM for 

the purposes of estimation and classification of signals.  

 

The thesis makes several contributions to the research in non-Gaussian mixtures: (i) a method 

for maximum-likelihood estimation of missing data, based on the maximization of the PDF of 

the data given the ICAMM; (ii) a method for Bayesian estimation of missing data that 

minimizes the mean squared error and can obtain the confidence interval of the prediction; (iii) 

a generalization of the sequential dependence model for ICAMM to semi-supervised or 

supervised learning and multiple chains of dependence, thus allowing the use of multimodal 

data; and (iv) introduction of ICAMM in diverse novel applications, both for estimation and for 

classification. 

 

The developed methods were validated via an extensive number of simulations that covered 

multiple scenarios. These tested the sensitivity of the proposed methods with respect to the 

following parameters: number of values to estimate; kinds of source distributions; 

correspondence of the data with respect to the assumptions of the model; number of classes in 

the mixture model; and unsupervised, semi-supervised, and supervised learning. The 

performance of the proposed methods was evaluated using several figures of merit, and 

compared with the performance of multiple classical and state-of-the-art techniques for 

estimation and classification.  

 

Aside from the simulations, the methods were also tested on several sets of real data from 

different types: data from seismic exploration studies; ground penetrating radar surveys; and 

biomedical data. These data correspond to the following applications: reconstruction of 

damaged or missing data from ground-penetrating radar surveys of historical walls; 

reconstruction of damaged or missing data from a seismic exploration survey; reconstruction of 

artifacted or missing electroencephalographic (EEG) data; diagnosis of sleep disorders; 

modeling of the brain response during memory tasks; and exploration of EEG data from 

subjects performing a battery of neuropsychological tests. The obtained results demonstrate the 

capability of the proposed methods to work on problems with real data. Furthermore, the 

proposed methods are general-purpose and can be used in many signal processing fields.  
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Resum 

 

Aquesta tesi considera noves aplicacions de barreges no Gaussianes dins del marc de treball del 

processament estadístic de senyal i del reconeixement de patrons. Les barreges no Gaussianes 

van ser implementades mitjançant barreges d’analitzadors de components independents (ICA). 

La hipòtesi fonamental d’ICA és que els senyals observats poden ser expressats com una 

transformació lineal d’un grup de variables ocultes, comunament anomenades fonts, que són 

estadísticament independents. Aquesta independència permet factoritzar la funció de densitat de 

probabilitat (PDF) original M–dimensional de les dades com un producte de densitats de 

probabilitat unidimensionals, simplificant àmpliament la modelització de les dades. Els models 

de barreges ICA (ICAMM) aporten una major flexibilitat en alleugerar el requeriment 

d’independència d’ICA, permetent així que el model obtinga projeccions locals de les dades 

sense comprometre la seva capacitat de generalització. Ací s’exploren noves possibilitats 

d’ICAMM pels propòsits d’estimació i classificació de senyals.    

 

Aquesta tesi aporta diverses contribucions a la recerca en barreges no Gaussianes: (i) un mètode 

d’estimació de dades faltants per màxima versemblança, basat en la maximització de la PDF de 

les dades donat l’ICAMM; (ii) un mètode d’estimació Bayesiana de dades faltants que 

minimitza l’error quadràtic mitjà i pot obtenir l’interval de confiança de la predicció; (iii) una 

generalització del model de dependència seqüencial d’ICAMM per entrenament supervisat o 

semi-supervisat i múltiples cadenes de dependència, permetent així l’ús de dades multimodals; i 

(iv) introducció d’ICAMM en diverses noves aplicacions, tant per a estimació com per a 

classificació.  

 

Els mètodes desenvolupats van ser validats mitjançant una extensa quantitat de simulacions que 

cobriren múltiples situacions. Aquestes van verificar la sensibilitat dels mètodes proposats amb 

respecte als següents paràmetres: nombre de valors per estimar; mena de distribucions de les 

fonts; correspondència de les dades amb respecte a les suposicions del model; nombre de 

classes del model de barreges; i aprenentatge supervisat, semi-supervisat i no-supervisat. El 

rendiment dels mètodes proposats va ser avaluat mitjançant diverses figures de mèrit, i comparat 

amb el rendiments de múltiples tècniques clàssiques i de l’estat de l’art per a estimació i 

classificació. 

  

A banda de les simulacions, els mètodes van ser verificats també sobre diversos grups de dades 

reals de diferents tipus: dades d’estudis d’exploració sísmica; exploracions de radars de 

penetració de terra; i dades biomèdiques. Aquestes dades corresponen a les següents 

aplicacions: reconstrucció de dades danyades o faltants d’estudis d’exploracions de radar de 

penetració de terra sobre murs històrics; reconstrucció de dades danyades o faltants en un estudi 

d’exploració sísmica; reconstrucció de dades electroencefalogràfiques (EEG) artefactuades o 

faltants; diagnosi de desordres de la son; modelització de la resposta del cervell durant tasques 

de memòria; i exploració de dades EEG de subjectes realitzant una bateria de tests 

neuropsicològics. Els resultats obtinguts han demostrat la capacitat dels mètodes proposats per 

treballar en problemes amb dades reals. A més, els mètodes proposats són de propòsit general i 

poden fer-se servir en molts camps del processament de senyal.  
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Resumen 

 

Esta tesis considera nuevas aplicaciones de las mezclas no Gaussianas dentro del marco de 

trabajo del procesado estadístico de señal y del reconocimiento de patrones. Las mezclas no 

Gaussianas fueron implementadas mediante mezclas de analizadores de componentes 

independientes (ICA). La hipótesis fundamental de ICA es que las señales observadas pueden 

expresarse como una transformación lineal de un grupo de variables ocultas, normalmente 

llamadas fuentes, que son estadísticamente independientes. Esta independencia permite 

factorizar la función de densidad de probabilidad (PDF) original M–dimensional de los datos 

como un producto de densidades unidimensionales, simplificando ampliamente el modelado de 

los datos. Los modelos de mezclas ICA (ICAMM) aportan una mayor flexibilidad al relajar el 

requisito de independencia de ICA, permitiendo que el modelo obtenga proyecciones locales de 

los datos sin comprometer su capacidad de generalización. Aquí se exploran nuevas 

posibilidades de ICAMM para los propósitos de estimación y clasificación de señales. 

 

La tesis realiza varias contribuciones a la investigación en mezclas no Gaussianas: (i) un método 

de estimación de datos faltantes por máxima verosimilitud, basado en la maximización de la 

PDF de los datos dado el ICAMM; (ii) un método de estimación Bayesiana de datos faltantes 

que minimiza el error cuadrático medio y puede obtener el intervalo de confianza de la 

predicción; (iii) una generalización del modelo de dependencia secuencial de ICAMM para 

aprendizaje supervisado o semi-supervisado y múltiples cadenas de dependencia, permitiendo 

así el uso de datos multimodales; y (iv) introducción de ICAMM en varias aplicaciones 

novedosas, tanto para estimación como para clasificación. 

 

Los métodos desarrollados fueron validados mediante un número extenso de simulaciones que 

cubrieron múltiples escenarios. Éstos comprobaron la sensibilidad de los métodos propuestos 

con respecto a los siguientes parámetros: número de valores a estimar; tipo de distribuciones de 

las fuentes; correspondencia de los datos con respecto a las suposiciones del modelo; número de 

clases en el modelo de mezclas; y aprendizaje supervisado, semi-supervisado y no supervisado. 

El rendimiento de los métodos propuestos fue evaluado usando varias figuras de mérito, y 

comparado con el rendimiento de múltiples técnicas clásicas y del estado del arte para 

estimación y clasificación. 

 

Además de las simulaciones, los métodos también fueron probados sobre varios grupos de datos 

de diferente tipo: datos de estudios de exploración sísmica; exploraciones por radar de 

penetración terrestre; y datos biomédicos. Estos datos corresponden a las siguientes 

aplicaciones: reconstrucción de datos dañados o faltantes de exploraciones de radar de 

penetración terrestre de muros históricos; reconstrucción de datos dañados o faltantes de un 

estudio de exploración sísmica; reconstrucción de datos electroencefalográficos (EEG) dañados 

o artefactados; diagnóstico de desórdenes del sueño; modelado de la respuesta del cerebro 

durante tareas de memoria; y exploración de datos EEG de sujetos durante la realización de una 

batería de pruebas neuropsicológicas. Los resultados obtenidos demuestran la capacidad de los 

métodos propuestos para trabajar en problemas con datos reales. Además, los métodos 

propuestos son de propósito general y pueden utilizarse en muchos campos del procesado de 

señal. 
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 - Introduction 
 

The human brain has a well-known ability to distinguish patterns, far in advance to what 

computers can reproduce nowadays. This capability turns the perceived information from the 

senses into much more, recognizing sets of stimuli as groups (patterns) rather than isolated 

events. This feature of our brains is used almost constantly in our everyday lives for a wide 

array of tasks, most of which would be difficult (if at all possible) for any machine but trivial for 

most people. Face recognition is arguably the most common of these tasks, but there are a slew 

of everyday tasks that are known (or thought) to be performed by pattern recognition. To cite 

but an interesting example, there is “subitizing:” the fast, accurate and confident determination 

of the number of elements in any small set (up to four elements) at a faster rate than it would be 

possible by counting [133]. This phenomenon is thought to be caused by the brain recognizing 

the shape of small groups rather than counting their elements, e.g., recognizing the shape of a 

group of three people instead of actually counting that there are three people in the group.  

 

These skills are imitated in machine learning techniques, which attempt to learn general models 

from a limited set of experiences. However, computers cannot directly access the physical world 

for this kind of information. To do this learning, machine learning techniques require the 

simplification of the natural world into a set of quantified observations or data, i.e., a series of 

ones and zeros. These data are then used to fit a number of mathematical/statistical models and 

equations whose results can sometimes be interpreted in some fashion that relates back to the 

physical world. Machine learning can be used for a number of tasks, such as recovering missing 

values, classifying data, searching for interesting/hidden patterns… several of which will be 

considered in this thesis. 

 

Far less developed that our capability for pattern recognition is our ability to measure the 

passage of time, and yet, it has always been one of the main motivators behind human thought 

and philosophy. Modern society is perhaps the best example of this, with the many deadlines, 

delays, timetables and the like that preoccupy most of us. Nonetheless, time and its flow have 

always been a constant concern for people. This is superbly presented in Julio Cortazar’s short 

story, “El Perseguidor,” a passage of which we would like to quote here: 

 

- ¿Cuándo empiezas, Johnny? 

-No sé. Hoy, creo, ¿eh, Dé?  

-No, pasado mañana.  
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-Todo el mundo sabe las fechas menos yo -rezonga Johnny, tapándose hasta las orejas 

con la frazada-. Hubiera jurado que era esta noche, y que esta tarde había que ir a 

ensayar.  

-Lo mismo da -ha dicho Dédée-. La cuestión es que no tienes saxo.  

-¿Cómo lo mismo da? No es lo mismo. Pasado mañana es después de mañana, y mañana 

es mucho después de hoy. Y hoy mismo es bastante después de ahora, en que estamos 

charlando con el compañero Bruno y yo me sentiría mucho mejor si me pudiera olvidar 

del tiempo y beber alguna cosa caliente.  

-Ya va a hervir el agua, espera un poco. 

 

The consideration of time is absent from most machine learning techniques, however. This 

omission owes, for the most part, to the increased complexities in the underlying models and 

equations: most models are complex enough even after considering stationarity, i.e., that the 

properties of the data do not change over time. Adding time to the equation (pun intended) 

would make them intractable, unfeasible, or simply too computationally expensive. Still, some 

machine learning techniques do consider time dependences or effects in the data, and several of 

the methods proposed in this work consider sequential dependence. As a matter of fact, it will 

be shown that these techniques are improved by the inclusion of time dependences, thus proving 

the benefit of these considerations despite the increase in complexity. 

 

The research described in this thesis has been undertaken at the Grupo de Tratamiento de Señal 

(GTS, Signal Processing Group) of the Universitat Politècnica de València (UPV, Polytechnic 

University of Valencia). The group focuses on new theoretical analyses and novel algorithms, 

usually applied in diverse areas where processing of signals plays a fundamental role. More 

specifically, this thesis focuses in statistical signal processing methods. It is noteworthy that 

many concepts, methods and algorithms are shared by statistical signal processing and other 

related areas such as data processing, pattern recognition and machine learning. In general 

terms, statistical signal processing may be extended to the concept of computational 

intelligence. This broader scope of statistical signal processing is usually applied throughout this 

thesis. 

 

Statistical signal processing has been traditionally divided into three different topics: estimation, 

detection and classification. Nevertheless, the optimum design of estimators, detectors or 

classifiers shares the need (in an explicit or implicit manner) of multidimensional probability 

densities (MPD) in the observation space. Thus, the essential problem in optimum statistical 

signal processing is ultimately that of modeling/computing MPD. Classical parametric and non-

parametric methods for modeling/computing MPD have evolved towards two types of 

approaches. The first one considers that the MPD is a mixture of some simpler MPD [85]; the 

most representative example of this approach is Gaussian mixture models (GMM). The other 

approach is based on separating the dependence model from the marginal model. One instance 

of this is Copula methods [203], which consider the MPD as the product of a number of 

unidimensional probability densities (UPDs) of every observed vector component (i.e., as if 

they were statistically independent) times a factor measuring the possible dependence between 

the observed variables. Independent component analysis (ICA) [115] is another significant 

example of this second kind of approach. In ICA, some independent variables (sources) having 

arbitrary UPDs are assumed to be linearly combined by a parametric dependence model to 

conform the observed variables. This thesis concentrates in a combination of the two kinds of 

approaches, termed ICA mixture models (ICAMM).  In ICAMM, the MPD is considered to be a 

mixture of simpler MPD, each modeled with a separate ICA. This approach can be considered 

an extension of GMM to the general case of non-Gaussian mixture models (NGMM) as ICA 

may incorporate an arbitrary class of MPD for every component of the mixture. ICAMM 

affords a large versatility to model almost any kind of MPD and it is particularly suited to 

scenarios with very irregular and complicated dependences in the observation space. 
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Relevant previous research on ICAMM has been done in the GTS. For example, a general 

procedure that encompasses many different options and variations for estimating the model has 

been proposed [231]. This procedure has been applied to different real problems of interest for 

the GTS. An extension of ICAMM named SICAMM [230] has also been proposed to 

incorporate time dependences in the model through a matrix of transition probabilities between 

classes in a hidden Markov model (HMM), where ICAMM was the underlying probabilistic 

model for the observed data. In spite of the work that has already been done, there remain many 

options for further development of ICAMM in order to exploit its powerful capability to model 

complex MPDs. In this thesis, two lines of new research on ICAMM have been considered, as 

explained below. 

 

ICAMM has been applied mostly to detection and classification problems. In detection, 

ICAMM exploits the implicit ICA for every mixture component to transform the original 

domain of dependent observations to the source domain of independent components, thus 

simplifying the design of the subsequent detector [178]. On the other hand, a classification 

problem is a natural framework for ICAMM, as every mixture component can be associated to a 

corresponding class. In fact, most of the interest on ICAMM emanates from the classification 

area [153]. To the best of our knowledge, however, there is no work so far on the application of 

ICAMM to estimation problems. Hence, one of the foci of this thesis is the use of ICAMM for 

the derivation of optimum estimators. To be more specific, it will be considered for the problem 

of prediction/interpolation of signals, which (together with optimum filtering) is the most 

relevant problem of signal estimation. Maximum-likelihood (ML) and least-mean-squared-error 

(LMSE) optimum predictors will be obtained under the assumption of ICAMM for the 

underlying MPD in the observation space. The analytical derivations of these predictors, 

including iterative algorithms for the resulting non-linear equations and/or the maximization of 

the corresponding cost functions, are given in the thesis. These new predictors are compared 

with classical solutions on simulated and real data. Regarding the latter, the recovering of 

missing signals is considered in three different applications: (i) ground penetrating radar (GPR) 

non-destructive evaluation of historical walls; (ii) reconstruction of seismic traces; and (iii) 

recovering of missing EEG data. These applications come from a number of collaborations of 

the GTS with the Instituto de Tecnologías de la Construcción (Valencia, Spain), ECOPETROL 

(Colombia) and the Hospital Universitari i Politècnic La Fe (Valencia, Spain), respectively. 

 

SICAMM was a first attempt to incorporate time dependences in ICAMM. However, it requires 

previous knowledge of the transition probabilities, so that only the ICAMM parameters are 

estimated. In this thesis, we will develop new algorithms for simultaneous estimation of the 

transition probabilities and the ICAMM parameters. Moreover, several HMM can be connected 

in parallel, every one corresponding to a different coordinate in an additional domain (e.g., the 

space domain). This thesis will also consider this general structure of multiple chained hidden 

Markov models (CHMM) and develop new algorithms for simultaneous estimation of the 

transition probabilities and the ICAMM parameters. The new developments will be compared 

with equivalent existing procedures and applied to the processing of electroencephalographic 

signals (EEG) to monitor the dynamics of the brain under specific tasks, which is part of 

different collaborative projects between the GTS and the La Fe hospital. 

 

In conclusion, the thesis continues the intensive research of the GTS in ICAMM. Two new 

theoretic/algorithmic contributions are given: (i) application of ICAMM to prediction and 

interpolation problems; and (ii) extension to dynamic classifiers which incorporate time and 

space dependences in the class domain. The connection between both contributions is possible 

in a scenario where part of the signal information is missing and must be recovered in order to 

improve the feature extraction step in a possible classifier to be implemented.  

 

Not less relevant is the application of the new methods on data coming from several areas, 

which involve multiple types of signals: ground-penetrating radar (reconstruction of missing 

traces in GPR B-Scans or radargrams); seismic data exploration (reconstruction of missing data 
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in seismic radargrams); and electroencephalographic data (reconstruction of missing or 

artifacted EEG data; automatic detection of microarousals during sleep; exploration of data from 

subjects performing a memory task; automatic classification of data from subjects performing 

neuropsychological tests and data exploration). These are very diverse signals, with ample 

differences in features such as: their frequency distributions, ranging from a few Hertz to the 

VHF band; the nature of the captured signal, be it incident EM radiation, sonic vibrations, or 

small electric currents; and the medium under test, which can be historical walls, underground 

materials, or the human brain. The successful application of the proposed methods on these data 

demonstrates their general aptness for most real-world problems. 

 

1.1. Review of methods 
 

The thesis explores the possibilities of non-Gaussian mixtures by way of mixtures of 

independent component analyzers. This exploration will revolve around two problems: data 

estimation and classification. We develop several theoretical concepts that require a basic 

working knowledge of Calculus and Statistics. To make the thesis more accessible to the reader, 

this section includes a brief review on several concepts that are of importance for the methods 

presented in later chapters. 

 
1.1.1. Estimation 
 

Estimation theory is concerned with the determination of the value of a vector of unknown 

parameters from related observations [266]. For instance, given some noisy observations 

generated by a model from a known family of models, but whose parameters are actually 

unknown, one might be interested in estimating the parameters of the underlying model, or 

recovering the clean observations without noise. The estimation problem is summarized in 

Figure 1.1, where it is assumed that we want to estimate some parameter   from an observation 

vector, x. The parameter space, which can be deterministic or stochastic, cannot be directly 

accessed or measured. Instead, only the observation space can be measured to obtain stochastic 

observations, x, that are assumed to have some sort of dependence on the unknown parameter, 

 . This dependence is usually modeled through a probability density function  ,p x , but it 

can be expressed as a deterministic equation (with noise) in some cases. Estimation consists in 

obtaining estimates of   from the observations  x , thus creating a mapping from the 

observation space to the estimation space,   ˆ f  x . If the estimation were perfect, the 

estimation space would overlap with the parameter space. In practice, however, there is a 

difference between the estimate, ̂ , and the true value,  . Estimation methods optimize some 

kind of error or cost function to minimize this difference and obtain the “best” estimate (in the 

sense of the optimized function). 

 

 
Figure 1.1. Diagram explaining the estimation problem. 
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Estimation theory [266] gives us well-known optimization criteria and their corresponding 

solutions. The two criteria that have been most commonly considered in practice are the 

maximum a posteriori criterion and the Bayesian least mean squared error criterion. Both 

criteria are considered in Chapter 3 (for data estimation) and Chapter 4 (for estimation of model 

parameters) of this thesis.  

 

1.1.1.a. Maximum a posteriori estimation 

 

Let us assume that the parameter to estimate,  , is a random value with known probability 

density  p  . Intuitively, one possible way to estimate   is searching for the most probable 

value given the information we already have, i.e., observation vector x. This is known as 

maximum a posteriori (MAP) estimation. More formally, MAP estimation consists in seeking 

the value ̂  that maximizes the posterior probability of the parameter with respect to the 

observation,    ˆ a rg m ax |
M A P

p



 x x . In practice, however,  |p  x  is unknown and 

difficult to estimate. Since the observation vector is fixed and does not change during the 

maximization procedure,  arg m ax |p



 x  and    arg m ax |p p



 x x  are equivalent. 

Therefore, by using the Bayes rule several times:  

 

 

       

     

ˆ a rg m a x | a rg m a x |

a rg m a x | a rg m a x ,

M A P
p p p

p p p

 

 

  

  

   

  

x x x x

x x
 (1.1) 

 

Thus, maximizing      , |p p p   x x  is equivalent to maximizing the posterior 

probability. The conditional density  |p x , also known as the likelihood, indicates the prior 

conditional probability that the observation x was generated, given the (unknown) parameter  .  

The likelihood is usually easier to obtain than the posterior probability, and is therefore more 

commonly used for MAP estimation.  

 

If we assume that   is deterministic or is uniformly distributed,  p   does not affect the 

maximization procedure and (1.1) becomes the maximum likelihood (ML) criterion: 

 

        ˆ arg m ax | arg m ax |
M L

p p p

 

     x x x  (1.2) 

 

Figure 1.2 shows a toy example that displays the difference between MAP and ML estimation. 

The joint density is shown as a series of lines of equal density, with lines of higher densities 

being more yellow. The solution to the MAP criterion, denoted by the the dashed lines, is the 

maximum of the joint density  ,p x , as indicated by (1.1). The lines have been extended to 

the side plots for comparison. Note that this maximum returns two solutions, the optimum 

values of x  and  . Conversely, the solution to the ML criterion, denoted by the red square, is 

the maximum of the likelihood function. The solutions for x  and   are not linked. 

Furthermore, note that the ML solution for x  is different from the MAP solution. Should the 

parameter,  , be uniformly distributed, both solutions would be identical.  
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Figure 1.2. Comparison of the joint density of one-dimensional observations, x, with respect to a parameter α. The 

concentrical ovals denote points of equal density, with higher PDF being more yellow. The plots on the side of the 

joint density show the PDF of α and the likelihood of x for the most common value of α. Note that the maximum of 

the joint density (denoted by the two dashed lines) yields a different solution than the maximum of the likelihood 

function (denoted by the red square), particularly for x. 

 

The MAP and ML criteria involve seeking the global maximum in a multidimensional function, 

which can only be done by means of iterative algorithms like gradient methods. Hence, 

problems of initialization and convergence to local maxima typically emerge in these solutions. 

This has been considered in the applications of the ML criterion in this thesis in Chapter 3 and 

Chapter 4. 

 

1.1.1.b. Bayesian LMSE estimation 

 

Another way to estimate the unknown parameter is by minimizing the “distance” between its 

true value and the estimated value  ̂ x , as defined by an cost (or cost) function   ˆ,   x . 

Since   and  ̂ x  are usually random variables, this error function is a random variable as 

well. The Bayesian estimator is defined as the estimator that minimizes the average error 

function of the estimate,   ˆ,E    
 

x . More explicitly, this average error function is: 

 

 
       

      

ˆ ˆ, , ,

ˆ, |

E p d d

p p d d

       

    

      
 

    





x x x x

x x x x

 (1.3) 

 

The minimum average error can be obtained by setting the derivative of (1.3) to zero: 

 

 

    

      

ˆ0 , ,
ˆ

ˆ, |
ˆ

d
p d d

d

d
p d p d

d

    


    


    

 
    

 
 



 

x x x

x x x x

 (1.4.a) 

     ˆ0 , |
ˆ

d
p d

d
    


   x x  (1.4.b) 

 

The solution to (1.4.b) depends on the shape of the error function,    . In least mean squared 

error estimation, the error function is set to the squared error:      
2

ˆ ˆ,     x x . 

Substituting this error function in (1.4.b) results in 
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Likelihood, p(x|)
 

 

Joint density p(,x)

ML estimation

MAP estimation



x
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         

          

   

2

ˆ ˆ0 , | |
ˆ ˆ

ˆ ˆ2 | 2 | 2 |

ˆ2 | 2

d d
p d p d

d d

p d p d p d

p d

        
 

         

   

       

          

   

 

  



x x x x

x x x x x

x x

 (1.5) 

 

      ˆ | |p d E       x x x  (1.6) 

 

Thus, the solution to the LMSE criterion is the conditional expectation of the unknown 

parameter with respect to the observation x.  

 

In practice, the expectation cannot be formulated in closed form in most cases. Without a closed 

form for  |E  x , the only way to solve (1.6) is through numerical methods such as Monte 

Carlo numerical integration. In some cases, a solution can be obtained by finding a non-linear 

function that can reasonably approximate the expectation. The simplest form of LMSE 

estimation, however, is to assume that a linear approximation is sufficient, thus reaching the 

solution of the linear LMSE (LLMSE) criterion. The advantage of the LLMSE criterion is that 

the linear operator can be obtained by solving a system of linear equations (the Wiener-Hopf 

equations [236]). Moreover, only second-order statistics are necessary to define this system. 

When the model cannot be simplified by a linear approximation, however, the solution to the 

LLMSE criterion is no longer optimal. This is demonstrated in Chapter 3 and Chapter 5, where 

we compared our proposed ML and LMSE estimators with (among other methods) a classical 

LLMSE estimator, Ordinary Kriging. The comparison is performed on sets of simulated 

(Chapter 3) and real (Chapter 5) data. 

 
1.1.2. Probability density estimation 
 

The probability density is one of the main concepts in statistics. The probability density function 

(PDF) p of a random variable x at value a, also written as  x
p x a  or  x

p a , is defined as the 

likelihood that the random value takes the value a during any given realization. The PDF allows 

to determine the probability of any realization of x falling within the interval [a, b]: 

 

    

b

x

a

P a x b p x d x     (1.7) 

 

In practice, however, the probability density of the data is unknown. More typically, we have a 

limited set of samples from some unknown density that we want to know. This is known as 

probability density estimation. There are two main approaches to density estimation, parametric 

estimation and non-parametric estimation. In parametric estimation, it is assumed that the data, 

x, are drawn from a given density distribution or family of distributions (e.g., Gaussian or 

Laplacian). The data are then used to estimate the parameters of the assumed distribution, e.g., 

the mean and standard deviation of the Gaussian distribution, or the mean and scale parameter 

of the Laplacian distribution. Non-parametric estimation, on the other hand, assumes no explicit 

distribution; only that the data follow some probability density function p . The data are used to 

“build” a general probability density that can have almost any shape. There are many methods 

for non-parametric density estimation, such as: histograms; naive estimator; nearest neighbors; 

variable kernel; orthogonal series; maximum penalized likelihood; general weight function; and 

bounded domains and directional data [75,244]. In this thesis, non-parametric kernel density 

estimation (KDE) will be used. Thus, a brief review on KDE is included in this section. 
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In kernel density estimation, the underlying probability density p of the data is estimated by the 

application of a kernel function to smooth the known samples. The KDE of the density at any 

given sample x is 

 

  
1

1
ˆ |

N

n

n

x x
p x h K

N h h

 
  

  
  (1.8) 

 

where K is the kernel function; h is the smoothing parameter, window size or “bandwidth;” and 

n
x , 1, ...,n N  are the available samples. The kernel must be a non-negative function that 

integrates to one,   1K x d x




  , and has mean zero. There is a number of functions that are 

commonly used as kernels, such as uniform, triangular, Epanechnikov, and normal kernels (see 

Table 1.1). The selection of one particular kernel or another has been found to barely affect the 

performance of the estimator. However, the estimated density p̂ will inherit the continuity and 

differentiability properties of this kernel (e.g., infinitely differentiable for normal kernels). 

Therefore, the selection of the kernel is usually based on the desired properties and 

computational cost of the estimation, rather than performance consideration. The normal kernel 

is most commonly used, owing to its rather convenient mathematical properties.  

 

Contrary to kernel selection, the selection of the bandwidth does affect the performance of the 

kernel estimator. Intuitively, one might attempt to use a small a bandwidth as possible in order 

to improve the resolution of the density estimation. In practice, however, the bandwidth is a 

compromise between precision and estimator variance. As illustrated in Figure 1.3, overly small 

bandwidths will under-smooth the data, thus obtaining a “spiky” density that might contain 

spurious artifacts. Conversely, overly large bandwidths will over-smooth the data and result in a 

density that changes too slowly to fit the data. There are many techniques for bandwidth 

estimation, such as subjective choice, cross-validation, or the test graph method [244]. If the 

shape of the underlying distribution p is known and the kernel function is set, the bandwidth can 

be calculated directly to minimize some value, e.g., the average error. For instance, the optimal 

bandwidth (least average squared error) to estimate a Gaussian distribution using the normal 

kernel is  
1 / 5

5
ˆ4 3

o p t
h N , where ̂  is the standard deviation of the samples. 

 

Kernel name Kernel function K(x) Representation 

Uniform 1/2 if -1≤ x ≤ 1, 0 otherwise 

 

Triangular 1-|x| if -1≤ x ≤ 1, 0 otherwise 

 

Epanechnikov 
 

2
0 .7 5 1 x   if -1≤ x ≤ 1,  

0 otherwise 

 

Normal    
1 / 2 2

2 ex p / 2x


   

 
Table 1.1. Typical kernel functions used for kernel density estimation. 
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Figure 1.3. Illustrative example of the effect of bandwidth selection on kernel density estimation. 

 

Throughout this thesis, source densities have been modeled with non-parametric density 

estimation. More specifically, we have considered KDE estimation with normal kernels, and the 

bandwidth was always set to the optimal value for Gaussian data shown above.  

 
1.1.3. Statistical classification 
 

Pattern recognition is a branch of machine learning that has accepted multiple definitions over 

time [267]. In this thesis, we will assume a common accepted explanation of pattern recognition 

as a search for structure in data [25]. We are concerned in particular with one of the most 

common tasks in pattern recognition, the identification of a set of categories to which the data 

belong. The meaning of these categories -also known as sub-populations or classes) is 

dependent on the application, e.g., different approaches to e-learning, the diagnosis of a given 

disease, or the identity of a subject for access control purposes. There are four main approaches 

to pattern recognition: (i) template matching, (ii) statistical classification, (iii) syntactic or 

structural matching, and (iv) neural networks [118]. This thesis considers the second approach, 

statistical classification, in Chapter 4 and Chapter 6. 

 

Statistical classification procedures typically include the following stages: (i) data pre-

processing, (ii) mapping to the feature space, (iii) model learning, and (iv) decision making. The 

data pre-processing step de-noises the input data and improves their representation 

(normalization, de-trending…). These cleaned data are usually projected on a D-dimensional 

feature space defined by a number of “features,” i.e., transforms of the data. The point of this 

representation is choosing a set of features that enhances the effectiveness of the classification. 

The model learning stage stablishes a set of decision boundaries (or regions) in the feature space 

that divide the data into classes. These boundaries are used for decision making purposes, 

classifying new data into the classes considered in the previous stages. This process is illustrated 

on a set of sample data in Figure 1.4. The pre-processing and feature extraction stages are 

identical for both sets of data, and the model learning stage determines the boundaries and 

methods that will be used during the decision making stage. An algorithm that implements this 

process is usually known as a “classifier.” Some classifiers, however, only consider the last two 

stages (model learning and decision making). Another way to define a classifier is as a mapping 

from the observation/feature space to categories. 

 

The feature extraction stage is expected to provide an adequate set of features for the following 

stages. The selection of the best set of features, which is known as feature selection, is a 

classical problem in pattern recognition. There have been many methods proposed to solve this 

problem, such as heuristic selection, information gain, and weight-based methods [106]. If the 
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number of selected features (D) is large, the feature extraction stage is usually completed by a 

dimensionality-reduction method that alleviates the cost and complexity of the subsequent 

stages of the classifier. Many methods have been proposed for dimensionality reduction, 

although the most commonly used is principal component analysis (PCA, [124]). 

 

The model learning stage estimates the boundaries between classes in the feature space, which 

are then used in the decision making stage to classify new data (i.e., assign each input 

observation to one of the classes). In this regard, classification can be thought of as an 

estimation problem (see Section 1.1.1): the parameters of the method or boundaries are 

estimated during the model learning stage, and the class of each new observation is estimated as 

well during decision making. 

 

In statistical classification, the decision making process can be summarized as follows. A given 

observation y can be assigned to one of K classes 
1
, ...,

K
C C  depending on the D feature values, 

grouped in feature vector  1
, ...,

T

D
f ff . The features are assumed to have a conditional 

probability density with respect to the classes,  |
k

p Cf , 1, ...,k K . Therefore, each feature 

vector is treated as a realization of one of these conditional densities. Given these conditions, 

there are several possible decision rules to define the boundaries. Let us consider the Bayes 

decision rule, since it is the rule that will be considered in this work. The “optimal” Bayes 

decision rule for minimizing the conditional risk R can be stated as 

 

      
1

| , |

K

k k j j

j

R C L C C P C



 f f  (1.9) 

where  ,
i j

L C C  is the loss function associated with misclassifying an observation from class 

j
C  as pertaining to class 

i
C , and  |

k
P C f  is the posterior probability of class 

k
C . If L is 

replaced by the 0/1 loss function (i.e.,  , 1
i j

L C C   if i j , 0 otherwise), then the Bayes 

decision rule is simplified to selecting the class with highest posterior probability. 

 

There have been multiples approaches to designing classifiers, depending on issues such as: (i) 

the knowledge of the posterior probabilities; (ii) the amount of labeled data; and (iii) if 

 |
k

P C f  are unknown, the type of estimation of the densities. Figure 1.5 shows a classical 

classification of the most common approaches to statistical classification. The boxes shadowed 

in green indicate the approaches considered in Chapter 4 and Chapter 6 of this work. 

 

 
Figure 1.4. Statistical classification process. 
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Figure 1.5. Approaches to statistical classification. Shadowed boxes indicate the approaches considered in this work. 

 

1.1.3.a. Semi-supervised learning and classification 

 

Traditionally, the statistical classification methods that assume no knowledge about the 

posterior probabilities have considered two types of learning: supervised or unsupervised. 

 

Supervised learning assumes that all the observations used for model learning are labeled, i.e., 

we know to which class or category they belong. More formally, supervised learning assumes 

that there are N independent and identically distributed (i.i.d.) observations 
1
, ...,

N
x x , each one 

with their corresponding label 
1
, ...,

N
y y . Within the context of statistical classification, the goal 

of supervised learning is estimating the posterior probabilities  |
k

P C f  from the data, in order 

to solve (1.9). The knowledge of the labels simplifies the process, since a mapping can be 

evaluated through its predictive performance. In some applications, however, reliable data 

labeling is a costly and difficult task.  

 

Unsupervised learning, on the other hand, determines decision boundaries based on unlabeled 

data. This is a much more difficult problem than supervised learning, however, since the data 

can reveal classes with different shapes and sizes, whose separation might not be trivial. 

Furthermore, the lack of labels means that there is no risk or error function that can be 

optimized for classification. In unsupervised learning, the estimated labels are used for 

modeling purposes (e.g., the hidden states of a hidden Markov model), rather than for any 

purpose that is observable in reality [50]. This makes it more similar to density estimation 

problems than to classification [126]. 

 

Semi-supervised learning (SSL) falls between supervised and unsupervised learning. As with 

supervised learning, it is assumed that there are N i.i.d. observations 
1
, ...,

n
x x , each one with 

their corresponding label 
1
, ...,

N
y y . However, SSL also assumes that there are 

u
N  observations 

1
, . . . ,

u
N N N 

x x  whose labels are unknown. In order to use the information from unlabeled 

observations (i.e., generalize the information gained from labeled observations onto unlabeled 

ones), there must be some structure or smoothness to the data. If that is not the case, the 

performance of the classifier might degrade because of the unlabeled data. There are three main 

approaches to the structure assumption: (i) assume that if two points in a high-density region are 

close, so will their labels (smoothness assumption); (ii) assume that points tend to aggregate in 

clusters in such a way that points of the same cluster tend to be of the same class (cluster 
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assumption); and (iii) assume that the high-dimensional data lie on a lower-dimensional 

manifold, thus avoiding the curse of dimensionality that plagues many statistical estimation 

tasks (manifold assumption). These assumptions are rarely explicitly stated by SSL methods, 

and instead, they are usually implicit assumptions or consequences of the particular algorithm. 

 

SSL methods can roughly be classified in four classes, depending on which assumptions they 

take: (i) generative models, which use the unlabeled observations as additional information for 

the marginal density of the observations (e.g., the EM algorithm); (ii) low-density separation 

methods, which “push” the decision boundaries away from unlabeled observations, thus 

considering the smoothness assumption or the clustering assumption (e.g., transductive SVM); 

(iii) graph-based methods, which employ the manifold assumption (e.g., mincut); and (iv) 

change of representation methods, which perform two-step learning (unsupervised with all 

observations, then supervised with only the labeled observations) in an application of the 

smoothness assumption (e.g., graph kernel by spectral transforms). 

 

SSL is most useful in applications where there are far more unlabeled than labeled data. This is 

likely to occur if taking an observation is cheap, but labeling it costs a lot of time, effort, or 

money. There are many recent applications that follow this pattern, such as text on websites, 

speech samples, or protein sequences [290]. In this work, we apply semi-supervised learning on 

simulated data (Chapter 4) and on several sets of biomedical data (Chapter 6). 

 
1.1.4. Non-linear dynamic modeling 
 

Dynamic modeling is based on the assumption that there are hidden (stochastic) states that 

control the generating process behind the data that correspond to a non-stationary model. The 

states of the model could be continuous, as in Kalman filters, or discrete, as in hidden Markov 

models. We will center on the latter type, since the contributions in this work consider discrete 

states. Figure 1.6 shows a general dynamic model with discrete states, considering observations 

xt and (hidden) states yt. Such a system is characterized by the probabilities of emission of each 

observation,  |
t t

p yx , and the probabilities of transition between states,  1
|

t t
p y y


. This 

model could be considered a generalization of a mixture model where the classes are related to 

each other by some non-stationary process instead of being independent. 

 

The dynamic model can be used to predict the future state of the process by estimating the 

probability density of the next state, 
1t

y


, with respect to the t previous states and their 

corresponding observations  1: 1
, . . . ,

t t
X x x . Assuming that the model has the Markov property 

    1 1 1 1
| , , ..., |

t t t t t
P y y y y P y y

  
 , then: 

 

      1 1: 1 1:
| | |

t

t t t t t t

y

P y P y y p y
 

 X X  (1.10) 

Due to the Markov assumption, each state depends only on the immediately previous state. 

Therefore, the probability of future observations is 

 

 
Figure 1.6. A basic dynamic model that relates hidden states, yt, with observation vectors, xt.  
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      
1

1 1: 1 1 1 1:
, . . . , | , . . . , | |

t

t t k t t t k t t t

y

P p y P y



     
 x x X x x X  (1.11) 

 

for any k > 0. Thus, calculating the probability of the observations at times t + 1 through t + k 

does not require knowledge of the previous observations 
1:t

X , but only of the state of the system 

at time t. In order to incorporate higher order dependences, a representation of the form 

 1
, , ...,

T

t t t t k
y y y

 
Y  can be considered. This expanded representation is considered throughout 

Chapter 4 of this thesis, where we consider the dependences between multiple Markov chains. 

 

The dynamics of the system (transition probabilities and probability densities of the 

observations) can be used to implement linear or non-linear models. Linear models can be 

estimated using techniques such as expectation maximization (EM). In particular, HMM are 

most commonly estimated using the Baum-Welch algorithm [17], a particular implementation 

of the EM algorithm for hidden Markov models. The Baum-Welch algorithm uses dynamic 

programming to estimate the dynamics of the system in a fast manner. Nevertheless, system 

dynamics cannot be approximated linearly in many real problems, thus motivating the inclusion 

of non-linearities. There have been a number of approaches to non-linear dynamic models: 

using probabilistic priors plus parametric models [207]; particle filtering using a finite number 

of samples to represent the posterior distribution that are updated with new observation arrivals 

[37]; and approximating the posterior  1:
|

t t
P y X  by means of a mixture of distributions such 

as mixture of Gaussians (MoG, also known as GMM) [53]. Recent works by the GTS have 

proposed the use of non-Gaussian mixture models, using ICAMM in order to model the non-

linear part of the system dynamics [230]. Chapter 4 introduces a non-Gaussian mixture model 

that is extended to consider multiple chains of dependence. 

 

There is an extensive range of applications for hidden state-based dynamic models. The 

objective is to exploit the sequential dependence of the data, which is inherent in many real-

world problems, in a scheme of sequential pattern recognition. Some of the applications of 

HMM (the most common dynamic model) are the following: speech recognition [174], video 

event classification and image segmentation [166], people recognition [167], and human motion 

for robotics [145]. Of particular relevance is the application of HMM in event-related dynamics 

of brain oscillations [183] and, in general, in causality analysis of physiological phenomena. 

One example of these analyses is sleep staging, which is approached using radial basis function 

(RBF) networks and HMM for the classification of EEG recordings measured during afternoon 

naps in [139]. In Chapter 6, we address the sleep staging problem focusing on the analysis of 

arousal provoked by apnea. 

 

1.2. Scope 
 

The scope of this work is the exploration of new possibilities of non-Gaussian mixtures. Thus, 

new algorithms based on these mixtures will be designed for data estimation, feature extraction, 

semi-supervised or unsupervised learning, and sequential dynamic modeling. The interpolation 

algorithms will consider the use of non-Gaussian mixtures for the interpolation itself, unlike 

other works where it was used as a pre-processing step. Two criterions will be considered for 

this estimation: maximum likelihood and least mean square error. The modeling algorithms will 

consider sequential dynamic modeling, which can in turn be used for unsupervised (or semi-

supervised) learning and feature extraction. The proposed methods will expand on previous 

works and obtain general methods that combine several synchronized sets of data. The resulting 

methods will be thoroughly explained using appropriate and demonstrative examples. Results 

come from a large number of sets of synthetic and real data. Quantifiable evaluation will be 

obtained for synthetic data where the underlying patterns and distributions are known. 
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In addition to its theoretical developments, this works intends to demonstrate the suitability of 

the developed algorithms for real-world problems. The research carried out in this thesis is 

framed within the following projects of the Grupo de Tratamiento de Señal of the Universitat 

Politècnica de València:  

 “Técnicas Avanzadas de Procesado de Señales EEG para el Estudio de Estructuras de 

Conectividad Cerebral,” supported by Generalitat Valenciana (Regional 

Administration) under grant GV/2014/034. 

 “Clasificación de Señales Multimodales: Algoritmos y Aplicaciones,” supported by 

Universitat Politècnica de València under grant SP20120646. 

 “Algoritmos para el Análisis de Modalidad de Señal: Aplicación en el Procesado 

Avanzado de Señales Acústicas,” supported by the Spanish Administration under grant 

TEC2011-23403. 

 “Procesador No-Lineal de Mezclas con Aplicación de Detección, Clasificación, Filtrado 

y Predicción,” supported by the Spanish Administration under grant TEC2008-02975. 

  “Muros: Desarrollo de Metodologías No Destructivas de Aplicación a Muros 

Históricos,” supported by IMPIVA and Universitat Politècnica de València under grant 

IMIDIN/2008/7.  

 

The aforementioned projects were concerned with developing software and applications for the 

purposes of: (i) brain analysis and diagnosis on neurology patients; and (ii) characterization of 

historical walls. In the first group, the non-Gaussian mixture techniques are used to detect 

changes in the electroencephalographic signal captured during a battery of neuropsychological 

tests. This system might be used to perform automatic diagnosis and evaluation of the subject’s 

mental proficiency. In the second group of projects, the non-Gaussian mixtures are used to 

reconstruct damaged data or estimate data at uncaptured positions, thus increasing the 

capabilities of subsequent methods. Missing data is an important problem in several non-

destructive testing applications (e.g., in GPR [43]), and these techniques could help to improve 

data. 

 

1.3. Contributions 
 

This thesis makes a number of contributions to the research in non-Gaussian mixtures. The three 

main contributions are: two novel methods for data estimation based on ICA mixture models; 

the introduction of a generalized model for sequential dependence in ICA mixture models; and 

the introduction of ICA and ICA mixture models in diverse novel applications. These 

applications are: reconstruction of damaged or missing ground-penetrating radar, reconstruction 

of damaged or missing seismic data, reconstruction of artifacted or missing EEG data, diagnosis 

of sleep disorders, and modeling of brain response during memory tasks. This work has inspired 

several publications, including conference and journal papers and a book chapter (see the 

publication list at the end of the thesis). 

 
1.3.1. Interpolation based on ICA and ICA mixture models 
 

Two novel methods based on ICA mixture models are proposed for the interpolation of missing 

values in the observation record. Although ICA has been used for data interpolation 

applications, it has been limited to the pre-processing stages of the interpolation process, to the 

best of our knowledge (e.g., [164]). The methods proposed in this thesis, however, consider the 

non-Gaussian mixture model as an integral part of the interpolation algorithm. These methods 

were obtained by considering two commonly-used estimation criteria: (i) maximum likelihood; 

(ii) least mean square error. The resulting methods were respectively named PREDICAMM 

(Prediction using ICAMM) and E-ICAMM (Expectation assuming ICAMM), respectively.  

 

PREDICAMM performs estimation by maximizing the conditional likelihood of the data to be 

estimated, z, with respect to known data, y, and the model. In practice, this probability is 
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replaced by the joint likelihood,  ,p z y , which can be found from the ICAMM. The 

maximization of any of these probabilities is equivalent and leads to the same solution (as 

explained in Section 1.1.1.a). This maximization is performed using a gradient ascent method. 

The resulting interpolation is robust with respect to the number of missing data in z, although 

the initial point of the gradient must be selected carefully.  

 

The second method, E-ICAMM, estimates missing data by minimizing the mean square error of 

the interpolation. This is done by calculating the optimal solution for this case, the conditional 

expectation of unknown data with respect to known data,  E z | y . Given the ICA mixture 

model, a closed-form solution can be obtained for this conditional expectation. The method is 

relatively fast and the solution is robust with respect to the number of missing data in z. 

Furthermore, since both methods make the same assumptions and consider the same model, E-

ICAMM can be used to obtain a starting point for the gradient step in PREDICAMM. 

 
1.3.2. Sequential dynamic modeling 
 

Previous works have presented a method that extends non-Gaussian mixtures to consider 

sequential dependence, SICAMM (Sequential ICAMM, [230]). This method consists of a 

sequential Bayes processor formulated from HMM theory, in which the ICAMM parameters 

and the class transition probabilities are used for classification. This thesis extends the method 

to consider several Markov chains in a coupled Hidden Markov model, with each class 

considering a (potentially different) ICA mixture model. This allows for greater generalization 

capabilities and the possibility to process multimodal data. We have named the resulting model 

G-SICAMM (Generalized SICAMM). Furthermore, we adapt two classical HMM classification 

algorithms, Baum-Welch [17] and Viterbi [270], for use with G-SICAMM. 

 

Furthermore, this thesis presents a method for semi-supervised or unsupervised learning of the 

G-SICAMM parameters, which we have named UG-SICAMM. This allows estimating the 

model parameters using unlabeled data. Semi-supervised learning has been extensively studied 

for different classification frameworks and classical generative models such as transductive 

support vector machines, graph-based methods, hidden Markov random fields and Bayesian 

classifiers [50], and in the context of information-theoretic learning [121,77]. 

 
1.3.3. New applications of ICA and ICAMM 
 

The contributions described in Section 1.3.1 and 1.3.2 are general-purpose, and therefore, can 

be applied to a wide range of applications. The design of an accurate model to “explain” a real 

physical phenomenon is a complex work. Indeed, such a work could become the focus of a 

thesis by and of itself. With this work, however, we intended to explore the possibilities of the 

extensions of non-Gaussian mixtures in several different fields. Thus, we have applied the 

developed methods to five real-world applications. The novelty and usefulness of the explored 

applications are guaranteed since they arise from the development of research and engineering 

projects (see Section 1.2). The contributions of this thesis for these real-world problems are 

explained below. 

 

1.3.3.a. Reconstruction of data from a GPR survey of historical walls 

 

In ground-penetrating radar surveys, the GPR device emits high-frequency waves into the 

medium under test at different locations and captures the reflections produced by discontinuities 

in the material (e.g., air-to-material interfaces) [68]. The resulting data form a B-Scan or 

radargram. The problem considered is the reconstruction of missing traces from the GPR B-

Scan. Missing traces are a classical problem in GPR, and can occur for a number of reasons 

[68]. For this purpose, the B-Scan is transformed into a low-dimensional signal by pre-

processing and an ICA mixture model is obtained. Then, E-ICAMM and PREDICAMM are 
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used to reconstruct the missing data in the radargram. This contribution presents the first 

application of ICAMM to the reconstruction of GPR data. 

 

1.3.3.b. Reconstruction of seismic data from a seismic exploration survey 

 

Seismic exploration is somewhat similar to GPR exploration. A typical reflection seismology 

survey, however, has a single source event or “shot” that emits low-frequency waves. Once the 

shot is generated, the reflections are then captured at the surface by groups of receivers, 

resulting in a B-Scan or seismogram [241]. The problem considered is the reconstruction of 

missing traces from the seismogram. Missing traces are a classical problem in seismic 

exploration, chiefly due to the large distances involved and the hostile terrain [241]. For this 

purpose, the B-Scan is transformed into a low-dimensional signal by pre-processing and an ICA 

mixture model is obtained. Then, E-ICAMM and PREDICAMM are used to reconstruct the 

missing data in the seismogram. This contribution presents the first application of ICAMM to 

the reconstruction of seismic data. 

 

1.3.3.c. Reconstruction of EEG data 

 

The problem in this application is the reconstruction of missing values from EEG data from 

subjects performing the Sternberg memory task. This can be used to reconstruct missing or 

artifacted data. ICA methods have been used in many applications on EEG data, such as 

removing artifacts [127]. However, the contributions of this thesis are unique in both the use of 

an ICA mixture model and the way in which the data are recovered. Results show the potential 

of E-ICAMM and PREDICAMM for the interpolation of EEG data. Furthermore, both methods 

show a large robustness with respect to the number of missing data, and can correctly 

interpolate a large number of missing or artifacted EEG channels at once. 

 

1.3.3.d. Diagnosis of microarousals in sleeping subjects 

 

The problem in this application is the detection of microarousals that occur during sleep due to 

apneas. The data consist of processing features extracted from 8-hour EEG signals from several 

subjects to estimate a two-class (wake-sleep) hypnogram. This work was initiated in [230,225], 

but this thesis extends previous works by considering several subjects and the contributions 

considered in Section 1.3.2. Results show the potential application of G-SICAMM for the 

implementation of an automatic classifier of EEG data from sleeping subjects. A more accurate 

detection of microarousals in the hypnogram will help to the medical diagnosis of sleep 

disorders [225].  

 

1.3.3.e. Analysis of the brain memory function 

 

This application introduces the use of the sequential dependence model in G-SICAMM to 

model the dynamic behavior of EEG signals during memory tasks. Aside from the contributions 

commented in Section 1.3.3.c, G-SICAMM is used to separate the data into two states 

(stimulus-answer) during each one of a battery of neuropsychological tests. The methods are 

tested on real data from several subjects, and they are shown to differentiate well between the 

two suggested states for all tests. In addition, the parameters of G-SICAMM show activations of 

several brain regions in consistence with the expected activations due to the neuropsychological 

tests. Therefore, it is proven that the estimated G-SICAMM parameters are able to determine 

brain connectivity patterns.  
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1.4. Overview 
 

This thesis comprises seven chapters. Broadly speaking, they can be divided into introduction 

(Chapter 1), background (Chapter 2), theoretical contributions (Chapters 3 and 4), applications 

to real data (Chapters 5 and 6), and conclusions (Chapter 7). Chapter 2 deals with the theoretical 

foundations of non-Gaussian mixture processing methods. Since this work expands on the 

possible applications of these mixture models, a review of many different types of models is 

presented in this chapter. Some of the methods presented in this chapter are then compared with 

the methods proposed in this thesis. 

 

The theoretical contributions of this thesis can be split into two categories, interpolation 

algorithms (Chapter 3) and dynamic modeling methods (Chapter 4). Chapter 3 introduces two 

novel non-linear interpolation methods that are based on ICA mixture models, named 

PREDICAMM and E-ICAMM. In ICAMM, observations are partitioned into several mutually-

exclusive classes, each one modeled by a different ICA model. This underlying model is used to 

interpolate unknown (or missing) values of the observation vector from the remaining known 

values of the same vector. Each of the proposed interpolation methods approached this problem 

in a different way. PREDICAMM seeks the maximum likelihood criterion, i.e., the 

reconstruction that maximizes the conditional probability density of unknown data with respect 

to known data. E-ICAMM, on the other hand, seeks the least mean square error criterion, i.e., 

minimizing the mean squared error of the reconstruction. Both methods are tested with an 

extensive set of experiments. These experiments consider their performance on data generated 

by an ICAMM, but also the reduction or alteration in performance incurred by any alterations of 

this underlying model. Results are discussed and compared with those of other interpolation 

methods, both classical and state-of-the-art. 

 

Chapter 4 describes two new procedures for dynamic non-Gaussian modeling which are based 

on synchronized ICAMM. The starting point of this work is SICAMM, a method that 

incorporated a hidden Markov model to extend ICAMM to consider sequential dependence in 

the observations [230]. The proposed methods in this chapter extend the one Markov chain 

featured in SICAMM to a general framework to characterize the joint behavior of a number of 

synchronized dynamic models or “chains.” We have named these methods G-SICAMM and 

UG-SICAMM. The latter maximizes the log-likelihood of the model with respect to all of the 

available training data and the parameters of the model, and can work with unsupervised or 

semi-supervised data. The methods are validated using several experiments on simulated data. 

These experiments consider both stationary and dynamically-changing data, thus testing the 

limitations of the proposed methods and performing sensitivity analysis. Results are discussed 

and compared with those of a commonly-used modeling method, Bayesian networks. 

 

The methods developed in Chapters 3 and 4 are considered for real applications in Chapters 5 

and 6, respectively. Chapter 5 shows the application of E-ICAMM and PREDICAMM for 

reconstruction of three types of data. The first application is based on non-destructive testing 

signals from ground-penetrating radar experiments. These signals are usually B-Scans, so they 

are first converted to low-dimensional signals using a process common in applications of ICA to 

image processing (e.g., [111]). The performance of the proposed methods is tested on simulated 

data and on real GPR data from a survey on replicas of historical walls, and compared with that 

of Kriging, Wiener structures, and splines. The second application considers the reconstruction 

of seismic data from a reflection seismology survey. These signals are somewhat similar to 

GPR, but they are more complex because they cover a larger area and the terrain is more hostile. 

