
MIMOPack: A High Performance
Computing Library for MIMO

Communication Systems

Doctoral Thesis

by

Carla Ramiro Sánchez

Supervisors:

Prof. Antonio M. Vidal Maciá
Prof. Alberto González Salvador

Valencia, Spain
June 2015

To my parents

Manuel and Marta

Abstract

Nowadays, several communication standards are emerging and evolving,
searching higher transmission rates, reliability and coverage. This expan-
sion is primarily driven by the continued increase in consumption of mobile
multimedia services due to the emergence of new handheld devices such as
smartphones and tablets.

One of the most significant techniques employed to meet these demands
is the use of multiple transmit and receive antennas, known as MIMO
(Multiple Input Multiple Output) systems. The use of this technology
allows to increase the transmission rate and the quality of the transmission
through the use of multiple antennas at the transmitter and receiver sides.

MIMO technologies have become an essential key in several wireless
and broadband standards such as Wireless Local Area Network (WLAN),
Worldwide interoperability for Microwave Acces (WiMAX), Long Term
Evolution (LTE) and Next Generation Handheld (DVB-NGH), for the re-
ception of Digital Terrestrial Television (DTT) in handheld devices. These
technologies will be incorporated also in future standards, therefore is ex-
pected in the coming years a great deal of research in this field.

Clearly, the study of MIMO systems is critical in the current inves-
tigation, however the problems that arise from this technology are very
complex. High Performance Computing (HPC) systems, and specifically,
modern hardware architectures as multi-core and many-cores (e.g Graphics
Processing Units (GPU)) are playing a key role in the development of effi-
cient and low-complexity algorithms for MIMO transmissions. Proof of this
is that the number of scientific contributions and research projects related
to its use has increased in the last years. Also, some high performance
libraries have been implemented as tools for researchers or companies in-
volved in the development of future communication standards. Two of
the most popular libraries are: IT++ that is a library based on the use
of some optimized libraries for multi-core processors and the Communica-
tions System Toolbox designed for use with MATLAB and Simulink, which
uses GPU computing. However, there is not a library able to run on a
heterogeneous platform using all the available resources.

In view of the high computational requirements in MIMO application
research and the shortage of tools able to satisfy them, we have made a

vi Abstract

special effort to develop a library to ease the development of adaptable
parallel applications in accordance with the different architectures of the
executing platform. The library, called MIMOPack, aims to implement
efficiently using parallel computing, a set of functions to perform some of
the critical stages of MIMO communication systems simulation.

The main contribution of the thesis is the implementation of efficient
Hard and Soft output detectors, since the detection stage is considered
the most complex part of the communication process. These detectors are
highly configurable and many of them include preprocessing techniques that
reduce the computational cost and increase the performance.

The proposed library shows three important features: portability, effi-
ciency and easy of use. This library can be run over the last generation of
machine architectures (current realease allows GPUs and multi-core compu-
tation), or even simultaneously, since it is designed to use on heterogeneous
machines exploiting the whole computational capacity thus reducing the re-
sponse time of the most complex problems. The interface of the functions
are common to all environments in order to simplify the use of the library,
regardless of the machine where the functions will be executed. Moreover,
some of the functions are callable from MATLAB increasing the portability
of developed codes between different computing environments.

According to the library design and the performance assessment, we
consider that MIMOPack may facilitate industrial and academic researchers
the implementation of scientific codes without having to know different pro-
gramming languages and machine architectures. This will allow to include
more complex algorithms in their simulations and obtain their results faster.
This is particularly important in the industry, since the manufacturers work
to analyze and to propose their own technologies with the aim that it will be
approved as a standard. Thus allowing to enforce their intellectual property
rights over their competitors, who should obtain the corresponding licenses
to include these technologies into their products.
Keywords: HPC Library, GPU, multi-core, CUDA, MIMO, Sphere de-
coding, Tree-Search detection.

Resumen

En la actualidad varios estándares de comunicación están surgiendo y evolu-
cionando buscando velocidades de transmisión más altas, mayor fiabilidad
y mejor cobertura. Esta expansión está principalmente impulsada por el
continuo aumento en el consumo de servicios multimedia móviles debido a
la aparición de nuevos dispositivos portátiles como los smartphones y las
tabletas.

Una de las técnicas empleadas más importantes para satisfacer estas de-
mandas es el uso de múltiples antenas de transmisión y recepción, conocida
como sistemas MIMO (Multiple Input Multiple Output). El uso de esta
tecnoloǵıa permite aumentar la velocidad y la calidad de la transmisión a
través del uso de múltiples antenas en el transmisor y en el receptor.

Las tecnoloǵıas MIMO se han convertido en una parte esencial en difer-
entes estándares inalámbricos y de banda ancha, tales como Wireless Lo-
cal Area Network (WLAN), Worldwide Interoperability for Microwave Ac-
ces (WiMAX), Long Term Evolution (LTE) y Next Generation Handheld
(DVB-NGH), para la recepción de la televisión digital terrestre (TDT) en
dispositivos portátiles. Estas tecnoloǵıas se incorporarán también en fu-
turos estándares, por lo tanto, se espera en los próximos años una gran
cantidad de investigación en este campo.

Está claro que el estudio de los sistemas MIMO es cŕıtico en la inves-
tigación actual, sin embargo los problemas que surgen de esta tecnoloǵıa
son muy complejos. La sistemas de computación de alto rendimiento, y
en concreto, las arquitecturas hardware actuales como multi-core y many-
core (p. ej. unidades de procesamiento gráfico (GPU)) están jugando un
papel clave en el desarrollo de algoritmos eficientes y de baja complejidad
en las transmisiones MIMO. Prueba de ello es que el número de contribu-
ciones cient́ıficas y proyectos de investigación relacionados con su uso se
han incrementado en el últimos años.

Además, algunas libreŕıas de alto rendimiento se están utilizando como
herramientas por investigadores o empresas involucradas en el desarrollo de
futuros estándares de comunicación. Dos de las libreŕıas más destacadas
son: IT++ que es una libreŕıa basada en el uso de distintas libreŕıas ya opti-
mizadas para procesadores multi-core y el paquete Communications System
Toolbox diseñada para su uso con MATLAB y Simulink, que utiliza com-

viii Resumen

putación con GPU. Sin embargo, no hay una biblioteca capaz de ejecutarse
en una plataforma heterogénea utilizando todos los recursos disponibles.

En vista de los altos requisitos computacionales en la investigación
MIMO y la escasez de herramientas capaces de satisfacerlos, hemos im-
plementado una libreŕıa que facilita el desarrollo de aplicaciones paralelas
adaptables de acuerdo con las diferentes arquitecturas de la plataforma
de ejecución. La libreŕıa, llamada MIMOPack, implementa de manera efi-
ciente utilizando la computación paralela, un conjunto de funciones para
llevar a cabo algunas de las etapas cŕıticas en la simulación de un sistema
de comunicación MIMO.

La principal aportación de la tesis es la implementación de detectores
eficientes de salida Hard y Soft, ya que la etapa de detección es considerada
la parte más compleja en el proceso de comunicación. Estos detectores son
altamente configurables y muchos de ellos incluyen técnicas de preproce-
samiento que reducen el coste computacional y aumentan el rendimiento.
La libreŕıa propuesta tiene tres caracteŕısticas importantes: la portabili-
dad, la eficiencia y facilidad de uso. Esta libreŕıa se puede ejecutar en la
última generación de arquitecturas máquina. La versión actual permite
computación en GPU y multi-core, incluso simultáneamente, ya que está
diseñada para ser utilizada sobre plataformas heterogéneas que explotan
toda la capacidad computacional reduciendo aśı el tiempo de respuesta de
los problemas más complejos. Con el fin de simplificar el uso de la bib-
lioteca, las interfaces de las funciones son comunes para todas las arquitec-
turas independientemente de la máquina donde serán ejecutadas. Por otra
parte, algunas de las funciones se pueden llamar desde MATLAB aumen-
tando la portabilidad de códigos desarrollados entre los diferentes entornos
computacionales.

De acuerdo con el diseño de la biblioteca y la evaluación del rendimiento,
consideramos que MIMOPack puede facilitar la implementación de códigos
cient́ıficos a investigadores industriales y académicos sin tener que saber
programar con diferentes lenguajes y arquitecturas. MIMOPack permitirá
incluir algoritmos más complejos en las simulaciones y obtener los resulta-
dos más rápidamente. Esto es particularmente importante en la industria,
ya que los fabricantes trabajan para analizar y proponer sus propias tec-
noloǵıas lo antes posible con el objetivo de que sean aprobadas como un
estándar. De este modo, los fabricantes pueden hacer valer sus derechos
de propiedad intelectual frente a sus competidores, quienes luego deben
obtener las correspondientes licencias si quieren incluir dichas tecnoloǵıas

ix

en sus productos.

Palabras Clave : Libreŕıa HPC, GPU, multi-núcleo, CUDA, MIMO, De-
codificación Esférica, detección por búsqueda en árbol.

x Resumen

Resum

En l’actualitat diversos estàndards de comunicació estan sorgint i evolucio-
nant cercant velocitats de transmissió més altes, major fiabilitat i millor
cobertura. Aquesta expansió, està principalment impulsada pel continu
augment en el consum de serveis mòbils multimèdia a causa de l’aparició
de nous dispositius portàtils com els smartphones i les tablets. Una de les
tècniques més importants utilitzades per a satisfer aquestes demandes és
l’ús de múltiples antenes de transmissió i recepció, coneguda com sistemes
MIMO (Multiple Input Multiple Output). L’ús d’aquesta tecnoloǵıa per-
met augmentar la velocitat de transmissió i la qualitat de transmissió a
través de l’ús de múltiples antenes en el transmissor i en el receptor.

Les tecnologies MIMO s’han convertit en una part essencial en diferents
estàndards inalàmbrics i de banda ampla, tals com Wireless Local Area
Network (WLAN), Worldwide Interoperability for Microwave Acces (Wi-
MAX), Long Term Evolution (LTE) i Next Generation Handheld (DVB-
NGH), per a la recepció de Televisió Digital Terrestre (TDT) en dispositius
portàtils. Aquestes tecnologies s’incorporaran també en futurs estàndards,
per tant, s’espera en els pròxims anys una gran quantitat d’investigació en
aquest camp.

Està clar que l’estudi dels sistemes MIMO és cŕıtic en la recerca actual,
no obstant açó, els problemes que sorgeixen d’aquesta tecnologia són molt
complexos. Els sistemes de computació d’alt rendiment, i en concret, les
arquitectures hardware actuals com multi-core i many-core (p. ej. unitats
de processament gràfic (GPU)), estan jugant un paper clau en el desenvo-
lupament d’algoritmes eficients i de baixa complexitat en les transmissions
MIMO. Prova d’açò és que el nombre de contribucions cient́ıfiques i projec-
tes d’investigació relacionats amb el seu ús s’han incrementat en els últims
anys.

A més, algunes llibreries d’alt rendiment estan utilitzant-se com a eines
per investigadors o empreses involucrades en el desenvolupament de futurs
estàndards de comunicació. Dos de les llibreries més destacades són: IT++
que és una llibreria basada en lús de diferents llibreries ja optimitzades
per a processadors multi-core i el paquet Communications System Toolbox
dissenyat per al seu ús amb MATLAB i Simulink, que utilitza computació
amb GPU. No obstant açò, no hi ha una biblioteca capaç d’executar-se en

xii Resum

una plataforma heterogènia utilitzant tots el recursos disponibles.
Degut als alts requisits computacionals en la investigació MIMO i l’es-

cacès d’eines capaces de satisfer-los, hem implementat una llibreria que fa-
cilita el desenvolupament d’aplicacions paral.leles adaptables d’acord amb
les diferentes arquitectures de la plataforma d’ejecució. La llibreria, anome-
nada MIMOPack, implementa de manera eficient utilitzant la computació
paral.lela, un conjunt de funcions per dur a terme algunes de les etapes
cŕıtiques en la simulació d’un sistema de comunicació MIMO.

La principal aportació de la tesi és la implementació de detectors efici-
ents d’exida Hard i Soft, ja que l’etapa de detecció és considerada la part
més complexa en el procés de comunicació. Estos detectors són altament
configurables i molts d’ells inclouen tècniques de preprocessament que redu-
eixen el cost computacional i augmenten el rendiment. La llibreria proposta
té tres caracteŕıstiques importants: la portabilitat, l’eficiència i la facilitat
d’ús. Aquesta llibreria pot executar-se en l’última generació d’arquitectu-
res màquina. La versió actual permet computació en GPU i multi-core,
fins i tot simultàniament, ja que està dissenyada per a ser utilitzada sobre
plataformes heterogènies que exploten tota la capacitat computacional re-
duint aix́ı el temps de resposta dels problemes més complexos. Amb el fi de
simplificar l’ús de la biblioteca, les interfaces de les funcions són comunes
per a totes les arquitectures independentment de la màquina on seran exe-
cutades. D’altra banda, algunes de les funcions poden ser utilitzades des
de MATLAB augmentant la portabilitat de còdics desenvolupats entre els
diferentes entorns computacionals.

D’acord amb el disseny de la biblioteca i l’evaluació del rendiment, con-
siderem que MIMOPack pot facilitar la implementació de còdics cient́ıfics
a investigadors industrials i acadèmics sense haver de saber programar amb
diferents llenguatges i arquitectures. MIMOPack permetrà incloure algo-
ritmes més complexos en les seues simulacions i obtindre els seus resultats
més ràpid. Açò és particularment important en la industria, ja que els
fabricants treballen per a analitzar i proposar les seues pròpies tecnolo-
gies el més prompte possible amb l’objectiu que siguen aprovades com un
estàndard. D’aquesta menera, els fabricants podran fer valdre els seus drets
de propietat intel.lectual enfront dels seus competidors, els qui després han
d’obtenir les corresponents llicències si volen incloure aquestes tecnologies
en els seus productes.

Paraules Clau : Llibreria HPC, GPU, multi-nucli, CUDA, MIMO, Sphere
Decoding, detecciò per recerca en arbre.

Acknowledgements

It is a pleasure for me to thank those who made this thesis possible. First
and foremost, I offer my sincerest gratitude to my supervisors, Prof. An-
tonio Vidal and Prof. Alberto González, who supported me throughout
this thesis with their knowledge and advice whilst allowing me the room to
work in my own way.

I am very grateful to Prof. Baltasar Beferull from the University of
Agder, Dr. José Miguel Mantas from the University of Granada and Dr.
Leroy Anthony Drummond from Lawrence Berkeley National Laboratory
for serving as reviewers of this thesis and for providing me with very useful
comments that helped to improve the final manuscript.

I would like to thank Dr. Alain Mourad, who hosted me at the Samsung
Electronics Research Institute, Staines, United Kingdom. I really appreci-
ate the opportunity he gave me and his kind support during the months I
spent working with his team.

I would like to show my gratitude to all the people at the Universi-
tat Politècnica de València that shared my daily work at the Department
of Information Systems and Computation (DSIC) and at the Institute of
Telecommunications and Multimedia Applications (iTEAM). In particu-
lar, I would like to thank Dr. Pedro Alonso, Dr. Victor Garćıa and Dr.
Francisco Mart́ınez for their support and collaboration. Thanks also to
my current and former colleagues at the iTEAM: Jose A. Belloch, Murilo
Boratto, Fernando Domene, Sandra Roger and Marian Simarro.

Thanks to all my friends for all the support and for making me smile
even in my worse days.

I would like to acknowledge the help and encouragement given by my
parents, Manuel and Marta, for making me be who I am, for their endless
love, sacrifices and advices. Thanks to my dear sisters Marta and Patricia
and also to the rest of my family, especially to my brother in law Ramón
and my nephew Álvaro for their fondness and for supporting me all the
way.

xiv Acknowledgements

Last, but not least, I would like to express my sincere gratitude to
Piedad, for her invaluable emotionally support and for always being by my
side. You complete me in every way.

