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3.4 American options under Lévy models . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Positive finite difference schemes for partial integro-differential option pricing

Bates model 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Problem Transformation and Scheme Construction . . . . . . . . . . . . . . . . . . 68

4.2.1 The transformation of the problem . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 The numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Numerical properties of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Positivity of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Stability of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Numerical solution of PIDE American option pricing under Bates model . . . . . . 81

4.5.1 Numerical scheme construction . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Conclusions 88

Bibliography 88

IV



List of Figures

2.1 The effect of positivity conditions on V . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The effect of positivity conditions on V . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 The associated error for various values of h. . . . . . . . . . . . . . . . . . . . . . . 35

2.4 The associated error for several values of δ. . . . . . . . . . . . . . . . . . . . . . . 36

2.5 The effect of consistency condition on V . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 The associated error for several values of δ. . . . . . . . . . . . . . . . . . . . . . . 39

2.7 The Greeks for European call option. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 About positivity condition of the explicit scheme under CGMY process. . . . . . . 57

3.2 The positivity condition of the explicit scheme under Meixner process. . . . . . . . 58

3.3 The effect of positivity condition on the option price under GH process. . . . . . . 59

3.4 The amplification factor G under stability condition. . . . . . . . . . . . . . . . . . 62

4.1 Rhomboid numerical domain ABCD . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The effect of positivity conditions on the option price U . . . . . . . . . . . . . . . 84

V



List of Tables

2.1 Errors and convergence rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Errors due to the variation of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Errors and convergence rates due to the change of h for VG. . . . . . . . . . . . . . . . . . . 37

2.4 Errors and convergence rates due to the change of k for VG. . . . . . . . . . . . . . . . . . . 37

2.5 The associated errors for several values of ε for VG. . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Comparison of errors and convergence rates due to the change of h for CGMY model. . . . . . 38

2.7 Comparison of errors due to the variation of ε for CGMY model. . . . . . . . . . . . . . . . . 38

3.1 The forms of ν(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Resumen

El proceso de estimación del precio de una acción, opción u otro derivado en los mercados de valores

es objeto clave de estudio de las matemáticas financieras. En la literatura se pueden encontrar

diversas técnicas para obtener un modelo matemático adecuado con el fin de mejorar el proceso

de valoración de las opciones para peŕıodos cortos o largos. Históricamente, la ecuación de Black-

Scholes (1973) se considera un gran avance en la elaboración de modelos matemáticos para los

mercados de valores. Supone un modelo matemático práctico para estimar un valor razonable para

una determinada opción en el momento en que se adquiere. Sobre una serie de supuestos F. Black y

M. Scholes obtuvieron una ecuación diferencial en derivadas parciales lineal con solución anaĺıtica.

Desde entonces, el comercio de valores ha crecido enormemente y varios factores se han incorpo-

rado llevando a la aparición de nuevos productos financieros de mayor complejidad. Supuestos de

partida de Black-Scholes como la volatilidad constante y que el activo subyacente sigue el movi-

miento browniano estándar no pueden mantenerse con este desarrollo de los mercados financieros.

En consecuencia, estas restricciones deben ser cuestionadas. Se han realizado numerosos esfuerzos

para desarrollar modelos alternativos de activos que son capaces de captar las caracteŕısticas lep-

tocúrticas que se encuentran en los datos de los mercados y, posteriormente, utilizar estos modelos

para calcular precios de las opciones que reflejen con exactitud la llamada sonrisa de volatilidad y

asimetŕıas que se encuentran en los mercados. Dos estrategias se han desarrollado para capturar

estos comportamientos; la primera modificación consiste en añadir saltos en el proceso del precio

del activo subyacente, como originalmente fue propuesta por Merton; la segunda es permitir que

la volatilidad evolucione estocásticamente, introducida por Heston. La primera idea conduce a los

modelos de difusión con saltos y a los modelos de Lévy que se describen mediante una ecuación

integro-diferencial en derivadas parciales (PIDE) con dos variables independientes, activo subya-

cente y tiempo. Con el segundo enfoque se llega a una ecuación diferencial en derivadas parciales

(PDE) con dos variables espaciales, el activo subyacente y la volatilidad, además de la variable

temporal.

En esta memoria se aborda la resolución numérica de una amplia clase de modelos bajo procesos de

Lévy. Se desarrollan esquemas en diferencias finitas para opciones europeas y también para opciones
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americanas con su problema de complementariedad lineal (LCP) asociado. Por otra parte, también

se tratan modelos de valoración de opciones con volatilidad estocástica incorporando difusión con

saltos. Se plantea el análisis numérico de los esquemas propuestos ya que es el camino eficiente

y práctico para garantizar la convergencia y precisión de las soluciones numéricas. De hecho, sin

análisis numérico, los cálculos inconsistentes pueden debilitar buenos modelos matemáticos.

Esta memoria está organizada en cuatro caṕıtulos. El primero es una introducción con un breve

repaso de los procesos estocásticos, el modelo de Black-Scholes asi como nociones preliminares de

análisis numérico. En el segundo caṕıtulo se trata la PIDE para las opciones europeas según el

modelo CGMY. Se proponen dos esquemas en diferencias finitas; la primera aproximación garan-

tiza consistencia incondicional de la solución con la PIDE mientras que la segunda proporciona

estabilidad y positividad incondicionales. Con el primer enfoque, la parte diferencial se discretiza

mediante un esquema expĺıcito y para la parte integral se emplea la regla del trapecio. En la se-

gunda aproximación, para la parte diferencial se usa el esquema tipo Patankar y la parte integral

se aproxima mediante la fórmula de tipo abierto con cuatro puntos. Posteriormente se estudia en

cada caso la positividad, estabilidad y consistencia. Se incluyen varios ejemplos y simulaciones.

En el caṕıtulo tercero, se propone un tratamiento unificado para una amplia clase de modelos

de opciones en procesos de Lévy tales como CGMY, Meixner e hiperbólico generalizado. Primero

se eliminan los términos de reacción y convección en la PIDE mediante un apropiado cambio de

variables. Posteriormente la parte diferencial de la PIDE se aproxima por un esquema expĺıcito

mientras que para la parte integral se usa la fórmula de cuadratura de Laguerre-Gauss. Se analizan

las propiedades de positividad, estabilidad y consistencia. Para el caso de opciones americanas,

la parte diferencial del LCP se discretiza mediante una aproximación con tres niveles temporales,

usando la cuadratura de Laguerre-Gauss para la integración numérica de la parte integral. Por

último se implementan métodos iterativos de proyección y relajación sucesiva y la técnica de

multimalla. Se muestran diversos ejemplos incluyendo el estudio de errores y el coste computacional.

Finalmente, el caṕıtulo 4 está dedicado al modelo de Bates. Este modelo combina los enfoques

de volatilidad estocástica y de difusión con saltos lo que lleva a una PIDE con un término con

derivadas cruzadas. Teniendo en cuenta que la discretización de una derivada cruzada conlleva

la existencia de términos con coeficientes negativos en el esquema que deterioran la calidad de la

solución numérica, se propone una transformación de variables que elimina dicha derivada cruzada

en la ecuación. La PIDE transformada se resuelve numéricamente y se muestra el análisis numérico.

Por otra parte se estudia el LCP para opciones americanas en el modelo de Bates.
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Resum

El procés d’estimació del preu d’una acció, opció o un altre derivat en els mercats de valors és

objecte clau d’estudi de les matemàtiques financeres . En la literatura es poden trobar diverses

tècniques per a obtindre un model matemàtic adequat a fi de millorar el procés de valoració de les

opcions per a peŕıodes curts o llargs. Històricament, l’equació de Black-Scholes (1973) es considera

un gran avanç en l’elaboració de models matemàtics per als mercats de valors. Suposa un model

matemàtic pràctic per a estimar un valor raonable per a una determinada opció en el moment en

que esta s’adquirix. Sobre una sèrie de suposats F. Black i M. Scholes van obtindre una equació

diferencial en derivades parcials lineal amb solució anaĺıtica.

Des de llavors, el comerç de valors ha crescut enormement i diversos factors s’han incorporat portant

a l’aparició de nous productes financers de major complexitat. Supòsits de partida de Black-

Scholes com la volatilitat constant i que l’actiu subjacent segueix el moviment brownià estàndard

no poden mantindre’s amb este desenrotllament dels mercats financers. En conseqüència, estes

restriccions han de ser qüestionades. S’han realitzat nombrosos esforços per a desenrotllar models

alternatius d’actius que són capaços de captar les caracteŕıstiques leptocúrticas que es troben en

les dades dels mercats i, posteriorment, utilitzar estos models per a calcular preus de les opcions

que reflectisquen amb exactitud l’anomenada somriure de volatilitat i asimetries que es troben en

els mercats. Dos estratègies s’han desenrotllat per a capturar estos comportaments; la primera

modificació consisteix a afegir salts en el procés del preu de l’actiu subjacent, com originàriament

va ser proposta per Merton; la segona és permetre que la volatilitat evolucione estocàsticament,

introdüıda per Heston. La primera idea condüıx als models de difusió amb salts i als models de

Lévy que es descriuen per mitjà d’una equació integre-diferencial en derivades parcials (PIDE)

amb dues variables independents, actiu subjacent i temps. Amb el segon enfocament s’arriba a

una equació diferencial en derivades parcials (PDE) amb dues variables espacials, l’actiu subjacent

i la volatilitat, a més de la variable temporal.

En esta memòria s’aborda la resolució numèrica d’una àmplia classe de models baix processos de

Lévy. Es desenrotllen esquemes en diferències finites per a opcions europees i també per a opcions
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americanes amb el seu problema de complementarietat lineal (LCP) associat. D’altra banda també

es tracten models de valoració d’opcions amb volatilitat estocástica incorporant difusió amb salts.

Es planteja l’anàlisi numèrica dels esquemes proposats ja que és el camı́ eficient i pràctic per a

garantir la convergència i precisió de les solucions numèriques. De fet, sense anàlisi numèrica, els

càlculs inconsistents poden debilitar bons models matemàtics.

Esta memòria està organitzada en quatre caṕıtols. El primer és una introducció amb un breu

repàs dels processos estocàstics, el model de Black-Scholes aix́ı com nocions preliminars d’anàlisi

numèrica. En el segon caṕıtol es tracta la PIDE per a les opcions europees segons el model CGMY.

Es proposen dos esquemes en diferències finites; la primera aproximació garantix consistència

incondicional de la solució amb la PIDE mentres que la segona proporciona estabilitat i positivitat

incondicionals. Amb el primer enfocament, la part diferencial es discretitza per mitjà d’un esquema

expĺıcit i per a la part integral s’utilitza la regla del trapezi. En la segona aproximació, per a la

part diferencial s’usa l’esquema tipus Patankar i la part integral s’aproxima per mitjà de la fórmula

de tipus obert amb quatre punts. Posteriorment s’estudia en cada cas la positivitat, estabilitat i

consistència. S’inclouen diversos exemples i simulacions.

En el caṕıtol tercer, es proposa un tractament unificat per a una àmplia classe de models d’opcions

en processos de Lévy com ara CGMY, Meixner i hiperbòlic generalitzat. Primer s’eliminen els

termes de reacció i convecció en la PIDE per mitjà d’un apropiat canvi de variables. Posteriorment,

la part diferencial de la PIDE s’aproxima per un esquema expĺıcit, mentres que per a la part

integral s’usa la fórmula de quadratura de Laguerre-Gauss. S’analitzen les propietats de positivitat,

estabilitat i consistència. Per al cas d’opcions americanes, la part diferencial del PCL es discretitza

per mitjà d’una aproximació amb tres nivells temporals, usant la quadratura de Laguerre-Gauss

per a la integració numèrica de la part integral. Finalment, s’implementen mètodes iteratius de

projecció i relaxació successiva i la tècnica de multimalla. Es mostren diversos exemples incloent

l’estudi d’errors i el cost computacional.

Finalment, el caṕıtol 4 està dedicat al model de Bates. Este model combina els enfocaments de

volatilitat estocàstica i de difusió amb salts el que porta a una PIDE amb un terme amb derivades

creuades. Tenint en compte que la discretización d’una derivada creuada comporta l’existència de

termes amb coeficients negatius en l’esquema que deterioren la qualitat de la solució numèrica, es

proposa una transformació de variables que elimina la esmentada derivada creuada en l’equació. La

PIDE transformada es resol numèricament i es mostra l’anàlisi numèrica. D’altra banda s’estudia

el LCP per a opcions americanes en el model de Bates.
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Abstract

In the stock markets, the process of estimating a fair price for a stock, option or commodity in the

next few months or a year is consider the corner stone for this trade. There are several attempts to

obtain a suitable mathematical model in order to enhance the estimation process for evaluating the

options for short or long periods. The Black-Scholes equation (1973) is considered a breakthrough

in the mathematical modeling for the stock markets. It presented a practical mathematical model

to estimate a fair value for a given option at that time. Based on Black-Scholes assumptions, they

obtained a linear partial differential equation and it is solved analytically.

Since that time the stock trade has tremendously grown and several factors have been incorporated

which lead to new complex financial products to appear. Black-Scholes assumptions as constant

volatility and that the stock follows standard Brownian motion cannot keep up with these devel-

opments in the financial market. Consequently, these constraints need to be changed. There have

been numerous efforts to develop alternative asset models that are capable of capturing the lep-

tokurtic features found in financial market data, and subsequently to use these models to develop

option prices that accurately reflect the volatility smiles and skews found in market traded options.

Two strategies have been done to capture these behaviors; the first modification is to add jumps

into the price process for the underlying asset, as originally was proposed by Merton; the second is

to allow the volatility to evolve stochastically, introduced by Heston. The first modification leads to

the so-called jump diffusion and Lévy models which are described by a partial integro-differential

equation (PIDE) with two independent variables the underlying asset and time. Following the

second approach, it leads to a partial differential equation (PDE) with two spatial variables; the

underlying asset and the volatility apart from the time.

Here in this work, we solve numerically PIDEs for a wide class of Lévy processes using finite differ-

ence schemes for European options and also, the associated linear complementarity problem (LCP)

for American option. Moreover, the models for options under stochastic volatility incorporated

with jump-diffusion are considered. Numerical analysis for the proposed schemes is studied since it
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is the efficient and practical way to guarantee the convergence and accuracy of numerical solutions.

In fact, without numerical analysis, careless computations may waste good mathematical models.

This thesis consists of four chapters; the first chapter is an introduction containing historically

review for stochastic processes, Black-Scholes equation and preliminaries on numerical analysis.

Chapter two is devoted to solve the PIDE for European option under CGMY process. The PIDE

for this model is solved numerically using two distinct discretization approximations; the first

approximation guarantees unconditionally consistency while the second approximation provides

unconditional positivity and stability. In the first approximation, the differential part is approxi-

mated using the explicit scheme and the integral part is approximated using the trapezoidal rule.

In the second approximation, the differential part is approximated using the Patankar-scheme and

the integral part is approximated using the four-point open type formula. After constructing the

finite difference scheme for each case, the positivity, stability and consistency are studied. Also

several examples and simulations are provided.

Chapter three provides a unified treatment for European and American options under a wide class

of Lévy processes as CGMY, Meixner and Generalized Hyperbolic. First, the reaction and con-

vection terms of the differential part of the PIDE are removed using appropriate mathematical

transformation. After that the differential part for European case is discretized using the explicit

scheme, while the integral part is approximated using Laguerre-Gauss quadrature formula. Nu-

merical properties such as positivity, stability and consistency for this scheme are studied. For the

American case, the differential part of the LCP is discretized using a three-time level approxima-

tion while the Laguerre-Gauss quadrature has been used to approximate the integral term. Next,

the Projected successive over relaxation and multigrid techniques have been implemented to obtain

the numerical solution. Several numerical examples are given including discussion of the errors and

computational cost.

Finally in Chapter four, the PIDE for European option under Bates model is considered. Bates

model combines both stochastic volatility and jump diffusion approaches resulting in a PIDE

with a mixed derivative term. Since the presence of cross derivative terms involves the existence

of negative coefficient terms in the numerical scheme deteriorating the quality of the numerical

solution, the mixed derivative is eliminated using suitable mathematical transformation. The

new PIDE is solved numerically and the numerical analysis is provided. Moreover, the LCP for

American option under Bates model is studied.
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1. M. Fakharany, R. Company and L. Jódar. “Unconditionally positive stable numerical solu-

tion of partial integro-differential option pricing problems”, Journal of Applied Mathematics

2015(960728) (2015) 1–10.
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Computational and Applied Mathematics.

Chapter in Book(s)
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for options pricing modeled by Lévy processes” chapter 32, pp. 337-345, in book entitle

”Mathematical modeling in social sciences and engineering”, I.S.B.N.: 978-1-63117-339-4,

Nova publishers, New York, 2014.

XIII



Presentations in Conferences
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Chapter 1

Introduction

1.1 Derivatives markets and options

In the last 30 years, derivatives have become increasingly important in finance.

Futures and options are actively traded on many exchanges throughout the world.

Several types of forward contracts, options, swaps, and other derivatives are entered

into by financial institutions, fund managers, and corporate treasurers in the market.

There are many different types of options that can be traded and these can be

categorized in a number of ways. In a very broad sense, there are two main types:

calls and puts. A call option gives the holder the right, but not the obligation, to

buy the underlying asset by a certain date for a certain price. A put option gives

the holder the right to sell the underlying asset by a certain date for a certain price.

The price in the contract is known as the exercise price or strike price; the date in

the contract is known as the expiration date or maturity. American options can be

exercised at any time up to the expiration date. European options can be exercised

only on the expiration date itself. Most of the options that are traded on exchanges

are American [46].

A derivatives exchange is a market where individuals trade standardized contracts

that have been defined by the exchange. Derivatives exchanges have existed for

a long time. In 1848 the Chicago Board of Trade (CBOT) was founded to bring

farmers and merchants together. Initially its original business was to standardize

the quantities and qualities of the grains that were traded. Within a few years,
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the first futures-type contract was developed. It was known as a to-arrive contract.

Speculators soon became interested in the contract and found trading the contract

to be an attractive alternative to trading the grain itself. A rival futures exchange,

the Chicago Mercantile Exchange (CME), was established in 1919. Now futures

exchanges exist all over the world. CME and CBOT have merged to form the CME

Group which also includes the New York Mercantile Exchange.

The Chicago Board Options Exchange started trading call option contracts on 16

stocks in 1973. Options had traded prior to 1973, but the CBOE succeeded in

creating an orderly market with well-defined contracts. Put option contracts started

trading on the exchange in 1977. The CBOE now trades options on over 2,500

stocks and many different stock indices. Like futures, options have proved to be

very popular contracts. Many other exchanges throughout the world now trade

options. The underlying assets include foreign currencies and futures contracts as

well as stocks and stock indices [46].

1.2 Stochastic processes

Stochastic processes models are collections of variables that develop randomly in

time, space or space-time. This development will be described through an index

t ∈ T . We may define a family of random variables {Xt, t ∈ T}, which will be a

stochastic process [50].

Definition 1. A stochastic process {Xt, t ∈ T} is a collection of random variables

Xt, indexed by a set T , taking values in a common measurable space P associated

with an appropriate σ−algebra.

T could be a set of times, when we have a temporal stochastic process; a set of spa-

tial coordinates, when we have a spatial process; or a set of both time and spatial

coordinates, when we deal with a spatio-temporal process.

An important concept is that of a stationary process, that is a process whose charac-

terization is independent of time at which the observation of the process is initiated

[50].

Definition 2. We say that the stochastic process {Xt, t ∈ T} is strictly stationary

if for any n, t1, t2, . . . , tn and τ , (Xt1 , Xt2 , . . . , Xtn) has the same distribution as

(Xt1+τ , Xt2+τ , . . . , Xtn+τ ).
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1.2.1 Poisson process

Poisson processes are continuous time and discrete space process.

Definition 3. Suppose that the stochastic process {Xt}t∈T describes the number of

events of a certain type produced until time t and has the following properties [50]:

1. The number of events in nonoverlapping intervals are independent.

2. There is a constant λ such that the probabilities of the events that happen over

small intervals of duration ∆t are:

I P (number of events in (t, t+ ∆t] = 1) = λ∆t+ o(∆t).

I P (number of events in (t, t+ ∆t] > 1) = o(∆t), o(∆t)/∆t→ 0.

Consequently, {Xt} is said to be a homogeneous Poisson process with parameter λ,

characterized by the fact Xt ∼ Po(λt).

Nonhomogeneous Poisson processes are described by the intensity function λ(t) or

the intensity functionm(t) =
∫ t

0
λ(s)ds, so in general, it is a time dependent intensity

function but it could be space or space-time dependent as well. For a nonhomoge-

neous Poisson process, the number of events that happen in the interval (t, t + s]

will have a Po(m(t+ s)−m(t)) distribution.

1.2.2 Gaussian process

The Gaussian process is a continuous process in both time and state-space. Let {Xt}
be a stochastic process such that for any n times {t1, t2, . . . , tn} the joint distribution

of Xti , i = 1, 2, . . . , n is n−variate normal, hence the process is Gaussian. Moreover,

for any finite set of time instants {ti}, i = 1, 2, . . . when the random variables are

mutually independent and Xt is normally distributed for every t, we call it a purely

random Gaussian process.

1.2.3 Brownian motion

This continuous time and state-space process has the following properties [50]:

1. The process {Xt, t ≥ 0} has independent, stationary increments: for t1, t2 ∈ T
and t1 < t2, the distribution of Xt2 −Xt1 is the same of Xt2+h−Xt1+h for each
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h > 0, and for non-overlapping intervals (t1, t2) and (t3, t4) with t1 < t2 < t3 <

t4, the random variables Xt2 −Xt1 and Xt4 −Xt3 are independent.

2. For any time interval (t1, t2), the random variable Xt2 − Xt1 has distribution

N (0, σ2(t2 − t1)).