As with GPR, the signals are converted to low-dimensional signals and then used for the 

interpolation experiment. The performance of E-ICAMM and PREDICAMM is compared with 

that of Kriging, Wiener structures and splines. In the third application, the proposed methods are 

used to reconstruct missing data from an electroencephalogram, a recording of the brain 

electrical activity on the scalp. The EEG were captured from subjects that were performing the 

Sternberg memory task. The proposed methods were compared with spherical splines, a 
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commonly-used method for interpolating EEG data. In all three applications, E-ICAMM and 

PREDICAMM outperform the methods with which they are compared. Furthermore, it is shown 

that both methods are highly resistant with respect to the number of missing data, and can 

perform well even if a high number of values are missing from each observation. 

 

Chapter 6 includes three applications of the methods developed in Chapter 4 to the modeling of 

real EEG data. The first application considers the use of dynamic models for detection of 

microarousals caused by apneas during sleep. These abrupt changes are registered in a diagram 

known as “hypnogram,” which shows the different sleep stages during the night. Long EEG 

records from apnea patients are analyzed, with the intention of detecting microarousals. The 

classification obtained by the proposed methods outperforms that of dynamic Bayesian 

networks. The second application analyzes EEG data taken from subjects performing the 

Sternberg memory task. The proposed methods are used to model the transitions in the EEG 

during the stages of the experiment. Results show the sensitivity of the G-SICAMM parameters 

to the stages of the experiment, which allow for accurate detection. The third application 

considers EEG data taken from epilepsy patients during a battery of neuropsychological tests. 

The proposed methods are used to differentiate EEG taken during stimulus presentation from 

data taken during the responses of the subjects. The methods from Chapter 4 are shown to over-

perform dynamic Bayesian networks for this task. Furthermore, the G-SICAMM parameters are 

used to model the EEG and analyze the behavior of the brain during these experiments.  

  

Chapter 7 completes the thesis with the conclusions and findings, as well as discussion of the 

remaining open questions and future directions of research.  
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 - Finite mixture models with non-Gaussian components  
 

2.1. Introduction 
 

This chapter presents theoretical foundations on data modeling using finite mixture models 

(FMM) of non-Gaussian distributions. Particularly, the independent component analysis mixture 

model that is used in the developments of this work is reviewed in detail. A FMM is a convex 

combination of two or more probability density functions. Thus, the combination of the 

individual PDF properties allows for the approximation of arbitrary distributions. FMM has 

been used in many fields of statistical analysis and machine learning such as modeling, 

clustering, and classification. There exists an extensive literature of FMM and its applications 

from the first known work in modern statistical literature [184] until today [170,88,171]. The 

flexibility of using different kinds of basic PDFs makes FMM suitable for modeling the 

geometry of complex data. A mixture model is able to model quite different complex 

distributions through an appropriate choice of its components to accurately represent the local 

areas of the true distribution. It can handle situations where a single parametric family is unable 

to provide a satisfactory model for local variations in the observed data. Depending on the 

application field, the geometry of the data can be defined using one (univariate) or several 

(multivariate) random variables. 

 

Briefly, let  1
, . . . ,

L
X X X  be an L–dimensional continuous random variable and  1

, ,
T

L
x xx  

be an observation vector of X, where T means transposition. The PDF of a mixture model is 

defined by a convex combination of K component PDFs [170],  

 

    
1

|

K

k k k k

k

p p



 x | Θ x θ  (2.1) 

 

where  k
p x | Θ  is the PDF of the k -th component, 

k
  is the corresponding mixing proportion 

(or component prior), and  1 1
, ..., , , ...,

T

K K
   Θ  is the vector of set of parameters. We 

assume that 0
k

  , for  1, ...,k K , and 
1

1

K

k

k





 . By the property of convexity, given that 

each  |
k k

p x θ  defines a PDF,  |p x Θ  will also be a PDF. 
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The intuitive interpretation of mixture models is that the random variable X is produced from K 

distinct random generators. Each of these generators is modeled by the density   |
k k

p x  , and 

k
  represents the proportion of observations from this particular generator. In practice, an 

obvious application of FMM is identifying each of the components of the mixture with real 

existing groups whose corresponding data follow different distributions. Nevertheless, there are 

many examples where the components cannot be identified as above. In this situation, the 

components are introduced to allow for greater flexibility in modeling a heterogeneous 

population, in other words to model arbitrarily complex PDFs. 

 

The most popular mixture model is the one consisting of Gaussian components, GMM (see for 

instance [170]). The power of GMM to approximate different kind of data is sufficiently 

demonstrated. However, there are no statistical characteristics in GMM that allow 

differentiating one component from each other and even relating them with the observed 

phenomenon where the data come from. Considering this, we have selected ICAMM for data 

modeling [225]. There are many applications of non-Gaussian models for the univariate case, 

such as: applying parametric models such as mixture of Poisson distributions used in positron 

emission tomography [265] and document classification in information retrieval [158]; 

considering von Mises-Fisher distributions for the analysis of text and gene expressions [14]; 

handling outliers applied to measurements of geyser eruption lengths using mixtures of t -

distributions [170]; and using mixtures of truncated exponential potentials as an alternative to 

discretization and Monte Carlo methods for solving hybrid Bayesian networks [57].  

 

When X is heterogeneous across and homogeneous within the K components, i.e., X has a 

different probability distribution in each component, it can be assumed that data arise from the 

same parametric family  p x | Θ , with the parameter Θ  differing between components. 

Another potential assumption is to consider a hybrid situation where the components arise from 

different parametric distributions [88]. In addition, a parametric approach could be unable to 

model the heterogeneity of the data, and thus a nonparametric kernel estimate could be proposed 

[239]. 

 

The extension of univariate FMM to the multivariate case has to deal with two problems: (i) to 

model the relationship between the variables (dependence), and (ii) to preserve the individual 

statistical characteristics (namely, the marginal PDFs) of the components. In addition, the use of 

different kinds of basic distributions to form the components also has to be considered for total 

generalization. Figure 2.1 shows a scheme of different approaches to design multivariate non-

Gaussian mixture models. There are two main options. The first one consists of modeling each 

of the components independently using univariate non-Gaussian mixture modeling based on a 

specific kind of distribution. Thus, dependences or associations between the variables are not 

considered and the multivariate PDF will simply be the product of all the univariate PDFs, 

 

        
1 2

1 2 1 1 2 2

1 2

1 2

1 1 1

| | | |

L

L L L

L

K K K

k k k k k k k k L k

k k k

p p p p  

  

     x Θ x θ x θ x θ  (2.2)  

 

In the second option, when statistical independence cannot be assumed, there are two main 

approaches (see Figure 2.1) that generally follow a transformation   of some latent variables s 

derived from the explicit variables x, 

 

     | |p p x Θ s Θ  (2.3)  

 

The first approach is based on theory of copulas [182]. A copula is a multivariate PDF of 

uniform variables derived from the explicit variables that is used to model the dependence. 

There are many possibilities to define a multidimensional function that has the required 
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properties to be a copula. For instance, the multivariate PDF can be factorized into a copula 

function multiplied by the marginals (see Sklar's theorem [245]). The second approach assumes 

that the explicit variables are obtained by a transformation of some independent latent (hidden) 

variables. A relevant example of latent variable modeling is independent component analysis, 

which allows different kinds of distributions to be mixed in the model components. Mixtures of 

ICAs enhance the versatility of using only one ICA for multivariate non-Gaussian mixture 

modeling and will be the base for this work. In addition, there are other models that consider 

statistical dependence that are constrained to specific kinds of variables, for example FMM for 

multivariate binary and categorical data [88]. 

 

Several methods have been proposed to estimate the parameters of a FMM. They can be 

roughly organized into five classes depending on the assumptions considered: graphical 

methods, method of moments, minimum-distance methods, maximum likelihood, and Bayesian 

approaches. It is well known that explicit formulas for parameter estimation are typically not 

available. For example, there is not a closed-form expression of the maximum likelihood 

estimate of the mixing proportions and the component means and variances/covariances for 

GMM. Thus, the estimation of these parameters has to be computed iteratively; for instance, 

using the expectation-maximization algorithm [72]. 

 

Besides parameter estimation, there are several issues related with FMM that can be of much 

theoretical and practical importance, including the following: modeling of asymmetrical data; 

testing the number of components; identifiability of the mixture distributions; extending mixture 

models to the analysis of dependent data using hidden Markov models; dealing with 

incomplete-data structure of mixture problem; and semi-parametric formulation of the mixture 

model. For a comprehensive survey of the results and developments in FMM we refer the 

readers to [170,88,171] and the references therein. In this thesis, we will focus on parameter 

estimation for new ICAMM-based methods applied to the problems of prediction and dynamic 

analysis modeling. 

 

The rest of the chapter is organized as follows. Section 2.2 includes a review of some of the 

most relevant parametric univariate non-Gaussian mixtures. Section 2.3 explains the basis of the 

latent variable modeling and the different approaches employed for ICA. Section 2.4 deals with 

the principal ICAMM methods that are currently in use. Finally, Section 2.5 includes the 

conclusions of the chapter. 

 

 
Figure 2.1. Scheme of multivariate finite mixture models. 
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2.2. Univariate non-Gaussian mixtures 
 

Figure 2.2 shows some examples of univariate non-Gaussian mixtures where each mixture is 

composed by three components of the same kind of distribution. It can be seen that the mixture 

is able to suit data with different shapes of distributions than the original components. In this 

section exponentials, Poisson, binomial, and multinomial univariate mixtures are reviewed. 

 
2.2.1. Mixtures of Exponential Distributions 
 

The exponential distribution,  ~X     with 0  , is a univariate distribution defined on the 

positive real line 0x   and is mainly used as a sampling distribution in the context of finite 

mixture models. There exist different ways to parameterize this distribution, e.g., by defining 

the density as [22] 

 

  ;
x

p x e



 


   (2.4) 

      

where mean and variance are given by     1 /E X V a r X   . In this parameterization, the 

exponential distribution is equal to the Gamma distribution  ~ ,X G    with 1  , which is 

defined as  
 

1
; ,

x

G
p x x e



 
 



 



 and  E X




  ,  

2
V a r X




  for 0   and 0  .     

 

Thus, nonnegative observations can be assumed as realizations of a random variable X arising 

from a finite mixture of exponential distributions (MED): 

 

 
Figure 2.2. Examples of univariate non-Gausian mixtures. 
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    1 1
~

K K
X          (2.5) 

 

where  k
   is parameterized as (2.4). Thus, this mixture is parameterized in terms of the 

parameters 
1
, , ,

T
T

K
  

 
Θ α . 

 

The parameters of a MED can be estimated by methods such as moments, Bayesian, and 

classical tests. For instance, Bayesian estimation using data augmentation and Markov chain 

Monte Carlo methods can be easily implemented based on the prior  0 0
~ ,

k
G a b , the 

complete-data posterior  | ,
k

p  x S  ( S  is a vector with the component labels) is given by 

    | ~ ,
k k k

G a b x, S S S , where:    0k k
a a N S S , and   0

:
i

k i

i S k

b b x



  S . Several 

theoretical and application issues of mixtures of exponential distributions are currently finding 

the best bounds for mixtures of order statistics from independent heterogeneous exponential 

random variables [196]; inference about the number of components [173]; and general 

probabilistic interpretation of the exponential mixture [134]. 

 

Recently, mixtures of truncated exponentials (MTE) were introduced as a model for dealing 

with discrete and continuous variables simultaneously in Bayesian networks without imposing 

any restriction on the network topology and avoiding the rough approximations of methods 

based on the discretization of the continuous variables [148]. The MTE model is defined by its 

corresponding potential and density [148]. 

 

MTE potential: Let X be a mixed n-dimensional random vector. We say that a function 

0
: Rf


 

X
 is an MTE potential if one of two conditions holds: (i) f  can be written as 

 
( )

0

1 1

ex p

m n

j

i i j

i j

f a a b x

 

 
   

 
 x  for all  

X
x , where 

i
a , 0, ...,i m  and  j

i
b , 1, ...,j n  are 

real numbers; (ii) there is a partition 
1
, ,

k
   of 

X
 verifying that the domain of the 

continuous variables in X is divided into hypercubes and such that f is defined as 

      i f   
i i

f f  x x x . 

 

MTE density: an MTE potential f  is an MTE density if  , 1

y

f d




 
Z

Y

y z z , where Y and Z 

are the discrete and continuous coordinates of X, respectively. 

 

A practical example of application of this mixture is the assessment of groundwater quality 

through probabilistic clustering based on hybrid Bayesian networks with MTEs [3]. 

 
2.2.2. Mixtures of Poisson distributions 
 

The Poisson distribution,  ~X P   with 0  , is defined for  0 ,1, 2 , . . .x  , making it a 

standard distribution to model a random count variable. Density, mean, and variance are given 

by  ;
!

x

p x e
x







 ,    E X V a r X   . Thus, a model for describing the distribution of 

count data can be defined assuming 
1
, ,

N
x x  independent realizations of a random variable X 

from a mixture of Poisson distributions (MPD): 

 

    1 1
~

K K
X          (2.6) 
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This mixture is parameterized in terms of 2 1K   distinct model parameters 

1
, ..., ,

T
T

K
  

 
Θ α . For an MPD is easy to verify that the complete-data maximum likelihood 

estimator of 
k

  is equal to the sample mean in group k ,  ˆ
k k

x  S , under the assumption that 

the allocations (group indicators, variables that take values in the set 1, ..., K )    1
, ...,

T

N
S SS

are observed as well. The complete-data ML estimator lies in the interior of the parameter 

space, if each group is nonempty   0
k

N S   and contains at least one nonzero observation. 

Asymptotic 95% confidence intervals for 
k

  are equal to      1 .96 /
k k k

x x NS S S , where 

the expected Fischer information has been evaluated at  k k
x  S . The effective coverage 

probability may be considerable smaller, if the sample size N and the true values of 
k

  and 
k

  

are very small where asymptotic 95% confidence intervals are compared with Bayesian 

confidence intervals. Also the parameters of a MPD can be estimated by moments, data 

augmentation and Markov chain Monte Carlo, and distance-based methods.  

 

The applications of MPDs include quite different issues such as counts of fish species abundant 

in a lake [237] and representation of protein abundance levels [141].  

 
2.2.3. Mixtures of binomial distributions 
 

For binomial mixtures, the component densities arise from  ,B iN o m T   distributions, where 

T  is commonly assumed to be known, whereas the component-specific probabilities   are 

unknown and heterogeneous: 

 

    1 1
~ , ... ,

K K
X B iN o m T B iN o m T       (2.7) 

 

The density of this mixture is given by 

 

    
1

| 1

K
T xx

k k k

k

T
p x

x
  





 
  

 
Θ   (2.8) 

 

with 
1
, ..., ,

T
T

K
  
 

Θ α . Mixtures of binomial distributions (MBD) are not necessarily 

identifiable; a necessary and sufficient condition is 2 1T K  . MBD may be extended to the 

case where 
i

T  varies between the realizations 
1
, ...,

N
x x  as follows: 

 

    
1

| 1
i ii

K
T xi y

i k k k

k i

T
p x

x
  





 
  

 
Θ   (2.9) 

 

Bayesian inference for MBD is considered in [33] by applying a Metropolis-Hastings algorithm. 

Bayesian estimation using data augmentation and Markov chain Monte Carlo can be 

implemented to estimate an MBD by using the conjugate Beta prior     ~ ,
k k k

B a b S S , and 

the posterior  |
k

p  x , S  is again a Beta distribution,     | ~ ,
k k k

B a b x, S S S , where 

  0

:
i

k i

i S k

a a x



  S ,    0

:
i

k i

i S k

b b T x



  S . 

 

MBD has been applied to problems involving binary data, e.g., estimating the trend of extreme 

weather from rain data using a global climate model [38] and improving aquatic warbler 

population assessment by accounting for imperfect detection [191]. 
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2.2.4. Mixtures of multinomial distributions 
 

Consider a categorical variable of more than two categories  1, .. . , D . Let 
l

X , for 1, ..,l D , be 

the number of occurrences of category l  among T trials. If the occurrence probability 

distribution  1
, ...,

T

D
 π  of each category is homogeneous among the observed data vectors, 

then 

 

    1
, . . . , ~ ,

D
X X M u lN o m TX π   (2.10) 

 

To deal with unobserved heterogeneity in the occurrence probability of the various categories, 

 1
, . . . ,

D
X XX  can be assumed to follow a finite mixture of multinomial distributions (MMD), 

 

    1 1
~ M u lN o m , M u lN o m ,

K K
X T T  π π   (2.11) 

 

with 
,1 ,

, ...,
T

k k k D
  
 

π  being the unknown occurrence probability in group k . The density is 

given by 

 

   ,

1 11

| l

DK

x

k k l

k lD

T
p  

  

 
  

 
 x Θ   (2.12) 

 

where 
1

, ..., ,
T

T T T

K
 
 

Θ π π α  are the parameters of the mixture. 

 

Bayesian estimation of the MMD parameters can be implemented based on the Dirichlet prior 

 0 ,1 0 ,
~ , ...,

k D
D a aπ , and the posterior  |

k
p π x , S  is again a Dirichlet distribution

    0 ,1 0 ,
| ~ , ...,

k D
D a aπ x, S S S , where  , 0 ,

:
i

k l l i l

i S k

a a x



  S , 1, ...,l D . 

Some of the recent applications of MMD include the following: learning multinomial mixture 

models for text document classification based on the large margin criterion [122] and solving 

the problem of age-invariant face recognition [29]. 

 

2.3. Multivariate non-Gaussian 
 

In this section, the main definitions and applications of the copula method and latent variable 

modeling are reviewed. These techniques are flexible tools for PDF modeling. They allow both 

independence and dependence among variables to be jointly modeled for multivariate non-

Gaussian distribution mixtures. In particular, the principles of the LVM method called 

independent component analysis are explained and discussed, since they will be used to derive 

the theoretical contributions of this thesis.  

 
2.3.1. Copula functions 
 

The first reference to copula functions is included in [245] as a link between multidimensional 

PDFs and marginal PDFs. The copula represents multivariate PDFs whose univariate marginal 

PDFs are uniform in the interval [0, 1]. Copula functions can be used to describe the 

dependence between random variables, i.e., the manner in which the variables covariate. The 

marginal PDFs describe the behaviour of each of the components separately and the copula 

function describes the dependence structure among these components. Several kinds of copulas 

are defined in the literature to describe different kind of dependence [165]. The copulas have 
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been extensively used in the field of econometrics and finance (see [203] and the references 

therein), and there are also a few applications in signal processing [117,256,254]. 

 

The copula function is defined by Sklar's theorem [245] considering the following. The joint 

probability distribution  1 2
, , . . . ,

D
F x x x  of a number of random variables 

1 2
, , ...,

D
X X X  can be 

expressed from the marginal probability distributions associated to each of the random variables 

 i i
F x , 1, ...,i D , as follows: 

 

           1 2 , 1 1 2 2 1
, , , , , , , ,

D D D D
F x x x C F x F x F x C U U    (2.13)  

  

By applying the probability integral transform to each original variable, uniformly distributed 

marginals 
1
, . . . ,

D
U U  are obtained, which are random variables with components 

i
u  defined as 

 i i i
u F x , where 

i
F  is the probability distribution function of 

i
x . 

 

The function C  is termed the copula function, which is a joint PDF of uniformly distributed 

random variables in the interval [0, 1]. Thus, the copula function is defined in the unitary cube 

   : 0  1 0  1
D

C U  . The details of this theorem and the properties of copula functions can be 

found in [245,203]. 

 

If the copula function C  and the marginal distributions 
i

F  are sufficiently differentiable, the 

joint multivariate PDF can be obtained as the product of the marginals 
i

f  (independence) and 

the copula function of density c (dependence) derived from C . For continuous distributions, the 

joint PDF is obtained as 

 

               1 2 1 1 2 2 1 1 2 2

in d ep en d en ce  (m arg in a l d is trib u tio n s ) d ep en d en ce  (co p u la  fu n c tio n )

       co m p lem en ta ry  in fo rm a tio n      co m m o n  in fo rm a tio n

, , , , , ,
D D D D D

f x x x f x f x f x c F x F x F x       (2.14) 

 

where  
  1 2

1 2

, , ,

, ,

D

D

D

C u u u
c

u u u




  
u ,  i i i

u F x . The copula function of density  c  , in this 

case, is a PDF of uniformly distributed random variables. If the random variables were 

independent, the joint PDF would be the product of the marginal densities: 

   1 2

1

, , ,

D

D i iin d e p e n d e n t

i

f z z z f z



  . 

 

In order to parameterize the joint PDF defined as in (2.14), we have to find two sets of 

parameters, those related with the marginals and those related with the copula function (the 

parameters that model the dependence): 

 

           1 2 1 1 2 2 2

1

, , , | ; / , / , , / /

D

D i i i i D D D

i

f x x x f c F x F x F x



 
  
 
Θ x φ φ φ φ Λ  (2.15) 

 

Thus, the multivariate model is parameterized by the set of parameters Θ , which can be divided 

in two subsets: φ  to model the marginals and Λ  to model the structure of the dependence. 

Assuming that  
1

|
i i i i

x F u


 φ , the copula function for the multivariate model  1
, . . . , |

D
f x x Θ  

can be estimated as  
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  
    

  

1 1

1 1 1 1

1

1

1

| , , | |
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D D

i i i i i

i

f F u F u

c u u

f F u

 






 
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 


φ φ Θ

Λ

φ φ

  (2.16)  

 

Let us consider a set of random variables 
1 2
, , ,

D
X X X , with unknown joint PDF 

 1 2
, , . . . ,

D
f x x x . Since the real multivariate model expression that suits the set of variables is 

unknown, the expression for the copula density  ·c  is unknown. Let us assume that the 

marginals PDFs associated to each of the random variables are known and  1 2
, , . . . ,

D
f x x x  has 

the same properties of dependence between the random variables as another known model 

 
1 2

, , ...,
D

m m m
f x x x  whose copula density function  1

, , ,
m D m

c u u Θ  is known. Then,  ˆ ˆ|f x Θ  

is the estimate of the joint PDF using the copula density function  ·m
c  associated with another 

model  |
m m m

f x Θ , which shares the same characteristics of dependence: 

 

 
            

  

1 1 2 2 2

1

ˆ ˆ ˆ/ | ; | , | , , | | ,

ˆ ˆ, ,

D

i i i i D D D

i

m m

f f x f c F x F x F x



 
   

 

 

x Θ Θ x φ φ φ φ Λ

Θ φ Λ φ Λ

 (2.17)  

 

Figure 2.3 shows an example of a multivariate data with two dependent random variables whose 

marginals are known and different, but whose joint PDF is unknown. If we consider only the 

marginal contribution (i.e., consider that the variables are independent), the obtained PDF does 

not fit the real PDF. By using a bivariate normal, we can obtain the copula density function that 

models the linear dependence between the variables.  

    

The parameters of the multivariate copula function are usually estimated using maximum 

likelihood methods, assuming that regularity conditions of asymptotic distribution of maximum 

likelihood estimation are accomplished (both for copula and marginal densities). Examples of 

those methods are inference functions for margins (IFM) and canonical maximum likelihood 

[31]. The selection of a suitable copula density function for an application is not straightforward 

since the dependence properties of the random variables are a priori unknown. Thus, a selection 

from a set of different copula function should be done. Minimum description length (MDL) is a 

framework very employed to select the optimum copula model. The following selection criteria 

  

 
Figure 2.3. Example of PDF modeling of two random variables using copulas. 
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can be applied in MDL: Akaike information criterion (AIC), Bayesian information criterion 

(BIC), stochastic information complexity (SIC), and normalized maximum likelihood (NML). 

These criteria try to calculate a relative index that takes into account the tradeoff between model 

performance and increase of complexity. 

 

The copula function itself can be derived from known PDFs such as multivariate Gaussian, 

multivariate t -Student, and mixtures of Gaussians. These copulas are called elliptic because the 

contour curves of the random variables form ellipses representing symmetric dependence 

relations [260]. Another family of copula functions are the so-called “Archimedean” that allow 

the dependency in high variable dimension to be modeled using only one parameter. Examples 

of this family are Clayton, Frank, and Gumbel copulas [172]. All of these methods model 

specific dependency structures, expect GMM, which is able to model many structures of 

arbitrary dependency. A more general method consists of using a hierarchical procedure where 

the dependency is calculated for every pair of variables forming a copula tree that decomposes 

the multivariate PDF [18]. 

 
2.3.2. Latent variable modeling 
 

Latent variable modeling (LVM) assumes that in each group of the data the underlying discrete 

distribution depends of some covariates that can be modeled through a set of latent variables. 

These variables are random variables whose measured values are hidden. The properties of 

these unrecorded variables can be extracted from the observed variables by means of a statistical 

LVM that relates both kinds of variables. LVM has been increasingly studied and currently is a 

booming field of research both in theoretical developments and in applications. Examples of 

LVM in recent literature, to quote a few, include the following: covariate measurement error in 

nonlinear models [42]; spatial statistics [208]; learning harmonium models with infinite latent 

features using graphical undirected LVM [52]; tensor decomposition for LVM [11]; semi-

parametric and parametric LVM in the presence of measurable outcomes of mixed type 

(continuous and ordinal) in medicine [248]; error and bias estimation in sources and 

components using Monte Carlo estimators [271]; selection of latent variables for multiple 

mixed-outcome models [289]; hierarchical Bayesian models using LVM for network data [194]; 

fast algorithms for computing deviance information criterion (DIC) of high-dimensional LVM 

[46]; and extending the factor analysis from individual to groups of variables [137]. 

 

In this section, the main foundations of LVM are reviewed, but comprehensive literature can be 

found in [27,246,243,28] and the references within. In general, LVM can be defined as a 

generalized regression function that can be written as     f E gX S , where f  is a link 

function, E is the expectation operator, X  denotes a matrix of observed variables, S  is a latent 

structure, and g  is some function that relates the latent structure to the observed variables. If, 

upon a suitable choice of f , the function g  is linear, then the resulting family of models is 

covered by generalized linear regression theory [181]. 

 

When unrecorded variables are believed to influence only one recorded variable directly, they 

are commonly modeled as noise. However, when they influence two or more measured 

variables directly, the objective is to identify them and their influences, i.e., the causal relations 

of (often unknown) unrecorded variables that influence multiple recorded variables. Frequently, 

it is assumed that recorded variables do not influence unrecorded variables, although in some 

cases recorded variables may influence one another. This is specified as conditional 

independence of the observed variables given the latent variables, and thus 

   
1

| |

N

j j ij j

i

p p x



 x s s , where N  is the total number of observed variables and j  represents 

a unit of analysis of a latent variable. This is also called “local independence.”  
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The association between LVM and FMM can be defined by relating the data (observations) with 

the variables of the generative probabilistic data model (latent structure). Let us consider the 

following generative probabilistic process for GMM: (i) draw mixture proportions 

 ~ D ir ic h le t  ; (ii) for each mixture component k , draw  
2

0
~ 0,

k
N  ; (iii) for each data 

point n , draw mixture assignment  | ~
n

z D isc re te   and draw data point 

 | , ~ ,1
n

n n z
x z N  . Given a dataset, the posterior distribution can be considered to reverse this 

process and to estimate the distribution of the hidden structure that probably generated them. 

The model can be represented with the factored joint distribution of its hidden and observed 

variables. For GMM, this joint distribution is 

 

          
2 2

0 0

1 1

, , , | , | | | | ,

K N

k i i i

k i

p z x p p p z p x z         

 

    (2.18) 

 

where  |p    is the Dirichlet density,  
2

0
|p    is the Gaussian density,  |

i
i z

p z    is a 

discrete distribution, and  | ,
i i

p x z   is a Gaussian density centred at the 
i

z -th mean. Note that 

local variables have terms inside the product over N  data points, whereas global variables have 

terms outside of this product. Thus, the posterior of the GMM can be estimated from its joint 

distribution as 

 

  
 

 

2

02

0 2

0

, , , | ,

, , , | ,

| ,

p z x

p z x

p x

   
   

 
  (2.19) 

 

This posterior can be used to examine the particular hidden structure that is manifest in the 

observed data. 

 

On the other hand, LVM can be represented as a probabilistic graphical model (PGM) where the 

dependencies between the variables of the observed and latent variables are encoded. The 

graphical model shows the structure of the factorized joint distribution and the flow of the 

generative process. In this graph, nodes represent random variables and edges denote 

dependence between them (Figure 2.4 shows an example of probabilistic graphical model for a 

mixture of two Gaussians). PGM is related with signal processing on graphs, which is a field of 

increasing research interest in applications of big data [66,67].  

 

There are several kinds of LVMs, which are often categorized in terms of the type of observed 

and latent variables, (i.e., continuous or categorical variables). Table 2.1 shows a classification 

of classical LVMs. 

 

  Latent variables 

 Continuous Categorical 

Observed 

variables 

Continuous Common factor model 

Structural equation model 

Linear mixed model 

Covariate measurement error model 

Latent profile model 

Categorical Latent trail model (item-response 

theory (IRT) model) 

Latent class model 

Table 2.1. Types of latent variable models. 
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(a) Unpacked two-GMM diagram (b) Packed two-GMM diagram 

Figure 2.4. Example of probabilistic graphical models for a mixture of two Gaussians (dashed-line nodes are 

observed variables, continuous-line nodes are latent (hidden) variables, and double-line nodes are fixed hyper-

parameters). 

 

In latent class models, a latent categorical variable is measured with error by a set of categorical 

variables 
i j

x , 1, ...,i n , considering 1, ,j N   independent units. The categories of the latent 

variable represent labels for C  subpopulations or latent classes, 1, ...,c C , with class 

membership probabilities 
c

 . Considering binary variables, the conditional probability for 

measure i  given latent class membership c  is specified as   1|
1 |

ij c
p x c   , where 

1|c
  are 

free parameters, thus, 
i j

x  and 
'i j

x  are conditionally independent given class membership. The 

marginal likelihood can be expressed as a function of the parameters π , 

 

      
1

| |

11 1 1

; 1
ij

ij

N N nC
xxM

j c i c i c

cj j i

L p   


  

    π x π  (2.20) 

 

It is evident that this latent class model is a multivariate finite mixture model with C  

components. An important application of latent class models is in medical diagnosis where both 

latent classes (disease versus no disease) and the sets of measurements (diagnostic test results) 

are dichotomous (e.g., [264]). A latent profile model for continuous variables has the same 

structure as latent class model, but a different conditional distribution,  
2

|
| ,

ij i c i
x c N   . 

 

Item-response theory (IRT) models consider the case where a latent continuous variable or 

“latent trait” 
j

  is measured with error by a set of categorical variables usually called “items.” 

The classical example is from education testing, where the items are exam questions, 
i j

x  is 

equal to 1 if examinee j answered item i correctly and 0 otherwise, and 
j

  represents the ability 

(latent variable) of the examinee. In the simplest IRT model, the one-parameter logistic (1-PL) 

model, the conditional response probability for item i given “ability” 
j

 , is specified as 

 
 

 

e x p
1 |

1 e x p

j i

i j j

j i

b
p x

b







 

 
. This is called a “one-parameter” model because there is one 
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parameter, “item difficulty” 
i

b , for each item. Assuming Gaussianity in distribution of the 

random variable ability, a marginal likelihood can be easily estimated.  

 

1-PL can be extended to a more general model that is more realistic. Thus, a two-parameter 

logistic (2-PL) model can be specified, incorporating the 1-PL as a special case: 

 
 

 

ex p

1 |

1 ex p

i j i

ij j

i j i

a b

p x

a b







 
 

 
  
 

. There are two parameters for each item, a discrimination 

parameter 
i

a  and an item difficulty parameter 
i

b . More complex IRT models accommodate 

more parameters: guessing, rating scale, grade response, and so on. IRT models are extensively 

applied in fields such as in sociology, social psychology, neuropsychology, and epidemiology 

[261]. Some uncertainty arises from the kinds of variables involved in those applications since 

they cannot be considered as strictly observable or at least measurable. The distinction between 

observed and latent variables is of suggested epistemological character, i.e., accessible or not 

epistemically accessible. For instance, intelligence quotient (IQ) scores are recorded, but general 

intelligence is not; hence general intelligence is a latent variable and IQ and observed variable. 

In addition, dealing with categorical variables is not easy and some bias is introduced by 

assigning ranges of numerical values to the categories as observations of those variables [28].  

 

In common factor analsys (CFA), it is assumed that each manifest variable is a function of f 

common factors (i.e., latent variables that influence more than one manifest variable) and one 

unique factor (i.e., a latent variable that influences only one manifest variable). This can be 

described as [70] 

 

 T

F
  X Y L Z e  (2.21) 

 

where X  is an [N × p] matrix of standardize scores on p  manifest variables, Y  is an [N × f] 

matrix of standardized common factor scores; 
F

L  is a [p × f] matrix of least square multiple 

regression weights (the common factor pattern) for predicting the scores of X  from those in Y ; 

and  Z is a [N × p] matrix of unique factors. The common and unique factors are uncorrelated 

 0
T

Y Z  and the unique factors for different manifest variables are uncorrelated as well, i.e, 

2

T

N


Z Z
U  is a [p × p] diagonal matrix of unique factor variances. Because the unique factors 

are uncorrelated with each other and with the common factors, it is possible to interpret Y  as 

containing common factors that account for correlations between manifest variables. Let us 

assume an orthogonal common factor model, meaning that the f factors in Y  are uncorrelated 

with each other. Because of sampling error and model error (e.g., nonlinear relationships 

between manifest variables and common factors, or minor factors), the common factor model 

will almost never hold exactly, and therefore e  ([N × p]) is included as a residual matrix. Thus, 

(2.21) may be written as 2

T

T

F F

N
   

X X
S L L U E , where S  is a [p × p] sample correlation 

matrix and E  is a [p × p] matrix of residual correlations. Factor analysis procedures attempt to 

keep E  as small as possible by optimally choosing 
F

L  and 2
U . Estimation in CFA typically 

employs an iterative procedure, where 
F

L  is calculated at each 2
U  found by the algorithm. The 

iterative principal axis factoring procedure is a popular method that provides a result which is 

asymptotically equivalent to the unweighted least square discrepancy function. The squared 

multiple correlations can be used as initial communalities. Factor scores are then calculated by 

decomposing the reduced correlation matrix as 

 

 2T
 S V K V U  (2.22) 
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where V  is a [p × p] marix of eigenvectors normalized to unit norm and K  is a [p × p] 

diagonal matrix containing the corresponding eigenvalues of the reduced correlation matrix 

 
2

S U . 

 

A relevant example of CFA is the “independent clusters model,” where 
F

L  has many elements 

set to zero such that each variable measures one and only one factor. Figure 2.5 shows a path 

diagram of an independent cluster factor model example of two factors with correlation  
2 1

s . 

 

Considering the similarities in the different approaches for latent modeling, a general 

framework called GLLAMM (Generalized Linar Latent and Mixed Models) has been proposed 

[246]. 

 

Principal Component Analysis (PCA) is a technique that searches for a matrix that relates to the 

co-variations of the original variables with a set of latent variables, as in CFA. PCA replaces the 

p original variables (manifest) with f linear combinations of them  f p , chosen so that they 

are ordered by decreasing amount of variance. These combinations (the latent variables) are the 

“principal components.” PCA finds a linear rotated orthogonal system such that the elements of 

the original vectors in the new coordinates become uncorrelated, so the redundancy induced by 

correlation is removed. The components are obtained as eigenvectors of the sample correlation 

or covariance matrix. 

 

The principal difference as compared to CFA is that each manifest variable is a linear function 

of principal components with no separate representation of unique variables: 

 

 T

C C
X Y L  (2.23) 

 

where 
C

Y  is an [N × p] matrix of standardized component scores and 
C

L  is a [p × p] matrix of 

component loadings. The correlation matrix S  can be decomposed as follows: 

 

 T
S W M W  (2.24) 

 

where W  is a [p × p] matrix of eigenvectors and M  is a [p × p] diagonal matrix of eigenvalues 

of S . The component scores 
C

Y  are 1 / 2

C


Y X W M  and the [p × p] matrix of component 

loadings is calculated as 1 / 2

C
L W M . Usually, only the first f components are retained. The 

retained components accounts for less than 100% of the variance in the data. In PCA, the 

component scores are uniquely determined by the data in X . 

 

 
Figure 2.5. Example of an independent cluster factor model. 
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From equations (2.22) and (2.24), we can conclude that the main difference between CFA and 

PCA is that CFA involves a reduction of the diagonal elements of the correlation matrix 

whereas PCA does not. CFA explains the off-diagonal elements of S  according to a 

discrepancy function. In contrast, the retained components in PCA optimally account for the 1s 

of the diagonal of S ; i.e., for r retained components, 
r r

T

C C
L L  maximizes  t r S  among all 

possible orthogonal linear transformations of X . Thus, the principal objective of PCA is to 

optimally estimate the maximum amount of variance with the minimum number of components. 

In addition, it can be demonstrated that the difference between CFA and PCA loadings will be 

small when the unique variances in 2
U  are small.  

 

The analysis of the differences between PCA and CFA has covered aspects such as factors and 

component loadings depending on the number of variables (similarity increases as the number 

of variables increases since the diagonal elements increase arithmetically but the off-diagonal 

elements increase geometrically); data sphericity condition; and generalizability of results, i.e., 

consistency of factors and components for different subsets of variables (see for instance 

[70,263,187]). 

 

A natural evolution of statistical signal processing, in connection with the progressive increase 

in computational power, has been the extension of PCA (based on second order statistics and 

correlation) to ICA (based on independence) for exploiting higher-order information. In the next 

section, we approach ICA, which is a multivariate statistical method that is particularly suitable 

for uncovering latent source signals from high-dimensional complex data. 

 
2.3.3. Independent component analysis (ICA) 
 

Independent component analysis was introduced by C. Jutten in [132,129,130,131], although its 

first thorough mathematical formulation was performed by P. Comon [60]. Since then, many 

different algorithms have been proposed for estimating the ICA parameters (see for example 

[111,55,150,56,59]). The large number of applied problems where ICA has been considered as a 

practical solution is also remarkable.  

 

ICA is formulated as a linear model of the observed data vector    1
, ...,

T

M
x n x n  x = which is 

assumed to be a linear transformation of a vector    1
, ...,

T

M
s n s n  s =  in the form (we assume 

for simplicity the square model, where A is a square [M × M] matrix): 

 

 x = A s  (2.25) 

 

The elements of s  are assumed to be statistically independent components [111], while 

dependence is allowed among the elements of x: every component of x is generated from a 

linear combination of the same independent variables 
1
, ...,

M
s s . This simple model can be seen 

from different perspectives. The most obvious is that of modeling multivariate probability 

density functions in presence of statistical dependence.  If A  is square and invertible, we may 

express the joint probability density  x
p x in terms of      1

. . .·
s M

p p s p s s in the form 

 

    
11

d e t
X S

p p


x = A x
A

 (2.26) 

 

Thus, the joint probability modeling is decomposed into two parts: modeling of the marginal 

densities    1
. . .·

M
p s p s  (which implies M univariate models) and estimating the mixing 

matrix A, which is the responsible for the statistical dependence among the elements of x. As 

long as the marginal are non-Gaussian,  x
p x will be multivariate non-Gaussian. Notice the 
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wide range of multivariate non-Gaussian probability densities which can be modeled by 

modifying the marginal distribution and the mixing matrix. 

 

From a different perspective, if the elements of x and s are time (or any other domain) indexed, 

we may define a problem of instantaneous signal separation in the form 

 

        
1

1 1
, ..., , ...,

T T

M M
s n s n x n x n


   
   

= A  (2.27) 

 

The elements of vector s are usually termed “sources”, hence the problem is to “separate” these 

sources    1
, . . . ,

M
s n s n  in a blind or semi-blind manner, depending on the presence or not of 

some kind of prior knowledge about the mixing matrix A or about the sources s [108,80,73].  

Figure 2.6 shows a schema that illustrates the instantaneous mixing and unmixing model for 

blind source separation (BSS) based on ICA. 

 

Finally, ICA can be also understood as a classical decomposition model that expresses the 

observed vector in terms of some base vectors, namely 

 

 
1

M

i i

i

s
=

x = a  (2.28) 

 

where 
i

a , 1, ...,i M , are the columns of A. This is a generalization of principal component 

analysis, which assumes incorrelation between the weights 
1
, ...,

M
s s . In ICA, uncorrelation is 

generalized to independence, which are not equivalent concepts when Gaussianity is not 

assumed. Thus, the 
i

a  can be used as essential descriptors of underlying phenomena that, 

randomly combined, explain the observed vector x. This also has application in pattern 

recognition or classification methods where the elements of A are used as input features. 

 

Usually, the elements of A are estimated by optimization of a properly-defined contrast or cost 

function. In general, optimization criteria are based on forcing independence between the source 

elements. Some methods approximate the distributions of the sources within a specified class of 

 

 
Figure 2.6. Independent component analysis model with two sources and two recorded variables (M = 2). The color 

of the arrows denotes the weight of the corresponding component/source: dark colors are higher than light colors. 

Unknown Estimated 

s
1
 

s
2
 

x
1
 

x
2
 

1
ŝ
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distributions, and then mutual information, likelihood function, or similar [60,114,9,8,113,200] 

are used to define the contrast function. Other methods optimize different contrast functions 

without explicitly approximating the source distributions. These functions can be, for instance, 

non-Gaussianity (using negentropy or kurtosis), and nonlinear correlation among estimated 

sources [129,110,285]. The optimization techniques applied to the contrast function are mainly 

based on gradient descent (natural, steepest…) and approximate Newton methods. There are 

also some direct estimation procedures that exploit specific algebraic structures of the involved 

matrices (see Section VII of [40] and references therein, [282,273]). 

 

2.4. Mixtures of independent component analyzers 
 
2.4.1. Definition 
 

As explained, ICA may serve the purpose of modeling multivariate non-Gaussian PDFs. 

Although a wide range of multivariate probability densities can modeled by ICA, larger 

versatility can be achieved by mixtures of ICAs. This leads to a natural extension of the 

classical Gaussian mixture model ( [54]). GMM is limited in two main aspects: (i) the size 

 
2

M
 
of each covariance matrix becomes extremely large when the dimension  M  of the 

problem increases; and (ii) each component is Gaussian, which is a condition that is rarely 

found in real data sets. 

 

Antecedents of ICAMM can be found in [262] with the so-called probabilistic principal 

component analysis (PPCA) where, staring from a GMM, each component of the mixture was 

replaced with a PPCA, allowing the covariance matrix dimension to be reduced. A further 

modification of this method was presented in [93] using variational Bayesian inference to infer 

the optimum number of analysers, obtaining the so-called mixture of factor analysers (MoFA). 

Afterwards, a robust approach for PPCA that exploits the adaptive distribution tails of the 

Student-t was proposed [12,257]. The latter allows the performance of the method to remain 

unaffected in the presence of non-Gaussian noise (e.g., outliers).  

 

Notice that a mixture model emanates in a natural manner in the framework of 

classification/segmentation methods. If the data can be categorized into several mutually 

exclusive classes, where each class is characterized by a given multivariate probability density, 

the whole data multivariate probability density can be considered a mixture of the class-

conditioned probability densities. Thus it is not strange that ICAMM was proposed in the 

framework of pattern recognition. It was introduced in [153] considering a source model 

switching between Laplacian and bimodal densities. Afterward, the model was extended using 

generalized exponential sources [204], variational Bayesian inference [54] and -divergence 

[176]. Related aspects like estimation of the number of ICA mixtures have been considered in 

[48,195] using variational Bayesian learning and in [157] by adaptive estimation of the clusters 

comparing log-likelihood of the data. 

 

The general expression of ICAMM requires some bias vectors to separate the components of the 

mixture, i.e., 

 

 , 1, ...,
k k k k

k K  x A s b  (2.29) 

 

where k is the class, denoted by
k

C ; 
k

A  and 
k

s  are respectively the mixing matrix and the 

source vector of the ICA model of class k ; and 
k

b  is the corresponding bias vector. Essentially, 

k
b  determines the location of the cluster and 

k k
A s  its shape. The classes in ICAMM are 

assumed to be exclusive, and thus, the ICA mixture model is a switching model between the K  

estimated ICA, as shown in Figure 2.7. 
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Figure 2.8 compares the behavior of ICA and ICAMM for a toy example where two data 

channels were generated from a mixture of two sources using two different classes (mixing 

matrices; both classes had the same sources and bias vectors).  The results of ICAMM for 

source separation are show in Figure 2.8.a, where it can be seen the sources were perfectly 

recovered by the method. ICA, however, was not flexible enough to compensate for the two 

classes and the separated sources were still mixed, as shown in Figure 2.8.b.  

 

Figure 2.9 and Figure 2.10 illustrate an application of ICA for image segmentation. First, in 

Figure 2.9, we can see how every small square subimage of the whole image is modeled with a 

specific ICA mixing matrix and centroid. Notably differences can be appreciate among the 

different model parameters, especially when comparing subimages corresponding to different 

classes of the original whole image. Then, in Figure 2.10, the ICA model is used to segment the 

images so that and automatic classifier could easily separate the two classes of images (text and 

picture). 

 
Figure 2.7. Outline of the ICA mixture model as a switching model of K separate ICA models. 

 

 

 
Figure 2.8. Comparison of ICA versus ICAMM for a source separation task: a) two sources are mixed with two 

classes to obtain two recorded variables, which are then separated by a two-class ICAMM; b) result of ICA for the 

same source separation task. The colors of the mixing/de-mixing matrices denote the weight of the corresponding 

element: dark colors are higher than light colors. 
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Figure 2.9. Estimation of an ICA mixture model with two classes (frog and text). Each class produces a different 

ICA, as shown by their different mixing matrices and centroids. 

 

 
Figure 2.10. Segmentation of an image using ICAMM. 

 

 

ICAMM estimation 
 

In a supervised scenario, the problem of estimating all the parameters involved in an ICAMM 

can be decomposed in many simpler problems of estimating the ICA model corresponding to 

each component of the mixture, plus the estimation of the centroids or bias 
k

b . However 

unsupervised or semi-supervised scenarios require simultaneous estimation of all the 

parameters. Four main approaches have considered until now: maximum-likelihood [153], -

divergence [176], variational Bayesian [54] and non-parametric semi-supervised learning in 

ICAMM [231]. We describe these methods in the following. 

Class 1 
(picture) 

Class 2 
(text) 

ICA 

estimation 

ICA 

estimation 

Mixing matrices Centroids
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2.4.2. Maximum likelihood 
 

An unsupervised maximum-likelihood classification algorithm for ICAMM estimation was 

proposed in [153]. Given a set of independent observations 
n

x , 1, ...,n N that emanates from 

an ICAMM composed by K ICA components and characterized by a set of parameters 

 1
, . . . ,

K
Θ θ θ , the likelihood of the data is given by the joint density    

1

|

N

n

n

p p



 X | Θ x Θ , 

where  1
, . . . ,

N
X x x . We assume that the observation multivariate probability density function 

is a mixture of the form      
1

| ,

K

n n k k k

k

p p C P C



 x | Θ x θ , where  k
P C  measures the 

importance of component k in the mixture (in terms of classification,  k
P C is the a priori 

probability of class k). Iterative algorithms are required to obtain the ICAMM parameters that 

maximize the log likelihood. Thus, in [153], the Extended InfoMax algorithm ( [151]) is used 

for adapting the mixture matrices 

 

    | , tanh
T T

k k n k k k k k
P C           

 
A x Θ A I K s s s s  (2.30) 

 

where I is the identity matrix and K is a diagonal matrix with values 1 (super-Gaussian regime) 

or -1 sub-Gaussian regimen) of the corresponding source component extracted at the current 

iteration. On the other hand we can estimate  
   

   
1

| ,
| ,

| ,

n k k k

k n K

n l l l

l

p C P C
P C

p C P C








x θ
x Θ

x θ

using the 

current parameters of ICAMM, and we can estimate also the centroids at every iteration as  

 

 

 

 

1

1

| ,

| ,

N

n k n

n

k N

k n

n

p C

p C













x x Θ

b

x Θ

 (2.31)  

 

An extension was made in [48] where the number of clusters and the intrinsic dimension of each 

cluster were determined by a variational Bayesian method similar to the method proposed in 

[204]. An on-line version for partitioning the input-output space for fuzzy neural networks was 

proposed in [157]. 

 
2.4.3. Beta-divergence 
 

Notice that ICA model can be expressed in terms of the recovered sources 
1 1 

      s A x A b W x μ , where W is the de-mixing matrix and  a recovery bias. In the 

-divergence method, the hidden mixture components are sequentially extracted in the 

following manner. The estimation method starts by defining an initial 
1

μ . Then, an initial de-

mixing matrix
1

W  is estimated by minimizing the -divergence between the empirical 

distribution of the whole data set of observations x and the distribution derived from the 

assumed initial ICA model, 

 

      1 1 1 1 1 1

1

d e t d e t
m

M

T

X S S m m

m

p p p  
=

x = W W x μ = W w x  (2.32) 
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where specific forms are used for the source marginal probability densities  ·
m

s
p , 1, ...,m M : 

   2
/ c o s hp z c z for super-gaussian signals and    

4

1 2
ex pp z c c z    for sub-gaussians.  

 

-divergence [12,176] is a measure of the distance between two probability density functions 

 p x  and  q x , defined as 

 

              
1 11 1

, , 0
1

D p q p q p p q d
   




 

  
      

 
 x x x x x x  (2.33) 

 

which is non-negative and equal to zero if and only if    p qx x .  -divergence reduces to 

Kullback-Leibler divergence when 0  . 

 

The next step is to calculate a new bias 
2

μ  by using only those observations that can qualified 

as outliers of the initial ICA (i.e., those having a low probability in the initial ICA model as 

computed from  1 1 1

1

d e t
m

M

T

S m m

m

p 
=

W w x ), and then a new recovering matrix W2 is obtained 

as before. The procedure is repeated K times until all the K hidden classes are estimated.  

 

 
2.4.4. Variational Bayesian 
 

This method was proposed in [54]. This is a complex method which consists in considering that 

the observations x are obtained from a generative model that can be described by a Bayesian 

network. Hence, variational Bayesian methods can be used for the computation of all the 

required parameters. In essence, it is a maximum likelihood method where a Gaussian mixture 

is assumed for every single source probability density and where a “noise” term is added to the 

ICA model. A detailed description of the method is given in [54]. We omit it here as this 

method has not been under consideration throughout the rest of the thesis.   

 
2.4.5. Non-Parametric  
 

This method [231] is a generalization of the maximum likelihood method previously presented. 

A non-parametric estimation of the sources is proposed, thus obtaining large generality as no 

special constraints are required for the sources distributions. Other significant generalization is 

the possibility of using semi-supervised learning. This method has been applied across the 

thesis, so we include here a schematic description of it. 

 

Let us consider that the set of observed feature vectors is formed by 
n

x , 1, ...,n N . We divide 

this set into two subsets. The first subset is formed by 
n

x , 
1

1, ...,n N , 
1

N N , where we may 

assign some probability of belonging to class 
k

C , namely  
 

0

|
k n

P C x  for 1, ...,k K . The 

second subset is formed by 
2 1

N N N   vectors where no knowledge exists about the possible 

class they belong to. The learning algorithms proceeds in the manner shown in Table 2.2. 
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Initialization 

For 1 ...k K , compute: 

   
 

1

0 0

1

|

N

k n k n

n

P C



 b x x    (if 
1

0M  , select the initial centroids randomly); 

 0

k
W  (randomly initialized) ;  

     
 

0 0 0

kn k n k
  s W x b

     

 
0 0 0

km k m k
 s W x b   

 
 

0

k
p s  (a non-parametric estimator is used)  

 

Updating 

For 1 ... Ii   and for 1 ...k K , compute: 

For the probabilistically labeled vectors 
 

 
 

 
0

1
| | , 1, .. . ,

i

k n k n
P C P C n N x x   

 

For the unlabeled vectors,  
 

 
 

     

     

   
     

   
1 1 1 1 1 1

' ' '

' 1

| |

d e t d e t

i i

k n n k k n

K

i i i i i i

k kn k k k m k

k

P C p C P C p

p P C p P C
     



  

    

x x x

W s W s

  , 
1

1, ...,n N N   

   
 

1

|

N

i i

k n k n

n

P C



 b x x ;  

     1 1i i i

k k k

 

  W W W ,  
 

 

   
 

1 1 1

1

|

N

i i i

k k nkn IC A

n

P C
  



   W W x ; where   

 

 1i

kn IC A



W  is the update due to sample 
n

x  in the selected embedded ICA algorithm;  

     
 

i i i

kn k n k
  s W x b  

   
 

i i

k n
p s  (a non-parametric estimate is used, e.g., by the kernel method). 

Table 2.2. Non-parametric learning algorithm. 

 

2.5. Conclusions 
 

The main objective of this chapter has been to situate ICAMM in the context of non-Gaussian 

mixture models of the underlying probability density of a set of observations. Non-Gaussian 

mixtures are the natural extension of Gaussian mixtures. However, there is significantly less 

literature on non-Gaussian mixtures than in Gaussian mixtures, due to the lack of general 

methods for optimum estimation of the mixture parameters. Thus, non-Gaussian mixtures pose 

attractive challenges for further work. 

 

We have started by considering the univariate case. The techniques presented in this chapter 

assume the same type of probability for all the mixture components, thus easing the problem of 

estimating the corresponding parameters at the price of some loss of adaptation to specific 

scenarios. Different non-Gaussian densities have been considered: Exponential, Poisson, 

binomial and multinomial. They are illustrative of both continuous and discrete random 

variables, although many other types of distributions could be devised. 

 

The extension of univariate mixtures to the multivariate case is immediate if it can be assumed 

that the components of the multivariate random variable are statistically independent, so that the 

multivariate probability density can be expressed as the product of the marginals. Then, every 

marginal can be modeled as a mixture of univariate densities. In presence of statistical 

dependence, however, the extension is not so easy. Firstly, the extension of typical univariate 

densities to their corresponding multivariate is not trivial or even possible in most cases. A 
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notable exception is the multivariate Gaussian case, where dependence is parameterized by a 

covariance matrix. Hence we have considered in this chapter three methods for multivariate 

modeling of a non-Gaussian and non-independent probability density: copulas, latent variables 

and ICA. The latter may be considered a special case of the latent variables method. Regarding 

the copulas, it is outside the scope of this thesis a detailed comparison with ICA. In fact, 

mixtures of copulas have not been considered until now, while some methods exist for 

computing mixtures of ICAs. We have presented four of these methods: maximum likelihood, 

-divergence, variational Bayes and non-parametric. Due to its generality, the latter will be 

mostly used across the thesis for estimating the ICAMM parameters in the two main problems 

considered: prediction based on ICAMM and extension of ICAMM to dynamic non-stationary 

scenarios. 
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 - Building non-linear prediction structures from 
independent component analysis 

 

This chapter presents two novel non-linear prediction methods that are based on independent 

component analysis mixture modeling. The first method is based on the maximization of the 

log-likelihood of the data with respect to the ICAMM parameters. We have called this method 

PREDICAMM (Prediction using ICAMM). The second method is an approximation of the 

optimal predictor with respect to the mean squared error of the prediction: the conditional 

expectation of missing data with respect to known data and the ICAMM parameters. This 

second method we have named E-ICAMM (Expectation assuming ICAMM). Unlike pre-

existing methods, these algorithms do not use ICA mixture models as a pre-processing step, but 

as the base of the prediction itself, since they use of both known data and the ICAMM to predict 

missing data. 