Carla Ramiro Sánchez
June 2015

Contents

Abstract v

Resumen vii

Resum xi

Acknowledgements xiii

List of symbols xxv

Abbreviations and Acronyms xxvii

1 Introduction and Objectives 1

1.1 Background . 3

1.2 Motivation . 6

1.3 Objectives . 7

1.4 Key Contributions . 9

1.5 Organization of the Thesis 10

2 State-of-the-Art 13

2.1 System Overview . 16

2.1.1 Encoded Transmissions 18

2.1.2 Multiuser Scenario 20

2.2 System Architecture . 21

2.3 MIMO Detection . 21

2.3.1 Hard-Output Detection 22

2.3.2 Soft-Output Detection 29

2.4 High Performance Simulation Libraries 31

2.4.1 Simulation Acceleration using MATLAB 31

2.4.2 Simulation Acceleration using IT++ 32

2.4.3 MIMO Design using LabVIEW 32

2.5 Conclusion . 33

xvi Acknowledgements

3 Tools and Optimization Techniques 35

3.1 Hardware Tools . 38

3.1.1 Multi-core Processors 38

3.1.2 Graphics Processing Units 39

3.1.3 Computer System for simulation testing 41

3.2 Software Tools . 42

3.2.1 OpenMP Programming Model 42

3.2.2 CUDA Programming Model 43

3.2.3 MATLAB MEX-Functions 45

3.2.4 HPC Linear Algebra Libraries 45

3.3 Heterogenous computation 47

3.4 Efficient Euclidean Distance Calculation 51

4 Implementation of Hard-Output MIMO Detectors 55

4.1 Introduction . 58

4.1.1 OpenMP implementation details 62

4.1.2 CUDA implementation details 64

4.1.3 Assessment of parallel algorithms 66

4.2 Zero Forcing SIC Detector Implementation 69

4.2.1 CUDA Implementation 71

4.2.2 Performance Results 72

4.3 ML Exhaustive Detector Implementation 74

4.3.1 CUDA Implementation 78

4.3.2 Performance Results 78

4.4 Schnorr-Euchner SD Implementation 80

4.4.1 CUDA Implementation 83

4.4.2 Performance Results 84

4.5 Automatic Sphere Decoder Implementation 85

4.5.1 CUDA Implementation 90

4.5.2 Performance Results 90

4.6 K-Best Tree-Search Implementation 92

4.6.1 CUDA Implementation 94

4.6.2 Performance Results 95

4.7 Hard-Output Fixed-Complexity Sphere Decoder 98

4.7.1 CUDA Implementation 101

4.7.2 Performance Results 102

4.8 WinTrees: a Divide-and-Conquer framework for Tree-Search-
Based MIMO detectors . 103

xvii

4.9 Conclusions . 110

5 Implementation of Soft-Output MIMO Detectors 113

5.1 Introduction . 115

5.2 Maximum A Posteriori Probability and Max-Log Detectors
Implementation . 118

5.2.1 CUDA Implementation 122

5.2.2 Performance Results 123

5.3 Soft Fixed Sphere Decoder Implementation 125

5.3.1 CUDA Implementation 129

5.3.2 Performance Results 131

5.4 Fully Parallel Soft Fixed Sphere Demodulation 132

5.4.1 CUDA Implementation 137

5.4.2 Performance Results 138

5.5 Conclusions . 141

6 MIMOPack Software Package 145

6.1 Introduction and Objectives 147

6.2 Design and Specifications 149

6.3 Documentation and Website description 151

6.4 Support and Development 152

6.5 Configurability and Data Structures 153

6.5.1 Platform Configuration 153

6.5.2 QPSK and QAM Modulation Configuration 155

6.5.3 MIMOPack Detector Configuration 156

6.5.4 MIMOPack WinTrees Framework Configuration . . 158

6.5.5 MIMO Simulation Configuration 159

6.5.6 Simulation Random Data 161

6.6 MIMO Detection Functions 162

6.7 Installation and Test . 163

6.8 Example of simulation with MIMOPack 164

6.9 Conclusions . 168

7 Conclusions 169

7.1 Main Contributions . 172

7.2 List of Publications . 173

7.3 Future Work . 176

7.4 Institutional Acknowledgements 178

xviii Acknowledgements

Bibliography 179

List of Figures

1.1 The different diversities of the MIMO systems evolution. . . 4

1.2 Nature and scope of the thesis. 9

2.1 Most employed PSK and M-QAM constellations. 17

2.2 MIMO system model with nT transmit antennas and nR
receive antennas with QPSK symbols. 17

2.3 Block diagram of a MIMO-BICM system with QPSK symbols. 19

2.4 Block diagram of a MU-MIMO system with a Base Station
(BS) with N antennas and K single-antenna users (MSs). . 20

2.5 High level MIMO system block diagram. 21

2.6 Classification of Hard-Output detection algorithms. 22

2.7 (a) Initial lattice points (b) deformed lattice. 23

2.8 Idea behind the Sphere Decoder: the search process is per-
formed only within a sphere of radius r. 25

2.9 Decoding search tree for a 2×2 MIMO system using a BPSK
constellation. 27

3.1 NVIDIA Kepler GK110 architecture. 40

3.2 SMX architecture of GPU NVIDIA GK110 Kepler. 41

3.3 Memory hierarchy of GPU NVIDIA GK110 Kepler. 41

3.4 An illustration of multithreading where the master thread
forks off a number of threads which execute blocks of code
in parallel. 43

3.5 Example of CUDA programming: addition of two input vec-
tors (x and y) of lenght n and outputs a vector of lenght n
(z). 44

3.6 Example in MATLAB External Interfaces: performs the ad-
dition of two input 1×N matrices (x and y) and outputs a
1×N matrix (z). 46

3.7 Sequential computer with a GPU accelerator. 49

3.8 Heterogeneous parallel computer system. 50

3.9 MIMOPack workload distribution for the simulation of Nc

signals on a heterogeneous parallel computer system. 51

xx LIST OF FIGURES

3.10 Efficient Euclidean Distance Calculation: correspondence be-
tween non-zero elements of matrix R and matrix T for a 3×3
MIMO system with QPSK constellation. 53

4.1 Flow Chart of Hard-Output detection. 61

4.2 MIMOPack Hard-Output Detector Pseudocode. 63

4.3 C/OpenMP Hard-Output detection wrapper pseudocode. Pa-
rameters depend on the chosen detector. 64

4.4 CUDA Hard-Output detection wrapper pseudocode. 66

4.5 Grid distribution considered for the kernels of the Hard and
Soft output CUDA detectors. 67

4.6 Decoding tree of the Zero Forcing with SIC algorithm for a
3× 3 MIMO system with BPSK symbols. 70

4.7 Zero Forcing with Successive Interference Cancellation Pseu-
docode. 70

4.8 Successive Interference Cancellation detection process with
EEDC: example with a 4 × 4 MIMO system and 16-QAM
constellation. 71

4.9 Zero Forcing SIC Kernel-launcher forNs signals. This launcher
calls the kernel in Fig. 4.10. 72

4.10 Zero Forcing SIC detection by the z-th thread for Ns signals
called from Kernel-Launcher in Fig. 4.9 73

4.11 Time Execution comparison in seconds of the unoptimized
ZFSIC detector to the fastest OpenMP and GPU implemen-
tation for a nR×nT system with 16-QAM constellation and
Nc = 100000. 75

4.12 Decoding tree of the MLE algorithm for a 3×3 MIMO system
with BPSK symbols. 76

4.13 Pseudocode of tree path function: gets n consecutive con-
stellation symbols of the q-th tree-path. 76

4.14 ML Exhaustive Pseudocode. 77

4.15 ML Exhaustive Kernel-launcher forNs signals. This launcher
calls the kernel function in Fig. 4.16. 78

4.16 Calculation of one of the branches of the MLE detector by
the z-th thread for Ns signals. This kernel is called from
Kernel-Launcher in Fig. 4.15. 79

4.17 Schnorr-Euchner Sphere Decoder Pseudocode. 81

LIST OF FIGURES xxi

4.18 Decoding tree of the SESD algorithm for a 3 × 3 MIMO
system with BPSK symbols. 82

4.19 Schnorr-Euchner Sphere Decoder Kernel-launcher for Ns sig-
nals. This launcher calls the kernel in Fig. 4.20. 83

4.20 SESD detection by the z-th thread for Ns signals. This ker-
nel is called from Kernel-Launcher in Fig. 4.19. 84

4.21 Decoding tree of a ASD 3 × 3 MIMO detector with BPSK
symbols: expansion of M nodes in the first level. 87

4.22 Decoding tree of a ASD 3 × 3 MIMO detector with BPSK
symbols: selection and expansion of the node with the small-
est cumulative Euclidean distance in the first iteration. . . 88

4.23 Decoding tree of a ASD 3 × 3 MIMO detector with BPSK
symbols: selection and expansion of the node with the small-
est cumulative Euclidean distance in the second iteration. . 88

4.24 Decoding tree of a ASD 3 × 3 MIMO detector with BPSK
symbols: the detection is completed when the node to ex-
pand in the current iteration is a leaf node. 88

4.25 Automatic Sphere Decoder Pseudocode. 89

4.26 Time Execution comparison in seconds of ASD with differ-
ent detector settings, ASD-R, ASD-O, and ASD-RO as
a function of the number of OpenMP threads. 91

4.27 Fully Expansion Stage Pseudocode. 93

4.28 Decoding tree of the K-Best algorithm for a 3 × 3 MIMO
system with K = 2 and BPSK constellation. 93

4.29 K-Best Fixed Complexity Sphere Decoder Pseudocode. . . . 94

4.30 Calculation of one of the branches of the Fully Expansion
stage by the z-th thread for Ns signals. This kernel is called
from Kernel-Launcher in Fig. 4.31. 95

4.31 K-Best Sphere Decoder Kernel-launcher for Ns signals. This
launcher calls kernels in Figures 4.30 and 4.32. 96

4.32 Calculation of one of the branches of the K survivors ex-
pansion stage by the z-th thread for Ns time instants. This
kernel is called from Kernel-Launcher in Fig. 4.31. 97

4.33 QR decomposition of matrix Hi 100

4.34 Hard Fixed Complexity Sphere Decoder Pseudocode. 101

4.35 Decoding tree of the FSD algorithm for a 5×5 MIMO system
with nE = 2 and QPSK modulation. 102

xxii LIST OF FIGURES

4.36 Hard Fixed Complexity Sphere Decoder Kernel-launcher for
Ns signals. This launcher calls kernel in Fig. 4.37. 102

4.37 FSD detection by the z-th thread for Ns signals. This kernel
is called from Kernel-Launcher in Fig. 4.36. 103

4.38 Speedup (SP) comparison of FSD detector with different li-
brary configurations for a nR × nT MIMO system with 16-
QAM constellation and Nc = 10000 signals. 105

4.39 WinTrees stages for a detection tree of a 5×5 MIMO system
using a BPSK constellation with nE = 2 levels exhaustive
expanded. 105

4.40 Framework Pseudocode for third party detectors. 106

4.41 Framework Pseudocode for MIMOPack detectors. 107

4.42 Data used in the WinTrees Exhaustive Expansion stage. . . 107

4.43 Data used in the WinTrees Resized System stage. 108

4.44 Data used by the subproblems generated by the WinTrees
Generation Subtrees process. 109

4.45 Speedup of a MLE detector parallelized using WinTrees frame-
work with different library configurations over a 6×6 MIMO
system with 16QAM modulation. 110

5.1 Flow Chart of Soft-Output detection. 117

5.2 MIMOPack Soft-Output Detector Pseudocode: Calling Open-
MP/CUDA wrapper functions Fig. 5.3 and Fig. 5.4. 118

5.3 C/OpenMP Soft-Output detection wrapper pseudocode called
from Fig. 5.2. Parameters depend on the detector chosen. . 119

5.4 CUDA Soft-Output detection wrapper pseudocode called from
Fig. 5.2. Parameters depend on the detector chosen. 119

5.5 Binary-valued representation of the complete decoding tree
for a 3× 3 using QPSK (m = 2) constellation. 120

5.6 Maximum A Posteriori Probability Detector Pseudocode.
The detector calls fully expansion function in Chapter 4,
Fig. 4.27 and llr map function in Fig. 5.7. 121

5.7 MAP Calculation of the bits LLRs. This function is called
from Fig. 5.6. 121

5.8 Max-Log Approximation Detector Pseudocode. The detec-
tor calls fully expansion function in Chapter 4, Fig. 4.27
and llr mla function in Fig. 5.9. 122

LIST OF FIGURES xxiii

5.9 MLA Calculation of the bits LLRs. This function is called
from Fig. 5.8. 123

5.10 MAP and MLA Kernel-launcher for Ns time instants. Call-
ing kernels in Fig. 5.11 and 5.12. 124

5.11 Computation of the LLR for the MAP by the z-th thread
for NS signals. This kernel is called from Kernel-Launcher
of Fig. 5.10. 125

5.12 Computation of the LLR for the MLA by the z-th thread
for NS signals. This kernel is called from Kernel-Launcher
of Fig. 5.10. 126

5.13 List generated by the SFSD algorithm for a 3 × 3 MIMO
system with QPSK modulation (M = 4, m = 2) and Niter = 1.129

5.14 Soft Fixed Sphere Demodulation Pseudocode. Calling Hard-
Output FSD detector function in Chapter 4, Fig. 4.34, list
extension algorithm in Fig. 5.15 and llr sfsd function in
Fig. 5.16. 130

5.15 SFSD Negated Path Pseudocode. This function is called
from Fig. 5.14. 131

5.16 SFSD Calculation of the bits LLRs. This function is called
from Fig. 5.14. 132

5.17 Soft Fixed Sphere Demodulation Kernel-launcher forNs time
instants. Calling kernels in Fig. 4.37, Fig. 5.18 and Fig. 5.19. 133

5.18 Calculation of new candidates for the SFSD detector by the
z-th thread for Ns signals. This kernel is called from Kernel-
Launcher of Fig. 5.17. 134

5.19 Computation of the LLR for the SFSD by the z-th thread
for Ns signals. This kernel is called from Kernel-Launcher of
Fig. 5.17. 135

5.20 Speedup (SP) comparison for the SFSD detector for a nR ×
nT system considering Nc = 10000 with different constella-
tions and number of transmitter antennas. 138

5.21 Fully Parallel Soft Fixed Sphere pseudocode. Calling Hard-
Output FSD detector function in Chapter 4, Fig. 4.34 and
llr mla function in Fig. 5.9. 139

5.22 Fully Parallel FSD preprocessing stage pseudocode. 139

5.23 Fully Parallel FSD Kernel-launcher for Ns time instants.
Calling algorithm in Fig. 5.24 and kernel in Fig. 5.12. . . . 140

xxiv LIST OF FIGURES

5.24 Fully Parallel FSD Kernel pseudocode. This kernel is called
from Fig. 5.23. 140

5.25 Speedup (SP) comparison for the FPFSD detector for a nR×
nT system considering Nc = 10000 with different constella-
tions and number of transmitter antennas. 142

6.1 Simulation chain through the MIMOPack library modules. . 150
6.2 MIMOPack Website: Home 152
6.3 Example of MIMOPack simulation: it performs the MLE

detection of Nc = 1000 signals for a 6 x 6 MIMO system
with 16-QAM constellation on one GPU. 166

6.4 Speedup (Sp) comparison of the unoptimized MLE detec-
tor for the OpenMP and GPU implementations. A 6 × 6
MIMO system with 16-QAM constellation and Nc = 1000
for different library configurations is considered. 167