1.2.4 Itô process

Several physical phenomena and economic markets are modeled by means of de-

terministic differential equations ẋ = dx
dt

= a(x, t). This type of modeling neglects

stochastic fluctuations and is not appropriate for stock prices. If the processes x

are to include Wiener processes as special case, the derivative dx
dt

is meaningless.

In order to circumvent non-differentiability, integral equations are used to define a

general class of stochastic processes. The randomness is inserted as follows [79]

x(t) = x(0) +

∫ t

t0

a(x(s), s)ds+ randomness. (1.1)

The first integral in the resulting integral equation is an ordinary integration (Rie-

mann or Lebesgue). The final integral equation is written as a “stochastic differential

equation” (SDE) and named after to Itô.

Definition 4. An Itô stochastic differential equation [79]

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (1.2)

associated with Xt0 = X0 is a symbolic short form of the integral equation

Xt = Xt0 +

∫ t

t0

a(Xs, s)ds+

∫ t

t0

b(Xs, s)dWs, (1.3)

where a(Xs, s) is the drift term and b(Xt, t) is the diffusion coefficient.

Itô’s lemma

An important result in this area is known as Itô’s lemma. In fact, it is the counterpart

of the chain rule for deterministic functions. Consider a function G following an Itô

process (1.2), then we have

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt+

∂G

∂x
bdWt. (1.4)
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1.2.5 Lévy process

Definition 5. A stochastic process {Xt}t∈T on (Ω,F , P ) with values in Rn is called

a Lévy process if the following properties hold [24]:

1. X0 = 0,

2. Independent increments: for every increasing sequence of times {tj}mj=0, the

random variables Xt0, {Xj −Xj−1}nj=1 are independent.

3. Stationary increments: the law of Xt+h −Xt does not depend on t.

4. Stochastic continuity: ∀ε > 0, limh→0 P (|Xt+h −Xt|) = 0.

1.3 The Black Scholes equation

The market is the place where the value of the option is determined. Say we want

to calculate a fair value for a given option, we need a mathematical model of the

market. Usually the mathematical models are used in order to approximate the

complex reality of the financial world. The earlier two financial models named after

the pioneers Black-Scholes [10], and Merton have been both successful and widely

accepted. It was actually a major breakthrough in the pricing of European stock

options. Based on Itô’s lemma (1.4), the Black-Scholes equation is given by

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1.5)

where V (S, t) is the option price function, σ is the volatility, r is the risk free interest

and S is the underlying asset. Equation (1.5) is a partial differential equation (PDE)

used for estimating the value function V (S, t). This PDE is obtained based on the

following assumptions:

1. The stock pays no dividends during the option’s life.

2. This model is adapt to European exercise.

3. The markets are efficient. This means that there is no fees or taxes, all parties

have an immediate access to any information, the interest rate for lending and

borrowing money are equal, all securities and credits are available at any time.

So in other words, all variables are perfectly divisible.
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4. The asset price follows a geometric Brownian motion 1.2.3.

5. Interest rates remain constant.

6. Returns are lognormal distributed.

1.4 Preliminaries on numerical analysis

In this section we consider the necessary properties or conditions of a given numer-

ical scheme (finite difference equations) that must be hold to guarantee that the

solution of this finite difference equations is fairly accurate approximation to the so-

lution of the corresponding PDE. Usually these conditions lead to two distinct but

interrelated problems. The first investigates the convergence of the solution of the

approximating difference equations to the solution of the PDE; the second focuses

on the boundedness, the unbounded growth or controlled decay of the solution of

the finite difference equations which is known as the stability problem.

1.4.1 Convergence

Here, we give a brief definition for the convergence [80]. Consider U represents the

exact solution of a partial differential equation with independent variables x and t,

also let u be the solution of the difference equations that approximate the partial

differential equation.

Definition 6. A difference scheme F (u) approximating the partial differential equa-

tion L(U) is a pointwise convergent scheme if for any x and t, as (ih, jk) converges

to (x, t), u converges to U as δx and δt converge to 0.

The difference U −u is called the discretization error. Usually, the problem of con-

vergence is a difficult one to investigate effectively since the final expression for the

discretization error usually is given in terms of unknown derivatives. Consequently,

there is no mathematical way to estimate bounds for them. However, there is an-

other mathematical procedure in order to study the convergence of the difference

equations approximating the linear parabolic and hyperbolic differential equations

by studying the stability and consistency of the scheme which is known as Lax’s

equivalence theorem [73, pp. 45-48].
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1.4.2 Stability

Before we discuss the stability of a difference scheme, we recall some useful norm

‖.‖ definitions for vector and matrix [40, 80].

Vector norms

The norm of a vector v is a real positive number giving a measure of the size of the

vector and is denoted by ‖v‖. Let v be a vector in Rn such that v = (v1, v2, . . . , vn),

there are several forms of vector norm and the most three commonly used as follows

1. The 1-norm of v is the sum of the moduli of the components of v, i.e.,

‖v‖1 =
n∑
i=1

|vi|. (1.6)

2. The infinity norm of v is the maximum of the moduli of the components of v,

i.e.,

‖v‖∞ = max
i
|vi|. (1.7)

3. The 2-norm of v is the square root of the sum of the squares of the moduli of

the components of v, i.e.,

‖v‖2 =

√√√√ n∑
i=1

|vi|2. (1.8)

Matrix norms

Definition 7. Let A = (aij) be a matrix in Rn×n and denote its set of eigenvalues

by {λ1, λ2, . . . , λn}. The spectral radius of A is given by

ρ(A) = max
i
|λi|. (1.9)

Now let B = (bij) be a matrix in Rm×n, the norm of the matrix B can be obtained

by several forms. Here we recall the most three usable forms:

1. The maximum column sum norm is

‖B‖1 = max
1≤j≤n

m∑
i=1

|bij|. (1.10)
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2. The maximum row sum norm is

‖B‖∞ = max
1≤i≤m

n∑
j=1

|bij|. (1.11)

3. The spectral norm is

‖B‖2 =
√
ρ(BTB) =

√
ρ(BBT ). (1.12)

For a matrix B = (bij)n×m in Rm×n, we denote by ‖B‖∞ = max1≤i≤m{
∑n

j=1 |bij‖}.
Consequently if A is a block matrix with n×m block entries Aij, then the infinite

norm of A, see [40, Chap. 2],

‖A‖∞ = max
1≤i≤m

{‖[Ai1 Ai2 . . . Ain]‖∞}. (1.13)

An usual interpretation of stability reads that for a stable scheme, small errors in the

initial conditions cause small errors in the solution which coincide with the definition

of well-posedness of a partial differential equation. First, we define the stability for

a two level difference scheme of the form

un+1 = Qun, n > 0, (1.14)

which will generally be a difference scheme for solving a given initial-value problem

[84].

Definition 8. The difference scheme (1.14) is said to be stable with respect to the

norm ‖.‖ if there exist positive constants h0 and k0, and non-negative constants K

and β such that

‖un+1‖ ≤ Keβt‖u0‖, (1.15)

for 0 ≤ t = (n+ 1)k, 0 < h ≤ h0 and 0 < k ≤ k0.

• Based on the definition of the stability, it allows the solution to grow. Notice

that the solution can grow with the time, but not with the number of time

steps.

• Notice that the stability here is established for a homogenous difference scheme.

When we discuss the stability of a nonhomogeneous difference scheme, the

stability of the associated nonhomogeneous scheme must be considered.
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The next definition provides several types of stability; whether the proposed finite

difference scheme is conditionally or unconditionally strongly uniform stable.

Definition 9. The difference scheme (1.14) is said to be unconditionally uniform

stable when (1.15) holds without any restriction on the stepsizes of the independent

variables h and k, otherwise the scheme (1.14) is conditionally stable.

1.4.3 Consistency

Consistency for PDEs

In several cases, it is possible to approximate a PDE by a finite difference scheme

that is stable but has a solution does not converge to the solution of the PDE as the

mesh lengths approach to zero. Such a difference scheme is said to be inconsistent

with the PDE. The consistency can be defined in two different ways as follows

Definition 10. Consider a PDE L[U(x, t)] = f(x, t) with a corresponding finite dif-

ference scheme Fi,j(u) = fi,j. It is said that the finite difference scheme is consistent

with the PDE if for any smooth function φ(x, t) [84]

Fi,j(φ)− L[φi,j]→ 0, as h, k → 0. (1.16)

• The difference Fi,j(φ)−L[φi,j] is known the local truncation error at the point

(ih, jk) and is denoted by T ji (φ)

T ji (φ) = Fi,j(φ)− L[φi,j]. (1.17)

• In many papers, φ is replaced by U .

Definition 11. Consider a PDE L[U(x, t)] = f(x, t) with a corresponding finite

difference scheme Fi,j(u) = fi,j. Let Ui,j = U(ih, jk) be the exact theoretical solution

at point (ih, jk), then the truncation error is given by

T ji (U) = Fi,j(U)− L[Ui,j]. (1.18)

If T ji → 0 as h → 0, k → 0, then the difference equation is said to be consistent

with the PDE [80].

Note that for a homogenous PDE (1.18) takes the form T ji (U) = Fi,j(U). Using

Taylor expansions, it is simple to express T ji in terms of powers of h and k and
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partial derivatives of U at (ih, jk). However, U and its derivatives are unknown,

the analysis is worthwhile because it provides a suitable method for comparing the

local accuracies of different difference schemes approximating the PDE.

Here in this study, the second definition has been used.

Consistency for integral equation

Here, we focus on the consistency for integral equations of Volterra type which has

the following form [55]

f(t) = g(t) +

∫ t

0

K(t, s, f(s))ds, 0 ≤ t ≤ T, (1.19)

where g(t) is a given function and K(t, s, f(s)) is the kernel of the integration.

Consider the following discretization with stepsize h (ti = ih)

Fn = g(tn) + h
n∑
i=0

WniK(tn, ti, Fi), n = r, r + 1, . . . . (1.20)

Let f be the solution of (1.19), then the function

δ(h, tn) = f(tn)− Fn =

∫ tn

0

K(tn, s, f(s))ds− h
n∑
i=0

WniK(tn, ti, Fi) (1.21)

is the local consistency error for (1.19).

Definition 12. Let F be a class of equations of the form (1.19). If for every equation

in F
lim
h

max
0≤n≤N

|δ(h, tn)| = 0, (1.22)

then the approximation method (1.20) is said to be consistent with (1.19) for the

class equation F .
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Chapter 2

Positive solutions of European

option pricing with CGMY

process models using double

discretization difference schemes

2.1 Introduction

The hypothesis that asset prices behave according to the geometric Brownian mo-

tion when one derives the option prices is inconsistent with market prices [15]. This

drawback has been overcome using Lévy process models [7, 11, 16, 33, 52, 53, 57, 63]

allowing the calibration of the model to the option market price and the reproduc-

tion of a wide variety of implied volatility skews/smiles, see [24] and [66, chap. 14,

15]. Among the Lévy process models, it is remarkable to distinguish these with

finite activity, i.e., jump diffusion models [53, 63] and those where the intensity of

the jumps is not a finite measure [7, 11, 16, 33, 52, 57, 63]. These models are char-

acterized by the fact that option price is given by the solution of a PIDE involving a

second order differential operator part, and a non local integral term that presents

additional difficulties. In [61] wavelet methods are applied to infinite Lévy models.

Monte Carlo approaches are developed by [59, 69]. Interesting analytic-numerical

treatments have been introduced in [9, 36, 67]. The so called COS method for pric-

ing European options is presented in [36]. This is based on the knowledge of the

characteristic function and its relation with the coefficients of the Fourier-cosine ex-
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pansion of the density function. In [67], an expansion of the characteristic function

of local volatility models with Lévy jumps is developed. The authors in [9] derive an

analytical formula for the price of European options for any model including local

volatility and Poisson jump process by using Malliavin calculus techniques.

Many authors used the finite difference (FD) schemes for solving these PIDE prob-

lems [2, 4, 5, 17, 25, 54, 74, 75, 82, 85, 87]. Dealing with FD methods for such

PIDEs, the following challenges should be addressed. For instance, how to approx-

imate the integral term and how to localize a bounded computational domain in

order to consider relevant information like large jumps. In addition, the possible

singularities of the integral kernel should be carefully treated [25, 87].

The nonlocal character of the integral part involves a dense discretization matrix.

In the outstanding paper [25], Cont and Voltchkova presented an explicit-implicit

method (explicit into the integral part and implicit into the differential one) to obtain

the numerical approximation of viscosity solutions for European and barrier options.

An improvable issue of [25] is that in order to approximate the truncated integral

term, they assume a particular behavior of the solution outside of the bounded

numerical domain. This last drawback is experienced by most of the authors, see

[2, 4, 85].

Implicit FD methods for the numerical solution of the CGMY model have been

used by Wang et al. [87] who proposed an implicit timestepping method avoiding

dense linear systems, but involving the iteration methods drawbacks of the implicit

methods such as ungranted positivity. They also assume that for large enough values

of S, the solution behaves like Black-Scholes.

In [5], the authors use an unconditionally ADI FD method and accelerate it using

fast Fourier transform (FFT) for jump diffusion models with finite jump intensity.

Tavella and Randall in [82] use an implicit time discretization and propose a sta-

tionary rapid convergent iterative method to solve the full matrix problem quoted

above, but with poor numerical analysis. A generalization of their iterative method

to price American options is proposed in [75].
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One of the most relevant and versatile Lévy models is the one proposed by Carr,

Geman, Madan and Yor, the so called CGMY model [16], that belongs to the family

of KoBoL models [11]. It is considered a prototype of the general class of models

with jumps and enjoys widespread applicability. The CGMY model allows diffusions

and jumps of both finite and infinite activity. The CGMY Lévy density is given by

ν(y) =

{
Ce−G|y|

|y|1+Y , y < 0,
Ce−M|y|

|y|1+Y , y > 0,
(2.1)

where C > 0, G ≥ 0, M ≥ 0, and Y < 2. The parameter Y allows to control the

fine structure of asset return distribution. For Y < 0, the Lévy process is of finite

activity, i.e., the measure is finite,
∫
ν(y)dy < ∞. For 0 ≤ Y ≤ 1, it is of infinity

activity but finite variation, i.e.,
∫
|y|<1

yν(y)dy < ∞. Finally, for 1 < Y < 2, both

the activity and variation are infinite. Note that for Y = 0 one gets the well known

Variance Gamma process proposed by Madan and Seneta [58] as a particular case.

So CGMY model is an improved and generalization of the Variance Gamma model

[57].

The authors in [4] use FD methods discretizing the equation in space by the collo-

cation method and using explicit difference backward schemes focused on the case

of infinite activity and finite variation.

In [54] an efficient three time-level finite difference scheme is proposed for the in-

finite activity Lévy model. Second order convergence rate are shown in numerical

experiments although the numerical analysis of the method is not developed.

Based on Itô calculus the corresponding PIDE for the CGMY model with ν(y) (2.1)

is given by
∂V

∂τ
=
σ2

2
S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV

+

∫ +∞

−∞
ν(y)

[
V (Sey, τ)− V (S, τ)−S(ey − 1)

∂V

∂S

]
dy, S ∈ (0,∞), τ ∈ (0, T ], (2.2)

V (S, 0) = f(S), S ∈ (0,∞). (2.3)

Here V (S, τ) is the option price depending on the underlying asset S, the time

τ = T − t, σ is the volatility parameter, r and q are the risk-free interest and the
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continuous dividend paid by the asset respectively. The payoff function f(S) for a

vanilla call option is given by

f(S) = max(S − E, 0), (2.4)

where E is the strike price.

Like [17] and [74] for jump diffusion models we transform the original PIDE problem

in order to remove the convection term to avoid possible numerical oscillations. With

respect to the singularity of the integral kernel quoted above, the jump component in

the neighborhood of log jump size zero is approximated by using a Taylor expansion,

like [25] and [87].

The selection of the boundary conditions of the numerical domain, the discretization

of the infinite domain of the integration and matching the discretization of both

the differential and the integral part are important challenges. Some authors like

[25], assume a particular behavior of the solution outside of the bounded numerical

domain. In order to weaken these hypotheses we do not truncate the infinite integral

and we use a nonuniform partition of the complete unbounded domain, allowing

a proper matching of the discretizations of the differential and integral parts by

assuming asymptotic linear behavior of the solution. This strategy involves a double

discretization with two spatial stepsize parameters that will allow a better flexibility

to improve the approximation in different zones of the domain.

In this chapter double discretization numerical schemes for solving (2.1)-(2.4) are

proposed. On the one hand, a consistent and conditional stable and positive scheme

is studied. On the other hand an unconditional stable and positive scheme is pre-

sented based on numerical methods for parabolic equations [14, 18] following the

idea initiated by Patankar, the so-called Patankar trick [68].

This chapter is organized as follows. In Section 2.2, the integral part of (2.2) is ap-

proximated in a neighborhood of y = 0 to obtain a new PIDE integral part extended

outside a neighborhood of y = 0. Then a variable transformation is developed in

order to remove both the convection and reaction terms of the differential part.

Following the idea developed in [17], the unbounded domain for the integral part is
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converted into a bounded one. In Section 2.3, two distinct finite difference schemes

are constructed; the first one treats explicitly the differential part and the integral

part is discretized using the trapezoidal rule while, in the second scheme, the dif-

ferential part is discretized based on what so called Patankar-trick and the integral

part is approximated using the four-point open type discretization. Positivity and

stability of the numerical solutions given by these schemes are studied in Section 2.4.

Also, the consistency of them are treated in Section 2.5. In Section 2.6, some illus-

trative numerical examples show the advantages of the new discretization approach

showing how the double discretization allows flexible improvement of the accuracy

in different zones of the domain.

The exponential integrals have a major role in evaluating important class of integrals.

Let s and z be continuous (real or complex) variables, the exponential integral of

order s, denoted by Es(z) is given by [65]

Es(z) =

∫ ∞
1

t−s exp(−zt)dt. (2.5)

2.2 Transformation of the PIDE problem

We begin this section by removing the singularity of the kernel of the integral term

of PIDE (2.2). Let ε > 0 and let us split the real line into two regions R1 = [−ε, ε]
and R2 = (−∞,−ε)∪(ε,∞). For the term V (Sey, τ) in R1, taking Taylor expansion

for z = Sey about z = S one gets

V (Sey, τ) = V (S, τ) + S(ey − 1)
∂V

∂S
+

(S(ey − 1))2

2

∂2V

∂S2
+O(y3), |y| < ε. (2.6)

Taking into account (2.1) the integral part of (2.2) can be written as

I(V ) =
σ2(ε)

2
S2∂

2V

∂S2
− γ(ε)S

∂V

∂S
− λ(ε)V (S, τ) +

∫
R2

ν(y)V (Sey, τ)dy +O(ε3−Y ),

(2.7)

where the integrals

σ2(ε) =

∫ ε

−ε
ν(y)(ey − 1)2dy, γ(ε) =

∫
R2

ν(y)(ey − 1)dy, λ(ε) =

∫
R2

ν(y)dy, (2.8)
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can be evaluated with high accuracy using the exponential integrals [65], [83, chapter

7] where the integrals appearing in (2.8) are convergent, [25]. Let us denote

f̂(α,M, ε) = Mα−1Γ(1− α)− ε1−αEα(εM), (2.9)

where Γ denotes the gamma function and Eα is the exponential integral (2.5). For

the first integral in (2.8) one gets

σ2(ε) = C
2∑

k=0

(−1)k
(

2

k

)[
f̂(1 + Y,G+ k, ε) + f̂(1 + Y,M − k, ε)

]
. (2.10)

Notice that (2.10) holds for Y ∈ (0, 1) ∪ (1, 2). For the particular case where Y = 0

one gets,

σ2(ε) = C
[

ln
(G+ 1)2(M − 1)2

G(G+ 2)M(M − 2)
−

2∑
k=0

(
2

k

)
(−1)k

(
E1[ε(G+ k)] +E1[ε(M − k)]

)]
,

(2.11)

while for Y = 1, we have

σ2(ε) = 2C
[

ln
(G+ 2)(M − 1)

(G+ 1)(M − 2)
+E1[ε(G+2)]−E1[ε(G+1)]−E1[ε(M−2)]+E1[ε(M−1)]

]
+

CG
[

ln
G(G+ 2)

(G+ 1)2
+

2∑
k=0

(
2

k

)
(−1)kE1[ε(G+ k)]

]
− C

ε
e−Gε(e−ε − 1)2+

CM
[

ln
M(M − 2)

(M − 1)2
+

2∑
k=0

(
2

k

)
(−1)kE1[ε(M − k)]

]
− C

ε
e−Mε(eε − 1)2. (2.12)

For the remaining integrals in (2.8), we have

γ(ε) = Cε−Y
1∑

k=0

(
1

k

)
(−1)1−k

[
E1+Y

(
ε(G+ k)

)
+ E1+Y

(
ε(M − k)

)]
(2.13)

λ(ε) = Cε−Y
(
E1+Y (Gε) + E1+Y (Mε)

)
(2.14)

Hence, the problem (2.2) takes the following form

∂V

∂τ
=
σ̂2

2
S2∂

2V

∂S2
+ (r − q − γ(ε))S

∂V

∂S
− (r + λ(ε))V

+

∫
R2

ν(y)V (Sey, τ)dy +O(ε3−Y ), (2.15)
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where σ̂2 = σ̂2(ε) = σ2 + σ2(ε).

In order to remove the convection and reaction terms from (2.15), let us introduce

the following transformation of variables:

x = exp[(r − q − γ(ε))τ ]S, U(x, τ) = exp[(r + λ(ε))τ ]V (S, τ). (2.16)

Hence the problem (2.15) is approximated by the following form

∂U
∂τ

= σ̂2

2
x2 ∂2U

∂x2
+ J, x ∈ (0,+∞), τ ∈ (0, T ],

U(x, 0) = f(x), x ∈ (0,+∞),

(2.17)

where
J = J(x, τ, ε) =

∫
R2
ν(y)U(xey, τ)dy =

∫ −ε
−∞ ν(y)U(xey, τ)dy +

∫∞
ε
ν(y)U(xey, τ)dy.