 

PREDICAMM performs the maximization of the log-likelihood of the data with a gradient. 

Therefore, we performed a sensitivity analysis in order to determine the effect of the initial 

value and the number of classes in the results of this prediction algorithm.  

 

The performance of the proposed predictors was assessed by prediction missing values in 

synthetic data modeled with two, three and four classes. In order to test the sensitivity of 

PREDICAMM and E-ICAMM when the base assumptions are not completely fulfilled, the 

performance was also tested on several sets of nonlinearly-corrupted data. In all cases, the 

proposed predictor was compared with four other classical and state-of-the-art methods: matrix 

completion (a non-linear method that makes use of the structure of a matrix); splines (a 

commonly-used interpolation method); Wiener structures (a combination of a linear predictor 

and a non-linear correction); and Kriging (a classical linear predictor that is commonly used in 

geostatistical applications). The comparison shows that the proposed ICAMM-based methods 

can be competitive for data prediction even if the basic conditions of ICAMM are not satisfied. 

In addition, the proposed methods usually performed better than Wiener structures, matrix 

completion, splines and Kriging. Finally, we performed a last experiment to test the 

performance of the proposed methods with respect to an increasing number of missing values in 

each observation. Some of the simulations in this chapter have been reported in [219,224], and 

results for real-data applications are included in Chapter 5. 
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We refer to the proposed methods as “predictors,” which might imply that the method is used to 

predict future data from past values of the same signal. However, both PREDICAMM and E-

ICAMM have been designed as general-purpose methods that can be applied to prediction, 

interpolation and regression. The proposed methods reconstruct missing data from an 

observation using only the ICAMM parameters and known data from the same observation. 

Therefore, there is no dependence on time in the algorithm, and thus the reconstruction yielded 

by PREDICAMM and E-ICAMM is independent from the order in which the observations are 

reconstructed; the method only considers dependencies within the current sample. ICA and ICA 

mixture models have been used on data with no time dependence, such as natural images and 

single frames of brain imaging [114]. The flexibility of the method allows it to reconstruct very 

different information depending on the sampling scheme considered, as shown in Figure 3.1. 

Here, by “sampling scheme” we mean how the different values in the signal are mapped to 

observations to work with the proposed methods. The most typical scheme performs 

interpolation by considering each time sample as an observation (see Figure 3.1.a); in this case, 

PREDICAMM and E-ICAMM can interpolate missing data from one spatial location by 

considering known information from other locations in the same sample and the ICA mixture 

model. This sampling scheme was considered in the simulations in Section 3.4 and applied on 

real data in Section 5.4. However, one could also consider the time values of a given spatial 

location (variable) as the input to the reconstruction method (see Figure 3.1.b). This scheme 

would perform regression or prediction, since PREDICAMM and E-ICAMM would use the 

information from one variable at several time samples to interpolate the value of the same 

variable in other samples. Another sampling scheme consists in dividing the signal into square 

windows or “patches” and taking each window as a separate observation (see Figure 3.1.c); such 

is the case when ICA is used for feature extraction in natural images [114,112]. In this instance, 

the methods are used to reconstruct missing values within a patch using other values from the 

same patch. Thus, the proposed ICAMM-based methods would allow us to take advantage of 

the 2-D spatial dependencies for the reconstruction of data, both for predicting data (e.g., predict 

data outside the borders of an image) and for interpolation (e.g., reconstructing missing or noisy 

values of a picture), depending on the location of the patch within the image. This sampling 

scheme was considered for the reconstruction of real data in Sections 5.1, 5.2 and 5.3. Finally, 

some unconventional sampling could be used in order to exploit known dependencies in a data 

set, such as the diagonal sampling shown in Figure 3.1.d. The schemes in Figure 3.1.b and  

 

 
Figure 3.1. Sampling schemes for use in PREDICAMM and E-ICAMM: a) time; b) space; c) windows or patches; d) 

diagonal. The empty green rectangles represent all the data, areas shadowed in green denote the current observation, 

areas enclosed in dotted lines represent other observations, and black areas denote missing values. Dotted arrows 

show some possible sweeping trajectories to reconstruct all missing data. 
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Figure 3.2. General definition of the prediction process using PREDICAMM and E-ICAMM. Note that there are 

several method configurations that we can use, which will be explained in Section 3.4.3.b. The asterisks denote the 

original contributions in this work. 

 

Figure 3.1.d were not considered in this thesis, and they remain open for future work. The 

general definition of the prediction process with the proposed methods, including the sampling 

scheme, is shown in Figure 3.2. 

 

3.1.  Prediction based on maximum likelihood: PREDICAMM 
 

Let us consider an observation vector  nx  of size  1M  . The meaning of the elements of 

 nx  is not constrained in any sense. They may represent a segment of a temporal or spatial 

sequence; they may correspond to a 1D alignment of 2D data (see Figure 3.1), and so on. 

Assuming that 
u n k

M  values from this vector are unknown, the vector values can be grouped into 

two smaller dimension vectors: ( )ny  (known values) and ( )nz  (unknown values). That is,  

 

  
 

 

n
n

n

 
  

 

y
x

z
 (3.1) 

 

In the following we will omit the  n  to simplify the notation. The goal of the algorithm is to 

optimally estimate or predict z  from y . Estimation theory [266] gives us well-known 

optimization criteria and their corresponding solutions. Basically, two general criteria have been 

considered in practice: maximum likelihood and least mean squares error, which leads to two 

alternative solutions, namely 

 

 

 

   

m a x
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L M S E

p
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
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z z | y

z z | y z z | y z

 (3.2) 

 

PREDICAMM performs this prediction by the ML criterion, that is, selecting the z  that 

maximizes the conditional posterior probability  |p z y . This maximization is performed by 

assuming that the data are modeled by a non-Gaussian mixture. In particular, we will assume 

that x  is generated from a mixture of independent component analyzers ( [114]). ICAMM is a 

versatile model that encompasses almost every statistical description of the data. In particular, it 

generalizes the extensively used Gaussian mixture model (see, for instance, [26]). We thus 

obtained a very general ML solution. 
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Unfortunately,  |p z y  is complicated to calculate even if the underlying ICA mixture model is 

known. Using Bayes’ rule, however, it can be seen that      p p pz | y y , z y . The 

maximization of  p z | y  is equivalent to the maximization of  p y , z , since known data (and 

thus  p y ) are fixed during maximization. Given the ICA mixture model, the calculation of the 

joint probability density  p y , z  (and its derivatives) is much easier than the calculation of the 

conditional probability density, since    p py , z x . Thus, we will seek the maximization of 

 p y , z  in the following.  

 

Let us assume that data x  can be modeled using an ICA mixture model with K  classes, where 

the parameters of the model are known: the de-mixing matrices, 
k

W ; the probability density 

function of the sources,  k
p s ; and the centroids, 

k
b ; where 1, ...,k K  is the class. Then, 

 p x  can be expressed as 

 

           
1 1

| d e t

K K

k k k k k

k k

p p C P C p n P C

 

     x x W s  (3.3) 

 

where the sources are calculated from the data using the ICAMM parameters, i.e., 

    k k k
n n  s W x b ; and 

k
C  denotes class k . It is possible to develop this equation a bit 

further in order to separate the contribution to the sources of known data from the contribution 

of unknown data. Each de-mixing matrix 
k

W  can be treated as a block matrix such that 

, ,k k k
 
 y z

W W W , where 
, ky

W  is composed of the first 
u n k

M M  columns of matrix 
k

W  and 

, kz
W  is composed of the last 

u n k
M  columns of matrix 

k
W . Then, the sources can be calculated 

as 

 

 
, , , ,k k k k k k k k

  
            

  
y z y z

y
s W W b W y W z W b

z
 (3.4) 

 

, k


z
W z  is the only term in (3.4) that changes during the maximization process, since the 

ICAMM parameters and the known data remain constant.  

 

Equation (3.3) is maximized by using a gradient algorithm, with the joint probability density as 

the cost function  J z . We obtain the derivative of the cost function with respect to the 

unknowns z : 
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where 
,k m

s  is the -thm  component of the sources from the class k . The calculation of the 

derivative of ( )
k

p s  in (3.6) is very complex for most data distributions, since it is the derivative 

of a multi-dimensional probability density. However, each class from the ICAMM is modeled 

by a separate ICA, so we can make use of the independence of the sources (a basic property of 

the ICA model) to ease our calculations: 
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The derivative of  ,k m
p s  can be calculated explicitly for many common probability density 

functions. This requires prior knowledge of the sources, however, which could limit the 

applicability of the algorithm. To circumvent this requirement, the probability density of each 

source was estimated using a nonparametric estimator [231] with a Gaussian kernel. Thus, the 

probability density function of each source and its derivatives are calculated as follows: 
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where ( )

,

l

k m
s  is the value of the -thl available sample of 

,k m
s  for estimating the source 

probabilities, being 
T

N  the number of such available samples; h  is the bandwidth of the 

nonparametric estimator; and 
0

a  is a scaling constant calculated so that 
,

( ) d 1
k m

p s s




  . For 

Gaussian kernels, this scaling constant is  0
1 2 ( 1)

T
a h N   .  

 

Returning to (3.6), the derivative of the sources with respect to unknown data can be calculated 

from (3.4), 
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where 
, ,

T

k my
w  is the -thm  row of 

, ky
W , 

, ,

T

k mz
w  is the -thm  row of 

, kz
W , and 

,

T

k m
w  is the -thm  

row of the de-mixing matrix 
k

W . Thus, 
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where 
,1 , 2 ,

, , ....,
T

k k k k M
c c c 
 

c . Finally, the derivative of the cost function can be calculated as 
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3.1.1. Optimization procedure 
 

The optimization of the cost function can be performed using a gradient ascent method [24]:  
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where  i  denotes the current iteration and   is the learning rate. Both the initial value, 
 0

z , 

and the learning rate are important to the algorithm, and they will be analyzed in detail in 

Section 3.4.3. 

 

The gradient algorithm in (3.14) is a classical algorithm, but it has some disadvantages, 

primarily related with convergence speed, as shown in [24]. Thus, two alternative versions of 

the gradient were considered to improve its convergence speed.  

 

The first alternative is normalizing the derivative of the cost function (discarding its modulus) 

and setting a constant learning rate: 
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This change achieves a convergence speed that is dependent on the learning rate,  , and not on 

the modulus of the derivative. This can speed up convergence, particularly at points far from the 

true maximum, which could result in small derivatives. This is not necessarily always the case, 

however, since we could be far from the true maximum and still have strong derivatives, 

whereas the derivative would typically become small as we approach a stationary point. On the 

other hand, the normalization could also make the algorithm oscillate around a maximum if the 

learning rate is set too high. This effect can be alleviated by adding an “annealing” procedure, 

that is, taking random steps to check the convergence of the algorithm by avoiding local minima 

and oscillations [136]. 

 

The second alternative is similar, but includes a variable learning rate 
 i

  . This variable 

rate will follow Armijo's rule. That is,   will decrease every time the algorithm detects the 

solution is oscillating [24], 
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We have named the algorithm explained above, with its corresponding maximization procedure, 

as PREDICAMM (Prediction using ICAMM) [219]. 

 

3.2. Prediction based on least mean squared error: E-ICAMM 
 

As stated in Section 3.1, the two most commonly used criteria to estimate missing data, z , from 

known data, y , are the ML criterion and the LMSE criterion, as shown in (3.2). The LMSE 

criterion seeks a nonlinear function that can reasonably approximate the conditional expectation 

 E z | y . This can be done in several ways. The simplest form is to assume that a linear 

approximation is sufficient, thus reaching the solution of the linear LMSE criterion. The 

advantage of this criterion is that the linear operator can be obtained by simply solving a linear 

equation system (the Wiener-Hopf equations [236]). Moreover, only second-order statistics are 

necessary to define this system. 
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In this work, we propose a novel LMSE method that implements  E z | y  by assuming an ICA 

mixture model with K  classes for the data x , as shown in (3.3). The conditional probability 

 p z | y  can be expressed as 
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Hence, the conditional expectation will be 
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where  ,
k

E Cz | y  is the conditional expectation for class k , and it could be regarded as the 

solution assuming that the current observation belongs to class k . In the ICA mixture model, 

each class is modeled by a separate ICA model. Thus,  ,
k

E Cz | y  can be computed from the 

ICA model for k . From (3.4), 
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Taking expectations on both sides of (3.19) results in 
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Given the known values, y , (3.20) represents an overdetermined linear system of equations, 

which can be solved in the unknown  ,
k

E Cz | y , for instance, using the pseudoinverse 
, k



z
W  : 
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Solving the system requires knowledge of  ,
k k

E Cs | y . We have considered an iterative 

algorithm that iteratively computes  ,
k k

E Cs | y  and  ,
k

E Cz | y , which is shown in Table 3.1. 

 

Initialization 

 Set  
( 0 )

,
k k

E C s | y 0  

  

Updating 

For 1, ...,i I , with I  being the maximum number of iterations: 

 
    , ,

( ) ( 1 )
, | ,

k k k k k k k
i i

E C E C
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
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z y
z | y W s y W b W y  

    , ,
( ) ( )

, | ,
k k k k k k k

i i
E C E C     

z y
s | y W z y W y W b  

 Continue until convergence or the maximum number of iterations is reached 
Table 3.1. Iterative algorithm to compute the conditional expectation E[z|y, Ck]. 
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Results in this work correspond to only one iteration (I = 1) because no significant 

improvements were observed for more than one iteration. This iterative procedure is repeated 

for every class to obtain the values  ,
k

E Cz | y , 1, ...,k K  required in (3.18). Note that in the 

case of models with only one class  1K  ,    1
| ,E E Cz | y z y  and the solution only requires 

solving (3.20). Otherwise, we need to compute  |
k

P C y , 1, ...,k K . Using Bayes’ rule: 
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where  |
k

p Cy , 1, ...,k K , may be obtained using any statistical modeling from training data. 

In this thesis, we considered two possible options. If there is only one known value ( 1
u n k

M   

and therefore, yy  is scalar), the probabilities  |
k

p y C  are calculated from training data 

using non-parametric estimation using a Gaussian kernel, (3.8). If there is more than one known 

value ( 2
u n k

M  ), a second ICAMM is calculated using training data and only considering the 

known values y . Then, the probabilities  |
k

p Cy  are calculated using (3.3).  

 

We have named the above method E-ICAMM (Expectation using ICAMM). Figure 3.3 shows 

the behavior of E-ICAMM for two toy examples with one known variable and one unknown 

variable. As mentioned above, the values  | ,
k

E Cz y  could be understood as several possible 

reconstructions which are then locally weighed by  |
k

P C y .  

 

This is shown clearly in Figure 3.3.a, which considers a case with two well-separated classes. 

The final reconstruction,  E z | y , is very similar to  1
,E Cz | y  for values of y  that clearly 

belong to class 1 and very similar to  2
,E Cz | y  for values that clearly belong to class 2. At the 

crossing between the two classes,  E z | y  is obtained as a weighted sum of  1
,E Cz | y  and 

 2
,E Cz | y . Figure 3.3.b shows a more complicated example: in this case, scattered data in the 

shape of a horseshoe were modeled by a five-class ICAMM. The reconstruction is locally 

weighed by the  |
k

P C y  so that it follows the horseshoe shape, even though the  ,
k

E Cz | y , 

1...5k  , are straight lines. 

 

 
Figure 3.3. E-ICAMM reconstruction for two toy examples: a) data drawn from an ICAMM with two classes; b) 

horseshoe-shaped unlabeled data modeled using an ICAMM with five classes. 
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3.2.1. Bias and local prediction error of E-ICAMM 
 

Since it is the solution to the LMSE criterion, E-ICAMM is unbiased. This can be proved using 

(3.18). If we denote the prediction error by     ˆ
E IC A M M

E


   e z z z z | y , then the bias is 

the expected prediction error with respect to known and unknown data, 
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The mean squared error of the prediction can be obtained as the trace of the error covariance 

matrix: 
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One could also obtain the local mean squared error, i.e., the estimate of the prediction error of 

E-ICAMM for any given set of observed values y. It is usually defined as the trace of the 

conditional covariance with respect to known data, |
T

E  
 

e e y . Being an expectation, this 

estimate is not likely to be a good indicator of the actual error of any one sample. However, this 

error can be used to estimate the variability of the true values around the prediction yielded by 

E-ICAMM, obtaining the prediction interval of E-ICAMM. This prediction interval can be used 

to determine the quality of the prediction and identifying points that are likely to be badly 

estimated. 

 

Using the mixture model in (3.3), we can express |
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e e y  as a combination of 

| ,
T

k
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 

e e y , 1...k K : 
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The local error for each class, | ,
T

k
E C 
 

e e y , can be expressed as 
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where  |E z y  is the E-ICAMM prediction and  ,
k

E Cz | y , 1, ...,k K , are obtained during 

the process. The calculation of | ,
T

k
E C 
 

z z y  from (3.19) is straightforward, but complicated 
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and time consuming. Let us consider first the conditional correlation of z  with respect to the 

known data and class k , 
,

k
C


z |y

,: 
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where 
,

k
C


z |y

 is the conditional correlation of the sources with respect to known data and class 

k. Since    | ,
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Solving the above requires knowledge of  ,
k k

E Cs | y ,  ,
k

E Cz | y  and 
,

k
C


s |y

. We have 

considered a more refined version of the iterative algorithm in Table 3.1, which includes the 

calculation of these new variables. This iterative algorithm is shown in Table 3.2. 

 

 

Results in this work correspond to only one iteration (I = 1) because no significant 

improvements were observed for more than one iteration. This iterative procedure is repeated 

for every class to obtain the values | ,
T

k
E C 
 

z z y , 1, ...,k K  required in (3.26). Afterward, 

the results of (3.28) can be substituted back in (3.26) to obtain: 

 

 

   

           

           

         

| ,

| ,

| , , , |

| , | , ,

, | | , |

, ,

TT T

k k k

T T T

k k k k

T T T

k k

T

k k k

E C E C E C E

E E C E E E C E C

E C E E E C E E

E C E E C E

        
   

        

      

     

z y

z y

e e y z z | y z | y z y

z | y z y z | y z y z | y z | y

z | y z y z | y z y z | y z y

z | y z | y z | y z | y

 (3.29) 

 

Finally, substituting (3.29) into (3.25), 

 

 

 

             

1

| ,

1 1

| | , |

| , , |

K

T T

k k

k

K K
T

k k k k k

k k

E E C P C

P C E C E E C E P C



 

       
   

       



 z y

e e y e e y y

y z | y z | y z | y z | y y

 (3.30) 

 

The conditional class probabilities  |
k

P C y  are calculated as indicated for E-ICAMM (see 

(3.22)) and then used in (3.25). Finally, the local MSE can be found as 

 |
T

lo ca l
M S E tr E   

 
e e y . Note that in the case of models with only one class  1K  , 

1
| | ,

T T
E E C     
   
e e y e e y  and the solution only requires taking the trace of (3.26). 
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Initialization 

 Set  
( 0 )

,
k k

E C s | y 0  

 Set 
,

( 0 )k
C M

 
s |y

I  (an identity matrix of size M) 

  

Updating 

For 1, ...,i I , with I  being the maximum number of iterations: 

 
    , ,

( ) ( 1 )
, | ,

k k k k k k k
i i

E C E C



     

z y
z | y W s y W b W y  

 
     , , ,

( ) ( )( 1 )( )

| , | , | ,
k

T T
T

k k C k k k
i iii

E C E C E C
 



       
  z s |y z

z z y W W z y z y  

    , ,
( ) ( )

, | ,
k k k k k k k

i i
E C E C     

z y
s | y W z y W y W b  

 
    , , ,

( )( ) ( )( )

| , | , | ,
k ii

T
T T

C k k k k k
ii

E C E C E C       
 s |y z z

W z z y z y z y W  

 Continue until convergence or the maximum number of iterations is reached 
Table 3.2. Iterative algorithm to compute the conditional covariance E[z·zT|y, Ck]. 

 

Figure 3.4 shows the estimated local prediction error for the two examples in Figure 3.3. The 

prediction error has been presented as a prediction interval: the area shadowed in light blue 

shows the prediction interval of the solution taking the average of the | ,
T

k
E C 
 

z z y , and the 

area shadowed in gray represents the prediction interval of the solution of E-ICAMM,  E z | y . 

These intervals were calculated as the solution, plus or minus twice the square root of the mean 

square error. The prediction intervals show the difference between the confidence in the results 

of the average and E-ICAMM, since E-ICAMM obtained a much smaller prediction interval 

across all values of the known variable. In both cases, the prediction interval covered almost all 

of the true data, confirming the interpretation of the local mean square error as the prediction 

interval. 

 

The local prediction error was also an indicator of the average prediction error in the area. In 

fact, the difference between the actual MSE over the whole datasets and the average of the 

estimated local prediction errors was very small. The results of E-ICAMM shown in Figure 

3.4.a have a true MSE equal to 0.0310, and the average of the estimated MSE is 0.039. 

Conversely, the values in Figure 3.4.b have a true MSE equal to 0.0233 and an estimated MSE 

of 0.0600. 

 

 
Figure 3.4. Estimated local prediction error for E-ICAMM for the two toy examples in Figure 3.3. 
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3.3. Other methods 
 

In this work, the proposed prediction methods are compared with several types of predictors. 

These methods were selected due to their similarities to E-ICAMM or PREDICAMM, or due to 

their application to real data (which will be shown in Chapter 5). 

 

The first method selected for comparison was Kriging [116], which is a classical linear predictor 

that is widely-used in geostatistics and other applications where the topographical distribution 

of the signal is of importance. It was chosen because of this importance, and it was considered 

both for simulated data and real data. Kriging is an implementation of the linear LMSE criterion 

for spatial data, making it similar to E-ICAMM, which optimizes the LMSE criterion. 

 

The second method for comparison was Wiener structures [278], a simple nonlinear prediction 

method that is composed of a linear predictor followed by a nonlinear correction term. Wiener 

structures have been used to successfully predict data from NDT applications [211], which is 

the reason for their choosing. Wiener structures were used on simulated data and on real data. 

 

The third considered method was matrix completion [36], a nonlinear method that estimates 

missing data from a matrix from a few revealed entries. This method was chosen because of its 

similarities with E-ICAMM and PREDICAMM, since it is an interpolator that considers 

existing data and an underlying structure in order to reconstruct missing data. Given the 

requirements of matrix completion (as explained in Section 3.3.3), it was considered only for 

simulated data. 

 

The fourth and last method for comparison was splines [69]. In splines, the data are usually 

modeled using low-order polynomials that represent the lines or surfaces of lower energy. They 

are a classic interpolation method. Furthermore, spherical splines are the typical interpolator for 

electroencephalographic data [199], which is the reason why they were chosen for comparison 

against E-ICAMM and PREDICAMM. Since they assume an underlying spherical structure, 

spherical splines were only considered for their application on real data from an EEG 

experiment, in Chapter 5. For non-EEG data, linear splines were used. 

 

There are other methods that could be used for prediction, such as artificial neural networks 

(ANN). However, previous works show that simpler methods (e.g., Wiener structures) can 

model the nonlinearities in the data and obtain a good prediction at a lower computational cost 

than ANN [222]. 

 
3.3.1.  Kriging 
 

Linear prediction is a fundamental tool in many different fields: adaptive filtering, system 

identification, economics, geophysics, etc. [163]. It flows naturally from scenarios where one 

can assume an underlying linear system, and it is optimal in those cases where the signals 

follow Gaussian distributions. 

 

Let us assume that there is a random stationary signal  x n . The goal of linear prediction is to 

estimate the value of the signal at time n l ,  x̂ n l , from its last N  values, 

     1 , 2 , ... ,x n x n x n N   , where l  is known as the “lag” in the prediction given by the 

algorithm. Thus, the linear prediction can be written as 

 

      
1

ˆ 1

N

T

i

i

x n l a x n i n



       a x  (3.31) 
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where the vector        1 1 , 2 , ...,
T

n x n x n x n N      
 

x  comprises known data and the 

predictor's weights are included in vector  1 2
, , ...,

T

N
a a aa  (super index T  indicates matrix 

transpose). Linear predictors are usually classified by their lag value; depending on l , we speak 

of prediction  0l  , interpolation  0l   or regression  0l  . The unknown parameters a  are 

usually optimized with respect to the mean squared error (MSE) between real values and 

predicted values, resulting in the optimal values, 
o p t

a . In this case, the cost function,  J a , is 

 

         
2

2
ˆ1 1 1J E x n x n E e n        

  
a  (3.32) 

 

where  e n  is the prediction error. The gradient of the cost function can be used to find an 

optimal set of parameters, 
o p t

a . Assuming stationary Normally-distributed data, this process will 

result in the Wiener-Hopf equations [236]: 

 

 
, 0x o p t x

 R a r  (3.33) 

 

 

     

     

     

0 1 1

1 0 2

1 2 0

x x x

x x x

x

x x x

r r r N

r r r N

r N r N r

  

 


 
 

 
   

R  (3.34.a) 

 

      , 0
1 , 2 , ...,

T

x x x x
r l r l r l N     
 

r  (3.34.b) 

 

where 
x

R  is the covariance matrix of signal  x n , 
, 0x

r  is its covariance vector, and  x
r   is 

the covariance function for lag  . Assuming that the covariance matrix is nonsingular, the 

optimal linear predictor can be calculated by inverting 
x

R , 

 

 1

, 0o p t x x


 a R r  (3.35) 

 

Since 
x

R  is a Toeplitz matrix (each descending diagonal from left to right is constant), the 

system of equations (3.33) can be solved efficiently by using the classical Levinson-Durbin 

algorithm [155]. 

 

Geostatistics is a field where linear predictors show a large presence. One of the most important 

algorithms in this area is Kriging, a linear interpolator that calculates 
o p t

a  using the spatial 

covariance of data [116]. The original algorithm, Simple Kriging, is similar to a 2-D linear 

predictor. Thus, equation (3.31) becomes 

 

    0

1

N

T

i i

i

x a x



   p p a x  (3.36) 

 

where 
i

p  is the position of the -thi  data point,  i
x p , and      1 2

, , ...,
T

N
x x x  

 
x p p p . 

Typically, only the N  nearest positions are chosen for prediction, or N  is equal to the number 

of points within a certain distance of the unknown data point. Equations (3.34.a) and (3.34.b) 

are modified to include the spatial distribution of  0
x p : 
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     

     

     

1 1 1 2 1

2 1 2 2 2

1 2

x x x N

x x x NT

x

x N x N x N N

r r r

r r r
E

r r r
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 
  

    
   

 
    

p p p p p p

p p p p p p
R x x

p p p p p p

 (3.37.1) 

 

        , 0 0 1 0 2 0 0
, , ...,

T

x x x x N
E x r r r         
   

r x p p p p p p p  (3.37.2) 

 

Given the properties of the covariance of a real function, 
x

R  is still Toeplitz for the vast 

majority of applications. Kriging is the best linear unbiased predictor (BLUP) for zero-mean 

signals. A common extension of the base algorithm, named Ordinary Kriging (OK), achieves 

the same performance with constant-mean signals. In the case of OK, the system of equations 

(3.33) becomes 

 

 
,1 ,0

1,
0 1

x N o p t x

N 

     
      
    

R 1 a r

1
 (3.38) 

 

where 
,M N

1  is a vector of size [M × N]. Kriging and its variants are very important in 

geostatistical applications, such as the distribution of ground properties [76], natural properties 

[209], and reconstruction of missing data traces [45]. Kriging is a classical algorithm, but new 

variants are still being researched for several applications [103,63,104], some of them including 

nonlinear stages in order to improve the algorithm [15]. 

 
3.3.2.  Wiener structures 
 

The second method we would like to study is the Wiener-Hammerstein structures. There are 

three types of structures: Wiener structures, composed of a linear predictor followed by a 

nonlinear correction stage [278]; Hammerstein structures, composed of a nonlinear function 

followed by a linear predictor [49]; and Wiener-Hammerstein structures, hybrid structures 

composed of two nonlinear stages separated by a linear predictor [30]. These three types of 

structures are shown in Figure 3.5.  

 

The three types of structures are being currently used for the modeling of nonlinear systems 

[64], as well as active noise control [288]. In many cases, they are considered as an alternative 

because of their simplicity, since the simple nonlinear model of the system (if not exact) is 

usually adequate for the application [259,268,211,222]. Wiener structures in particular have 

been used to model nonlinear systems in many different applications. The GTS has used Wiener 

structures in several works on infrared applications [268] and seismic data [211,222]. 

 

In particular, this work will consider Wiener structures, which comprise a linear stage followed 

by a nonlinear correction with no memory. The linear stage can implement any linear prediction 

algorithm; we used Ordinary Kriging ( [116,211]), introduced above. 

 

Let us study the nonlinear stage of the structure. If  p
x n l  is the output of the linear 

prediction, with l  being the lag in the prediction obtained from data samples 

   1 , .. . ,x n x n N  . The nonlinear stage of the Wiener structure is defined as 

 

       |
p p

G x n l E x n l x n l    
 

 (3.39) 
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Figure 3.5. Wiener structure (top), Hammerstein structure (middle), and Wiener-Hammerstein structure (bottom). 

 

Thus, the nonlinearity implemented by the Wiener structure,  G  , is the conditional 

expectation of real data with respect to the output of the linear predictor. Assuming that  x n  is 

stationary,  G   can be estimated from the signal. This estimation can be done in many ways, 

but we considered two methods: direct sample estimation and polynomial approximation ( 

[268]). 

 

3.3.2.a. Direct sample estimation 

 

The nonlinear function  G   can be estimated by applying a sliding window on a set of training 

data: 

 

     
1

1
i

p i l

i

G i w i

  

 

x x  (3.40) 

 

where 
p

x  is a vector with the output values of the linear predictor, sorted from lower to higher; 

l
x  is a vector with the real data values that correspond to those same values (and, thus, sorted in 

the same way as 
p

x ); and 
i

w  is the -thi  value of the sliding window of length  . This 

estimation will return a finite set of points – the curve  G   is interpolated from this set. 

 

In this work, all instances of direct sample estimation were done using a rectangular window of 

length 21  . This value was selected rather heuristically using several experiments with 

simulated data, using the same experiments shown later in this Chapter. 

 

3.3.2.b. Polynomial approximation 

 

A one-dimensional approximation of the nonlinear stage of the Wiener structure was presented 

in [268]. Assuming that  p
x n  is a Gaussian sequence with zero mean and normalized 

variance, and taking  p p
x n l x    and  x n l x   for convenience of notation: 
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      
1

1
,

!
p m p m p

m

G x C x x H x
m





    (3.41) 

 

where 
m

C  is the cross cumulant, defined as  

 t im e s

, , , . . . ,

m

m
C x y c u m u la n t x y y

 

 
 
 

 and 
m

H  is the 

-thm order Hermite polynomial. The assumption of Gaussianity is not as restrictive as it might 

seem, since  p
x n  is the output of a linear predictor – thus, for a large enough N , the Central 

Limit Theorem ensures the Gaussianity of the data. In previous works, we have found that the 

series can be truncated at the third term [268]. In that case, the result is: 

 

    
3 2

3 3 1 2 1 3 2

1 1 5 1 1
3

6 2 2 2 2
p p p p

G x a a x a x a a x a
 

      
 

 (3.42) 

 

where i

i p
a E x x  

 
 are the cross-moments, estimated from training data. 

 
3.3.3. Matrix completion based on smoothed rank function (SRF) 
 

In many practical problems, one would like to recover a matrix from a sampling of its entries; 

for instance, one could attempt to infer the answers in a partially-answered survey (this is also 

known as the “Netflix problem”). Matrix completion consist in the reconstruction of these 

missing entries from known data by assuming that the matrix is structured, i.e., it has low rank 

[36]. It can be regarded as an extension of compressed sensing, since it shows that many objects 

or structures, and not only sparse signals and images, can be reconstructed from a limited set of 

measurements. 

 

Consider a matrix M  of which only a few entries are known. We would like to recover the 

whole matrix based on these revealed entries; however, it is clear that solving this problem is 

not possible without any additional information. Now, let us assume that the matrix is of 

dimension  1 2
n n  and its rank is r ; it is straightforward to calculate that the number of 

degrees of freedom of this matrix is equal to  1 2
r n n r  . So, in order to exactly recover the 

matrix, it is necessary that the number of revealed entries is larger than this number of degrees 

of freedom. In fact, recovery of the matrix from a small number of known entries is possible as 

long as the matrix is low-rank and entries are selected uniformly [36]. In brief, the objetive of 

matrix completion is to obtain a matrix with minimum rank, given a subset of its entries. 

 

There are many matrix completion algorithms, such as FPCA [97] and SDP [81]. In this work, 

we considered an algorithm based on a smoothed rank function (SRF) [95], which makes use of 

a continuous and differentiable approximation of the discontinuous rank function. This function 

can then be minimized using any classical optimization technique. 

 

Consider an unknown matrix M  of dimension  1 2
n n  and rank r  for which only m  entries 

have been revealed. Assume that m  is sufficiently large and the locations of the observed 

entries are sufficiently uniformly distributed; in that case, the matrix completion problem is to 

find a matrix 
o p t

X  that solves the optimization problem: 

 

 
 

 

m in

. . , ,
ij ij

ra n k

s t X M i j  

X

 (3.43) 
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where   is the set of locations corresponding to the m  observed entries. SRF uses a 

continuous approximation  F   of the rank function and then applies continuous optimization 

techniques to minimize it. One such function is the Gaussian function: 

 

  
 

2 2
/ 2

1

k

n

k

F n e
 







  
X

X  (3.44) 

 

where   is a parameter,  k
 X  is the -thk  singular value of X , and  1 2

m in ,n n n . As   

approaches zero,  F


  approaches the rank function. Equation (3.44) is minimized using any 

gradient algorithm while enforcing the condition  , ,
i j i j

X M i j   . 

 
3.3.4. Splines 
 

Splines are smooth polynomial curves that are piecewise-defined, and are smooth at the 

connections between pieces [69]. The highest order of the piecewise polynomials is the order of 

the spline. Splines can obtain good results even with low orders. For instance, the most 

commonly-used splines are cubic splines, which are of order 3. The smooth curve obtained by 

splines can be used for many purposes, one of them being data interpolation, since it can be 

used to evaluate the fitted function at new points. The term “spline” was adopted from the name 

of a flexible strip of metal commonly used by draftsmen to assist in drawing curved lines. This 

strip was held in place at several points or “knots,” and the strip would adopt the shape of 

minimum strain energy between knots. 

 

Let us assume that we have a set of measurements  j
z y  at prescribed points 

j
y , 1 ...j N . 

Briefly, cubic splines fit a piecewise function of the form 
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to the measurements, where 
i

p  is the 3rd -degree polynomial  
3 2

i i i i i
p y a y b y c y d        

for the -thi  piece, 1... 1i N  . The coefficients , , ,
i i i i

a b c d  of the piecewise polynomial are 

calculated such that: a)  P y  and its first two derivatives are continuous in the range  1
,

N
y y ; 

b) the piecewise function is exactly equal to the observed value at each one of the nodes, that is, 

    , 1 ...
j j

P y z y j N  . 

 

3.3.4.a. Thin-plate splines 

 

Thin-plate splines (TPS) are a generalization of splines to two or more dimensions [74]. TPS 

can be likened to the bending of a thin sheet of metal; just like the metal has rigidity, the thin-

plate splines also resist bending by setting a penalty involving the smoothness of the fitted 

surface. 

 

Let us assume that we have a set of measurements,  i
z y , at prescribed coordinates 

j
y , 

1 ...j N . The thin-plate spline  f y  is obtained by minimizing the cost function 

     1p E p R   f f , where  E f  measures the fitting error,  R f  measures the roughness 
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of the spline, and p  is a smoothing parameter. Assuming that y  is two-dimensional, 

 1 2
,

T

y yy , the two terms can be expressed as 
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and the thin-plate spline is obtained by minimizing the cost function. In practice, the TPS is 

defined as a warp of a flat surface. The parameters of this warp are computed by solving a linear 

system of equations.  

 

3.3.4.b. Spherical splines 

 

Spherical splines are another extension of splines to multiple dimensions. However, whereas 

thin-plate splines fit an infinite thin plane to a finite number of points, spherical splines fit a thin 

sphere instead [199]. The advantage is that the mathematical derivations and calculations are 

easier when the data to fit are spherically distributed. A particularly important case of this is 

electroencephalographic data and scalp current densities. The topographic patterns of these 

magnitudes are commonly used to investigate sensory, cognitive and motor activity in the 

human brain. However, actual studies capture data at a limited number of locations and these 

topographic images are constructed with the help of interpolation methods. There are many 

methods, although the most common of them are splines-based methods, the most common 

being spherical splines. Spherical splines are used because they are easier to implement and 

because they seem consistent with the widely-used spherical head models. However, these 

splines do not involve the physics of electric fields in the head. Thus, the application of 

spherical splines to EEG data is justified only by numerical simulations of dipole sources in the 

brain. For real EEG data, splines are fit to the potential at the electrodes, which imperfectly 

sample the superior surface of the head and completely neglect the inferior head surface. 

However, they are widely used in common applications of EEG, even today [83,84]. 

 

The interpolation method is as follows. Let  z y  be the potential at some position y  on the 

surface of a sphere of radius r , and let 
j

y  be the location of the -thj  measurement electrode, 

1 ...j N . Spherical splines assume that the potential at any point y  on the surface of the sphere 

can be approximated by: 
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where  n
P x  is the ordinary Legendre polynomial of order n . In practice, the sum is truncated 

at some finite number of terms 
m ax

n , depending upon the value of the parameter m . The best 

results are achieved when m  equals 3 or 4 [86], and these values have been used in most 

studies. The coefficients , 0 ,1, .. . ,
j

a j N  are determined by satisfying two conditions. First, the 

interpolation function must return the data when evaluated at the original data points. Second, 

the coefficients must add up to zero. These conditions can be combined into a single linear 

system of equations. 
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3.4. Simulations 
 

The proposed methods were tested using several simulations before their application on real 

data (which will be studied in Chapter 5). Figure 3.6 summarizes the different methods and 

combinations considered in this Chapter: E-ICAMM, PREDICAMM, and the proposed state-of-

the-art methods.  

 

 
Figure 3.6. Different method configurations considered during the simulations in this chapter. The shaded boxes 

represent the original contributions of this thesis.  

 
3.4.1. Problem description 
 

3.4.1.a. Probability density functions used for simulated data 

 

Four different probability density functions were chosen to test the proposed methods: uniform 

within the interval [ 1,1] , Laplacian density with zero mean and unit variance; and two 

different K-distributions ( [120,119]) with shape parameters 1   (K1) y 10   (K10) (both 

with zero mean). All four distributions considered, and their statistics, are shown in Table 3.3. 

The selection of these distributions was based on several reasons. The uniform distribution was 

chosen because of its simplicity and because it is the most typical platykurtic (sub-Gaussian) 

distribution. The Laplacian distribution was chosen since it is the most typical leptokurtic 

(super-Gaussian) distribution. Finally, both K-distributions were chosen because they best 

model common noise in many non-destructive testing applications, especially radar (including 

GPR) [202]. 

 

The probability density functions were used to generate several different datasets, each one with 

a different combination of number of classes ( K ), number of variables  M , number of 

unknowns  ,
u n k u n k

M M M , and sources. Details for each one of these datasets are shown in 

Table 3.4. The number of unknown variables is indicated only for prediction purposes. In 

practice, data were generated completely known, and missing values were removed just before 

prediction. 
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Probability density 

function 

Skewness Kurtosis Plot 

Uniform 0 -1.2 (platykurtic) 

 
Laplacian 0 3 (leptokurtic) 

 
K1 1.7 5.3 (leptokurtic) 

 
K10 0.8 0.7 (leptokurtic) 

 
Table 3.3. Data distributions used for simulation. 

 

Dataset # of 

classes, K 

# of 

variables, 

M 

# of 

unknown 

variables, 

Munk 

Probability density 

functions of the sources, 

p(sk) 

Single-class 

datasets 

1 1 2 1 Uniform, Laplacian 

2 1 3 1 Uniform, Laplacian, K1 

3 1 4 2 Uniform, Laplacian, K1, K10 

4 1 4 2 Uniform 

5 1 4 2 Laplacian 
 

     

Multiple-

class datasets 

6 2 3 1 Uniform, Laplacian 

7 2 4 2 Uniform, Laplacian 

8 2 4 2 Laplacian, K1 

9 2 4 2 K1, K10 

10 3 3 1 Uniform, Laplacian, K1 

11 3 4 2 Uniform, Laplacian, K1 

12 3 3 1 Uniform, Laplacian, K1, K10 

13 3 4 2 Uniform, Laplacian, K1, K10 
Table 3.4. Details of all datasets used in the simulated experiment. 

 

3.4.1.b. Parameter estimation 

 

During each iteration of the experiments, the generated data were split 50/50 into training and 

test, as shown in Figure 3.7. The training data were used to estimate the parameters of each of 

the proposed methods using supervised training. 

 

E-ICAMM and PREDICAMM require the estimation of the ICAMM parameters, 

 , , ,
k k k

pW s b  1...k K . These parameters were estimated using supervised training with the 

MIXCA procedure [231] with JADE as the embedded ICA method. Prediction was performed 

using the sampling scheme shown in Figure 3.1.a. As mentioned in Section 3.1.1, the selection 

of the initial value for PREDICAMM is very important, as is the selection of the gradient 

algorithm. These values were set experimentally, and the results are shown in Section 3.4.3. 

 

For Kriging, the data were treated as if the description in Figure 3.7 was a two-dimensional 

problem, and the -thm  value of the -thn  observation was denoted as    , ,
T

x m np p . The 

covariance matrix and the covariance vector (
x

R  and 
,0x

r  respectively) were estimated using 

the sample spatial covariance calculated from training data, and each unknown position was 

reconstructed using all the known positions within a distance of 
K r ig

M  samples. This value was 

chosen empirically. 
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Figure 3.7. Graphical description of the prediction problem. The hatched area indicates missing data. 

 

The linear stage of the Wiener structure was implemented using Kriging. The nonlinear 

correction was obtained using the second half of the training data as validation data. To this 

effect, the last 
u n k

M  variables were predicted as if they were missing, and the prediction was 

compared against the true values in order to estimate the nonlinear correction using direct 

sample estimation (as shown in Section 3.3.2.a). 

 

The splines prediction was performed using thin-plate splines. The splines’ parameters were fit 

using the training data, considering the first 
u n k

M M  variables as the coordinates, y , and the 

latter 
u n k

M  variables as the values to fit, z . The smoothing value for the fit estimation, p , was 

set empirically to 1.  

 

SRF requires no previous training. For prediction, all the data were passed to the algorithm as a 

single [M × N] matrix with missing values as indicated in Figure 3.7. The iteration parameters 

of the algorithm were set empirically, and they are the same as in [95].  

 
3.4.2. Error indicators 
 

Table 3.5 shows the four error indicators that were selected to evaluate the performance of all 

method: signal-to-interference ratio, Kullback-Leibler divergence, correlation at lag zero, and 

mean structural similarity. 

 

3.4.2.a. Signal-to-interference ratio 

 

The first indicator chosen was the Signal-to-Interference Ratio (SIR), a measure of the average 

squared error in the data, and a commonly-used error indicator [269]. It is defined as: 
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where ˆ ( )nz  is the estimate of the true data, ( )nz , N  is the number of data samples to estimate, 

and 
2

  is the Euclidean norm of a vector. Notice that SIR is the inverse of the normalized 

square error of the estimate. 

 

Error indicator Acronym Measured quality 

Signal-to-Interference Ratio 

[269] 

SIR Squared prediction error 

Kullback-Leibler divergence 

[146] 

KLD Divergences between probability density 

functions 

Cross-correlation [192] CORR Temporal/spatial similarity between signals 

Mean structural similarity [275] MSSIM Structural similarity between two images 

Test data Training data 

M 

Munk 

Number of observations, N 



Chapter 3- Building non-linear prediction structures from independent component analysis 

70 

 

Table 3.5. Summary of the prediction error indicators considered in this work. 

3.4.2.b. Kullback-Leibler divergence 

 

The second error indicator was the Kullback-Leibler divergence (KLD), a classical indicator of 

distance between two probability distribution functions [146]. In this case, we will compute the 

distance between the probability density of the predicted data   ˆ
p

z
v and that of the real data

  p
z

v . A symmetrized version of the indicator was used: 

 

 ˆ

ˆ

ˆ

( ) ( )
( ) d ( ) d

( ) ( )

p p
K L D p lo g p lo g

p p

 

 

   
        

   
 

z z

z z

z z

v v
v v v v

v v
 (3.49) 

 

3.4.2.c. Cross-correlation 

 

The value of both the previously-mentioned indicators does not depend on the positioning of 

each error. This is especially true for KLD, since densities are compared without considering 

their position within the data. Because of this, the third error indicator chosen was the cross-

correlation between true data and predicted data (CORR), which measures the temporal 

similarity between those data [192]. It is a classical measure of similarity between two 

sequences of numbers. It can be defined in a different, related form. In our case, we have 

defined it as 
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With this definition, we assure that the CORR value is inside the range  1,1 . 

 

3.4.2.d. Structural similarity index  

 

The fourth and last error indicator was the structural similarity index (SSIM), an indicator of the 

likeness of the structures in two images [275]. This comparison is performed first at a local 

level, by comparing the differences in “luminance,” “contrast” and “structures” corresponding 

to each couple    ˆ,
m m

z n z n , 1, ...,
u n k

m M , as defined by the following equations: 
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 (3.51) 

 

where n  denotes the -thn  estimated sample, 1, ...,n N ;  z
n ,  ẑ

n  are the local estimates 

of the means of the true and the predicted values, respectively;  z
n ,  ẑ

n are the 

corresponding local estimates of the standard deviation;  ˆz z
n  is the local estimate of the 

cross-correlation coefficient; and 
1

C , 
2

C , 
3

C  are small positive values that give stability to the 

indicator. The local SSIM is calculated using these values: 
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where  ,  ,   are parameters that set the relative importance of each term. In this work, we 

consider 1     , 
1

/ 1 0 0C R , 
2

* 3 / 1 0C R  and 
3 2

/ 2C C  (where R  is the dynamic 

range of the true values). The mean SSIM (or MSSIM) between two images is the average of all 

the local SSIM 
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3.4.2.e. Relative importance 

 

The relative importance of these error indicators depends on the application. SIR would be the 

most common, given that most algorithms attempt to minimize the mean squared error, which is 

equivalent to maximizing the SIR. It is a good general indicator of the prediction performance, 

perhaps the most important in applications where a low error is needed. It is quite popular in 

blind-source separation applications, in order to estimate the goodness of the recovered sources 

[276,35].  

 

KLD would be more important in applications where the resulting density of predicted data is a 

factor, e.g., a predictor that was a pre-processing step to an algorithm that depends on the 

probability density function of the data. It is also quite popular in pattern recognition 

applications, and even more so in speech processing [242] and image processing [96]. The best 

possible value for the KLD is zero (it being a distance), unlike the other considered error 

indicators. 

 

CORR is important in applications where the spatial or temporal structure of predicted data 

must be preserved. It is a robust measure of the temporal synchronicity between two signals and 

it can be reliably estimated from sample data. CORR is a popular method for the determination 

of the distance between two sets of neuron spike trains [238,193]. 

 

MSSIM is a common error indicator in the field of image processing. Unlike other error 

evaluation methods, MSSIM is based on a model of the human visual system (HVS), a fact that 

allows it to better estimate the perceived quality of processed images [275,274]. It has been used 

for evaluating image processing results in several applications, such as image watermarking [5] 

and radar imaging [21]. 

 
3.4.3. Parameter setting for PREDICAMM 
 

3.4.3.a. Convergence analysis  

 

The study of the convergence of PREDICAMM was conducted in an empirical fashion, using 

exhaustive search with Monte Carlo experiments. The data for each iteration of the experiment 

were simulated using an ICAMM whose sources followed one or more of the considered 

datasets shown in Table 3.4; class parameters 
k

W ,  k
p s  and 

k
b  were randomly set for each 

class, and all classes were assumed to be equiprobable. This model was used to generate 1,000 

observations. As explained in Section 3.4.1, the first half of these observations was used to 

estimate the ICAMM parameters using supervised training. The second half of the observations 

was used to test the prediction performance of PREDICAMM. The Monte Carlo experiment 

comprised 100 iterations, with the end result being the average of all partial results. This process 

is shown in Figure 3.8. 
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Figure 3.8. Diagram showing each iteration of the Monte Carlo experiment for the simulation. This process is 

repeated a number of times during each Monte Carlo experiment. 

 

First, we tested the stability of the prediction with respect to the input values in a simple case, 

dataset #1 from Table 3.4; a case with one known variable and one unknown variable (i.e., 

2M   and 1
u n k

M  ), uniform and Laplacian sources, and one class. For each experiment, we 

added uniform noise to the true value (i.e., the intended target for the algorithm) and used that as 

the input to PREDICAMM, checking for any difference in the output, both in the end value 
e n d

z  

and in the number of iterations until convergence. To better compare the results between 

experiments, the values in both axes were centered around the true value. Furthermore, the 

Gaussian noise had zero mean and unit variance. Thus, a perfect predictor would always return 

a horizontal line at 
 

0
e n d

z  .  

 

The results are shown in Figure 3.9. There are three distinct regions in the Figure. The first 

region, named No Convergence (NC), is the region where the algorithm does not converge at 

all, since the input is equal to the output. This is because of the gradient algorithm, since values 

too far away from the solution can have a probability exactly equal to zero, and thus a null 

gradient. The second region was named Failed Convergence (FC), since the algorithm 

converges to a wrong value, either because it exceeds the maximum number of iterations (thus 

not reaching the correct value) or because it converges to a local maximum. Finally, the third 

region was named Convergence (C) because values within it do converge to the correct result. 

The values within region C not only converge, but they do so in a lower amount of iterations 

than values in other regions. Region C spans from -2 to +2 around the true value, which means 

that the size of this region is approximately four times the standard deviation of x . 

 

To check the effect of a more complex case, we considered dataset #6 from Table 3.4, a case 

with two different classes. The experiment was performed in the same way as the one shown in 

Figure 3.9, and the results are shown in Figure 3.10. These results are very similar to the case 

with only one class, including the size of region C. However, the method seems to reach the 

maximum number of iterations faster than it did for the previous case. This means that 

convergence is slow for any value outside of region C. 

 

Finally, we considered a case with two unknown variables, case #5 from Table 3.4. The results 

for this case are shown in Figure 3.11. It can be seen that the results are still similar, even 

though the number of unknown variables has increased. In this case, regions FC and C are more 

difficult to separate from each other, but they are clearly different from region NC. The radius 

of region C is slightly lower than it was in the one-unknown-variable case, but it is still greater 

than the standard deviation of x . 
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Figure 3.9. Stability of the prediction in a case with one unknown variable and one class. a) output variable, 

normalized with respect to the true result; b) number of iterations taken. For reference, a perfect solution would mean 

that the output variable is always equal to 0, and the number of iterations would always be close to 0. 

 

 
Figure 3.10. Stability of the prediction for the case with one unknown variable and two classes. a) output variable, 

normalized with respect to the true result; b) number of iterations taken. For reference, a perfect solution would mean 

that the output variable is always equal to 0, and the number of iterations would always be close to 0. 

 

Considering the above results, it seems adequate to choose the average of the data as the initial 

value, 
0

z . By using that value, and assuming stationarity, most data to predict should fall within 

region C. In that case, the algorithm would achieve a good performance. Of course, one could 

also use the results of another prediction algorithm as the initial value. These options are 

compared in another simulation in Section 3.4.3.b to test their relative performances. 

 

To test the speed of convergence of the algorithm, the cost function   ,p y z  was calculated 

for all iterations of the algorithm. The evolution of the cost function for each one of the previous 

experiments is shown in Figure 3.12. The cost function is maximized gradually, with no 

“valley” or negative peak in its progression. The probability density values are much lower in 

amplitude than the components of x , which implies that the gradient should be normalized in 

order to improve convergence. 

 

Of course, this convergence is also dependent on the gradient algorithm. The same kind of 

Monte Carlo experiment was used to compare the performance of the three proposed versions of 

the steepest ascent method (3.14)-(3.16), with the average results shown in Table 3.6. The 

column with the average number of iterations taken allows us to quantify the speed of 

convergence of each variant. The second variant achieved the best results for KLD, CORR and 

MSSIM, while the first variant had the lowest number of iterations and SIR. At any rate, it is 

worth noting that the results of both variants are very similar. Since the speed of convergence 

was important, we used the first variant of steepest ascent, (3.15), to maximize the joint 

probability density. 
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Figure 3.11. Stability of the prediction for the case with two unknown variables and two classes. a) number of 

iterations taken; b) normalized value of the first output variable after convergence; c) normalized value of the second 

output variable after convergence. For reference, a perfect solution would mean that the output variable is always 

equal to 0 and the number of iterations would always be close to 0; in the above, it would correspond to dark blue 

areas in all three sub-Figures. 

 

 
Figure 3.12. Joint probability densities with respect to the number of iterations, depending on the number of classes in 

the model (single, two or three classes).  

 

 

Method Number of 

iterations 

SIR (dB) KLD CORR MSSIM 

Classical method, (3.14) 389.53 -0.8746 7.2733 0.2180 0.2967 

First variant, (3.15) 88.02 0.6920 7.2635 0.2305 0.3097 

Second variant, (3.16) 97.49 0.6880 6.9751 0.2677 0.3258 
Table 3.6. Comparative study between the three considered variants of the steepest ascent method. 
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3.4.3.b. Selection of the starting value  

 

Besides the gradient procedure, the selection of the initial value 
 0

z  is very important for 

convergence. This choice is a classical challenge in optimization, since a good initial value 

speeds up convergence and reduces the possibility of converging to local maxima, while a bad 

initial value may impede convergence [24].  The initial value can be determined in a number of 

ways. The easiest one would be to take a vector of zeroes, 
 0

z 0 , or the expected values for 

each unknown variable, 
 

 
0

E n  
 

z z . A more refined option is to take the result from a 

previous prediction step, e.g., with a linear predictor, and use that result as the initial value for 

the gradient. A good instance of previous predictor would be E-ICAMM. Since both methods 

can use the same ICA mixture model, this initial value would suppose no additional restrictions 

or assumptions on the underlying data model. However, any value could potentially be used as 

the initial value for PREDICAMM.  