List of symbols

X Matrix
x Vector
x Scalar
Xi,j i,j component of matrix X
Xi,: i-th row of matrix X
X:,i i-th column of matrix X
Xi:j,k:l Elements from i-th to j-th row and from k-th to l-th column of X
xi i-th component of vector x
(·)T Transpose
(·)∗ Complex conjugation
(·)H Conjugate transpose
(·)† Moore-Penrose pseudoinverse
(·)−1 Matrix inversion
IN,N Identity matrix of size N ×N
| · | Absolute value
‖ · ‖p `p norm
‖ · ‖ 2 norm
P (A) Marginal probability of A
P (A|B) Conditional probability of A, given B
<{·} Real part of a complex number
={·} Imaginary part of a complex number
max Maximum of a set
min Minimum of a set
arg max Argument of the maximum of a set
arg min Argument of the minimum of a set
log Natural logarithm
Q{·} Quantization (slicing) operation
Θ{·} Denotes an asymptotic complexity order of ·
[·] Denotes the binary-valued representation of the constellation symbol ·

xxvi List of symbols

Abbreviations and Acronyms

ASD Automatic Sphere Decoder
ASIC Application Specific Integrated Circuits
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BICM Bit-Interleaved Coded-Modulation
BLAST Bell Labs Layered Space-Time
BPSK Binary Phase Shift Keying
BS Base Station
CUDA Compute Unified Device Architecture
CVP Closest Vector Problem
DF Decision Feedback
DSP Digital Signal Processor
DTT Digital Terrestrial Television
ED Euclidean Distance
e.g. for example (from the latin exempli gratia)
FE Full Expansion
FPGA Field Programmable Gate Array
FP-SD Fincke-Pohst Sphere Decoder
FPFSD Fully-Parallel Fixed-complexity Sphere Decoder
FSD Fixed-complexity Sphere Decoder
GPU Graphics Processing Unit
HPC High Performance Computing
LDPC Low-Density Parity-Check
i.e. that is (from the latin id est)
i.i.d. Independently, identically distributed
LLR Log-likelihood ratio
LTE Long Term Evolution
MAP Maximum-A-Posteriori
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
ML Maximum-Likelihood
MLE Maximum-Likelihood Exhaustive
MMSE Minimum Mean Squared Error

xxviii Abbreviations and Acronyms

MSs Single-antenna users
MU Multiuser
NGH Next Generation Handheld
OFDM Orthogonal Frequency Division Multiplexing
OSIC Ordered Successive Interference Cancellation
PED Partial Euclidean Distance
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
SD Sphere Decoder
SDR Software Defined Radio
SE Single-path Expansion
SESD Schnorr-Euchner Sphere Decoder
SFSD Soft-output Fixed-complexity Sphere Decoder
SIC Successive Interference Cancellation
SISO Single-Input Single-Output
SIMO Single-Input Multiple-Output
SM Stream Multiprocessor
SNR Signal to Noise Ratio
THP Tomlinson-Harashima Precoding
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
ZF Zero Forcing
ZFSIC Zero Forcing with Successive Interference Cancellation

Introduction and Objectives 1

2 Introduction and Objectives

Introduction and Objectives 1
1.1 Background

Multiple-Input multiple-Output (MIMO) systems have a huge impact in
modern wireless communications, since they allow to increase the reliabil-
ity, coverage and tranmission rates without the need for extra bandwidth
or power cost [1][2]. To boost the data rates of current generation cellular
networks, MIMO technologies have been adopted by many wireless stan-
dards such as Long Term Evolution (LTE), Worldwide interoperability for
Microwave Access (WiMAX), Wireles Local Area Network (WLAN) and
also by broadband standards such as Digital Video Broadcasting Next Gen-
eration Handheld (DVB-NGH). The influence of the new handheld devices
such as smart phones and tablets is also important, since it has caused a
drastic growth of mobile multimedia services. Hence, MIMO surely will
become an imperative technology of wireless communication systems to
increase the data traffic capacity.

MIMO systems emerged as the evolution of the classic and simplest
Single-Input Single-Output (SISO) systems (see Fig. 1.1), which use one
transmitting antenna and one receiving antenna. The first advance towards

4 Introduction and Objectives

MIMO was to employ more than one transmitting antenna at the base
station and one receiving antenna such as the Multiple-Input Single-Output
(MISO), or one transmitting antenna and several antennnas at the receiver
side such as Single-Input Multiple-Output (SIMO). Finally, the complete
growth is given by using several transmitting and receiving antennas in
the same system (MIMO). This configuration increases the link reliability
due to antenna diversity gain and the spectral efficiency through spatial-
multiplexing gain.

MISO
nT × 1

SIMO
1 × nR

SISO
1 × 1

MIMO
nT × nR

1 1

nT nR

R
ec
ei
ve
r

T
ra
n
sm

it
te
r

..
.

..
.

Figure 1.1. The different diversities of the MIMO systems

evolution.

MIMO technologies are also used to improve the performance of Or-
thogonal Frequency Division Multiplexing (OFDM) systems. OFDM has
become a popular method which converts a frequency-selective channel
into a set of frequency flat subchannels. The combination of OFDM with
MIMO systems, known as MIMO-OFDM [3], uses very efficiently the avail-
able bandwidth, since it allows transmitting different streams over different
subcarriers and different spatial beams in each one of the subcarriers by
using MIMO precoding. The scalability in the number of subcarriers per
MIMO-OFDM symbol is a key factor in wireless standards [4].

However, the use of MIMO technologies involves an increment of the de-
tection process complexity. The detector is present at the receiver side and
is the responsible for recovering the received signals (which are affected by
the channel fluctuation) with the maximum reliability. This step becomes

1.1. Background 5

in many cases the most complex stage in the communication. The number
of transmit and receive antennas is another important factor that affects
the performance of a MIMO system, because as the system grows the com-
munication process becomes more complicated. Although the number of
antennas currently allowed in the standards is not large, it is expected that
in the near future more than 100 transmit antennas could be used [5][6].
All these reasons motivate the search for high-throughput versatile receiver
implementations suitable to be reconfigured with the system parameters.

Practical implementation of MIMO receiver schemes and Software De-
fined Radio (SDR) platforms have been traditionally developed using Digi-
tal Signal Processors (DSP) [7], Field Programmable Gate Arrays (FPGA)
or Application Specific Integrated Circuits (ASIC) [8][9]. The last advances
in computational hardware (multi-core and Graphic Processing Units) have
allowed the development of high-throughput implementations. In last years,
the number of scientific contributions and research projects related to the
use of High Performance Computing (HPC) systems has significantly in-
creased. This phenomenon has occurred in almost all engineering fields that
require intensive computing, and Signal Processing is not an exception [10].

The use of the last generation of HPC systems such as multi-core CPUs
and Graphics Processing Units (GPUs) has become attractive for the e-
fficient implementation of parallel signal processing algorithms with high
computational requirements, such as the scheme reported in [11], high-
throughput MIMO detectors [9][12] and fast LDPC decoders [13]. As is
expressed in [14], “signal processing algorithm designers of the future will
need to understand better the nuances of multi-core computing engines”.
In that special issue, several authors describe “novel applications that can
be enabled by platforms with multiple cores, and more extensive design
examples of signal processing on platforms with multiple cores that demon-
strate useful techniques for developing efficient implementations”. More-
over, nowadays, DSP architectures are incorporating multi-core capacities
[15]. The implementation of advanced algorithms able to use both ar-
chitectures is crucial in MIMO research, since it allows to fully exploit the
capabilities of the modern machine architectures and to reduce the response
time of computationally expensive problems.

Currently, the simultaneous use of different types of architectures (GPUs
and multi-core) on a single system enjoys great popularity and is currently
used, for example, by numerical linear algebra libraries as MAGMA [16] or

6 Introduction and Objectives

CULA [17]. Nevertheless, in the field of communication systems applica-
tions, few tools or high performance libraries are available. An exception is
the Communications System Toolbox [18] of MATLAB that provides algo-
rithms for designing, simulating, and analyzing communications systems.
Although this software is excellent and widely used by the scientific com-
munity, just a small set of functions are prepared to use parallel computing
with GPUs. Other library is IT++ [19], which is a C++ library of mathe-
matical, signal processing and communication classes and functions. IT++
uses a set of some existent libraries (BLAS, LAPACK, FFTW) to increase
its functionality and speed. However, this library is oriented to its exclusive
use on shared-memory processors; it does not have support to use in GPUs.

In view of the high computational requirements in MIMO research and
the shortage of tools able to satisfy them, in this thesis a special effort have
been made to develop a library hoping to ease the development of adaptable
parallel applications in accordance with the different architectures of the
execution platform. The library, called MIMOPack, aims to implement
efficiently, using parallel computing, a set of functions to perform some of
the critical stages in MIMO communication systems. This library can be
run over the last generation of machine architectures (e.g GPUs and multi-
core), or even simultaneously, since it is designed to use on heterogeneous
machines to exploit the whole computational capacity thus reducing the
response time of the most complex problems.

1.2 Motivation

The use of MIMO technology has had enormous repercussion in today’s
telecommunications systems and surely it will keep on doing it in the near
future. The benefits offered are achieved at the expense of an increase
in the material costs to deploy multiple antennas at both the transmitter
and the receiver, and also at the expense of additional complexity at the
receiver end of the MIMO system. For this reason, signal detection has
been the subject of deep study during the last decade and the search for
high throughput practical implementations remains essential today.

The goal is to develop fast algorithms to optimize the design and the
validation process of new MIMO schemes and technologies. Then, this work
aims to contribute to meet this goal. This section describes some particular

1.3. Objectives 7

motivations leading towards the design of the high performance library.

Clearly, the use of HPC systems brings big benefits, but it will also sets
big challenges. In recent years, a large variety of machine architectures have
appeared; in view of this situation researchers of the scientific community
are forced to write codes in different programming languages and consider
many details of the architecture in order to use efficiently the whole target
system. High performance computing libraries are essential to facilitate the
implementation of scientific codes on a widespread range of architectures.

Furthermore, there are several important entities involved in the devel-
opment of new communication standards: administrations, network opera-
tors, manufacturers, users, research bodies, universities, consultancy com-
panies, partnerships and others [20]. The objective of a standard is to pro-
vide a set of rules, guidelines or characteristics ensuring the interoperability
between systems developed by different manufacturers. These manufactur-
ers work to propose their own technologies with the aim that it will be
approved as a standard. This would allow to enforce their intellectual prop-
erty rights over its competitors, who should then obtain the corresponding
license to include the technology adopted as standard into their products.
In many cases, simulation is the only way to get these proposals but these
simulations often involve a large computational burden, since they try to
simulate the transmission of large amount of bits in order to obtain results
close to those that would be obtained in a real transmission. Normally
these simulations require weeks or even months to be completed. Thereby,
MIMOPack may allow the launch of large simulations, opening the door
for industrial researchers to analyze their technologies faster than through
conventional simulation, and hence obtain more patent opportunities than
their potential competitors.

1.3 Objectives

Taking into account the above presented motivations, the main goals of this
thesis are the following (see Figure 1.2):

• To develop an efficient library of functions able to perform some of
the most important and complex stages in a MIMO communication
system which are described below:

8 Introduction and Objectives

– Hard-Output Detection: The detector becomes often the most
computationally expensive algorithm within a MIMO receiver
if nearly optimal data detection is desired. The detector is re-
sponsible of processing the received mixture of signals affected
by the channel in order to recover the transmitted data with
the accuracy required by the considered application. This issue
motivates the search for high-throughput MIMO hard-output
detectors capable to be reconfigured and scalable with the sys-
tem parameters. Also, some strategies such as channel matrix
preprocessing techniques can be used in order to eventually de-
crease the computational cost of data detection.

– Error control coding and Soft-Output Detection: Error control
coding ensures the desired quality of service for a given data
rate and it is necessary to improve reliability of MIMO sys-
tems. Therefore, the search of a good combination of detec-
tion MIMO schemes and coding schemes have drawn attention
in recent years. The most promising coding schemes are Bit-
Interleaved Coded Modulation (BICM) [21]. The information
bits are encoded at the transmitter using an error-correction
code. The soft demodulator provides the reliability information
in terms of real valued log-likehood ratios (LLR). These values
are used by the channel decoder to make final decisions on the
received coded bits. Nevertheless, these sophisticated techniques
cause a significant increase in the computational cost and require
large computational power.

– MIMO precoding : In the downlink scenario of multi-user (MU)
MIMO transmissions, a base station equipped with multiple an-
tennas transmits information to several independent users. The
detection process becomes more complex due to the absence of
cooperation between the users. In order to simplify the detec-
tor complexity at the receiver side, several precoding techniques
were devised by various authors.

• To contribute with high-throughput implementations of functions u-
sing parallel processing, to evaluate them in terms of execution time,
speedup and scalability, to compare them with other existing imple-
mentations.

• To facilitate to the programmer the implementation of codes on a wide

1.4. Key Contributions 9

range of architectures, incrementing the portability of codes between
different computing platforms by using common interfaces for all the
considered environments. This approach simplifies the use of the
library, regardless of the machine where it will be executed.

• To develop a set of highly configurable functions able to be executed
with different parameters:

– Simulation setup: constellation size, number of transmitter and
receiver antennas, channel conditions etc.

– Execution platform setup: different kind and quantity of com-
putational resources to be used during the execution.

MIMO Communication
Systems

Hard-Output Detection Preprocessing
High Performance

Computing

MU-MIMO Precoding Soft-Output Detection

Standarization of Wireless
technologies

(+) IPR opportunities
(-) Very huge simulations
(-) Limiting costs
(-) Staff without experience on HPC
or parallel programming

(+) Simplifies the detector comple-
xity at the receiver side
(-) Very large arrays are used

(+) Improves the performance of
Suboptimal Detectors
(+) Decreases the computational
cost of Optimal Detectors
(-) Increases the computational cost

(+) Improves the system’s reliability
(-) Increases the computational cost

(+) Allows to reduce the
execution time
(-) Heterogeneities
(-) Different programming
languages

Figure 1.2. Nature and scope of the thesis.

1.4 Key Contributions

The main contribution of the thesis is the implementation of efficient Hard
and Soft output detectors, since the detection stage is considered the most

10 Introduction and Objectives

complex part of the communication process. These detectors are highly
configurable and many of them include preprocessing techniques that re-
duce the computational cost and increase the performance. The library has
been designed to fulfill the following goals:

• Portable: This library can be run over the last generation of machine
architectures (current release allows GPUs and multi-core compu-
tation), or even simultaneously, since it was designed to be used on
heterogeneous machines exploiting the whole computational capacity.
Moreover, some of functions are callable from MATLAB, increasing
the portability of developed codes between different computing envi-
ronments.

• Efficient: The library is composed of highly parallelized functions.
Each function is parallelized taking into account the characteristics
of the hardware device where it will be executed.

• User friendly: The interface of the functions is common to all envi-
ronments in order to simplify the use of the library, regardless of the
machine where it will be executed. This feature allows MIMOPack
users to generate their codes without burdening the programmer with
the drawbacks of multi-core or GPU development.

MIMOPack can be especially useful for industrial and academic re-
searchers. The library eases the implementation of scientific codes without
having to know different programming languages and the machine archi-
tecture in depth. This should allow to include more complex algorithms
in their simulations and obtain their results faster. This is particularly
important in the industry, since the manufacturers work to analyze and to
propose their own technologies with the aim that it will be approved as a
standard. Thus allowing to enforce their intellectual property rights over
their competitors, who should obtain the corresponding licenses to include
these technologies into their products.

1.5 Organization of the Thesis

This thesis is structured in seven sections that describe the developed re-
search. It is important to remark that this thesis involves two different

1.5. Organization of the Thesis 11

disciplines: Signal Processing and Computational Science, consequently, it
has been deemed appropriate to introduce basic concepts of both fields in
order to ease the reading, by specialists of each field. The chapters are
arranged and presented as follows:

• Chapter 2: The first part of the chapter contains some preliminaries
related to the MIMO systems. The coded transmission in a MIMO-
BICM is presented and, accordingly, the concept of soft demodulation
is introduced. Furthermore, the signal precoding technique in mul-
tiuser MIMO systems are also reviewed. Next, different methods used
in the main stages of the transmission chain are investigated and also
how they have been addressed and computed up to now. Finally, the
available High Performance Computing software packages related to
the simulation of communication systems are evaluated.

• Chapter 3: This chapter presents a detailed description of some tools
and optimizations used to speed up the algorithms and to reduce the
computational complexity of the MIMO simulation. First, some hard-
ware and software tools used for the development of the library are
described. The next part of the chapter presents an overview of the
heterogeneous computational model assumed for the library design.
Finally, a method to decrease the complexity of the MIMO detec-
tors consisting in an efficient calculation of the Euclidean distances is
proposed.

• Chapter 4: In this chapter, the implementation of several Hard-
Oputput detectors are presented. The chapter includes a detailed
description of the sequential and parallelized algorithms. Some cha-
nnel matrix orderings are proposed to reduce the complexity of the de-
tectors. In addition, the execution times of all the proposed OpenMP
and GPU parallel implementations are compared to the unoptimized
implementation (i.e. without the EEDC optimization).

• Chapter 5: This chapter is focused on the implementation of Soft-
Output detectors in MIMO-BICM. First, the optimum MAP detector
and the Max-Log Approximation are presented and evaluated with
different parameters. In the last part two efficient fixed-complexity
demodulators are proposed and implemented. These detectors are
based on a list extension of the Hard-Output FSD scheme. The

12 Introduction and Objectives

computational cost, some aspects and options of parallelization with
OpenMP and CUDA are analized. Furthermore, numerical results
are showed in order to assess the efficiency of the parallel implemen-
tations.