(2.18)

Finally in order to combine both discretizations of the differential and integral part,

we use φ = xey to change the integrand J as follows:

J = J1 + J2 =

∫ xe−ε

0

g(x, φ)U(φ, τ)dφ+

∫ ∞
xeε

g(x, φ)U(φ, τ)dφ, (2.19)

where, g(x, φ) = ν(ln(φ/x))
φ

. For evaluating the integrals in all the positive real line,

let us introduce a parameter A > 0 that separate [0,∞) into [0, A] ∪ [A,∞). The

point A can be chosen according to the criteria used by [25, 51, 62] to truncate the

numerical domain. For instance, in [85] one takes A = 4E and in [17] one takes

A = 3E. To evaluate the integrals related to x > A, they are transformed to finite

integrals by using the substitution z = A
φ

consequently, obtaining integrals of the

form ∫ β

α

g(x, φ)U(φ, τ)dφ = A

∫ φ1

φ0

g(x,
A

z
)U(

A

z
, τ)

dz

z2
, (2.20)

where φ0 = A
β
, φ1 = A

α
. In particular if β → ∞ then φ0 = 0. Hence, the problem

(2.17) takes the form

∂U

∂τ
=
σ̂2

2
x2∂

2U

∂x2
+ J, x ∈ (0,∞), τ ∈ (0, T ], (2.21)

U(x, 0) = f(x), x ∈ (0,∞). (2.22)
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2.3 Numerical Scheme Construction

We are going to construct two distinct finite difference scheme; the first scheme

guarantees unconditionally consistency while the positivity and stability hold con-

ditionally, the second scheme guarantees unconditionally positivity and stability

meanwhile the consistency is restricted.

2.3.1 The numerical scheme that guarantee unconditionally consistency

In this section a difference scheme for the problem (2.21)-(2.22) is designed. For the

time variable, given τ ∈ (0, T ], let k be the time-step discretization k = ∆τ = T
L

and τ l = lk, 0 ≤ l ≤ L, with L integer. With respect to the spatial variable

x and for an arbitrary fixed A > 0, we divide the interval [0, A] into N equal

intervals with a spatial-step h = ∆x = A
N
, with xi = ih, 0 ≤ i ≤ N. Note that the

unbounded domain [A,∞) is transformed into (0, 1] by the above quoted change

z = A
x

. Thus a uniform distributed mesh partition of the interval (0, 1] of the form

zi = iδ, δ = 1
M
, 0 < i ≤M is mapped into a non uniform mesh partition of [A,∞),

xi = A
zN+M−i

, N ≤ i ≤ N +M − 1. Hence, we have

xi =

{
ih, 0 ≤ i ≤ N,

A
1−(i−N)δ

, N ≤ i ≤ N +M − 1.
(2.23)

Let us denote U(xi, τ
l) ≈ uli, 0 ≤ i ≤ N +M − 1, 0 ≤ l ≤ L,

∂U
∂τ

(xi, τ
l) ≈ ul+1

i −uli
k

∂2U
∂x2

(xi, τ
l) ≈ ∆l

i,

}
(2.24)

where

∆l
i ≡

{
uli−1−2uli+u

l
i+1

h2
, 0 ≤ i < N,

2
[ uli−1

hi−1(hi+hi−1)
− uli

hihi−1
+

uli+1

hi(hi−1+hi)

]
, N ≤ i ≤ N +M − 2,

(2.25)

and hi = xi+1 − xi > 0. With respect to the approximation of (2.19), note that for

each xi we need to evaluate two integrals corresponding to [0, xie
−ε] and [xie

ε,∞),

denoted by J li,r = Jr(xi, τ
l, ε), r = 1, 2. Let i1(i) be the biggest j with 0 ≤ j ≤

N + M − 1 such that xj ≤ xie
−ε and let i2(i) be the first j such that xie

ε ≤ xj.
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Then the expression (2.19) for the point (xi, τ
l) has the following from

J li = J li,1 + J li,2,

J li,1 =
∫ xi1

0
g(xi, φ)U(φ, τ l)dφ+

∫ xie−ε
xi1

g(xi, φ)U(φ, τ l)dφ

J li,2 =
∫∞
xi2
g(xi, φ)U(φ, τ l)dφ+

∫ xi2
xieε

g(xi, φ)U(φ, τ l)dφ.

 (2.26)

Then we apply the trapezoidal rule for the integrals over (0, xi1 ] and [xi2,∞) because

of (2.20) and using the first mean value theorem for integrals [41, p. 1063], the two

remaining integrals are approximated by∫ xie
−ε

xi1

g(xi, φ)U(φ, τ l)dφ ≈ I li =
(∫ xie

−ε

xi1

g(xi, φ)dφ
)
uli1 = g̃i,i1u

l
i1
, (2.27)

∫ xi2

xieε
g(xi, φ)U(φ, τ l)dφ ≈ H l

i =
(∫ xi2

xieε
g(xi, φ)dφ

)
uli2 = g̃i,i2u

l
i2
. (2.28)

Let us denote

gi,j =
ν(lnxj/xi)

xj
. (2.29)

Depending on the location of xi for each i with 1 < i ≤ N +M − 2, we approximate

J li given by (2.26) in the following form

Case 1 (xi < Ae−ε)

Note that in this case xi1 < A and thus J li,1 is approximated by

h

i1−1∑
j=1

giju
l
j + (

h

2
gi,i1 + g̃i,i1)u

l
i1
. Also one has xi2 < A in the domain of the integral

J li,2 and is approximated by

(
h

2
gi,i2 + g̃i,i2)u

l
i2

+ h

N−1∑
j=i2+1

giju
n
j +

giN
2

(h+ Aδ)ulN +
δ

A

N+M−1∑
j=N+1

gijx
2
ju

l
j, taking into ac-

count (2.20) for xj > A. Hence

Ĵ li = h

i1−1∑
j=1

giju
l
j + (

h

2
gi,i1 + g̃i,i1)u

l
i1

+ (
h

2
gi,i2 + g̃i,i2)u

l
i2

+ h
N−1∑
j=i2+1

giju
l
j +

giN
2

(h+ Aδ)ulN +
δ

A

N+M−1∑
j=N+1

gijx
2
ju

l
j. (2.30)
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Case 2 (Ae−ε ≤ xi < Aeε)

As xi1 < A and xi2 ≥ A, the approximation of J li becomes

Ĵ li = h

i1−1∑
j=1

giju
l
j + (

h

2
gi,i1 + g̃i,i1)u

l
i1

+ (
x2
i2
δ

2A
gi,i2 + g̃i,i2)u

l
i2

+
δ

A

N+M−1∑
j=i2+1

gijx
2
ju

l
j. (2.31)

Case 3 (xi ≥ Aeε)

Here xi2 > xi1 ≥ A and the approximation of J li is given by

Ĵ li = h

N−1∑
j=1

giju
l
j +

giN
2

(h+ Aδ)ulN +
δ

A

i1−1∑
j=N+1

gijx
2
ju

l
j

+ (
x2
i1
δ

2A
gi,i1 + g̃i,i2)u

l
i1

+ (
x2
i2
δ

2A
gi,i2 + g̃i,i2)u

l
i2

+
δ

A

N+M−1∑
j=i2+1

gijx
2
ju

l
j. (2.32)

Assuming that U(φ, τ) tends to zero at least linearly as φ tends to zero one has

g(x, φ)u(φ, τ)→ 0 by (2.1) and (2.29). On the other hand assuming linear behavior

of the solution for large values of φ, the integrand of (2.20) g(x,
A

z
)U(

A

z
, τ)

1

z2
→ 0, as

z → 0. Thus, both the terms involving ul0 and ulN+M do not appear in the expressions

of (2.30)-(2.32). Taking into account (2.25)-(2.32) the resulting difference scheme

for the PIDE problem (2.21) takes the form

ul+1
i = uli +

kσ̂2

2
x2
i∆

l
i + kĴ li , 1 ≤ i ≤ N +M − 2. (2.33)

For the sake of convenience to study the stability, we now introduce the vector

formulation of the scheme (2.33). Let us denote the vector in RN+M−1 as

U l = [ul1 u
l
2 . . . ulN+M−1]t

and let P = (pij) be a tridiagonal matrix in R(N+M−1)×(N+M−1) related to the

differential part, defined by

pij =


αi, j = i− 1,

βi, j = i,

γi, j = i+ 1,

0, otherwise,

(2.34)
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where

γ1 =
k

2
σ̂2 , αN+M−1 = 0 , βN+M−1 = 1 ,

γi = αi =
k

2h2
σ̂2 x2

i , 2 ≤ i ≤ N − 1, βi = 1− k

h2
σ̂2 x2

i , 1 ≤ i ≤ N − 1

αN =
kσ̂2A2

h
(
h+ Aδ

1−δ

) , βN = 1− kσ̂2A(1− δ)
δh

, γN =
kσ̂2A(1− δ)
δ
(
h+ Aδ

1−δ

) ,

αi =
kσ̂2 x2

i

hi−1(hi + hi−1)
, βi = 1− kσ̂2 x2

i

hihi−1

, γi =
kσ̂2 x2

i

hi(hi + hi−1)
,

N + 1 ≤ i ≤ N +M − 2 .


(2.35)

Let B = (bij) the matrix in ∈ R(N+M−1)×(N+M−1) related to the integral part whose

entries bij for each fixed i in 1 ≤ i ≤ N +M − 2, are defined by

bij =


kb

(1)
ij , 1 ≤ i ≤ i1(N)− 1,

kb
(2)
ij , i1(N) ≤ i ≤ i2(N)− 1,

kb
(3)
ij , i2(N) ≤ i ≤ N +M − 2,

0, i = M +N − 1,

(2.36)

where

b
(1)
ij =



hgij, 1 ≤ j ≤ i1 − 1,
h
2
gi,j + g̃i,j, j = i1, i2,

0, i1 + 1 ≤ j ≤ i2 − 1,

hgij, i2 + 1 ≤ j ≤ N − 1,
1
2
(h+ Aδ)giN , j = N,
δ
A
x2
jgij, N + 1 ≤ j ≤ N +M − 1,

(2.37)

b
(2)
ij =



hgij, 1 ≤ j ≤ i1 − 1,
h
2
gi,j + g̃i,j, j = i1,

0, i1 + 1 ≤ j ≤ i2 − 1,
x2i2

δ

2A
gi,j + g̃i,j, j = i2,

δ
A
x2
jgij, i2 + 1 ≤ j ≤ N +M − 1,

(2.38)

21



and

b
(3)
ij =



hgij, 1 ≤ j ≤ N − 1,
1
2
(h+ Aδ)giN , j = N,
δ
A
x2
jgij, N + 1 ≤ j ≤ i1 − 1,

δx2j
2A
gi,j + g̃i,j, j = i1, i2,

0, i1 + 1 ≤ j ≤ i2 − 1,
δ
A
x2
jgij, i2 + 1 ≤ j ≤ N +M − 1.

(2.39)

2.3.2 The numerical scheme based on Patankar-trick

Before the discretization, first we rewrite (2.19) in more compatible form

J(U) =

∫ ∞
0

ĝ(x, φ)U(φ, τ)dφ, (2.40)

where the new kernel ĝ(x, φ) takes the form,

ĝ(x, φ) =


ν(ln(φ/x))

φ
, 0 < φ ≤ xe−ε,

0, xe−ε < φ < xeε,
ν(ln(φ/x))

φ
, φ ≥ xeε.

(2.41)

The discretization of the variables x and t are the same as in scheme 1. Here the

second partial derivative is approximated using Patankar-trick [68]

∆l,l+1
i ≡


uli−1−2ul+1

i +uli+1

h2
, 1 ≤ i < N,

2
[ uli−1

hi−1(hi+hi−1)
− ul+1

i

hihi−1
+

uli+1

hi(hi−1+hi)

]
, N ≤ i ≤ N +M − 2,

(2.42)

and hi = xi+1−xi > 0. Then the difference scheme for (2.21) has the following form

ul+1
i = uli +

kσ̂2

2
x2
i∆

l,l+1
i + kĴ li , 1 ≤ i ≤ N +M − 2. (2.43)

Note that the first expression of (2.42) corresponds to spatial zone with uniform

discretization, while the second expression of (2.42) is related to the nonuniform

discretization. On the other hand, for the approximation of the integral part of

(2.21), instead of using the trapezoidal rule like in [17, 25, 54], we use a composite

four-point integration formula of open type because of the higher order approxi-

mation of this rule [28, pp. 92-93]. This higher accuracy comes out because the

singularity points of the kernel are not nods of the integration mesh due to the

truncation see (2.41), and the open type nature of the quadrature formula. Thus
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the approximation of (2.20) (here with the modified kernel (2.41)) corresponding to

the nodes x = xi and τ = τ l is given by

Ĵ li =
5h

24

N/5∑
j=0

(11ul5j+1ĝi,5j+1 + ul5j+2ĝi,5j+2 + ul5j+3ĝi,5j+3 + 11ul5j+4ĝi,5j+4)

+
5δ

24A

(N+M)/5−1∑
j=N/5

(11ul5j+1ĝi,5j+1x
2
5j+1+ul5j+2ĝi,5j+2x

2
5j+2+ul5j+3ĝi,5j+3x

2
5j+3+11ul5j+4ĝi,5j+4x

2
5j+4),

(2.44)

where ĝi,j = ĝ(xi, xj). Consequently the corresponding difference scheme for PIDE

given by (2.21) takes the following form

β̂iu
l+1
i = α̂iu

l
i−1 + uli + γ̂iu

l
i+1 + kĴ li , (2.45)

where

α̂i =



kσ̂2x2i
2h2

, 2 ≤ i ≤ N − 1,
kσ̂2A2

h(h+ Aδ
1−δ )

, i = N,

kσ̂2x2i
hi−1(hi+hi−1)

, N + 1 ≤ i ≤ N +M − 2,

0, i = N +M − 1.

(2.46)

β̂i =


1 +

kσ̂2x2i
h2

, 1 ≤ i ≤ N − 1,

1 + kσ̂2A(1−δ)
hδ

, i = N,

1 +
kσ̂2x2i
hihi−1

, N + 1 ≤ i ≤ N +M − 2,

1, i = N +M − 1.

(2.47)

γ̂i =


kσ̂2x2i

2h2
, 1 ≤ i ≤ N − 1,

kσ̂2A(1−δ)
δ(h+ Aδ

1−δ )
, i = N,

kσ̂2x2i
hi(hi+hi−1)

, N + 1 ≤ i ≤ N +M − 2.

(2.48)

From (2.45)-(2.48), one gets

ul+1
i = ᾰiu

l
i−1 + β̆iu

l
i + γ̆iu

l
i+1 +

k

β̂i
Ĵ li , (2.49)

where

ᾰi =
α̂i

β̂i
, β̆i =

1

β̂i
, γ̆i =

γ̂i

β̂i
. (2.50)
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In order to obtain a complete difference scheme, we include the initial and boundary

conditions. From (2.22), we have

u0
i = max(xi − E, 0) = f(xi), 1 ≤ i ≤ N +M − 1. (2.51)

On the other hand, for a vanilla call option the boundary condition for i = 0

ul0 = 0, 0 ≤ l ≤ L, (2.52)

and by assuming the linear behavior of the solution for large values of the spatial

variable, we have ∂2U
∂x2
→ 0 and thus ∆l

N+M−1, ∆l,l+1
N+M−1 = 0 and the null integral

term approximation JN+M−1 = 0, for all time level l. Thus from (2.49) for i =

N +M − 1, one gets

ul+1
N+M−1 = ulN+M−1 = u0

N+M−1, 0 ≤ l ≤ L− 1. (2.53)

Note: The scheme given by (2.33) with (2.51)-(2.53) is referred as scheme 1 and

the scheme given by (2.49) with (2.51)-(2.53) is referred by scheme 2.

Finally in this section, we write the matrix representation for the scheme 2. The

tridiagonal matrix P ∈ R(N+M−1)×(N+M−1) corresponds to the discretization of the

differential part and takes the following form

P =



β̆1 γ̆1 0 0 · · · 0

ᾰ2 β̆2 γ̆2 0 · · · 0

0 ᾰ3 β̆3 γ̆3 · · · 0
. . . . . . . . .

. . . . . . . . .

0 · · · ᾰN+M−2 β̆N+M−2 γ̆N+M−2

0 · · · 0 ᾰN+M−1 β̆N+M−1


. (2.54)
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Let B = (bij) be a matrix in ∈ R(N+M−1)×(N+M−1) related to the integral part whose

entries bij for each fixed i in 1 ≤ i ≤ N +M − 2, are defined by bij = k

β̂i
b̂ij, where

b̂ij =



0, j = 5, 10 15, 20, . . . , N +M − 5,
55h
24
ĝij, j = 1, 6, 11, . . . , N − 4, 55δ

24A
x2
j ĝij, j = N + 1, N + 6, . . . , M +N − 4,

5h
24
ĝij, j = 2, 7, 12, . . . , N − 3, 5δ

24A
x2
j ĝij, j = N + 2, N + 7, . . . , M +N − 3,

5h
24
ĝij, j = 3, 8, 13, . . . , N − 2, 5δ

24A
x2
j ĝij, j = N + 3, N + 8, . . . , M +N − 2,

55h
24
ĝij, j = 4, 9, 14, . . . , N − 1, 55δ

24A
x2
j ĝij, j = N + 4, N + 9, . . . , M +N − 1.

(2.55)

Consequently scheme 1 and scheme 2 are written in the following vector form

U l+1 = (P +B)U l = (P +B)lU0, 0 ≤ l ≤ L− 1,

U0 = [f(x1) f(x2) . . . f(xN+M−1)]t.
(2.56)

2.4 The properties of the numerical solution

2.4.1 Positive and stability of the numerical solution for scheme 1

The price of contracts modelled by PIDE must be nonnegative value. Our objective

here is to demonstrate that the solution of the scheme (2.33) with (2.51)-(2.53) is

conditionally nonnegative and stable.

First we study the positivity of the matrix P. The following lemma has been

proved in [17].

lemma 1. With previous notation, assume that stepsizes k = ∆τ , h = ∆x in [0, A]

and 0 < δ ≤ 1
3
, δ = ∆z in (0, 1], satisfy:

C1.
k

h2
≤ 1

σ̂2A2
.

C2. k ≤ min

{
δ2

σ̂2(1− 2δ)
,

δh

σ̂2A(1− δ)

}
.

Then matrix P given by (2.34) is nonnegative.

Note that as the matrix B defined by (2.36)-(2.37) is always nonnegative, from

Lemma 1 and (2.56) starting from nonnegative initial vector U0, the following result

is established:
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Theorem 1. With the hypotheses and notation of lemma 1, the solution {uli} of

the scheme (2.33), (2.51)-(2.53) is nonnegative if the initial values u0
i ≥ 0, 1 ≤ i ≤

N +M − 1.

The next result will be used below to guarantee stability.

lemma 2. Let matrices P and B be defined by (2.34)-(2.36), and let ε > 0, then

the following results hold:

1. Under conditions C1 and C2 of lemma 1, ‖P‖∞ = 1.

2. ‖B‖∞ ≤ k(λ(ε) + 1), where λ(ε) is defined by (2.14).

By [17, lemma 2], part 1 is proved. Since the norm of B is given by

‖B‖∞ = max
i

N+M−1∑
j=1

|bij| = max
i

N+M−1∑
j=1

bij, 1 ≤ i ≤ N +M − 1, (2.57)

if m̃ denotes the row containing the maximum of (2.57), one gets

‖B‖∞ =
N+M−1∑
j=1

bm̃j = k
N+M−1∑
j=1

b
(r)
m̃j, r = 1, 2, or 3, (2.58)

the elements of the summation in (2.58) are given by (2.36)-(2.37). To upper bound

(2.58), we apply the change of variables y = xm̃e
φ in (2.8), resulting

λ(ε) =

∫ xm̃e
−ε

0

g(xm̃, φ)dφ+

∫ ∞
xm̃eε

g(xm̃, φ)dφ, (2.59)

which coincides with (2.19) when U(φ, τ) = 1. Hence from (2.19), (2.58) and (2.59),

we conclude that
∑N+M−1

j=1 b
(r)
m̃j is an approximation for λ(ε). Thus, for small enough

h and δ, one gets, [28]
N+M−1∑
j=1

b
(r)
m̃j < λ(ε) + 1. (2.60)

Hence

‖B‖∞ < k(λ(ε) + 1), (2.61)

independently of the value of the size of matrix B.

Based on the stability definitions (8) and (9) we have
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Theorem 2. With the previous notation, the numerical solution
{
uli
}

of the scheme

(2.33) with (2.51)-(2.53) is strongly uniformly ‖ · ‖∞ stable if one satisfies the con-

dition 0 < δ ≤ 1
3

together with

k

h2
≤ 1

σ̂2A2
and k ≤ min

{
δ2

σ̂2(1− 2δ)
,

δh

σ̂2A(1− δ)

}
. (2.62)

Proof. Note that scheme (2.33) with (2.51)-(2.53) is equivalent to the vector form

scheme (2.56). Under condition (2.62), by lemma 2 one gets, after taking norms in

(2.56) ∥∥U l+1
∥∥
∞ ≤ (‖P‖∞ + ‖B‖∞)

∥∥U l
∥∥
∞ ≤ (1 + k(λ(ε) + 1))

∥∥U l
∥∥
∞ . (2.63)

Hence, from (2.63), and that 0 ≤ l ≤ L, kL = τ ≤ T ,∥∥U l
∥∥
∞

‖U0‖∞
≤ (1 + k(λ(ε) + 1))l ≤ exp(lk(λ(ε) + 1)) ≤ exp(T (λ(ε) + 1)). (2.64)

Thus the conditional strong uniform stability is established.