 

As shown in Figure 3.6, the following options were considered for the starting value for 

PREDICAMM: PREDICAMM initialized with zeroes (PREDICAMM+0); PREDICAMM 

initialized with the result of Kriging (PREDICAMM+Krig); PREDICAMM initialized with the 

result for Wiener structures (PREDICAMM+Wiener); PREDICAMM initialized with the result 

for SRF (PREDICAMM+SRF); PREDICAMM initialized with the result for thin-plate splines 

(PREDICAMM+Splines); and PREDICAMM initialized with the result yielded by E-ICAMM 

(PREDICAMM+E-ICAMM). The performance of PREDICAMM initialized with each of the 

possible methods was tested using a Monte Carlo experiment like the one shown in Figure 3.8, 

with 100 iterations. This experiment was repeated for each of the datasets shown in Table 3.4. 

 

The results are shown in Figure 3.13. PREDICAMM+E-ICAMM achieved the best performance 

in all four error indicators. PREDICAMM+Splines achieved the second best performance, and 

obtained the lowest KLD (see Figure 3.13.b), while PREDICAMM+SRF performed at a similar 

level for single-class cases (datasets #1 to #5 from Table 3.4). The other proposed initial values 

performed worse than E-ICAMM and SRF: PREDICAMM+0 yielded the worst result; 

PREDICAMM+Krig performed a bit better than the former; and PREDICAMM+Wiener 

achieved a better result than PREDICAMM+Krig for datasets with multiple classes (datasets #6 

to #13 from Table 3.4). In light of these results, only PREDICAMM+E-ICAMM was 

considered in the following. 

 

 
Figure 3.13. Error indicators for the proposed initial values for PREDICAMM. 
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3.4.4. Simulation on data from ICA mixture models 
 

Once the parameters for PREDICAMM were set, the performance of the proposed methods was 

tested through several Monte Carlo experiments similar to the one described in Section 3.4.3 

(see Figure 3.8). In this case, each Monte Carlo experiment comprising 500 repetitions for 

increased robustness of the result. The experiment was repeated for each one of the datasets in 

Table 3.4, resulting in a total of 6,500 iterations. 

 

The results of the prediction using PREDICAMM and E-ICAMM were compared with those of 

a classical linear predictor, Ordinary Kriging, Wiener structures, SRF and splines. These 

methods were introduced respectively in Sections 3.3.1 , 3.3.2, 3.3.3 and 3.3.4. With respect to 

splines, the spherical splines method is not used in this experiment because it is tailored to the 

interpolation of electroencephalographic data. Therefore, only thin-plate splines were 

considered. Furthermore, only the best possible initial value for PREDICAMM was considered 

(PREDICAMM+E-ICAMM, as seen in Section 3.4.3.b). In total, six methods were tested. 

 

Preliminary results showed that the behavior of the proposed methods was slightly different for 

single-class cases (datasets #1 to #5 from Table 3.4) and for multiple-class cases (datasets #6 to 

#13 from Table 3.4), particularly for Wiener structures and Kriging. Because of this, the 

performance analyses are split into two sub-sections. 

 

3.4.4.a. Single-class cases 

 

Figure 3.14 presents a typical prediction test of dataset #3; datasets #1 to #5 display similar 

results. It can be seen that the reconstructed values yielded by E-ICAMM, PREDICAMM and 

SRF (Figure 3.14.c) closely resembled the true values (Figure 3.14.a). Conversely, Splines 

obtained a result not as good, while Kriging and Wiener obtained the worst results (see Figure 

3.14.b). 

 

The results of the considered prediction methods for the five datasets with one class are shown 

in Figure 3.15. For the most part, the shown values are in concordance with Figure 3.14. The 

best result was obtained by PREDICAMM, E-ICAMM and SRF. All three methods yielded  

 

 
Figure 3.14. Typical prediction result for dataset #3: a) true data; b) predictions obtained by the methods with worst 

performance; c) predictions obtained by the methods with best performance. 
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Figure 3.15. Error indicators for the single-class datasets. 

 

similar values, although SRF performed slightly worse on average than the ICAMM-based 

methods. Kriging and Wiener structures obtained the worst results, while Splines obtained an 

intermediate result, except for dataset #1 (in which Splines obtained a result comparable to E-

ICAMM and PREDICAMM). When comparing the two proposed methods, PREDICAMM 

yielded better values of KLD and CORR, yet lower values of SIR and MSSIM. This is in 

concordance with the criterion followed by each algorithm, as explained in Sections 3.1 and 3.2: 

PREDICAMM maximizes the log-likelihood of the data, while E-ICAMM minimizes the 

square error. This behavior was common during the simulations, as we will see. 

 

Figure 3.15 also shows that the results were overall better for cases with one missing variable 

(datasets #1 and 2) than for cases with more than one missing variable (datasets #3, 4 and 5). 

This is due to the lower amount of missing data in those cases, which. This improvement is 

higher when considering SIR (Figure 3.15.a) and CORR (Figure 3.15.c).  

 

3.4.4.b. Multiple-class cases 

 

Figure 3.16 shows the results of one of the variables from a single prediction of dataset #13; the 

other datasets with multiple classes achieved similar performance. Kriging, Splines and Wiener 

structures behaved similarly as they did for the single-class case (compare with Figure 3.14); 

however, Wiener structures performed slightly better, given the presence of nonlinearities in the 

data due to multiple classes. SRF performed worse than for the single-class case, and obtained a 

similar result to Splines. Finally, the best reconstructions were obtained by E-ICAMM and 

PREDICAMM, whose values followed closely the true values to reconstruct (compare Figure 

3.14.a and .c with Figure 3.16.a and .c). At any rate, the predicted values are less precise than 

those for the case with a single class. 

 

This behavior is in concordance with the performance of the proposed methods, as shown in 

Figure 3.17. In general, the performance of the methods was worse for cases with multiple 

classes, particularly in the SIR (as seen in the difference between Figure 3.15.a and Figure 

3.17.a). This owed to the increase in complexity of the underlying model, with multiple classes  
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Figure 3.16. Typical prediction result for one of the variables of dataset #13. 

 

 
Figure 3.17. Error indicators for the multiple-class datasets. 

 

that introduce nonlinearities. Furthermore, the performances of the methods were more spread 

for multiple classes than they were for one class. E-ICAMM and PREDICAMM yielded the 

best reconstructions, with the best values for all the considered indicators. Splines obtained the 

third best result, and the SIR was similar to that of the ICAMM-based methods. SRF obtained a 

worse result than it did for the cases with a single class, and its performance is similar to those 

Wiener structures. Wiener structures improved its performance with respect to the single-class 

case due to the nonlinearities in the model. Kriging obtained the worst result. When comparing 

the two proposed methods, E-ICAMM obtained a slightly higher SIR than PREDICAMM, 

while the latter obtained better KLD and MSSIM than the latter. 
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Parallel to what happened with single-class cases, performance was higher for datasets with 

only one missing variable (in this case, datasets #6, #10 and #12). These are easily noticed in 

Figure 3.17, since they show up as local maxima. 

 
3.4.5. Simulation on data from ICA mixture models with random nonlinearities 
 

The results shown in Section 3.4.4 were calculated for several datasets generated from ICA 

mixture models, which is the ideal scenario for PREDICAMM and E-ICAMM. To test the 

robustness of the methods with respect to alterations of the base model, the data were corrupted 

with a nonlinear element and then the Monte Carlo experiment was repeated; the new process is 

shown in Figure 3.18. This nonlinearity was implemented with a feed-forward neural network 

(one hidden layer with 30 neurons) with random weights for each neuron. To quantify the 

nonlinearity caused by the neural network, only a certain amount of data was corrupted in this 

way, with the amount of corrupted data being called the “distortion rate.” Thus, a distortion rate 

of 0.5 means that half the data were corrupted using the neural network and the other half were 

not. The distortion rate was changed from 0 to 1 in steps of 0.1, and a separate Monte Carlo 

experiment with 500 iterations was performed for each value of the distortion rate.  

 

Given the large number of experiments, this Section only shows results for datasets #4, #9 and 

#13 from Table 3.4 (datasets with one, two and three classes, respectively). The results of these 

simulations are shown in Figure 3.19 for dataset #4, Figure 3.20 for dataset #9, and Figure 3.21 

for dataset #13.  

 

As a general rule, results from Section 3.4.4 do hold true: PREDICAMM and E-ICAMM 

obtained the overall best performance; SRF obtained the third best performance for the single-

class case, but dropped for cases with multiple classes; Kriging and Wiener structures obtained 

the worst results; and Splines obtained an intermediate result. PREDICAMM obtained better 

KLD and CORR, yet lower SIR and MSSIM than E-ICAMM. Finally, the further we increase 

the number of classes in the models, the lower the performance becomes for all of the proposed 

methods (besides the effect caused by distortion).  

 

In general, performance worsened with increasing distortion. This effect seemed more 

noticeable for the case with a single class, in which the methods showed a steep drop in 

performance. As the number of classes in the model increased, the effect of the distortion was 

less important. The decrease in performance was more marked for the ICAMM-based methods, 

due to the deformation of the underlying model. It was also important for SRF in the single- 

 

 
Figure 3.18. Diagram showing the process of each iteration of the Monte Carlo experiment with nonlinear data. This 

process is repeated several times during each Monte Carlo experiment. Note that the third step, where data are 

corrupted with a nonlinearity, is what separates it from the Monte Carlo experiment in Section 3.4.4. 

 

Generate ICAMM 
parameters at random

Generate data x(n) 
from model

Corrupt some data 
with nonlinearity

Estimate parameters 
using first half of 

data

Predict missing 
traces on second 

half of data

Calculate prediction 
performance



Chapter 3- Building non-linear prediction structures from independent component analysis 

80 

 

class case (see Figure 3.19). Conversely, Kriging and Wiener structures are not very affected by 

the distortion.  

 

There was an unexpected behavior on the part of SRF and the ICAMM-based methods. At first, 

their performance decreased with increasing distortion rate, as one would expect. Once 

distortion became high, however, their performance stopped worsening, or even improved. This 

effect is more noticeable in Figure 3.19, but is also present in Figure 3.20 and Figure 3.21. It is 

unlikely to be produced by the gradient in PREDICAMM since both E-ICAMM and SRF (a 

completely different method) do follow the same pattern.  

 

This unexpected behavior could be due to the nature of the mixture model. One could consider 

that distorted data from one class are actually data from a new class, i.e., distorted and non-

distorted data from a given class could be split into two separate classes. This effect means that 

the underlying model becomes more complex, since the original model with K  equiprobable 

classes becomes a model with 2 K  classes with different prior probabilities; the larger the 

distortion rate, the more probable these new classes become.  

 

The prior probabilities of these “new” (distorted) classes are directly related to the distortion 

rate. As the latter rises, the new classes become more probable until the distortion rate is equal 

to 0.5, when the new classes are as probable as the original (undistorted) classes. At this point, 

we could consider that the model is composed of 2 K  equiprobable classes and that it is 

maximally different from the original model. Once the distortion rate increases over 0.5, the 

new classes become more probable than the original classes and the model becomes gradually 

closer to the original one until finally, for unit distortion rate, the original classes have been 

completely replaced by the distorted classes. Thus, the model is again composed of only K  

classes, the same as the undistorted model. This variable complexity explains the behavior of 

the proposed methods, and the simulations in this work (particularly those of Section 3.4.4) 

show that there was indeed a decrease in performance as the number of classes increased. 

  

 
Figure 3.19. Error indicators for the proposed methods with respect to the distortion rate of a single-class ICA 

(mixture) model, dataset #4. 
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Figure 3.20. Error indicators for the proposed methods with respect to the distortion rate of a two-class ICAMM, 

dataset #9. 

 

 
Figure 3.21. Error indicators for the proposed methods with respect to the distortion rate of a three-class ICAMM, 

dataset #13. 

 

There is a second cause of error, which is caused by the fact that distorted data do not satisfy the 

ICA assumption due to the nonlinearities caused by the neural network. This kind of error 

seems more dominant in the single-class case, since the performance of PREDICAMM and E-

ICAMM increased only for distortion rate rises over 0.8 (see Figure 3.19). However, as shown 

by the progression from Figure 3.19 to Figure 3.21, this second type of error is less important 

for the cases with multiple classes. The performance for very high distortion rates is generally 

lower than that for very low distortion rates. 
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3.4.5.a. Convergence of the gradient algorithm 

 

One might wonder whether these changes in the data will affect the convergence of the gradient 

algorithm in PREDICAMM. To test whether this is the case, the convergence experiment shown 

in section 1.4.3 was repeated, but considering nonlinearly-corrupted data with a distortion rate 

equal to 0.5. The results are shown in Figure 3.22, where the base models are called “linear 

ICAMM” and the corrupted models are called “nonlinear ICAMM.” Values shown in the Figure 

were normalized with respect to the maximum probability density, which corresponds to the 

single-class case linear ICAMM. All curves converge rapidly and nonlinear cases achieve lower 

values of the target joint probability density. This lower result is due to the corruption of the 

model, which causes the ICA mixture model to lose likelihood (since data are less likely to 

come from the hypothesized ICAMM, not being generated by a linear mixture of independent 

sources). 

 

 
Figure 3.22. Joint probability densities for linear cases (regular line) and nonlinear cases (dotted line). The nonlinear 

cases were obtained for a distortion rate of 0.5. 

 
3.4.6. Simulation with an increasing number of missing traces 
 

The experiments in Sections 3.4.4 and 3.4.5 have shown that the performance of the proposed 

methods decreases with increasing number of classes. In order to test the performance of the 

algorithm with respect to the number of missing traces, a further simulation was performed 

using a Monte Carlo experiment such as the ones with non-distorted data (see Figure 3.8). The 

data for each iteration of the experiment were generated following a model similar to the dataset 

#9 from Table 3.4, but with 16M   sources instead of just four, and an increasing number of 

missing traces, 
u n k

M . This increase was so the number of missing traces could change further 

than 1 to 3. The missing traces were consecutive and as centered as possible. This does not 

affect PREDICAMM or E-ICAMM, but it can affect the other methods. This process was 

repeated 500 times for a number of missing traces ranging from 1
u n k

M   to 1 5
u n k

M  , for a 

total of 7,500 iterations. 

 

The average results of the experiment are shown in Figure 3.23. Performance was usually better 

than for the cases in Section 3.4.4, owing to the higher amount of information available (16 

variables, as opposed to 3 or 4). PREDICAMM and E-ICAMM yielded the best results, far 

exceeding those of the other considered methods. Wiener structures and SRF obtained the 

second best result, and Kriging and Splines yielded the worst results. PREDICAMM and E-

ICAMM achieved an almost equivalent performance, although E-ICAMM yielded slightly 

higher values of SIR (in concordance with the LMSE criterion). The performance of all methods 

degraded progressively as the number of missing traces increased. The proposed methods, 

however, decreased their performance at a slower rate, or experienced a slight increase in 

performance for some cases. In fact, the results for the correlation and MSSIM indicators were 

almost constant until more than 10 variables were missing. 
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Figure 3.23. Error indicators for the proposed methods with respect to the number of missing variables. 

 

3.4.6.a. Simulation with dimensionality reduction 

 

One of the known disadvantages of ICA is its relatively high computational cost. Because of 

this, many applications utilize a pre-processing stage that performs dimensionality reduction, 

e.g., using PCA. Let us assume a set of data whose dimensionality has been reduced from M to 

M', M' < M, using a PCA with coefficient matrix P of size [M' × M]. The reduced data, x', can 

be obtained as   ' E  x P x x . Let us also assume that these reduced data were used to fit an 

ICA mixture model with M' sources (i.e., with square de-mixing matrices) and K classes.  

 

In principle, there are two possible options to work with this ICA (mixture) model: a) work on 

reduced data by first applying the same PCA with matrix P and then consider the ICAMM; and 

b) work directly on the unreduced data using an ICAMM that combines the effect of PCA and 

ICAMM. However, a) is simply not possible with missing data, as some of the data are 

unknown and therefore the components cannot be obtained. Thus, only option b) remains. The 

ICA (mixture) model can be converted by considering the sources for class k as a function of the 

original data, x: 

 

       ' ' '
k k k k k k k

E           
 

s W x b W P x x b W x b  (3.54.a) 

 '
k k

 W W P  (3.54.b) 

  '
k k

E


  b x P b  (3.54.c) 

 

where '
k

W , 
k

s , '
k

b , 1, ...,k K  are the ICAMM parameters of the converted model. Note that 

'
k

W  is now no longer square, but rectangular of size [M' × M]. Unfortunately, PREDICAMM 

cannot work with non-square matrices because, as far as we know, the transformation of 

probability densities shown in (3.3) is only defined for square matrices. Thus, PREDICAMM 

cannot be used if there is dimensionality reduction in the data. E-ICAMM, however, can still be 

used with rectangular de-mixing matrices. Thus, the question arises: how does this 

dimensionality reduction method affect the performance of E-ICAMM? 
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In order to answer this question, a further Monte Carlo experiment was performed. This 

experiment was similar to that in Section 3.4.6, and it is shown in Figure 3.24. The data for each 

iteration of the experiment were generated following a model similar to the dataset #9 from 

Table 3.4, but with 16M   sources instead of just four, and an increasing number of missing 

traces, 
u n k

M . The number of missing traces ranged from 1 to 15, and missing traces were 

consecutive and as centered as possible. After the data were generated, PCA was applied to 

reduce their dimensionality from M to M' variables, M' ≤ M. An ICAMM was fitted to these 

reduced data and its parameters were then corrected to include the PCA using (3.54.b) and 

(3.54.c). Finally, this model was used by E-ICAMM to predict the randomly-selected missing 

traces from the data, and the goodness of the prediction was estimated. This process was 

repeated with a decreasing number of components M' from M to 2 for each iteration of the 

experiment. The Monte Carlo experiment was repeated 100 iterations and results were averaged. 

 

The results of the experiment are shown in Figure 3.25. Only the values for E-ICAMM are 

shown, since other methods are not affected by the PCA. Their values, however, can be found in 

Figure 3.23 for comparison. Results were in concordance with those of E-ICAMM in Figure 

3.23, with a gradual decrease in performance as the number of missing variables increased. It 

can be seen that there is also a decrease in performance every time that we decrease the number 

of remaining components in the reduced data, M'. This decrease was experienced in two ways: 

a) a general reduction of performance for all values; and b) a degradation of the curve, which 

lost performance at an increasing rate. Thus, it was as if the curve was displaced to the lower 

left corner of the Figures (upper left in the case of KLD). This loss is present even if the amount 

of retained variance in the data is very close to 100%.  

 

Therefore, it can be seen that any amount of dimensionality reduction will cause a slight 

decrease in prediction performance. This fact introduces a trade-off parameter to the 

dimensionality reduction step. Depending on the application, this reduction in performance will 

be compensated by the reduced computational time of E-ICAMM (particularly, the estimation 

of the ICA mixture model and). In this thesis, however, there are no particularly time-restrictive 

applications and thus we opted for the optimal solution in terms of performance (no 

dimensionality reduction) for the applications to real data in Chapter 5. 

 

 
Figure 3.24. Diagram showing the process of each iteration of the Monte Carlo experiment with dimensionality 

reduction. This process is repeated several times during each Monte Carlo experiment.  
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Figure 3.25. Error indicators for E-ICAMM with respect to the number of missing variables and to the reduced 

dimensionality, M' ≤ M, M = 6. Each line is numbered by its corresponding value of M’. The amount of explained 

variance by each line ranged from 92.5% (M’ = 2) to 100% (M’ ≥ 15). 

 

3.5. Conclusions 
 

This chapter has introduced two novel prediction methods based on ICA mixture models, called 

E-ICAMM and PREDICAMM. Both methods interpolate missing data using known data and 

the ICA mixture model. PREDICAMM maximizes the log-likelihood of the data given the 

model, that is, seeks the maximum likelihood criterion. E-ICAMM minimizes the mean square 

error, that is, seeks the LMSE criterion. Both methods require a previous training step in order 

to calculate the model, but other than that, they are general-purpose and can be used in many 

signal processing fields, such as time series forecast, image reconstruction, etc. 

 

Since PREDICAMM uses a gradient algorithm for optimization, its convergence depends 

heavily on the gradient algorithm itself and the starting value. Several experiments were 

performed to select the optimal combination for this work. In the end, the selected parameters 

were a normalized gradient descent algorithm and the output of E-ICAMM as the initial value. 

Since E-ICAMM and PREDICAMM use the same model, this step does not require further 

training. 

 

The performance of the proposed methods was tested using Monte Carlo experiments on several 

sets of simulated data generated from an underlying ICA mixture model. E-ICAMM and 

PREDICAMM were compared with the following predictors: a classical linear predictor, 

Ordinary Kriging; a nonlinear predictor, Wiener structures; a matrix completion algorithm based 

of SRF; and thin-plate splines. In all cases, the performance of the proposed methods exceeded 

that of the methods selected for comparison. SRF obtained similar results to E-ICAMM and 

PREDICAMM, but only for cases with a single class (K = 1), and its performance dropped in 

cases with multiple classes. It was confirmed that performance decreased with increasing 

number of classes for all methods. The proposed methods, however, experienced a smaller 

decrease in performance than the methods selected for comparison. When comparing the two 
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proposed methods with one another, PREDICAMM obtained better values of CORR and KLD, 

while E-ICAMM obtained better values of SIR and MSSIM. Their performances, however, 

were similar. 

 

A second set of Monte Carlo experiments was run to test the behavior of the proposed methods 

with respect to alterations of the underlying model. To this effect, the performance was run with 

data generated from an ICAMM and then corrupted by a nonlinear element. This nonlinearity 

was implemented by a randomly-initialized neural network. Results for this second series of 

tests were similar to those for the first series, and E-ICAMM and PREDICAMM obtained the 

best performance even though the base model was not completely valid. All considered methods 

decreased their performance as the number of distorted data grew larger. The proposed 

ICAMM-based methods and SRF were the most affected by this effect, while Kriging, Wiener 

structures and Splines were the least affected. It was shown that this decrease in performance 

owed to the increase in complexity in the underlying model (i.e., the distorted data were treated 

as new “classes” of data), rather than to the distortion of the validity of the ICA mixture model.  

 

Another Monte Carlo experiment was run to test the performance of E-ICAMM and 

PREDICAMM with respect to the number of missing data, 
u n k

M . The results of this experiment 

were consistent with those of the previous experiments, and the proposed methods obtained the 

best performance. Both proposed methods yielded very similar results, although E-ICAMM 

obtained slightly better SIR values. All methods decreased in performance as the number of 

missing data increased, and this decrease was much slower for the proposed methods. 

PREDICAMM and E-ICAMM achieved a good performance until the number of missing traces 

was high ( 1 0
u n k

M   out of 16 variables). This demonstrates the robustness of E-ICAMM and 

PREDICAMM with respect to the number of missing data.  

 

A final Monte Carlo experiment tested the performance of the proposed methods when 

dimensionality reduction is performed before estimating the underlying ICAMM. Since 

PREDICAMM cannot function in this case, only E-ICAMM was considered for this final test. 

The experiments confirm the loss in performance with increasing number of missing values. 

Furthermore, the dimensionality reduction method did cause a further decrease in performance. 

This loss is present even if the amount of retained variance in the data is very close to 100%. 

Therefore, the dimensionality reduction method introduces a trade-off between performance and 

computational time. 
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 - A general dynamic modeling approach based on 
synchronized ICA mixture models: G- and UG-SICAMM 

 

This chapter presents two new procedures for dynamic modeling which are based on 

synchronized ICA mixture models. The starting point of this work is a method that incorporates 

a hidden Markov model to extend the ICA mixture models to the case of having sequential 

dependence in the feature observation records. This method can be used to model the dynamic 

changes of a process in time; we called it sequential ICAMM (SICAMM) [230]. The proposed 

methods in this chapter extend the one Markov chain employed featured in SICAMM to a 

general framework to characterize the joint behavior of a number of synchronized dynamic 

models or “chains.” We have called these methods Generalized Sequential ICAMM (G-

SICAMM) and UG-SICAMM (Unsupervised G-SICAMM). This latter maximizes the log-

likelihood of the model with respect to all of the available training data and the parameters of 

the model. It could be named SG-SICAMM because it also considers the semi-supervised case.  

 

The procedures can be used for classification using maximum a posteriori estimation and the 

forward-backward procedures as in Baum-Welch and Viterbi algorithms [17,270]. Thus, we 

have tested the classification accuracy and goodness of fit of G-SICAMM and UG-SICAMM 

using several sets of synthetic data with two chains and two, three and four classes per chain. 

Furthermore, the behavior of the proposed methods with respect to dynamically-changing 

sources is studied. G-SICAMM is compared with dynamic Bayesian networks (DBN), a state-

of-the-art method for dynamic modeling. The comparison shows that the proposed method 

performs better than DBN, even if the sources change dynamically, and thus, the adaptive 

capabilities of the method to non-stationary process are demonstrated. In addition, we found that 

the G-SICAMM parameters can be studied to gain further understanding of the modeled data, 

whereas the DBN parameters cannot be examined in this way. 

 

Let us consider this latter point for a moment. Most of the applications of the proposed method 

revolve around classification of data in several categories, i.e., the result is a discrete value. In 

addition, most of the classification methods (e.g., discriminant analysis, DA [169], and Naïve 

Bayes, [175]) only perform classification and their parameters are difficult to interpret or shed 

no further light on the classified data. However, there are methods which obtain not only a 

classification of the data, but also a structured result which is, by itself, a way to interpret the 

data. Two instances of this kind of methods are decision tree learning [206] and hierarchical 
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ICAMM [225], methods in which the data are grouped into hierarchical classes which can let us 

find dependences and relationships between classes at several levels. For instance, two classes 

which branch from a common “parent” class will be more closely related between them than 

related with classes from other parents. Therefore, methods of this second kind return both a 

classification result and a set of parameters from which we can interpret and deduce further 

information from the examined data.  

 

Besides the classification results, the proposed method G-SICAMM returns a structured 

outcome with two main points of interest: i) the G-SICAMM parameters define a subspace 

structure where the ICA parameters for each subspace (or class) can be separately interpreted, 

this extends the classic analysis based on only one ICA (see for instance the 

electroencephalographic signal application [190,127], Figure 4.1); ii) the sequential parameters 

in G-SICAMM show the existence or absence of time dependences among the chains and 

classes. For instance, we not only could attempt to locate the EEG sources on the scanned brain 

surface using the ICA parameters (see Figure 4.1.b to Figure 4.1.d), but we could also search for 

sequential dependences between groups of sources that describe dynamic interactions between 

neural centers in the brain.  

 

 
Figure 4.1. Example of the ICA parameters that can be extracted from one set of EEG data: a) EEG data; b) scalp 

map for an eye artifact; c) scalp map for the alpha waves; d) scalp map for the beta waves. The distribution of the 

scalp maps shows that the alpha and beta waves concentrated on the occipital area. 

 

4.1. Sequential ICA mixture model: SICAMM 
 

In many cases, ICA and ICA mixture models are estimated under the assumption that the data 

are time independent, particularly for methods that maximize the log-likelihood to find the 

model [59,154]. This assumption simplifies the calculation of the probabilities involved in the 

process. However, there are many practical cases where the observations do not behave in a 

totally independent manner and they show some degree of dependence in the feature 

observation record; in these cases, the previous assumption no longer holds true. In order to 

capture such dependences within the framework of ICA mixture models, the calculation of 

posterior probability densities should consider not only the current observation,  nx , but also 

all previous observations,        1 , 2 , 3 , ... , 0n n n  x x x x .  

 

The time dependences among observations are considered in sequential ICA mixture models 

(SICAMM), a method developed by the GTS where the calculation of posterior probability 
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densities includes information from the current observation and all of the available past samples 

[230,223]. SICAMM is the basis for the formulation of the proposed methods. In this section, 

we review it in order to make this chapter self-contained. 

 

SICAMM maximizes     |
k

p C n nX  instead of     |
k

p C n nx , where 

       0 , 1 , ....,n n  
 

X x x x , n  is the current time (with the first observation set at 0n  ) and 

1, ...,k K  is the class. This posterior probability can be expressed as a function of the 

conditional observation densities by using the Bayes rule: 
 

     
       

  

       

       
1

| |
|

|

k k k k

k K

l l

l

p n C n P C n p n C n P C n
P C n n

p n
p n C n P C n



 
 



X X
X

X
X

 (4.1) 

 

where the mixture model is explicit in the denominator of (4.1). The posterior probabilities 

calculated by SICAMM can be used for classification by maximum a posteriori estimation; that 

is, each unlabeled observation is assigned to the class for which it has maximum posterior 

probability. 

 

SICAMM assumes that time dependences can be limited to class selection, and furthermore, 

that they can be adequately modeled by a Hidden Markov Model [39]. In essence, an HMM is a 

finite-state machine that switches between different probability density functions to model the 

observations or “emissions” during that state. The state change is a Markov process, i.e., the 

state at time n  depends only on the state at a previous time n  ; we will consider a first-order 

Markov process, hence 1  .In SICAMM, each state of the HMM corresponds to one of the 

classes in an underlying ICA mixture model, and the ICA parameters for each class model the 

observations during the corresponding state. Given the use of the HMM, the Markov 

assumption is implicit; therefore, each observation is conditionally independent from other 

observations given its class. Thus,     |
k

P n C nX  can be written as a function of the current 

observation,  nx , and past observations: 

 

               | | 1 |
k k k

p n C n p n C n p n C n  X x X  (4.2) 

 

where        | det
k k k

p n C n p n x W s  is the probability of the current observation and, 

thus, it is calculated without considering time dependences. By replacing (4.2) into (4.1) and 

applying the Bayes rule several times, we arrive at the following: 
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    
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 (4.3) 

The posterior probability of the ICA mixture model (see Table 2.2) is similar to (4.3); the only 

change is that   k
P C n  has been replaced in (4.3) by     | 1

k
P C n n X . The prior 

probabilities (which are constant with respect to time) have been replaced by the conditional 

probability of each class during the current time instant with respect to previous time instants 

(which change for each time instant), which introduces time dependences in the model.  

 

Given the Hidden Markov model, the conditional probability     | 1
k

P C n n X  can be 

calculated from the posterior probabilities of the previous time instant as 

 

          
1

| 1 1 | 1

K

k k l l

l

P C n n P C n n



    X X  (4.4) 

 

where     | 1
kl k l

P C n C n    are the transition probabilities, and they are assumed to be 

constant with respect to time (that is, equal for all values of n ). If there were no dependences in 

the feature observation record,        | 1
k l k

P C n C n P C n   and thus

       | 1
k k

P C n n P C n X ; in that case, (4.3) would become equal to the regular ICAMM 

posterior probability. 

 

Thus, the necessary parameters for it are the same parameters required for ICAMM, that is, the 

ICA model for each class,  , , , 1, ... ,
k k k

p k KW b s ; and the class transition probabilities, 
k l

 , 

for all combinations of classes l  and k . The SICAMM algorithm is described in Table 4.1, 

where it is assumed that all of these parameters are known. 

 

Initialization 

 Select initial observation,    0 0X x  

 Calculate sources for each class,      0 0
k k k

  s W x b , 1, ...,k K  

 Calculate posteriors,     0 | 0
k

P C x , using the algorithm in Table 2.2: 

    
     

     
1

d e t 0
0 | 0

d e t 0

k k k

k K

l l l

l

p P C n
P C

p P C n



 


 

W s
x

W s

 

 Initial observation is assigned to the class with maximum posterior probability 

 

Updating 
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For 1, ...,n N , with 1N   being the number of observations: 

 Select current observation,        0 , 1 , ...,n n  
 

X x x x  

 Calculate sources for each class,     k k k
n n  s W x b , 1, ...,k K  

 Calculate conditional class probabilities using (4.4): 

         
1

| 1 1 | 1

K

k k l l

l

P C n n P C n n



    X X  

 Calculate posterior probabilities using (4.3): 

    
       

       
1

d e t | 1
|

d e t | 1

k k k

k K

l l l

l

p n P C n n
P C n n

p n P C n n



  


  

W s X
X

W s X

 

 Current observation is assigned to the class with maximum     |
k

P C n nX  

Table 4.1. The SICAMM algorithm. 

 
4.1.1. Training algorithm 
 

In the previous section, the SICAMM parameters are assumed to be estimated during a training 

stage.  The estimation process of these parameters depends on the kind of training. For semi-

supervised or unsupervised training (i.e., part or all of the training data are unlabeled), all 

parameters should be estimated simultaneously. An algorithm for unsupervised or semi-

supervised training is proposed in Section 4.3. 

 

For supervised training, the estimation of the ICA parameters for each class can be performed 

separately from the estimation of class transition probabilities. The ICA models can be 

estimated using any of the previously mentioned ICAMM methods (for instance, [231,153]), 

while the class transition probabilities are estimated by simple counting: 

 

 
# tran s itio n s  fro m  c lass   to  c lass  

# o b se rva tio n s  in  c lass  
k l

l k

l
   (4.5) 

 
4.1.2. SICAMM variants 
 

As shown in Table 4.1, classification with SICAMM is usually performed using MAP 

estimation, assigning each observation to the class for which it has maximum posterior 

probability. We propose here two algorithm variants that make use of the similarities between 

SICAMM and HMM to improve classification: the Baum-Welch and Viterbi procedures. 

 

4.1.2.a. Baum-Welch algorithm 

 

The first proposed extension to SICAMM is the Baum-Welch algorithm [17], which can be used 

by making use of the correspondences between the classes in SICAMM and the hidden states of 

the HMM. It is usually used to find the unknown parameters of a HMM, but it can also be used 

for classification purposes. In that case, the classification of the -thn  observation is performed 

by maximizing the conditional probability of the current class given all of the observed data, 

    |
k

P C n NX ; where 0, ...,n N  and 1N   is the number of available observations. 

However, this probability is complex to calculate explicitly. Instead, the Baum-Welch algorithm 

calculates the joint probability in two steps: a forward step, where the dependence of each 

observation with respect to previous observations is considered; and a backward step, where the 

dependence of each observation with respect to future observations is considered. 
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The forward step calculates the “forward” variable       ,
k k

n p n C n  X , the joint 

probability of class k  and of all observations up to time n . Although it can be calculated 

explicitly from (4.2),  k
n  is usually calculated iteratively to improve the speed of the 

algorithm. If we take the Bayes rule several times, and considering the Markov assumption, then 

 

 

         

            

            

            

         

      

1

1

1

|

| 1 |

| | 1 1

| 1 | 1 1

| 1 , 1

| 1

k k k

k k k

k k

K

k k l l

l

K

k k l l

l

K

k k l l

l

n p n C n P C n

p n C n p n C n P C n

p n C n p C n n p n

p n C n p C n n p n

p n C n p n C n

p n C n n







 







  

    

     

       

     

   







X

x X

x X X

x X X

x X

x

 (4.6) 

where the initial value is               0 0 , 0 0 | 0 0
k k k k

p C p C p C   x x . The forward 

step calculates all possible values of the forward variable for every time instant, 

  , 1, ... , , 1, ... ,
k

n k K n N   .  

 

After the forward step is complete, the algorithm performs a backward step. This step calculates 

the “backward” variable           1 , 2 , ...., |
k k

n p n n N C n   x x x , that is, the joint 

probability of all future observations conditioned with respect to the current class. Once again, 

the Baum-Welch algorithm calculates this variable iteratively; from the definition and applying 

the HMM and the Markov assumption: 

 

 

          

        

           

      

1

1

1

1 , 2 , .. . , |

1 , 2 , .. . , | 1

1 | 1 2 , .. . , | 1

1 | 1 1

l l

K

k l k

k

K

k l k k

k

K

k l k k

k

n p n n N C n

p n n N C n

p n C n p n N C n

p n C n n







 







   

     

       

     







x x x

x x x

x x x

x

 (4.7) 

 

where the initial value is   1 1, ...,
l

N l K    . As the name of the step suggests, this 

calculation begins at the last observation and moves backwards until all the  l
n  values are 

calculated. Thus, the desired conditional expectation can be found as 

 

       
   

   
1

|
k k

k k N

l l

l

n n
n p C n N

n n

 


 




 



X  (4.8) 

 

As explained above, the classification is performed by choosing the class with maximum  k
n  

for each observation. 

 

4.1.2.b. Viterbi algorithm 
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Another classification algorithm is the Viterbi algorithm, a dynamic programming algorithm 

which searches the most likely sequence of hidden states (classes, in this case) for all N 

observations, also known as the Viterbi path [270]. This sequence is, in general, different from 

the sequence obtained by considering the most likely state at each time in isolation. 

 

The search for the Viterbi path is not performed by an exhaustive search, as this would be too 

computationally expensive for most applications. Instead, the algorithm moves forward; for any 

state k  at time n , only the most likely sequence of states (“path”) that ends in that state is 

considered, and all other paths that end in that state are discarded. This process greatly reduces 

the number of combinations to consider for maximization with respect to an exhaustive search 

(from N
K  to 2

N K ), since most sequences are discarded during computation, and it keeps 

similar properties. Figure 4.2 shows the Viterbi algorithm applied during two consecutive time 

instants; most of the paths are discarded during each time instant and therefore the number of 

possible paths remains constant across time, instead of increasing as it would do during an 

exhaustive search, where we have to sample every possible path. For instance, consider time 

1n   in Figure 4.2; for each state, only one of the incoming paths is accepted, and the rest are 

discarded.  

 

 
Figure 4.2. Sample diagram of states (trellis) for three consecutive time instants in a case with four states. Arrows 

show possible paths; dashed arrows denote discarded paths, and solid arrows denote the most likely path.  

 

To compute the most probable path for each state during a given time instant, the algorithm 

calculates an auxiliary variable  k
n  such that 

 

             
1 2 1

1 1

seq u en ce

m ax 1 , 1 , 2 , ..., 1 ,
n

n

k k k k k

k k

n p n C C C n C n




  X  (4.9) 

 

where  
i

k i
C n k  indicates that the -thn  observation belongs to class 

i
k , and the maximum 

indicates that only the most likely path will be considered. Hence, each value of  k
n  carries 

an associated path, 
1 1
, ..., ,

n
k k k


. 

 

Formally, this auxiliary variable is the maximum joint probability that the current observation 

belongs to class k , given the previous observations and their respective classes. A recursive 

relation is derived from (4.9) to help with the calculation: 

State 

1 

State 

2 

State 

3 

State 

4 

State 

1 

State 

2 

State 

3 

State 

4 

Time n-2 Time n-1 

State 

1 

State 

2 

State 

3 

State 

4 

Time n 
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          
1

1 1 | 1 m a x
k k k l l

l K

n p n C n n  

 

     x  (4.10) 

 

with initial value               0 0 , 0 0 | 0 0
k k k k

p C p C p C   x x . Once all the  k
N  

have been calculated, there are K  possible paths, each one ending in a different state  k
C N . 

The algorithm then selects the path with maximum  k
N  and returns the associated sequence 

of states 
1 1
, ..., ,

n
k k k


 (as seen (4.9) and commented above) as the classification of the 

observations. 
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4.2. Generalized SICAMM: G-SICAMM 
 

There are applications that require more flexible modeling than SICAMM. For instance, it 

would be interesting to consider the joint behavior of two (or more) sets of data, each one with 

its associated ICA mixture model and its own time dependences, but with inter-dependences 

between sets. Thus, we proposed here an extension of SICAMM to multiple HMM chains that 

we have called G-SICAMM. The degrees of freedom afforded by this method will allow a 

broad range of real problems involving the dynamic modeling of complex data densities to be 

dealt with. 

 
4.2.1. The model and the definition of the problem 
 

We assume that there are L  groups of data or “chains,” each modeled by a different SICAMM 

with , 1, ...,
l

K l L  classes. Furthermore, it is assumed that the individual models are not 

independent between them, but rather that their inter-dependences can be modeled by a coupled 

hidden Markov model ( [32]) like the one shown in Figure 4.3. The CHMM refers to a group of 

HMM models in which the state of one model at time n  depends on the states of all models 

(including itself) at time 1n  . We considered the fully-coupled CHMM; although there are 

other CHMM architectures, such as event-coupled HMM [143] and factorial HMM [94], their 

adaptation to G-SICAMM is outside the scope of this work. 

 

Thus, each class from a chain in G-SICAMM corresponds to a hidden state of the same chain in 

the CHMM. In this case, the CHMM models class dependences (both inter-chain and intra-

chain dependences) and the ICA parameters for each class model the observations during the 

corresponding state of that chain. 

 

Before tackling the model itself, we will define several notations which will ease the theoretical 

development of G-SICAMM. The observations from each one of the L  chains are denoted by 

  , 1, .. . ,
l

n l Lx ; likewise, the history of all observations from the -thl  chain up to time n  is 

 

 
Figure 4.3. G-SICAMM graph with two chains, whose variables are indicated by χ (chain 1) and φ (chain 2). The 

square blocks represent the classes, the round blocks represent the parameters of each class, and the arrows show 

dependence between blocks. 
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represented by        0 , 1 , ....,
l l l l

n n  
 

X x x x . Conversely, the set of observations from all 

the chains for a given time is the column vector         1 2
, , . . . ,

T
T T T

L
n n n n 

 
x x x x , and the 

history of all these sets of observations up to time n  is        1 2
, , ...,

L
n n n n  

 
X X X X . 

Finally, we define the class vector  1 2
, , ...,

T

L
k k kk  as a particular combination of classes 

from each one of the L chains, with 1, ...,
l l

k K . The classes from each one of the chains at 

each time instant is given by      
1

...
L

T

k k
n C n C n 

 k
c .  

 

It is assumed that observations are conditionally independent between chains given their 

respective classes; hence,          
1

| |
l

L

l k

l

p n n p n C n



 k
x c x . Given the ICA mixture 

model for each chain and using (2.32), we can obtain that 

 

             
1 1

| | d e t
l l l

L L

l k k k

l l

p n n p n C n p n

 

   k
x c x W s  (4.11) 

 

Finally, we extend the Markov assumption from each individual chain to the joint sets by 

defining               | | 1 |p n n p n n p n n  
k k k

X c x c X c . Thus,     |p n n
k

X c  is a 

function of the current set of observations for all chains and the probability density of the 

previous set of observations,  nx . 

G-SICAMM can perform classification by MAP estimation, i.e., maximizing     |P n n
k

c X . 

This probability can be estimated as in (4.3), but considering the multiple chains in the CHMM 

as follows: 
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 (4.12) 

 

where     | 1P n n 
k

c X  can be estimated from the CHMM in a similar way to (4.4): 

 

          
1 2

1 2

'

' 1 ' 1 ' 1

| 1 .. . 1 | 1

L

L

K K K

k k k

P n n P n n

  

      k k k ' k
c X c X  (4.13) 
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where     | 1P n n  
kk' k k'

c c  is the transition probability from the combinations of classes 

 1 2
' ', ', ..., '

T

L
k k kk  to the combination  1 2

, , ...,
T

L
k k kk . Thus, the CHMM behaves much 

like a “super-HMM” where each state of the super-HMM corresponds to a combination of states 

in the CHMM. The initial values for (4.13) can be estimated as the prior probabilities of each 

combination of states,        0 | 1 0P P 
k k

c X c ; we can write: 

 

      
1

l

L

k

l

P n P C n



 k
c  (4.14) 

 

 

The G-SICAMM algorithm is described in Table 4.2. The parameters of G-SICAMM are the 

ICA parameters from each class and from each chain (that is,  , ,
l l l

k k k
pW s b , 

1, ..., , 1, ... ,
l l

k K L L  ) and the transition probabilities between every pair of combinations of 

classes, , 
k k '

k k ' .  

 

Initialization 

 Select initial observations,          1
0 0 ... 0 , 0 0 , 1, ...,

L l l
l L    

 
X X X X x  

 Calculate sources for each class,     0 0
l l l

k k l k
  s W x b , 1, ..., , 1, ...,

l l
k K l L   

 Initialize conditional class probability for each combination of classes k  using (4.14): 

     
1

0 0
l

L

k

l

P P C



 k
c  

 Calculate posterior probability for each combination of classes k  as 

    
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 Initial observations are assigned to the combination of classes with maximum posterior 

  

Updating 

For 1, ...,n N , with 1N   being the number of observations: 

 Select current observations,          1
... , , 1, ...,

L l l
n n n n n l L    

 
X X X X x  

 Calculate sources for each class,      
l l l

k k l k
n n  s W x b , 1, ..., , 1, ...,

l l
k K l L   

 Calculate conditional class probability for each combination of classes k  using (4.13): 

         
1 2
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  

      k k k ' k
c X c X  

 Calculate posterior probability for each combination of classes k  using (4.12): 

    
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 Current observations are assigned to the combination of classes with maximum posterior 
Table 4.2. The G-SICAMM algorithm. 
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4.2.2. Training algorithm 
 

The G-SICAMM parameters are not known beforehand, and instead they have to be estimated 

from training data. The estimation algorithm depends on the kind of data available for training. 

For unsupervised or semi-supervised data (i.e., data whose classes are only partly known), all 

parameters should be estimated simultaneously. An algorithm for unsupervised or semi-

supervised training for G-SICAMM is proposed in Section 4.3. 

 

In the case of supervised training (i.e., the class of all training data is known), the estimation of 

the ICAMM parameters can be performed separately for each chain and separately from the 

estimation of the transition probabilities. The ICA mixture model for each chain can be 

calculated using any of the traditional ICAMM estimation algorithms (e.g., [231,153]), while 

transition probabilities are usually estimated by counting: 

 

 
# tran s itio n s  fro m  co m b in a tio n  ' to  co m b i n a tio n  

# sam p le s  in  co m b in a tio n  '
 

k k '

k k

k
 (4.15) 

 
4.2.3. G-SICAMM variants 
 

The variants suggested for SICAMM can be applied to G-SICAMM (i.e., the application of the 

Baum-Welch and Viterbi procedures). These procedures were introduced in Sections 4.1.2.a and 

4.1.2.b, respectively. We have considered the G-SICAMM as a “super-HMM,” where each state 

of the super-HMM corresponds to a possible combination of classes of the G-SICAMM. Thus, 

the procedures will work with combinations of classes rather than working with single classes. 

Equations (4.6), (4.7) and (4.10) are thus replaced by the following: 

 

         1 1 | 1n p n n n       k k k k ' k '

k '

x c  (4.16) 

 

         1 | 1 1n p n n n       k k ' k k ' k '

k '

x c  (4.17) 

 

          1 1 | 1 m a xn p n n n       
k k k k ' k '

k

x c  (4.18) 

where     |p n n
k

x c  is calculated using (4.11). The initial values for the auxiliary variables 

,     are changed to            0 0 0 | 0 0p P   
k k k k

x c c , where   0P
k

c  is 

calculated using (4.14). Taking these changes into account, both procedures can be used with G-

SICAMM as an alternative to MAP estimation. 

 

The consideration of the CHMM as a super-HMM, however, is computationally expensive and 

can become intractable as the number of chains or states grow, given that the number of 

combinations of states grows exponentially. There are several modifications of the classical 

Baum-Welch and Viterbi algorithms that alleviate this problem, usually by considering only 

some of the possible combinations of states at a given time [32], by using approximate inference 

[147], or by approximating the calculations [234,287]. However, the cases presented in this 

work were tractable enough, and we only considered the classical version of the algorithms for 

CHMM (equations (4.16) to (4.18)). 
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4.3. Unsupervised Generalized SICAMM: UG-SICAMM 
 

In Sections 4.1.1 and 4.2.2, the estimation of SICAMM and G-SICAMM has been treated using 

supervised training. This section introduces an algorithm for unsupervised or semi-supervised 

training of G-SICAMM and SICAMM based on previous works of the GTS [231]. We have 

named the algorithm Unsupervised Generalized SICAMM (UG-SICAMM). We will assume the 

same model presented in Section 4.2.1. 

 
4.3.1. The log-likelihood cost function 
 

The proposed algorithm maximizes the log-likelihood of the data with respect to the parameters 

of the model, 

 

      
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 


X Ψ π

X Ψ π X Ψ π
X Ψ π

 (4.19) 

 

where Ψ  is a compact notation for all of the unknown ICAMM parameters, 
l

k
W ,  

l
k

p s , 
l

k
b , 

1, ...,
l l

k K , 1, ...,l L ; and π  is a compact notation for all of the transition probabilities, 

    '
| 1P n n  

k k k k'
c c , for all combinations , 'k k ; and assuming   0 1p X . The 

probability   | ,p nX Ψ π  can be expressed as a function of previous time instants by making 

use of the time dependences in G-SICAMM (the Markov assumption) and Bayes rule: 
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 (4.20) 

 

Using equation (4.20), the log-likelihood (4.19) can be re-written as a combination of the 

probability of every available feature vector: 
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 (4.21) 

 

In order to simplify the above equation and the maximization process, the following variables 

are defined: 
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Clearly, 
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where  A n  is the contribution of time instant n  to the log-likelihood, which is to be computed 

by summing up the product of the contribution of the current observation  nx    B n
k

 

multiplied by the contribution of the history  1n X    D n
k

 for every possible value of the 

class vector k .  B n
k

 can be calculated considering the assumed ICAMM and the 

independence of the observations conditioned to the classes: 
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which is equivalent to (4.1) and (4.11). On the other hand,  D n
k

 can be calculated in a 

recursive manner, as we demonstrate in the following. Using the Bayes rule several times, we 

have that 
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where  1A n   can be calculated from past values using (4.22). The initial value,  0D
k

, will 

be considered later. Now, let us compute the gradient   | ,L NX Ψ π  so that we can implement 

algorithms to iteratively estimate the parameters that maximize the log-likelihood. From (4.23) 

we have that 
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Hence, we must now concentrate in the computation of the derivatives of  D n
k

 and  B n
k

 

with respect to the different parameters of the model. The derivatives of  B n
k

 can be 

calculated by making use of the property 
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Whereas the derivatives of  D n
k

 are calculated from (4.25): 
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The derivatives of  1A n   are required in equations (4.29) to (4.31), but they can be obtained 

from the derivatives of the other two variables: 
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Therefore, the derivatives at time instant n  can be computed recursively from their values in the 

previous time instant, 1n  . The recursion starts at 1n  , hence we require initial values for all 

the variables and its derivatives.  

 

The initial values of  0B
k

 and its derivatives can be calculated from the first available 

observation,  0x , using (4.22), (4.27) and (4.28):  
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 (4.33) 

 

At 0n   there are no previous observations. We may assume that the conditional probabilities 

for each combination of classes k  can be replaced by their a priori probabilities, hence 

    0 0D P
k k

c . Finally, the initial value  0A  can be calculated from  0B
k

 and  0D
k

. 

This leads to 
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 (4.34) 

 

Equations (4.27)-(4.34) can be used to calculate the derivatives (4.26) from all of the available 

observations. These derivatives are used in turn to update the parameters for all classes 

1 ... , 1 ...
l l

m K l L  : 
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 (4.35) 

 

where , ,    are the learning rates of the different parameters,  i  denotes the current iteration, 

and  1i   denotes the next iteration. After updating the parameters, the algorithm starts again 

from 0n   for the next iteration.  

 
4.3.2. UG-SICAMM algorithm 
 

The UG-SICAMM procedure is summarized in Table 4.3. 

 

Initialization 

 Initialize the G-SICAMM parameters     '
0 , 0 ,

l l
m m


m m

W b , 1 ... , 1 ...
l l

m K l L   at 

random 

 

Updating 

For each iteration 1, ..., M A X IT E Ri  , 

 Calculate initial values for the variables in (4.33)-(4.34): 

    

    

     

1

0 d e t 0

0 0

0 0 0

l l

L

k k

l

B p

D p

A B D



 



 





k

k k

k k

k

W s

c  

     
  1

lo g 0

0 if   0

o th e rw is e

l

l

l

l

m
T

m l l

m

m

p

B k mB










   
     

  
 



kk

s

W
W

W

0

 

   
  lo g 0

0 0 if  

o th e rw ise

l

l

l

m

l l

m

m

p
B B k m







  
   

 





k k

s

b
b

0
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 For each observation 1, ...,n N , with 1N   being the number of observations: 

  
Calculate  k

B n  using (4.11),     
1

d e t
l l

L

k k k

l

B n p n



  W s  

  
Calculate  k

D n  using (4.25),  
   

 '

1 1

1

B n D n
D n

A n


  
 




k ' k '

k k k '

k

 

  Calculate  A n  using (4.22),      A n B n D n  k k

k

 

  Calculate the derivatives of  k
B n  using (4.27), (4.28): 
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  Calculate the derivatives of  k
D n  using (4.29)-(4.31): 
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  Calculate the derivatives of  A n  using (4.32): 
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 Calculate the value of the log-likelihood   |L NX Ψ , π  using (4.23): 
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 Calculate the derivatives of   |L NX Ψ , π  using (4.26): 
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Update G-SICAMM parameters using the gradient algorithm (4.35): 
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Table 4.3. The UG-SICAMM algorithm.  

 
4.3.3. Non-parametric estimation of the source densities 
 

In the previous equations, the derivatives with respect to the sources have been formulated. 

However, the estimation of these derivatives is not straightforward and it requires prior 

knowledge of the underlying probability densities of the sources. In this work, we propose the 

probability density of each source be calculated using a non-parametric kernel density estimator 

such as the one in [231] (this was introduced in Section 1.1.2, and considered again in Section 

3.1 for the proposed prediction algorithm PREDICAMM).  

 

The derivative of the logarithm of the source densities with respect to the ICAMM parameters, 

required for (4.27), is calculated as 
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 (4.36) 

 

where 
l

k
  is a shorthand notation for 

l
k

W  or 
l

k
b , since (4.36) can be used in both cases, and 

  ,
l

k m
p s n  is the -thm  source from class 

l
k  at time instant n . The density of each source, 

  ,
l

k m
p s n , and its derivative with respect to the source,  , ,

l l
k m k m

p s s  , were calculated in 

equations (3.8) and (3.9), respectively. Since each source can be calculated as 

    , ,
l l l

k m k m l k
s n n  w x b , its derivatives with respect to the ICAMM parameters are 
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where 
m

d  is a column vector of zeros with a 1 in its -thm  position. Thus, finally, the derivatives 

of the logarithm of the densities of the sources are: 
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where   
l

k
f ns  is a column vector whose -thm  element is equal to 
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1, ...,m M . By substituting (4.38) in (4.27) and (4.28), we obtain that 
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Equation (4.39) can be replaced by the natural gradient, a variation of the regular gradient which 

has demonstrated good convergence properties [7]. In that case, the gradient with respect to the 

de-mixing matrices becomes 
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4.3.4. Semi-supervised training 
 

Let us consider a hybrid case with semi-supervised training, in which we could define some 

prior knowledge about some observations, such as their class. For instance, if  l
nx  is known 

to belong to class '
l

k , then     | 1P n n 
m

c x  if '
l l

k k , and     | 0P n n 
m

c x  otherwise. 