• Chapter 6: This chapter contains the library design and documen-
tation. The main features of the MIMOPack library are explained.
Additionally, a representative example of a practical MIMO commu-
nication system simulation with MIMOPack routines is presented.

• Chapter 7: This chapter contains the main conclusions and publica-
tions derived from the work developed in this thesis. Finally, some
possible future research lines are given.

State-of-the-Art 2

14 State-of-the-Art

State-of-the-Art 2
The simulation of MIMO transmission systems is essential to progress

in the design and development of new technologies since it allows to ana-
lyze and test the new proposals without the need for its implementation in
a physical system. Generally, it is necessary to simulate the transmission
of many bits to obtain meaningful results, i.e. as nearly alike as possi-
ble to those obtained in a real service reception. This practice yields a
large computational burden, therefore modeling and simulation using effi-
cient techniques and high performance computing have made a significant
contribution to advances in MIMO technologies.

The communication process in a MIMO system can be represented as a
set of interconnected functional blocks. Not all stages have the same com-
putational cost, indeed, some of them can become the 80% of the whole
simulation cost. The state-of-the-art of the most complex stages is reviewed
in the following sections and how they have been addressed and computed
up to now. We can differentiate between two types of contributions pri-
marily devised to reduce the complexity of the detection. On the one hand,
theoretical contributions are those that attempt to reduce the complexity
of the method from a theoretical point of view. For example: reducing the
search range, applying channel matrix preprocessing techniques, etc. On
the other hand, a practical contribution seeks to reduce the computational

16 State-of-the-Art

cost of the method by its implementation for efficient processing thereof,
e.g. multi-core or GPU implementations.

After some preliminaries related to the MIMO systems, the first part of
the chapter enumerates different methods and techniques used in the main
stages of the transmission chain. Finally, the available High Performance
Computing software packages related to the development of communication
systems are evaluated.

2.1 System Overview

The well-known Bell-Labs layered Space-Time system (BLAST) is a high
speed wireless communication system that employs multiple antennas at
both the transmitter and the receiver [22]. Figure 2.2 comprises a block
diagram depiction of a MIMO-BLAST system equipped with nT transmit-
ter antennas and nR ≥ nT receive antennas. Spatial multiplexing gain is
achieved by splitting the data bitstream into nT transmit antennas. The
data is simultaneously sent to the channel, thus overlapping in both time
and frequency. The signals are received by nR receiving antennas, as shown
in Fig. 2.2, and the receiver has the task of processing the received signals
in order to recover the transmitted data.

The sequence of information bits is spatially demultiplexed into the nT
antenna streams (“layers”). In each layer, groups of m bits are mapped
to complex data symbols si[n] ∈ O with i = 1, . . . , nT . Here, O de-
notes the finite symbol alphabet or constellation. Figure 2.1 shows the
quadrature-amplitud-modulation (QAM) constellations usually employed
in MIMO communications, which are known as M -QAM. M stands for
the number of constellation points (constellation size) and belongs usu-
ally to the set M = {2, 4, 16, 64}. We can define the constellation as
O = {a + bj : a, b ∈ PM} where PM represents the real-valued repre-
sentacion of the constellation. Then, symbols si are taken from O and
carry m = log2M Gray-encoded bits each, which in a BLAST system are
grouped after being demultiplexed into nT streams. The transmitted vec-
tor at time instant n is denoted by s[n] = (s1[n], s2[n], . . . , snT [n])T and
carries m · nT bits. The baseband equivalent model for the received vector
y[n] = (y1[n], y2[n], . . . , ynR [n])T is given by

2.1. System Overview 17

=

<

2-QAM
(BPSK)

0 1

=

<

4-QAM
(QPSK)

01 11

00 10
=

<

16-QAM

0000 0100

0001 0101

1100 1000

1101 1001

0011 0111

0010 0110

1111 1011

1110 1010

Figure 2.1. Most employed PSK and M-QAM constellations.

y[n] = H[n]s[n] + v[n], n = 1, . . . , Nc (2.1)

Input
bits

Estimated
bits

MIMO
channel

Transmitter Receiver

D
em

o
d
u
la
to
r

D
em

u
lt
ip
le
x
er

..
.

..
.

. .

. .

s1

h1,1

hnR,1
v1

y1

snT

hnR,nT

h1,nT

vnR

ynR. .
. .

M
u
lt
ip
le
x
er

Figure 2.2. MIMO system model with nT transmit antennas

and nR receive antennas with QPSK symbols.

where Nc is the number of time instants in the entire transmission. Here,
H[n] is an nR × nT matrix modeling the Rayleigh fading MIMO channel
which is assumed to be perfectly known at the receiver and remains constant
over a symbol-time block of lenght Lch. The channel matrix is formed by

18 State-of-the-Art

nR × nT elements, hi,j , which represents the fading gain between the j-th
transmit antenna and the i-th receive antenna:

H =




h1,1 h1,2 . . . h1,nT

h2,1 h2,2 . . . h2,nT
...

...
. . .

...
hnR,1 hnR,2 . . . hnR,nT


 . (2.2)

The components of noise vector v[n] = (v1[n], v2[n], . . . , vnR [n])T are
assumed independent and circularly symmetric complex Gaussian with
variance σ2

w. For simplicity of notation, we will omit the symbol-time index
n in order to ease the understanding of the rest of the chapter. Then, the
equivalent model for received vector is given by

y = Hs + v. (2.3)

For practical reasons, the (nR×nT)-dimensional complex equation (2.3)
is often transformed into an equivalent (2nR×2nT)-dimensional real-valued
representation as described in [23]:

[
<(y)
=(y)

]
=

[
<(H) −=(H)
=(H) <(H)

] [
<(s)
=(s)

]
+

[
<(v)
=(v)

]
(2.4)

where <(·) and =(·) denote the real and imaginary part of (·), respectively.

This is the simplest MIMO system, however nowadays more sophisti-
cated transmission schemes are being used such as Bit Interleaved Coded
Modulation (BICM) [21] and Multiuser (MU) MIMO [24] systems, which
are introduced in the following sections. These advanced systems involve
the use of new and more complex methods (e.g channel coding, soft-output
detectors, precoding techniques) and have motivated the search for high-
throughput versatile receiver implementations.

2.1.1 Encoded Transmissions

Error control coding is necessary to improve reliability of the MIMO system
especially when we are using low-quality channels. Therefore, the search of
a good combination of detection MIMO schemes and coding schemes have

2.1. System Overview 19

drawn attention in recent years. The most promissing coding scheme is
Bit-Interleaved Coded Modulation (BICM) [21][25].

In a MIMO-BICM system (such as the one shown in Fig. 2.3), a block
of information bits b is encoded using an error correcting code before being
demultiplexed into nT layers. The coded bits are then passed through a
bitwise interleaver Π generating a pseudo-random sequence c and mapped
into symbols via Gray labeling.

c
Π

LLRs
(Λ)

Π−1Encoder Decoder

Input
bits (b)

Estimated
bits (b̂)

MIMO
channel

Transmitter Receiver

D
em

o
d

u
la

to
r

D
em

u
lt

ip
le

x
er

..
.

..
.

. .

. .

s1

h1,1

hnR,1
v1

y1

snT

hnR,nT

h1,nT

vnR

ynR. .
. .

M
u

lt
ip

le
x
er

Figure 2.3. Block diagram of a MIMO-BICM system with

QPSK symbols.

At the receiver side, the soft detector uses the model (2.3) to calculate
the soft information about the code bits in terms of log-likelihood ratios
LLRs (Λ). Thus, the detector uses the received vector y and the channel
matrix H, to calculate Λi,k for each coded bit ci,k, with i = 1, . . . , nT and
k = 1, . . . ,m, of the sent symbol vector s. Finally, the reliability informa-
tion (LLRs) is de-interleaved (Π−1) and multiplexed into a single stream
which will be used by the channel decoder. The soft demodulator computes
the LLRs according to the following ratio of conditional bit probabilities

Λi,k = log
P(ci,k = 1|y,H)

P(ci,k = 0|y,H)
(2.5)

where ci,k denotes the k-th bit of symbol si and P(ci,k = u|y,H) denotes
the probability that the coded bit ci,k takes the value u, taking into account
H and y. These LLRs are deinterleaved using Π−1 and used by the channel
decoder to make final decisions about the transmitted sequence bits b̂.

20 State-of-the-Art

2.1.2 Multiuser Scenario

In a downlink multiuser MIMO-OFDM system [24], the base station (BS)
equipped with N antennas communicates to K ≤ N single-antenna users
(MSs) over M subcarriers (such as the one shown in Fig. 2.4). The received
signal y for the K users at the subcarrier m can be expressed as:

y[m] = H[m]s[m] + v[m] (2.6)

where y[m] = [y1[m], . . . , yK [m]]T contains the received symbols for each
MS and v[m] = [v1[m], . . . , vK [m]]T is the received noise for the m-th sub-
carrier.

BS

Precoding

MIMO
channel

Transmitter Receiver

OFDM
Modulator

#1

..
.

OFDM
Modulator

#N

OFDM
Demodulator

MS #1

..
.

OFDM
Demodulator

MS #K

Figure 2.4. Block diagram of a MU-MIMO system with a

Base Station (BS) with N antennas and K single-antenna

users (MSs).

In the downlink scenario, the BS station sends information to each
user, who receives the information of the K users. However the MS ex-
clusively must process its own information; i.e. the MSs cannot cooperate
together. This situation difficults the detection process. In order to reduce
the complexity at the receiver side and then reduce manufacturing costs and
energy consumption, several preprocessing techniques (precoding) emerged
to move the computational complexity to the BS, which simplifies the mo-
bile stations.

2.2. System Architecture 21

2.2 System Architecture

A generic MIMO system block diagram is shown in Figure 2.5. This dia-
gram comprises some of the most important modules used in the transmis-
sion over the systems seen in the previous section. The most complex stages
are depicted in blue and the blocks required to simulate a BICM MIMO
system are represented with dashed lines. Therefore, not all modules must
be used for the simulation of MIMO transmission, but rather depending
on the type of system used, some of them will not be used or can be used
optionally.

Channel
Coding

Bit
Interleaving Multiplexing Modulation Precoding

OFDM
Modulation

Channel
Model

OFDM
DemodulationPreprocessing

Hard MIMO
DemodulationDemultiplexing

Bit
Deinterleaving

Channel
Decoding

. . .

. . .

...

s1
s2
...

snT

x1

x2
...

xnT

y1

y2
...

ynR

ỹ1

ỹ2
...

ỹnR

ŝ1
ŝ2
...

ŝnT

ĉ

c

Nc b

b̂

Soft-Output
Detection

Soft MIMO
DemodulationDemultiplexing

Λ1,:

Λ2,:
...

ΛnT ,:

Λ

Figure 2.5. High level MIMO system block diagram.

2.3 MIMO Detection

If nearly optimal data detection is desired, the detector becomes often the
most computationally expensive part within a MIMO receiver. The de-
modulator, also known as detector, is responsible of processing the received
mixture of signals affected by the channel in order to recover the transmi-
tted data with the accuracy required by the considered application. This
issue has motivated the search for high-throughput MIMO demodulators
capable to be reconfigured and scalable with the system parameters.

22 State-of-the-Art

As shown in Figure 2.5, there are two types of detectors depending on
the detector output: hard-output detectors, which decide whether a bit is
zero or one, and soft-output detectors, which decide the probability (LLR)
that a particular bit takes the value zero or one. Next, depending of the
performance achieved we can differentiate between optimal, also known as
Maximum-Likehood (ML) or suboptimal (non-ML) methods. The latter
category gets worse performance but has lower complexity. Figure 2.6 i-
llustrates the classification of the most important of the existing MIMO
detection strategies. The last classification depends on the detection stra-
tegy, which can be either exhaustive, linear, with successive interference
cancellation (SIC) way or via a tree search.

ZF MMSE ZF-SIC MMSE-SIC K-BEST FSD SESD ASD MLE

Hard-Output
Detectors

Tree-search
(Fixed Complexity) Tree-searchLinear SIC

Non-ML ML

Exhaustive

Figure 2.6. Classification of Hard-Output detection algo-

rithms.

2.3.1 Hard-Output Detection

The detection problem in the system model of Fig. 2.2 is usually described
in terms of lattices. If constellation elements are equally spaced, the setOnT
forms a rectangular lattice as shown in Fig. 2.7 (a). When these elements
are multiplied by the channel matrix H, the lattice suffers a deformation
as shown in 2.7 (b). Then, the detection is equivalent to finding the closest
point (̂s) to a given point (y) in a lattice generated by the matrix H.

Given the received symbol vector y, the detection problem consists in
determining the vector ŝ with the highest a posteriori probability of having
been transmitted:

2.3. MIMO Detection 23

Figure 2.7. (a) Initial lattice points (b) deformed lattice.

ŝ = arg max
s∈OnT

P{ŝ = s|y}. (2.7)

The maximum-a-posteriori probability (MAP) rule is obtained apply-
ing the Bayes theorem as:

ŝ = arg max
s∈OnT

P{y|̂s = s}P{s}
P{y} . (2.8)

If we assume that P{s} is constant, i.e equally likely, the MAP rule
turns into the maximum-likehood (ML) detection rule as follows:

ŝ = arg max
s∈OnT

P{y|̂s = s}. (2.9)

Considering an additive, white and Gaussian noise (AWGN), the ML
detection can be done by solving the following least squares problem [26]

ŝ = arg min
s∈OnT

‖y −Hs‖2, (2.10)

where ‖ · ‖ denotes the 2-norm or Euclidean Distance (ED) and OnT rep-
resents all possible transmit symbol vectors [27].

A brute force algorithm, called Maximum-Likehood Exhaustive (MLE)
detector can directly solve this problem by an exhaustive search over the
set of nT -dimensional lattice points s ∈ OnT . Problem (2.10) is referred in

24 State-of-the-Art

integer optimization as integer least squares and in lattice theory as Closest
Vector Problem (CVP) and is known to be (NP)-hard [28].

The size of the search space |O|nT = 2m·nT increases exponentially
with the number of transmitter antennas and the number of bits per sym-
bol. Then, its straight implementation based on exhaustive search has a
prohibitive complexity, which precludes its use in practical systems (espe-
cially for high-order constellations and high number of transmitter anten-
nas). For this reason, more efficient detection schemes were devised and are
being used in practice, such as linear detectors or sphere decoding detec-
tors. The most efficient and relevant contributions in hard-output detection
research are detailed below.

Linear Detectors

The Zero Forcing (ZF) detector is a linear and simple technique for recovery
the transmitted signals at the receiver [29]. The estimated transmitted
vector can be obtained by means the pseudo-inverse of the channel matrix
as follows:

ŝZF = Q
{

H†y
}

= Q
{

(HHH)−1HHy
}
, (2.11)

where (·)† stands for the pseudo-inverse matrix, (·)−1 indicates simple ma-
trix inversion and the function Q(·) assigns the closest constellation symbol
which is known as quantization. Unfortunately the algorithm gets good per-
formance only when H is well-conditioned, because after the product by the
inverse channel the noise variance can be significantly amplified. A mean-
ingful extension of ZF detector appeared with the aim of counteracting the
noise enhancement problem. This method, called Minimum Mean Square-
Error (MMSE), minimizes the error due to the noise and the interference
by using (HHH + σ2

wI)−1HH in (4.4) instead of the pseudo-inverse [29].

Additionally, an iterative extension was proposed in order to improve
the performance of ZF method. It is referred as zero forcing with successive
interference cancellation (SIC) or with decision feedback (DF) [30]. In this
case, the quantization is done for each component of ŝ successively and not
jointly as in the ZF. Note that SIC technique can be applied also to MMSE
detector.

Nulling and cancellation detectors have the drawback of error prop-

2.3. MIMO Detection 25

agation to the next symbols to be detected when a wrong decision has
already carried out. It can be shown that it is advantageous to perform
the detection following a certain order, which can be sometimes different
from the initial one. A quite simple reordering method calculates the norm
of all the channel matrix columns and reorders them in ascending order.
This is an approach to detect first the symbols with the highest SNR, i.e.,
the most reliable ones. In [31], an optimal ordering was proposed by the
BLAST laboratories (VBLAST) and employed for nulling and cancellation
detection. The resulting scheme was named ordered SIC (OSIC) detector.