2.4.2 Positive and stability of the numerical solution for scheme 2

The numerical solution {uli} of scheme (2.49) is unconditionally nonnegative because

all coefficients of (2.49), the initial and boundary conditions (2.51)-(2.53) are non-

negative.

In order to study the stability of the scheme given by (2.49)-(2.53), we first calculate

the norm of the matrices P and B. Since the norm of the matrix P is obtained by

‖P‖∞ = max
i

N+M−1∑
j=1

|Pij| = max
i

N+M−1∑
j=1

Pij, (2.65)

for i = 1, we have
N+M−1∑
j=1

P1j = β̆1 + γ̆1 < 1, and for 2 ≤ i ≤ N +M − 1,

N+M−1∑
j=1

Pij = ᾰi + β̆i + γ̆i = 1. Hence ‖P‖∞ = 1.

By calculating the infinity norm for the matrix B in the same way as we did for

scheme 1, we conclude that its norm is bounded and its value is less than k(λ(ε)+1),

see (2.61). Now, we calculate the infinity norm of the vector solution at any time
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level l, we have ∥∥U l
∥∥
∞

‖U0‖∞
≤ exp(T (λ(ε) + 1)).

Based on the stability definitions (8) and (9), we conclude that the scheme 2 is

unconditionally strongly uniform stable.

Wrap Up

1. For scheme 1 defined by (2.33) with (2.51)-(2.53), the positivity and stability

for this scheme hold under two conditions C1 and C2 which are summarized

in (2.62).

2. The positivity and stability for scheme 2 defined by (2.49) with (2.51)-(2.53)

hold unconditionally (with no restriction on the stepsizes). This is due to

Patankar’s idea for changing the term uli by ul+1
i in the approximation of the

second derivative of the function u with respect to x.

2.5 Consistency

First let us write (2.33) and (2.53) in the following form

Fi,l(u) =
ul+1
i − uli
k

− σ̂2

2
x2
i∆

l
i − Ĵ li = 0, (2.66)

where Ĵ li for scheme 1 is given by (2.30)-(2.32) and for scheme 2 is given by (2.44).

Let us denote U l
i = U(xi, τ

l) as the value of the theoretical solution of (2.21). Based

on (1.18), the local truncation error T li (U) at (xi, τ
l) is given by

T li (U) = Fi,l(U)− L(U l
i ), (2.67)

where L(U l
i ) = L(U l

i )− J(U l
i ) such that

L(U l
i ) =

[
∂U

∂τ
− σ̂2

2
x2∂

2U

∂x2

]
(xi,τ l)

, J(U l
i ) = J li = J li,1 + J li,2.

2.5.1 The consistency for scheme 1

Assuming that U is twice continuously partially differentiable with respect to τ and

four times partially differentiable with respect to x, and using Taylor’s expansion
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about (xi, τ
l), for A > 0 such that xi < Ae−ε it follows that

U l+1
i − U l

i

k
=
∂U

∂τ
(xi, τ

l) + kEl
i(1), El

i(1) =
1

2

∂2U

∂τ 2
(xi, ζ), τ l < ζ < τ l+1, (2.68)

|El
i(1)| ≤ 1

2
W l
i (1) =

1

2
max

{∣∣∣∣∂2U

∂τ 2
(xi, ζ)

∣∣∣∣ ; τ l ≤ ζ ≤ τ l+1

}
(2.69)

∆l
i =

∂2U

∂x2
(xi, τ

l) + h2El
i(2), El

i(2) =
1

12

∂4U

∂x4
(ζ̃ , τ l), xi − h < ζ̃ < xi + h, (2.70)

|El
i(2)| ≤ 1

12
W l
i (2) =

1

12
max

{∣∣∣∣∂4U

∂x4
(ζ̃ , τ l)

∣∣∣∣ ;xi − h ≤ ζ̃ ≤ xi + h

}
. (2.71)

In accordance with [55, p. 101] let us denote the local consistency error of J li,1 see

(2.30) by

C l
i,1 = J li,1 − T li,1([0, xie

−ε]), (2.72)

T li,1([0, xie
−ε]) = h

i1−1∑
j=1

gijU
l
j +

(
h

2
gi,i1 + g̃i,i1

)
U l
i1
. (2.73)

By (2.26) and (2.30), the local consistency error for J li,2 is given by

C l
i,2 = J li,2 −

(
T li,2([xie

ε, A]) + T li,3([0, 1])
)
, (2.74)

where

T li,2([xie
ε, A]) =

(
h

2
gi,i2 + g̃i,i2

)
U l
i2

+ h
N−1∑
j=i2+1

gijU
l
j +

h

2
giNU

l
N , (2.75)

T li,3([0, 1]) =
δ

A

(
1

2
giNx

2
NU

l
N +

N+M−1∑
j=N+1

gijx
2
jU

l
j

)
. (2.76)

From the first mean value theorem for integrals [41, p. 1063], one gets

I(xi, ε) =
∫ xie−ε
xi1

g(xi, φ)U(φ, τ l)dφ

=
(∫ xie−ε

xi1
g(xi, φ)dφ

)
U(c, τ l) = g̃i,i1U(c, τ l), xi1 < c < xie

−ε,

and since

U(c, τ l) = U(xi1 , τ
l) + (c− xi1)

∂U

∂x
(ξ, τ l), xi1 < ξ < c,

it follows that

|I(xi, ε)− g̃i,i1U l
i1
| ≤ g̃i,i1hΛl

i(1) ≤ h2W l
i (3), (2.77)
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where

Λl
i(1) = max

{∣∣∣∣∂U∂x (x, τ l)

∣∣∣∣ ; xi1 ≤ x ≤ xie
−ε
}
,

W l
i (3) = Λl

i(1) max{g(xi, x);xi1 ≤ x ≤ xie
−ε}.

Analogously,

|H(xi, ε)− g̃i,i2U l
i2
| ≤ g̃i,i1hΛl

i(1) ≤ h2W l
i (4), (2.78)

H(xi, ε) =

∫ xi2

xieε
g(xi, φ)U(φ, τ l)dφ,

W l
i (4) =

(
max

{∣∣∣∣∂U∂x (x, τ l)

∣∣∣∣ ; xie−ε ≤ x ≤ xi2

})(
max{g(xi, x);xie

−ε ≤ x ≤ xi2}
)
.

Let W l
i (5), W l

i (6) and W l
i (7) be defined as

W l
i (5) = sup{|

(
g(xi, x)U(x, τ l)

)(2)|; 0 < x ≤ xie
−ε},

W l
i (6) = sup{|

(
g(xi, x)U(x, τ l)

)(2)|; xieε ≤ x ≤ A},
W l
i (7) = sup

{∣∣(g(xi,
A
z
)U(A

z
, τ l) 1

z2
)(2)
∣∣ ; 0 < x ≤ 1

}
,

 (2.79)

where the second derivatives appearing in (2.79) are taken with respect to the vari-

able x for W l
i (5) and W l

i (6), and with respect to the variable z for W l
i (7). From the

expression of the error of the trapezoidal rule, [28, p. 54], (2.72)- (2.79), one gets

|C l
i,1| ≤ h2

(
W l
i (3) + xie

−ε

12
W l
i (5)

)
,

|C l
i,2| ≤ h2

(
W l
i (4) + 1

12
(A− xie−ε)W l

i (6) + Aδ2

12
W l
i (7).

}
(2.80)

Summarizing, one gets

T li (U) = kEl
i(1)− h2

2
σ̂2x2

iE
l
i(2) + C l

i,1 + C l
i,2,

and

|T li (U)| ≤ h2

(
W l
i (2)

24
+W l

i (3) +W l
i (4) +

xie
−ε

12
W l
i (5) +

1

12
(A− xie−ε)W l

i (6)

)

+
Aδ2

12
W l
i (7) + kW l

i (1). (2.81)

Thus,

T li (U) = O(h2) +O(δ2) +O(k), (2.82)

showing the unconditionally consistency of the scheme with PIDE.
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2.5.2 The consistency for scheme 2

Assuming that U is twice continuously partially differentiable with respect to τ and

four times partially differentiable with respect to x, and using Taylor’s expansion

about (xi, τ
l), it follows that

U l+1
i − U l

i

k
=
∂U

∂τ
(xi, τ

l) + kEl
i(1), (2.83)

1

h2
(U l

i−1 − 2U l+1
i + U l

i+1) =
∂2U

∂x2
(xi, τ

l) + h2El
i(2)− k

h2
El
i(3), (2.84)

where El
i(1) and El

i(2) are given by (2.68) and (2.70) respectively.

El
i(3) = 2

∂U

∂τ
(xi, ζ), τ l < ζ < τ l+1. (2.85)

Let us denote the maximum of the associated errors El
i(1), El

i(2) and El
i(3) by

W l
i (1), W l

i (2) and Ŵ l
i (3) respectively, where W l

i (1) and W l
i (2) are given by (2.69)

and (2.71),

|El
i(3)| ≤ 2Ŵ l

i (3) = 2 max

{∣∣∣∣∂U∂τ (xi, ζ)

∣∣∣∣ ; τ l ≤ ζ ≤ τ l+1

}
. (2.86)

To study the consistency of the integral part, it is convenient to rewrite it in the

following form

J = J(U) = J1(U) + J2(U), (2.87)

where

J1(U) =

∫ A

0

ĝ(x, φ)U(φ, τ l)dφ, J2(U) = A

∫ 1

0

ĝ(x,
A

z
)U(

A

z
, τ l)dφ.

In accordance with [55] let us denote the local consistency error of J l1,i

C l
1,i(h,A) =

∫ A

0

ĝ(x, φ)U(φ, τ l)dφ− Ĵ l1,i([0, A]), (2.88)

where

Ĵ l1,i([0, A]) =
5h

24

N/5∑
j=0

(11ul5j+1ĝi,5j+1 + ul5j+2ĝi,5j+2 + ul5j+3ĝi,5j+3 + 11ul5j+4ĝi,5j+4).

(2.89)
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By [28, pp. 92] we have

∣∣C l
1,i(h,A)

∣∣ ≤ 95Ah4

144β̂i
max

0≤x≤A

{∣∣∣(U(x, τ l)ĝ(x, xi)
)(4)
∣∣∣} =

95Ah4

144
Ŵ l
i (4), (2.90)

where
(
U(x, τ l)ĝ(x, xi)

)(4)
in (2.90) is the forth derivative with respect to the variable

x.

Similarly, the local consistency error for the unbounded region is given by

C l
2,i(δ, A) = A

∫ 1

0

ĝ(x,
A

z
)U(

A

z
, τ l)

dz

z2
− Ĵ l2,i((0, 1]), (2.91)

where

Ĵ l2,i((0, 1]) =
5δ

24A

(N+M)/5−1∑
j=N/5

(
11ul5j+1ĝi,5j+1x

2
5j+1 + ul5j+2ĝi,5j+2x

2
5j+2

+ul5j+3ĝi,5j+3x
2
5j+3 + 11ul5j+4ĝi,5j+4x

2
5j+4

)
, (2.92)

∣∣C l
2,i(δ, A)

∣∣ ≤ 95Aδ4

144β̂i
max
0≤z≤1

{∣∣∣∣∣
(

1

z2
U(
A

z
, τ l)ĝ(xi,

A

z
)

)(4)
∣∣∣∣∣
}

=
95Aδ4

144
Ŵ l
i (5). (2.93)

Thus the local truncation error is given by

T li (U) = kE1
i +

σ̂2x2
i

2

(
h2El

i(2)− k

h2
El
i(3)
)

+ C l
1,i(h,A) + C l

2,i(δ, A), (2.94)

|T li (U)| ≤ kW l
i (1)+

σ̂2A2h2

24
W l
i (2)+

σ̂2A2k

h2
Ŵ l
i (3)+

95A

144

(
h4Ŵ l

i (4)+δ4Ŵ l
i (5)

)
. (2.95)

Consequently, the order of the local truncated error is given by

T li (U) = O(k) +O(h2) +O(
k

h2
) +O(δ4). (2.96)

In light of (2.96), the scheme is conditionally consistent with the PIDE (2.21). Thus

a consistency condition of type k = O(h2+ε), ε > 0, has been established:

Theorem 3. The numerical scheme given by (2.53) is conditionally consistent with

(2.21) such that the local truncation error is given by

T li (U) = O(k) +O(h2) +O(
k

h2
) +O(δ4).
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2.6 Numerical examples

In this section, we illustrate with several examples the behavior of the option price

obtained by schemes 1 and 2 using Matlab. All examples are done using CPU with

Microprocessor 3.4 GHz Intel Core i7.

2.6.1 Examples for scheme 1

In light of the double discretization and the trapezoidal rule, a finite difference

scheme has been established to obtain a numerical solution for the option price.

This solution is conditionally nonnegative and stable.

The first example reveals the effect of Yor parameter on the option price. Example

2.1. Consider the vanilla call option problem (2.2)-(2.4) under CGMY process with

parameters T = 1, E = 80, A = 3E, σ = 0.2, r = 0.01, q = 0, C = 0.08, G =

M = 25.04, ε = 0.05, N = 100, δ = 0.15, k = 0.002. Figure 2.1 exhibits the

variation of the option price V versus the underlying asset at various values of Yor

parameter. The next example illustrates the importance of positivity conditions

given by lemma 1.
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Figure 2.1: The effect of positivity conditions on V

Example 2.2. Here in this example the parameters have been selected as follows

T = 1, E = 80, A = 3E, σ = 0.2, r = 0.01, q = 0, C = 1, G = 20, M = 30, Y =

1.5, ε = 0.1, N = 100, δ = 0.15. Positivity conditions hold for k = 0.002, while

for k = 0.01, the positivity conditions are broken and the values of the option price

become unreliable as shown in Figure 2.2.
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Figure 2.2: The effect of positivity conditions on V .

Y = 0.5 Y = 1.5 Y = 1.98
h Absolute Error Relative Error α Absolute Error Relative Error α Absolute Error Relative Error α

0.8 4.38e−4 2.2e−5 – 7.35e−5 1.48e−6 – 3.87e−5 3.87e−7 –
0.4 1.16e−4 5.85e−6 1.92 1.9e−5 3.92e−7 1.952 9.76e−6 9.76e−8 1.9873
0.2 2.95e−5 1.49e−6 1.98 4.79e−6 9.62e−8 1.988 2.46e−6 2.46e−8 1.9882

Table 2.1: Errors and convergence rates.

Next example shows the variation of the absolute and relative error of the solution

in light of the stability and positivity conditions hold at the strike for two cases;

first, for several values of the stepsize discretization h. Second, for different values

of the parameter ε.

Example 2.3. Consider the European call option for CGMY process with the

following values C = 1, G = M = 5, E = 100, T = 1, r = 0.1, q = 0, k =

0.001, δ = 0.1, A = 3E, for several values of Yor parameter Y = 0.5, 1.5 and 1.98.

We consider the evaluation of the price option at the strike and τ = T. Table 2.1

reveals the deviation between our numerical solutions and the reference values used

in [36, tables 8-10] for different stepsizes h, and fixed ε = 0.12. Notice that the

numerical solution exhibits the expected second order convergence rate α. Table 2.2

shows the deviation for several values of ε, while h = 0.5.
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Y = 0.5 Y = 1.5 Y = 1.98
ε Absolute Error Relative Error Absolute Error Relative Error Absolute Error Relative Error

0.8 3.91× 10−3 1.97× 10−4 6.37× 10−4 1.28× 10−5 4.19× 10−4 4.19× 10−6

0.4 7.18× 10−4 3.62× 10−5 8.54× 10−5 1.72× 10−6 5.76× 10−5 5.76× 10−7

0.2 9.32× 10−6 4.7× 10−7 7.16× 10−6 1.44× 10−7 5.92× 10−6 5.92× 10−8

Table 2.2: Errors due to the variation of ε.

In the next two examples, we consider the Variance Gamma model as a particular

case (Y = 0) of CGMY model for which the exact solution is known [56].

Example 2.4. Consider a call option under the Variance Gamma process with

parameters C = 1, G =M = 25, T = 1, r = 0.01, q = 0, σ = 0.2, ε = 0.12, E =

10, A = 3E, k = 0.01 and δ = 0.15. Figure 2.3 displays the associated error of the

numerical solution for several values of the stepsize h.
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Figure 2.3: The associated error for various values of h.

The next example shows that the double discretization strategy reduces the error

near the parameter A by changing the stepsize δ.

Example 2.5. Consider the previous Example 2.4 with fixed h = 0.5, Fig. 2.4

shows the variation of the error of the numerical solution for various values of δ.

Notice that the error decreases near the right boundary A of the numerical domain

by decreasing the stepsize δ, while the error near the strike E remains stationary.
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Figure 2.4: The associated error for several values of δ.

2.6.2 Examples for scheme 2

Based on the double discretization and Patankar-trick, a difference scheme has been

established to obtain a numerical solution for the option price. This solution is

guaranteed to be nonnegative and stable. The following example illustrates that

the consistency condition k = O(h2+ε) cannot be ignored.

Example 2.6. Here in this example the parameters have been selected as follows

T = 1, E = 10, A = 3E, σ = 0.25, r = 0.01, q = 0, C = 1, G = 25, M = 25, Y =

1.65, ε = 0.15, h = 0.25, δ = 0.1, for several values of k such that k = h2.5, h1.5 and

h. Figure 2.5 shows that the consistency condition holds for k = h2.5, while for the

other two values, it is broken and the values of the option price become unreliable.
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Figure 2.5: The effect of consistency condition on V .
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ε = 0.1 ε = 0.15
h Absolute Error α CPU time Absolute Error α CPU time

sec. sec.

1.2 6.835× 10−4 – 0.19 6.15× 10−4 – 0.19
1 4.821× 10−4 1.915 0.26 4.33× 10−4 1.925 0.26

0.8 3.138× 10−4 1.924 0.38 2.81× 10−4 1.938 0.38
0.5 1.266× 10−4 1.931 0.44 1.124× 10−4 1.95 0.44

Table 2.3: Errors and convergence rates due to the change of h for VG.

ε = 0.1 ε = 0.15
k Absolute Error β CPU time Absolute Error β CPU time

sec. sec.

0.1 7.654× 10−3 – 0.248 5.321× 10−3 – 0.248
0.05 3.962× 10−3 0.950 0.256 2.793× 10−3 0.930 0.256
0.025 2.041× 10−3 0.957 0.263 1.429× 10−3 0.967 0.263
0.01 8.367× 10−4 0.973 0.271 5.794× 10−4 0.985 0.271

Table 2.4: Errors and convergence rates due to the change of k for VG.

The aim of the following examples is to exhibit the effects of different parameters

such as h, k and ε on the variation of the absolute error in two cases; first, when

Y = 0 (Variance Gamma case) and second for CGMY process when Y = 1.5, 1.98.

Also the CPU time is given in seconds (sec).

In the next example we calculate the associated error with this numerical scheme

for the Variance Gamma model as a particular case (Y = 0) of CGMY model for

which the exact solution is known [56].

Example 2.7. For Y = 0 and parameters have been selected as follows T = 0.5,

E = 80, A = 3E, S = 100, σ = 0.25, r = 0.1, q = 0, C = 1, G = 30, M = 20

and δ = 0.1, Table 2.3 shows the variation of the absolute error with h with fixed

k = 0.003 and for two values of ε = 0.1 and 0.15. From Table 2.3, it is observed

that the associated error exhibits the second order convergence rate α providing

that k/h2 is small enough in all the cases.

Table 2.4 reveals the change of the associated error for various values of time stepsize

k, while h = 0.8 for ε = 0.1 and 0.15. Notice that the associated error due to the

change of k satisfies the expected first order convergence rate β.

The aim of Table 2.5 is to show the sensitivity of the associated error of the option

price due to the variation of ε, for h = 0.5 and 0.35, while k = 0.005.

37



h = 0.5 h = 0.35
ε Absolute Error CPU time Absolute Error CPU time

(sec.) (sec.)

0.75 3.495× 10−4 0.45 1.473× 10−4 0.78
0.5 7.643× 10−4 0.45 4.587× 10−4 0.78
0.25 5.874× 10−4 0.45 3.198× 10−4 0.78
0.1 2.382× 10−4 0.45 1.258× 10−4 0.78

Table 2.5: The associated errors for several values of ε for VG.

Y = 1.5 Y = 1.98
h Absolute Error α CPU time Absolute Error α CPU time

sec. sec.

1.5 6.1× 10−4 – 0.13 6.62× 10−4 – 0.13
1.2 3.98× 10−4 1.91 0.16 4.32× 10−4 1.913 0.16
1 2.8× 10−4 1.928 0.2 3.04× 10−4 1.927 0.2

0.8 1.8× 10−4 1.955 0.25 1.97× 10−4 1.944 0.25
0.5 7.18× 10−5 1.967 0.47 7.83× 10−5 1.962 0.47

Table 2.6: Comparison of errors and convergence rates due to the change of h for CGMY model.

Example 2.8. Here we compare in Tables 2.6 and 2.7 our results with the reference

values given in [36, Tables 9, 10] related to accuracy and computational time. We

consider the CGMY model for the following parameters T = 1, r = 0.1, q = 0,

C = 1, G =M = 5, E = 100, S = 100, A = 3E, δ = 0.1 and k = 0.003. Table 2.6

shows the variation of the associated error for several values of h when Y = 1.5 and

1.98, while ε = 0.1.

The variation of the associated error for several values of ε is presented in Table 2.7

for Y = 1.5 and 1.98, while h = 1.

The next example reveals that the double discretization strategy reduces the error

near the parameter A by changing the stepsize δ.