In that case, we can omit the calculation of  B n
m

 for all combinations that do not include class 

'
l

k : 
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To help with the correct initialization of the classes, it is convenient to select the initial centroids 

in the form 
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where n s  is the set of observations for which there is prior knowledge about the posterior 

probability of the -thl  chain. Any classes that are learnt in a totally unsupervised manner can be 

initialized randomly. Furthermore, the centroids can be estimated using this prior knowledge 

about the observations, replacing the gradient method in (4.35) for any iteration of the 

procedure. 

 

4.4. State of the art methods 
 

In this work, the performance of the proposed G-SICAMM and UG-SICAMM procedures are 

compared with Bayesian Networks and Dynamic Bayesian Networks [140] that are related 

state-of-the-art methods. These methods were chosen because of the similarities to G-SICAMM, 

although Bayesian Networks are very varied in nature: in fact, HMM and CHMM can be seen 

as particular kinds of (dynamic) Bayesian Networks. Thus, in this section, we include a brief 

review of these methods. 

 

Bayesian Networks and Dynamic Bayesian Networks have gathered much attention during the 

last decade. They have been used for many applications, including data mining [279], biological 

sequence analysis [102], and biosignal processing, including that of EEG data [107,47]. 

 
4.4.1. Bayesian Networks 
 

Bayesian Networks (BN) are graphical structures that allow us to represent and rationalize an 

uncertain domain [140]. A BN comprises a directed graph, G , and several conditional 

probability distributions,  . The graph is itself composed of two kinds of elements, nodes and 

vertices; nodes represent random variables modeled by the network, while vertices state direct 

dependences between the nodes (i.e., variables) they link. Nodes corresponding to discrete 

random variables are usually drawn as squares, while those corresponding to continuous random 

variables are drawn as circles. In some cases, observed variables are shadowed in gray. An 

example of such a graph is shown in Figure 4.4. 

 

One characteristic of these graphs is that there can be no closed circles – that is to say, one 

cannot return to a previously-visited node by following the directed vertices. Such a graph is 

called a directed acyclic graph (DAG), and it greatly simplifies the task of calculating the joint 

probability density of the network. 

 

A vertex from node 
i

  to node 
j

  implies a direct dependence of node j  with respect to node 

i . In BN theory, 
i

  is usually named a “parent node” of 
j

 ; likewise, 
j

  is known as a 

 

 
Figure 4.4. Sample graph of a Bayesian Network with discrete nodes (χ1, χ2) and continuous nodes (χ3, χ4, χ5). 
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χ5χ2



Chapter 4- A general dynamic modeling approach based on synchronized ICA mixture models: G- and 

UG-SICAMM 

110 

 

 “children node” of 
i

 . These definitions can be extended to define the “ancestors” or 

“descendants” of a given node. 

 

The graph of a BN shows conditional dependences and assumes that any given variable is 

conditionally independent of all of its non-descendants, given the parents of the variable. These 

dependences are modeled by the conditional probability density functions of the BN,  . Thus, 

the -thi  node is defined by its  |
B i i

P  π  functions, where 
i

π  is the set of parent nodes of i . 

For discrete nodes, these probabilities are usually represented as a table.  

 

Given the above, a Bayesian Network allows to easily define the joint probability density of a 

set of K  random variables 
k

 , 1, ...,k K : 

    1 2

1

, , . . . , |

K

B K B k k

k

P P   



  π  (4.44) 

 
4.4.2. Dynamic Bayesian Networks 
 

Dynamic Bayesian Networks are an extension of regular BN that deals with stochastic processes 

with time dependences. In this case, time is discretized as a series of regularly-placed time 

instants, n ,  at which the modeled variables are measured. The graph G  is extended to include 

time dependences and the joint probability function of the system becomes 

 

        
1

0

0 : 1 | 0 :

N

n

P N P n n





 χ χ χ  (4.45) 

 

where  nχ  is the set of variables that define the system at time n , and  0 : nχ  is the set of all 

variables at times 0,1, 2 , ..., n . The above joint probability density is still very complex, but it 

can be simplified by making the Markov assumption, i.e., future data are conditionally 

independent from past data given the current observation. Therefore, future states of the DBN 

are dependent only on the current state. In that case, (4.45) becomes 

 

        
1

0

0 : 1 |

N

n

P N P n n





 χ χ χ  (4.46) 

 

One common assumption of many DBN is stationarity, i.e., any temporal dependence remains 

the same for all time. In this case, the network can be adequately modeled by considering the 

dependences within the initial values,   0P χ , and the dependences during the transition 

between any two time instants,     | 1P n n χ χ . This is usually known as a Two-slice 

Temporal Bayes Network (2TBN). Hidden Markov models are the most common instances of 

2TBN (see Figure 4.5), since they are extremely useful despite their simplicity, are broadly used 

in several applications, such as speech recognition [91] and biological sequence analysis [140]. 

 

 
Figure 4.5. Graph of a HMM, one instance of a 2TBN. 
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4.5. Simulations 
 

The proposed procedures were tested on simulated data before their application on real data that 

will be studied in Chapter 6.  

 
4.5.1. Measuring the distance between two G-SICAMMs  
 

Some of the applications in this work require measuring the distance or difference between two 

sets of G-SICAMM parameters, e.g., to compare two G-SICAMM calculated at different times. 

However, given the novelty of these procedures, there is no commonly-used measure of the 

similarity of two given models. Considering their parameter structure, it seems appropriate to 

combine the similarity measures for Hidden Markov Models with those for ICA. 

 

Any similarity measure used to compare ICA mixture models, including sequential models like 

G-SICAMM, should take into account the indeterminacies or unknowns of ICA, i.e., the sources 

are recovered in no particular order, and the sources are identified up to a scale factor (including 

a sign),  . In this work, two indicators were considered, the Amari index and the SIR. Both 

indicators are typical in the comparison of ICA models. A third indicator, the probabilistic 

distance, was considered in order to compare transition probabilities, thus completing the 

comparison of G-SICAMM parameters. 

 

In the following, the G-SICAMM parameters at time instants 
i

n  and 
j

n  will be denoted by the 

super-indices  i
 and  j

, respectively, while the models will be referred to as  
 i

  and 
 j

 , 

respectively. Note that, even though the formulation will assume two G-SICAMM, these 

indicators can be used to compare two sets of SICAMM parameters by setting 1L  . 

 

4.5.1.a. Amari index 

 

The Amari index is used to calculate the similarity of a given matrix and any permutation 

matrix,  P  [7]. In the case of ICA, this estimator can be used to attest the performance of an 

estimated de-mixing matrix, ˆ
l

k
W , if we know the true mixing matrix, 

l
k

A . The more similar 

the product ˆ
l l

k k
W A  is to a permutation matrix, the better the source extraction is. Conversely, 

we can use the Amari index to calculate the similarity between two de-mixing matrices if we 

invert the first one,  
1

(1 ) (1 )

l l
k k



A W , and consider the product  
 

1
2(1 )

l l
k k



W W . The definition 

of the Amari index is 

 

  
(1 ) ( 2 )

1 1 1 1

, 1 1
m a x m a x

l l

M M M M
ij ij

k k

i j j ik ik k k j

p p
a

p p   

   

      
   
   

   W W  (4.47) 

 

where    
1

(1 ) ( 2 )

l l
ij k k

P p


  W W  and M  is the number of sources in the ICA model. The 

index can range from 0 (perfect match) to a maximum value of  1 / 2M M   (constant 

matrix). In this work, values were normalized to range between 0 and 1. 

 

The Amari index between two models is calculated by comparing their classes one by one using  

(4.47) and then averaging the results: 

 

  
 

 
 

2 2(1 ) (1 )

1 1

1 1
, ,

l

l l

l

KL

k k

l kl

a a
L K 

 
    

 

  W W  (4.48) 
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The Amari index is not affected at all by the value of the sources, ignoring the second unknown 

in the ICA model. The index is also robust with respect to the first unknown, since any change 

in the order of the sources would only result in a different permutation matrix with the same 

index. It is also possible to estimate the nearest permutation matrix using this index, thus 

allowing us to set the same source ordering in both models and removing that unknown during 

the calculation of the other indicators. 

 

4.5.1.b. Signal-to-interference ratio 

 

The most classical definitions of the SIR are sensitive to the scale factor  , but an indicator 

robust to this unknown was introduced in [101]. In that work, the SIR is defined as 

 

  
 

  

 
   

       

2
1 ( 2 )

, ,
2(1 )

22 2
(1 ) ( 2 ) (1 ) ( 2 )

1
, , , ,

,
1

,

,

l l

l l

l l l l

M
k m k m

k k

m
k m k m k m k m

s n s n

S IR n n
M

s n s n s n s n



 

s s  (4.49) 

 

where 
( )

,
l

i

k m
s  is the value of the -thm  source, 1, ...,m M , from class 

l
k  in model i , and 

   
1

,

N

n

x y x n y n



   is the interior product of two sources ,x y . Same as we did with the 

Amari index, the SIR is first calculated separately for each class and then averaged: 

 

  
   

 
  

2 2(1 ) (1 )

1 1

1 1
, ,

l

l l

l

KL

k k

l kl

S IR S IR n n
L K 

 
    

 

  s s  (4.50) 

 

4.5.1.c. Probabilistic distance 

 

The SIR and the Amari indexes allow us to compare ICA mixture models, but G-SICAMM also 

include temporal dependences which those two indicators do not consider. Thus, the transition 

probabilities are compared using a third indicator, the probabilistic distance, which was 

proposed as a distance measure between Hidden Markov Models [281]. This indicator is used 

considering the similarities between G-SICAMM and a CHMM model. 

 

Usually, the difference between HMM models are estimated using the Kullback-Leibler 

divergence between transition probabilities. Unfortunately, the required calculations are 

complex and have no closed form ( [201]), thus the Kullback-Leibler divergence is estimated 

using Monte Carlo experiments. However, this can be computationally complex and slow. To 

avoid this problem, the probabilistic distance is considered instead, since it is much simpler to 

calculate ( [201]). The probabilistic distance is calculated using the information from each 

combination of states: 

 

  

 

 

1 2

1 2

1 2

1 2

(1 )

1 1 1(1 ) ( 2 )

( 2 )

1 1 1

. . .
1

, lim lo g

...

L

L

L

L

K K K

k k k

K K K
n

k k k

n

D P
n

n





  

 

  

 

 

    
 

 

 

  

  

k

k

 (4.51) 

 

where ( )i


k
 is the information in model  1, 2i i   in the combination of states  1 2

, , . . . ,
L

k k kk  

at time n . This information can be recursively calculated at each time as 
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              
1 2

1 2

( ) ( )

' 1 ' 1 ' 1

. . . | | 1 1

L

L

K K K

i i

k k k

n p n n P n n n 

  

      k k k k ' k
x c c c  (4.52) 

 

where the initial value is equal to the prior probability of each state combination, 

   
( )

1

0
l

L

i

k

l

P C



 k
. Note that nlike the SIR and the Amari index, the probabilistic distance is 

calculated for the two compared models, not for any single class. 

 
4.5.2. Simulation of UG-SICAMM for semi-supervised training 
 

The convergence of UG-SICAMM for semi-supervised training was studied using a Monte 

Carlo experiment with synthetic data. These data were simulated using a G-SICAMM with two 

chains  2L  , two classes  2K  , and observations of dimension two  2M  . The mixing 

matrices for each class were randomly initialized using values drawn from a uniform 

distribution in the range  0 , 1 . The centroids were the same for both chains, and they were set 

relatively close,  1
1 1

T

b  and  2
1 .5 1 .5

T

b . The sources followed a uniform distribution 

with zero mean and unit standard deviation. Finally, the classes  n
k

c  were randomly generated 

using a CHMM which was modeled as a super-HMM with 4L K   states. The transition 

probabilities of this super-HMM were initialized as follows. It was decided that both chains 

would show the same time dependences, and the transition probabilities for each chain were 

initialized as   

 

 

   

   

   

     

1 1 2 2

1 2 2 1

1 1 2 2

1 2 2 1

i f  th e  o th e r c h a in  w a s  in  c la s s  1  a t  t im e  1
1

if  th e  o th e r c h a in  w a s  in  c la s s  2  a t  t im e  - 1 
1

n n
n

n n

n n
n

n n

  

  

   

   

  


   

   


    

 (4.53) 

 

where   and   are two parameters which regulate the sequential dependence in the G-

SICAMM.   is the intra-chain dependence parameter, since it sets the time dependence of each 

chain with respect to past values of the same chain; and conversely,   is the inter-chain 

dependence parameter, since it sets the time dependence of each chain with respect to past 

values of the other chain. From (4.53), it can be seen that  0 1   and 1     . For 

0   the transition probabilities of each chain are independent from the other chain; 

furthermore, if 0, 0 .5    there is no time dependence. Once the 

1 2
1 2

, 1 ... , 1 ...
k k

k K k K    for each chain have been initialized, the transition probabilities of 

the equivalent super-HMM, 
k k '

, are calculated from the probabilities for every possible 

combinations of classes in (4.53) using results from probability theory. In the experiments 

shown in this section, 0 .8   and 0 .1  . 

 

For each iteration of the experiment, the parameters were randomly set as explained above and 

1024N   observations,   , 1 .. .n n Nx , were generated from the model, along with their 

respective classes,  n
k

c . It was considered that only some of the observations were labeled, 

and the amount of labeled data was called the supervision rate. A supervision rate of 100% 

indicates that all labels are known, and thus, we perform supervised training. Conversely, a 

supervision rate equal to 0% indicates that no labels are known, and thus, we perform 

unsupervised training. The labels were selected at random, and each  nx  could be unlabeled, 
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partly labeled (we know either  
1

k
C n  or  

2
k

C n ), or totally labeled (we know  n
k

c ). After 

the generation process, the observations and the labels were passed to UG-SICAMM for 

estimating the G-SICAMM. Finally, we calculated the distance between the estimated model 

and the true model using the indexes shown in Section 4.5.1. This process is summarized in 

Figure 4.6; the procedure was repeated 100 times and results were averaged. The Monte Carlo 

experiment was repeated for values of supervision rate from 0% to 100% in steps of 10%.  

 

UG-SICAMM is compared with G-SICAMM estimated using the supervised training algorithm 

explained in Section 4.2.2. The supervised training data were obtained by removing unlabeled 

observations from the record; therefore, there is no result for the 0% supervision rate. The 

ICAMM parameters were estimated using the MIXCA procedure [231] (with JADE as the 

embedded ICA algorithm), and the transition probabilities were estimated by counting.  

 

Figure 4.7 shows the results of the experiment. The performance of UG-SICAMM and G-

SICAMM increased with the supervision rate. In the case of G-SICAMM, this improvement 

was steady. UG-SICAMM improved at a slower pace after the supervision rate surpassed 50%. 

Particularly, the probabilistic distance (Figure 4.7.c) of UG-SICAMM increased for a 

supervision rate above 40%. The results for both methods are similar, although the supervised 

training used for G-SICAMM obtained the best results in all distance indicators for supervision 

rates above 40%. This is due to the good convergence properties of the embedded ICA 

algorithm, JADE, which obtained de-mixing matrices closer to the true ones. However, UG-

SICAMM obtains good results in all cases, and it is able to achieve a result for unsupervised 

data. 

 

 
Figure 4.6. Diagram showing an iteration of the simulation with semi-supervised training. This process is repeated a 

number of times during each Monte Carlo experiment. 

 

 
Figure 4.7. Results for the simulation with semi-supervised training data: a) Amari index; b) SDR; c) probabilistic 

distance.  
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4.5.3. Simulation of SICAMM and G-SICAMM variants 
 

The classification performance of the proposed methods was tested with several Monte Carlo 

experiments similar to the one presented in Section 4.5.2, except the following. The experiments 

in this section use a slightly modified iteration process, shown in Figure 4.8. Once the model 

was randomly initialized and the data were generated, the first half of the data was used for 

estimating the parameters for each one of the proposed methods using supervised training; this 

is explained in detail later on. After training, the performance of the methods was tested by 

performing classification on the second half of the data; it was measured using the classification 

error rate. 

 

G-SICAMM was configured in the same way as the model used for data generation, with two 

chains and two classes per chain ( 2K   and 2L  ). For the other ICA-based methods 

(SICAMM and ICAMM) a single model was used for the data of both chains, 

     1 2
,

T
T T

n n n 
 

x x x . To compare these models with the one obtained with G-SICAMM, 

SICAMM and ICAMM considered four classes  ' 4K  , one class per combination of classes 

in the G-SICAMM:  1
1,1

T

k ,  2
1, 2

T

k ,  3
2,1

T

k , and  4
2, 2

T

k . The graphs for these 

methods are shown in Figure 4.9.a, Figure 4.9.c and Figure 4.9.e for ICAMM, SICAMM and G-

SICAMM respectively. The parameter estimation for the ICA-based methods was performed 

using the training algorithm explained in Section 4.2.2. The ICAMM parameters were estimated 

using the MIXCA procedure [231] (with JADE as the embedded ICA algorithm) and the 

transition probabilities were estimated by counting. 

 

Three types of Bayesian networks were considered, each one similar to one of the ICA-based 

methods: a network without temporal dependence (BNT); a network with dependence similar to 

a HMM (DBN); and a network with two-chain dependence similar to a CHMM (DBN2). The 

configuration of these methods was similar to that of the ICA-based methods: for the DBN2, 

two chains were considered, each one with two classes ( 2K   and 2L  ); DBN and BNT were 

adjusted considering four classes, ' 4K  , one for each combination of classes from the DBN2 

method. The node probabilities were modeled using Gaussian Mixture Models (GMM). The 

number of mixtures for each node was determined by training several GMM with an increasing 

number of classes (3 to 20) and selecting the best fit. This selection was performed using the 

Akaike Information Criterion ( [4]), a commonly-used criterion to test the quality of a model. 

The AIC is a relative estimation of the information lost by representing the data with a given 

model, and it is defined as 

 

   ( ) 2 2 log |A IC k p   x  (4.54) 

 

 
Figure 4.8. Diagram showing the process of each iteration of the simulation. This process is repeated several times 

during each Monte Carlo experiment. 
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Figure 4.9. Graphs for the proposed methods: a) ICAMM with four classes; b) BNT with four classes; c) SICAMM 

with four classes; d) DBN with four classes; e) G-SICAMM with two chains and two classes per chain; f) DBN2 with 

two chains and two classes per chain. 
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where k  is the number of parameters in model  . Figure 4.10 shows an example of this 

selection process; in this case, the lowest AIC value corresponded to a Gaussian Mixture Model 

with eleven components. The graphs for these methods are shown in Figure 4.9.b, Figure 4.9.d 

and Figure 4.9.f for BNT, DBN and DBN2 respectively.  

 

For the first experiment, the inter-chain dependence parameter was set to 0 .1   and the intra-

chain dependence parameter was changed between 0 .5   (no dependence) to 0 .99   

(almost complete dependence) in steps of 0.025. The Monte Carlo experiment was repeated 300 

times for each value of  , for a total number of 6,000 iterations.  

 

Figure 4.11 shows the average classification error rate of the proposed methods. The results are 

split into three sub-Figures. Figure 4.11.a compares the performance of SICAMM using MAP 

estimation with that of SICAMM using its proposed variants, the Baum-Welch and Viterbi 

algorithms (denoted as SICAMM+BW and SICAMM+VI respectively). Figure 4.11.b is 

similar, but compares G-SICAMM and its variants. For readability, Figure 4.11.c shows the 

results for all the proposed methods except for the variants of SICAMM and G-SICAMM. 

 

It can be seen that the static methods (ICAMM and BNT) maintained or decreased their 

performance when the intra-chain dependence increased; conversely, most of the dynamic 

methods (DBN, SICAMM and G-SICAMM) increased their performance as   increased. 

SICAMM and G-SICAMM performed better than DBN, and G-SICAMM achieved the best 

classification performance due to its exploitation of the time cross-dependences between chains. 

  

 
Figure 4.10. Sample of the calculation of AIC used for the estimation of the number of GMM components for 

modeling node probabilities: a) AIC values, with the optimal value denoted by an asterisk; b) PDF fit corresponding 

to the optimal value. 

 
Figure 4.11. Classification results with respect to the intra-chain dependence parameter,  : a) SICAMM versus its 

proposed variants; b) G-SICAMM versus its proposed variants; c) comparison of all the proposed methods. 
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As a matter of fact, G-SICAMM yields the best result in every point of the simulation. The low 

performances of DBN2 and BNT were due to problems with estimating the model from the 

training data. Furthermore, the two variants proposed for classification (the Baum-Welch 

algorithm and the Viterbi algorithm) have achieved better classification performance than MAP 

estimation for SICAMM (Figure 4.11.a) and for G-SICAMM (Figure 4.11.b). This 

improvement is negligible for low values of the dependence parameter  0 .7  , but it 

increases consistently with temporal dependence, up to half the error rate of MAP estimation for 

very high values of dependence. Both variants obtained similar results, although the Baum-

Welch algorithm performed slightly better than Viterbi.  

 

A second Monte Carlo experiment was performed to test the performance of the proposed 

methods with respect to changes in the inter-chain dependence. In this case, the intra-chain 

dependence parameter was set to 0 .8   and the inter-chain dependence parameter was 

changed between 0   (no dependence) and 0 .8    (maximum dependence) in steps of 

0.06. The simulation was repeated 300 times for each value of   and the results were averaged, 

for a total number of 3,900 iterations. 

 

Figure 4.12 shows the results of the experiment. As with Figure 4.11, the results of the proposed 

variants to SICAMM and G-SICAMM are separated into sub-Figures in order to make the 

results clearer. Figure 4.12.c shows that G-SICAMM consistently outperformed the other 

proposed methods, and SICAMM achieved a slightly worse result. The dynamic Bayesian 

Networks (DBN and DBN2) improved as the inter-chain dependence increased, while G-

SICAMM and SICAMM worsened for very small values of   and only improved their 

performance when 0 .3  ; however, SICAMM and G-SICAMM outperformed DBN and 

DBN2 for all the considered values of  . ICAMM achieved a stable result since it does not 

consider dependence. BNT obtained the worst result, which worsened as the dependence 

increased due to problems during model estimation. 

 

Figure 4.12.a and Figure 4.12.b for SICAMM and G-SICAMM, respectively, show that both of 

the proposed variants achieved a lower error than the base methods. This improvement 

remained stable for low values of   and increased for higher values of dependence, up to a 

maximum of half the value of MAP estimation. This is consistent with the results in Figure 

4.11.a and Figure 4.11.b, where the improvement also increased with the dependence parameter. 

The Baum-Welch algorithm achieved the lowest error for both SICAMM and G-SICAMM, 

although the difference with Viterbi was small and, in fact, decreased as the dependence  

 

 
Figure 4.12. Classification results with respect to the inter-chain dependence parameter,  : a) SICAMM versus its 

proposed variants; b) G-SICAMM versus its proposed variants; c) comparison of all the proposed methods.  
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increased. The behavior shown in Figure 4.12 can be explained from (4.53). If 0 .5  , positive 

values of   will actually reduce the time dependence in the model as long as 0 .5   . If 

we keep increasing the inter-chain dependence parameter so that 0 .5   , the overall time 

dependence in the model rises again. This explains the results in Figure 4.11 and Figure 4.12, 

where the effect of the time dependence is more pronounced the more    steps away from 

0.5. 

 

4.5.3.a. Dynamic experiments 

 

We performed further experiments to test the resilience of the proposed methods with respect to 

alterations of the base assumptions of ICA mixture models: in particular, if the probability 

density functions of the data change with time. To this effect, the dependence parameters were 

set to 0 .8  , 0 .1   and the probability density function of the sources was altered. The 

sources were split into two groups: stationary sources, which kept a constant probability density 

during the experiment; and dynamic sources, which changed their density with time. The 

stationary sources followed a uniform distribution, while the dynamic sources followed a beta 

distribution with shape parameters 1a   and b  changing with time (the values of b  are shown 

in Figure 4.13). All the sources had zero mean and unit variance. The beta distribution was 

selected because it is a parametric distribution that enables to gradually change its shape in time 

(see Figure 4.13.b), and because it is equivalent to the uniform distribution when 1a b  . The 

number of dynamic sources was changed from 0 (all sources stationary) to 8 (all sources 

dynamic). Dynamic sources were distributed evenly between the chains and the classes.  

 

Other than the different sources, the classification experiment followed the steps shown in 

Figure 4.8. Note that the models were trained using static data, since even dynamic sources did 

not change during the first half of the data, as seen in Figure 4.13.a, and were then tested on 

partially dynamic data that were progressively more different from the training data. The 

simulation was repeated 300 times for each number of dynamic sources and the results were 

averaged, for a total number of 2,700 iterations. 

 

The classification results are shown in Figure 4.14. All the methods showed a similar increase in 

error as the number of dynamic sources increased, i.e., as the underlying model became less and 

less stationary. The behavior of the methods is consistent with that in Figure 4.11 and Figure 

4.12: i) G-SICAMM obtained the best result; ii) ICAMM-based methods (ICAMM, SICAMM 

and G-SICAMM) obtained a lower error, in general, than Bayesian networks (BNT, DBN and 

DBN2); iii) the proposed variants to SICAMM and G-SICAMM obtained a better result than 

the base method.  

 

 
Figure 4.13. Evolution of b: a) value for each observation and resulting skewness and kurtosis of the beta distribution; 

b) beta density for five values of  b; in all cases, a = 1. 
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Figure 4.14. Classification results with respect to the number of dynamic sources: a) SICAMM versus its proposed 

variants; b) G-SICAMM versus its proposed variants; c) comparison of all the proposed methods. The sequential 

dependence parameters were α = 0.8 and β = 0.1. 

 

We performed a second experiment with a different probability density. The only change with 

respect to the first experiment is the probability densities of the sources. Static sources followed 

a K distribution (see Table 3.3) with shape parameter K = 1 and dynamic sources followed a K 

distribution with K ranging from one to five and changing with time (see Figure 4.15.a). 

 

The classification results of this second experiment are shown in Figure 4.16. The error 

increased with the number of dynamic sources, in concordance with the results in Figure 4.14. 

With the K distribution, however, there was a greater dependence on the number of dynamic 

sources: the results were better when all sources were static, but worsened at a faster rate, and 

became much worse (almost double the balanced error rate) when all sources were dynamic. 

Another difference is that DBN and DBN2 slightly changed their behavior with respect to the 

experiment with the beta distribution. This was probably due to the larger differences 

introduced by the changes in the K distribution, whose high-order statistics change more than 

those of the beta distribution (compare Figure 4.13.a with Figure 4.15.a). DBN2 performed 

better than DBN (i.e., obtained lower error), yet slightly worse than ICAMM. ICAMM-based 

methods obtained the best results, and G-SICAMM+BW obtained the lowest error rate. 

 

 
Figure 4.15. Evolution of K: a) value for each observation and resulting skewness and kurtosis of the K distribution; 

b) probability density for five values of K. 
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Figure 4.16. Classification results with respect to the number of dynamic sources: a) SICAMM versus its proposed 

variants; b) G-SICAMM versus its proposed variants; c) comparison of all the proposed methods. The sequential 

dependence parameters were α = 0.8 and β = 0.1. 

 

4.5.3.b. Changes in the G-SICAMM parameters 

 

A further test was performed to test the effect of the dynamic sources on the G-SICAMM 

parameters. In the experiment shown in Section 4.5.3.a, we considered “batch training,” i.e., the 

model is trained once using training data and then applied once on test data. This was 

appropriate to test the degradation of the model as the number of non-stationary sources 

increased. To test the effect of these non-stationary sources on G-SICAMM estimation, we 

applied “semi-batch training,” i.e., performed batch training several time, once for each time-

consecutive subset of the whole dataset. These local models can be examined to determine 

changes in the G-SICAMM parameters using the distance indicators defined in Section 4.5.1. 

The semi-batch training was performed using windows of length 512 samples, with 90% 

overlap between windows. 

 

Figure 4.17 shows the average distance indicators between the G-SICAMM obtained during 

semi-batch training of every pair of consecutive windows. All indicators remained stable for the 

stationary part of the data, i.e., the first half of the data (see Figure 4.15). Once the windows 

entered the second half of the data, however, all indicators worsened as the number of non-

stationary sources increased. This effect is more noticeable when the number of dynamic 

sources is high. Therefore, it can be seen that the G-SICAMM parameters were sensitive to 

changes in the underlying model, even at a local level. This effect could be used to determine 

non-stationary areas of interest, or even to perform classification, as will be seen in Chapter 6. 

 

 
Figure 4.17. Distance indicators between consecutive pairs of local G-SICAMM: a) Amari index; b) SDR; c) 

probabilistic distance. 
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4.6. Conclusions 
 

This chapter has introduced two extensions of Sequential ICAMM, a dynamic model based on 

ICA mixture modeling that takes into account the temporal dependences in the data that the 

basic ICAMM does not consider [230]. The first one of these extensions is based on the 

similarities between SICAMM and Hidden Markov Models. Because of these similarities, when 

SICAMM is used for classification, the result can be improved by considering two classical 

classification algorithms, Baum-Welch and Viterbi. The Baum-Welch algorithm performs a 

forward-backward estimation of the class probabilities while making use of all available data, 

while the Viterbi algorithm is a classical decoding algorithm that can find the most likely 

sequence of classes in the data without performing an exhaustive search. The second extension 

of SICAMM is a generalization of the concept of SICAMM to work with any number of 

parallel chains which are inter-related, each one a SICAMM on its own. This extension has been 

named Generalized SICAMM (G-SICAMM). Such a method can be used to work 

simultaneously with several datasets in parallel, or to split the data into multiple sub-chains. 

Furthermore, both the Baum-Welch and the Viterbi algorithms can be used to improve the 

results of G-SICAMM as well, combining both proposed extensions to SICAMM. 

 

If labeled data are available for training, the estimation of the time dependence parameters can 

be performed separately from the estimation of the ICAMM parameters, both for SICAMM and 

G-SICAMM. In that case, the parameters can be estimated using known methods. However, if 

some training data is unlabeled (i.e., we perform semi-supervised or unsupervised training), all 

of the G-SICAMM parameters have to be estimated simultaneously. This chapter presents an 

algorithm for semi-supervised or unsupervised training of SICAMM and G-SICAMM, which 

we have named UG-SICAMM. 

 

The performance of UG-SICAMM was tested by assessing the distance between the estimated 

model and the true model using a Monte Carlo experiment with an increasing number of labeled 

data, from unsupervised (all of the data are unlabeled) to fully-supervised (all of the data are 

labeled) training. To this effect, three distance indicators were proposed: i) the Amari index, 

which calculates the distance between de-mixing matrices; ii) the signal-to-interference ratio, 

which measures the similarity between the recovered sources and the true sources; iii) the 

probabilistic distance, which determines the difference between the dynamic behavior of two 

given models. The results show that the distance to the true model decreased as the amount of 

supervised data increased; although this improvement was faster for low supervision rates than 

it was for high supervision rates. Out of the considered indicators, the SIR and Amari indices 

were the ones that improved the most when the amount of labeled data increased, while the 

probabilistic distance did not improve for high amounts of supervision. 

 

The performance of SICAMM and G-SICAMM was tested by performing classification on 

several sets of simulated data, and compared with that of Bayesian Networks (BNT) and 

Dynamic Bayesian Networks (DBN and DBN2). This study was performed using several Monte 

Carlo experiments, considering changes in the time dependence of the simulated data; this 

dependence was modeled with two values, the intra-chain dependence parameter    and the 

inter-chain dependence parameter   . The results show that the dynamic methods (DBN, 

DBN2, SICAMM and G-SICAMM) performed better than the static ones (BNT and ICAMM) 

because they exploit the time dependences between observations. The ICA-based methods 

always obtained a better classification than the similar Bayesian-network-based methods, i.e., 

ICAMM performed better than BNT, and SICAMM and G-SICAMM performed better than 

DBN and DBN2. Furthermore, G-SICAMM always obtained the best result because it was able 

to exploit more time dependences than the other methods. Furthermore, it has been shown that 

SICAMM and G-SICAMM improve their results if the classification is performed using the 

Baum-Welch or the Viterbi algorithms. The improvement was negligible for small dependence 

values, but it increased with the dependence in the data up to a maximum result of half the error 
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of the base methods. The behavior of the proposed methods was the same for both types of 

dependence, although it was more pronounced for changes in the inter-chain dependence. 

 

Finally, we tested the behavior of the proposed methods when the basic ICAMM assumptions 

could not be met; particularly, when the probability density of the sources was not stationary, 

but rather changed over time. This was done using two Monte Carlo experiments with an 

increasing number of non-stationary sources, i.e., sources that changed in distribution after 

training. In the first experiment, the sources were originally uniformly distributed, but then 

changed according to a beta distribution. In the second experiment, the sources were K-

distributed and the K parameter changed with time. In both cases, all the proposed methods 

worsened at a similar rate as the number of non-stationary sources increased. The performance 

of the methods was consistent with that of the previous simulations, and G-SICAMM+BW 

obtained the best result, followed by G-SICAMM+VI and SICAMM+BW. It was found that the 

performance on the K-distributed data was more affected by the non-stationarity than the 

performance on beta-distributed data. Furthermore, it was shown that the G-SICAMM 

parameters are sensitive to these changes in the model. Local estimations of the G-SICAMM 

were found to be similar if the data were stationary, and became more and more different as the 

data became more dynamic.  

 

The results in this chapter show the potential of the proposed G-SICAMM procedure. The 

classification performance was the best out of the considered methods, and it was further 

improved by the use of the Baum-Welch algorithm. The parameters of the model can be 

obtained from semi-labeled or unlabeled data, which increases the range of possible applications 

for the procedure. Furthermore, although it was not considered in this chapter, the G-SICAMM 

parameters can be interpreted on their own and provide a structured result which can model the 

local behavior of the data without compromising its generalization capabilities. 
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 - Application of PREDICAMM to non-destructive testing and 
EEG signal processing applications 

 

This chapter presents three applications of signal prediction using the proposed PREDICAMM 

and E-ICAMM methods explained in Section 3.1 and 3.2, respectively. The results of 

PREDICAMM are compared with those of Kriging, Wiener structures, and spherical splines 

(also explained in Section 3.3). The proposed methods were tested on one set of simulated 

ground-penetrating radar data and three applications on real data: recovery of GPR data of real 

scale replicas of historical walls, reconstruction of data from a seismic survey, and interpolation 

of missing electroencephalographic data from a memory task. 

 

The first application is based on non-destructive testing (NDT) signals from a ground-

penetrating radar survey on real scale replicas of historical walls. In NDT applications, the 

signals are usually spatially distributed, forming two-dimensional sets of data or B-Scans. As 

explained in Chapter 3, PREDICAMM and E-ICAMM are able to perform prediction in data of 

any shape, even spatial data, depending on how the ICAMM is calculated. However, in this 

work, spatial data were preprocessed to be converted into time-distributed signals. This is a 

common preprocessing step in image processing applications, including several methods based 

on ICA such as Topographical ICA [111] and hierarchical ICA mixture models [240].  

 

The second application performs prediction on data from a reflection seismology survey, where 

the subsurface is explored by a careful study of reflected seismic waves. The proposed methods 

were tested on a set of true seismic data from an underwater exploration.  

 

The third application consists of the reconstruction of artifacted or missing data from an 

electroencephalogram, a record of the electrical activity of the brain taken on the scalp. 

PREDICAMM and E-ICAMM were applied to EEG data captured on subjects that were 

performing the Sternberg memory task, a classical procedure for evaluation of the short-term 

memory function. Prediction performance was estimated by means of a Monte Carlo experiment 

with a growing number of missing channels. The proposed methods were compared with 

spherical splines, a commonly-used interpolation method for EEG data. 

 

In all three applications, the performance of the proposed methods will be quantified using the 

four error indicators introduced in Section 3.4.2. These indicators are: i) the signal-to-
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interference ratio, which quantifies the average squared error in the prediction; ii) the Kullback-

Leibler divergence, a measure of the distance between the probability density function of the 

original data and of the PDF of the reconstructed data; iii) the cross-correlation between the 

original data and the reconstructed data, an indicator of the temporal similarity of both sets of 

data; and iv) the mean structural similarity, a similarity measure between two images that 

compares their structures. 

 

5.1. Non-destructive testing simulations 
 

Non-destructive testing is a set of techniques that allow the structure of a material to be 

analyzed without damaging it. They are usually used to characterize a material or to test its 

integrity in cases where there is no option to sample or affect the material under test; this can 

happen for a number of reasons, mainly: 

 The material under test must remain undamaged and it cannot be duplicated, e.g., the 

testing of archaeological objects [229,62] or historical buildings [99,212]. 

 The material under test is unreachable and no sample can be obtained, e.g., seismic 

exploration of underground environments [177,105] or remote sensing [71]. 

 There are many objects under test and taking samples out of every single one of them is 

unfeasible, e.g., quality testing of products before they leave the production chain [205]. 

 The material is hazardous, e.g., landmine detection [90]. 

 

When any element of a NDT system fails, some information can be lost, resulting in missing 

data (also known as missing traces). The reconstruction of this information from the rest of 

captured data is not a straightforward work; in fact, this reconstruction is an ill-posed problem. 

Field studies are particularly exposed to this kind of problem, since they usually involve an 

amount of sensors spread over a hostile area; it is quite usual that several traces are lost or mis-

captured for any number of reasons. Furthermore, reconstruction methods can be used even if 

there is no actual data loss. For instance, they can be used to interpolate data and achieve the 

same resolution with a lower number of sensors (e.g., by considering that every other trace is 

missing).  

 

The reconstruction scenario is well-known in the literature and several algorithms have been 

proposed to deal with it. Nevertheless, data reconstruction remains an interesting research topic 

(given its difficulty) and it is the subject of current research. Most of the algorithms proposed 

for this task make use of low-order statistical properties of the signals involved, e.g., linear 

predictors [163,116]. 

 

In particular, in this thesis, we will consider NDT signals in the areas of ground penetrating 

radar and seismic exploration surveys. There are only a few examples of the application of ICA 

and ICAMM to problems related with seismic and GPR signal processing. The motivation of 

using ICAMM to these application areas is the degrees of freedom provided by ICAMM, which 

allow for linear local projections that can be adapted to partial segments of a data set while 

maintaining generalization (capability for nonlinear modeling) given the mixture of several 

ICAs. Furthermore, the normal method to represent the results in seismic exploration and GPR 

is using images (B-Scans) called seismograms and radargrams, respectively. ICA has been 

extensively applied to image processing in problems such as filtering [19], segmentation [152], 

face recognition [135,16], and processing of biomedical images [168,255]. Briefly, images 

patches values taken from the pixels of the image are considered as variables for ICA 

processing, and the estimated basis functions (mixing matrix) and sources are used for image 

application. Thus, we will process radargrams and seismograms as images applying the 

proposed methods based on ICAMM explained in Chapter 3. 

 
  



Non-destructive testing simulations 

129 

 

5.1.1. Ground-penetrating radar 
 

Ground penetrating radar is a non-destructive testing technique that transmits high-frequency 

pulsed electromagnetic waves into the ground surface [68]. There is a detailed description of 

GPR and its applications in [68,43], but a brief explanation is given here to make the chapter 

more self-contained. The description here will focus on GPR working in the time domain, 

which is more common than those that work in the frequency domain (stepped-frequency 

systems). Most commercial GPR systems actually use two antennas, one for transmission and 

one for reception; in practice, however, they are usually referred to as one single antenna.  

 

GPR operation is quite similar to that of conventional radar, as shown in Figure 5.1. First, the 

device emits a pulse which is transmitted through the medium under test. When the 

electromagnetic waves reach an interface between two materials (changes in dielectric 

permittivity for non-ferromagnetic materials), part of the signal is reflected back to the surface. 

These reflections are captured by the GPR device; the captured one-dimensional signal is called 

a trace or an A-Scan (each one of the signals shown in Figure 5.1.b). The device is then moved 

along a trajectory, capturing data at multiple locations or “shifts.” Multiple GPR A-Scans 

corresponding to different shifts are usually organized in a B-Scan (also known as radargram) 

format to afford a 2D description of the medium [68] (see Figure 5.1.b). The B-Scan is studied 

to characterize the internal structure of the medium under test, like the geometry of buried 

objects or the presence of geological structures.  

 

There are a number of parameters which affect the detection of objects in the GPR signal, 

chiefly the time resolution (the length of each pulse), the lateral resolution (the ability to discern 

between two separate nearby objects), and the reflected power.  

 

To increase the time resolution (or “vertical” resolution) of the system, the transmitted waves 

usually have a bandwidth as great as possible. Typically, antennas with higher center frequency 

also have greater bandwidth and therefore shorter pulse length. Since higher frequencies 

attenuate faster, antennas with lower center frequencies have a greater depth of penetration. 

Thus, the correct choice of the center frequency is a critical part of a GPR survey. Commercial 

GPR systems have antennas with center frequencies ranging from several MHz (low resolution, 

high penetration depth, used in geological applications) to several GHz (high resolution, low 

penetration depth, used in NDT applications).  

 

On the other hand, the lateral resolution of GPR is limited by the size of the Fresnel region 

(which characterizes the area where reflected waves add together constructively). Single points 

within this region cannot be separated in the signal. Assuming that the distance between the 

 

 
Figure 5.1. Typical ground-penetrating radar scenario: a) depiction of the medium under test, with one interface 

between layers (A) and one buried object (B), and the device that is being carried along the surface; b) captured B-

Scan.  
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transmission antenna and the reception antenna is negligible with respect to their distance to the 

target, D , the radius of the first Fresnel region is / 2r D v f  , where v  is the speed of 

electromagnetic waves in the medium and f  is the frequency of the pulse. GPR is not used in 

ferromagnetic materials because electromagnetic waves in conducting materials lead to stray 

currents, thus increasing the noise and sharply reducing the depth of penetration of GPR signals. 

Therefore, GPR waves travel at speed 
0

/
r

v c   , where 
0

c  is the speed of light in vacuum 

and 
r

  is the relative dielectric permittivity of the material. Thus, lateral resolution decreases 

with depth and increases with frequency and dielectric permittivity.  

 

Finally, the reflected power at every interface depends on the dielectric permittivity of both 

materials. Let us assume a plain electromagnetic wave traveling in a low-loss material with 

dielectric permittivity 
1

  that is normally incident on the interface with another material with 

dielectric permittivity 
2

 . Then, the power of the reflected wave is directly proportional to the 

square of the reflection coefficient    1 2 1 2
R       . Thus, GPR will only show 

interfaces between materials of a high enough difference in dielectric permittivity.  

 

Given these limits, GPR surveys attempt to obtain data from as many shifts as possible from the 

terrain. The resolution in the shift domain is limited by practical constraints like duration of 

inspection, volume of recorded data and accessibility to specific areas. Moreover, uncontrolled 

failures during the signal acquisition step may lead to missing relevant information, thus 

degrading the final quality of the data. A possible solution not requiring reacquisition of the 

GPR signals is given by interpolation methods, which can recover the missing data from the 

available ones. The interpolation of missing or corrupted traces is a common processing step in 

ground-penetrating radar interpretation [43], and is not limited to B-Scans. Currently, C-Scans 

and 3D imaging and pseudo-3D imaging are common GPR issues and, in those cases, 

interpolation is also needed when imaging is reconstructed from parallel or non-parallel 

radargrams. However, this study is limited to the interpolation of GPR B-Scans. In this context, 

there are three common issues that require interpolation: i) recovery of traces lost due to 

sampling errors, particularly in difficult terrain; ii) de-clipping of saturated GPR signals; and iii) 

re-sampling of data acquired in continuous trigger mode to a fixed sampling rate, also known as 

rubber-band interpolation. In GPR, these issues are usually solved using spline interpolation 

[69]. Some works explore the possibility of using interpolation to increase the resolution of the 

acquired GPR signals, a problem that is still under research [252]. This improvement could help 

with the development of techniques that benefit from high data resolution [149].  

 

The most common GPR applications are location of underground structures [62,90,105] and 

identification of material properties [212], with less common applications such as remote 

sensing [71]. There have been some attempts to perform hyperbola detection on GPR data 

robust to missing or anomalous data (for instance, [280]). However, these attempts are 

performed on simulated data and in highly controlled conditions, whereas this section studies 

both simulated and real data in realistic conditions. The GTS has used ground penetrating radar 

to search for cracks in historical walls [218,212,227,89,98,100,210,226,216]. In particular, the 

results in this Section have been reported in [219,220]. 
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5.1.2. Preprocessing of the B-Scan for ICAMM: data alignment 
 

As stated in Section 5.1.1, GPR signals (and, indeed, a lot of NDT signals) are usually taken as 

B-Scans or two-dimensional images. In these B-Scans, one dimension is time and the other is 

space. However, many B-Scans are too high-dimensional to directly work with them given the 

complexities of most of the ICA algorithms. This is important in the cases where there are more 

traces than time samples, since in that case no significant model can be calculated from the data. 

 

The usual preprocessing in these cases consists of dimensionality reduction using methods such 

as PCA [124]. Briefly, PCA is applied to obtain a reduced subset of principal components and 

the ICA mixture model is calculated from these components; then, the ICAMM parameters are 

adjusted to include the information from the PCA. This results in non-square de-mixing 

matrices where the M  observations are mapped to L M  sources. However, the ICAMM-

based methods in this thesis require square de-mixing matrices, since we perform probability 

transformations that are only defined for unique mappings (i.e., square matrices) for 

PREDICAMM in (3.3). Therefore, we did not apply dimensionality reduction in this thesis.  

 

The B-Scans from GPR signals were treated as images. In this case, we can consider that the 

image is composed of “patches” or squares of the same size, and that each patch is a linear 

combination of underlying basis functions; this is known as the Blind Linear Image Synthesis 

model [188]. These basis functions can be viewed as independent “image sources” that can be 

estimated by using ICA [19,111]. We used the procedure defined in [114], dividing the image 

into patches and then estimating their underlying ICA mixture model. Briefly, the B-Scans were 

preprocessed by following the steps shown in Figure 5.2. Each B-Scan from the GPR signals is 

divided into squares of fixed size or “patches.” Thus, if the size of a patch is  L L , each patch 

comprises L  consecutive time samples from L  adjacent traces. Then, each patch is transformed 

into a column vector with 2
M L  components by vertically concatenating the columns of the 

patch. Each one of these vectors is considered an observation x . In this thesis, this 

preprocessing is called “alignment.” Once the data are aligned this way, the parameters of the 

ICA mixture model can be estimated using any of the available methods (e.g., [153,231]). The 

definition of the partition of known and unknown data ,
T

T T
 
 

x y z  depends on the particular 

experiment, as shown in the following sections. 

 

 
Figure 5.2. Diagram of the alignment preprocessing applied to B-Scans. In the example, the size of the patch is [3×3]. 
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5.1.3. Simulations 
 

The performance of the proposed methods was tested on a set of simulated data. The synthetic 

GPR data were obtained from the simulation of the 2D model shown in Figure 5.3.a. This model 

was a homogeneous wall surrounded by air with five discontinuities inside the wall. This model 

was designed so that it was similar to the real data. The simulated radargram was obtained by 

applying a ray tracing algorithm in MATLAB®. The resulting B-Scan is shown in Figure 5.3.b. 

The wall had dielectric permittivity 
,

8
r g ro u n d

   (e.g., old cement), and the discontinuities had 

dielectric permittivity: 
,1 , 4

2 0
r r

    (wet cement, in gray in Figure 5.3.a); 
, 2 ,3

1
r r

    (air, 

in black); and 
, 5

8 1
r

   (water, in white). The final B-Scan had 512 traces, and each trace was 

1024 samples long. Other parameters were: inline spacing distance 5 mm, time sampling period 

10 picoseconds, center frequency of the GPR antenna 1.5 GHz with 1 GHz bandwidth, and 

signal-to-noise ratio 3 0 d BS N R   with K1 noise (see Table 3.3). The SNR corresponds to a 

low-noise signal, and was chosen to improve the representation of reflections. The noise was 

modeled with a K-distribution because it is often the distribution that best fits radar clutter 

[202]. 

 

The results of E-ICAMM and PREDICAMM were compared with those of several of the 

methods proposed in Section 3.3. Out of all proposed methods, we selected Kriging, Wiener 

structures and Splines for the comparison.  Kriging and Wiener structures have been already 

used for the prediction of spatially-distributed GPR data, whereas Splines are commonly used 

for interpolation of GPR data. SRF was not selected because it yielded poor results in a 

preliminary test. Out of the considered possible initial values for PREDICAMM, we considered 

only that with the best results, PREDICAMM+E-ICAMM (as seen in Section 3.4.3.b). 

 

Kriging and Splines are suited to work with spatially-distributed data, whereas the other 

methods require data alignment as shown in Section 5.1.2. Hence, we considered two patch 

sizes, [8 8 ]  and [1 6 1 6 ]  samples, which were converted to column vectors of 64M   and 

256 variables, respectively. These patch sizes are typical in image processing applications, 

particularly  8 8 , which gained popularity due to the importance of JPEG compression and 

other methods related to the discrete cosine transform (DCT). Fast implementation of such 

methods requires patch sizes that are powers of 2 [156]. However, patch size is usually 

determined using rather empirical methods. 

 

It was assumed that l out of every L  GPR traces were corrupted or not captured at all in the 

experiment (l < L). Thus, the proposed prediction methods were used to interpolate missing 

information in these traces. Such a scenario could arise while increasing the horizontal scanning 

rate (i.e., the number of “sampled” locations) by interpolating new traces from the available 

 

 
Figure 5.3. Simulated GPR data: a) initial model of the ground; b) simulated radargram. 
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ones; in this case, the new traces can be considered missing traces and can be interpolated. A 

similar scenario would arise when problems during the data measure process occur; for instance, 

if the antenna is moved too fast across the surface and the measure device is unable to properly 

sample the underlying terrain. In the latter case, however, missing traces would be located at 

random intervals, depending on the speed of the antenna. 

 

The experiment setup is shown in Figure 5.4. First, the simulated data are aligned if necessary 

and then any model parameters (such as the covariance function for Kriging or the ICAMM 

parameters) are calculated from the complete original radargram. In general, the number of 

classes for ICAMM is determined from the data, either from data with several known classes or 

by testing several models with an increasing number of classes. However, estimation of the 

ICAMM parameters was complicated because of the high dimensionality of signals and the high 

correlation between radargram patches. In the end, we opted for an ICAMM with a single class 

whose parameters were found using Topographic Independent Component Analysis (TICA 

[111]). TICA is an ICA algorithm which is commonly used to model natural images, and it 

employs the same data alignment as Section 5.1.2. 

 

Once the data model parameters required for the implementation of predictors were estimated 

from the full data, l out of every L traces were marked as erroneous or missing (l < L). The 

result is shown in Figure 5.5, where marked traces are shown in red. Marked traces were 

centered within their patches in order to ensure that there was always some information at the 

first and last traces of the radargram. This process avoided extrapolation. The missing data were 

then predicted with each proposed method. Therefore, a substantial number of data were 

removed from each affected patch because even a single missing trace causes at least L missing 

data from every affected patch, where L is 8 or 16. 

 
Figure 5.4. Diagram showing steps followed in the prediction experiment on simulated GPR data. This process is 

repeated for every number of missing traces per patch. 

 

 
Figure 5.5. Selection of missing or erroneous traces for the prediction experiment: a) original data; b) data with 

missing traces shown in red. 
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The radargram with missing traces was aligned and the proposed prediction methods were used 

to interpolate these erroneous data. Afterward, the similarity between the interpolated data and 

the true data was measured using the error indicators defined in Chapter 3: SIR, Kullback-

Leibler divergence, cross-correlation, and MSSIM. The above experiment was repeated multiple 

times, each time increasing the number of missing traces around each selected position. The 

number of missing traces ranged from 1 to the number of traces per patch minus 2 (e.g., 6 traces 

for  8 8  patches). This range was decided to keep at least some information available within 

each patch. 
 

It could be argued that the regularly-distributed missing traces and the high number of missing 

data make this a very particular experimental situation. However, this case can be split into 

several local sub-cases in which a group of l consecutive traces were erroneous or missing and 

had to be reconstructed. This corresponds to a more normal experimental situation, where only a 

few of the traces are missing or damaged. Here, we removed multiple sub-cases at the same 

time (at regular intervals) across the whole radargram to find out the average prediction 

performance on the complete B-Scan. This average will avoid local optima and yield more 

significant and robust results. In practice, local results oscillate around the average values. 

Another reason for the equal intervals is to simulate a case where we attempt to increase the 

resolution of the captured data. In that case, the “missing data” (i.e., the data to be interpolated) 

would be located at equal intervals. 
 

The results for patches of size [8 8 ] are shown in Figure 5.6. These results can be split into two 

regions, depending on the amount of reconstructed data. For low amounts of missing traces per 

patch, Splines performed slightly better than E-ICAMM and PREDICAMM, Kriging yielded 

the next best result, and Wiener structures achieved the worst result. For higher amounts of 

missing traces, the performance of E-ICAMM and PREDICAMM matched that of Splines, and 

even exceeded it for 6 missing traces per patch. Furthermore, Wiener structures obtained a 

better result than Kriging when the number of missing traces was high. This performance owed 

to the fast worsening of Kriging as the number of missing traces increases, since Wiener 

structures were more resistant to the amount of unknown data. Finally, both PREDICAMM and 

E-ICAMM yielded practically identical results. This result implied that the reconstruction by E-

ICAMM was already very close to the maximum in the probability density function. This was 

confirmed by the low number of iterations in the PREDICAMM gradient step. 
 

 
Figure 5.6. Error indicators for prediction of the simulated radargram for patches of size [8×8]. 
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Figure 5.7 shows the result for patches of size [1 6 1 6 ] . Both PREDICAMM and E-ICAMM 

improved their performance with higher patch size, while the other methods obtained similar 

results than for  8 8  patches. The ICAMM-based methods obtained the best result for all 

considered amounts of missing traces in SIR, correlation and MSSIM. Splines obtained the 

second best result, followed by Kriging, and then Wiener structures. This result might indicate 

that the ICA mixture model is more appropriate for  1 6 1 6  patches. As with Figure 5.6, 

PREDICAMM and E-ICAMM obtained almost identical results, confirming the idea that the 

reconstruction yielded by E-ICAMM is already very close to the maximum in the probability 

density function. However, this might not be the case in other applications. As it will be seen in 

Section 5.4.3, some applications benefit greatly from the optimization procedure in 

PREDICAMM. 

 

In terms of processing time, the proposed methods can be sorted in descending order of time 

cost: PREDICAMM, Wiener structures, Kriging, E-ICAMM, and Splines. Although E-ICAMM 

interpolation itself is faster than Splines, E-ICAMM requires a previously-estimated ICAMM, 

which is a costly procedure. The same ICAMM can be used multiple times, even if the number 

of missing traces changes or these traces are moved around, which reduces the difference in 

computational cost. Furthermore, this model is also used for the gradient method in 

PREDICAMM. 