Tree-Search-Based and Sphere Decoding Detectors

As previously mentioned, the MLE detector can not be used in most si-
tuations, especially when high-order constellations and/or large number of
transmitted antennas are used. Sphere Decoding (SD) methods arose ai-
ming to reduce the range of search, seeking uniquely those lattice points
that lie in a hypersphere of a given radius [32], called sphere radius (r),
around the received vector y (see Fig. 2.8), i.e. a subset of the total
OnT possible values of s. The SD search can be expressed introducing this
constraint in (2.10) as follows:

ŝ = arg min
s∈OnT

{
‖y −Hs‖2 ≤ r

}
. (2.12)

MLE Decoding Sphere Decoding

ỹ ỹ

r

Figure 2.8. Idea behind the Sphere Decoder: the search

process is performed only within a sphere of radius r.

A first step to decrease slightly the complexity is to reduce the chan-
nel matrix to a canonical form by unitary transformations, being the most

26 State-of-the-Art

commonly used the QR decomposition. Then, the channel matrix is decom-

posed into H = Q

[
R
0

]
where R ∈ CnT×nT is an upper triangular matrix,

and Q ∈ CnT×nT is unitary (QHQ = QQH = I). Left-multiplying (2.10)
by QH (recall that unitary matrices don’t modify the 2-norm of a vector)
and calling ỹ = QHy, the problem 2.10 can be rewritten as:

ŝ = arg min
s∈OnT

‖ỹ −Rs‖2, (2.13)

where the most likely transmitted symbol vector ŝ is found by searching
the smallest Euclidean Distance (ED) between the received vector ỹ and
each possible vector s.

To clarify how the triangular structure of R can be exploited, Eq. 2.13
has been expressed in a more explicit way as

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2

≤ r



 . (2.14)

Problem (2.14) can be represented as a decision tree with nT +1 layers,
M branches emerging from each non-leaf node, and MnT leaf nodes. The
tree-paths are built by connecting nodes and stand for candidate solutions.
For instance, a tree-path containing selected symbols from the root up to
level 1 has the form

s = [s1, s2, . . . , snT]T . (2.15)

Non-negative weights δi and ηi are associated with the branches and nodes,
respectively (see Fig. 2.9). We associate the partial Euclidean distance (δ)
metric (“branch weight”) to any branch as follows:

δi =

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2

. (2.16)

Also, we associate a cumulative Euclidean distance (η) metric to any node
as:

2.3. MIMO Detection 27

ηi = ηi+1 + δi, i = nT , nT − 1, . . . , 1 (2.17)

where the initial distance for the root node ηnT+1 is set to 0.

η3 = 0

η2 = 2

η1 = 8

1

s1 = −1,δ1 = 6

η1 = 6

2

s1 = +1,δ1 = 4

s2 = −1,δ2 = 2

η2 = 4

η1 = 5

3

s1 = −1,δ1 = 1

η1 = 7

4

i = 1

i = 2

i = 3

q

s1 = +1,δ1 = 3

s2 = +1,δ2 = 4

Figure 2.9. Decoding search tree for a 2 × 2 MIMO system

using a BPSK constellation.

Then, SD decoding descends through the tree-paths at each i-th level
and computes ηi such as (2.17) until (2.14) is not fulfilled. When the cumu-
lated metric of a node is higher than the radius, the remaining subtrees can
be pruned, accelerating the search process. The survivors paths (vectors
inside the hypersphere) will form part of the candidate points to be the ML
solution. Many different tree-search strategies have been proposed during
the last years, some of which can be found in [33][34][35].

The complexity of tree-search detectors is commonly measured in num-
ber of expanded nodes, since this allows a fair comparison among different
algorithms. The selection of a suitable radio is very important in order to
find the ML solution visiting the fewest possible number of nodes. Several
methods can estimate the sphere radius [32][36]. It is often used as initial
radius the distance provided by a suboptimal and low-complexity detection
algorithm such as Zero Forcing (ZF) solution ŝZF as:

r = ‖y −HŝZF‖2. (2.18)

28 State-of-the-Art

Thus, choosing properly r is very important in the SD detection per-
formance. For example, if we choose a too small radius, there may not
be candidates within the hypersphere. However, if we choose a too large
radius the complexity of the algorithm can be nearly the same as the MLE,
since there will be many points within the hypersphere.

In order to avoid the problem of the estimation of the suitable initial
radius, different methods were devised such as Fincke-Pohst Sphere Decoder
[33] and Schnorr Euchner Sphere Decoder (SESD) [34] and the Automatic
Sphere Decoder (ASD) [35]. The SESD performs a search from the top to
the bottom of the tree with radius reduction. First, the algorithm initializes
the sphere radius with r = ∞, and is updated any time a leaf node is
visited. Every time a leaf node is reached with cumulative metric η1 < r,
the detector updates the radius as r = η1 and continues exploring tree
branches with a smaller sphere radius.

The ASD detector does not need an initial sphere radius to find the ML
solution. For this purpose, a list of nodes is kept during the exploration of
the tree, which contains and defines the bound between the explored part
and the unexplored parts of the tree. The ASD starts initializing the list
with the root node, to which an accumulated ED is associated equal to zero.
In each iteration, the ASD selects and expands the node inside the list with
the smallest cumulative Euclidean distance (η). Then, the expanded node
is replaced by its M children nodes and removed from the list. The same
process continues until a leaf node is reached. This method guarantees
that the first node visited in the last level will be the node that contains
the optimal (ML) solution. Some variants of ASD have been developed
to speed up the detection limiting the number of expanded nodes, such as
using a constraint radius [37].

Additionally, some variants of the SD were devised in order to decrease
the computation required to detect a signal such as box optimization [38].

Fixed-Complexity Detectors

The variable complexity of Sphere Decoding methods is a critical issue
regarding their practical use in a MIMO system. In the SD algorithms the
number of visited nodes can not be known in advance because it depends
on the chosen radio, the noise and channel conditions. For this reason
several methods were proposed in order to address these problems. For
example, the K-Best Sphere Decoder (K-BEST) [23] expands the detection

2.3. MIMO Detection 29

tree from top to bottom and considers only those K survivor candidates
that show the smallest cumulative Euclidean distance ηi at each level i
of the tree. Then, the search continues from these K survivor paths and
follows the same strategy until the lowest level is reached. The detected
signal vector ŝ is given by the path from the root up to the leaf node with
the smallest Euclidean distance. The main advantage of this method is
that the maximum number of expanded nodes is limited by K and can be
known in advance.

Similarly, a method called Fixed-Complexity Sphere Decoder (FSD) was
proposed in order to fix the complexity of the Sphere Decoder [39]. The
FSD algorithm combines a preprocessing (sorting) stage with a tree-search
composed of two stages:

• Full Expansion (FE): In the first nE levels, all the possible values of
the constellation for each survivor path are assigned to the symbol at
the current level.

• Single-Path Expansion (SE): The SE stage starts from each retained
path and obtains the remaining unknow symbols (those in the lowest
nT − nE tree-levels) using SIC detection (see section 2.3.1).

The preprocessing stage sorts the columns of the channel matrix H in
order to place the symbols that suffer the largest noise amplification in the
first nE levels since no candidate is being discarded at this level and the
final performance will not be altered. Then, accordingly, the symbols that
suffer the smallest noise amplification are placed at SE levels.

These methods have been implemented over different hardware tech-
nologies such as FPGA and GPUs [40], particularly FSD algorithm because
its structure is well suited for parallel computing [41][42][43].

2.3.2 Soft-Output Detection

Assuming that all transmit vectors are equally likely, the optimal soft MAP
(OMAP) demodulator calculates the exact LLR for ci,k as

Λi,k = log
P(ci,k = 1|y,H)

P(ci,k = 0|y,H)
= log

∑
s:si∈O1

k
e
− ‖ỹ−Rs‖2

σ2
w

∑
s:si∈O0

k
e
− ‖ỹ−Rs‖2

σ2
w

, (2.19)

30 State-of-the-Art

where Ouk denotes the set of all symbols s ∈ O such that the bit in position k
has the value u. The complexity of this method is Θ(|O|nT) since the LLRs
are calculated for all layers nT , therefore is mandatory the computation of
|O|nT distances.

If the receiver uses a max-log approximation (MLA) demodulation the
computation of the LLRs for each code bit is calculated according to [44]

Λi,k ≈
1

σ2
w

[
min

s:si∈O0
k

‖y −Hs‖2 − min
s:si∈O1

k

‖y −Hs‖2
]
. (2.20)

It is useful to realize that the Euclidean distance of the solution ŝHARD

of the hard-output detection problem (2.13) directly provides one of the
two minima in expression (2.20), denoted in what follows as ηHARD:

ŝHARD = arg min
s∈S
‖y −Hs‖2, ηHARD =

∥∥y −HŝHARD
∥∥2
, (2.21)

where s ∈ S denotes the subset of the whole transmit constellation consid-
ered by the hard-output detection. The second minimum in (2.20) for each
i = 1, . . . , nT and k = 1, . . . ,m, can be computed as

η̄i,k = min

s:siεO
[sHARD
i

]k̄
k

‖y −Hs‖2 , (2.22)

where [·] indicates the binary-valued representation of the constellation
symbol and [sHARD

i]k̄ denotes the bit-negation of bit [sHARD
i]k.

Then, the LLRs can be calculated as

Λi,k =
1

σ2
w

(ηHARD − η̄i,k)(1− 2[ŝHARD
i]k). (2.23)

There are numerous suboptimal alternatives of soft MIMO detectors
designed to avoid an exhaustive search over the entire range of possibilities
|O|nT . In fact, any hard detector can produce soft values via the max-log
approximation [45][46].

2.4. High Performance Simulation Libraries 31

2.4 High Performance Simulation Libraries

High Performance Computing (HPC) systems allow to reduce the execution
time of complex problems, but it can lead to serious programming difficul-
ties. The programming challenge involves the developers to know in depth
different programming languages and the features of the architecture. In
this sense, high performance libraries become valuable tools for specialists
of a particular field, since they ease the development of scientific codes.

Some software companies have already released to the market various
HPC libraries; these libraries not only facilitate the preparation of code but
also exploit the huge computing capabilities of new architectures to accel-
erate and optimize these implementations. In the field of communication
systems we can find two remarkable libraries which are described in the
following sections.

2.4.1 Simulation Acceleration using MATLAB

The Communications System Toolbox (CST) allows the acceleration of
MIMO system simulation using GPUs, multi-core and code generation [47].
This toolbox provides algorithms for designing, simulating, and analyzing
communications systems. These capabilities are provided as MATLAB
functions, MATLAB System objects, and Simulink blocks. The toolbox
enables source coding, channel coding, interleaving, modulation, equaliza-
tion, synchronization, and channel modeling. Also it allows to analyze bit
error rates, generate eye and constellation diagrams, and visualize chan-
nel characteristics. Furthermore, dynamic communications systems that
use OFDM, OFDMA, and MIMO techniques can be modelled. Algorithms
support fixed-point data arithmetic and C or HDL code generation. If the
user has installed the Parallel Computing Toolbox (PCT) CST enables to
accelerate the simulation using multi-core and GPU hardware within the
computer [48]. Although this software is excellent and widely used by the
scientific community, at present just a few functions are prepared to use
parallel computing with GPUs. The list of functions with GPU support is:

• LDPC Decoder

• Turbo Decoder

• Viterbi Decoder

• Convolutional Encoder

• PSK Demodulator

• PSK Modulator

32 State-of-the-Art

• Block Deinterleaver

• Block Interleaver

• Convolutional Deinterleaver

• Convolutional Interleaver

• AWGN Channel

2.4.2 Simulation Acceleration using IT++

IT++ library is a C++ library of mathematical, signal processing and com-
munication classes and functions [19]. Its main use is simulation of commu-
nication systems and performing research in the area of communications.
The kernel of the library consists of generic vector and matrix classes, and a
set of accompanying routines. Such a kernel makes IT++ similar to MAT-
LAB, GNU Octave [49] or SciPy [50]. IT++ makes an extensive use of ex-
isting open-source or commercial libraries for increased functionality, speed
and accuracy. In particular BLAS, LAPACK and FFTW libraries can be
used. Instead of the reference BLAS and LAPACK implementations, some
optimized platform-specific libraries can be used as well, i.e. Automatically
Tuned Linear Algebra Software (ATLAS) [51], Intel Math Kernel Library
(MKL) [52] and AMD Core Math Library (ACML) [53]. However, this
library is oriented to its exclusive use on multi-core machines; nowadays it
does not support GPUs.

2.4.3 MIMO Design using LabVIEW

The LabVIEW simulation package from National Instrument shows a graph-
ical and fast simulator in order to model the MIMO-OFDM system [54]. By
using this simulator, the bit errror rate (BER) performance of the system
can be obtained. The list of functions provided by this simulator is:

• Pilot Sequence Generator

• Random Bit Generator

• Symbol mapper/demapper

• Pilot-to-data Power Ratio
(PDPR)

• Subcarrier Allocator

• MIMO-OFDM Transmitter

• MMSE MIMO-OFDM Re-
ceiver

• MMSE Channel Estimator

• 2D-DFT Matrix Generator

There are some other LabVIEW simulation toolkits for MIMO and

2.5. Conclusion 33

OFDM systems such as the MIMO toolkit developed by Prof. Heath’s
research group, which offers a simple tool to simulate MIMO systems [55].

2.5 Conclusion

In this chapter, firstly different transmission schemes derived from the well-
known MIMO BLAST system have been described: the MIMO-BICM sys-
tem where the soft demodulation is considered and the MU-MIMO system,
which needs precoding techniques in order to reduce the detection com-
plexity at the receiver side. For the sake of completeness, a general block
diagram of MIMO simulation was presented with the most complex and
important functional/computational blocks.

Different methods and implementations available in the literature to
process the detection, preprocessing and precoding blocks have been re-
viewed. First, different hard and soft output detection methods were re-
vised. Detection techniques can be classified according to their performance
in terms of Bit Error Rate between optimal and suboptimal methods; gen-
erally being the most precise those with a higher computational cost. De-
tection techniques can be classified depending on the detection strategy,
which can be either exhaustive, linear, with successive interference cancel-
lation (SIC) way or via a tree search. Next, some preprocessing techniques
that were proposed for decreassing the computational complexity of the
optimal detectors and also to increase the accuracy of the suboptimal ones
were briefly introduced.

In the last part of the chapter, have been presented some software
toolkits devised to simulate transmissions in a MIMO system. Each tool
is primarily designed to be used from different programming environments:
MATLAB, C++ and LabVIEW. Furthermore, some of them have support
for working with GPU or multi-core and also rely on the use of other highly
optimized numerical linear algebra libraries. However, it does not exist a
tool that possesses all the mentioned features nor meets target user’s main
needs (see Table 2.1).

In light of the scarce available tools and the possible wastage of re-
sources of the user’s machine, it seems clear the need of the design and
development of a library able to fully exploit the computational capacity
of the parallel computing architectures. In this sense MIMOPack can help

34 State-of-the-Art

Table 2.1. Comparison of features related to the HPC be-

tween different MIMO simulation toolkits.

Description CST IT++ MIMOPack

Multi-core Support • • •
GPU Support • — •
Multi-GPU Support — — •
Heterogeneous computing — — •
MATLAB interface • — •
C/C++ interface — • •
3rd HPC libraries support • • —

stakeholders to accelerate those parts of MIMO systems with high compu-
tational requirements, developing and deploying computational tools and
functions enabling scientists to model, simulate, analyze and predict the
communication system behavior. From a functional standpoint, the tools
available are very limited, since for each computational block does not
always provide different solutions or methods. Therefore, it would be in-
teresting to offer different algorithms for solving the same block, so that
the user can decide which one fulfills their needs and the parameters of the
MIMO system.

Tools and Optimization Techniques 3

36 Tools and Optimization Techniques

Tools and Optimization Techniques 3
The simulation of MIMO transmission systems entails several stages

with high computational complexity. This complexity becomes especially
large when the size of different simulation parameters increases: number
of signals to simulate, number of transmitter and receiver antennas and
number of constellation symbols. But also when the user needs greater
reliability in the system performances, which involves the use of: ML de-
tectors, coded transmissions schemes (channel decoders and soft-output
detectors).