Y = 1.5 Y = 1.98
ε Absolute Error CPU time Absolute Error CPU time

(sec.) (sec.)

0.8 2.52× 10−4 0.2 2.63× 10−4 0.2
0.4 9.26× 10−4 0.2 7.26× 10−4 0.2
0.2 5.75× 10−4 0.2 4.39× 10−4 0.2
0.1 2.8× 10−4 0.2 3.04× 10−4 0.2

Table 2.7: Comparison of errors due to the variation of ε for CGMY model.
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Example 2.9. Consider a call option under the Variance Gamma process with

parameters C = 1, G = 20 M = 30, T = 1, r = 0.01, q = 0, σ = 0.2, ε =

0.12, E = 10, A = 3E, k = 0.005 and h = 0.35, Fig. 2.6 shows the variation of the

error of the numerical solution for various values of δ. Notice that the error decreases

near the right boundary A of the numerical domain by decreasing the stepsize δ,

while the error near the strike E remains stationary.
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Figure 2.6: The associated error for several values of δ.

Example 2.10. Figure 2.7 describe the behavior of the Greek parameters Delta and

Gamma for European call option. They exhibit the Greek parameters as functions

in the underlying asset S and time t. The parameters have been chosen as follows

T = 1, E = 10, A = 3E, σ = 0.25, r = 0.01, q = 0, C = 1, G = 35, M =

35, Y = 1.6, ε = 0.15, h = 0.25, δ = 0.1 and k = 0.04.

The results of this chapter have been published in [21, 38].
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Chapter 3

Solving partial integro-differential

option pricing problems for a wide

class of infinite activity Lévy

processes

3.1 Introduction

As it has been stated in Chapter 2, since a long time ago empirical observations of

the market show the evidence that the price of the underlying asset does not behave

like a Brownian motion with a drift and a constant volatility. This fact motivates

the emergence of alternative models to the pioneering Black-Scholes model [10].

Alternative models are stochastic volatility [44], deterministic volatility [26], jump

diffusion [5, 53, 63, 85] and infinite activity Lévy models.

One of the most relevant and versatile Lévy models is the one proposed by Carr et.

al. the so called CGMY [16], that belongs to the family of KoBoL models [11]. Apart

from these models, other Lévy processes such as Meixner [60, 77], Hyperbolic and

Generalized Hyperbolic (GH) are used to obtain better estimation for the stock

returns [78]. The Meixner process was introduced in 1998, it is used when the

environment is changing stochastically over the time showing a reliable valuation

for some indices such as Nikkei 225 [77].
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Model The corresponding Lévy measure

KoBoL ν(y) = C−e
−G|y|

|y|1+Y 1y<0 + C+e
−M|y|

|y|1+Y 1y>0

Meixner ν(y) = Ae−ay

y sinh(by)

GH process ν(y) =
eβy

|y|

∫ ∞
0

e−
√

2ζ+α2|y|

π2ζ
(
J2
|λ|(δ
√

2ζ) + Y 2
|λ|(δ
√

2ζ)
)dζ + max(0, λ)e−α|y|



Table 3.1: The forms of ν(y)

The generalized hyperbolic distribution was introduced by Barndorff-Nielsen [6] and

used to generate Lévy process to capture the real stock price movements of the

intraday scale. It is exactly a pure discontinuous behavior of its paths what can be

observed [33, 78]. Beside that the hyperbolic process is obtained as a special case

from the GH process, it is implemented in various stock markets such as the blue

chips of the German market, the DAX and also US stock market showing effective

estimation for their returns [34].

However, following [78] the calibration of market option prices shows that depending

on datasets, the matching between the actual price and its corresponding estimated

value varies form model to another consequently, we can not say which is the perfect

one. In this chapter we study the option pricing partial integro-differential equation

(PIDE) unified model for several Lévy measures ν(y), given by [24, Chap. 12]

∂C
∂τ

(S, τ) =
σ2

2
S2 ∂

2C
∂S2

(S, τ) + (r − q)S ∂C
∂S

(S, τ)− rC(S, τ)

+

∫ +∞

−∞
ν(y)

[
C(Sey, τ)− C(S, τ)− S(ey − 1)

∂C
∂S

(S, τ)
]
dy, S ∈ (0,∞), τ ∈ (0, T ],

(3.1)

C(S, 0) = f(S) = (S − E)+, S ∈ (0,∞), (3.2)

C(0, τ) = 0; lim
S→∞

C(S, τ) = Se−qτ − Ee−rτ , (3.3)

where C is the value of a contingent claim, S is the underlying asset and τ = T − t
is the time to the maturity. The Lévy measures ν(y) are given in Table 3.1.

Note that the Hyperbolic process is obtained from the GH process when β = 0 and

λ = −1.
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To the best of our knowledge, the numerical solution and analysis of Meixner and

GH models have not been treated. The KoBoL model and in particular the CGMY,

see Table 2.1 with parameter C− = C+, has been widely studied because its versatile

and includes the finite and infinite activity cases as well as the finite and infinite

variation, obtained by changing the value of Yor parameter Y < 2. A fairly complete

revision of the methods used to solve the CGMY model can be found in [21, 25, 71,

87].

In this chapter we focus on the numerical analysis of the unified model (3.1)-(3.3)

for the European case, by proposing a consistent, explicit and conditionally positive

and stable finite difference scheme while the integral part is approximated using

Gauss-Laguerre quadrature formula. We also include the computation of the linear

complementarity problem (LCP) for the American option case using both the pro-

jected successive over relaxation method (PSOR) and the multigrid method (MG).

The discretization for the differential operator is done using the three-level approx-

imation, while the integral part is discretized as the same as in the European case.

So, the integral part of the PIDE operator for the American and European cases is

discretized using the Gauss-Laguerre quadrature. Although the three-level method

is widely used and it is argued that the approximation error is of order two, however

such method has two unsuitable properties, in fact as the method needs the first

time step that must be obtained using another method (usually by implicit Euler

method), in practice the accuracy is reduced. Also, as it is shown in Example 3.1

for European option, the three-level method does not guarantee the positiveness.

With respect to previous relevant papers in the field, we should mention the potential

advantage of our approach. Apart from the more general unified treatment of a wide

class of Lévy models, we do not truncate the integral part for its approximation

using Gauss-Laguerre quadrature that reduces the computational cost using a few

amount of nodes to approximate the integral and improves the accuracy due to

the advantages of Gauss-Laguerre quadrature. An additional positive fact of this

approach is that it allows to give error information of the integral approximation as

it is shown in Example 3.4.

This chapter is organized as follows. In Section 3.2, the kernel singularity of the

integral part of the PIDE is replaced by adding a diffusion term following the ap-
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proach developed in [25, 87] and treated in chapter 2, Section 2.1. Then the reaction

and convection terms of the differential part are removed by using suitable trans-

formation as in [21]. Finally in Section 3.2, the numerical scheme construction is

included. Section 3.3 deals with the numerical analysis of the explicit proposed

numerical scheme, including conditional positivity and stability in the Von Neu-

mann sense, as well as the consistency. Section 3.4 is addressed to the study of the

American option case, the LCP is solved using the PSOR and MG including the

Gauss-Laguerre quadrature discretization for the integral part and the three-level

for the differential part. Section 3.5 includes numerical examples to discuss and

validate the results.

3.1.1 Gauss quadrature approximation

For several many cases, in order to evaluating definite integrals, the antiderivative for

the integrand function cannot be found or it is extremely difficult to find. Therefore,

the numerical integration is a mathematical branch that investigates how to obtain

the numerical value of a definite integral using a suitable algebraic approximation.

However, numerical integration is paradoxically both simple and extremely difficult.

Its simplicity lies in resolving it by the simplest of methods. It is difficult in two

respects: first, it may require an inordinate amount of computing time, verging in

some unfavorable situations toward impossibility; second, in order to guarantee the

convergence of this approximation, it can be led to some of the deepest of pure and

applied analysis.

Generally, in order to obtain a suitable approximation for a definite integral, it

is required to increase the number of mesh points. If this integral is a separate

problem, so it will be admissible to use a large number of mesh points increasing

the computational cost. Fortunately, there is an efficient method in the realm of the

numerical integration that obtains an accurate approximation using few mesh points,

namely the Gauss Quadrature method. In fact this method based on a famous

theorem of Weierstrass, which states that any function f(x) which is continuous

on a closed interval [a, b] can be uniformly approximated within any prescribed

tolerance on that interval, by some polynomial [45].
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In Gauss quadrature approximation, there are two sets of points: {xi}Mi=1 and {wi}Mi=1

such that ∫ b

a

w(x)f(x)dx ≈
M∑
i=1

wif(xi), (3.4)

where the points {xi}Mi=1 are called the nodes and {wi}Mi=1 are called the correspond-

ing weights. The interval [a, b] can be one of the following cases:

1. A finite interval −∞ < a < b <∞; then it can be mapped into [−1, 1] and one

of the following polynomials can be used; Legendre, Tschebyscheff, first and

second kinds, Ultraspherical, Gegenbauer or Jacobi.

2. A semi infinite interval [0,∞); then the suitable utilized polynomial is Laguerre

or Generalized Laguerre.

3. If the domain is the real line R, then the integrand function is approximated

using Hermite polynomial.

If the integration is approximated using M−points, then the used polynomial is of

degree M and it is denoted by PM(x) and these points are the roots of PM(x).

3.2 Scheme construction for European options

Let us begin this section by transforming the PIDE (3.1) into a simpler one following

the technique developed in Section 2.1. Since the kernel of the integral in (3.1)

presents a singularity at y = 0, a useful technique is to split the real line, for an

arbitrary small parameter ε > 0, into two regions Ω1 = [−ε, ε] and Ω2 = R\Ω1, the

complementary set of Ω1 in the real line. The integral on Ω1 is replaced by a suitable

coefficient in the diffusion term of the differential part of (3.1) obtained by Taylor

expansion of V (Sey, τ) about S, see [21, 25, 71, 87]. This coefficient depending on

ε is a convergent integral and takes the form

σ̆2(ε) =

∫ ε

−ε
ν(y)(ey − 1)2dy = ε

∫ 1

−1

ν(εφ)(eεφ − 1)2dφ. (3.5)

The resulting approximating PIDE is given by

∂C
∂τ

=
σ̂2

2
S2 ∂

2C
∂S2

+ (r − q − γ(ε))S
∂C
∂S
− (r + λ(ε))C
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+

∫
Ω2

ν(y)C(Sey, τ)dy, (3.6)

where

σ̂2 = σ2 + σ̆2(ε), γ(ε) =

∫
Ω2

ν(y)(ey − 1)dy, λ(ε) =

∫
Ω2

ν(y)dy. (3.7)

The convergent integrals (3.5) and (3.7) are evaluated using Gauss quadrature ap-

proximation. In order to obtain an approximation for σ̆2(ε), the Legendre-Gauss

quadrature approximation is used, so the weighting function w(φ) = 1 such that

σ̆2(ε) ≈ ε
M∑
m=1

ωmν(εφm)(eεφm − 1)2, (3.8)

where φm are the roots of the Legendre polynomial PM(φ) of degree M and ωm is

calculated based on [1, Eq. (25.4.29) p. 887]. Here M is chosen to be an even

number so that zero is not a root of PM . The improper integrals λ(ε) and γ(ε) are

approximated using the shifted Laguerre-Gauss quadrature [28, p. 226]. Note that

under change of variables η = −y − ε for y < 0 and η = y − ε for y > 0 then λ(ε)

and γ(ε) have the following forms

λ(ε) =

∫ ∞
0

(ν(−η − ε) + ν(η + ε)) dη (3.9)

and

γ(ε) =

∫ ∞
0

[
ν(−η − ε)(e−(η+ε) − 1) + ν(η + ε)(eη+ε − 1)

]
dη. (3.10)

From (3.9), (3.10) and since the weighting function is w(η) = e−η, then we have

λ(ε) ≈
M∑
m=1

$mF (ηm, ε), γ(ε) ≈
M∑
m=1

$mF(ηm, ε), (3.11)

where
F (η, ε) = eη(ν(−η − ε) + ν(η + ε))

F(η, ε) = eη
(
ν(−η − ε)(e−(η+ε) − 1) + ν(η + ε)(eη+ε − 1)

)
.

Here ηm are the roots of the Laguerre polynomial LM(η) of degree M and the

weighting function $m is given in [1, Eq. (25.4.45) p. 890].

Coming back to (3.6) in order to eliminate the convection and reaction terms, using
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the transformation defined by

x = exp[(r − q − γ(ε))τ ]S, V (x, τ) = exp[(r + λ(ε))τ ]C(S, τ), (3.12)

one gets

∂V

∂τ
=
σ̂2

2
x2∂

2V

∂x2
+

∫
Ω2

ν(y)V (xey, τ)dy, x ∈ (0,∞), τ ∈ (0, T ], (3.13)

with the initial and boundary conditions

V (x, 0) = f(x) = (x− E)+ (3.14)

V (0, τ) = 0; lim
x→∞

V (x, τ) = eλ(ε)τ (xeγ(ε)τ − E). (3.15)

Next, for the sake of convenience in the numerical treatment we rewrite the integral

part of (3.13) as follows∫
Ω2

ν(y)V (xey, τ)dy =

∫ ∞
−∞

ν̂(y)V (xey, τ)dy, (3.16)

where

ν̂(y) =

{
ν(y), y ∈ Ω2

0, y ∈ Ω1

. (3.17)

After that, in order to match the interval of the integration with the spatial domain

of the problem, we use the following substitution φ = xey into (3.16), obtaining∫
Ω2

ν(y)V (xey, τ)dy =

∫ ∞
0

ν̂(ln(
φ

x
))V (φ, τ)

dφ

φ
. (3.18)

Hence the PIDE for the European option under Lévy model, takes the following

form
∂V

∂τ
=
σ̂2

2
x2∂

2V

∂x2
+

∫ ∞
0

ν̂(ln(
φ

x
))V (φ, τ)

dφ

φ
. (3.19)

Now, we are in a good situation to construct an efficient explicit numerical scheme for

the transformed problem (3.19) after choosing our numerical domain [0, xmax]×[0, T ]

for large enough value of xmax. Based on [51] the suggested value of xmax is about

3E or 4E.

• For the time discretization, we take τn = nk, n = 0, 1, . . . , Nτ where k = T
Nτ

.

• The spatial variable x is discretized by xj = jh, j = 0, 1, 2, . . . , Nx, h = xmax

Nx
.
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Since the Laguerre-Gauss quadrature will be used for approximating the integral part

of (3.19), then we have the sequence of roots {φm}Mm=1 of the Laguerre polynomial

LM(φ). The suitable value for M is selected such that E < φM < xmax.

By using explicit forward approximation for the time derivative of V and the central

difference approximation for second spatial derivative, one gets

∂V

∂τ
(xj, τ

n) ≈
V n+1
j − V n

j

k
,
∂2V

∂x2
(xj, τ

n) ≈
V n
j+1 − 2V n

j + V n
j−1

h2
. (3.20)

In order to approximate the integral part of (3.19) matching the discretization of

the integral and differential parts, taking into account that zeroes of Laguerre poly-

nomial do not need to be nodes of the mesh, we use linear Lagrange interpolation

polynomial. For any m, 1 ≤ m ≤M , let us denote by `m the last integer such that

the mesh point x`m < φm. The approximating value V n(φm) is given by

V n(φm) = ã`mV
n
`m + â`mV

n
`m+1, (3.21)

where the interpolation coefficients are

ã`m =
(x`m+1 − φm)

h
; â`m =

(φm − x`m)

h
. (3.22)

Note that the linear interpolation approximation (3.21) has an error of order O(h2)

that coincide with the associated error of the central approximation of the spatial

derivative (3.20). Hence the discretization for the integral part is given by

Inj =
M∑
m=1

ν̂(ln
φm
xj

)
eφm

φm
$m

(
ã`mV

n
`m + â`mV

n
`m+1

)
. (3.23)

Summarizing, from (3.20)-(3.23), the discretization of (3.19) with (3.14) and (3.15)

takes the form

V n+1
j = αj(V

n
j+1 + V n

j−1) + βjV
n
j + k

M∑
m=1

ν̂(ln
φm
xj

)
eφm

φm
$m

(
ã`mV

n
`m + â`mV

n
`m+1

)
,

(3.24)
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1 ≤ j ≤ Nx − 1, 0 ≤ n ≤ Nτ − 1, where

αj =
k

2h2
σ̂2x2

j , βj = 1− 2αj, (3.25)

satisfying

V 0
j = (xj − E)+, (3.26)

and

V n
0 = 0, V n

Nx = eλ(ε)τn(xmaxe
γ(ε)τn − E). (3.27)

3.3 Numerical Analysis for European Options

Dealing with option prices, positive values of the numerical solution is a necessary

requirement. In this section the positivity, stability as well as the consistency of

the scheme (3.24)-(3.27) are studied. Note that the coefficients of scheme (3.24) are

nonnegative under the condition

k

h2
≤ 1

σ̂2x2
max

. (3.28)

Thus from nonnegative initial and boundary values (3.26) and (3.27), the following

result is immediate

Theorem 4. The numerical solution {V n
j } of the scheme (3.24)-(3.27) is nonnega-

tive under the condition (3.28).

There are many approaches in the literature to study the stability for a finite dif-

ference scheme and many concepts of stability. Here we study the stability using

the well known Von Neumann approach [80, 81]. Von Neumann analysis for linear

parabolic PDEs with variable coefficients is treated in [30, 42][81, p. 59] and for

PIDEs by [3]. Let us rewrite the numerical solution V n
j

V n
j = ξneiθjh, (3.29)

where ξn is the amplitude at time level n, i is the imaginary unit and θ is the

phase angle. According to [80, p. 68] the unconditional stability of scheme (3.24) is

guaranteed if the amplification factor G = ξn+1

ξn
satisfies

|G| ≤ 1 +Kk = 1 +O(k), (3.30)
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where the positive number K is independent of h, k and θ.

When (3.30) is verified for those values of h and k satisfying a specific condition,

then the stability of the scheme is said to be conditional.

By substituting into (3.24), one gets

G = 1− a(k, h, θ) + kz(j, h, θ), (3.31)

where

a(k, h, θ) = 4αj sin2

(
θh

2

)
, (3.32)

z(j, h, θ) =
M∑
m=1

Aj,me
i(`m−j)θh

(
ã`m + â`me

iθh
)
, (3.33)

Aj,m = ν̂

(
ln
φm
xj

)
$m

eφm

φm
. (3.34)

Note that under the positivity condition (3.28) we have

αj =
k

2h2
σ̂2x2

j ≤
1

2
; 4αj sin2

(
θh

2

)
≤ 2. (3.35)

Thus

|1− a(k, h, θ)| ≤ 1, (3.36)

for h and k satisfying (3.28).

Under condition (3.28) from (3.31) and (3.36) one gets

|G|2 = (1− a(k, h, θ))2 + 2k(1− a(k, h, θ))Re(z) + k2|z|2

≤ 1 + 2|z|k + |z|2k2.
(3.37)

Then |G| ≤ 1 + |z|k, consequently, the stability will be guaranteed if |z| is bounded.

Now we are interested in obtaining a common bound for |z| for all the infinite activity

Lévy models considered in Table 2.1.

From (3.22), ã`m + â`m = 1, and from (3.33) one gets

|z| ≤
M∑
m=1

Aj,m(ã`m + â`m) =
M∑
m=1

Aj,m. (3.38)

Note that from (3.9) and (3.34),
M∑
m=1

Ajm is the Gauss-Laguerre quadrature approx-

imation for λ(ε), then for an arbitrarily small ρ > 0 and large enough value of M
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one gets
M∑
m=1

Aj,m ≤ ρ+

∫ ∞
ε

(ν(−y) + ν(y))dy. (3.39)

It is easy to check from Table 1 that for all Lévy measures,

ν(−y) + ν(y) < G(y), y ∈ (ε,∞), (3.40)

where

G(y) = 2Ĉ
e−M̂y

y1+Ŷ
, (3.41)

and

Ĉ =


max(C−, C+), KoBoL

2
b
A, Meixner

2 max(|λ|, C̃M), Generalized Hyperbolic,

(3.42)

such that

C̃M =
M∑
m=1

$me
φm

π2φm(J2
|λ|(δ

√
(2φm)) + Y 2

|λ|(δ
√

(2φm)))
,

M̂ =


min(G,M), KoBoL

a, Meixner

α− |β|, Generalized Hyperbolic

(3.43)

Ŷ =


Y, KoBoL

1, Meixner

0, Generalized Hyperbolic

. (3.44)

From (3.40) and (3.41), it follows that∫ ∞
ε

(ν(−y) + ν(y))dy <

∫ ∞
ε

G(y)dy = 2Ĉε−ŶE1+Ŷ (εM̂), (3.45)

where Es(η) is the exponential integral defined by (2.5).

Hence from (3.38), we have

|z| ≤
M∑
m=1

Ajm ≤ 2Ĉε−ŶE1+Ŷ (εM̂). (3.46)

Summarizing the following result has been established.

Theorem 5. With previous notation, under the positivity condition (3.28), the nu-

merical scheme (3.24) for (3.19) is conditionally stable.
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Once the stability has been established, in order to guarantee the convergence of the

numerical scheme for the linear PIDE problem it is sufficient to prove the consis-

tency of the numerical scheme with the PIDE. According to its definition [55, 80], a

numerical scheme is consistent with a PIDE problem if the exact theoretical solution

of the PIDE approximates well the difference scheme as the stepsizes discretization

tend to zero.