 

Figure 5.8 shows the reconstruction results for  1 6 1 6  patches with 9 missing traces per patch: 

a) simulated data; b) simulated data with missing traces; c-f) reconstructed B-Scans; and g-j) 

prediction error obtained by the proposed methods. PREDICAMM was not included because 

the reconstruction is almost identical to that of E-ICAMM. In concordance with the values in 

Figure 5.6, Kriging achieved the worst result, Wiener structures improved with respect to 

Kriging, and E-ICAMM and PREDICAMM obtained the best quality interpolation, 

outperforming the results of Splines. The ICAMM based methods and Splines perfectly 

reconstructed the reflections at the beginning and end of the wall, and the hyperbolas were 

better reconstructed by PREDICAMM and E-ICAMM. This is particularly true for the 

hyperbolas for defects 2 and 5, at the right end of the wall relative to Figure 5.8. Out of the four 

error indicators in Figure 5.7, the MSSIM (Figure 5.7.d) is the closest fit to perceived quality of 

 

 
Figure 5.7. Error indicators for prediction of the simulated radargram for patches of size [16×16]. 
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the results in Figure 5.8. The MSSIM values were 0.87, 0.90, 0.93, 0.95 and 0.95 respectively 

for Kriging, Wiener structures, Splines, E-ICAMM and PREDICAMM. The result for Wiener 

structures (Figure 5.8.d and Figure 5.8.h) is more similar to the original simulated data than the 

result for Kriging, but the other indicators would seem to indicate a closer result between 

Kriging and Wiener structures.  

 

 
Figure 5.8. Results for [16 × 16] patches with 9 missing traces per patch: a) simulated data; b) simulated data with 

missing traces; c-f) reconstructed B-Scans; and g-j) prediction error obtained by the proposed methods. 

PREDICAMM was not included because the reconstruction is almost identical to that of E-ICAMM. 
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5.2. Application on GPR data from a survey on historical walls 
 

The experiment was carried out on data obtained from a multidisciplinary study on replicas of 

historical walls; these data have been used by the GTS in previous studies 

[212,218,227,89,98,100,210]. The walls were built in a laboratory to control their composition 

and introduce certain defects or discontinuities at specific locations. They were built using 

travertine ashlars from the Godella quarry (Spain), each ashlar being 40x30x20cm. The mix was 

0:1:3, with no cement and one part of sand for every three parts of hydraulic lime (NHL5 class). 

This impoverished mortar is typical of historical buildings, and achieves low compressive 

strength (<4MPa). The total dimensions of the walls were 287cm length, 220cm height and 

20cm thickness. A picture of one of the walls is shown in Figure 5.9.a. 

 

The GPR equipment consisted of a SIR-3000 data acquisition system and a 1.6 GHz center 

frequency antenna (model 5100B) from Geophysical Survey Systems, Inc (see Figure 5.10). 

The dimensions of the antenna were 3.8x10x16.5 cm; it was fitted to an encoder cart built ad 

hoc for the experiment. The encoder and cart were used for two reasons: a) to ensure a uniform 

sampling of the wall, capturing data at a constant rate; and b) to help with displacing the 

antenna across the (uneven) surface of the wall. 

 

 
Figure 5.9. Picture of the wall under test: a) studied wall, with a green line indicating the scanned trajectories 

considered for this work; b) captured GPR radargram for the scanned trajectory of vertical radar line 1. The 

reflections corresponding to front and back faces of the wall are indicated in the radargram. The wave velocity used 

to estimate distances was equal to 92.56·106 m/s, which is equivalent to a dielectric permittivity of εr = 10.50. 

 

 

 
Figure 5.10. Picture of the GPR equipment used to scan the historical walls. 
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Each wall was scanned with the GPR in order to detect any significant flaw, crack or 

discontinuity. This survey was performed following a grid of trajectories with 7 vertical lines 

and 4 horizontal lines, placed more or less uniformly along the surface of the wall (see Figure 

5.9.a). Thus, in total, eleven B-Scans were obtained for each of the two walls. All 11 radargrams 

were used for this prediction experiment, and results were averaged. Figure 5.9.b shows an 

example radargram obtained for vertical radar line 1 of Figure 5.9.a. Each B-Scan was 

composed by between 330 and 450 traces, each one 1024 samples long. The inline spacing 

distance was 6 mm, the time sampling period was approximately 10 picoseconds, and the total 

time for each trace was 10 nanoseconds.  

 

The procedure was the same as that explained for simulated data (see Section 5.1.3); including 

alignment, interpolation methods, and patch sizes. Results for prediction using  8 8  patches 

are shown in Figure 5.11. All proposed methods achieved better performance with real data than 

with simulated data (see Figure 5.6). This was due to differences in the GPR data. The real data 

included planar targets (wall discontinuities) and thus several structures of the real radargrams 

were spread over many patches, resulting in higher redundancies. Improvement of real data 

analysis over simulated data was greater for ICAMM-based methods and Splines, which yielded 

much better results than Kriging and Wiener structures. The performances of ICAMM-based 

methods and Splines were similar, and PREDICAMM and E-ICAMM obtained a slightly higher 

SIR for a high amount of missing traces (see Figure 9.a). Wiener structures performed better 

than Kriging except for very low amounts of missing traces, indicating a higher presence of 

nonlinearities in real data with respect to simulated data. In concordance with the results for 

simulated data, PREDICAMM+E-ICAMM and E-ICAMM yielded almost identical 

reconstructions.  

 

Results for  1 6 1 6  patches are shown in Figure 5.12.  As with the simulated data, the 

performance of ICAMM-based methods was improved with the larger patch size. 

PREDICAMM, E-ICAMM and Splines performed similarly for low amounts of missing traces, 

but the relative result of ICAMM-based methods became better for higher concentrations of 

missing traces per patch. This is more noticeable in the SIR and MSSIM indicators (Figure 

5.12.a and Figure 5.12.d, respectively). The maximum difference was for the case with 12 

missing traces per patch. The difference was lower for 13 and 14 missing traces due to the larger 

 

 
Figure 5.11. Error indicators for the prediction of the real radargram for patches of size [8 × 8]. 
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Figure 5.12. Error indicators for the prediction of the real radargram for patches of size [16 × 16]. 

 

number of missing data in the patch. With 13 or 14 missing traces, the ICAMM no longer had 

enough information about the structure of the data to reconstruct the signal with high accuracy. 

The performance of Kriging and Wiener structures was similar to their performance for  8 8  

patches (Figure 5.11). Finally, the results of E-ICAMM and PREDICAMM+E-ICAMM are 

almost identical, in concordance with the results for simulated data (Figure 5.7). As for the 

processing times for each method, results were almost identical to those for the simulated data. 

 

Figure 5.13 shows the reconstruction results for vertical radar line 1 of the wall in Figure 5.9, 

for  1 6 1 6  patches with 10 missing traces per patch: a) real data; b) real data with missing 

traces; c-f) reconstructed B-Scans; and g-j) prediction error obtained by the proposed methods. 

PREDICAMM was not included because the reconstruction is almost identical to that of E-

ICAMM. The highest errors are for interpolation using Kriging and Wiener structures methods; 

Splines performed better than Kriging and Wiener structures; and E-ICAMM achieved the best 

interpolation (i.e., minimum prediction error), outperforming the other methods. The error was 

higher around the borders of the wall. This effect was more marked for Splines, PREDICAMM 

and E-ICAMM (Figure 5.13.e and Figure 5.13.f, respectively). Error for ICAMM-based 

methods was negligible, however, and the reconstruction is very close to the real data, even 

more so for the inside of the wall. 

 

To extend testing of the proposed methods in an application-oriented context, we performed a 

simple detection experiment on the real radargrams. The radargrams from wall 2 were used to 

detect two discontinuities within the wall. The first one was a hollow filled with cement near the 

upper-left corner of the wall, of size 8x6x2cm (width, height and length). The second 

discontinuity was a vertical crack near the right end of the wall, of size 0.15x5x8cm (width, 

height and length). The detection algorithm consisted of the following steps: i) band-pass 

filtering to remove noise; ii) background removal using the local mean; iii) calculation of the 

envelope of the signals; and iv) thresholding. This algorithm was valid for our study. 

Developing an optimum detection algorithm on a set of real GPR data is a challenging task, and 

was therefore beyond the scope of this study. 
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The detection algorithm was used on the full data set, and with the reconstructed results for the 

case with  1 6 1 6  patches and 12 missing traces per patch. The detection results, summarized 

by the area under the ROC (Receiver Operating Characteristic) curve, were as follows: 0.6588 

(real data), 0.6586 (reconstruction with PREDICAMM+E-ICAMM), 0.6586 (reconstruction 

with E-ICAMM), 0.6323 (reconstruction with Splines), 0.5546 (reconstruction with Kriging), 

and 0.5259 (reconstruction with Wiener structures). E-ICAMM yielded results that were 

consistently almost identical to those of the data without missing traces. Splines yielded the next 

best result, and Kriging and Wiener structures yielded the worst detection rates. These results 

are in concordance with results in Figure 5.13, showing that a good interpolation can help with 

subsequent GPR processing steps. 

 

 
Figure 5.13. Results for vertical radar line 1 of the wall in Figure 5.9, for [16 × 16] patches with 10 missing traces per 

patch: a) real data; b) real data with missing traces; c-f) reconstructed B-Scans; and g-j) prediction error obtained by 

the proposed methods. Amplitude was normalized to unit power. PREDICAMM was not included because the 

reconstruction is almost identical to that of E-ICAMM. 
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5.3. Application on seismic signals for underground surveying 
 

Exploration seismology is a discipline that analyzes the behavior of captured seismic waves to 

study the underground terrain; i.e., the propagation of these waves is studied to characterize the 

properties of the underground [241]. Careful examination of seismic data can be used to detect, 

locate and analyze points of interest such as wells, layers or reservoirs. The basic technique of 

seismic exploration consists of generating seismic waves and measuring the time required for 

the waves to travel from the source to a series of geophones, usually disposed along a straight 

line directed toward the source. The time of arrival of each wave is the most important feature; 

but there is also interest in the variations in amplitude, frequency, and waveform. 

 

There are two main categories of seismic surveys: refraction seismology, in which the principal 

portion of the path is along the interface between two rock layers (hence, it is approximately 

horizontal); and reflection seismology, in which the wave travels downward initially and, at 

some point, is reflected back to the surface (the path being essentially vertical). The main 

difference between both categories is that for refraction, the distance between source and 

geophones is large relative to the depths being mapped; whereas for reflection, the distance 

between source and geophones is smaller than the depths being mapped. Our description will 

consider reflection seismology, since it is more widely used than refraction seismology. 

 

A typical reflection seismology survey has a single source event or “shot” that emits elastic 

waves using an energy source such as a controlled explosion, thumper truck, or air gun 

(depending on the medium under test). Once the shot is generated, the elastic waves travel 

through the medium under test and reflect off the boundaries between materials with different 

acoustic properties. These reflections are then captured at the surface by groups of receivers 

(usually geophones or hydrophones); the receivers are usually laid out in a straight line, 

spreading over a large area of terrain (see Figure 5.14). The signal captured by each receiver is 

an A-Scan or trace; groups of A-Scans are usually combined to form B-Scans or “seismograms” 

for the user to interpret. 

 

The interpretation of the captured seismograms is usually based on the detection of “events,” 

arrivals of energy that vary from trace to trace. The study of the time of arrival of these events is 

used to estimate the underlying underground structures, though other parameters of the data can 

be used as well. Typically, the recorded signals are subject to signal processing techniques to 

enhance their quality and to improve their interpretation by the user [283,179]. The processing 

of seismic data is still a significant area of research, e.g., to reduce the computational costs [23] 

or to improve data interpretation [82]. One of the typical processing steps is the treatment of 

missing traces. Missing traces are relatively common in seismic studies, since they involve large 

amounts of devices over a large area of terrain; furthermore, most studies take place in hostile 

environments (underwater, underground, etc.) or under unfavorable meteorological conditions. 

 
Figure 5.14. Sample of a reflection seismology scenario: a) medium under test and experiment setup; b) recovered 

signals. The shot is emitted from the transmitter (Tx) and travels underground until it finds a discontinuity between 

layers; part of the incident energy is reflected back at the surface, where it is captured by an array of receivers (Rx). 

The captured reflection, the interface between layers 1 and 2, is shown in b). Each trace shows a different time of 

arrival because the traveled distance is different for each receiver. 
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A complete review on seismic exploration and its applications is treated in [241]. Although 

there are multiple applications for seismic exploration, such as the exploration of deep 

underground structures [6], the most important is the exploration of the underground to locate 

mineral and oil deposits [241,179]. The GTS has already performed some studies on seismic 

signals [222,211]. 

 

Reflection seismology is somewhat similar to ground-penetrating radar (compare Figure 5.14 

with Figure 5.1), but their respective non-destructive systems operate at different frequencies 

and seismic studies involve several reception antennas at once. Furthermore, since seismic 

surveys operate on much lower frequencies, they usually involve greater depths and span large 

breadths of terrain. In fact, one could say that reflection seismology is to sonar and echolocation 

what GPR is to conventional radar. 

 
5.3.1. Reconstruction of seismic data 
 

The proposed prediction methods were tested on a public dataset from BP Amoco [79]. One 

half of the dataset is a cross-section through the Carpathian thrust belt from the Straciccina area 

of Poland, where Amoco acquired a swath seismic survey in 1996, while the other half of the 

model represents North Sea-type salt ridge structures contained in much lower velocity 

sediments than are present on the left. This set was artificially built to test the limits of 

migration methods, but it is composed of real data. The resulting model was 2.5D model, that is, 

a 3D model with variations in only two of its axes. Out of the whole data set, a single 2-D slice 

of data was chosen for this experiment; these data are shown in Figure 5.15. The selected B-

scan comprises 240 traces, each one 352 samples long. The vertical sample rate is 9.9 ms and 

the horizontal sample rate is 25 m. 

 

Like in Sections 5.1 and 5.2, it was assumed that l out of every L traces were completely or 

partially corrupted, or not captured at all during testing (l < L). Thus, the proposed prediction 

methods were used to interpolate missing information in these traces. The procedure was the 

same as that explained for GPR data (see Section 5.1.3), including alignment, interpolation 

methods, and patch sizes. As mentioned in Section 5.1.3, the selection of the traces at regular 

intervals along the B-Scan was performed to find out the average prediction performance of the 

proposed methods. This average will avoid local optima and yield more significant and robust 

results. 

 

Figure 5.16 shows the prediction results when using patches of size [8 × 8]. E-ICAMM obtained 

the best result in all cases, with PREDICAMM obtaining a very similar result. The behavior of 

the other methods depended on the considered error indicator. Splines yielded the third best 

 

 
Figure 5.15. Seismic signals used for the prediction experiment. Possible reflections appear as white, black and white. 
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result in terms of KLD, CORR and MSSIM, while Kriging yielded the third best result in terms 

of SIR. Wiener structures obtained a middle ground between Kriging and splines for the SIR, 

KLD and CORR indicators, although they also yielded the lowest MSSIM out of all the 

proposed methods. The difference between the performances of E-ICAMM and PREDICAMM 

and those of the other methods is larger for low amounts of missing traces (l < 4).  

 

The results obtained for patches of size [16 × 16] are shown in Figure 5.17. E-ICAMM,  

PREDICAMM and Wiener structures all yielded better SIR and KLD than in the [8 × 8] case 

ICAMM and PREDICAMM yielded the best overall performance, with the best SIR and CORR 

for all cases, the best MSSIM for most of the cases (l < 12), and the best KLD for low amount  

(see Figure 5.16.a and Figure 5.16.b, respectively) for low amounts of missing traces (l < 6). 
 

 
Figure 5.16. Error indicators for the prediction of the real seismic data for patches of size [8 × 8]. 

 
Figure 5.17. Error indicators for the prediction of the real seismic data for patches of size [16 × 16]. 
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Thus, it seems like the larger patch size increased the performance of the nonlinear methods. E- 

s of missing traces (l < 6). Splines obtained the worst result with respect to SIR and CORR, but 

it obtained the best KLD and MSSIM for high amounts of missing traces (l > 9 and l > 12, 

respectively). The results for seismic data were worse than those obtained for simulated and real 

GPR data, both for [8 × 8] and for [16 × 16] patches (see Sections 5.1.3 and 5.2). This owed to 

the lower correlations in the B-Scan due to the longer distances involved in the capture process.  

 

Figure 5.18 shows the reconstruction results for [8 × 8] patches with 4 missing traces per patch: 

a) real data; b) real data with missing traces; c-f) reconstructed B-Scans; and g-j) prediction 

error obtained by the proposed methods. PREDICAMM was not included because the 

reconstruction is almost identical to that of E-ICAMM. The results are in concordance with the 

error indicators in Figure 5.16. This is particularly noticeable in the first reflection in the data, 

which shows irregularities for Kriging, Wiener structures and splines (Figure 5.18.c, .d and .e, 

respectively). Note the “ribbing” effect in the prediction using Wiener structures, which 

explains their significantly lower MSSIM in this case (see Figure 5.16.d). E-ICAMM yielded 

the best prediction, as can be seen both from the reconstructed B-Scan and the very low 

reconstruction error. 

 
Figure 5.18. Results for [8×8] patches with 4 missing traces per patch: a) real data; b) real data with missing traces 

shown in red; c-f) reconstructed B-Scans; and g-j) prediction error obtained by the proposed methods. PREDICAMM 

was not included because the reconstruction is almost identical to that of E-ICAMM. 
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5.4. Application on electroencephalographic signals 
 

Electroencephalographic signals are recordings of surface brain electrical activity taken at the 

scalp, where each sensor captures the combined signal from multiple neurons of the brain [185]. 

The study of EEG signals is a useful clinical tool because some illnesses, typically seizures and 

sleep disorders, produce abnormal electric patterns in the electrical activity of the brain that can 

be identified by an expert. Even though there are other techniques for the exploration of the 

human brain, such as magnetic resonance (MRI), functional magnetic resonance (fMRI) and 

positron emission tomography (PET), EEG remains the subject of much research on brain 

activity and a valuable tool for clinical analysis. The main reasons for the use of EEG are the 

lower hardware cost of the device, the higher temporal resolution of EEG when compared to 

other available techniques, and the maturity of EEG analysis. Research on EEG data started in 

the late years of the 19th century, although digital processing techniques were not used until the 

late 1990s [258]. 

 

Independent component analysis and other blind source separation techniques have been 

successfully used for the modeling and processing of EEG and other biological signals. For 

instance, ICA has been used to separate fetal and maternal electrocardiograms (ECG) 

[286,285,233], detect atrial fibrillation [284,92], and analyze high-density ECG [292].  

 

The first applications of ICA to EEG signals took place during the late 1990s [258]. These 

works introduced the assumption that each EEG channel is composed by the mixture of a 

number of non-Gaussian sources [159,160]. Furthermore, it is assumed that this mixture is 

generated by the mixture of signals from several neurons due to the own conductivity of the 

head, and that this mixing is almost instantaneous in nature. In ICA, EEG signals are modeled 

as a mixture of independent but spatially fixed sources, with each source being either a point 

source or a distributed source spanning over an area of the brain. Later works seem to confirm 

that not only is it possible to separate time signals, but it is also possible to locate them on the 

surface of the head [190]. This spatial location is far from perfect, but it has been shown to be a 

very useful pre-processing step for other source location algorithms (for instance, [291]). 

 

Another important application of ICA makes use of the recovered sources to model the EEG 

signal, allowing the extraction of sources of a given kind, e.g., evoked potential signals 

[161,162]. This source separation method is statistical in nature and therefore it can correctly 

separate signals that overlap across time and/or frequency (a probabilistic filter, as it were). This 

application can be used to remove unimportant signals and reduce the workload of the expert 

during exploration. Moreover, it can also be used for automatic diagnosis of illnesses such as 

ADHD (Attention Deficit Hyperactivity Disorder) or sleep disorders [180,230]. There are also 

works on the application of ICA to the separation of fMRI signals [168]. In this thesis, however, 

we will only consider EEG signals. 

 

Source separation by ICA can also be used for artifact removal, since there are several artifacts 

that can be safely assumed to be independent from EEG data [128]. There are several works on 

this topic, ranging from supervised artifact removal [128] to fully automatic artifact detection 

and removal [186]. A good review of the applications of ICA to EEG signal processing can be 

found in [127].  

 

One of the main research topics on the application of ICA to EEG signals is the dynamic 

modeling of brain oscillations in humans [230,189,109,61] and lab rats [232,10]. This research 

attempts to combine the advantages of independent component analysis with the capabilities of 

certain dynamic models to deal with the temporal variability of the EEG. For instance, some 

representative examples are the study of developmental differences in the saccadic contingent 

negative variation [138], EEG and event-related potential (ERP) data [162,277], and removal of 

artifacts in the EEG signal [44]. The GTS has already published some works in this area [230]. 

EEG data will also be explored in Chapter 6, where we will apply the methods proposed in 



Chapter 5- Application of PREDICAMM to non-destructive testing and EEG signal processing 

applications 

146 

 

Chapter 4 to the dynamical modeling of EEG data. These data were obtained from subjects 

performing cognitive tasks and neuropsychological tests for the evaluation of the memory 

function and learning in epileptic subjects. 

 

In the EEG prediction application presented here, it was assumed that one or several channels 

have been partially corrupted or missing; thus, the proposed methods were used to complete 

these EEG. This kind of scenario is relatively common in EEG processing, for instance, for 

artifact removal from EEG data. In that case, artifacted data are removed and then re-

constructed from neighboring electrodes. The results in this section have been reported in 

[224,215].  

 
5.4.1. Data capture 
 

The EEG data that were used in this experiment were captured using an ActiveTwo system by 

BioSemi. This device uses active electrodes and a water-based gel to increase coupling with the 

skin, and thus increasing data quality. The data capture was performed using the 

ActiveView600 software freely available at BioSemi’s web site. 

 

The device was connected to 66 electrodes, 64 EEG data electrodes and 2 ground electrodes 

(CMS and DRL); EMG, EOG and other types of channels were not measured. These ground 

electrodes are used to increase the quality of captured data, since they form a feedback loop that 

drives the average potential of the subject as close as possible to the reference of the device.  

Furthermore, this loop decreases noise and protects the user against high currents. Electrodes 

were positioned following the 10-10 system (see Figure 5.19.a) with the help of a measuring 

cap, and the 64 data channels were captured at a sampling rate of 2,048 Hz. All electrodes are 

referenced with respect to channel Cz in order to reduce noise levels. 

 

The signal acquisition process started with the explanation of the experiment to the subject, 

which had already given his or her consent. Then, the subject was seated and the measuring cap 

was adjusted, taking particular care to place Cz correctly (halfway between the nasion and the 

inion and halfway between the left pre-auricular and right pre-auricular points). Once the cap 

was in position, the electrodes were placed one by one, ensuring their correct coupling with the 

scalp. This check was performed by verifying that the offset between any electrode and CMS 

was low and stable, removing and re-attaching any offending electrode. Then, the subject was 

seated in front of a computer screen and a sample test was shown to confirm that they 

understood the memory task. Afterwards, the EEG data were captured while the subject 

 

      

a) b) 
Figure 5.19. EEG capture process: a) spatial distribution of the 66 electrodes (10-10 system) for the capture of EEG 

signals; b) picture of one of the subjects undertaking the memory task. The electrodes are attached to the subject 

beforehand so they capture data during the memory task. 
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performed the task (see Figure 5.19.b). Once the capture process was finished, the electrodes 

and the measuring cap were cleaned and dried up. 

 

After the acquisition stage, the EEG signals were filtered to remove noise caused both by the 

environment (electronic devices, ambient noise, machinery, line noise, etc.) and by the capture 

device itself. These filters used for this pre-processing are typical in EEG processing: 

 A high-pass Butterworth filter of order 6 with cutoff frequency fc = 0.2 Hz. This filter 

attenuates the very-low-frequency noise generated by the capture device, as well as 

slow drifts in the data. 

 A low-pass Butterworth filter of order 6 with cutoff frequency fc = 70 Hz. This filter 

removes frequencies outside of the EEG range of interest, reducing high-frequency 

noise. 

 A notch Butterworth filter of order 2 centered at 50 Hz with quality factor Q = 50. This 

filter removes line noise (i.e., coupled noise from the power line). 

 
5.4.2. Sternberg memory task 
 

The electroencephalograms were captured while subjects performed the Sternberg memory task, 

a classical memory test that measures multi-object short-term memory [251]. The task is 

composed of 30 trials or repetitions, each one following the pattern shown in Figure 5.20. 

 

 
Figure 5.20. Description of one trial of the Sternberg memory task. 

 

During each trial, the subject is shown between one and five symbols, chosen at random from 

the available 20-symbol set (see Figure 5.21); the number of symbols changed between trials. 

Each symbol is displayed on screen for 200 milliseconds (display stage) and then followed by a 

blank screen during 1000 milliseconds (pause stage) before showing the next symbol. Once the 

last symbol has been shown, the screen remains blank for a further 1000 milliseconds (retention 

interval), after which there is a warning and the participant is presented with the test symbol. 

The subject must decide whether this test symbol was part of the series of shown symbols (test 

stage). The correct answer is set beforehand to have the same number of affirmative and 

negative answers. After the subject answers the question, there is a further delay of 500 

milliseconds before continuing with the next trial. For this particular experiment, each subject 

performed 30 trials.  

 

 
Figure 5.21. Available symbol set for the Sternberg memory task. 

 

      Retention  Short 
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5.4.3. Reconstruction of missing EEG data 
 

Data were captured from three healthy human subjects, with 60 to 300 trials per subject. The 

subjects answered correctly 98 % of the trials with an average response time of 1.17 s. Figure 

5.22 displays one of the captured EEG, with the stages of the Sternberg memory task marked as 

red and blue lines. 

 

In order to test the predictive capabilities of the method, it was assumed that the values at one or 

more of the electrodes were unusable and had to be discarded. Thus, the proposed methods were 

used to reconstruct these corrupted data. As mentioned at the beginning of Section 5.4, such a 

scenario could happen, for instance, if some of the electrodes had been disconnected during data 

capture. The proposed ICAMM-based methods were compared with spherical splines, a 

classical method for EEG prediction that was already introduced in Section 3.3.4 [199]. The 

other methods considered in Section 3.3 were discarded after a previous study, in which they 

obtained bad results when used to predict EEG data.  

 

Since the choice of channels affects the result of any predictor and the number of possible was 

too large to perform an exhaustive search, performance was calculated with a Monte Carlo 

experiment, as shown in Figure 3.8. First, the parameters necessary for each predictor are 

calculated using the first half of the EEG data. After estimation, one of the EEG channels 

(chosen at random for each iteration) was removed and the proposed methods were used to 

interpolate these missing data on the second half of the data. Prediction performance was 

measured using the error indicators introduced in Section 3.4.2: SIR, Kullback-Leibler 

divergence, correlation and MSSIM. This process was repeated 1,000 iterations and results were 

averaged. The Monte Carlo experiment was repeated several times, each time with an increasing 

number of missing channels, 1, ...,12l  . Therefore, the end result was obtained with 12,000 

iterations in total.  

 

The ICA mixture model in the EEG data was estimated with the on-line ICAMM algorithm 

shown in [157]. A single-class ICA model was selected, and its parameters are shown in Figure 

5.24. 

 
Figure 5.22. Sample of the captured data during the experiment. The starting point of each trial is shown as a solid 

red line, while the beginning of each “Probe item” stage is indicated by a dashed blue line. The shown data span four 

trials. 
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Figure 5.23. Diagram showing the process of the Monte Carlo experiment used to calculate performance on EEG 

data. This process was repeated for an increasing number of missing channels, l.   

 

.  
Figure 5.24. Sample of the ICA parameters estimated from the EEG data: a) recovered sources; b) scalp map for an 

eye artifact; c) and d) scalp maps for two non-artifacted EEG sources.  

 

Figure 5.25 shows the scalp maps corresponding to the prediction results for an increasing 

number of missing channels for spherical splines, E-ICAMM and PREDICAMM initialized 

with the result of E-ICAMM (PREDICAMM+E-ICAMM). Spherical splines performed at a 

similar level as the ICAMM-based methods for one missing channel. As the number of channels 

increased, however, the performance E-ICAMM and PREDICAMM increases above that of 

spherical splines. The optimization procedure in PREDICAMM improved the result of E-

ICAMM by a wide margin in all cases, particularly in the case of the SIR error indicator (Figure 

5.25.a), with a difference of almost 10 dB in favor of PREDICAMM. Furthermore, the 

performance of the proposed ICAMM-based methods was more resistant to the number of 

missing channels, and in fact, barely degrades up to l = 12 missing channels. 

 

To further showcase the performance of the proposed methods, Figure 5.26 shows the 

prediction for a given time instant from a case with l = 32 missing channels. It can be seen that 

both proposed ICAMM-based methods achieve much lower prediction error than spherical 

splines, and their predictions are more similar to true data. More importantly, the general 

distribution of the channel amplitudes (as indicated by the contour lines in Figure 5.26) with 

spherical splines is different from the true one, while E-ICAMM yields a spatial distribution 

more similar to the true one, and PREDICAMM improves this result even further.  
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Figure 5.25. Average error indicators for the prediction on real EEG data. 

 

 
Figure 5.26. Scalp maps of the prediction and prediction error for a case with 32 missing channels. Missing channels 

are indicated by stars (*), while known channels are marked by dots (•). 
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5.5. Conclusions  
 

This chapter presents the application on real data of the prediction methods introduced in 

Chapter 3, PREDICAMM and E-ICAMM. Both methods make the assumption that the data can 

be modeled using a mixture of independent component analyzers (ICA). Each of these methods 

is the optimal predictor with respect to one particular characteristic: PREDICAMM is optimal 

with respect to the log-likelihood of the data, while E-ICAMM is optimal with respect to the 

mean square error. Both predictors are general-purpose and they can be used in many signal 

processing fields. Because of this flexibility, they were tested for the reconstruction of missing 

data from three quite different signal processing fields: non-destructive testing, seismic 

exploration, and electroencephalography. 

 

First, the proposed methods were tested on a set of simulated NDT data, a synthetic radargram. 

In this case, the methods were used to reconstruct several missing traces from the radargram. 

This application required the transformation of the two-dimensional signal (B-Scan) to a one-

dimensional signal by a decomposition of the original image into square patches, a process that 

we have named alignment. After alignment, E-ICAMM and PREDICAMM were compared 

with the state-of-the-art method (Splines), a classical predictor (Kriging), and a nonlinear 

predictor (Wiener structures). Two patch sizes were considered, [8 × 8] and [16 × 16], and the 

behavior of the proposed methods changed slightly with patch size. For [8 × 8] patches, the 

reconstruction yielded by PREDICAMM and E-ICAMM was similar to that obtained by the 

state-of-the-art method (Splines), and was better than that of the competing methods for high 

amounts of missing traces. The performance of the ICAMM-based methods increased for 

[16 × 16] patches, in which case both E-ICAMM and PREDICAMM over-performed Splines 

across all estimators (e.g., the SIR obtained by both methods was 3dB higher, on average, than 

the SIR obtained by Splines). The proposed methods and Splines always performed better than 

the classical predictor, Kriging, and a nonlinear predictor, Wiener structures. This improved 

reconstruction was shown by a better reconstruction of the shape of the recovered hyperbolas in 

the simulated radargram. For this application, the gradient used in PREDICAMM did not obtain 

any significant difference with respect to the initial value provided by E-ICAMM.  

 

The first application of the proposed methods on real data consisted of the reconstruction of real 

GPR data from a study on replicas of historical walls. As with the simulated data, the data had 

to be aligned prior to prediction, and the result proved to depend on patch size. In this case, 

however, performance was different because of the larger presence of planar targets in the real 

data. PREDICAMM, E-ICAMM and Splines performed better on the considered set of real data 

(9 dB average increase in SIR), while Kriging and Wiener structures performed worse on real 

data (8 dB average reduction in SIR). Thus, the difference in performance between both groups 

of methods was larger for real data, and the difference between Splines and the proposed 

ICAMM-based methods was smaller. Other than these differences, the relative behavior of the 

methods was in concordance with the results on simulated data. E-ICAMM and PREDICAMM 

performed at a similar level to Splines for [8 × 8] patches, and performed better than Splines for 

[16 × 16] patches.  

 

The second application was the reconstruction of missing data from a seismic B-Scan or 

seismogram, which was obtained from a public dataset from BP Amoco. Again, the 

performance of E-ICAMM and PREDICAMM was compared with that of Splines, Kriging and 

Wiener structures. The basic structure of the seismogram is similar to that of the radargram, and 

therefore, alignment was required to predict missing data with the proposed methods. The real 

seismogram, however, was more complex than the radargram and all the proposed methods 

achieved lower performances than they did for the first application. E-ICAMM and 

PREDICAMM always performed better than the other considered methods, and Splines usually 

performed better than Kriging and Wiener structures. The difference between the proposed 

methods and Splines was higher for [16 × 16] patches (8 dB average increase in SIR) than it was 

for [16 × 16] patches (4 dB average increase in SIR). Finally, PREDICAMM performed at a 
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very similar level to E-ICAMM. Other than the general decrease in performance, which was 

more marked in the case of Splines, these results are consistent with those obtained on GPR 

data.  

 

Finally, E-ICAMM and PREDICAMM were tested for the reconstruction of missing 

information from EEG data. These EEG were obtained from healthy human subjects performing 

the Sternberg memory task. The proposed methods were used to reconstruct missing data from 

one or more EEG channels, a scenario simulating the disconnection of the corresponding 

electrodes. In this application, the performance of the proposed methods was compared with 

that of the classical interpolator for EEG data, Spherical Splines, which was introduced in 

Section 3.3.4.  Results showed that PREDICAMM performed better than E-ICAMM, which in 

turn performed better than Spherical Splines. These differences were small for one missing 

channel, but increased rapidly with the number of missing channels. This behavior owed to the 

faster decrease of performance of Spherical Splines, whereas both E-ICAMM and 

PREDICAMM were shown to be resistant to the number of missing channels. This point was 

shown with an extreme case where half the channels were missing. Even in this case, the 

reconstruction yielded by E-ICAMM and PREDICAMM was similar to the true data. 

 

In the results presented in this chapter, PREDICAMM was always initialized with E-ICAMM. 

When used on GPR or seismic data, however, PREDICAMM obtained a result that was very 

similar to that of E-ICAMM. In these cases, the initial value was already very close to a 

(possibly local) maximum in the log-likelihood and PREDICAMM did not iterate, or iterated 

only shortly. Conversely, the performance of PREDICAMM did improve greatly over that of 

the initial value, E-ICAMM, for the reconstruction of EEG data. ICA techniques have been used 

on EEG data for a wide variety of applications, and the estimation of the ICA parameters in this 

case is well known. Therefore, it would seem that PREDICAMM performed better in the case 

where the ICA mixture model was best fit (EEG data), and not as well when the model was 

more complex or less applicable (radargram, seismogram). In the former, the probability 

densities estimated from the model were more precise and the maximization procedure in 

PREDICAMM was optimal. In the latter, the densities were not as precise and the initial value 

was usually close to a local maximum, reducing the usefulness of the gradient optimization step.  

 

Furthermore, the ICA mixture model allows us to model local dependences without 

compromising the modeling of global structure. This behavior increases the performance of the 

proposed predictors and, at the same time, describes the structure in the data, since the ICAMM 

parameters can be studied to gain further knowledge on the data. This will be expanded upon in 

Chapter 6, where we will present the application of dynamic modeling methods to cognitive 

tasks and neuropsychological tests for the evaluation of the memory function and learning in 

epileptic subjects. 
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 - Application of G- and UG-SICAMM to EEG signal 
processing 

 

This chapter presents three applications of classification and dynamic analysis using the 

proposed SICAMM variants and G-SICAMM and UG-SICAMM procedures explained in 

Chapter 4. The results the proposed methods are compared with those of SICAMM, ICAMM, 

and several types of Bayesian networks (explained in Section 4.4). The proposed methods were 

tested on three sets of real data from biomedical applications: hypnogram records from sleeping 

subjects, stage detection in memory tasks, and evaluation of data from subjects performing 

several neuropsychological tests. In all cases, the application deals with electroencephalographic 

data. The interested reader can find a brief introduction on EEG data in Section 5.4. 

 

The first application consists of the detection of very brief periods of wakefulness during sleep, 

also known as microarousals, from a set of electroencephalographic and biomedical data known 

as a polysomnogram (PSG). Microarousal detection can be used for differential diagnosis of 

several disorders and diseases [2]. The proposed methods were trained on a set of PSG from six 

patients and the accuracy was estimated by the balanced error rate (BER) of the classification 

and Cohen’s kappa coefficient ( [58]). Both indicators were selected to compensate for the large 

difference in prior probability between the classes, which might interfere with less robust 

indicators (e.g., the error rate). The relation between microarousals and changes in the G-

SICAMM parameters was studied as well.  

 

The second application is the classification of EEG signals from subjects performing the 

Sternberg memory task, a classical neuropsychological test that measures delays in working 

memory. The proposed methods were used to model the EEG data and then studied to find a 

correspondence between said models and the stages of the task. The performance of this 

correspondence was measured by the BER of the classification. The relation between changes in 

the G-SICAMM parameters and the stages of the task was also explored. 

 

The third application is the evaluation of EEG data from epileptic patients. For this application, 

multiple neuropsychological tests were automated using graphic user interfaces (GUI) and 

distributed architectures. The EEGs of the participants were registered while they were taking 

the tests. The synchronicity between the task and the data capture was ensured by the automated 
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GUI. The proposed methods were used to classify the data from six patients. Depending on the 

type of test, the classification considered two classes (stimulus / response) or three classes 

(stimulus / retention / response). Performance was estimated by the BER of the classification 

and Cohen’s kappa coefficient ( [58]).  

 

Wherever two models are compared, the distance between them will be quantified using the 

three indicators introduced in Section 4.5.1. Those indicators are: (i) the Amari index, which is 

used to measure the distance between the de-mixing matrices of both models; (ii) the signal-to-

interference ratio of the recovered sources, which quantifies the average squared error in the 

extraction; and (iii) the probabilistic distance, an approximation of the Kullback-Leibler 

divergence between the sequential distributions of the classes in two models. 

 

6.1. Automatic classification of hypnogram data 
 

In the clinical environment, human sleep is usually split in several stages: (i) stage 0, 

awakening; (ii) non-rapid eye movement (NREM) sleep, which is further classified into stages 

1-4 in increasing order of deepness, i.e., difficulty to awaken the sleeper; and (iii) stage 5, rapid 

eye movement (REM) sleep. REM sleep is also known as paradoxical sleep because the brain 

activity of subjects in REM sleep closely resembles that of awakened subjects [144]. Stages 1-5 

follow each other in cycles that last for about an hour and a half (see Figure 6.1.a). Healthy 

subjects complete four or five of these cycles during a typical night’s sleep.  

 

The record of the different sleep stages during a given period of time is called a “hypnogram.” 

The sequence of sleep stages displayed in the hypnogram can be used to diagnose different 

sleep disorders, illnesses (e.g., depression), and some drug addictions. Figure 6.1 shows two 

sample hypnograms, one from a healthy subject (Figure 6.1.a) and another from a patient with a 

sleep disorder (Figure 6.1.b). The hypnogram of the patient is markedly different from that of 

the healthy subject in several ways: (i) the sleep cycle is very different from that of a healthy 

subject; (ii) the hypnogram lacks any REM sleep, which is related to narcolepsy [144]; and (iii) 

there were multiple short periods of wakefulness through the night. Hypnograms are usually 

obtained in a non-automated manner by an expert performing visual inspection of the 

polysomnogram, a set of EEG and other biological records obtained from the sleeping patient. 

There have been some advances towards the automation of the hypnogram [2,230], but a fully 

automatic system remains a challenge. 

 

One of the most common features extracted from the hypnogram is the absence or presence of 

very short periods of wakefulness [123], also called “microarousals,” since their rate of 

appearance is linked with sleep disorders such as apnea and epilepsy. Microarousals appear in 

 

 
Figure 6.1. Sample hypnograms covering all six sleep stages (1-4 plus REM and awakening): a) healthy subject; b) 

patient with a sleep disorder. Due to its nature, REM sleep is usually placed between stages 0 and 1. 
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the hypnogram as short stays in stage 0, as seen in Figure 6.1.b. In this section, we show a 

practical application of the methods proposed in Chapter 4 for automatic detection of 

microarousals in real EEG data from apnea patients. The results shown in this section have been 

reported in [223,215,221,213]. 

 
6.1.1. Data and pre-processing 
 

In this experiment, the proposed methods were applied to perform automatic detection of 

microarousals. Hence, the classification will only consider two classes: (i) class 1, which 

corresponds to any stage of actual sleep (NREM and REM); and (ii) class 2, which corresponds 

to microarousals (i.e., stage 0 from the hypnogram). Six 8-hour records were considered for the 

experiment, each from a different apnea patient. The records and their respective reference 

hypnograms were obtained by an expert using conventional, non-automated, procedures. As in 

Section 4.5.3, the results of SICAMM and its variants will be compared against those of 

ICAMM and several types of Bayesian networks. These automatic classifications will be 

compared with the non-automated classifications made by the expert, which we will assume to 

be the ground truth. 

 

The recorded PSG were composed by 24 channels each, 11 EEG channels and 13 other channels 

measuring muscle signals, breathing, and other physiological characteristics. For this 

experiment, however, only the EEG channels were considered. The 11 EEG channels were 

sampled at 256 Hz, band-pass filtered using a Butterworth filter of order 6 between 0.2 and 70 

Hz, and then a notch filter at 50 Hz was used to remove line noise. The filtered signals were 

split in 1-3 seconds long epochs (256 to 768 samples) without overlapping, and four features 

were calculated at each epoch. These features where then averaged for 30-second segments, 

which were used by the proposed methods for training and testing. Thus, a decision about the 

sleep stage of the subject is taken every 30 seconds.  

 

6.1.1.a. Extracted features 

 

The four features extracted from the PSG signals were: amplitude, dominant rhythm (centroid 

frequency), and theta-slow-wave index (TSI) from channel C3-A2; and alpha-slow-wave index 

(ASI) from EEG channel O2-A1. These features are commonly used in PSG analysis [2,123], 

and their definitions are included in the following. 

 

Average amplitude 
 

The average amplitude is the average absolute value of the voltage at every electrode during an 

epoch. It was calculated as the sample average of the absolute value of the EEG signal; thus, the 

average amplitude of the -thi  channel is 

 

  
1

1
N

i i

n

x x n
N 

   (6.1) 

 

where  i
x n  are the data from the -thi   channel  1, ..., 6 4i    at time sample n , and with each 

epoch being N  samples long ( N  ranged from 256 to 768 samples). 

 
Centroid frequency 
 

The centroid frequency is the “center of gravity” of the frequency transform of the data from 

every channel during an epoch. It was calculated as the frequency of the first pole of the AR 

model, 
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where , 1, ... ,
j

w j p , are the parameters of the AR model. In this work, a second-order model 

 2p   was considered. This method of calculation of the centroid frequency is common in 

sleep staging [2]. 

 

Alpha Slow-wave Index (ASI) 
 

The ASI is the ratio of power in the alpha band (8-11 Hz) with respect to the power in the delta 

and theta band (0.5-3.5 Hz and 3.5-8 Hz, respectively): 

 

 
,

, ,

A S I a t ch an n e l :
i a lp h a

i

i d e lta i th e ta

P
i A S I

P P



 (6.3) 

 

where 
,i a lp h a

P  is the power at the -thi  channel during the epoch, considering only the power at 

the frequencies within the alpha band; and 
, ,

,
i d e l ta i th e ta

P P  are defined likewise. 

 

Theta Slow-wave Index (TSI) 
 

The TSI is the ratio of power in the theta band with respect the power in both the alpha and the 

delta bands: 
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6.1.1.b. Estimation of SICAMM parameters 

 

The first half of the data was used to estimate the parameters of each method (ICAMM, 

SICAMM and Bayesian networks) in a supervised form, considering the labels provided by the 

expert. Due to the low number of features, G-SICAMM was not used. The ICAMM parameters, 

 , ,
k k k

pW s b , were estimated from the training record by the JADE algorithm ( [231]) 

embedded in the MIXCA procedure. The transition probabilities between classes were also 

estimated from the training record, and they are shown in Table 6.1. Note that all the 

probabilities of permanence in the same class are clearly above 0.5, justifying the use of 

sequential dependence in this application. 

 

Subject 1 Subject 2 Subject 3 

 Class 1 Class 2  Class 1 Class 2  Class 1 Class 2 

Class 1 0.98 0.02 Class 1 0.96 0.04 Class 1 0.97 0.03 

Class 2 0.31 0.69 Class 2 0.20 0.80 Class 2 0.06 0.94 

Subject 4 Subject 5 Subject 6 

 Class 1 Class 2  Class 1 Class 2  Class 1 Class 2 

Class 1 0.91 0.09 Class 1 0.97 0.03 Class 1 0.99 0.01 

Class 2 0.31 0.69 Class 2 0.21 0.79 Class 2 0.14 0.86 
Table 6.1. Estimated transition probabilities for the studied subjects. 
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6.1.2. Classification results 
 

The performance of each method was initially measured by the error rate and the recall (or 

sensitivity) of the classification. However, the microarousals only occur during a very small 

amount of time every night. Since the proportion of class-2 segments is much smaller than the 

proportion of class-1 segments, the error rate and the recall were heavily dominated by class-1 

errors. In sleep staging, this effect is usually compensated by using the balanced error rate. The 

BER is the average of the error rates for each class, and thus is more resistant with respect to 

classes with very different prior probabilities. Conversely, the recall was replaced by Cohen’s 

kappa coefficient ( , [58]), a commonly-used tool to assess accuracy. Cohen’s kappa takes into 

account different class probabilities, and is thus much more robust than the recall. In this work, 

the following definition of κ for a classification with K classes was used ( [41]): 
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 (6.5) 

 

where N is the number of classified samples; 
i i

c  is the number of correctly classified samples 

from class i, 1, ...,i K ; 
i

c


 is the number of samples that truly belong to class i; and 
i

c


 is the 

number of samples that were classified as class i.  

 

The BER is bound in the interval [0, 1], and a low value is better than a high value. On the other 

hand, Cohen’s kappa is bound in the interval [-1, 1] and a high value is better than a low value. 

Thus, a perfect result would have BER = 0 and   = 1. 

 

Table 6.2 shows the BER and kappa for the proposed methods for each subject, and Figure 6.2 

shows the average results. Overall, the dynamic methods (SICAMM, DBN) performed better 

than the non-dynamic methods (BNT, ICAMM). SICAMM and its variants achieved the best 

result for all subjects, having the lowest BER and highest   in all cases. ICAMM obtained the 

second best result, although DBN performed at a similar level for some subjects. Finally, BNT 

achieved the worst results, particularly for Cohen’s kappa coefficient. The proposed variants to 

SICAMM improved the base method and yielded better values of BER and  , which is 

particularly noticeable in Figure 6.2. SICAMM+VI achieved the best results out of the two 

variants, and the best result out of all the proposed methods.  

 

  ICAMM SICAMM SICAMM

+BW 

SICAMM

+VI 

BNT DBN 

Subject 

1 

BER 0.310 0.251 0.213 0.209 0.374 0.303 

Kappa 0.145 0.326 0.333 0.351 0.259 0.255 

Subject 

2 

BER 0.475 0.435 0.416 0.371 0.477 0.441 

Kappa 0.026 0.098 0.112 0.180 0.058 0.103 

Subject 

3 

BER 0.352 0.298 0.224 0.221 0.430 0.399 

Kappa 0.326 0.400 0.534 0.543 0.152 0.221 

Subject 

4 

BER 0.452 0.404 0.355 0.321 0.500 0.500 

Kappa 0.116 0.213 0.309 0.380 0.000 0.000 

Subject 

5 

BER 0.493 0.492 0.461 0.445 0.500 0.500 

Kappa 0.020 0.024 0.115 0.158 0.000 0.000 

Subject 

6 

BER 0.466 0.429 0.407 0.341 0.479 0.496 

Kappa 0.117 0.204 0.200 0.286 0.020 0.013 
Table 6.2. BER and Cohen’s kappa for each subject.  
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Figure 6.2. Average BER and Cohen’s kappa for all subjects. 

 

The classifications achieved for each subject are compared with their respective reference 

hypnograms in Figure 6.3. The results are consistent with those in Table 6.2, with non-dynamic 

methods showing more false alarms than dynamic methods, as indicated by their BER and 

Kappa values. SICAMM and its variants obtained a result closer to the reference hypnogram 

than DBN. In particular, the proposed variants to SICAMM further reduce the number of false 

alarms of SICAMM while maintaining the good classification rate of the original method. This 

effect is more noticeable for subject 3, since the hypnograms obtained by SICAMM+BW and 

SICAMM+VI were cleaner than the one obtained by SICAMM, and all three were in turn 

cleaner than the hypnogram returned by ICAMM.  

 
6.1.3. Sensitivity analysis 
 

The sensitivity of the parameters of the model with respect to time was measured using the 

procedure outlined in Section 4.5.3.b. In brief, SICAMM was trained using semi-batch learning 

on several overlapping windows of the data from each subject. The model for each window was 

then compared against the model from the previous window, in order to detect changes in the 

parameters of the model. Distances were measured using the three indicators presented in 

Section 4.5.1: the Amari index, the signal-to-interference ratio, and the Kullback-Leibler 

divergence (approximated by the probabilistic distance).  

 

The obtained distance indicators for each time-consecutive pair of SICAMM models are shown 

in Figure 6.4. Since a high SIR implies a short distance between models, unlike the Amari index 

and the probabilistic distance, the Figure shows the value 1/SIR instead of the SIR. All of the 

indicators show some dependence on the presence or absence of microarousals, i.e., with the 

reference hypnogram. The estimated correlation with the reference hypnogram was 0.4362, 

0.3628 and 0.2828 for the 1/SIR, Amari index and probabilistic distance, respectively; in all 

cases, 0 .0 5p  . This demonstrates the sensitivity of the SICAMM parameters with respect to 

the sleep stages. Out of the three, the inverse of the SIR seemed to be the most sensitive to the 

presence of microarousals, since it had the greatest correlation with the reference hypnogram.   

 

6.2. Analysis of EEG data captured during a working memory task 
 

Working memory (WM) is defined as the temporary storage and manipulation of information, 

necessary for the performance of other cognitive tasks such as reading, problem-solving or 

learning [13]. The concept of WM evolved from that of short-term memory (STM), but the 

former is more involved than the latter. Research on WM is very popular in the field of 

cognitive psychology owing to its relation to memory and learning. WM is also very common in 

research, particularly in neuroimaging. 
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Figure 6.3. Microarousal detection for the examined subjects: a) subject 1; b) subject 2; c) subject 3; d) subject 4; e) 

subject 5; f) subject 6. For each method, a high value corresponds to a microarousal. 

 

WM was conventionally considered to only hold temporary information, making it similar to 

STM and a separate system from the long-term memory (LTM) [13]. There are studies, 

however, that demonstrate the important role of WM during text comprehension and expert 

performance, thus involving several properties that are more akin to LTM than STM [78]. This 

is also considered in skill memory theory [51]. Recent WM models consider the connections 

between WM and LTM in a number of ways: a) through the existence of multiple biological 

links between WM and LTM [13]; b) modeling WM as an active subset of LTM [65]; or c) 

merging WM and LTM in a more complicated model [125].  

 

The most commonly accepted model of WM is Multicomponent WM (M-WM, [13]). M-WM 

divides the working memory into four main components (see Figure 6.5): (i) phonological loop, 

which controls verbal STM and language; (ii) visuo-spatial sketch-pad, which stores visual and 

spatial information; (iii) episodic buffer, which holds entire experiences, episodes or events in 

STM and acts as storage for other WM and LTM elements; and (iv) central executive, which 

controls attentional focus, task switching, and decision making. Some criticisms of the M-WM 

are the high complexity of the central executive component and the evidence suggesting a 

separation between the visual and spatial components of WM [247]. 
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Figure 6.4. Distance between time–consecutive pairs of SICAMM models for the six subjects: a) subject 1; b) subject 

2; c) subject 3; d) subject 4; e) subject 5; f) subject 6. 

 

 
Figure 6.5. Multicomponent Working Memory model. Shadowed areas are part of the LTM rather than the WM. 
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Working memory and cognitive control functions have been associated most commonly with 

the prefrontal cortex (PFC) [34]. This idea is supported by PET studies that have shown 

activation of this region during a variety of cognitively demanding tasks, all of which can be 

thought to invoke short-term working memory. These tasks seem to activate similar regions of 

the PFC despite the fact that different types of information are involved. However, fMRI studies 

show that other areas do activate during WM tasks, particularly in prefrontal and parietal areas 

[34]. The fMRI studies provide more precise location, determining areas that relate to different 

WM tasks [272].  

 

Studies on working memory test the subjects with different cognitive tasks. In this experiment, 

the subjects were performing the Sternberg memory task [251], one of the most well-known 

working memory tests. The Sternberg memory task was introduced in Section 5.4.2. 

 
6.2.1. Experiment configuration 
 

The data processing for this experiment can be split into a series of stages or modules, as shown 

in Figure 6.6. The process initiates with the capture of electroencephalographic data while the 

subject performs a working memory task. Once captured, data are pre-processed to remove 

noise and extract several features from them. These extracted features are used for data labeling 

by determining the activity of each hemisphere at each particular time sample. After the labels 

are calculated, the parameters of each method are estimated from the first half of the data. These 

parameters are used afterward to classify the second half of the data, i.e., to attempt to 

automatically determine the level of brain activity in each hemisphere. Finally, these 

classifications are compared against the previously-estimated labels to test the classification 

performance of our system. Each of these stages will be studied in depth in the following 

sections. 

 

 
Figure 6.6. Diagram of the EEG data processing stages. 

 

6.2.1.a. Data capture and EEG signal pre-processing 

 

The data capture process was the same that was explained in Section 5.4.1. The captured signals 

were filtered to remove noise caused both by the environment and by the capture device. The 

filters are explained in Section 5.4.1 as well, and the locations of each one of the 64 electrodes 

is shown in Figure 5.19. After filtering, data are split into data segments of a short duration, 

known as epochs, to obtain local estimates of the features and improve the classification. 

Epochs were windowed prior to feature extraction to avoid high-frequency artifacts caused by 

the artificial separation of the data, attenuating the values of all channels at the beginning and 
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the end of the epoch. For this application, we considered epochs of length 0.1 seconds, which 

corresponds to 205 samples, and Hamming windows. Each epoch is treated as a separate 

observation with respect to the models and classifiers. Thus, a decision on the state of the 

subject was taken every 0.1 seconds. 