In order to reduce the computational cost and the simulation time, a set
of software and hardware tools that allows the efficient computation of some
MIMO systems modules in Fig. 2.5 are introduced. Additionally, a method
consisting in the efficient calculation of the Euclidean distances needed to
perform the hard-output and soft-output detection is presented in the last
part of the chapter. This optimization is used in most of the algorithms
and therefore is the key to understand the implementations shown in the
following chapters.

38 Tools and Optimization Techniques

3.1 Hardware Tools

Modern High Performance Computing systems present basically two ma-
jor types of components: multi-core central processing units and hardware
accelerators. Multi-core processors and Graphics Processing Units as ac-
celerators have been used throughout this thesis.

3.1.1 Multi-core Processors

During the last years, the main microprocessors manufacturers such as Intel
or AMD have been focused in developing faster and smarter chips. From
1983 to 2002 the technology used to improve the performance was based
on the increment of the clock frequency. This trend caused a quantum
leap in the clock rates from 5 MHz to 3 GHz but at the expense of a high
requirement of power, thus complicating the manufacture of this kind of
processors.

To address this challenge, additional techniques have been developed
to enhance computing capabilities. This technique fits multiple process-
ing units (called cores) onto a single processor. The cores can process
simultaneously multiple tasks although at a lower clock rate. The last In-
tel architecture, codename Broadwell, uses 14 nm technology in processors
with 2, 4 and 18 cores. On the other hand, AMD developed the Bulldozer
architecture for desktop environments, with 32 nm technology and 4, 6
and 8 cores, and the Opteron series for servers, with 8 and 12 cores. The
purpose is to get optimal performance with minimal consumption in all
cases. However, new objectives of both companies have appeared due to
the GPU growing market in recent years. Intel started the Larrabee archi-
tecture GPGPU project some years ago with an uncertain future. After
eight years of development, Intel has announced its Xeon Phi Coprocessor
that is an 60-core processor with a GPU-like conception [56]. Although
the performance results reported by the company show that the Xeon Phi
achieves more than 1 teraFLOPS of double-precision and more than 2 ter-
aFLOPS of single-precision, it seems that it can get this performance only
under very specific conditions. On the other hand AMD decided to de-
sign an Accelerated Processing Unit (APU) called Heterogeneous System
Architecture (HSA) that combines features of the CPU, GPU and other
processing elements on a single chip [57].

3.1. Hardware Tools 39

3.1.2 Graphics Processing Units

A Graphics Processing Unit (GPU) is a coprocessor originally designed
for accelerating the computation of computer graphics. However, in recent
years a trend in the scientific computing community has appeared based on
the use of the GPU to handle general purpose problems traditionally solved
by the Central Processing Unit (CPU), called General-Purpose Computing
on Graphics Processing Units (GP-GPU).

GPUs are fascinating tools and represent a quantitative leap in the
development of high performance hardware. Nowadays, they are present
in almost all computing systems, laptops, PCs and supercomputers [58].
The fast advance in programmability has allowed its use to deal with many
problems with an insatiable appetite for computing power. This kind of
problems can appear in fields as different as Climate Science [59], Biochem-
ical [60], or Signal Processing [61]. Probably it would be impossible to go
back, and the near future cannot be imagined without GPU technology.

GPUs exhibit a fast evolution. The last models on the market have
more cores, more computational power and several new features [62][63].
Software tools also allow a friendlier GPU programming than some years
ago: CUDA (Compute Unified Device Architecture, [64]) is continuously
evolving and the most recent SDK versions solve problems of previous ver-
sions; OpenCL [65] language seems a good future alternative but unfortu-
nately it does not show the evolution speed and the performance of CUDA.

The new NVIDIA Kepler architecture is designed to maximize com-
putational performance with superior power efficiency, by offering new fea-
tures to optimize and increase parallel workload execution and therefore of-
fering much higher processing power than the previous Fermi architecture.
The new architecture shows relevant improvements that make hybrid com-
puting easier (e.g dynamic parallelism), and are suitable for a wider set of
problems (see [62] for a detailed description). The last models by NVIDIA,
codename Maxwell, have kept the increase in computational power by using
a more sofisticated hardware with up to 5000 cores into the chip [66].

Kepler is the most modern architecture that has been used to test
the performance of the present library, for this reason the Kepler comput-
ing architecture has been selected here to describe the GPU computing
architecture. Figure 3.1 shows the GK110 Nvidia Kepler composed by 15
next generation streaming multiprocessors (SMX), each SMX including 192

40 Tools and Optimization Techniques

CUDA cores, yielding a total of 2880 cores.

Figure 3.1. NVIDIA Kepler GK110 architecture.

The new SMX introduces new special features; as show in Fig. 3.2 each
SMX has four warp schedulers and two instruction dispatcher units allowing
the concurrent execution of two independent instructions per warp. A warp
is a group of 32 parallel threads. Each core has fully pipelined floating-point
and integer arithmetic logic units. Furthermore, each SMX has 64 double-
precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

GPU’s memory hierarchy is organized as shown in Fig.3.3. There exist
different types of memories whithin the GPU, the first one is the global
memory (DRAM), which is located outside the SMX (off-chip). This is the
slowest memory and limits the application performance in most cases. The
global memory is connected with the CPU through a PCI Express bus. The
remaining memories (on-chip) provide high-bandwidth access to the data
and are briefly described below:

• Configurable shared and L1 cache: This memory can be split as
48kB/16kB, 32kB/32kB or 16kB/48kB between shared memory and
L1 cache.

• Read-only cache: Is a 48KB read-only cache.

• L2 cache: The Kepler GK110 has duplicated the amount of L2 cache
of the previous Fermi architecture [67]. It avoids the global memory

3.1. Hardware Tools 41

Figure 3.2. SMX architecture of GPU NVIDIA GK110 Ke-

pler.

bandwidth bottleneck providing high speed data sharing among the
GPU.

Figure 3.3. Memory hierarchy of GPU NVIDIA GK110 Ke-

pler.

3.1.3 Computer System for simulation testing

In order to assess the performance and the portability of MIMOPack, seve-
ral test and measurements have been carried out over a Computing System
(CS). This system consists of a set of multi-processors and several NVIDIA
GPUs. Some features and specifications are listed below:

42 Tools and Optimization Techniques

Computer System A

• CPU: Two Intel Xeon CPU E5-2697 at 2.70 GHz.

• CPU cores: 12 cores per CPU

• Hyperthreading: Yes

• Operative System: Linux CentOS release 6.5

• Architecture: x86 64

• GPU: Two Tesla K20Xm

• Compute Capability: 3.5

• CUDA SDK: 5.5

• Architecture: Kepler

• Number CUDA of cores: 14 (SM) x 192 cores = 2688 cores.

3.2 Software Tools

In this section the most popular linear algebra libraries and the frame-
works used to implement the library are described: OpenMP for multi-core
programming, CUDA to program NVIDIA GPUs and MEX-Files to exe-
cute programs written in C, C++ and CUDA programming languages from
MATLAB.

3.2.1 OpenMP Programming Model

OpenMP is an Application Programming Interface (API) [68] for program-
ming shared-memory parallel computers. It consists of a set of compiler
directives, callable library routines and environment variables that may be
embedded in a code written in a programming language such as Fortran
or C/C++ and operating systems such as GNU/Linux, Mac OS X, and
Windows.

A master thread launchs a number of slave threads and divides the
workload among them (see Fig.3.4). The runtime will attempt to allocate
the threads to different processors and the threads will run concurrently.

Here, we describe two of the basic pragmas used in the implementation
of some library functions.

3.2. Software Tools 43

Figure 3.4. An illustration of multithreading where the mas-

ter thread forks off a number of threads which execute blocks

of code in parallel.

• Parallel for: it distributes the for loop iterations among the threads.
Syntax:

#pragma omp parallel for [clause[[,] clause] ...]

<for_loop>

• Parallel sections: it assigns consecutive but independent code blocks
to different threads. Syntax:

#pragma omp parallel sections [clause[[,] clause] ...]

{

[#pragma omp section]

statement-block

[#pragma omp section]

statement-block

.

.

.

}

3.2.2 CUDA Programming Model

Compute Unified Device Architecture (CUDA) [64] is a set of programming
tools developed by NVIDIA that allows to execute programs written with
C/C++, OpenGL, Fortran, and other languages on GPUs.

44 Tools and Optimization Techniques

The GPUs follow a single-instruction multiple-data (SIMD) program-
ming model, that is, a single set of instructions is executed on different
data sets. In this model, the programmer defines the kernel function which
contains a set of common operations. At runtime, the kernel is called from
the main central processing unit (CPU) and spawns a large number of
threads blocks, which is called grid. Each thread block contains multiple
threads, usually up to 1024, and all the blocks within a grid must have
the same size. Blocks and grids can be one-dimensional, two-dimensional
or tri-dimensional but they must not exceed a certain size stated in the
GPU’s specifications. Each thread can select a set of data using its own
unique ID and execute the kernel function on the selected set of data in-
dependently. Threads of the same block can share data between them by
using the shared memory type. However, threads of different blocks are
independet and should use global memory to share data once all threads
have finished running the full kernel.

Figure 3.5 shows a simple example of parallel programming with CUDA.
It contains a parallel implementation of a sum of two n-dimensional vectors
x and y, the output is stored in a third vector z. The kernel is denoted by
the global keyword and computes each element of vector z in parallel.
The call syntax sum <<< block, threads >>> (. . .) launches the kernel.
Each thread determines the element to process by using its unique ID us-
ing: its block index (blockIdx.x), its thread index (threadIdx.x) and the
number of threads per block (blockDim.x).

__global__ void sum(double *x, double *y, double *z, int n){

int id = blockIdx.x*blockDim.x + threadIdx.x;

if(id < n)

z[id] = x[id] + y[id];

}

void cuda_example(double *x, double *y, double *z, int n){

// Launch sum kernel with blocks of 64 threads

sum<<<ceil(n/64), 64>>>(x, y, z, n);

}

Figure 3.5. Example of CUDA programming: addition of

two input vectors (x and y) of lenght n and outputs a vector

of lenght n (z).

3.2. Software Tools 45

3.2.3 MATLAB MEX-Functions

MATLAB is an excellent development tool widely used in various scientific
fields [69]. Matlab stands out for its simplicity and efficiency for program-
ming of algorithms based on matrix operations. However, its performance
is not as good as expected for non matrix-based problems.

The use of MEX-files allows to call codes written in C/C++ or Fortran
from MATLAB without having to rewrite them as M-files [70]. This allows
developers to increase the speed of those parts of the code whose structure
does not offer good performance in MATLAB. Furthermore, it allows to
run MEX-Functions including CUDA code.

Figure 3.6 shows a simple MEX-File example to call the CUDA function
seen in the previous section. The name of the gateway routine must be
mexFunction and acts as an interface between C and MATLAB. This
function takes two input matrices x and y which can be accessed using the
array of pointers prhs (parameters of right hand side). These arguments
are collected using mxGetPr function. The size of the input matrices are
obtained using mxGetM and mxGetN that return the number of rows and
columns, respectively. The output argument is a matrix 1-by-n called z, a
matrix of these dimensions is created using mxCreateDoubleMatrix. Finally
we indicate that this matrix will be the output of the algorithm through
the plhs[0] pointer (parameters of left hand side).

3.2.4 HPC Linear Algebra Libraries

High Performance Computing linear algebra libraries are commonly used
in the development of efficient linear algebra software due to its excellent
performance. These packages have been designed to solve big matrix-based
problems. However, the simulation of communications systems shows two
serious characteristics that hinder its use in MIMOPack library:

• The problems that appear in most stages MIMO communications seen
in Figure 2.5 are not matrix-based problems.

• MIMO channel matrices are very small, usually 2× 2 or 4× 4. Even
if we consider very large arrays (e.g 100× 100) are not large enough
to obtain significant performance improvements.

46 Tools and Optimization Techniques

/*

* arraySum.c - example in MATLAB External Interfaces

* Performs the addition of two input 1xN matrices (A and B)

* and outputs a 1xN matrix (C)

*

* The calling syntax is:

* C = arraySum(A, B)

* This is a MEX-file for MATLAB.

*/

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

mxArray *prhs[]){

double *x, *y, *z;

int m, n, p;

x = mxGetPr(prhs[0]);

y = mxGetPr(prhs[1]);

n = mxGetN(prhs[1]);

plhs[0] = mxCreateDoubleMatrix(1, n, mxREAL);

z = mxGetPr(plhs[0]);

cuda_example(x, y, z, n);

}

Figure 3.6. Example in MATLAB External Interfaces: per-

forms the addition of two input 1×N matrices (x and y) and

outputs a 1×N matrix (z).

BLAS (Basic Linear Algebra Subprograms)

The BLAS (Basic Linear Algebra Subprograms) is a set of routines for
performing basic vector and matrix operations [71]. These routines are
classified in different levels based on the type and complexity of operations:
functions of level 1 perform scalar, vector and vector-vector operations, level
2 perform matrix-vector operations, and the level 3 perform matrix-matrix
operations.

3.3. Heterogenous computation 47

LAPACK (Linear Algebra Package)

The LAPACK (Linear Algebra Package) contains routines for solving sys-
tems of linear equations, linear least squares problems, factoring matrices,
eigenvalue problems, and singular value problems over dense matrices [72].
Important companies have made their own implementation optimized for
its processors, for example:

• MKL (Math Kernel Library): Optimized for Intel processors [52].

• ACML (AMD Core Math Library): Optimized for AMD processors
[73].

• CULA: A GPU-accelerated implementation of LAPACK library [17].

• MAGMA: Efficient implementation of LAPACK with GPU for hetero-
geneous/hybrid architectures starting with current “Multi-core+GPU”
systems [16].

3.3 Heterogenous computation

As seen in section 3.2.2, programming with GPUs entails serious difficulties,
especially if they are intended to be used as general purpose machines.
Sometimes these difficulties are intrinsic and related to the SIMD (Single
Instruction Multiple Data) model, which essentially allows data-parallelism
but limits the use of graphics accelerators in general purpose applications.
Instead, MIMD (Multiple Instruction Multiple Data) models allow task
parallelism and can be more efficient in this last type of applications.

Some GPU limitations are derived from their technical specifications
(for instance, their clock frequency is lower than the current-generation
CPU), from usage and memory capacity limitations and, especially, from
the fact that GPUs exist as accelerators and not as chips that include all
the features of the set CPU-GPU. Therefore it is imporant to identify the
problems that can be solved with these tools:

• High computational requirements: The GPUs have a lot of cores
which must be utilized upto their full power as much as possible.

48 Tools and Optimization Techniques

Problems with a low workload are disadvantageous for its program-
ming on the GPU, since they consume too much time communicating
but not enough time in computation.

• Low communication: Communications between the CPU and the
GPU can decrease the throughput of the GPU, especially when the
GPU must wait for the results of the CPU. Algorithms where the
different threads must synchronize frequently will not profit from the
full computing power of the GPU.

One of the more decisive concepts for successfully programming a com-
puter that uses GPU is the underlying model of parallel computer. Tradi-
tionally, a GPU card has been considered as an isolated parallel computer,
fitting a SIMD model, and connected to a sequential computer (see Fig.
3.7). From this point of view, the GPU card can be seen as a set of proces-
sors, running the same instruction simultaneously, each one on its own set
of data. An appropriate performance metric for this system could be the
speedup achieved by the graphics card against the CPU. This speedup can
be obtained by dividing the runtime of a program executed in the sequen-
tial processor by the execution time given by the graphic card. A similar
metric consists of comparing the Gflop/s needed by the CPU and the GPU
to solve the same problem. Note that the different clock speed of operation
in the sequential unit and in the GPU causes an unfair comparison between
performances of CPU and GPU. In fact, this is not a classical speedup be-
cause the considered sequential machine is not an instance of the considered
parallel machine for just one processor.

A more realistic model should consider the host system and graphics
card as a whole, and the host computer as another parallel computer, at
the same level than the GPU. This leads us to the heterogeneous parallel
computer model. A similar model is used for instance in [74]. Following
this idea, a system with a GPU or an accelerator card (see Fig. 3.8) consists
of a set of two (or more) parallel computers, with different speeds, each of
them with access to different types of memory, which also implies different
memory access times for each processor.