Let us denote vnj = V (xj, τ
n) as the value of the exact solution of (3.19). The local

truncated error T nj (V ) at (xj, τ
n) is defined by

T nj (V ) =

(
vn+1
j − vnj

k
− σ̂2

2

x2
j

h2
(vnj−1 − 2vnj + vnj+1)− ∂V

∂τ
(xj, τ

n) +
σ̂2

2
x2∂

2V

∂x2
(xj, τ

n)

)

−

(
M∑
m=1

Aj,m
(
ã`mv

n
`m + â`mv

n
`m+1

)
−
∫ ∞

0

ν̂(ln
φ

x
)V (φ, τ)

dφ

φ

)
(3.47)

= L(V n
j )− I(V n

j ), (3.48)

where L(V n
j ) and I(V n

j ) denote the truncation errors for the differential and integral

parts respectively. In order to prove the consistency, we must show that

T nj (V )→ 0, as h→ 0, k → 0. (3.49)

Assuming that V is twice continuously partially differentiable with respect to τ and

four times partially differentiable with respect to x, and using Taylor’s expansion

about (xj, τ
n), it is easy to obtain

L(V n
j ) = O(h2) +O(k), (3.50)

see [21] and Section 2.5.1 in Chapter 2 for a detailed development of this expression.

The local truncation error for the integral part is given by

|I(V n
j )| =

∣∣∣∣∣
∫ ∞

0

ν̂(ln(
φ

xj
))V (φ, τn)

dφ

φ
−

M∑
m=1

ν̂(ln
φm
xj

)$m
eφm

φm
V (φm, τ

n)

∣∣∣∣∣ (3.51)

= ((M !)2)f̂ [φ1, φ1, φ2, φ2, . . . , φM , φM , ξ̂], (3.52)
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where f̂ [φ1, φ1, φ2, φ2, . . . , φM , φM , ξ̂] denotes the divided difference for

f̂(φ) = ν̂(ln(
φ

xj
))
eφ

φ
V (φ, τn), ξ̂ > 0, (3.53)

see [45, p. 397 Eq. (8.7.12)]. For smooth enough integrands the error takes the form

|I(V n
j )| = (M !)2

2M !
f̂ (2M)(ξ̂). (3.54)

Summarizing the scheme (3.24) is consistent with the PIDE (3.19) and the trunca-

tion error behaves

T nj = O(h2) +O(k) + ε(M), (3.55)

where M is the number of the roots of Laguerre polynomial of degree M used in the

numerical integration.

3.4 American options under Lévy models

The most used method for pricing an American option is the formulation of a LCP

and then solving it using a numerical method, see [47, 48, 87]. Following this ap-

proach the LCP for American option under the Lévy measures in Table 3.1 and the

transformation (3.12) takes the form

L[V ] ≥ 0, V ≥ f(x), L[V ](V − f(x)) = 0, (3.56)

where

L[V ] =
∂V

∂τ
−D[V ]− I(V ), (3.57)

and f(x) is the payoff given by (3.14). The operators D[V ] and I(V ) are given by

D[V ] =
σ̂2

2
x2∂

2V

∂x2
, I(V ) =

∫
Ω2

ν(y)V (xey, τ)dy. (3.58)

Let us obtain the semi-discrete formulation of the problem (3.56). Using spatial cen-

tral difference approximation for the second derivative and Laguerre Gauss quadra-
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ture for the integral part, one gets

D[V ] + I(V ) ≈ α̂j(Vj−1 − 2Vj + Vj+1) +
M∑
m=1

Aj,m (ã`mV`m + â`mV`m+1) , (3.59)

where α̂j =
σ̂2x2j
2h2

; ã`m , â`m and Aj,m are given in (3.22) and (3.34) respectively. Let

A ∈ R(Nx−1)×(Nx−1) be the matrix representation of (3.59)

A = −D̂ − P , (3.60)

where the entries dj` of the tridiagonal matrix D̂ are given by

dj` =

{
−2α̂j, ` = j,

α̂j, ` = j − 1, j + 1.
(3.61)

Let us introduce the sets

L̂1 = {`m}Mm=1 , L̂2 = {`m + 1}Mm=1 , m̃ : `m → m. (3.62)

The matrix P for the integral part is represented as

P = P̃ + P̂ , (3.63)

where

p̃j` =

{
Aj,m̃(`)ã`, ` ∈ L̂1,

0, otherwise,
, p̂j` =

{
Aj,m̃(`)â`, ` ∈ L̂2,

0, otherwise.
(3.64)

With the above notations the LCP (3.56) has the following semi-discrete form

∂V

∂τ
+AV ≥ b(τ); V ≥ f ;

(
∂V

∂τ
+AV − b(τ)

)T
(V − f) = 0, (3.65)

where V = V(τ) is the vector solution satisfying V(0) = f and b = b(τ) is the

vector including the boundary conditions

V = [V1 V2 . . . VNx−1], b = [V0 0 0 . . . 0 VNx(τ)]. (3.66)
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Explicit time discretization is not suitable for LCP problems because of the com-

putational cost. Also, the Crank-Nicolson approximation is convenient when the

initial data and its derivative are continuous. As this is not our case we choose the

three time levels which also known as the backward difference formula (BDF2) with

accuracy of second order like Crank-Nicolson and better stability properties [48].

Hence the corresponding LCP for (3.65) after time discretization is denoted by

LCP (Ã,Vn+1, Ṽn, f), (3.67)

and given by

ÃVn+1 − Ṽn ≥ 0; Vn+1 ≥ f ; (ÃVn+1 − Ṽn)T (Vn+1 − f), (3.68)

where

Ã =

{
I + kA, n = 0,

I + 2k
3
A, n ≥ 1,

(3.69)

and

Ṽn =

{
V0 + kb0, n = 0,

4
3
Vn − 1

3
Vn−1 + 2k

3
bn+1, n ≥ 1.

(3.70)

Note that the first level for the solution vector is obtained using the implicit Euler

approximation. Also, the matrix Ã is of M-Matrix type.

The pioneering method PSOR introduced by Cryer [27] is commonly used to solve

LCPs. The crux of this method is to execute successive over relaxed modifications for

the solution vector components associated with a projection when any component

be less than the payoff. The relaxation parameter ω ∈ (0, 2) plays a relevant role

accelerating the rate of convergence and the optimal value for ω can be calculated

by the expression [80]

ωop =
2

1 +
√

1− ρ2(G)
, (3.71)

where G = D−1(Ã −D) is the Jacobi iteration matrix, D is the diagonal of Ã and

ρ(G) is the spectral radius of G.

When solving a LCP using PSOR, one has to address two challenges; firstly the

selection of the initial guess, secondly its accuracy declines as the grid becomes finer
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[49]. The multigrid iterative method MG has been shown as a reliable alternative

to overcome the quoted difficulties [13, 43, 88]. The operator that transforms the

problem from the coarser to the finer grid is called the linear interpolation (prolonga-

tion) operator and symbolized by Ih2h, while the map for the inverse transformation

is called the full weighting restriction operator and denoted by I2h
h . Here, the matrix

Ãh denotes the matrix Ã on the finer grid and Ã2h is the corresponding matrix on

the coarse grid and obtained by [13]

Ã2h = I2h
h ÃhIh2h. (3.72)

Remark

The three time-level can be used for European option but it does not guarantee the

positivity of the solution, see Example 1. The corresponding scheme is given by

(I +
2k

3
A)Vn+1 =

4

3
Vn − 1

3
Vn−1 +

2k

3
bn+1, n ≥ 1, (3.73)

and the first level solution is obtained by

(I + kA)V1 = V0 + kb0. (3.74)

3.5 Numerical Examples

In this section five numerical examples are included to validate, compare and discuss

the proposed results. From Example 3.1 to Example 3.4 are related to European

option case; Example 3.1 deals with the positivity, Example 3.4 discuss the con-

sistency and Examples 3.2 and 3.3 report about accuracy and computational cost.

Finally Example 3.5 deals with the American option case.

Throughout the examples related to European options, we will refer as scheme 1 to

explicit scheme (3.24)-(3.27) and scheme 2 as the three-level scheme (3.73)-(3.74).

The objective of the first example is to exhibit the importance of the positivity

condition (3.28) for the three studied Lévy models.

Example 3.1. Here, we have an European option with E = 30, T = 0.5, r = 0.08,

q = 0, σ = 0.2, xmin = 0, xmax = 90, M = 15, ε = 0.5 and Nx = 128. The parame-

ters for Lévy models are given in Table 3.2. Figures 3.1-3.4 display the behavior of
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Model Parameters
CGMY C = 0.5, G = 15, M = 25 and Y = 1.2945.
Meixner A = 0.5, a = −2.5 and b = 8.

GH α = 4, β = −3.2, δ = 0.4775 and λ = 2

Table 3.2: The parameters for Lévy models used in Example 3.1.

the option price C evaluated by the proposed explicit scheme (3.24)-(3.27) when the

positivity condition (3.28) holds for Nτ = 25e3 and when it is broken for Nτ = 1e3

represented by the solid and dot curves respectively under several Lévy processes.

In spite of the computational performance of the three level method, from the qual-

itative point of view, it disregards some important issues as the positivity. With

the same parameters, Nx = 800 and several values of Nτ Table 3.3 shows negative

values of the option price under CGMY process valuated with (3.73)-(3.74).
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Figure 3.1: About positivity condition of the explicit scheme under CGMY process.

The aim of the next example is to show the variation of the error for the Variance

Gamma VG model as the stepsizes h and k change. The VG is obtained from the

CGMY model when Y = 0, the reference option values for S = {20, 30, 40, 50} are

obtained using the closed form solution given in [56].
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Figure 3.2: The positivity condition of the explicit scheme under Meixner process.

Nτ S

8 10 12

20 -1.58e-2 -1.17e-2 -5.64e-3
40 -8.33e-3 -6.12e-3 -2.78e-3
80 -3.61e-3 -2.82e-3 -1.16e-3
160 -1.62e-3 -1.37e-3 -4.63e-4

Table 3.3: Computed negative values with the three-level method.

Example 3.2. Consider an European option under the VG process with parameters

E = 30, T = 0.5, r = 0.1, q = 0, σ = 0.25, C− = C+ = 11.718, G = 15 andM = 25,

xmin = 0, xmax = 90, M = 15, ε = 0.35. Table 3.4. reveals the variation of

the absolute error (AE) as h changes as well as the spatial numerical convergence

rate α and the CPU time while Nτ = 4.5e3 for the explicit scheme 1 (3.24) and

Nτ = 256 for the three-level scheme 2 (3.73)-(3.74). The change of the error due to

the variation of Nτ , its convergence rate β and the elapsed time are shown in Table

3.5 while Nx = 128.
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Figure 3.3: The effect of positivity condition on the option price under GH process.

S 20 30 40 50 CPU

Nx AE α AE α AE α AE α in sec

32 8.909e-4 – 1.926e-3 – 3.742e-3 – 4.386e-3 – 1.84
64 2.409e-4 1.89 5.335e-4 1.85 1.022e-3 1.87 1.181e-3 1.89 4.63
128 6.363e-5 1.92 1.413e-4 1.92 2.710e-4 1.91 3.053e-4 1.95 10.85

S
ch

em
e

1

256 1.552e-5 2.04 3.698e-5 1.93 6.952e-5 1.96 7.603e-5 2.01 18.99
32 1.091e-3 – 1.477e-3 – 1.713e-3 – 4.873e-4 – 0.64
64 2.861e-4 1.93 3.956e-4 1.89 4.238e-4 2.01 1.297e-4 1.91 1.31
128 7.386e-5 1.95 1.043e-4 1.95 1.090e-4 1.96 3.340e-5 1.93 3.60

S
ch

em
e

2

256 1.783e-5 2.05 2.470e-5 2.08 2.550e-5 2.09 8.067e-6 2.07 8.29

Table 3.4: Errors and convergence rates for the VG model for several values of Nx.

The third example shows the variation of the root mean square relative error (RMSRE)

as the size of grid points (Nx, Nτ ) changes where

RMSRE =

√√√√1

5

5∑
i=1

(
Ĉ(Si, T )− C(Si, T )

Ĉ(Si, T )

)2

, (3.75)

such that Ĉ represents the reference value of the European option at S = {20, 30, 40, 50, 60}
calculated for a grid (2048, 524288) and the option values are given in Table 3.6.

Example 3.3. Here an European option is priced under the three Lévy process

classes with parameters T = 0.5, E = 30, r = 0.1, q = 0, σ = 0.25, ε = 0.35,
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S 20 30 40 50 CPU

Nτ AE β AE β AE β AE β in sec

1.2e3 2.161e-4 – 4.790e-4 – 9.243e-4 – 1.151e-3 – 4.06
2.4e3 1.154e-4 0.91 2.552e-4 0.89 4.883e-4 0.92 6.049e-4 0.93 7.28
4.8e3 5.883e-5 0.97 1.304e-4 0.94 2.519e-4 0.95 3.072e-4 0.98 12.65

S
ch

em
e

1

9.6e3 2.916e-5 1.02 6.462e-5 0.96 1.288e-4 0.97 1.489e-5 1.04 20.37
32 9.751e-4 – 1.661e-3 – 1.455e-3 – 4.807e-4 – 0.83
64 5.046e-4 0.95 8.395e-4 0.98 7.325e-4 0.99 2.467e-4 0.96 1.46
128 2.144e-4 1.23 3.215e-4 1.38 3.048e-4 1.26 9.843e-5 1.32 2.78

S
ch

em
e

2

256 7.386e-5 1.54 1.043e-4 1.62 1.090e-4 1.48 3.340e-5 1.53 3.60

Table 3.5: Errors and convergence rates for the VG model for various values of Nτ .

Model S

20 30 40 50 60

CGMY 0.37224 4.82891 13.7801 24.05797 34.54281
Meixner 0.23802 2.11077 12.51470 23.74673 33.78861
GH 0.29120 2.46570 11.84807 22.08239 32.32227

Table 3.6: The reference European option values under Lévy processes.

M = 15, xmin = 0, xmax = 90 and the other parameters for Lévy models are listed

in Table 3.7. The variation of the RMSRE, the ratio and the computational time

with several grids for schemes 1 and 2 are given in Table 3.8.

Example 3.4. This example related to stability of scheme 1 is performed to plot

the amplification factor G given by (3.31) for European options under Lévy models

with the parameters given in Example 3.3 for Nx = 256 and Nτ = 6e3 as shown

in Fig 3.4 for θ ∈ [0, 2π]. Also, the dependence of the local truncated error of the

integral part given by (3.52) on the degree of Laguerre polynomial M is reported

for several values of ξ̂ in Table 3.9.

Example 3.5. Here, we deal with the LCP for American option under CGMY,

Meixner and GH processes with parameters as in Example 3.3 while q = 0.05 solved

Model Parameters
CGMY C = 0.5, G = 25, M = 25 and Y = 1.2.
Meixner A = 0.3462, a = −3.7566 and b = 7.8994.

GH α = 3.8, β = −2.5, δ = 0.2375 and λ = 2.755

Table 3.7: The parameters for Lévy models used in Example 3.3.
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Model CGMY Meixner GH

(Nx, Nτ ) RMSRE Ratio CPU (sec) RMSRE Ratio CPU (sec) RMSRE Ratio CPU (sec)

(32,350) 3.633e-3 – 0.78 5.839e-4 – 0.57 7.013e-3 – 0.74
(64,500) 1.392e-3 2.61 1.93 3.702e-4 1.58 1.43 1.964e-3 3.57 1.92

(128,2.5e3) 2.545e-4 5.47 18.70 8.481e-5 4.36 13.64 4.699e-4 4.18 14.65

S
ch

em
e

1

(256,6e3) 8.079e-5 3.15 89.47 3.215e-5 2.64 65.10 1.227e-4 3.83 55.38
(32,32) 2.116e-3 – 0.81 8.940e-4 – 0.47 6.910e-4 – 0.92
(64,64) 8.932e-4 2.37 1.63 7.019e-4 1.27 0.86 6.008e-4 1.15 1.72

(128,128) 2.617e-4 3.41 3.55 1.991e-4 3.52 2.38 1.727e-4 3.48 3.76

S
ch

em
e

2

(256,256) 5.536e-5 4.73 8.79 3.487e-5 5.71 3.87 6.718e-5 2.57 5.81

Table 3.8: Comparison of Scheme errors and CPU times for European option

Errors

M ξ̂ CGMY Meixner GH process

10 12.66 9.911e-5 1.026e-4 1.861e-6
30.94 1.904e-4 5.752e-6 1.472e-5
42.18 2.949e-5 3.733e-6 9.991e-6

20 12.66 1.391e-8 -5.649e-8 6.647e-9
30.94 2.044e-11 7.172e-10 2.1726e-10
42.18 -1.347e-11 -4.592e-10 -1.4934e-12

30 12.66 4.743e-15 -1.029e-14 1.168e-14
30.94 -2.468e-17 1.163e-14 1.996e-18
42.18 -1.819e-17 8.673e-15 1.475e-18

Table 3.9: The Truncated error for the integral part
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Figure 3.4: The amplification factor G under stability condition.

numerically using the scheme (3.67)-(3.70). Associated RMSRE is given in Table

3.10. The PSOR and MG are implemented to obtain numerical approximations, the

comparison based on the accuracy and elapsed time are presented in Table 3.10.

The reference values obtained for a grid (2048, 524288) are listed in Table 3.11.

The results of this chapter has been submitted to Journal of Computational and Applied Mathe-

matics.

62



Model CGMY Meixner GH

(Nx, Nτ ) RMSRE Ratio CPU (sec) RMSRE Ratio CPU (sec) RMSRE Ratio CPU (sec)

(32,32) 2.362e-2 – 0.35 1.685e-2 – 0.19 3.548e-2 – 0.23
(64,64) 6.775e-3 3.49 1.44 7.492e-3 4.91 0.95 9.832e-3 3.74 1.02

(128,128) 1.403e-3 4.83 4.36 2.099e-3 3.57 3.84 1.860e-3 5.28 4.15

P
S

O
R

(256,256) 3.727e-4 3.76 9.45 7.374e-4 2.85 8.74 8.112e-4 2.59 9.38
(32,32) 1.527e-2 – 0.32 1.248e-2 – 0.19 2.394e-2 – 0.22
(64,64) 4.421e-3 3.45 1.12 4.395e-3 2.83 0.72 9.643e-3 2.49 0.95

(128,128) 8.0987e-4 5.46 2.13 8.052e-4 4.97 1.23 2.175e-3 4.43 2.96

M
G

(256,256) 2.1532e-4 3.76 3.28 2.729e-4 3.24 2.93 6.173e-4 3.52 3.86

Table 3.10: The RMSRE for American option under Lévy processes

Model S

20 30 40 50 60

CGMY 0.84963 6.74776 12.17171 22.94875 32.75316
Meixner 0.56471 4.35491 11.54473 21.24781 31.83748
GH 0.53621 5.17148 11.01960 20.75684 31.64827

Table 3.11: The reference American option values.
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Chapter 4

Positive finite difference schemes

for partial integro-differential

option pricing Bates model

4.1 Introduction

The Bates model is considered one of the effective mathematical models that has

ability to describe the behavior of real markets of options usually of complex types

for instance, currency options. In Bates model, the Heston stochastic volatility

model [44] and the Merton jump-diffusion model [63] are combined to describe the

behavior of the underlying asset S and its variance ν [8]. These two variables are

governed by the coupled stochastic differential equations:

dS(t) = (r − q − λξ)S(t)dt+
√
ν(t)S(t)dW1 + (η − 1)S(t)dZ(t),

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW2,

dW1dW2 = ρdt,

where W1 and W2 are standard Brownian motions, Z is the Poisson process. The

parameter r is the risk free interest rate, q is the continuous dividend yield, λ is

the jump intensity, κ is the mean reversion rate, θ is the long-run variance, σ is the

volatility of the variance ν, ρ is the Wiener correlation parameter, η is the jump

amplitude of the jump diffusion process and ξ is the expected relative jump size
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(ξ = E[η − 1]). By using Itô’s lemma (1.4), and standard arbitrage arguments, one

gets the partial integro-differential equation (PIDE) for the unknown option price

U(S, ν, τ) [8, 19]

∂U

∂τ
=

1

2
νS2∂

2U

∂S2
+ρσνS

∂2U

∂S∂ν
+

1

2
σ2ν

∂2U

∂ν2
+(r−q−λξ)S∂U

∂S
+κ(θ−ν)

∂U

∂ν
−(r+λ)U

+ λ

∫ ∞
0

U(Sη, ν, τ)f(η)dη, (4.1)

and the density function f(η) is given by

f(η) =
1√

2πσ̂η
exp[−(ln η − µ)2

2σ̂2
], (4.2)

where µ is the mean of the jump and σ̂ is the standard deviation. For the European

call option we consider the initial condition

U(S, ν, 0) = g1(S, ν) = max{S − E, 0}, (4.3)

where E is the strike price. We assume the boundary conditions applied to the

Heston model, see [29], but modified for ν = 0 due to the additional integral term

appearing in Bates model. For the boundaries S = 0 and S →∞ one gets

U(0, ν, τ) = 0, (4.4)

lim
S→∞

∂U

∂S
(S, ν, τ) = 1.

Note that this last condition means a linear behavior of the option price for large

values of S with slope 1 when no dividend payments are considered, q = 0. Based

on that fact, we replace it by the following condition, see [89, Chap. 3, p. 54]

U(S, ν, τ) = e−qτS. (4.5)

For ν → ∞ and ν = 0, the corresponding boundary conditions are imposed as

follows

lim
ν→∞

U(S, ν, τ) = S, (4.6)

∂U

∂τ
(S, 0, τ) = (r − q − λξ)S∂U

∂S
(S, 0, τ)− (r + λ)U(S, 0, τ) + κθ

∂U

∂ν
(S, 0, τ)
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+
λ√
2πσ̂

∫ ∞
0

U(ϕ, 0, τ) exp[−(lnϕ− lnS − µ̂)2

2σ̂2
]
dϕ

ϕ
, (4.7)

where ϕ = Sη.