 

6.2.1.b. Feature extraction  

 

Twelve features were extracted from each epoch of the EEG data (see Table 6.3), and each was 

calculated separately for each channel and for each epoch. The features are explained in detail 

below. Note that the average amplitude, the centroid frequency, the TSI and the ASI were 

already introduced in Section 6.1.1.a. 

 

Kind of feature Feature 

Amplitude Average amplitude 

Maximum amplitude 

Average power 

Spectral Centroid frequency 

Peak frequency 

Spindles ratio 

TSI 

ASI 

Statistical Skewness 

Kurtosis 

Time reversibility 

Third-order autocovariance 
Table 6.3. List of features calculated from each epoch. 

 

Maximum amplitude 
 

The maximum amplitude is the maximum absolute value of the voltage at every electrode 

during an epoch. It was calculated as 

 

   m ax im u m  am p litu d e  a t ch an n el : m ax , 1, ...,
M A X

i i
i x x n n N   (6.6) 

 

Average power 
 

The average power is the average quadratic value of the EEG signal during an epoch. It is 

calculated as 
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Peak frequency 
 

The peak frequency is the frequency which concentrates the maximum amount of energy in 

each channel for an epoch. Note that it is not necessarily equal to the centroid frequency, since 

the maximum frequency only searches for the energy at a single frequency, while the centroid 

frequency considers all points of the frequency spectrum. It is calculated as 
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where  i
X f  is the frequency spectrum of the -thi  channel. 
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Spindles ratio 
 

Spindles are oscillatory bursts of brain activity in the sigma band (11.5-15 Hz). The spindles 

ratio is calculated as the ratio of power in the sigma band with respect to the power of the other 

EEG bands: 
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where 
,i s ig m a

P  is the average power of the -thi  channel during the epoch, considering only the 

power at the frequencies within the sigma band. 

 

Skewness 
 

The skewness or asymmetry is a statistical indicator of how asymmetrical a probability density 

function is with respect to its mean. A skewness close to zero indicates a symmetrical PDF, 

while a skewness far from zero (be it negative or positive) indicates an asymmetrical PDF. It is 

calculated as 
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where 
i

  is the standard deviation at the -thi  channel. 

 

Kurtosis 
 

Kurtosis is a statistical indicator of how “peaked” a probability density function is. It is usually 

normalized with respect to a Gaussian distribution, which corresponds to an un-normalized 

kurtosis of 3. A PDF that is very sharp around its mean, but shows very long tails, will have a 

kurtosis greater than that of a Gaussian distribution; it is known as “super-Gaussian”. 

Conversely, a distribution that is smoother around its mean, with smaller tails, will have a 

kurtosis lower than that of a Gaussian distribution and be known as “sub-Gausian”. It is 

calculated as 
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where the 3 is a normalization factor, and is equal to the kurtosis of a Gaussian distribution. 

 

Time reversibility  
 

The time reversibility of a signal is an indicator of how symmetrical with respect to time is the 

signal in each channel during an epoch. A symmetrical signal has time reversibility equal to 

zero, and an asymmetrical signal has larger time reversibility. It is calculated as 
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where   is the considered lag (in this work, 1  ). 
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Third-order autocovariance 
 

The third-order autocovariance (ACOV3) is an extension to high-order statistics of the classical 

self-covariance of a signal, and equally considers temporal dependences in the signal. It is 

calculated as a sliding average of the third-order moment,  
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where   is the considered lag (in this work, 1  ). 

 

6.2.1.c. Epoch labeling 

 

After feature extraction, each epoch is assigned to one class, i.e., gets labeled. This process is 

necessary for supervised or semi-supervised estimation. Although it is possible to train some 

methods with fully unlabeled data (unsupervised estimation), the performance increases with 

known labels. In most cases, data are labeled by an expert so they are ready for training and 

testing, or the labels are previously known due to the nature of the experiment (for instance, if 

they are the stages of a test). In this work, all epochs were automatically labeled using the 

process outlined in the following.  

 

Each epoch was assigned two labels, one for each brain hemisphere, representing the level of 

activity in the corresponding brain region. The process was performed separately for each brain 

hemisphere, i.e., the channels on the left hemisphere were only used to label the left side of the 

brain, and the channels on the right hemisphere were only used to label the right side of the 

brain (Figure 5.19 shows the location of each of the capture electrodes). The central channels of 

the captures EEG (FPz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, Iz) were ignored for the purposes 

of labeling. This assignment results in 27 channels per hemisphere for labeling purposes.  

 

At each epoch, the features of each group of channels are combined together using a fusion 

algorithm. Then, this fused channel is compared with its own time average for all epochs. 

Epochs above the average were labeled as active (class 2), and epochs below the average were 

labeled as inactive (class 1). This process is performed separately for each hemisphere, as 

explained before. After this process was finished, the resulting labels were used for training, and 

testing the proposed methods.  

 

The fusion algorithm itself does not have any particular restriction, other than having a single-

channel output and returning one value per epoch. In this work, we considered the sample 

average of the features of the selected input channels. That is, we take the values of one or more 

of the extracted features for all the channels of a given hemisphere and average them to obtain 

the fused channel. 

 

The training procedure is summarized in Figure 6.7. 

 

 
Figure 6.7. Diagram of the behavior of the labeling stage at each epoch. 
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In the case of methods that cannot work with multiple labels per observation (ICAMM, 

SICAMM, BNT and DBN), the labels were converted into four equivalent labels, each one 

equivalent to a combination of the labels of each hemisphere (00, 01, 10 and 11). 

 

6.2.1.d. Labeling results 

 

In this section, we will present a selection of the labels assigned from captured data by using the 

process described in Section 6.2.1.c. The labels are shown in Figure 6.8 for five healthy 

subjects. The stages of the experiment have been simplified into two classes, memorization 

(class 1) and response (class 2). 

 

For all subjects, the obtained labels show small but significant correlation with the stages of the 

experiment. Numerically, correlations ranged between 0.06 and 0.3, though they were 

statistically significant  0 .0 5p   in all cases. It can be seen that the labels change much faster  

 

 
Figure 6.8. Sample of the labels for five of the subjects, using different features in each case.  
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Figure 6.9. Detail of the labels for one of the subjects (subject from Figure 6.8.b). 

 

than the stages of the experiment but are still correlated with them, as shown in Figure 6.9. This 

faster variation persists even if we change the fusion algorithm or the threshold, and even if we 

change the features selected for labeling. 

 

6.2.1.e. Training and testing 

 

The EEG data of each subject were split into two sets. The central 30% of the data was used for 

training, and the remaining 70% was used for testing the classification performance of the 

proposed methods (see Figure 6.10). The selection of the central 30% of the data was done so as 

to minimize any possible difference caused by a lack of concentration of the subject at the 

beginning or at the end of the experiment. 

 

 
Figure 6.10. Diagram of the data split into classification and testing sets.  

 

As in the case of the labeling process, the system can use one or more of the extracted features 

in order to classify data. If more than one feature is selected, the system considers the features 

as extra channels. Note that the features selected for training and for classification must be the 

same, but can be different from the ones selected for labeling.  

 

For the methods with two chains (G-SICAMM and DBN2), the channels from each feature were 

separated according to their hemisphere. The channels from the left side of the brain were 

assigned to the left hemisphere and channels from the right side of the brain were assigned to 

the right hemisphere. Central channels (FPz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, Iz) were 

ignored with respect to data training and classification. Thus, G-SICAMM and DBN2 

considered 27 channels per hemisphere. The rest of the proposed methods worked with all 64 

channels. 

 

Once training and classification data were selected, we performed PCA on the selected features 

[124]. The number of components to keep, 'M , was estimated so the sum of the explained 

variances of the selected components was at least 95% of the total variance in the original data. 

This selection means that the number of components changes depending on the subject, as well 

as the number of selected features for training and testing. In the case of methods with two 

chains (G-SICAMM and DBN2), since they have different datasets for each hemisphere, a 

different PCA was calculated for each hemisphere. 
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The parameters for each of the proposed methods were estimated as follows. G-SICAMM was 

with two chains and two classes per chain (K = 2 and L = 2). For the SICAMM and ICAMM, a 

single model was fitted for the data from both hemispheres, that is, the model is fit to 

     1 2
,

T
T T

n n n 
 

x x x . As explained in Section 6.2.1.c, in order to compare these models 

with the one obtained with G-SICAMM, SICAMM and ICAMM considered four classes (K = 

4), one class per combination of classes from each chain (both hemispheres inactive, left 

hemisphere active, right hemisphere active, and both hemispheres active). In all cases, 

parameter estimation was performed with supervised training using the estimated labels with the 

JADE algorithm ( [231]) embedded in the MIXCA procedure. 

 

The configuration of the dynamic Bayesian network was dynamically adjusted to the data. 

Three types of DBN were considered, each one similar to one of the ICA-based methods: a 

network without temporal dependence (BNT), a single network with a HMM (DBN1), and a 

network with a two-chain CHMM (DBN2). The configuration of these methods was similar to 

that of the ICAMM-based methods: for the DBN2, two chains were considered, each one with 

two states (K = 2 and L = 2); and DBN1 and BNT were adjusted considering four states, K = 4. 

Node probabilities were modeled using a Gaussian Mixture Model (GMM) with a variable 

number of mixtures for each node. The number of mixtures for each node was determined by 

testing several GMM with an increasing number of classes (3 to 20) and choosing the model 

with a lower Akaike Information Criterion. In this work, most GMM ended up with seven to ten 

components.  

 
6.2.2. Classification results 
 

The performance of the classification of the state of each brain hemisphere can be evaluated in 

one of two ways. The first would be to determine the number of samples which are correctly 

classified for both hemispheres at the same time. In practice, this is a classification problem 

with four classes, since there are four possibilities: (i) both hemispheres inactive; (ii) left active 

and right inactive; (iii) left inactive and right active; and (iv) both hemispheres active. However, 

the performance of the classification could also be evaluated separately for each hemisphere, 

i.e., counting how many times has a hemisphere been correctly classified as active or inactive. 

This second case is thus a two-class classification case. This Section explores both evaluations 

of the performance of each classification. 

 

Regardless of the number of classes, classification performance is usually estimated from their 

confusion matrix (or error matrix), a matrix defined such that its element (i, j) is equal to the 

number of observations that truly belong to class i and have been labeled as class j by the 

method. A good classifier should have a diagonal or close-to-diagonal confusion matrix. Table 

6.4 and Table 6.5 show two examples of confusion matrices for four-class and two-class 

classification, respectively. Note the largely uneven distribution of the true classes. For instance, 

the case shown in Table 6.4 had 1483 values that belonged to class 00 (both hemispheres 

inactive), but only 112 that belonged to class 11 (both hemispheres active). Therefore, the 

performance of the classification was estimated with the balanced error rate, an indicator that is 

robust with respect to differences in class probability. 

 

Table 6.6 shows the BER of the four-class classification obtained by each of the proposed 

methods. To unify results, all subjects were labeled using the same feature (average power) and 

classified using the same two features (centroid frequency and spindles ratio). Although the 

BER is somewhat large, note that the average BER of a trivial classifier would be 75% because 

of the four classes. Out of all the proposed methods, only SICAMM, G-SICAMM and their 

variants performed significantly better than the base performance. G-SICAMM+VI achieved the 

best result, an average BER of 54.49% across all subjects. Overall, dynamic methods yielded 

better results than non-dynamic methods.  
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Performance increases if we consider two-class classification (i.e., the success rate in 

determining if a hemisphere is active or not). In this case, there are only two classes and the 

trivial classifier would yield a 50% average BER. The results for this second case are shown in 

Table 6.7. Other than the decrease in BER, the relative performance of all methods is in 

concordance with that for the case with four classes. Again, the best result was obtained by one 

of the variants of G-SICAMM, in this case, G-SICAMM+BW with an average BER of 25.91%. 

The proposed variants to SICAMM and G-SICAMM generally improve the result of their 

respective basic methods. 

 

Besides classification, ICAMM-based methods can also be used to obtain a generative model 

for EEG data that can be interpreted on its own. Figure 6.11 shows the obtained model after 

 

  Estimated classes 

  00 01 10 11 

True 

classes 

00 1154 118 30 181 

01 107 135 11 126 

10 24 4 130 13 

11 19 2 4 87 
Table 6.4. Typical confusion matrix for G-SICAMM (subject 1), depending on the state of both hemispheres.  

 

  Estimated class 

True class  0 1 

0 2854 664 

1 190 584 
Table 6.5. Typical confusion matrix for G-SICAMM (subject 2), considering only within-hemisphere transitions.  

 

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

ICAMM 76.07 61.57 72.70 69.52 75.66 71.11 

SICAMM 63.60 55.78 64.91 64.17 65.46 62.78 

SICAMM+BW 64.09 56.06 63.60 63.96 63.65 62.27 

SICAMM+VI 64.13 55.99 64.85 63.96 62.88 62.36 

G-SICAMM 52.96 51.42 54.86 57.83 57.23 54.86 

G-SICAMM+BW 51.76 51.86 54.60 58.24 56.19 54.53 

G-SICAMM+VI 51.94 51.64 54.49 58.20 56.20 54.49 

BNT 75.00 75.00 75.00 75.00 75.00 75.00 

DBN 75.02 75.00 75.00 74.72 75.00 74.95 

DBN2 73.43 62.74 75.00 59.74 75.02 69.19 
Table 6.6. BER for four-class classification of the data from all the subjects. The EEG were labeled using one feature 

(average power) and classified using two features (centroid frequency and spindles ratio). 

 

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

ICAMM 51.91 35.38 36.52 38.98 59.67 44.49 

SICAMM 42.17 17.48 45.31 38.62 45.22 37.76 

SICAMM+BW 42.45 17.39 45.27 38.42 45.56 37.82 

SICAMM+VI 42.45 17.39 45.74 38.42 45.69 37.94 

G-SICAMM 30.18 11.71 34.32 21.77 33.36 26.27 

G-SICAMM+BW 29.14 11.89 34.40 21.94 32.17 25.91 

G-SICAMM+VI 29.98 11.89 34.18 21.94 32.17 26.03 

BNT 50.00 50.00 50.00 50.00 50.00 50.00 

DBN 50.04 50.00 50.00 49.85 50.00 49.98 

DBN2 48.78 36.43 49.15 30.32 48.97 42.73 
Table 6.7. Balanced error rate for each hemisphere when classifying data from several subjects. The EEG were 

labeled using one feature (average power) and classified using two features (centroid frequency and spindles ratio). 
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estimating the G-SICAMM for one of the subjects using a one-second data window as training 

data. The de-mixing matrices for both hemispheres have 23 channels, since the PCA pre-

processing reduced the 27 EEG channels to 23 components. Figure 6.12 is similar, but it shows 

the model obtained for SICAMM during the same time interval. Note that de-mixing matrices 

are larger for SICAMM, since it works with both hemispheres at the same time, while G-

SICAMM considers each hemisphere separately, resulting in smaller de-mixing matrices and 

less sources. In both cases, the model was trained as explained in Section 6.2.1.e. 

 
Figure 6.11. De-mixing matrices (first row) and sources (subsequent rows) extracted after training the G-SICAMM. 

For each source, both the amplitude values (blue) and the histogram (black) are shown. The values indicated over 

each histogram are the kurtosis of each source. De-mixing matrices were composed of 23 rows and columns (reduced 

from the 27 EEG channels using PCA), so 23 sources were recovered – the Figure plots only the first three sources 

from each class for the sake of brevity. The number of samples in each source was different for each class, since the 

2068 epochs available for training were not equally distributed between classes. The sources from inactive classes 

have 1622 and 1634 samples (left and right hemisphere, respectively), while the sources from active classes have 446 

and 434 samples (left and right hemisphere, respectively). 

 

 
Figure 6.12. De-mixing matrices (first row) and sources (subsequent rows) extracted after training the G-SICAMM. 

For each source, both the amplitude values (blue) and the histogram (black) are shown. The values indicated over 

each histogram are the kurtosis of each source. De-mixing matrices were composed of 52 rows and columns (reduced 

from the 64 EEG channels using PCA), so 52 sources were recovered – the Figure plots only the first three sources 

from each class for the sake of brevity. The number of samples in each source was different for each class, since the 

2068 epochs available for training were not equally distributed between classes. From left to right, each class was 

composed of 940, 569, 366, and 193 samples. 
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The plots in Figure 6.11 and Figure 6.12 show that the the activity in the right hemisphere was 

more diffuse (their de-mixing matrices are more diffuse), indicating a higher spatial dispersion 

in the brain activity. They also show that when a hemisphere did activate, its sources became 

less Gaussian (their kurtoses rose), indicating a change in the probability densities of the 

recovered sources. 

 
6.2.3. Sensitivity analysis 
 

Besides the proposed analysis system, a test was carried out to measure the changes in the 

parameters of the model with respect to time. To this end, the G-SICAMM was trained multiple 

times, each time using a higher number of training data until all available data were used for 

training. Then, we calculated the distances between the parameters in each time step, looking 

for significant differences in the estimated models. 

 

The G-SICAMM parameters, as explained previously, are the following: the de-mixing matrices 
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can thus be used to locate and characterize EEG activity using the model. Accordingly, 

differences in the model should allow us to identify changes in the brain activity of the subject. 

 

The G-SICAMM parameters for each epoch were estimated as explained above, and then we 

calculated the distances between each consecutive pair of these models. The best results for a 

single subject are shown in Figure 6.13 (Amari index) and Figure 6.14 (SIR). It is shown that 

the variations in the Amari index show some correlation with the changes in class in the subject, 

while the SIR does not seem to be dependent on these classes or on their changes. To better 

show the correlation of the Amari index and class changes, Figure 6.15 displays just a small 

amount of distances, in order to better interpret the results. It is shown that changes in the class 

usually correspond to increments in the Amari index, particularly in the case of changes to and 

from class 4 (both hemispheres active). 

 

From the three considered distance indicators, the Amari index (i.e., the distance between de-

mixing matrices) is the one that resulted more sensitive to changes in the classes – that is, 

 

 
Figure 6.13. Distance between de-mixing matrices (Amari index) of each pair of consecutive models. The training 

data for the second model were one epoch longer that the training data for the first model. Four classes were 

considered: 1- both hemispheres inactive; 2- left hemisphere active, right hemisphere inactive; 3- left hemisphere 

inactive, right hemisphere active; 4- both hemispheres active. 
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changes in the brain activity of the subject. This outcome matches the result from previous 

sections (see Figure 6.11 and Figure 6.12), where the G-SICAMM parameter that changed the 

most between classes was indeed the de-mixing matrix. At any rate, these results suggest that 

there is a dynamic variation in the model, variation which is related to the brain activity of the 

subject during the memory task. A future line of work is the application of these indicators to 

the rest of the subjects, in order to confirm the detection capabilities of the Amari index.  

 

 
Figure 6.14. Distance between recovered sources (SIR) of each pair of consecutive models. The training data for the 

second model were one epoch longer that the training data for the first model. Four classes were considered: 1- both 

hemispheres inactive; 2- left hemisphere active, right hemisphere inactive; 3- left hemisphere inactive, right 

hemisphere active; 4- both hemispheres active. 

 

 
Figure 6.15. Sample section of the distance between de-mixing matrices (Amari index). 

 

6.3. Analysis of EEG data from neurophysiological tests 
 

In this section, we model the dynamics of brain waves using multimodal data from 

electroencephalographic, electrocardiographic and electromyographic (EMG) signals. These 

signals were taken from subjects that were performing memory tests. In particular, we search for 

changes in the connectivity between brain areas during the memory tasks. This kind of tests is 

an essential area of clinical neurophysiology. The evaluation of the learning and memory 

functions of the patient is an unavoidable part of their neuropsychological assessment. 

Information cannot be processed if the brain is unable to store a certain amount of it in short-

term (working) memory or to recall past experiences, events and strategies from long-term 

memory. Conversely, information stored in short- or long-term memory is useless without the 

means to properly access and activate it.  
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Most of our day-to-day activities require that we make use of information stored in our brains, 

such as previous knowledge and successful strategies. Any problem while accessing that 

information will disrupt the flow of the activity. Conversely, learning is a vital part of many 

situations in life, from childhood to professional life. The inability to learn new concepts 

interferes not only with the subject’s academic learning, but also with their capability to adapt to 

new environments. For instance, a worker with learning disabilities would find it harder to adapt 

to a new job, thus reducing his performance and limiting his career development [1]. Similarly, 

students with learning disabilities experience a much higher dropout rate than non-disabled 

students [235].This kind of problems motivate the development and maintenance of tests to 

evaluate the memory function. 

 

Memory and learning disabilities can be produced by a number of conditions, from normal 

aging to a vast array of neurological or psychiatric pathologies, such as dementia, brain tumors, 

alcoholism, depression, and schizophrenia. Brain damage in particular will usually result in 

memory and learning impairments. Furthermore, the rehabilitation process of any patient is 

dependent on his ability to retain new information. Therefore, it is imperative that memory and 

learning alterations are diagnosed as soon as possible in order to cure or mitigate the underlying 

cause(s). This diagnosis requires detailed evaluation of the cognitive functions of the patient, 

including his memory system. To recapitulate, careful study of the learning and memory 

systems of the brain can help to determine the causes of problems such as low academic 

performance, dropping out of school or college, job problems and failure when adapting to new 

jobs or new environments. Furthermore, the obtained information can help to determine the best 

rehabilitation program for the patient. 

 

Memory tests are usually split in two stages, presentation/retention and test. In the first stage, 

the subject is shown several stimuli that he must memorize. These stimuli can be visual 

(characters, symbols, figures…) or auditory (words, tones…). Nowadays, the tests are 

performed manually under the direct supervision of a neuropsychologist. Therefore, the data 

capture process is not synchronized with the test or with the annotations on the test. Since data 

analysis requires that all these kinds of information be synchronized with each other, we have 

automatized a number of these neurophysiological tests, as seen in Figure 6.16.  

 

 
Figure 6.16. Diagram of the memory and learning testing system. 

 

From the many available neuropsychological tests (see [253,142] for an exhaustive collection), 

we selected the ones shown in Table 6.8 for implementation. The implemented tests were the 

ones most commonly used by the Neuropsychology Unit in the Hospital Universitari i 

Politècnic (HUP) La Fe, Valencia (Spain). Table 6.8 shows three levels of process automation 
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for the tests: full, partial, and synch-only. Fully-automated tests are completely implemented on 

the computer and require no work from the neuropsychologist. Partially-automated tests are also 

automated, but they require some degree of collaboration on the part of the neuropsychologist. 

Only-synchronized (“synch-only”) tests are not implemented on the computer, which is only 

used to synchronize the test with the data and the annotations. 

 
6.3.1. Neuropsychological tests 
 

The implemented tests are explained in brief in this Section in order to make this chapter more 

self-contained. The Sternberg test, also known as Sternberg memory task, was presented in 

Section 5.4.2. 

 

Most of the implemented tests include both the immediate and the delayed “conditions” or 

paradigms. In the immediate condition, the stimulus is presented to the participant just before 

the task. In the delayed condition, there is a longer delay (typically 20 minutes) after the stimuli 

are presented and before the participant is told the task to perform. Typically, the immediate 

condition is used to assess working or short-term memory, whereas the delayed condition is 

more appropriate to evaluate long-term memory. 

 

Name Stimuli Automation Studied brain 

functions 

Test de Aprendizaje Verbal España-

Complutense (TAVEC, [20])  

Auditory Full Auditory memory 

Wechsler Memory 

Scale-R (WMS-R) 

Visual Paired 

Associates 

Visual Full Visual memory 

Figural 

Memory 

Visual Full Visual working 

memory 

Wechsler Memory 

Scale III (WMS-

III) 

Verbal 

Paired 

Associates 

Auditory Full Auditory memory 

Visual 

Reproduction 

Visual Full Visual memory 

Mental 

Control 

Auditory Synch-only Executive 

Wechsler Adult 

Intelligence Scale 

(WAIS-III) 

Digit Span Auditory Full Auditory working 

memory 

Digit 

Symbol-

Coding 

Visual Full Processing speed 

Symbol 

Search 

Visual Full Processing speed 

Barcelona 

Neuropsychological 

Test (TB, [197]) 

Visual 

Memory 

Visual Full Visual working 

memory 

Stroop Color Word Visual Synch-only Executive 

Trail Making Visual Full Attention 

Boston Naming Visual Partial Language 

Verbal Fluency Phonemic Auditory Synch-only Executive 

Semantic Auditory Synch-only Executive 

Sternberg [251] Visual Full Visual working 

memory 
Table 6.8. Implemented neuropsychological tests. Tests were taken from [253] unless otherwise noted. 
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6.3.1.a. Test de Aprendizaje Verbal España-Complutense (TAVEC) 

 

The Test de Aprendizaje Verbal España-Complutense (TAVEC, [20]) is a neuropsychological 

test of auditory working memory and long-term memory. Based on the Rey Fifteen-Item Test 

(FIT, [142]), the TAVEC introduces knowledge about neurocognitive models of the memory 

function to interpret the results of the test [20]. This interpretation surpasses the “multi-storage” 

model and integrates into modularity-of-mind theories. The TAVEC allows determining the 

“normality” of a patient when compared against a similar normed sample and determining the 

possible causes of any deviation. It is used for differential diagnosis of memory alterations such 

as dementia, cognitive loss, traumatic brain injuries (TBI), and epilepsy. 

 

The TAVEC comprises three different lists, Learning (list A), Interference (list B), and Recall. 

In this work, only the Learning and Interference lists were implemented. Lists A and B are 

composed of 16 words from four semantic categories, two in common for both lists (“spices” 

and “fruit”) and two exclusive to each list: “tools” and “clothing” for list A; “fish” and “kitchen 

utensils” for list B. In the immediate condition, the Learning list is read and the participant is 

asked to repeat as many words as possible in any order. This process is repeated 5 times. The 

Interference list is then read and the participant is required to repeat as many words as possible 

from it. Finally, the participant is asked to recall the words from list A without listening to it. In 

the delayed condition, the participant is asked to repeat as many words as possible from list A. 

Scoring is calculated depending on the number of recalled items and the number of errors. 

 

6.3.1.b. Wechsler Memory Scale 

 

The Wechsler Memory Scale (WMS, [253]) is a neuropsychological test developed to detect 

and evaluate memory disorders in adults and older adolescents. The original WMS was 

published by Dr. David Wechsler in 1945, and it has been revised several times through the 

years. The first revision, WMS-R, includes nine sub-tests and five indices that measured 

different types of memory: Verbal Memory, Visual Memory, Delayed Recall, 

Attention/Concentration, and General Memory. The next revision, WMS-III, added sub-tests to 

assess delayed recognition memory and replaced abstract visual designs with pictures of 

everyday stimuli (e.g., the Faces sub-test). The test includes eleven sub-tests, from which eight 

primary index scores are derived. The WSM can be used to assess the clinically relevant aspects 

of memory functioning. For example, it can be used to detect and localize cerebral dysfunction 

and it can aid in detecting dementias and neurodegenerative disorders. Research suggests that 

the primary indices of the WMS-III can accurately identify malingering of neurocognitive 

dysfunction in mild TBI. 

 

As shown in Table 6.8, five sub-tests were implemented: Visual Paired Associates and Figural 

Memory (from WMS-R), and Verbal Paired Associates, Visual Reproduction and Mental 

Control (from WMS-III). 

 

The Visual Paired Associated sub-test evaluates visual memory and cued recall. It includes six 

pairs of an abstract figure and a color. In the immediate condition, the participant is shown the 

six pairs in succession. Afterward, the figures are shown one by one and the participant is told 

to provide the corresponding color for each figure. There are three trials of the same pairs in 

different orders. In the delayed condition, the examinee is shown the same figures and is asked 

to choose the corresponding colors. Scoring is calculated from the number of correct pairs.  

 

The Figural Memory sub-test is an immediate recognition test of abstract designs. The 

participant is shown a set of three abstract figures, rectangles with a pattern of shapes inside 

them, for 10 seconds. Afterward, the examinee is shown a set of nine similar figures from which 

they have to select the three figures they were shown before. There are three trials of increasing 

difficulty. Scoring is calculated from the number of correctly-selected figures. 
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The Verbal Paired Associates sub-test evaluates auditory memory and cued recall. It is 

composed of 10 to 14 word pairs; half of these pairs are semantically related (e.g., rose-flower) 

and the other half are unrelated (e.g., cauliflower-pencil). In the immediate condition, after the 

word pairs are read, the first word of each pair is read and the participant is told to provide the 

corresponding word. There are three to six trials of the same list in different orders. In the 

delayed condition, the examinee is orally presented with the first word of each pair learned in 

the immediate condition and asked to provide the corresponding word. Scoring is calculated 

from the number of correct pairs.  

 

The Visual Reproduction sub-test assesses memory for non-verbal (i.e., abstract) visual stimuli. 

In the immediate condition, the participant is shown a series of five designs for 10 seconds each. 

After each design is presented, the participant is asked to draw the design from memory. In the 

delayed condition, the examinee is asked to draw the designs shown during the immediate 

condition from memory in any order. The result of the sub-test is calculated by a methodical 

comparison of the copied figures and the original ones. 

 

In the Mental Control sub-test, the participant is asked to perform seven verbal tasks of 

increasing difficulty: i) counting from 1 to 20; ii) reciting the alphabet; iii) listing the days of the 

week; iv) saying the months of the year; v) counting down from 20 to 1; vi) saying the days of 

the week in reverse order; vi) saying the months of the year in reverse order; vii) counting from 

0 to 36 by sixes and reciting the days of the week in alternating order (0-Monday, 6-Tuesday, 

and so on until 36-Sunday). Scoring is calculated from the number of mistakes and the time 

taken to complete each task. 

  

6.3.1.c. Wechsler Adult Intelligence Scale 

 

The Wechsler Adult Intelligence Scale (WAIS, [253]) is a test designed to measure intelligence 

in adults and older adolescents. The first edition of the test was created in 1939, and it was 

named the Wechsler-Bellevue intelligence scale (WB); later editions changed the name of the 

test. It was developed by Dr. David Wechsler to replace the then-dominant Stanford-Binet scale 

of intelligence. The third edition of the test (WAIS-III), unlike previous editions, measures 

intelligence based on four factorially-derived indices. These indices enhance its clinical 

relevance for differential diagnosis of conditions that are linked with intelligence, such as brain 

injuries or learning disabilities. In neuropsychological assessment, the WAIS-III can: a) 

diagnose cognitive disorders and identify brain dysfunction; b) track changes in cognitive 

function over time; c) identify cognitive strengths and weaknesses important for daily 

functioning. The test comprises seven verbal sub-tests and six non-verbal (performance) sub-

tests. Out of these, one verbal sub-test and two performance sub-tests were implemented, as 

shown in Table 6.8: Digit Span, Digit Symbol-Coding, and Symbol Search. 

 

The Digit Span sub-test is split in two stages. In the first one, called Digit Span Forward, the 

participant is read a sequence of numbers and then recalls the numbers in the same order. 

During the second stage, Digit Span Backward, the participant is read a sequence of numbers 

and recalls the numbers in reverse order. In both stages, the objective is recalling correctly as 

many sequences as possible.  

 

In the Digit Symbol-Coding sub-test, the numbers 1 to 9 are paired with symbols on a key. The 

participant is given the key and asked to go through a grid numbers and select the correct 

symbols for each number. The sub-test is timed and scoring is given depending on the amount 

of correct responses and the number of mistakes. 

 

In the Symbol Search sub-test, the participant indicates whether one of the symbols in the target 

group matches any of the symbols in the search group. This process is repeated as many times 

as possible within a specified time limit, and scoring is given depending on the amount of 

correct responses. 
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6.3.1.d. Barcelona Neuropsychological Test 

 

The Barcelona Neuropsychological Test (TB, [197]) or Programa Integrado de Exploración 

Neuropsicológica (PIEN) is a battery of tests designed in Spain in 1977 to evaluate higher 

mental functions in such a way as to advance clinical knowledge of neuropsychological 

patients. It is one of the first neuropsychological tests developed in Spain. It is a comprehensive 

test that considers a high number of mental functions, such as: attention, language, orientation, 

visual memory, and abstraction capability. It comprises 106 subtests split in 42 categories, and 

the whole TB takes about 3 hours to complete. Successive revisions of the TB have reduced the 

run time and complexity of the test, such as the abbreviated Barcelona test (TB-A, [198]). Only 

the Visual Memory sub-test of the TB was implemented, as shown in Table 6.8. 

 

In the Visual Memory sub-test, the participant is shown an abstract line figure during 10 

seconds. Afterward, the participant is told to select the shown figure out of a group of four 

similar figures. There are ten series in this sub-test, and scoring is given depending on the 

number of correct responses. 

 

6.3.1.e. Stroop Color Word Test 

 

The Stroop Color Word Test (SCWT, [253]) is based on the Stroop effect, discovered in 1935 

by its namesake, Dr. John Ridley Stroop.  In brief, the Stroop effect consists in that we are able 

to read words more quickly and automatically than we can name colors. For instance, if one is 

presented with the word “blue” printed in red ink, he will say the word “blue” more readily than 

he can name the color in which it is printed, red. The SCWT uses this effect to assess the ability 

of an individual to inhibit a habitual response for one that is less readily available. It provides 

insight into cognitive effects that are experienced as a result of attentional fatigue. Also, 

performance in the SCWT is lower in patients with dementia and in individuals with frontal 

lobe versus posterior lesions and left versus right hemisphere lesions. 

 

The SCWT is composed of three stages, Color, Word, and Color-Word. In the first stage, Color, 

the participant is given a sheet of paper with a 5x20 grid of bars that are colored red, green or 

blue. Participants are instructed to say the color of each bar going down the columns.  In the 

Word stage, the bars are replaced with color words (red, green, blue) in black type, and the 

participant is required to read the words. Finally, in the Color-Word stage, each word is printed 

in a color that differs from the written word (e.g., the word “red” will be printed in blue or 

green, not in red). The participant is instructed to say the color of the item, not the written word. 

Participants are given 45 seconds for each stage, with scoring being given by the number of 

correct responses. 

 

6.3.1.f. Trail Making Test 

 

The Trail Making Test (TMT, [253]) is a neuropsychological test of attention, processing speed, 

and task switching. It was developed in 1938 by US Army psychologists, and adapted to civil 

use in 1955. The TMT is one of the best measures of attention and one of the most popular 

neuropsychological tests. The test is highly sensitive to brain injury, and it can be used for 

differential diagnosis of several conditions, such as alcoholism and learning disabilities. 

 

The TMT has two parts, A and B. In part A, participants are instructed to connect 25 encircled 

numbers that have been randomly placed on a page. The numbers have to be connected in 

proper order within 5 minutes, without making mistakes or lifting the pencil from the paper. In 

part B, the participants are required to connect 25 encircled numbers and letters in alternating 

order, again within 5 minutes. In both parts, participants are instructed to connect the circles as 

fast as they can. The test is scored based on the time taken to complete each part. The number of 

errors may be clinically relevant, but it is not a separate score. 
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6.3.1.g. Boston Naming Test 

 

The Boston Naming Test (BNT, [253]) is a visual confrontation naming test used to measure 

confrontational word retrieval in individuals. This ability is diminished in patients with strokes, 

Alzheimer’s disease, and other dementing disorders. However, there is limited normative data, 

and the BNT is usually used as a supplement to other neuropsychological tests.  

 

The BNT contains 60 line drawings graded in ascending difficulty, that is, frequency of use. 

The drawings are shown one at a time and the participant is asked to name each of them within 

20 seconds. The examinee may be presented with cues when there is a mistaken response; these 

cues can be descriptive or phonemic. The total score is the number of accurate responses, 

disregarding those following a phonemic cue. 

 

6.3.1.h. Verbal Fluency 

 

Verbal fluency is a cognitive function that facilitates information retrieval from memory. There 

are a number of verbal fluency tests that date back to the 1960’s. The two most commonly-

measured parameters are ( [142]): a) semantic fluency, tested by asking the participant to 

generate as many words from a given category as possible (animals, clothing…); b) phonemic 

fluency, which is tested by asking the participant to generate words beginning with a single 

letter (f, a, s…). Neuroimaging studies suggest that the two types of fluency tasks may engage 

different cognitive processes and are differentially affected in clinical populations. Results show 

a number of consistent characteristics across types and subjects, such as the production of bursts 

of semantically-related words and a hyperbolic decline in the rate of production of new words.  

 

In this work, three verbal fluency tasks were considered: two phonemic fluency tasks (word 

beginning with “f” and with “a”) and one semantic fluency task (animals). In all cases, the 

participant was asked to provide as many words as possible within 60 seconds. 

 
6.3.2. Experiment configuration  
 

The experiment was performed on six epileptic patients, between 32 and 67 years old. Each 

patient was fitted with several electrodes with which to record the EEG, ECG and EMG signals 

for the duration of the neuropsychological testing. The location of the EEG electrodes is shown 

in Figure 6.17; note that they are different from the locations of the electrodes in Figure 5.19. 

Two ECG electrodes were placed in a modification of Lead II of the American Heart 

Association. One of the electrodes was placed on the right hemithorax and the other on the left 

inframammary region, close to the sixth intercostal space. This lead was selected because we 

were more interested in the sequence of the EEG, rather than in its fine detail. 

 

The recorded signals were composed by 18 bipolar EEG channels and one bipolar 

electrocardiographic channel. The data were captured with a sampling frequency of 512 Hz, and 

then band-pass filtered between 1.6 and 35 Hz using clinical-purpose software. The data 

recording and filtering process was performed by specialists of the Neurology Unit of the La Fe 

hospital. The signals and the test results were registered by different devices, and special care 

was taken to ensure the correct synchronization between the capture devices and the computer 

performing the tests. A neuropsychologist was present at all times to guide and supervise the 

participant during the test taking process.  

 

The implementation of each test was different depending on whether the test requires visual or 

auditory stimuli, as indicated in Table 6.8. The visual tests were built as graphical user 

interfaces using MATLAB®, a high-level language and interactive environment for numerical 

computation. Each GUI is composed of a graphical front end and a numerical back end. The 

front end for the WAIS-III Symbol Search sub-test is shown in Figure 6.18; the rest of the front 

ends look very similar to it. The tests were presented on a large touchscreen in order to simplify  
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Figure 6.17. Location of the EEG electrodes according to the 10-20 system. 

 

 
Figure 6.18. Front end for the WAIS-III Symbol Search sub-test. 

 

the testing process and make it as similar as possible to the traditional process. This was done 

because many patients are not habituated to work with computers (particularly, mouse and 

keyboard), which might impact their test results. The GUI were designed so the buttons and 

images were large and recognizable, and the distance between buttons was maximized to avoid 

any accidental or incorrect clicking. The front ends featured neutral colors and images were 

presented on a white background which helped them stand out from the rest of the GUI, as 

shown in Figure 6.18. The numerical back end was similar for all the tests. It was used to check 

the responses given by the participant, calculate neuropsychological scoring, and annotate each 

response with the exact date and time. This information was used to synchronize the responses 

with the multimodal data. 

 

The auditory tests were implemented using distributed programming, following the architecture 

shown in Figure 6.19. The main program for each test was implemented using Voice Extensible 

Markup Language (VXML). VXML is a digital document standard for specifying interactive 

media and voice dialogs between humans and computers [87]. The participant accesses the 

VXML program using any Voice-over-IP (VoIP) software such as Skype™. At that moment, 

the VXML server dynamically calls the instructions for the corresponding test from a database 

in a Swiss server and executes them in real time. The test is taken using the VoIP software, and 

the process depends on the particular test. Figure 6.20 shows the testing process for the TAVEC 

test, but other tests are similar. Every step of the process is annotated by the VXML server with 

the exact date and time in order to ensure synchronicity with the multimodal data. This 

information, as well as the responses of the participant, is stored in the database. All of these 
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transmissions are undertaken automatically by the program using JavaScript and they require no 

input by the examinee or the neuropsychologist. The application server runs ASP.NET, using 

the programming language C#, and the database server runs MS-SQL-Server. Finally, the 

synch-only tests were implemented using a MATLAB GUI similar to the one used for the visual 

tests. In the case of synch-only tests, however, this computer interface was used only to 

synchronize the test with the multimodal data. The test itself was administered by a 

neuropsychologist in the traditional fashion. 

 
Figure 6.19. Distributed architecture for the auditory tests. 

 

 
Figure 6.20. Flowchart of the testing process for the TAVEC auditory test. 
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6.3.3. Classification results 
 

6.3.3.a. Two-class classification 

 

The performance of the proposed methods was tested using the EEG data from the experiments. 

For the purposes of this experiment, two classes were considered (K = 2). The first class 

corresponds to stimuli presentation, whether visual (e.g., showing a picture to the subject) or 

auditory (e.g., reading a list of words to the subject). The second class corresponds to the 

response of the participant after each set of stimuli. This includes both the actual response time, 

plus the latency until this response. Some of the implemented neuropsychological tests, 

however, show no separation between stimuli presentation and user response. In these cases, the 

user responds while the stimulus is being shown, thus overlapping both classes. The tests that 

correspond to this category, and thus were not considered for the classification experiment, were 

the following: Stroop Color Word test, Boston Naming test, and the Digit Symbol-Coding and 

Symbol Search sub-tests in WAIS-III.  

 

For the experiment, each test and each subject was treated separately. The proposed dynamic 

modeling methods were trained using the first half of the data for each test and then used to 

classify the second half of the data. This process was repeated for each test and for each subject. 

The filtered signals were split into epochs of length 0.25 seconds (approximately 125 samples 

long). This short length was selected in order to ensure that all stages of each test (some of 

which are very short) were spread over multiple epochs, thus improving parameter estimation. 

The eleven features shown in Table 6.3 were calculated for each epoch, and for each test, the 

best feature was selected with a cross-validation method.  

 

The parameters of the ICAMM, SICAMM and G-SICAMM methods were estimated using 

supervised training on the first half of the data. The ICA parameters were estimated with the 

JADE algorithm ( [231]) embedded in the MIXCA procedure, and transition probabilities were 

estimated by counting. ICAMM and SICAMM considered all channels. G-SICAMM used two 

chains (L = 2), one for each hemisphere. Each chain considered the 8 channels on the 

corresponding side of the head, plus the central channels (Fz, Cz and Pz in Figure 6.17). Both 

chains considered the same classes: in this case, the G-SICAMM structure is used to isolate the 

contributions of each hemisphere. The configuration of the Bayesian networks was dynamically 

adjusted to the data. Three types of DBN were considered, each one similar to one of the 

ICAMM-based methods: a network without temporal dependence (BNT), a single network with 

a HMM (DBN1), and a network with a two-chain CHMM (DBN2). The configuration of these 

methods was similar to that of the ICAMM-based methods. Node probabilities were modeled 

using a Gaussian mixture model (GMM) with a variable number of mixtures for each node. The 

number of mixtures for each node was determined by testing several GMM with an increasing 

number of classes (3 to 20) and choosing the model with a lower Akaike Information Criterion. 

In this work, most GMM ended up with seven to ten components.  

 

Classification performance was initially measured with the balanced error rate and the recall (or 

sensitivity) of the user response class. The BER was selected because of the uneven distribution 

of the stimuli/response classes across tests and subjects, and the recall is commonly used in 

pattern recognition and information retrieval scenarios. Initial results, however, proved the 

recall to be unreliable for this experiment. This owed to the high recall values obtained for 

obviously bad classification results, e.g., a classifier that always returned “user response” would 

obtain 100% recall. Therefore, the recall was replaced by Cohen’s kappa coefficient ( , [58]), 

which was defined as (6.5) in Section 6.1.2. 

 

The average values of BER and   of each method across all subjects and tests are shown in 

Table 6.9. In concordance with the results in Chapter 4, ICAMM-based methods obtained a 

better overall performance than Bayesian networks. Non-dynamic methods performed worse 

than their respective dynamic methods, which is more noticeable in the case of ICAMM-based 
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methods. G-SICAMM performed better than SICAMM, and the variants with the Baum-Welch 

and Viterbi algorithms performed better than the base methods. The best average result, both in 

BER and  , was yielded by G-SICAMM+VI. In all cases, it can be seen that this classification 

is a difficult problem that required the use of powerful dynamic models. 

 

Let us consider the result for each individual combination of test and subject. Due to the high 

number of results (six methods, ten tests, six subjects, and two performance indicators), we only 

show here the BER and   of the classification experiment for the G-SICAMM+VI and DBN 

methods (Table 6.10 and Table 6.11, respectively). These methods were selected because they 

obtained the highest average performance (lowest BER and highest kappa) of all ICAMM-based 

methods (G-SICAMM+VI) or of all Bayesian networks (DBN). The rest of the tables are 

included in Appendix 1. It can be seen that G-SICAMM+VI obtained the best performance in 

almost all cases. Even in the few cases were DBN achieved the best performance (e.g., the 

Sternberg task for subject #6), G-SICAMM+VI obtained a similar result. 

 

Method Kappa BER (%) 

ICAMM 0.115 44.13 

SICAMM 0.360 29.16 

SICAMM+BW 0.475 22.48 

SICAMM+VI 0.515 20.76 

G-SICAMM 0.383 27.75 

G-SICAMM+BW 0.521 19.80 

G-SICAMM+VI 0.562 18.12 

BNT 0.070 46.41 

DBN 0.205 38.31 

DBN2 0.095 44.81 
Table 6.9. Average BER and Cohen’s kappa for each method during two-class classification. 

 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 30.13 38.88 40.26 18.45 35.03 27.89 

TAVEC 17.02 26.60 20.18 27.04 19.25 21.40 

WMS-R: Visual Paired Associates 5.76 10.52 9.34 8.90 5.04 20.60 

WMS-R: Figural Memory 27.26 3.74 12.11 8.47 9.73 2.50 

WAIS-III: Verbal Paired Associates 2.70 35.94 14.48 6.24 15.42 10.45 

WAIS-III: Visual Reproduction 5.82 14.77 12.89 17.38 7.52 6.18 

WAIS-III: Mental Control 14.75 14.22 14.86 12.78 25.50 32.67 

WAIS-III: Digit Span 21.38 31.85 27.33 22.42 10.14 48.73 

Verbal Fluency 7.67 23.96 19.11 30.67 19.97 8.64 

TB: Visual Memory 12.28 21.77 27.44 7.92 20.25 14.76 

b) Kappa       

Sternberg 0.395 0.220 0.190 0.630 0.276 0.455 

TAVEC 0.688 0.470 0.573 0.554 0.625 0.588 

WMS-R: Visual Paired Associates 0.762 0.694 0.701 0.866 0.812 0.569 

WMS-R: Figural Memory 0.314 0.871 0.555 0.799 0.637 0.967 

WAIS-III: Verbal Paired Associates 0.870 0.319 0.534 0.713 0.731 0.686 

WAIS-III: Visual Reproduction 0.612 0.408 0.296 0.444 0.475 0.604 

WAIS-III: Mental Control 0.706 0.716 0.767 0.752 0.436 0.347 

WAIS-III: Digit Span 0.423 0.277 0.354 0.559 0.795 0.321 

Verbal Fluency 0.650 0.423 0.447 0.351 0.365 0.545 

TB: Visual Memory 0.701 0.499 0.397 0.778 0.531 0.682 
Table 6.10. Results of the two-class classification of EEG data from neuropsychological tests using the G-

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 42.85 44.19 46.43 28.74 42.87 24.61 

TAVEC 16.97 46.10 39.17 40.39 52.52 22.10 

WMS-R: Visual Paired Associates 46.59 41.46 39.07 15.63 33.77 12.46 

WMS-R: Figural Memory 50.30 38.18 52.71 50.00 36.11 10.00 

WAIS-III: Verbal Paired Associates 50.00 65.66 22.90 12.60 32.90 33.65 

WAIS-III: Visual Reproduction 34.56 41.14 50.00 37.51 50.00 29.04 

WAIS-III: Mental Control 40.66 30.94 50.00 38.98 47.95 44.34 

WAIS-III: Digit Span 38.55 44.72 50.81 34.64 36.24 61.48 

Verbal Fluency 19.51 40.90 47.02 30.20 50.00 21.18 

TB: Visual Memory 47.27 37.13 50.00 21.05 50.00 28.00 

b) Kappa       

Sternberg 0.136 0.127 0.064 0.426 0.129 0.487 

TAVEC 0.680 0.087 0.186 0.118 0.031 0.556 

WMS-R: Visual Paired Associates 0.065 0.147 0.142 0.600 0.189 0.730 

WMS-R: Figural Memory 0.010 0.155 0.044 0.000 0.215 0.653 

WAIS-III: Verbal Paired Associates 0.000 0.347 0.417 0.612 0.411 0.246 

WAIS-III: Visual Reproduction 0.077 0.059 0.000 0.187 0.000 0.218 

WAIS-III: Mental Control 0.187 0.381 0.000 0.230 0.049 0.114 

WAIS-III: Digit Span 0.185 0.096 0.017 0.310 0.276 0.110 

Verbal Fluency 0.472 0.213 0.091 0.367 0.000 0.380 

TB: Visual Memory 0.072 0.217 0.000 0.510 0.000 0.364 
Table 6.11. Results of the two-class classification of EEG data from neuropsychological tests using the DBN method: 

a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Figure 6.21 shows an example of the classification of each of the proposed methods for the 

several tests and subjects. Results for other combinations of test and subjects are similar. It can 

be seen that the results of the non-dynamic methods (BNT, ICAMM) tended to oscillate very 

fast or to remain “locked” at a particular class, thus explaining the worse performance yielded 

by those methods. The single-chain dynamic Bayesian network achieved a good result in 

several cases (e.g., Figure 6.21.c), but a bad result in other cases (e.g., Figure 6.21.a), with an 

overall average result. On the other hand, the dynamic ICAMM-based methods yielded a 

consistently good result in most cases. The base SICAMM and G-SICAMM showed some of 

the oscillating behavior of ICAMM, while the Baum-Welch and Viterbi variants showed very 

few rapid changes and yielded a very smooth classification, particularly for the latter. This 

behavior produced a better average performance for those variants (SICAMM+BW, 

SICAMM+VI, G-SICAMM+BW, G-SICAMM+VI), although it led in some cases in to a loss 

of some rapid changes in the data (see the last class change in Figure 6.21.b). This is also 

supported by the high values of kappa, which seems to indicate a high concordance between the 

true classes and the classification obtained by ICAMM-based methods with the Baum-Welch 

and Viterbi variants. 

 

Let us define an “event” as the time period that the test stays in the same class, i.e., the time 

between two consecutive class transitions. Figure 6.21 illustrates that most of the BER incurred 

in by SICAMM, G-SICAMM and the proposed variants, particularly SICAMM+VI and G-

SICAMM+VI, was caused by errors in the timing of each event rather than by missed events. 

That is to say, the dynamic ICAMM-based methods correctly detected the events but sometimes 

failed to pinpoint the start and end samples. The other considered methods did not detect these 

events with such precision, nor did they correctly detect their start and end samples. 
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Figure 6.21. Sample results for the two-class classification experiment of data from neuropsychological tests: a) 

Figural Memory test for subject #4; b) TAVEC test for subject #5; c) Verbal Paired Associates test for subject #5; d) 

TAVEC test for subject #6. In all cases, “high” represents the user response class and “low” represents the stimuli 

class. 

 

6.3.3.b. Three-class classification 

 

The classification experiment can be extended beyond two-class classification for several of the 

considered neuropsychological experiments. For instance, most visual working memory tests 

could be split in three stages or classes: stimulus presentation, retention, and user response. 

During the retention stage, the subject must retain the stimuli shown before in memory for a few 

seconds before proceeding to the user response stage. The tests that could be examined in this 

way were: Sternberg, Visual Paired Associates (WMS-R), Figural Memory (WMS-R), Visual 

Reproduction (WAIS-III), and Visual Memory (TB).  

 

The proposed methods were trained as explained in Section 6.3.3.a, but with an increased 

number of classes (K = 3). The average performance indicators are shown in Table 6.12. The 

performance of all methods decreased with respect to the case of two-class classification (see 

Table 6.9), owing to the increased number of classes. Nevertheless, the conclusions obtained for 

two-class classification still held true for three-class classification, briefly: (i) dynamic methods 

performed better than non-dynamic ones; (ii) ICAMM-based methods yielded better results than 

the considered Bayesian networks; and (iii) G-SICAMM performed better than SICAMM and 

the best result was obtained by G-SICAMM combined with the Viterbi algorithm.  

 

The tables with the BER and   values yielded by each method for each test and subject are 

shown in Appendix 1. Table 6.13 and Table 6.14 show the results of G-SICAMM+VI and DBN 

(respectively) for comparison with the values for two-class classification in Table 6.10 and 

Table 6.11. The values for three-class classification behave similarly to those for two-class 

classification, albeit with reduced performance. The performance of G-SICAMM+VI was better 

than that of DBN in all cases, and the difference is very high in most cases. 
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Method Kappa BER (%) 

ICAMM 0.108 60.35 

SICAMM 0.303 47.81 

SICAMM+BW 0.408 38.93 

SICAMM+VI 0.391 39.81 

G-SICAMM 0.320 46.70 

G-SICAMM+BW 0.403 37.62 

G-SICAMM+VI 0.442 36.10 

BNT 0.049 64.15 

DBN 0.153 56.61 

DBN2 0.134 58.93 
Table 6.12. Average BER and Cohen’s kappa for each method during three-class classification. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 43.34 59.83 51.75 35.03 55.83 48.72 

WMS-R: Visual Paired Associates 36.30 39.20 36.08 46.08 22.95 47.94 

WMS-R: Figural Memory 51.11 33.23 48.36 33.88 15.18 17.20 

WAIS-III: Visual Reproduction 37.24 45.24 31.80 31.82 10.13 15.54 

TB: Visual Memory 24.07 41.68 39.84 24.63 36.22 22.69 

b) Kappa       

Sternberg 0.401 0.128 0.199 0.509 0.170 0.302 

WMS-R: Visual Paired Associates 0.771 0.444 0.770 0.225 0.543 0.488 

WMS-R: Figural Memory 0.294 0.224 0.352 0.578 0.690 0.606 

WAIS-III: Visual Reproduction 0.566 0.479 0.174 0.474 0.319 0.458 

TB: Visual Memory 0.557 0.351 0.453 0.661 0.488 0.576 
Table 6.13. Results of the three-class classification of EEG data from neuropsychological tests using the G-

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 65.56 66.67 63.40 63.83 63.77 66.67 

WMS-R: Visual Paired Associates 69.63 58.29 62.45 65.81 66.67 58.13 

WMS-R: Figural Memory 66.67 67.41 66.67 62.57 45.89 48.61 

WAIS-III: Visual Reproduction 67.56 65.79 67.27 69.33 18.08 72.06 

TB: Visual Memory 27.97 60.94 65.58 31.71 66.67 26.32 

b) Kappa       

Sternberg 0.009 0.000 0.020 0.061 0.067 0.000 

WMS-R: Visual Paired Associates 0.047 0.084 0.070 0.016 0.020 0.241 

WMS-R: Figural Memory 0.000 0.030 0.022 0.127 0.616 0.462 

WAIS-III: Visual Reproduction 0.030 0.008 0.025 0.069 0.235 0.121 

TB: Visual Memory 0.479 0.047 0.026 0.502 0.000 0.573 
Table 6.14. Results of the three-class classification of EEG data from neuropsychological tests using the DBN2 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Figure 6.22 shows an example of the classification of each of the proposed methods for the 

several tests and subjects. Figures for other combinations of test and subjects are similar. The 

results show the reduced performance obtained in the three-class classification when compared 

with two-class classification (see Figure 6.21). Furthermore, G-SICAMM and its variants 

yielded a classification that changed more rapidly than that of SICAMM. This led to some 

classification errors in some cases (see the last twenty seconds in Figure 6.22.d), but overall 

resulted in more accurate classifications (see Figure 6.22.c and most of Figure 6.22.d). 
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Figure 6.22. Sample results for the three-class classification experiment of data from neuropsychological tests: a) 

Figural Memory test for subject #4; b) Visual Reproduction test for subject #6; c) Visual Memory test for subject #3; 

d) Visual Paired Associates test for subject #2. In all cases, “low” corresponds to the stimulus class, “middle” to the 

retention class, and “high” to the user response class. 