A model of this kind would be characterized by the number and type
of processors, and different access time of each processor to the different
types of memory. For example a system comprising a multi-core type CPU
is considered in Fig. 3.8. This system has a first-level cache and a main

3.3. Heterogenous computation 49

CPU Main Memory

GPU Global MemoryCM

SM SM SM

Sequential CPU

Figure 3.7. Sequential computer with a GPU accelerator.

memory, shared by all cores, and an accelerator many-core type card with
different types of memory (global memory, constant memory (CM), shared
memory (SM)). In this case the CPU can write and read to global and
constant memory of the GPU and GPU can write and read to its global
memory and only read from constant memory.

Performance and programming of this model depend on: the type of
parallel computer (MIMD in the case of the CPU, SIMD in the case of the
GPU), the clock speed of CPU and GPU, the access time to each type of
memory and the amount of memory in each memory class. Note that the
performance of a GPU in a system of this kind is difficult to evaluate as
an isolated component. The best metric in this case may be to compare
the speed of the system with and without the accelerator card. It must
be allowed (and even encouraged) a simultaneous use of the GPU and
CPU, and compare the Gflop/s obtained when they act together and when
eliminating the use of the GPU to solve a given problem.

This second approach is much more realistic, and it is used, for example,
in the case of numerical linear algebra libraries like MAGMA [16] or CULA
[17]. Although these libraries are considered specific libraries for GPU, they
run usually part of their programs on the CPU and reserve the GPU to
execute those parts that exhibit a strong data parallelism.

MIMOPack library allows the execution of several functions in a het-
erogeneous mode to fully exploit the computational capacity. The workload

50 Tools and Optimization Techniques

CPU Cache Memory

CPU Main Memory

GPU Global MemoryCM

SM SM SM

MIMD Model

SIMD Model

Figure 3.8. Heterogeneous parallel computer system.

can be splitted between the different types of architectures on the target
machine (GPU or CPU). Normally, the user will try to simulate a large
number of transmitted signals, then the dispatcher splits the amount of
signals among different resources.

Figure 3.9 illustrates the detection of Nc signals with several Nvidia
GPUs and OpenMP threads. As input of the parallel functions, the user
must specify the workload percentage to be computed by the GPUs (pw).
Thus, the number of signals to be estimated by the GPU is calculated as

N
(gpus)
c = Nc · pw100 and the number of signals to be estimated by the CPU

as N
(gpus)
c = Nc · 100−pw

100 .

The master thread splits the computation according to the selected
number of GPUs (ngpus) and openMP threads (ncpus). One of the threads

will distribute the computation of N
(cpus)
c signals among ncpus threads. The

other thread is in charge of controlling and create as many threads as GPUs

have been selected and deliver the computation of N
(gpus)
c signals among

the ngpus GPUs. To carry out this distribution the option “omp nested”
must be previously activated thus allowing nested parallelism.

3.4. Efficient Euclidean Distance Calculation 51

y:,1 y:,2 y:,3 . . . y:,Nc−1 y:,Nc

ŝ:,1 ŝ:,2 ŝ:,3 . . . ŝ:,Nc−1 ŝ:,Nc

Create ngpus new
OpenMP threads

Create ncpus

new OpenMP
threads

Split according to
the platform configuration:

GPU1 GPU2 ... GPUngpus c1 c2 c3

c4 c5 c6

...
...

...

cncpus−2 cncpus−1 cncpus

N
(gpus)
c = Nc · pw

100

N
(gpus)
c N

(cpus)
c

N
(cpus)
c = Nc · (100−pw

100)

CPU

Buffer with Nc received signals

Figure 3.9. MIMOPack workload distribution for the sim-

ulation of Nc signals on a heterogeneous parallel computer

system.

3.4 Efficient Euclidean Distance Calculation

The Efficient Euclidean Distance Calculation (EEDC) optimization is de-
vised in order to reduce the computational complexity of the MIMO detec-
tors. As shown in section 2.3.1, the ML detection problem (2.13) can be
expressed in a more explicit way as

52 Tools and Optimization Techniques

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2
 . (3.1)

EEDC consists in calculating all posible values of the inner sumatory∑nT
j=iRi,jsj in equation (3.1) before detection. Then, we can obtain the

partial Euclidean distance (δ) as follows:

δi =

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
ỹi −

nT∑

j=i

T〈sj〉,Γi,j

∣∣∣∣∣∣

2

, (3.2)

with T〈sj〉,Γi,j = Ri,jsj . Here, 〈·〉 gets the integer unique identifier (UID) of
a constellation symbol and index Γi,j is the index that occupies the value
Ri,j in the matrix T. This will allow us to avoid common computation for
different possible solutions (s ∈ OnT) decreassing the computational cost
of the detection process. This matrix is formed by M × nv elements, Ti,j ,
which are the result of multiplying the constellation symbol Oi by the j-th
non-zero value of matrix R (see Fig. 3.10):

T =




O1R1,1 O1R1,2 . . . O1RnT ,nT
O2R1,1 O2R1,2 . . . O2RnT ,nT

...
...

. . .
...

OMR1,1 OMR1,2 . . . OMRnT ,nT


 . (3.3)

The number of non-zero values (nv) of R can be calculated by a function
called nz, which takes as input argument the number of columns of the
matrix:

nv = nz(nT) =

nT∑

i=1

i =
nT (nT + 1)

2
. (3.4)

Then, each row i of the matrix T contains all non-zero valued elements
of matrix R multiplied by the constellation complex-valued symbol Oi.
Fig. 3.10 shows an example for a matrix R of size 3× 3 with nv = 6 non-

zero values that are represented as R
(t)
i,j , where t represents the index of its

3.4. Efficient Euclidean Distance Calculation 53

corresponding column in the T matrix (t = Γi,j). Then, given the i-row
and j-column of R we can obtain the index Γi,j as:

Γi,j = ((i− 1)× nT + i)− nz(i− 1) + (j − i). (3.5)

R
(1)
1,2 R

(2)
1,2 R

(3)
1,3

0 R
(4)
2,2 R

(5)
2,3

0 0 R
(6)
3,3







R : 3 rows and 3 columns

nv = 6 non-zero elements

O1

O2

O2

O4







O : 4 rows

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6

T3,1 T3,2 T3,3 T3,4 T3,5 T3,6

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6







T : 4 rows and 6 columns

R 1,
2
×O

2

R 2,
3
×O

4

Figure 3.10. Efficient Euclidean Distance Calculation: corre-

spondence between non-zero elements of matrix R and matrix

T for a 3× 3 MIMO system with QPSK constellation.

To quantify the complexity reduction in terms of FLOP (FLoating-
point Operations), the problem (3.1) with cost Θ(MnT) has been consid-
ered as target problem. The use of EEDC allows to decrease its asymptotic
cost from Θ(MnT) to Θ(M · nv). This performance improvement may be
increased if the channel matrix remains constant for several signal trans-
missions since the T matrix is calculated only once and reused in the entire

54 Tools and Optimization Techniques

detection process. As an example, let us consider the MLE tree detection
shown in Fig. 2.9, where a 2×2 MIMO system using BPSK constellation has
been used. The associated triangular matrix has the following structure:

R =

[
R1

1,1 R2
1,2

0 R3
2,2

]
.

The operations needed to calculate the partial Euclidean distances with
and without EEDC are shown in Table 3.1. As can be seen the number of
multiplications needed with EEDC is zero whilst if EEDC is not used the
number of operation has an as asymptotic cost of Θ(MnT).

Table 3.1. Number and operations type needed in the MLE

detection with and without the use of EEDC in a 2×2 MIMO

system with BPSK constellation.

s ∈ OnT No EEDC EEDC

[O1,O1]
δ2 = |ỹ −R2,2O1|2 δ2 = |ỹ − T1,3|2

δ1 = |ỹ − (R1,1O1 +R1,2O1)|2 δ1 = |ỹ − (T1,1 + T1,3)|2

[O2,O1]
δ2 = |ỹ −R2,2O1|2 δ2 = |ỹ − T1,3|2

δ1 = |ỹ − (R1,1O2 +R1,2O1)|2 δ1 = |ỹ − (T2,1 + T1,3)|2

[O1,O2]
δ2 = |ỹ −R2,2O2|2 δ2 = |ỹ − T2,3|2

δ1 = |ỹ − (R1,1O1 +R1,2O2)|2 δ1 = |ỹ − (T1,1 + T2,3)|2

[O2,O2]
δ2 = |ỹ −R2,2O2|2 δ2 = |ỹ − T2,3|2

δ1 = |ỹ − (R1,1O2 +R1,2O2)|2 δ1 = |ỹ − (T2,1 + T2,3)|2

Sums: MnT · (1 + 2) = 12 MnT · (1 + 2) = 12

Powers: MnT · (1 + 1) = 8 MnT · (1 + 1) = 8

Multiplations: MnT · (1 + 2) = 12 0

Implementation of Hard-Output MIMO Detectors

4

56 Implementation of Hard-Output MIMO Detectors

Implementation of Hard-Output MIMO Detectors

4
In MIMO system simulations, the detector can become a bottleneck

requiring a significant effort due to the large amount of signals to be re-
ceived or the high complexity of certain ML detectors. There are several
methods in the state of the art devised to recover the information in a
MIMO system, but only a selection of these has been implemented until
now in MIMOPack. This selection is formed by detectors with mixed com-
plexities and performances intended to deal with multiple use cases with
different scenarios and channel conditions. This chapter presents efficient
implementations of several hard-output detection schemes, which conside-
rably decrease the computational time required for the data detection stage
in MIMO systems. Throughout the chapter some preprocessing algorithms
used to reduce the complexity of the detector will be presented. These im-
plementations have been developed with tools and optimization techniques
explained in chapter 3. The implementations are evaluated for different
system configurations: constellation type, number of transmitted signals
and number of transmitting and receiving antennas. And also for diffe-
rent platform configurations (e.g. number of OpenMP threads). Moreover,
the computation times of the proposed OpenMP/CUDA implementations
are compared with the execution time of the unoptimized version (U) (i.e.

58 Implementation of Hard-Output MIMO Detectors

sequential algorithms without Efficient Euclidean Distance Calculation).

4.1 Introduction

As it was already presented in previous chapters, there are some techniques
aimed to reduce the computational cost of the detection algorithms:

• QR decomposition: The reduction of the channel matrix to a cano-
nical (H = QR) form allows to exploit the triangular structure of
matrix R and enables the representation of the detection problem as
a Tree-Search-Based problem.

• Efficient Euclidean Distances Calculation (EEDC): it consists in acce-
lerating the computation of the Euclidean Distances building a ma-
trix with all possible values resulting from the multiplication of each
constellation symbol by each channel link.

• Preprocessing: In some cases the use of preprocessing techniques be-
fore data detection such as column based ordering, can help to im-
prove the performance in terms of bit-error-rate (BER) of suboptimal
detectors and also allows to decrease the computational cost of opti-
mal ones.

• High Performance Computing: The new high performance computer
architectures (e.g multi-core and GPUs) allow to accelerate applica-
tions that require high computational resources.

Obviously, not all of these techniques are mandatory or required when
performing detection. Therefore the library enables the selection of different
optimization techniques to be used in the detection module. Flow diagram
4.1 shows the necessary steps for the Hard-Output detection. First of all,
the columns of the channel matrix are reordered if required (jump 1). After
that, the QR decomposition of channel matrix is performed. Once the
matrix R is computed, matrix T [see Chapter 3, Section 3.4] must be built
if the efficient Euclidean Distances calculation (EEDC) is required (jump
2). Finally, the detector is launched and returns the estimated symbols (̂s)
for each transmitted signal and its Euclidean distance (η). To keep the
system model unaltered, the detected symbol vectors should be reordered

4.1. Introduction 59

as ŝ = Pŝ if reordered detection has been employed (jump 3). Estimates
of the transmitted bits (b̂) can be obtained by demapping the estimated
symbol vector ŝ to its corresponding bit-labels according to

b̂i,k = [ŝi]k i = 1, . . . , nT , k = 1, . . . ,m, (4.1)

where [ŝi] denotes the binary-valued representation of the constellation
symbol ŝi.

The detector function (assuming no EEDC) has the following call:
hard detector(complex *R, complex *ỹ, mmp detector det, mmp config
conf), where mmp detector and mmp config structure types contain pa-
rameters related to the detector and parallelization, respectively, choosed
by the user.

typedef struct{
integer ncpus; // number of OpenMP threads

integer ngpus; // number of GPUs

double pw; // GPUs workload percentage

}mmp config;

typedef struct{
char *name; // detector name

char *ordering; // channel matrix ordering

integer nE; // number of fully expansion levels

integer K; // number of survivors

integer Niter; // Selected paths in the SFSD-SOE stage

double *r; // Initial radius

bool eedc; // Indicates if EEDC must be used

}mmp detector;

As we will see throughout the present chapter, the detection problem
can be represented as a decision tree such as shown in Fig. 2.9. For ease of
explanation and implementation, MIMOPack provides a set of functions for
working on the detection tree. A structure, called mmp path and denoted
by P, is used to contain the information of a tree-branch:

60 Implementation of Hard-Output MIMO Detectors

typedef struct{
complex *s;

integer l;

double η;

}mmp path;

here, s contains the tree-path formed by up to nT constellation symbols
and η the accumulated Euclidean Distance up to level l.

Figure 4.2 shows the pseudocode for the detector in sequential, multi-
core, multi-GPU and heterogeneus modes [see Chapter 3, Section 3.3] that
is explained in the following items:

• Sequential and multi-core mode: steps 5-6 show the sequential or
multi-core execution by setting variable ncpus to the desired number
of OpenMP threads by the user (ncpus = 1 for sequential mode).
Function wrapper “dt c name wrapper” returns a list (L) of paths
with the Nc estimated signal vectors.

• Multi-GPU mode: steps 8-18, allow to execute the detector over mul-
tiple GPUs. The number of signals to be computed for each GPU
(Ndev) are calculated in function of the workload percentage of the
GPUs (pw) and the number of devices selected Ngpus. Function wrap-
per “dt cu name wrapper” returns the list of paths with the Ndev

estimated signal vectors.

• Heterogeneous mode: steps 20-25 make possible the execution in het-
erogeneus mode. The master thread splits the computation according
to the number of GPUs (ngpus) and OpenMP threads (ncpus) selected.
One of the threads will distribute the computation of Ngpus

c = Nc · pw100
among the ngpus NVIDIA devices. The other thread is in charge of
controlling and creating as many threads as OpenMP threads have
been selected and distributing among them the remainder signals
(Nc−Ngpus

c). To carry out this distribution, nested parallelism must
be previously activated (step 20).

The main part of the chapter contains implementations considering the
simulation of a large number of signals. As we will see later, this situation

4.1. Introduction 61

Start Hard-
Output Detection

Input data: H
and y, det, conf

Read
det.ordering
parameter

Reordered
Detection?

Calculate
Permutation
Matrix P

Permute channel
matrix H = PH

Calculate QR
decomposition
H = QR

Calculate
ỹ = QHy

Read det.eedc
parameter

EEDC?

Construct
matrix T

Read det
and config
parameters

[̂s,η] =
hard detector([R][,T], ỹ, det, conf)

Reordered
Detection?

Permute
Estimated

Symbols ŝ = Pŝ

End Hard-Output
Detection

yes

yes

yes

no

no
no

1

2
3

Figure 4.1. Flow Chart of Hard-Output detection.

facilitates the parallelization, since these signals can be independently pro-

62 Implementation of Hard-Output MIMO Detectors

cessed. However, we want to provide parallel algorithms that can be used in
a real transmission where a single signal vector is processed as a real-MIMO
receiver does. For this second use mode, in the last part of the chapter a
framework called WinTrees, based on the Divide-and-Conquer paradigm,
has been presented. This tool allows and facilitates the free-design and the
parallel implementation of tree-search-based MIMO detectors.

The chapter is organized as follows. First, the basic and simplest de-
tector Zero Forcing with SIC (ZFSIC) is introduced; this will be used as
a preprocessing unit to obtain an initial radius for some of the remain-
ing detectors. Next, the following ML detectors implementations are de-
scribed: ML Exhaustive (MLE), Schnorr Euchner Sphere Decoder (SESD)
and Automatic Sphere Decoder (ASD). Finally, two fixed complexity Tree-
Search based detectors are detailed: K-BEST Sphere Decoder (K-Best) and
Hard Fixed Complexity Sphere Decoder (HFSD). The Divide-and-Conquer
framework is described at the last part of the chapter. Each description
contains the sequential pseudocode, some OpenMP implementation details
and the CUDA algorithm version. In order to make an assessment of the
MIMOPack Hard-Output detectors, a performance subsection is presented
for each detector, which shows time measurements with different configura-
tions taken on the Computer System codename A [see Chapter 3, Section
3.1.3].