Some authors used an alternative boundary condition see [20, 30]. Chiarella et.

al. [19] used the method of lines to solve the American call option problem for

Bates model by discretizing with respect to time and variance variables obtaining

a system of first order ordinary differential equations with two unknowns the price

and its derivative with respect to asset variable. Then the system is solved using

Riccati transformation, see [64]. Final discretization achieves a seven points stencil

scheme treated using a linear complementarity problems (LCP). More recently [76]

studies also the American call option problem under the Bates model using a full

discretization for the spatial variable driving to a seven point finite difference stencil

and the quadrature term is discretized using the quadrature rule based on piecewise

linear interpolation. The authors use Rannacher scheme [72] for the time-stepping

and the resulting LCP problem is solved using an iterative method.

The model (4.2)-(4.7) has two challenges from the numerical analysis point of view.

Firstly, the presence of a mixed spatial derivative term involves the existence of

negative coefficient terms into the numerical scheme deteriorating the quality of

the numerical solution such as spurious oscillation and slow convergence, see the

introduction of [90]. Secondly, the discretization of the improper integral part should

be adequate with the bounded numerical domain and the incorporation of the initial

and boundary conditions.

Dealing with prices, guaranty of the positivity of the solution is essential. In this

chapter we construct an explicit difference scheme that guarantees positive solutions.

We transform the PIDE (4.2) into a new PIDE without mixed spatial derivative

before the discretization, following the idea of [22], and avoiding the above quoted

drawbacks. Furthermore, this strategy has additional computational advantage of

the reduction of the stencil scheme points, from nine [30, 32] or seven [19, 76] to

just five.

The discrete treatment of the integral part is performed taking into account the

chosen boundary numerical domain together with the boundary conditions and using

a composite four points integration formula of open type because of the higher order
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approximation of this rule [28, pp. 92-93].

The organization of this chapter is as follows. In Section 4.2 we transform the

original problem into a new one without cross derivative term. We also construct

the difference scheme including its matrix form that will be used in Section 4.3 to

study positivity and stability. Section 4.4 is addressed to the study of consistency of

the scheme. In Section 4.5, we consider the Bates model for American option using

our finite difference scheme including the comparison with results of other authors.

Numerical examples illustrating the results for Bates European and American option

model are included in Section 4.6.

4.2 Problem Transformation and Scheme Construction

4.2.1 The transformation of the problem

We begin this section by eliminating the mixed spatial derivative term of (4.2),

inspired by the reduction of second order linear partial differential equation in two

independent variables to canonical form, see [39, Chap. 3] and [22] for details. Let

us consider the following transformation

x = ρ̃σ lnS; y = ρσ lnS − ν; w(x, y, τ) = e(r+λ)τU(S, ν, τ), (4.8)

where ρ̃ =
√

1− ρ2, 0 < |ρ| < 1, obtaining the following transformed equation

∂w

∂τ
=
ρ̃2νσ2

2

(∂2w

∂x2
+
∂2w

∂y2

)
+ δ̂

∂w

∂x
+ δ̃

∂w

∂y
+ I(w), (4.9)

with

I(w) = λ

∫ ∞
0

w(x+ σρ̃ ln η, y + ρσ ln η, τ)f(η)dη, (4.10)

where

δ̂ = σρ̃(ξ̂ − ν

2
), δ̃ = σρ(ξ̂ − ν

2
)− κ(θ − ν) and ξ̂ = r − q − λξ. (4.11)

For the sake of convenience in the matching of the further discretization of the

differential and integral parts of (4.9), we consider now the substitution

φ = x+ σρ̃ ln η. (4.12)
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Hence from (4.3) and (4.10) one gets

I(w) =
λ√

2πσ̂ρ̃σ

∫ ∞
−∞

w(φ, y +m(φ− x), τ) exp

[
−1

σ̂2

(
φ− x
σρ̃

− µ
)2
]
dφ, (4.13)

where m = ρ
ρ̃
. Note that from (4.8), we have

y = mx− ν. (4.14)

The initial and boundary conditions (4.3)-(4.7) are transformed into the correspond-

ing conditions using (4.8) and (4.12).

w(x, y, 0) = max{e
x
σρ̃ − E, 0}, (4.15)

lim
x→−∞

w(x, y, τ) = 0, (4.16)

w(x, y, τ) ≈ exp

[
x

σρ̃
+ (r − q + λ)τ

]
, x→∞, (4.17)

w(x, y, τ) ≈ exp

[
x

σρ̃
+ (r + λ)τ

]
, mx− y →∞, (4.18)

∂w

∂τ
≈ σρ̃ξ̂

∂w

∂x
+ (σρξ̂ − κθ)∂w

∂y

+
λ√

2πσ̂ρ̃σ

∫ ∞
−∞

w(φ,mφ− ν, τ) exp

[
−1

σ̂2

(
φ− x
σρ̃

− µ
)2
]
dφ, ν → 0. (4.19)

From [35, 51] a suitable bound for the underlying asset variable S is available and

generally accepted. In an analogous way, considering an admissible range of the

variance ν, we can identify a convenient-bounded numerical domain R = [S1, S2]×
[ν1, ν2] in the S − ν plane. Under the transformation (4.8) as it is shown in [22] the

rectangle R is transformed into the rhomboid ABCD as shown in Fig 4.1 where the

sides are given by

AB = {(x, y) ∈ R2| a ≤ x ≤ b, y = mx− ν2},
BC = {(x, y) ∈ R2| x = b, y = mb− ν, ν1 ≤ ν ≤ ν2},
CD = {(x, y) ∈ R2| a ≤ x ≤ b, y = mx− ν1},
DA = {(x, y) ∈ R2| x = a, y = ma− ν, ν1 ≤ ν ≤ ν2},

(4.20)

where

a = σρ̃ lnS1, b = σρ̃ lnS2. (4.21)
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C=(N
x
,N

x
+N

y
)

B=(N
x
,N

x
)

y=mx−ν1

y=mx−ν2

A=(0,0)

D=(0,N
y
)

Figure 4.1: Rhomboid numerical domain ABCD

4.2.2 The numerical scheme

In light of the transformation (4.8) and the boundary given by (4.20), we use a

discretization of the numerical domain where the space stepsizes h = ∆x and hy =

∆y = |m|h are related by the slope m = ρ
ρ̃
. Here we subdivide space-time axes into

uniform spaced points using

xi = a+ ih, 0 ≤ i ≤ Nx, yj = y0 + j|m|h, i ≤ j ≤ Ny + i,

νi,j = mxi − yj, τn = nk, 0 ≤ n ≤ Nτ ,
(4.22)

where h = b−a
Nx
, y0 = ma− ν2, Ny = ν2−ν1

|m|h and k = T
Nτ

. Note that any mesh point in

the computational spatial domain has the form

(xi, yj) = (a+ ih,mxi − ν2 + (j − i)|m|h).

The discretization for the boundary points is given by

P (AB) = {(xi, yi)| 0 ≤ i ≤ Nx},
P (BC) = {(xNx , yj)| Nx ≤ j ≤ Nx +Ny},
P (CD) = {(xi, yi+Ny)| 0 ≤ i ≤ Nx},
P (DA) = {(x0, yj)| 0 ≤ j ≤ Ny}.

(4.23)

By denoting the approximate value of w at a representative mesh point P (xi, yj, τ
n)

by W n
i,j, we implement the center difference approximation for spatial partial deriva-
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tives such that

∂w

∂x
≈
W n
i+1,j −W n

i−1,j

2h
;
∂w

∂y
≈
W n
i,j+1 −W n

i,j−1

2|m|h
, (4.24)

∂2w

∂x2
≈
W n
i+1,j − 2W n

i,j +W n
i−1,j

h2
;
∂2w

∂y2
≈
W n
i,j+1 − 2W n

i,j +W n
i,j−1

m2h2
, (4.25)

and ∂w
∂τ

is discretized using the explicit forward approximation

∂w

∂τ
≈
W n+1
i,j −W n

i,j

k
. (4.26)

There are various kinds of approximations for the integration. The approximation

is said to be of closed type if the integrand function is evaluated at the end points

of the interval and it is of open type when these end points are omitted. The four

point open type approximation derives its accuracy via extrapolating the integrand

function based on four interior points and excluding the end points of each subinter-

val [28, pp. 92-93]. Furthermore, for functions whose derivatives have singularities

at the end points, open type formulas are more efficient than the corresponding

closed formulas. Based on this fact, the four points open type formula was used for

CGMY model in Chapter 2 and now we use it again for Bates model. First, the

improper integral I(w) (4.13) is truncated into [a, b], then the composite four points

integration formula of open type has been implemented using the same step size for

the variable x as in the differential part. Hence the corresponding finite difference

equation for (4.9) is given by

W n+1
i,j = βi,jW

n
i,j + α̂i,jW

n
i+1,j + ᾰi,jW

n
i−1,j + αi,jW

n
i,j−1 + γi,jW

n
i,j+1 + λ̂Jni,j, (4.27)

1 ≤ i ≤ Nx − 1, i+ 1 ≤ j ≤ Ny + i− 1, 0 ≤ n ≤ Nτ − 1,

where

βi,j = 1− kσ2

h2m2νi,j = (1− k
h2
ãij),

α̂i,j = kσρ̃
2h

[
(2ρ̃σ−h)

2h
νi,j + ξ̂

]
= k

h
( ρ

2

2h
ãij + b̃ij)

ᾰi,j = kσρ̃
2h

[
(2ρ̃σ+h)

2h
νi,j − ξ̂

]
= k

h
( ρ

2

2h
ãij − b̃ij),

αi,j = k
2|m|h

[(
σ2ρ̃2

|m|h + σρ
2
− κ
)
νi,j − σρξ̂ + κθ

]
= k

h
( ρ̃

2

2h
ãij − m

|m| b̃ij + c̃ij),

γi,j = k
2|m|h

[(
σ2ρ̃2

|m|h −
σρ
2

+ κ
)
νi,j + σρξ̂ − κθ

]
= k

h
( ρ̃

2

2h
ãij + m

|m| b̃ij − c̃ij),

(4.28)
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λ̂ =
5khλ

24
√

2πσ̂ρ̃σ
, (4.29)

and the integral part is given by

Jni,j =

Nx/5−1∑
`=0

(
11gi,5`+1W

n
5`+1,5`+1+j−i + gi,5`+2W

n
5`+2,5`+2+j−i

+gi,5`+3W
n
5`+3,5`+3+j−i + 11gi,5`+4W

n
5`+4,5`+4+j−i

)
, (4.30)

assuming that Nx has been previously chosen as a multiple of 5. The weight function

gi,` is given by

gi,` ≡ g(xi, φ`) = exp

[
−1

2σ̂2

(
φ` − xi
σρ̃

− µ
)2
]
, 0 ≤ ` ≤ Nx. (4.31)

The initial condition (4.15) is discretized into

W 0
i,j = max{exp (

xi
σρ̃

)− E, 0}, 0 ≤ i ≤ Nx, i ≤ j ≤ Ny + i, (4.32)

and the two Dirichlet conditions (4.16) along AD and (4.17) along AB take the

forms

W n
0,j = 0, 0 ≤ j ≤ Ny − 1, 1 ≤ n ≤ Nτ , (4.33)

W n
i,i = exp

[
xi
σρ̃

+ (r + λ)τn
]
, 1 ≤ i ≤ Nx, 1 ≤ n ≤ Nτ , (4.34)

respectively. For the boundary condition along BC, x is constant x = b and from

(4.17) one gets

W n
Nx,j = exp

[
b

σρ̃
+ (r + λ− q)τn

]
, Nx + 1 ≤ j ≤ Nx +Ny, 1 ≤ n ≤ Nτ , (4.35)

note that the boundary condition (4.19) along the oblique segment CD involves ∂w
∂x

and ∂w
∂y

. By the way the spatial directional derivative of w for fixed τ along the

direction CD with unitary vector û = (ρ̃, ρ, 0) is given by

Dûw = ∇w · û = ρ̃
∂w

∂x
+ ρ

∂w

∂y
.
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The centered finite difference approximation for the directional derivative along CD

at the mesh point (xi, yNy+i, τ
n) ∈ P (CD) is given by

Dûw ≈
ρ̃

2h
(W n

i+1,Ny+i+1 −W n
i−1,Ny+i−1), (4.36)

and the backward difference approximation has been used for the term κθ ∂w
∂y

,

κθ
∂w

∂y
≈ κθ

|m|h
(W n

i,Ny+i −W n
i,Ny+i−1), (4.37)

while the integral part of (4.19) is approximated using four points open type formula.

For the sake of positivity of the coefficients of the scheme, we take the following

special approximation of the term ∂w
∂τ

∂w

∂τ
≈ 1

k

(
W n+1
i,Ny+i −

1

3

(
W n
i−1,Ny+i−1 +W n

i,Ny+i +W n
i+1,Ny+i+1

))
. (4.38)

From (4.36)-(4.38) the boundary condition (4.19) is approximated by

W n+1
i,Ny+i = â1W

n
i−1,Ny+i−1+â2W

n
i,Ny+i−1+â3W

n
i,Ny+i+â4W

n
i+1,Ny+i+1+λ̂Jni,Ny+i, (4.39)

for 1 ≤ i ≤ Nx − 1 and 0 ≤ n ≤ Nτ − 1, where

â1 =
1

3
− kσρ̃ξ̂

2h
, â2 =

kκθ

|m|h
, â3 =

1

3
− â2, â4 =

1

3
+
kσρ̃ξ̂

2h
, (4.40)

and Jni,Ny+i is obtained from (4.30) taking j = Ny + i.

In order to study the stability of the numerical scheme (4.27)-(4.40), let us write

the numerical solution W n
i,j in a matrix form. Following the strategy of [84], let us

define the vector Wn ∈ R(Nx+1)(Ny+1) such that

Wn =
[
Wn

0 Wn
1 . . . Wn

Nx

]T
, (4.41)

where Wn
i are vectors in R(Ny+1)

Wn
i =

[
W n
i,i W n

i,i+1 . . . W n
i,i+Ny

]
.

Hence numerical scheme (4.30)-(4.40) can be written in a matrix form as

Wn+1 = (D + P)Wn, 0 ≤ n ≤ Nτ − 1, (4.42)
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where D and P are square matrices of size (Nx + 1)(Ny + 1) × (Nx + 1)(Ny + 1)

representing the discretization of the differential and integral parts of the scheme

(4.30)-(4.40) respectively. The block matrix D can be written in the explicit form

D =



I Θ Θ Θ . . . . . . Θ

C̆(1) B(1) Ĉ(1) Θ . . . . . . Θ

Θ C̆(2) B(2) Ĉ(2) Θ . . . Θ
... Θ

. . . . . . . . .
...

...
...

... . . . . . . C̆(Nx − 1) B(Nx − 1) Ĉ(Nx − 1)

Θ Θ . . . . . . . . . Θ e(r−q+λ)kI


, (4.43)

where I and Θ are the identity and zero matrices in R(Ny+1)×(Ny+1). The block

entries C̆(`), B(`) and Ĉ(`) are matrices ∈ R(Ny+1)×(Ny+1) such that

c̆ij(`) =


ᾰ`,`+i−1, i = 2, . . . , Ny, j = i+ 1,

â1, i = j = Ny + 1,

0, otherwise.

(4.44)

bij(`) =



e(λ+r)k, i = j = 1,

α`,`+i−1, j = i− 1, i = 2, . . . , Ny,

β`,`+i−1, j = i, i = 2, . . . , Ny,

γ`,`+i−1, j = i+ 1, i = 2, . . . , Ny,

â2, i = Ny + 1, j = Ny,

â3, i = j = Ny + 1,

0, otherwise.

(4.45)

ĉij(`) =


α̂`,`+i−1, i = 2, . . . , Ny, j = i− 1,

â4, i = j = Ny + 1,

0, otherwise.

(4.46)

With respect to the matrix P , we denote its block entries by P`s such that

P`s =

{
Θ, ` = 1 and Nx + 1, for s = 1, . . . , Nx + 1,

P (s)(`− 1), ` = 2, . . . , Nx, s = 1, . . . , Nx + 1,
(4.47)

where P (s)(`−1) are matrices in R(Ny+1)×(Ny+1) their elements are denoted by P s
ij(`−

1). Note that from the periodic weight structure ({0, 11, 1, 1, 11, 0, . . .}) of four points
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open type formula (4.30), one gets

P (s)(`− 1) = Θ, s = 1, 6, . . . , Nx + 1, (4.48)

for s = 2, 7, . . . , Nx − 3 and s = 5, 10, . . . , Nx, we have

P
(s)
ij (`− 1) =

{
11λ̂g`−1,s−1, i = 2, 3, . . . , Ny, Ny + 1, i = j

0, otherwise.
(4.49)

Finally for s = 3, 8, . . . , Nx − 2 and s = 4, 9, . . . , Nx − 1,

P
(s)
ij (`− 1) =

{
λ̂g`−1,s−1, i = 2, 3, . . . , Ny, Ny + 1, i = j

0, otherwise.
(4.50)

Thus the matrix representation of the scheme (4.30)-(4.40) has been detailed in

(4.42)-(4.50).

4.3 Numerical properties of the scheme

4.3.1 Positivity of the solution

We start this section by providing suitable conditions on the step sizes that guarantee

the positivity of the numerical solution {W n
i,j} of scheme (4.27)-(4.40). First let us

present the following lemma

lemma 3. Let f(z) = z
|αz+β| , z ∈ I = [z1, z2] and αβ 6= 0 then the minimum of f(z)

in 0 < z1 ≤ z ≤ z2 is achieved in one of the extremum of I, i.e.,

min
z∈I

f(z) = min

{
zi

|αzi + β|
, i = 1, 2

}
. (4.51)

Proof. If αz + β 6= 0 for all z1 < z < z2, then f(z) is a monotonic function,

consequently (4.51) holds. Otherwise there exists a value z0 = −β
α

such that f(z) is

increasing in [z1, z0[ and decreasing in ]z0, z2] and then (4.51) also holds true.

Note that as νi,j defined in (4.22) satisfy 0 < ν1 ≤ νi,j ≤ ν2, the coefficient βi,j of

(4.28) is nonnegative under the following condition

k

h2
<

m2

σ2ν2

. (4.52)
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Note also from (4.28) that coefficients α̂i,j and ᾰi,j are simultaneously nonnegative

provided that

|b̃ij| ≤
ρ2

2h
ãij. (4.53)

If b̃ij = 0, then (4.53) holds for any value of the step size h. Otherwise (4.53) can

be written in the following form

h ≤ 2σρ̃νi,j

|2ξ̂ − νi,j|
, (4.54)

and from lemma 1 for z = νi,j, α = −1 and β = 2ξ̂, zi = νi, i = 1, 2, one gets that

(4.54) is verified under condition

h ≤ h1 = min

{
2σρ̃νi

|2ξ̂ − νi|
, i = 1, 2

}
. (4.55)

Similarly, one guarantees the simultaneous positivity of the coefficients αi,j and γi,j

under the condition

h ≤ ρ̃2σ2νi,j

2m2

∣∣∣ |m|m b̃ij − c̃ij
∣∣∣ . (4.56)

From (4.28), we have

|m|
m
b̃ij − c̃ij =

(
κ

2|m|
− σρ

4|m|

)
νi,j +

σρ

2|m|
ξ̂ − κθ

2|m|
= ανi,j + β, (4.57)

and from lemma 3, (4.56) holds true under the condition

h ≤ h2 = min

{
σ2ρ̃2νi

2m2|ανi + β|
, i = 1, 2

}
, (4.58)

where α and β are defined in (4.57). Then by incorporating the conditions (4.55)

and (4.58) one gets

h ≤ min{h1, h2}. (4.59)

To guarantee the positivity of the numerical solution on boundary of the domain,

it is sufficient to put condition on the coefficients âi of (4.39) defined in (4.40) in

terms of h and k. This condition is

k ≤ min

{
2h

3σρ̃|ξ̂|
,
|m|h
3κθ

}
. (4.60)
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The entries of matrix P are nonnegative since the coefficients of the integral part

of the scheme given by (4.27) are nonnegative. On the other hand under conditions

(4.52), (4.55), (4.58) and (4.60), the entries of matrix D are also nonnegative and

then the following theorem is established.

Theorem 6. With previous notation, if stepsizes h and k satisfy

C1. h ≤ min
{

2σρ̃νi
|2ξ̂−νi|

, σ2ρ̃2νi
2m2|ανi+β| , i = 1, 2

}
C2. k ≤ min

{
m2h2

σ2ν2
, 2h

3σρ̃|ξ̂| ,
|m|h
3κθ

}
,

then the numerical solution {W n
i,j} of the scheme (4.27)-(4.40) is nonnegative.

4.3.2 Stability of the scheme

Based on the stability definitions 8 and 9, we begin here by providing bounds for the

infinite norm of D and P . From (4.28) and (4.40), under the positivity conditions

of theorem 6, we have

αi,j + α̂i,j + ᾰi,j + βi,j + γi,j = 1,
4∑
s=1

âs = 1. (4.61)

From (4.61) and the structure of matrices C̆, B and Ĉ, given by (4.44)-(4.46) it

follows that

‖[C̆(`) B(`) Ĉ(`)]‖∞ = max{e(λ+r)k, 1} = e(λ+r)k. (4.62)

From the definition of D (4.43)), property of infinite norm of the block matrices

(1.13) and (4.62), one gets

‖D‖∞ = max

{
1, max

1≤`≤Nx−1

{
‖[C̆(`) B(`) Ĉ(`)]‖∞

}
, e(r−q+λ)k

}
= e(λ+r)k. (4.63)

In order to bound the norm of the matrix P (4.47)-(4.50), let im be the row that

coincides with the infinite norm of P , therefore

‖P‖∞ =
5hλk

24
√

2πσ̂ρ̃σ

Nx/5−1∑
`=0

(11gim,5`+1 + gim,5`+2 + gim,5`+3 + 11gim,5`+4) . (4.64)

Since the right hand side of (4.64) represents the approximation of

kλI1 =
kλ√

2πσ̂ρ̃σ

∫ b

a

g(xim , φ)dφ,
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see (4.31), its value is given by

kλI1 =
kλ

2

(
erf

(
xim − a+ µσρ̃√

2σρ̃σ̂

)
− erf

(
xim − b+ µσρ̃√

2σρ̃σ̂

))
. (4.65)

Then for small enough h, we have

‖P‖∞ < kλ(I1 + 1) = kλ1, (4.66)

and from (4.41) it follows that

‖Wn‖∞ ≤ (‖D‖∞ + ‖P‖∞)‖Wn−1‖∞, (4.67)

and from (4.64) and (4.65), one gets

‖Wn‖∞
‖W0‖∞

≤
(
e(r+λ)k + kλ1

)n
= e(r+λ)T

(
1 + kλ1e

−(r+λ)k
)n

≤ e(r+λ)T (1 + kλ1)n ≤ exp ((r + λ+ λ1)T ) . (4.68)

Summarizing, according to definitions 8 and 9, a conditional strong uniform stable

scheme is established.