 
6.3.4. Exploratory results 
 

The parameters of G-SICAMM can be used to model the dynamics of EEG signals, including 

the spatial projection of the sources on the scalp, in the same way that the parameter of ICAMM 

[190]. This approach considers the mixing matrices as sets of spatial patterns (“scalp maps”) 

whose temporal activations are regulated by their corresponding sources. Thus, the m-th source 

of a given G-SICAMM can be expressed by its temporal activation,  ,k m
s n , and its 

corresponding scalp map, 
,k m

a ; where 
,k m

a  is the m-th column of the mixing matrix of class k, 

k
A . The study of these parameters can determine the connectivity of brain regions during the 

stages of the experiment and shed new light on the EEG data [162]. This sub-section explores 

several representative results of the parameters learned from the EEG data from subjects 

performing neuropsychological experiments.   

 

The sources extracted for each subject and test are not limited to actual EEG activity, but also to 

several types of artifacts, such as eye blinks or muscle noise. The nature of the source separation 

method is such that artifacts are usually located within a limited number of sources that can be 

separated from the EEG contributions. This is the basis of ICA-based artifact removal [127]. In 

the following, artifacted sources were removed from the analysis. The basis for this selection 

was the spectral density of the particular source, since the most common artifacts have easily-

distinguishable spectra or scalp maps. The remaining (non-artifacted) sources were scaled in 

order of decreasing activity in the alpha band. 

 

In order to test the similarity of the model between events of the same class, a different class 

was fitted to every event (as defined in Section 6.3.3.a, an event is the time period that the test 

stays in the same class). In this way, one can search for repeating patterns across events of the 
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same class that are not repeated in events of the other class. Since the selection is partially based 

on the spectra of the sources, and to avoid reducing the sampling frequency of the data, no 

feature extraction was performed. 

 

Figure 6.23 shows the spatial and temporal parameters for the first two sets of stimulus/response 

for the TAVEC test for subject #4. It can be seen that the parameters for both events of the 

stimulus class are more similar to one another than they are to the parameters of the response 

class. This similarity can be seen in the kurtoses of the sources and the similar scalp maps. The 

maps for the stimulus class show higher responses on the left hemisphere, particularly on the 

temporal area. This suggests the activation of Wernicke’s speech area on the dominant (left) 

cerebral hemisphere [185], which is in concordance with the fact that the TAVEC is a verbal 

test. The activation of the occipital cortex might suggest visual activity on the part of the 

subject. On the other hand, the activity during the response class is more centered and more 

oriented towards the front area of the brain. This suggests a suppression of the visual input 

during the responses, which fits the style of the test. The excitation of the left frontal temporal 

area suggests the activation of Broca’s speech area, which is usually related with the production 

of speech [185]; again, this is in concordance with the verbal nature of the test.  

 

The results of a verbal test are different from those of a visual test, Figural Memory (part of the 

WMS-R), as can be seen in Figure 6.24. For one, the sources are more varied, as indicated by 

their kurtoses and the shape of the time activations. Note that the time of each event is shorter in 

Figure 6.24 than it was in Figure 6.23, due to the different conditions of the test. It can be seen 

that there are differences between events of the stimulus class and events of the response class, 

while sources of the same class are similar. The scalp maps of all events show the activation of 

two regions related to the visual experiment. The first one is the excitation of the occipital 

region of the head, which is related to visual input and processing. Thus, its presence is in 

concordance with the test. The other common source is distributed on the frontal-central region 

of the head. This region has been found to be related with the processing of information during 

working memory, as seen in [189]. Since the experiment is based on working memory, it is 

indeed consistent that such an area would appear consistently across experiments. Finally, the 

third interesting source found in the response events, which seems to be more noisy than the 

other two, might be caused by electromyographic noise due to the movement required during 

the response (mouse movement and clicking). 

 

 
Figure 6.23. Spatial and temporal parameters of three sources of the model for the TAVEC test for subject #4 using 

G-SICAMM. For each source, both the amplitude values (line plot) and the histogram (bar plot) are shown, as well as 

its kurtosis value. 
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Figure 6.24. Spatial and temporal parameters of three sources of the model for the Figural Memory test for subject #4 

using G-SICAMM. For each source, both the amplitude values (line plot) and the histogram (bar plot) are shown, as 

well as its kurtosis value. 

 

6.4. Conclusions  
 

In this chapter, the proposed G-SICAMM methods and variants of the Sequential ICAMM 

method have been applied to automatic classification of data from real-life problems. These 

methods, which were introduced in Chapter 4, use non-Gaussian models that include sequential 

dependence in the classes in order to better model dynamic, non-stationary data. The proposed 

methods were tested on biomedical (most commonly electroencephalographic) data from three 

different applications. 

 

In the first application, the proposed extensions to SICAMM were tested on a set of 

polysomnograms, sets of biomedical data (EEG, ECG…) taken from sleeping subjects that are 

usually used for sleep staging. ICAMM, SICAMM and the proposed extensions were used to 

perform automatic sleep staging on data from six subjects. This staging was limited to two 

classes (awakening/sleep) in order to detect short periods of awakening, also known as 

microarousals. The detection of microarousals can help in the differential diagnosis of sleep 

disorders, such as sleep apnea. The classification problem is further compounded by the large 

difference in prior probability for each class, since microarousals are usually rare, even in ill 

subjects. The results of the proposed methods were compared with those of a Bayesian network 

(implementing a mixture of Gaussians) and a dynamic Bayesian network (a HMM with a GMM 

modeling the emissions of each state). Performance was measured using the balanced error rate 

and Cohen’s kappa. These indicators are robust with respect to the number of samples in each 

class. Results show that dynamic methods performed better than non-dynamic methods, both for 

Bayesian networks and for ICAMM-based methods, with a minimum average improvement of 

0.05 for both error indicators. SICAMM largely over-performed both types of Bayesian 

networks, particularly with respect to Cohen’s kappa. Finally, the proposed extensions to 

SICAMM using the Baum-Welch and Viterbi algorithms achieved an even better result than the 

base method, particularly when using the Viterbi algorithm. These results demonstrate the 

potential of (G-)SICAMM and its variants for the automatic detection of microarousals, a vital 

part in the differential diagnosis of sleep apnea. Additionally, we performed a sensitivity 

analysis on the data. This analysis estimated the SICAMM parameters at several time instants, 

using a sliding window, and then compared the models. These comparisons considered the 

Amari distance between de-mixing matrices, the signal-to-noise ratio between sources, and the 

distance between probability densities. Results suggest a relation between the variations in the 

models (the sources in particular) and microarousals.  
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The second application tested the extension of SICAMM to multiple models, called Generalized 

SICAMM, on real EEG data from subjects performing Sternberg’s task. These data were not 

classified by an expert. Instead, the EEG data of each subject were captured and pre-processed, 

and then several features were extracted from every epoch in the data. These features were used 

to label every epoch according to the state of activity of each brain hemisphere (high or low). 

The proposed methods were used for automatic classification of the brain activity of each 

hemisphere. To this effect, the data were split by hemisphere. G-SICAMM was applied to the 

problem directly, but some pre-processing was necessary to work with SICAMM and ICAMM. 

The proposed methods were compared against a Bayesian network (a GMM), a dynamic 

Bayesian network (implementing a HMM with GMM emission probabilities), and a dynamic 

Bayesian network similar in structure to G-SICAMM (a CHMM with GMM emissions). 

Classification performance was measured with the balanced error rate. Dynamical methods 

achieved higher classification performances than non-dynamic methods, particularly in the case 

of models with a different model for each hemisphere (G-SICAMM and the CHMM Bayesian 

network). ICA-based methods performed better overall than Bayesian networks, and G-

SICAMM yielded the best result in most cases. The proposed variants to G-SICAMM and 

SICAMM over-performed the base method in most cases. The SICAMM and G-SICAMM 

parameters were also shown to be different depending on the stage of the system. This implies 

that there is a significant statistical difference between EEG data depending on the level of 

neuronal activity, and that this difference can be modeled by G-SICAMM. Finally, we 

performed a sensitivity analysis of the data. This analysis estimated the G-SICAMM parameters 

at several time instants and then compared the models. These comparisons considered the 

Amari distance between de-mixing matrices, the signal-to-noise ratio between sources, and the 

distance between probability densities. Results suggest a relation between the variations in the 

models and the brain activity of the subjects (as indicated by the automatic labels). Among the 

indicators, the Amari distance was the most closely related to the ground truth. 

 

The third application studied EEG data from six epileptic patients performing 

neuropsychological tests. For this purpose, we implemented a battery of neuropsychological 

tests that are used in the clinical environment: TAVEC, Wechsler Memory Scale, Wechsler 

Adult Intelligence Scale, Barcelona Neuropsychological Test, Stroop Color Word Test, Trail 

Making Test, Boston Naming Test, Verbal Fluency Test, and Sternberg Test. The tests were 

implemented in a computer with a large touch screen in order to make them user. The EEG and 

the stages of each test were recorded while the patients performed the tests. G-SICAMM, 

SICAMM and their proposed variants were then used to classify the data and perform automatic 

staging of the EEG data. In the case of G-SICAMM, the data were split into two sets by 

splitting the data from each hemisphere. Two types of classification were considered: two-class 

classification (stimulus/response) and three-class classification (stimulus/retention/response). 

The proposed methods were compared against a Bayesian network (a GMM), a dynamic 

Bayesian network (implementing a HMM with a GMM for the emission probabilities of each 

state), and a dynamic Bayesian network similar in structure to G-SICAMM (a CHMM with 

GMM emissions). Classification performance was measured by the balanced error rate and 

Cohen’s kappa coefficient. Dynamic methods outperformed non-dynamic ones, and ICAMM-

based methods performed better than Bayesian networks. SICAMM performed better than all 

Bayesian networks, and G-SICAMM performed better than SICAMM. Finally, the proposed 

variants that consider the Baum-Welch and Viterbi algorithms performed better than the base 

methods, with G-SICAMM+VI yielding the overall best classification result for both two- and 

three-class classification. The G-SICAMM parameters themselves were also studied to search 

for interesting sources that were related to the layout of the tests. Differences were found 

between the parameters for each class (stimulus/response), as well as between the parameters 

for different kind of tests (visual/verbal). Furthermore, several sources were found that 

correspond to activations of the brain during verbal tasks and during working memory tests. 

These findings show the promise of the method for the analysis of brain dynamics on 

electroencephalographic data. 
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 - Conclusions and future work 
 

The general objective of this thesis was to further the knowledge on non-Gaussian mixtures and 

explore new possibilities for mixture models of independent component analyzers. The 

proposed contributions extend non-Gaussian mixtures for use in estimation problems and allow 

us to model complex probability densities that present some degree of sequential dependence in 

the feature record. In order to test the potential of the proposed methods, several applications on 

real data were considered. Thus, the applicability of the proposed methods to real-world 

problems was demonstrated. 

 

This chapter summarizes the contributions and conclusions that can be drawn from this thesis. 

Section 7.1 summarizes the conclusions that can be drawn from the results of this thesis, and the 

level of completion of each of the objectives of the thesis. Section 7.2 enumerates the 

contributions of this thesis to knowledge, both from the theoretical and applied points of view. 

Section 7.3 explores possible future lines of research that branch off from this work. The 

chapter ends with a list of the publications produced by the research presented in this thesis. 

 

7.1. Summary  
 

The first two chapters of this thesis presented the motivation, methods and techniques that were 

to be explored therein. These procedures focused on signal estimation and classification 

problems using non-Gaussian mixtures. In particular, independent component analysis and its 

extension to mixture models (ICAMM) were considered. This work presented two novel 

methods for data estimation based on ICAMM, each optimizing a different criterion, and a new 

framework for generalized sequential ICA mixtures. This framework considers multiple 

dependence chains, non-parametric modeling of the ICA sources, and semi-supervised or 

unsupervised training. These methods were evaluated in diverse application to test their 

behavior on real-world problems. 

 

ICA and ICAMM have established a framework for non-linear processing of data with complex 

non-Gaussian distributions. This complexity is modeled as a linear mixture of local ICA 

projections, which are used to model class-conditional probability densities. The mixture model 

relaxes the base assumptions of ICA, further increasing its capabilities. Existing extensions to 

ICAMM further expand the model to consider: a) sequential dependences in the feature 

observation record (SICAMM, [230]); b) relaxed independence assumptions, the use of any 
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ICA algorithm (e.g., JADE), and non-parametric estimation of the source densities (MIXCA, 

[231]). However, existing methods presented some unresolved or unexplored issues that were 

researched in this work: data estimation by means of mixtures of ICA models by one or more 

criteria; extension of the sequential dependence to multiple chains of dependence; and support 

for different types of learning of the sequential dependence. The formulation of these advances 

is a challenging task, particularly in the context of real-world applications were a priori 

information on the data is scarce and incomplete. 

 

Chapter 3 presented two novel data estimation methods based on ICA mixture models. Both 

procedures interpolate missing data in the feature observation record using known data and the 

ICAMM parameters. The first method, called PREDICAMM, interpolates missing data by 

optimizing the maximum likelihood criterion, i.e., obtaining the set of data that maximizes the 

joint probability of known data, unknown data, and the model. PREDICAMM uses a gradient 

algorithm for optimization, and therefore, its convergence depends heavily on the gradient 

algorithm itself and the starting value of the solution. Several experiments were performed to 

select the optimal combination for this work. The second novel method is E-ICAMM, which 

optimizes the least mean squared error of the estimation by calculating the conditional 

expectation of missing data with respect to known data and the model. The solution can be 

written in a closed form, thus avoiding the convergence problems of gradient methods. 

Furthermore, the estimation error of E-ICAMM can be estimated from the data as well. The 

capabilities of the proposed methods were tested by Monte Carlo experiments on an extensive 

set of linear and non-linear simulated data. Their performances were compared with those of the 

following predictors: a classical linear predictor, Ordinary Kriging; a nonlinear predictor, 

Wiener structures; a matrix completion algorithm based of SRF; and thin-plate splines. In all 

cases, the performance of the proposed methods exceeded that of the methods selected for 

comparison. SRF obtained similar results to E-ICAMM and PREDICAMM, but only for cases 

with a single class, and its performance dropped in cases with multiple classes. The performance 

of all the methods decreased as the number of classes or the number of missing data increased. 

The proposed methods, however, experienced a smaller decrease in performance than the other 

methods; as a matter of fact, this decrease was almost non-existent for low amounts of missing 

data. The performance of the two proposed methods is similar in most cases, with 

PREDICAMM obtaining probabilities more similar to those of the true data and E-ICAMM 

yielding lower estimation error.  

 

Chapter 4 has generalized the existing Sequential ICAMM method ( [230]) to consider multiple 

chains of sequential dependence in the feature record. This extension has been named 

Generalized SICAMM. It can be used to work simultaneously with several datasets in parallel, 

with multimodal data, or after splitting the data into disjoint sub-sets. This chapter also 

considered the application of the classical Baum-Welch and Viterbi algorithms for the 

classification of data using the G-SICAMM parameters. Furthermore, an algorithm for semi-

supervised or unsupervised learning of SICAMM and G-SICAMM parameters, which we have 

named UG-SICAMM, was presented. This method allows estimating the SICAMM and G-

SICAMM parameters even if the training data are unlabeled, and it can use labeled data to 

improve estimation. The performance of UG-SICAMM was tested by assessing the distance 

between the estimated model and the true model during a Monte Carlo experiment. Results 

showed the good behavior of the UG-SICAMM procedure and verified that performance 

increased with the number of known labels. Further experiments studied the performance of G-

SICAMM by performing classification on several sets of simulated data with varying degrees of 

sequential dependence. In these tests, the proposed methods are compared with Bayesian 

networks and dynamic Bayesian networks. Results show that non-dynamic methods were not 

affected by sequential dependence, yet dynamic methods obtained better performance as 

dependence increased. G-SICAMM obtained the best result in all these tests, and G-SICAMM 

extended by the Baum-Welch and Viterbi algorithms yielded better performances than the base 

method. A final Monte Carlo experiment tested the behavior of G-SICAMM when the 

assumptions of the model did not hold; in this work, this departure from the assumptions was 
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done through non-stationary sources. In this case, all the proposed methods decreased in 

performance as the number of non-stationary sources. Again, G-SICAMM (expanded with the 

Baum-Welch and Viterbi algorithms) obtained the best performance. 

 

The proposed methods are general-purpose and can be used in many signal processing fields, 

such as time series forecast, image reconstruction, biomedical signal processing, etc. In Chapter 

5 and Chapter 6 we showed several applications of the proposed methods in the field of data 

estimation and pattern recognition (respectively) on data from real-world problems. The 

problems were very varied: ground-penetrating radar surveys, seismic exploration studies, and 

several types of biomedical signals: electroencephalographic, electrocardiographic and 

electromyographic. Chapter 5 applied E-ICAMM and PREDICAMM to the reconstruction of 

missing traces from ground-penetrating radar surveys, seismic exploration studies, and the 

recovery of missing or artifacted EEG data. Chapter 6 explored the use of G-SICAMM and UG-

SICAMM for: (i) automatic detection of small awakening periods (microarousals) in apnea 

patients; (ii) staging of brain activity on subjects performing a memory task; and (iii) stage 

detection and source exploration of EEG/ECG data from epileptic patients that were performing 

several neuropsychological tests. 

 

7.2. Contributions to knowledge 
 

This section lists the contributions that this thesis makes to the field of non-Gaussian mixtures.  

 

 Section 3.1 introduced a new method for data estimation based on ICAMM, which we 

call PREDICAMM. This method performs maximum likelihood by a gradient 

algorithm. The experiments show the high performance of the method, which can obtain 

good results even when the number of missing data is large. PREDICAMM can obtain 

good results even if some of its base assumptions do not hold, particularly, when the 

base model is not an ICAMM.  

 

 A second novel method for data estimation based on ICAMM, named E-ICAMM, has 

been presented in Section 3.2. This algorithm seeks the optimum for the least mean 

squared error criterion, i.e., the conditional expectation of missing data w.r.t. known 

data. E-ICAMM obtains a closed-form solution to this expectation, and it can also 

predict the mean squared estimation error (Section 3.2.1), thus estimating the goodness 

of the solution. Furthermore, E-ICAMM can also be used to obtain the initial value for 

the gradient algorithm in PREDICAMM. 

 

 The sequential dependence in the SICAMM procedure has been extended to multiple 

chains of sequential dependence in Section 4.2, in a method which we have named G-

SICAMM. G-SICAMM considers multiple parallel sets of data or “chains” in a model 

akin to a coupled HMM. The multiple-chain model can be used to model the joint 

probability density of multimodal data (e.g., EEG and ECG) or to work with disjoint 

partitions of the same set of data. Therefore, G-SICAMM is a flexible and powerful 

model that can model complex non-Gaussian probability densities. The performance of 

G-SICAMM was very good in all experiments, even on data with no dependence, and 

its performance increased with dependence. It was shown that the distance between the 

parameters of two G-SICAMM could be used to determine differences in the underlying 

probability (e.g., due to non-stationarity) in the data.    

 

 Section 4.3 has presented a procedure for ML estimation of the G-SICAMM 

parameters, which we have named UG-SICAMM. The selected optimization technique 

was the natural gradient, which simplifies the learning rule and speeds up convergence. 

UG-SICAMM can estimate the G-SICAMM parameters from unsupervised or semi-

supervised data, and it can also be used to estimate SICAMM parameters. Performance 
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increased with the number of labeled data; however, UG-SICAMM was able to obtain a 

working model even with fully unlabeled data. 

 

 Sections 4.1.2 and 4.2.3 have proposed the use of two classical methods, the Baum-

Welch and Viterbi algorithms, to improve the classification performance of SICAMM 

and G-SICAMM. Both methods were able to markedly increase the classification 

performance of SICAMM and G-SICAMM. 

  

 E-ICAMM and PREDICAMM have been introduced for the reconstruction of missing 

data from non-destructive testing techniques in Sections 5.1, 5.2 and 5.3. Two different 

applications were considered: ground penetrating radar evaluation of historical walls, 

including both simulated and real data, and seismic exploration of underwater terrain. In 

both cases, obtaining estimated B-Scans that are almost undistinguishable from the true 

ones.  

 

 E-ICAMM and PREDICAMM were introduced in Section 5.4 for the reconstruction of 

of missing EEG data. Both proposed methods over-performed splines for this task, and 

were less hampered by the number of channels to reconstruct. 

 

 Chapter 6 explored the use G-SICAMM and its proposed variants for the automatic 

staging of biomedical data from three applications: (i) detection of short periods of 

awakening (microarousals) in apnea patients; (ii) automatic detection of brain activity in 

subjects performing a memory task; and (iii) automatic staging of data from epileptic 

patients performing neuropsychological tests. In all cases, the necessary SICAMM and 

G-SICAMM parameters were calculated using the UG-SICAMM procedure. The 

sequential dependence considered by G-SICAMM obtained the most accurate 

classification in all cases. Furthermore, it was shown that the parameters of G-

SICAMM are different depending on the stages of the experiment. These parameters 

can be explained as a combination of spatial distributions (through the mixing matrices) 

and temporal activations (the sources). The estimated G-SICAMM parameters showed 

the activations of brain regions consistent with those that could be expected from the 

experiments. These results show the potential impact of G-SICAMM in clinical 

applications with EEG data. 

 

7.3. Future work 
 

There are several open lines of research that can improve the methods proposed in this thesis, 

such as: 

 
Data estimation methods 
 

 Research on strategies to improve parameter initialization for PREDICAMM. This is an 

important issue because the convergence of the algorithm depends on the starting point. 

Regularization and penalization techniques can be applied to avoid local maxima, as 

well as estimating the initial value for the gradient. Another option would be converting 

(or approximating) the likelihood function to a concave function, thus ensuring the 

convergence of the gradient to the global maxima. 

 

 Adaptation of E-ICAMM and PREDICAMM to work with sequential dependence 

models like SICAMM and G-SICAMM. Both methods consider the probability density 

of the data, but ignore any kind of sequential dependence in the data. Thus, it stands to 

reason that the adaptation of E-ICAMM and PREDICAMM to consider sequential 

dependence would improve the estimation of data that show sequential dependences. 
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 Combination of data estimation and parameter learning. E-ICAMM could be joined 

with a procedure to learn the parameters of the ICA mixture model, such as MIXCA. 

This combination would create a method that estimates missing data without the need of 

prior knowledge of the model and/or training data; and vice versa, learn the ICAMM 

parameters from partial data. This process could work like an expectation-maximization 

algorithm, where E-ICAMM would perform the expectation step and the parameter-

learning procedure would perform the maximization step. 

 
Dynamic modeling methods 
 

 Research on strategies to improve convergence in UG-SICAMM. This is an important 

issue because the convergence of the algorithm depends on the starting point of the 

procedure. Regularization and penalization techniques can be applied to avoid local 

minima, as well as determining the optimal starting value for the gradient. The 

estimation of parameters such as the stopping criterion should be improved, since at the 

moment it is set in an empirical fashion. Moreover, the UG-SICAMM procedure could 

be extended to include the Baum-Welch algorithm for parameter estimation as well, 

instead of using it only for classification, as it is currently. 

 

 Development of a distance measure between ICAMM models. To the best of our 

knowledge, there is no measure of the distance between two mixtures of ICA models. 

The calculation of such a distance could help in tasks such as parameter estimation 

(e.g., by setting the stopping criterion in iterative algorithms) and model comparison. 

Furthermore, this distance should be extended to G-SICAMM models. 

 

 Incorporation of online estimation of the G-SICAMM parameters. The online learning 

processing would perform simultaneous structure and parameter identification. This 

kind of processing allows long processes to be monitored online, which would help 

towards the implementation of the proposed methods in a clinical environment. 

 
Other applications 
 

 The methods proposed in this thesis could be applied to a myriad of applications, such 

as: time series prediction; recovery of missing data from images; study the event-related 

dynamics of the brain during sensorimotor processes; study brain connectivity during 

cognitive tasks, in mental disorders, or during neuropsychological tests; biometric 

access control by EEG or multimodal access control considering EEG and ECG using 

fusion techniques (continuing the work shown in [217] and [250,249], respectively); 

detection of credit card fraud (continuing the work shown in [214,228]); and so on. 
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Appendix 1 – Classification results for the neuropsychological 
experiment 

 

This Appendix includes the tables of results of all the methods considered for the classification 

experiment on EEG data from neuropsychological tests in Section 6.3.3. Each of the tables 

contained herein presents the balanced error rate and Cohen’s kappa ( [58]) of the classification 

with two or three classes obtained using one of the considered methods.  

 

Two-class classification 
 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 41.92 44.15 49.49 27.23 46.44 40.20 

TAVEC 46.93 47.66 46.19 44.59 46.78 44.33 

WMS-R: Visual Paired Associates 50.90 43.32 45.64 45.36 45.65 42.44 

WMS-R: Figural Memory 48.41 47.63 53.67 41.13 49.42 36.63 

WAIS-III: Verbal Paired Associates 37.48 48.26 50.12 48.98 47.54 45.81 

WAIS-III: Visual Reproduction 50.08 50.53 48.57 41.82 22.03 48.58 

WAIS-III: Mental Control 49.65 47.54 43.51 35.63 34.94 48.06 

WAIS-III: Digit Span 41.74 43.75 47.94 44.85 42.68 62.68 

Verbal Fluency 45.59 45.07 44.39 44.22 44.69 34.95 

TB: Visual Memory 37.32 42.82 43.83 32.30 37.90 35.56 

b) Kappa       

Sternberg 0.157 0.118 0.010 0.454 0.070 0.199 

TAVEC 0.068 0.045 0.076 0.094 0.068 0.124 

WMS-R: Visual Paired Associates 0.027 0.100 0.094 0.067 0.102 0.158 

WMS-R: Figural Memory 0.049 0.052 0.069 0.190 0.017 0.254 

WAIS-III: Verbal Paired Associates 0.175 0.037 0.002 0.014 0.062 0.049 

WAIS-III: Visual Reproduction 0.003 0.010 0.025 0.133 0.321 0.042 

WAIS-III: Mental Control 0.007 0.049 0.065 0.294 0.282 0.039 

WAIS-III: Digit Span 0.101 0.106 0.032 0.103 0.146 0.118 

Verbal Fluency 0.126 0.075 0.172 0.142 0.097 0.306 

TB: Visual Memory 0.263 0.145 0.119 0.344 0.225 0.252 
Table A1.1. Results of the two-class classification of EEG data from neuropsychological tests using the (non-

dynamic) ICAMM method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 26.40 42.56 50.74 20.98 41.52 34.26 

TAVEC 21.52 30.53 36.86 41.05 27.88 29.01 

WMS-R: Visual Paired Associates 14.21 32.71 39.31 30.75 22.36 17.28 

WMS-R: Figural Memory 38.72 41.65 51.76 11.38 18.24 12.12 

WAIS-III: Verbal Paired Associates 23.44 39.68 39.18 17.60 32.97 16.98 

WAIS-III: Visual Reproduction 5.82 19.80 28.76 11.88 8.77 22.79 

WAIS-III: Mental Control 35.25 43.50 30.16 32.89 30.55 42.42 

WAIS-III: Digit Span 33.77 30.07 32.09 37.40 27.21 48.93 

Verbal Fluency 8.43 37.86 30.58 32.83 34.01 19.39 

TB: Visual Memory 22.34 32.35 42.57 14.84 26.73 22.18 

b) Kappa       

Sternberg 0.475 0.149 0.014 0.579 0.157 0.321 

TAVEC 0.583 0.398 0.269 0.160 0.406 0.433 

WMS-R: Visual Paired Associates 0.512 0.280 0.162 0.330 0.473 0.648 

WMS-R: Figural Memory 0.298 0.132 0.027 0.656 0.513 0.632 

WAIS-III: Verbal Paired Associates 0.373 0.219 0.188 0.478 0.408 0.504 

WAIS-III: Visual Reproduction 0.703 0.330 0.231 0.550 0.464 0.406 

WAIS-III: Mental Control 0.295 0.130 0.245 0.353 0.387 0.151 

WAIS-III: Digit Span 0.214 0.342 0.226 0.254 0.457 0.256 

Verbal Fluency 0.670 0.194 0.376 0.386 0.217 0.521 

TB: Visual Memory 0.553 0.299 0.124 0.643 0.431 0.470 
Table A1.2. Results of the two-class classification of EEG data from neuropsychological tests using the basic 

SICAMM method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

  

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 31.03 35.45 45.61 21.33 35.86 28.75 

TAVEC 16.54 20.87 29.22 31.32 22.66 22.55 

WMS-R: Visual Paired Associates 11.69 18.82 25.51 11.79 9.65 15.17 

WMS-R: Figural Memory 37.50 18.07 36.77 13.34 9.06 5.38 

WAIS-III: Verbal Paired Associates 19.93 45.53 36.10 11.01 25.14 12.33 

WAIS-III: Visual Reproduction 7.88 20.25 6.99 16.82 9.64 15.60 

WAIS-III: Mental Control 21.72 30.05 25.67 23.84 25.05 36.50 

WAIS-III: Digit Span 24.76 23.68 25.30 33.23 11.13 32.10 

Verbal Fluency 8.71 41.40 19.65 18.38 19.11 5.60 

TB: Visual Memory 14.01 27.36 35.16 9.76 20.84 20.37 

b) Kappa       

Sternberg 0.382 0.291 0.082 0.571 0.261 0.435 

TAVEC 0.687 0.639 0.433 0.341 0.511 0.565 

WMS-R: Visual Paired Associates 0.577 0.491 0.341 0.744 0.670 0.685 

WMS-R: Figural Memory 0.373 0.501 0.195 0.644 0.657 0.796 

WAIS-III: Verbal Paired Associates 0.439 0.095 0.269 0.661 0.570 0.638 

WAIS-III: Visual Reproduction 0.438 0.298 0.473 0.461 0.432 0.440 

WAIS-III: Mental Control 0.566 0.399 0.334 0.537 0.483 0.269 

WAIS-III: Digit Span 0.330 0.470 0.323 0.338 0.779 0.295 

Verbal Fluency 0.697 0.139 0.614 0.647 0.411 0.690 

TB: Visual Memory 0.682 0.379 0.247 0.728 0.580 0.503 
Table A1.3. Results of the two-class classification of EEG data from neuropsychological tests using the 

SICAMM+BW method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 40.01 35.47 42.58 21.95 38.95 28.20 

TAVEC 16.53 29.26 25.97 29.97 21.75 19.25 

WMS-R: Visual Paired Associates 9.89 19.94 23.74 9.96 6.80 12.02 

WMS-R: Figural Memory 35.30 29.91 21.14 12.70 6.38 4.62 

WAIS-III: Verbal Paired Associates 19.05 37.15 12.15 5.01 25.13 16.04 

WAIS-III: Visual Reproduction 2.90 12.87 6.40 17.01 9.86 7.50 

WAIS-III: Mental Control 29.41 30.27 11.10 16.61 23.92 25.58 

WAIS-III: Digit Span 24.67 26.20 38.27 28.09 7.89 44.15 

Verbal Fluency 18.50 25.56 22.00 13.01 19.87 5.01 

TB: Visual Memory 14.36 24.86 32.58 8.38 24.61 17.13 

b) Kappa       

Sternberg 0.207 0.293 0.139 0.558 0.203 0.442 

TAVEC 0.688 0.474 0.502 0.370 0.614 0.643 

WMS-R: Visual Paired Associates 0.628 0.467 0.373 0.820 0.755 0.757 

WMS-R: Figural Memory 0.411 0.268 0.385 0.679 0.743 0.822 

WAIS-III: Verbal Paired Associates 0.467 0.260 0.637 0.761 0.569 0.601 

WAIS-III: Visual Reproduction 0.669 0.455 0.499 0.455 0.425 0.539 

WAIS-III: Mental Control 0.412 0.394 0.529 0.678 0.506 0.488 

WAIS-III: Digit Span 0.366 0.419 0.201 0.444 0.843 0.312 

Verbal Fluency 0.602 0.546 0.586 0.717 0.379 0.693 

TB: Visual Memory 0.671 0.419 0.290 0.765 0.486 0.561 
Table A1.4. Results of the two-class classification of EEG data from neuropsychological tests using the 

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 29.13 43.80 39.89 22.80 40.38 32.53 

TAVEC 24.41 36.87 29.31 33.99 27.09 30.82 

WMS-R: Visual Paired Associates 16.45 23.76 36.10 29.40 20.36 29.75 

WMS-R: Figural Memory 36.16 33.54 19.32 13.03 23.48 17.88 

WAIS-III: Verbal Paired Associates 19.35 49.14 30.93 17.16 24.63 29.98 

WAIS-III: Visual Reproduction 16.81 32.74 32.00 15.73 8.61 13.92 

WAIS-III: Mental Control 28.05 32.27 25.77 23.98 28.70 38.08 

WAIS-III: Digit Span 32.34 38.07 28.64 28.63 20.73 58.45 

Verbal Fluency 21.25 29.15 32.31 32.81 30.16 17.06 

TB: Visual Memory 18.53 27.18 23.45 16.92 26.08 25.40 

b) Kappa       

Sternberg 0.412 0.123 0.197 0.543 0.181 0.358 

TAVEC 0.523 0.256 0.388 0.381 0.420 0.382 

WMS-R: Visual Paired Associates 0.529 0.463 0.238 0.363 0.518 0.393 

WMS-R: Figural Memory 0.200 0.277 0.509 0.669 0.455 0.621 

WAIS-III: Verbal Paired Associates 0.578 0.017 0.274 0.502 0.550 0.337 

WAIS-III: Visual Reproduction 0.445 0.190 0.134 0.473 0.435 0.513 

WAIS-III: Mental Control 0.439 0.355 0.358 0.527 0.399 0.238 

WAIS-III: Digit Span 0.255 0.197 0.317 0.433 0.586 0.121 

Verbal Fluency 0.445 0.295 0.192 0.310 0.226 0.438 

TB: Visual Memory 0.609 0.405 0.477 0.612 0.423 0.482 
Table A1.5. Results of the two-class classification of EEG data from neuropsychological tests using the G-SICAMM 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

  



 

206 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 26.94 39.78 41.07 18.89 35.37 24.43 

TAVEC 17.07 30.96 24.40 33.07 18.86 28.43 

WMS-R: Visual Paired Associates 10.62 7.02 19.30 16.57 7.46 21.70 

WMS-R: Figural Memory 30.10 10.28 11.80 8.47 9.73 2.50 

WAIS-III: Verbal Paired Associates 1.80 33.87 24.62 7.70 14.98 18.47 

WAIS-III: Visual Reproduction 5.57 18.78 13.98 14.01 7.63 6.18 

WAIS-III: Mental Control 22.18 25.54 21.71 17.97 23.35 31.05 

WAIS-III: Digit Span 25.51 25.41 28.24 25.39 17.45 53.01 

Verbal Fluency 9.98 15.89 15.79 31.24 21.91 9.33 

TB: Visual Memory 11.92 24.48 21.67 11.26 19.54 15.91 

b) Kappa       

Sternberg 0.456 0.202 0.176 0.621 0.272 0.524 

TAVEC 0.687 0.378 0.483 0.429 0.575 0.433 

WMS-R: Visual Paired Associates 0.669 0.781 0.518 0.643 0.735 0.548 

WMS-R: Figural Memory 0.295 0.678 0.563 0.799 0.637 0.967 

WAIS-III: Verbal Paired Associates 0.911 0.335 0.384 0.661 0.750 0.537 

WAIS-III: Visual Reproduction 0.631 0.324 0.273 0.551 0.471 0.604 

WAIS-III: Mental Control 0.556 0.490 0.430 0.653 0.499 0.378 

WAIS-III: Digit Span 0.350 0.378 0.345 0.499 0.650 0.216 

Verbal Fluency 0.614 0.532 0.426 0.332 0.334 0.522 

TB: Visual Memory 0.713 0.461 0.493 0.701 0.549 0.648 
Table A1.6. Results of the two-class classification of EEG data from neuropsychological tests using the G-

SICAMM+BW method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 30.13 38.88 40.26 18.45 35.03 27.89 

TAVEC 17.02 26.60 20.18 27.04 19.25 21.40 

WMS-R: Visual Paired Associates 5.76 10.52 9.34 8.90 5.04 20.60 

WMS-R: Figural Memory 27.26 3.74 12.11 8.47 9.73 2.50 

WAIS-III: Verbal Paired Associates 2.70 35.94 14.48 6.24 15.42 10.45 

WAIS-III: Visual Reproduction 5.82 14.77 12.89 17.38 7.52 6.18 

WAIS-III: Mental Control 14.75 14.22 14.86 12.78 25.50 32.67 

WAIS-III: Digit Span 21.38 31.85 27.33 22.42 10.14 48.73 

Verbal Fluency 7.67 23.96 19.11 30.67 19.97 8.64 

TB: Visual Memory 12.28 21.77 27.44 7.92 20.25 14.76 

b) Kappa       

Sternberg 0.395 0.220 0.190 0.630 0.276 0.455 

TAVEC 0.688 0.470 0.573 0.554 0.625 0.588 

WMS-R: Visual Paired Associates 0.762 0.694 0.701 0.866 0.812 0.569 

WMS-R: Figural Memory 0.314 0.871 0.555 0.799 0.637 0.967 

WAIS-III: Verbal Paired Associates 0.870 0.319 0.534 0.713 0.731 0.686 

WAIS-III: Visual Reproduction 0.612 0.408 0.296 0.444 0.475 0.604 

WAIS-III: Mental Control 0.706 0.716 0.767 0.752 0.436 0.347 

WAIS-III: Digit Span 0.423 0.277 0.354 0.559 0.795 0.321 

Verbal Fluency 0.650 0.423 0.447 0.351 0.365 0.545 

TB: Visual Memory 0.701 0.499 0.397 0.778 0.531 0.682 
Table A1.7. Results of the two-class classification of EEG data from neuropsychological tests using the G-

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 42.84 48.01 49.47 31.09 47.53 40.42 

TAVEC 49.80 50.59 48.09 47.86 50.00 44.43 

WMS-R: Visual Paired Associates 46.65 44.04 45.88 47.63 43.33 43.71 

WMS-R: Figural Memory 49.81 45.02 49.33 44.38 50.61 37.40 

WAIS-III: Verbal Paired Associates 50.00 50.00 50.98 43.90 49.84 44.94 

WAIS-III: Visual Reproduction 50.00 38.47 50.00 45.09 50.00 50.91 

WAIS-III: Mental Control 50.51 46.64 41.67 39.59 51.09 49.29 

WAIS-III: Digit Span 45.00 46.98 48.12 49.40 43.11 65.74 

Verbal Fluency 41.88 50.00 44.68 43.47 50.00 41.51 

TB: Visual Memory 43.99 46.57 50.00 32.51 55.22 35.74 

b) Kappa       

Sternberg 0.133 0.044 0.010 0.379 0.051 0.197 

TAVEC 0.005 0.015 0.043 0.045 0.000 0.120 

WMS-R: Visual Paired Associates 0.055 0.088 0.058 0.031 0.088 0.136 

WMS-R: Figural Memory 0.006 0.059 0.015 0.115 0.016 0.207 

WAIS-III: Verbal Paired Associates 0.000 0.000 0.020 0.091 0.004 0.072 

WAIS-III: Visual Reproduction 0.000 0.176 0.000 0.109 0.000 0.024 

WAIS-III: Mental Control 0.010 0.067 0.088 0.224 0.021 0.015 

WAIS-III: Digit Span 0.061 0.049 0.049 0.013 0.138 0.052 

Verbal Fluency 0.177 0.000 0.155 0.123 0.000 0.155 

TB: Visual Memory 0.118 0.072 0.000 0.327 0.113 0.225 
Table A1.8. Results of the two-class classification of EEG data from neuropsychological tests using the (non-

dynamic) BNT method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 42.85 44.19 46.43 28.74 42.87 24.61 

TAVEC 16.97 46.10 39.17 40.39 52.52 22.10 

WMS-R: Visual Paired Associates 46.59 41.46 39.07 15.63 33.77 12.46 

WMS-R: Figural Memory 50.30 38.18 52.71 50.00 36.11 10.00 

WAIS-III: Verbal Paired Associates 50.00 65.66 22.90 12.60 32.90 33.65 

WAIS-III: Visual Reproduction 34.56 41.14 50.00 37.51 50.00 29.04 

WAIS-III: Mental Control 40.66 30.94 50.00 38.98 47.95 44.34 

WAIS-III: Digit Span 38.55 44.72 50.81 34.64 36.24 61.48 

Verbal Fluency 19.51 40.90 47.02 30.20 50.00 21.18 

TB: Visual Memory 47.27 37.13 50.00 21.05 50.00 28.00 

b) Kappa       

Sternberg 0.136 0.127 0.064 0.426 0.129 0.487 

TAVEC 0.680 0.087 0.186 0.118 0.031 0.556 

WMS-R: Visual Paired Associates 0.065 0.147 0.142 0.600 0.189 0.730 

WMS-R: Figural Memory 0.010 0.155 0.044 0.000 0.215 0.653 

WAIS-III: Verbal Paired Associates 0.000 0.347 0.417 0.612 0.411 0.246 

WAIS-III: Visual Reproduction 0.077 0.059 0.000 0.187 0.000 0.218 

WAIS-III: Mental Control 0.187 0.381 0.000 0.230 0.049 0.114 

WAIS-III: Digit Span 0.185 0.096 0.017 0.310 0.276 0.110 

Verbal Fluency 0.472 0.213 0.091 0.367 0.000 0.380 

TB: Visual Memory 0.072 0.217 0.000 0.510 0.000 0.364 
Table A1.9. Results of the two-class classification of EEG data from neuropsychological tests using the DBN 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 43.99 50.00 50.02 50.00 50.00 44.16 

TAVEC 34.21 50.00 49.88 50.00 52.13 43.29 

WMS-R: Visual Paired Associates 23.07 50.16 50.76 23.26 50.00 22.19 

WMS-R: Figural Memory 50.00 43.46 52.48 35.29 51.68 39.13 

WAIS-III: Verbal Paired Associates 16.22 48.23 50.00 6.68 50.00 50.21 

WAIS-III: Visual Reproduction 50.25 50.00 50.00 53.11 50.00 50.12 

WAIS-III: Mental Control 62.26 50.00 50.00 52.40 43.00 40.55 

WAIS-III: Digit Span 47.61 50.00 43.95 44.54 36.25 74.88 

Verbal Fluency 14.53 45.26 34.76 53.41 50.00 40.77 

TB: Visual Memory 51.06 52.48 49.16 21.92 50.00 45.58 

b) Kappa       

Sternberg 0.108 0.000 0.000 0.000 0.000 0.112 

TAVEC 0.303 0.000 0.002 0.000 0.024 0.120 

WMS-R: Visual Paired Associates 0.377 0.004 0.022 0.407 0.000 0.516 

WMS-R: Figural Memory 0.000 0.076 0.071 0.385 0.049 0.294 

WAIS-III: Verbal Paired Associates 0.443 0.026 0.000 0.787 0.000 0.006 

WAIS-III: Visual Reproduction 0.009 0.000 0.000 0.068 0.000 0.004 

WAIS-III: Mental Control 0.245 0.000 0.000 0.054 0.192 0.193 

WAIS-III: Digit Span 0.065 0.000 0.136 0.112 0.270 0.000 

Verbal Fluency 0.510 0.144 0.087 0.050 0.000 0.054 

TB: Visual Memory 0.031 0.067 0.023 0.555 0.000 0.098 
Table A1.10. Results of the two-class classification of EEG data from neuropsychological tests using the DBN2 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 60.46 64.70 66.22 46.96 64.79 60.49 

WMS-R: Visual Paired Associates 63.55 63.98 66.78 58.44 65.40 61.20 

WMS-R: Figural Memory 68.86 61.49 67.01 63.29 50.36 61.13 

WAIS-III: Visual Reproduction 66.00 65.11 65.30 62.18 33.32 67.30 

TB: Visual Memory 59.38 67.59 61.76 50.70 51.89 44.73 

b) Kappa       

Sternberg 0.118 0.035 0.017 0.374 0.047 0.133 

WMS-R: Visual Paired Associates 0.095 0.053 0.002 0.170 0.033 0.153 

WMS-R: Figural Memory 0.064 0.150 0.010 0.091 0.329 0.126 

WAIS-III: Visual Reproduction 0.030 0.036 0.044 0.086 0.297 0.026 

TB: Visual Memory 0.077 0.014 0.076 0.250 0.259 0.323 
Table A1.11. Results of the three-class classification of EEG data from neuropsychological tests using the (non-

dynamic) ICAMM method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 46.52 62.93 63.26 44.91 58.18 55.24 

WMS-R: Visual Paired Associates 42.86 42.18 52.29 60.91 39.79 44.32 

WMS-R: Figural Memory 78.46 58.56 48.82 38.06 37.89 28.52 

WAIS-III: Visual Reproduction 37.48 55.17 61.40 53.90 24.45 37.65 

TB: Visual Memory 45.79 53.57 54.81 33.05 43.21 30.24 

b) Kappa       

Sternberg 0.312 0.074 0.028 0.404 0.204 0.232 

WMS-R: Visual Paired Associates 0.544 0.563 0.285 0.185 0.315 0.596 

WMS-R: Figural Memory 0.184 0.240 0.315 0.592 0.377 0.224 

WAIS-III: Visual Reproduction 0.462 0.143 0.099 0.218 0.394 0.383 

TB: Visual Memory 0.253 0.184 0.204 0.533 0.419 0.504 
Table A1.12. Results of the three-class classification of EEG data from neuropsychological tests using the basic 

SICAMM method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

  

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 48.17 57.99 58.02 33.92 56.64 47.02 

WMS-R: Visual Paired Associates 40.90 47.06 42.67 36.38 24.32 35.46 

WMS-R: Figural Memory 66.15 32.55 64.97 31.32 32.18 34.73 

WAIS-III: Visual Reproduction 26.85 38.36 50.27 36.40 5.79 10.29 

TB: Visual Memory 35.81 45.65 38.55 25.01 39.28 25.28 

b) Kappa       

Sternberg 0.298 0.177 0.143 0.528 0.211 0.358 

WMS-R: Visual Paired Associates 0.661 0.480 0.529 0.412 0.496 0.742 

WMS-R: Figural Memory 0.021 0.677 0.053 0.600 0.529 0.157 

WAIS-III: Visual Reproduction 0.654 0.171 0.208 0.335 0.530 0.483 

TB: Visual Memory 0.408 0.269 0.425 0.644 0.470 0.556 
Table A1.13. Results of the three-class classification of EEG data from neuropsychological tests using the 

SICAMM+BW method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 48.88 56.69 61.35 36.92 58.99 54.23 

WMS-R: Visual Paired Associates 29.99 59.39 42.67 34.42 23.41 34.71 

WMS-R: Figural Memory 48.62 45.77 64.97 28.12 19.43 39.46 

WAIS-III: Visual Reproduction 31.02 36.32 28.70 34.04 5.05 14.71 

TB: Visual Memory 30.88 66.67 44.70 23.74 60.10 30.45 

b) Kappa       

Sternberg 0.286 0.198 0.076 0.487 0.155 0.244 

WMS-R: Visual Paired Associates 0.912 0.192 0.529 0.420 0.524 0.762 

WMS-R: Figural Memory 0.478 0.461 0.053 0.713 0.595 0.049 

WAIS-III: Visual Reproduction 0.643 0.205 0.344 0.361 0.573 0.464 

TB: Visual Memory 0.462 0.000 0.318 0.655 0.087 0.481 
Table A1.14. Results of the three-class classification of EEG data from neuropsychological tests using the 

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 48.28 60.37 56.04 45.40 56.80 52.93 

WMS-R: Visual Paired Associates 54.29 44.42 54.45 54.22 39.80 53.18 

WMS-R: Figural Memory 60.42 48.88 53.26 47.34 44.68 40.05 

WAIS-III: Visual Reproduction 40.47 56.25 51.67 36.94 19.12 31.96 

TB: Visual Memory 38.32 56.50 43.75 37.78 39.80 33.48 

b) Kappa       

Sternberg 0.342 0.124 0.132 0.393 0.212 0.241 

WMS-R: Visual Paired Associates 0.298 0.452 0.307 0.193 0.345 0.357 

WMS-R: Figural Memory 0.121 0.192 0.332 0.346 0.476 0.463 

WAIS-III: Visual Reproduction 0.471 0.169 0.150 0.522 0.285 0.395 

TB: Visual Memory 0.381 0.135 0.369 0.469 0.452 0.487 
Table A1.15. Results of the three-class classification of EEG data from neuropsychological tests using the G-

SICAMM method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 48.33 59.05 52.30 38.36 54.74 51.16 

WMS-R: Visual Paired Associates 45.27 42.31 48.24 45.87 24.02 47.33 

WMS-R: Figural Memory 52.28 33.59 45.27 38.01 16.39 19.07 

WAIS-III: Visual Reproduction 36.90 50.48 32.70 33.64 10.20 11.54 

TB: Visual Memory 28.99 39.32 38.83 22.15 37.89 24.38 

b) Kappa       

Sternberg 0.363 0.140 0.184 0.466 0.176 0.274 

WMS-R: Visual Paired Associates 0.509 0.415 0.442 0.230 0.507 0.506 

WMS-R: Figural Memory 0.258 0.216 0.439 0.422 0.658 0.529 

WAIS-III: Visual Reproduction 0.601 0.276 0.162 0.476 0.317 0.458 

TB: Visual Memory 0.477 0.384 0.469 0.692 0.472 0.583 
Table A1.16. Results of the three-class classification of EEG data from neuropsychological tests using the G-

SICAMM+BW method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 43.34 59.83 51.75 35.03 55.83 48.72 

WMS-R: Visual Paired Associates 36.30 39.20 36.08 46.08 22.95 47.94 

WMS-R: Figural Memory 51.11 33.23 48.36 33.88 15.18 17.20 

WAIS-III: Visual Reproduction 37.24 45.24 31.80 31.82 10.13 15.54 

TB: Visual Memory 24.07 41.68 39.84 24.63 36.22 22.69 

b) Kappa       

Sternberg 0.401 0.128 0.199 0.509 0.170 0.302 

WMS-R: Visual Paired Associates 0.771 0.444 0.770 0.225 0.543 0.488 

WMS-R: Figural Memory 0.294 0.224 0.352 0.578 0.690 0.606 

WAIS-III: Visual Reproduction 0.566 0.479 0.174 0.474 0.319 0.458 

TB: Visual Memory 0.557 0.351 0.453 0.661 0.488 0.576 
Table A1.17. Results of the three-class classification of EEG data from neuropsychological tests using the G-

SICAMM+VI method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 63.23 66.81 68.37 53.39 62.58 61.70 

WMS-R: Visual Paired Associates 61.65 65.57 68.56 66.67 64.28 62.57 

WMS-R: Figural Memory 66.26 67.80 68.94 64.63 67.11 66.67 

WAIS-III: Visual Reproduction 66.67 62.80 64.83 65.41 66.67 65.82 

TB: Visual Memory 58.92 65.74 68.37 49.29 73.39 49.91 

b) Kappa       

Sternberg 0.051 0.003 0.041 0.301 0.095 0.112 

WMS-R: Visual Paired Associates 0.132 0.017 0.038 0.000 0.044 0.118 

WMS-R: Figural Memory 0.016 0.004 0.067 0.064 0.002 0.000 

WAIS-III: Visual Reproduction 0.000 0.048 0.066 0.035 0.000 0.029 

TB: Visual Memory 0.083 0.017 0.028 0.279 0.128 0.286 
Table A1.18. Results of the three-class classification of EEG data from neuropsychological tests using the (non-

dynamic) BNT method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 57.50 61.49 56.27 48.41 60.69 50.16 

WMS-R: Visual Paired Associates 46.73 73.21 65.92 66.67 45.67 38.49 

WMS-R: Figural Memory 68.84 61.74 74.22 66.67 68.19 66.67 

WAIS-III: Visual Reproduction 54.03 60.96 53.93 65.29 66.67 22.43 

TB: Visual Memory 45.00 62.54 62.78 33.72 66.67 26.65 

b) Kappa       

Sternberg 0.190 0.109 0.134 0.410 0.139 0.300 

WMS-R: Visual Paired Associates 0.493 0.134 0.011 0.000 0.085 0.750 

WMS-R: Figural Memory 0.016 0.090 0.155 0.000 0.021 0.000 

WAIS-III: Visual Reproduction 0.073 0.037 0.303 0.044 0.000 0.388 

TB: Visual Memory 0.185 0.084 0.067 0.455 0.000 0.556 
Table A1.19. Results of the three-class classification of EEG data from neuropsychological tests using the DBN 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 

 

Test 
Subject #: 

1 2 3 4 5 6 

a) BER (%)       

Sternberg 65.56 66.67 63.40 63.83 63.77 66.67 

WMS-R: Visual Paired Associates 69.63 58.29 62.45 65.81 66.67 58.13 

WMS-R: Figural Memory 66.67 67.41 66.67 62.57 45.89 48.61 

WAIS-III: Visual Reproduction 67.56 65.79 67.27 69.33 18.08 72.06 

TB: Visual Memory 27.97 60.94 65.58 31.71 66.67 26.32 

b) Kappa       

Sternberg 0.009 0.000 0.020 0.061 0.067 0.000 

WMS-R: Visual Paired Associates 0.047 0.084 0.070 0.016 0.020 0.241 

WMS-R: Figural Memory 0.000 0.030 0.022 0.127 0.616 0.462 

WAIS-III: Visual Reproduction 0.030 0.008 0.025 0.069 0.235 0.121 

TB: Visual Memory 0.479 0.047 0.026 0.502 0.000 0.573 
Table A1.20. Results of the three-class classification of EEG data from neuropsychological tests using the DBN2 

method: a) balanced error rate (%); b) Cohen’s kappa coefficient. 
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