4.4 Consistency

Let us denote the local truncation error T ni,j(w) as

T ni,j(w) = F (W n
i,j)− (L(wni,j)− I(wni,j)), (4.69)

where w is the exact theoretical solution for the PIDE (4.9), (wni,j = w(xi, yj, τ
n)),

F (W n
i,j) = 0 represent the approximating finite difference equation (4.27), L(w) is

the differential operator of (4.9) and I(w) is the integral part given by (4.13). Based

on the definition of consistency of [80] and [55], a numerical scheme is consistent with

a PIDE if an exact theoretical solution of the PIDE approximates well the difference

scheme as the stepsizes discretization tend to zero, i.e., the proposed scheme (4.27)-

(4.40) is consistent with the PIDE (4.9) if T ni,j → 0 as h→ 0, hy → 0 and k → 0.

Let w be a continuous function of x, y and τ with continuous derivatives of order

four with respect to x and y and of order two with respect to τ . By using Taylor
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expansion about (xi, yj, τ
n), we have

wn+1
i,j − wni,j

k
=
∂w

∂τ
(xi, yj, τ

n) + kEn
i,j(1), (4.70)

where

En
i,j(1) =

1

2

∂2w

∂τ 2
(xi, yj, χ), nk < χ < (n+ 1)k,

∣∣En
i,j(1)

∣∣ ≤ 1

2
max

{∣∣∣∣∂2w

∂τ 2
(xi, yj, τ)

∣∣∣∣ , τn ≤ τ ≤ τn+1

}
=

1

2
Dn(1). (4.71)

For the second partial derivatives with respect to the spatial variables x and y, the

Taylor’s expansions are given by

wni+1,j − 2wni,j + wni−1,j

h2
=
∂2w

∂x2
(xi, yj, τ

n) + h2En
i,j(2), (4.72)

En
i,j(2) =

1

12

∂4w

∂x4
(χ1, yj, τ

n), xi − h < χ1 < xi + h,

∣∣En
i,j(2)

∣∣ ≤ 1

12
max

{∣∣∣∣∂4w

∂x4
(x, yj, τ

n)

∣∣∣∣ , a ≤ x ≤ b

}
=

1

12
Dn
j (2), (4.73)

and
wni,j+1 − 2wni,j + wni,j−1

h2
y

=
∂2w

∂y2
(xi, yj, τ

n) + h2
yE

n
i,j(3), (4.74)

En
i,j(3) =

1

12

∂4w

∂y4
(xi, χ2, τ

n), yj − hy < χ2 < yj + hy,

∣∣En
i,j(3)

∣∣ ≤ 1

12
max

{∣∣∣∣∂4w

∂y4
(xi, y, τ

n)

∣∣∣∣ , mxi − ν2 ≤ y ≤ mxi − ν1

}
=

1

12
Dn
i (3).

(4.75)

The expansions for the first partial derivatives with respect to x and y are given by

wni+1,j − wni−1,j

2h
=
∂w

∂x
(xi, yj, τ

n) + h2En
i,j(4), (4.76)

En
i,j(4) =

1

6

∂3w

∂x3
(χ3, yj, τ

n), xi − h < χ3 < xi + h,

∣∣En
i,j(4)

∣∣ ≤ 1

6
max

{∣∣∣∣∂3w

∂x3
(x, yj, τ

n)

∣∣∣∣ , a ≤ x ≤ b

}
=

1

6
Dn
j (4) (4.77)

wni,j+1 − wni,j−1

2hy
=
∂w

∂x
(xi, yj, τ

n) + h2
yE

n
i,j(5), (4.78)
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En
i,j(5) =

1

6

∂3w

∂y3
(xi, χ4, τ

n), yj − hy < χ4 < yj + hy,

∣∣En
i,j(5)

∣∣ ≤ 1

6
max

{∣∣∣∣∂3w

∂y3
(xi, y, τ

n)

∣∣∣∣ , mxi − ν2 ≤ y ≤ mxi − ν1

}
=

1

6
Dn
i (5).

(4.79)

On the other hand for the integral part, there are two error sources; the first coming

from the truncation of improper integral into a bounded one (a, b) and the second

coming from the numerical approximation of the finite integral using the four point

open type formula. Let T ni,j(w) denote the total truncation error for the integral

part such that

T ni,j(w) = I(wni,j)− λ̂Jni,j = (I(wni,j)− Iab(wni,j)) + (Iab(w
n
i,j)− λ̂Jni,j)

= Hn
i,j(w) + Yni,j(w)

(4.80)

where Iab(w) = λ√
2πσ̂ρ̃σ

∫ b
a
g(x, φ)w(x, y+m(φ−x), τ)dφ, the truncation errorHn

i,j(w) =

I(w)−Iab(w) and the error due to the numerical integration Yni,j(w) = Iab(w)− λ̂Jni,j.
According to Briani et. al. [12], since the integral part contains the Gaussian func-

tion, then the absolute value ofHn
i,j(w) can be controlled using a tolerance parameter

error ε > 0 by choosing

b =

√
−2σ̂2 ln(εσ̂

√
2π), a = −b. (4.81)

Furthermore, due to the symmetric property of the probability measure of Gaussian

distribution, one can assume that the option price w satisfies the Lipschitz condition

with respect to the spacial variables, then one has [12],∣∣Hn
i,j(w)

∣∣ < 2σ̂2ε. (4.82)

Finally, from [28, p. 95], ∣∣Yni,j(w)
∣∣ ≤ 90h4

144
Dn
i,j(6), (4.83)

where

Dn
i,j(6) = max

{
(w(φ, yj +m(φ− xi), τn))(4) , a ≤ φ ≤ b

}
, (4.84)

and the fourth derivative of the function w(φ, yj+m(φ−xi), τn) is taken with respect

to φ. Hence the total error for the integral part |T ni,j| satisfies

∣∣T ni,j∣∣ < 2σ̂2ε+
90h4

144
Dn
i,j(6). (4.85)
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From (4.70), (4.72), (4.74), (4.76), (4.78), (4.80) and (4.69), the local truncation

error has the following form

T ni,j = kEn
i,j(1)− ρ̃2νi,jσ

2

2

(
h2En

i,j(2) +m2h2En
i,j(3)

)
− δ̂i,jh2En

i,j(4)

− δ̃i,jm2h2En
i,j(5)− T ni,j(w), (4.86)

where δ̂i,j and δ̃i,j correspond to expressions appearing in (4.11) when replacing ν

by νi,j. Finally, from (4.71), (4.73), (4.75), (4.77), (4.79), (4.85) and (4.86), we have

∣∣T ni,j∣∣ ≤ k

2
Dn(1)+

∣∣∣∣ ρ̃2νi,jσ
2

24

∣∣∣∣ (Dn
j (2) +m2Dn

i (3)
)
h2+

(
|δ̂i,j|Dn

j (4) +m2|δ̃i,j|Dn
i (5)

) h2

6

+
90h4

144
Dn
i,j(6) + 2σ̂2ε, (4.87)

Therefore ∣∣T ni,j∣∣ ≤ O(k) +O(h2) +O(ε). (4.88)

Summarizing, the consistency for the scheme is established.

4.5 Numerical solution of PIDE American option pricing

under Bates model

In this section, the American option under Bates model is studied. The linear

complementarity problem for this model is given

L(U) ≥ 0, U ≥ g1, L(U)(U − g1) = 0, (4.89)

where

L(U) =
∂U

∂τ
− 1

2
νS2∂

2U

∂S2
− ρσνS ∂2U

∂S∂ν
− 1

2
νσ2∂

2U

∂ν2
− (r − q − λξ)S∂U

∂S

− κ(θ − ν)
∂U

∂ν
+ (r + λ)U − λ

∫ ∞
0

U(Sη, ν, τ)f(η)dη = 0, (4.90)

associated with the following boundary conditions

U(0, ν, τ) = g1(0, ν), lim
S→∞

U(S, ν, τ) = lim
S→∞

g1(S, ν), lim
ν→∞

∂U

∂ν
(S, ν, τ) = 0. (4.91)
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By applying the transformation (4.8), we have

L(w) =
∂w

∂τ
−D(w)− I(w) ≥ 0, w ≥ g2, L(w)(w − g2) = 0, (4.92)

where,

D ≡ ρ̃2νσ2

2

( ∂2

∂x2
+

∂2

∂y2

)
+ δ̂

∂

∂x
+ δ̃

∂

∂y
, (4.93)

I(w) is given by (4.8) and

w(x, y) = g2(x, y) = max{e
x
σρ̃ − E, 0}.

4.5.1 Numerical scheme construction

Here the rhomboid computational domain is discretized by a uniform mesh points

(xi, yj) such that xi = a + ih, 0 ≤ i ≤ Nx and yj = y0 + j|m|h, i ≤ j ≤ Nx + i

where h = (b− a)/Nx, y0 = ma− ν2 and Ny = (ν2− ν1)/|m|h. The first and second

derivatives of the spatial variables of the operator D are discretized using the central

finite difference approximation as follow

∂w
∂x
≈ Wi+1,j−Wi−1,j

2h
∂w
∂y
≈ Wi,j+1−Wi,j−1

2|m|h
∂2w
∂x2
≈ Wi+1,j−2Wi,j+Wi−1,j

h2
∂2w
∂y2
≈ Wi,j+1−2Wi,j+Vi,j−1

m2h2
.

(4.94)

Thus the discretization of the differential operator is given by

D(Wi,j) ≈ B̆(i, j)Wi−1,j + C̆(i, j)Wi,j−1−B(i, j)Wi,j + B̂(i, j)Wi+1,j + Ĉ(i, j)Wi,j+1,

(4.95)

where

B̆(i, j) =
(
ρ̃2σ2νi,j

2h2
− δ̂i,j

2h

)
, B(i, j) =

σ2νi,j
m2h2

, B̂(i, j) =
(
ρ̃2σ2νi,j

2h2
+

δ̂i,j
2h

)
C̆(i, j) =

(
ρ̃2σ2νi,j
2m2h2

− δ̃i,j
2|m|h

)
, Ĉ(i, j) =

(
ρ̃2σ2νi,j
2m2h2

+
δ̃i,j

2|m|h

)
,

(4.96)

δ̂ij and δ̃ij are obtained from (4.11) by replacing ν with νi,j. It is worth mention

that based on the foregoing transformation (4.8) we obtain a five point discretization

stencil for the spatial differential operator D which leads to minimize the computa-

tional cost. Moreover, there is no restriction on the correlation parameter ρ.

The discretization of the integral part has been done as the same as in (4.30). The

difference here is that the discretization for the time variable is not performed yet,

hence we have

I(w) ≈ λ̃Ji,j, λ̃ =
5hλ

24
√

2πσ̂ρ̃σ
, (4.97)
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where Ji,j is obtained from (4.30) by eliminating the index n.

Hence we have the following semi-discrete LCP

∂W

∂τ
+AW ≥ 0, W ≥ g2, (

∂W

∂τ
+AW)T (W − g2) = 0, (4.98)

where A is a matrix of size (Nx + 1)(Ny + 1) × (Nx + 1)(Ny + 1) involving the

differential and integral parts.

The time variable τ is discretized using nonuniform mesh points given by (4.99) and

the first derivative of W with respect to τ is approximated using the Rannacher

scheme [72]; such that the first four time levels are implemented using the implicit

Euler while the rest of the time levels are obtained using Crank-Nicolson. The aim

of this discretization is to avoid the oscillation of the solution, see [86].

τn =

{
( n

2Nτ
)2T, n = 0, 1, 2, 3,

( n−2
Nτ−2

)2T, n = 4, 5, . . . , Nτ .
(4.99)

Based on Rannacher scheme, we have the following LCPs

LCP (Ã(n+1),W(n+1),W̃(n+1),g2), (4.100)

where

Ã(n+1) =

{
I + knA n = 0, 1, 2, 3,

I + 1
2
knA n = 4, 5, . . . , Nτ − 1,

,

W̃(n+1) =

{
W(n) n = 0, 1, 2, 3,

(I − 1
2
knA)W(n) n = 4, 5, . . . , Nτ − 1.

 (4.101)

4.6 Numerical Examples

After removing the mixed derivative of the PIDE (4.2) for Bates model, a finite

difference scheme has been constructed to obtain a numerical approximation for

the option price. Furthermore, the positivity conditions are provided, also stability

and consistency have been studied. In this section, several examples are provided

to study the behavior of the option price obtained by the proposed scheme using

Matlab.

The following example reveals the importance of the positivity conditions (4.59) and

(4.60) on the stepsizes h and k.
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Figure 4.2: The effect of positivity conditions on the option price U

Example 4.1. Consider an European call option under Bates model with the

following parameters T = 0.5, E = 100, r = 0.05, q = 0, θ = 0.05, κ = 2.5,

σ = 0.25, σ̂ = 0.7, µ = 0.5, λ = 0.2, ν1 = 0.1, ν2 = 1 and ρ = −0.5 with

a tolerance error ε = 10−3. In Figure 4.2, the solid curve represents the option

price as a function of the underlying asset S when the positivity conditions hold for

(Nx, Ny, Nτ ) = (100, 45, 150) corresponding to h = 0.05 and k = 0.0033, while the

dashed curve represents the option price when the positivity conditions are broken

for (Nx, Ny, Nτ ) = (100, 45, 50) corresponding to h = 0.05 and k = 0.01.

The next example investigates the associated error for the scheme (4.27)-((4.40)

when λ = 0, i.e., for European option under Heston model. Considering the

strike price E = 100, the numerical solutions for the set of underlying assets

S = {80, 90, 100, 110, 120} are obtained. In order to evaluate the error, a Matlab

code for the closed form solution is used [70] obtaining the set of corresponding refer-

ence option price values U = {0.207581, 4.889877, 10.488226, 16.503506, 22.856611}.
The root mean square relative error (RMSRE) is calculated based on the equation

RMSRE =

√√√√1

5

5∑
i=1

(
U(Si, ν0, T )− U(Si, ν0, T )

U(Si, ν0, T )

)2

, (4.102)
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Nτ RMSRE Ratio CPU (sec)
200 1.764× 10−3 – 1.01
400 9.387× 10−4 1.88 1.05
800 4.581× 10−4 2.05 1.17
1600 2.371× 10−4 1.93 1.19
3200 1.191× 10−4 1.99 1.32

Table 4.1: The associated RMSRE for several values of Nτ .

(Nx, Ny) RMSRE Ratio CPU (sec)
(40, 9) 4.166× 10−3 – 0.11
(60, 14) 2.986× 10−3 1.395 0.71
(80, 18) 9.367× 10−4 3.188 2.52
(100, 23) 3.861× 10−4 2.426 7.476
(120, 27) 9.287× 10−5 4.157 19.53

Table 4.2: The RMSRE for different values of (Nx, Ny).

where U(Si, ν0, T ) is the numerical solution at spot variance ν0 = 0.4.

Example 4.2. Here the parameters are chosen as follows T = 0.5, E = 100,

r = 0.05, q = 0, θ = 0.05, κ = 2, σ = 0.3, and ρ = −0.5. The computational

domain is [a, b] = [−0.5, 1.5], ν1 = 0.1 and ν2 = 1. Table 4.1 exhibits the variation

of RMSRE for several values of Nτ while Nx = 70 and Ny = 16, the numerical

order of error and CPU time in seconds.

In Table 4.2, the variation of the error due to the change of the spatial step sizes,

while Nτ = 500 has been studied.

The aim of the last example is to study the variation of the resultant error for

European option under Bates model.

Example 4.3. The parameters are selected as follows T = 0.5, E = 100, r = 0.05,

q = 0, θ = 0.05, κ = 2.0, σ = 0.3, σ̂ = 0.35, µ = −0.5, λ = 0.2 and ρ = −0.5 with a

tolerance error ε = 10−4. The boundary points a and b of the spatial computational

domain are obtained from (4.81), while ν1 = 0.1 and ν2 = 1. Table 4.3 shows

the variation of the RMSRE for several values of the time step sizes, for fixed

Nx = 70 and Ny = 35, with respect to reference values computed at (Nx, Ny, Nτ ) =

(500, 146, 7000).

85



Nτ RMSRE Ratio CPU (sec)
500 2.485× 10−3 – 6.66
1000 1.322× 10−3 1.88 6.94
2000 6.429× 10−4 2.06 7.28
4000 3.296× 10−4 1.95 7.69
8000 1.569× 10−4 2.10 7.91

Table 4.3: The RMSRE for several values of Nτ .

(Nx, Ny) RMSRE Ratio CPU (sec)
(40, 20) 1.526× 10−2 – 0.32
(60, 30) 3.459× 10−3 4.412 1.83
(80, 40) 9.271× 10−4 3.371 6.95
(100, 50) 3.589× 10−4 2.583 19.64
(120, 60) 8.473× 10−5 4.236 46.72

Table 4.4: The associated RMSRE for different values of (Nx, Ny).

The variation of error due to the change of the spatial step sizes, while Nτ = 500

has been presented in Table 4.4.

The aim of the next two examples is to obtain the value of American option under

Bates model by solving (4.100) using the PSOR method with relaxation parameter

ω = 1.5 and also using MG.

Example 4.4. Consider an American call option under Bates model with the

following parameters T = 0.5, E = 100, r = 0.03, q = 0.05, θ = 0.04, κ = 2,

σ = 0.25, σ̂ = 0.4, µ = −0.5, λ = 0.2 and ρ = −0.5, the computational domain for

x ∈ [a, b], where a and b are obtained by (4.81) and [ν1, ν2] = [0.1, 1]. Table 4.5 shows

the variation of the root mean square relative error (RMSRE) of the option value at

S = {80, 90, 100, 110, 120} for several values of domain discretizations (Nx, Ny, Nτ ).

The reference values for the prices U are given in [86].

Method PSOR MG

(Nx, Ny, Nτ ) RMSRE Ratio CPU(s) RMSRE Ratio CPU(s)

(25, 15, 10) 1.38× 10−1 – 0.024 1.23× 10−1 – 0.008
(50, 28, 25) 5.71× 10−2 2.41 0.185 5.21× 10−2 2.63 0.07
(100, 55, 50) 1.03× 10−2 5.53 5.60 9.84× 10−3 5.29 1.48
(125, 69, 75) 6.80× 10−3 1.51 17.08 3.09× 10−3 3.18 4.37
(150, 82, 75) 3.30× 10−3 2.04 51.74 9.24× 10−4 3.34 12.25

Table 4.5: Comparison of Scheme errors and CPU times for American option when ρ = −0.5.
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Method PSOR MG

(Nx, Ny, Nτ ) RMSRE Ratio CPU(s) RMSRE Ratio CPU(s)

(25, 53, 10) 1.41× 10−1 – 0.24 8.74× 10−2 – 0.19
(40, 85, 25) 6.87× 10−2 2.05 3.56 2.68× 10−2 3.26 2.78
(60, 162, 50) 1.36× 10−2 5.07 57.42 4.57× 10−3 5.86 16.25
(80, 216, 75) 7.81× 10−3 1.74 200.73 1.06× 10−3 4.29 22.73

(100, 270, 100) 4.23× 10−3 1.85 415.26 2.02× 10−4 5.28 32.47

Table 4.6: Comparison of Scheme errors and CPU times for American option when ρ = 0.5.

Example 4.5. The parameters for an American call option under Bates model are

selected as follow T = 0.5, E = 100, r = 0.03, q = 0.05, θ = 0.04, κ = 2, σ = 0.4,

σ̂ = 0.1, µ = 0, λ = 5 and ρ = 0.5 with a tolerance error ε = 10−4. The reference

values are in [19], Table 4.6 reveals the associated RMSRE, ratio and CPU time for

several step sizes discretization.

Results concerning to the stochastic-volatility Heston model, i.e., particular case of

(4.1) with λ = 0, have been published in [22]. Results related to the Bates model

developed in this chapter have been published in [37].
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Conclusions

Numerical techniques for PIDEs governing option pricing under Lévy models have

been proposed showing two main innovative improvements. First using suitable

transformation to eliminate the reaction and convection terms. Second, by consid-

ering the whole domain of the improper integral part. It has been achieved by two

different ways; one by using a double discretization approach as shown in Chapter

2 and the other by using Gauss quadrature approximation as shown in Chapter 3.

It is known that cross derivative terms involve negative coefficients in the numerical

schemes that could deteriorate the quality of the solutions. In Chapter 4, numerical

solution of option pricing under the two dimensional in space Bates model is studied

after removing the cross derivative term from the PIDE using a suitable transfor-

mation. Also, its accuracy has been improved by discretizing the integral part using

four-point open type formula.

These numerical schemes provide positive, consistent and conditionally stable solu-

tions. Numerical simulations and comparison with other approaches in the literature

show the efficiency of the proposed techniques.
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