4.1.1 OpenMP implementation details

A potential MIMOPack user will use normally the library to carry out
Montecarlo simulations where a large amount of bits is considered in order
to reproduce those obtained in a real transmission and get average perfor-
mances. This way of library using mode is highly desired because it allows
direct parallelization distributing among the available computational re-
sources the set of signal vectors (Nc) to process (see Fig. 4.3). To simplify
the presentation of the algorithms, we have assumed that the channel will
remain constant for the entire transmission (i.e Lch = Nc). However, the
library allows to remove this restriction providing a number of signals Nc

multiple of Lch.

Along the chapter, the parts of the algorithms susceptible to be par-
allelized (i.e. for loops iterators) are accompanied with specific OpenMP
pragmas coloured in red. Based on the number of iterations of the possible
parallelizable loops in each detector, the library decides the most appropri-

4.1. Introduction 63

Input: R ∈ CnT×nT , ỹ ∈ CnR×Nc , det ∈ mmp detector,
conf ∈ mmp config
Output: ŝ ∈ CnT×Nc ,η ∈ RNc

function [̂s,η] = hard detector(R, ỹ, det, conf)
1. Initialize L with Nc empty paths
2. Nc = size(ỹ, 2)

3. N
(gpus)
c = Nc ∗ (conf.pw

100)

4. if N
(gpus)
c = 0

5. omp set num threads(conf.ncpus)
6. [L

N
(gpus)
c +1:Nc

] = dt c name wrapper(R, ỹ
:,N

(gpus)
c +1:Nc

, det)

7. else if N
(gpus)
c = Nc

8 #pragma omp parallel for num threads(conf.ngpus)
9. for dev = 1 : conf.ngpus

10. Ndev =
N(gpus)

c

conf.ngpus

11. ini = (dev − 1) ·Ndev + 1
12. end = dev ·Ndev

13. if dev = conf.ngpus

14. end = Ndev

15. end
16. setDevice(dev)
17. [Lini:end] = dt cu name wrapper(R, ỹ:,ini:end, det)
18. end
19. else
20. omp set nested(1)
21. #pragma omp parallel sections num threads(2)
22. #pragma omp section
23. Get [L

1:N
(gpus)
c

] such as steps 8-18

24. #pragma omp section
25. Get [L

N
(gpus)
c +1:Nc

] such as steps 5-6

26. end
27. for n = 1 : Nc

28. ηn = Ln.η
29. ŝ:,n = Ln.s
30. end
end

MIMOPack Hard detector pseudocode

Figure 4.2. MIMOPack Hard-Output Detector Pseudocode.

ate loop to parallelize.

Algorithm in Fig. 4.3 is responsible to launch the Nc required detectors
which can be processed in parallel keeping the OpenMP pragma in step 2.

64 Implementation of Hard-Output MIMO Detectors

function [L] = dt c name wrapper(R, ỹ, det)
1. Nc = size(ỹ, 2)
2. #pragma omp parallel for
3. for n = 1 : Nc

4. [path] = dt c name(R, ỹ:,n[, det.rn][, det.nE][, det.K])
5. L = L ∪ path
6. end
end

C/OpenMP Hard-Output detection wrapper pseudocode

Figure 4.3. C/OpenMP Hard-Output detection wrapper

pseudocode. Parameters depend on the chosen detector.

Function dt c name wrapper is a generic function used to launch multiple
detectors among different signals. For example, if det.name = mle, this
function takes the name dt c mle wrapper and therefore will carry out Nc

calls to dt c mle detector.

Each detector is called with different parameters (inside square brack-
ets) depending on the detector chosen in structure det. Each C/OpenMP
detector returns a variable, called path, which contains the information
related to the estimated signal: symbol vector path.s and its Euclidean
distances path.η. This information is stored for each signal n in ŝ:,n and
ηn.

4.1.2 CUDA implementation details

Before explaining the implementations carried out with CUDA, it seems
necessary to explain some implementation details that have been considered
and are common for all detectors.

Generic implementations

Nowadays different NVIDIA GPU architectures such as Fermi, Kepler or
Maxwell exist in the market. These architectures show increasingly better
computation capabilities and new features that usually offer better per-
formance. Throughout the development of this thesis, efficient and highly
coupled detectors to a given GPU architecture such as [75][76] have been

4.1. Introduction 65

developed. However, this type of specific programming requires a hugh e-
ffort and many years of development. This is why the algorithms that have
been included in the first MIMOPack release are designed to run on any
NVIDIA card regardless of the architecture.

Limited GPU Memory Capabilities

Generally all the detectors require to cope with large amounts of data,
since it is necessary to store the information of several candidates for all
signals. This problem becomes more tricky as the number of signals (Nc)
to simulate increases. Although the latest models of NVIDIA cards have
6 GB of Global Memory (which would be enough to store a considerable
number of signals), there are other models that only have 1 GB-2 GB.

For this reason in MIMOPack, CUDA kernels are designed to estimate
only Ns signals in parallel at once. The parameter Ns will be choosen
as a function of the storage capabilities of the graphic card mounted in
the target platform. That is, when the memory is enough to store the
information required for the detection of Nc signals simultaneously, Ns =
Nc. Otherwise, when the memory requirements needed to detect them are
higher than those of the GPU, Ns will be computed in order to fit into
the GPU memory. As it can be seen in Fig. 4.4 this process is carried
out using a generic function gpu name fitting (dependent on the detector
name) which takes as inputs: the GPU model, the number of signals to
simulate and the MIMO system size. Once Ns has been calculated, the
CUDA wrapper makes Nc

Ns
calls to the CUDA detector to complete the

simulation.

The output of each CUDA detector is a list of Ns paths, called D,
which contains the estimated signals calculated by the “dt cu name” at
once. The list with the total estimated signal L is updated each time the
CUDA detector ends in step 8 in Fig. 4.4.

Moreover, during the detection process, the detector should maintain a
list of the symbol vectors that are being estimated, one for each thee-path
considered. In order to reduce memory requirements and the cost of data
transfers our algorithms keep a list of paths with signal vectors (path.s) in
integer format (not complex).

66 Implementation of Hard-Output MIMO Detectors

function [L] = dt cu name wrapper(R, ỹ, det)
1. [nT , Nc] = size(ỹ)
2. L = ∅
3. Ns = gpu name fitting(model,Nc, nT)
4. for n = 1 : Nc

Ns

5. ini = (n− 1) ·Ns + 1
6. end = n ·Ns

7. [D] = dt cu name(R, ỹ:,ini:end[, det.rini:end][, det.nE][, det.K])
8. L = L ∪ D
9. end
end

CUDA Hard-Output detection wrapper pseudocode

Figure 4.4. CUDA Hard-Output detection wrapper pseu-

docode.

Grid Configuration

A bidimensional grid configuration with NBx = NB, NBy = NB blocks
per dimension has been considered for all Hard and Soft Detectors (see
Fig. 4.5). The number of blocks NB depends on the number of threads per
dimension, which are denoted by Ntx and Nty, respectively. The block size
will be chosen to be a multiple of 32 in order to avoid incomplete warps.
Then the value of NB is obtained as

NB =

⌈√
nth

(Ntx ·Nty)

⌉
. (4.2)

As the performance tests have been done on the NVIDIA GPU mounted
in the Computer System codename A, the thread per dimension values have
been fixed Ntx = Nty = 32. This value can be modified by the user.

4.1.3 Assessment of parallel algorithms

Some experiments have been carried out in order to evaluate the parallel
implementations of the Hard and Soft detectors. This section sumarizes the
tools and performance indices used to analyze the efficiency of the parallel
algorithms.

4.1. Introduction 67

BLOCK
(0, 0)

BLOCK
(0, 1)

. . . BLOCK
(0, NB)

BLOCK
(1, 0)

BLOCK
(1, 1)

. . . BLOCK
(1, NB)

...
...

.

BLOCK
(NB , 0)

BLOCK
(NB , 1)

. . . BLOCK
(NB , NB)

Thread
(0, 0)

Thread
(0, 1)

. . . Thread
(0, Ntx)

Thread
(1, 0)

Thread
(1, 1)

. . . Thread
(1, Ntx)

...
...

.

Thread
(Nty, 0)

Thread
(Nty, 1)

. . . Thread
(Nty, Ntx)

GRID

BLOCK

Figure 4.5. Grid distribution considered for the kernels of

the Hard and Soft output CUDA detectors.

Computer System for simulation testing

During the development of this thesis, different computer systems have been
used for the evaluation of the performance of the developed algorithms.
For example, Nvidia Tesla and Fermi GPUs were used for the evaluation
of different detectors in [75] and [76] respectively. For the assessment of
the library, a machine with multiple Kepler GPUs and multiple multi-core
processors has been employed in order to evaluate more platform configura-
tions (i.e multi-core, single-GPU, multi-GPU and multi-core+multi-GPU).
The most relevant features and specifications are listed below:

• CPU: Two Intel Xeon CPU E5-2697 at 2.70 GHz

• CPU cores: 12 cores per CPU

• Hyperthreading: Yes

• Operative System: Linux CentOS release 6.5

• Architecture: x86 64

• GPU: Two Tesla K20Xm

• Compute Capability: 3.5

• CUDA SDK: 5.5

• Architecture: Kepler

• Number CUDA of cores: 14 (SM) x 192 cores = 2688 cores

68 Implementation of Hard-Output MIMO Detectors

Execution Time

The time execution is a performance index that allows measure the speed
of the algorithm. In the case of a sequential program, the execution time
(TS) is the time from the beginning of program execution until it ends. In
the case of a parallel program, the execution time (TP) is the time from
the beginning of program execution in the parallel system until the last
processor completes its execution.

Speedup

The speedup for p processors, SP , is the ratio between the time execution
of the sequential algorithm, TS , and time execution version of the parallel
algorithm on p processors, TP . The speedup is computed as:

SP =
TS
TP

. (4.3)

This index indicates the speed gain obtained with parallel execution.
For example, a speedup equal to 2 indicates that the time is reduced by
half running the algorithm with multiple processors.

In the best case, the execution time of a program in parallel with p
processors will be p times lower than the execution time on a single proces-
sor. Then, the maximum value of SP of a parallel algorithm is p. Usually,
the execution time will never be reduced by the same order p, because
extra overhead that appears to solve the problem on multiple processors
(e.g. synchronization, dependencies, memory accessess, etc.) have to be
considered.

Scalability

Scalability is the ability of an algorithm to maintain its performance pro-
portionately when the number of processors and the size of the problem
increases. A scalable parallel algorithm is usually able to maintain con-
stant efficiency when we increase the number of processors even enlarging
the problem.

A study of the execution time increasing the number of processors with
different number of signals, system and constellations sizes was carried out
to evaluate the influence of these parameters on the algorithm performance.

4.2. Zero Forcing SIC Detector Implementation 69

4.2 Zero Forcing SIC Detector Implementation

The Zero Forcing (ZF) detector is a linear and simple technique for re-
covering the transmitted signals at the receiver [29] as was introduced in
chapter 2, section 2.3.1. The estimated transmitted vector can be obtained
by means of the pseudo-inverse of the channel matrix as follows:

ŝ = Q
{

H†y
}

= Q
{

(HHH)−1HHy
}
, (4.4)

where (·)† stands for the pseudo-inverse matrix, (·)−1 indicates simple ma-
trix inversion and the function Q(·) assigns the closest modulation constel-
lation symbol.

The computation of the inverse matrix has a high computational com-
plexity. The QR decomposition can be used for matrix inversion to reduce

the complexity of this method. If H = QR = Q

[
R1

0

]
with R1 ∈ CnT×nT is

used, (HHH)−1HHy = ((QR)H(QR))−1(QR)Hy = (RH
1 R1)−1[RH

1 0]ỹ =

R−1
1 ỹ1 with ỹ = QHy, ỹ =

[
ỹ1

ỹ2

]
and ỹ1 ∈ CnT×1. For the sake of sim-

plicity, submatrices R1 and ỹ1 are renamed as R and ỹ respectively. In
this case, the quantization and detection are done for each component of ŝ
successively and not jointly as in the ZF as:

ŝi = Q
{
ỹi −

∑nT
j=i+1Ri,j ŝj

Ri,i

}
, i = nT , . . . , 1. (4.5)

This technique is known as Succesive Interference Cancellation (SIC)
or decision feedback and not only reduces the computational complexity
of the method but also decreases the noise amplification of linear detec-
tors improving the performance of the Zero Forcing method [30]. In the
decision-tree perspective, ZF-SIC can be seen as just exploring one single
path down from the root (see Fig. 4.6). After nT steps we end up at one
of the leaf nodes (coloured in red), but not necessarily in the one with the
smallest euclidean distance (coulored in blue).

Figure 4.7 shows the necessary steps to estimate a signal with the ZF-
SIC detector. Note that, Efficient Euclidean Distance Calculation (EEDC)

70 Implementation of Hard-Output MIMO Detectors

0

1

3

7

4

4

1

2

2

5

3

6

4

1

1

5

7

10

3

8

1

2

8

9

1

11 i = 1

i = 2

i = 3

i = 4

3

3

5

Figure 4.6. Decoding tree of the Zero Forcing with SIC al-

gorithm for a 3× 3 MIMO system with BPSK symbols.

function [path] = dt c zfsic(R, ỹ)
1. nT = size(R, 1)
2. for i = nT : −1 : 1

3. path.si = Q
{

ỹi−
∑nT

j=i+1 Ri,jpath.sj

Ri,i

}

4. end
5. path.η = ‖ỹ −Rpath.s‖2
end

ZF-SIC pseudocode

Figure 4.7. Zero Forcing with Successive Interference Can-

cellation Pseudocode.

can be used in order to decrease the computational cost of the inner suma-
tory in step 3) making Ri,jpath.sj = T〈path.sj〉,Γi,j , where Γi,j represents the
index of the column that the Ri,j value occupies in matrix T [see Chap-
ter 3, Section 3.4]. Function 〈·〉 gets the integer unique identifier (UID) of
a constellation symbol. This mapping is straightforwardly done in prac-
tice because the symbol vectors used in the detection process are stored
in integer format. An example of detection with EEDC is shown below,
for a system with nT = nR = 4 and 16-QAM modulation. The matrix R
(eq. 4.6) after QR decomposition has nv = 10 non-zero values, which are

represented as R
(t)
i,j , where t = Γi,j .

4.2. Zero Forcing SIC Detector Implementation 71

R =




R
(1)
1,1 R

(2)
1,2 R

(3)
1,3 R

(4)
1,4

0 R
(5)
2,2 R

(6)
2,3 R

(7)
2,4

0 0 R
(8)
3,3 R

(9)
3,4

0 0 0 R
(10)
4,4



. (4.6)

The detection process (see Fig. 4.8) starts estimating ŝ4 = O7. This
symbol is used to obtain the next component ŝ3 and so on. In this case we
can calculate the sumatory adding different elements of T.

Iteration 1. ŝ4 = Q
{

ỹ4

R4,4

}
= O7

Iteration 2. ŝ3 = Q
{

ỹ3−R3,4O7

R3,3

}
= Q

{
ỹ3−T7,9

R3,3

}
= O10

Iteration 3. ŝ2 = Q
{

ỹ2−(R2,3O10+R2,4O7)
R2,2

}
= Q

{
ỹ2−(T10,6+T7,7)

R2,2

}
= O3

Iteration 4. ŝ1 = Q
{

ỹ1−(R1,2O3−R1,3O10+R1,4O7)
R1,1

}
= Q

{
ỹ1−(T3,2+T10,3+T7,4)

R2,2

}
= O1

Figure 4.8. Successive Interference Cancellation detection

process with EEDC: example with a 4× 4 MIMO system and

16-QAM constellation.

ZF-SIC detector is difficult to parallelize, because a determined com-
ponent ŝi needs the computation of previous components and the size of
matrix R uses to be small. For this reason, the parallelism of this algorithm
is based on the estimation of a particular signal ŝ:,n per thread as Fig. 4.3
shows.

4.2.1 CUDA Implementation

As occurs in the OpenMP implementation, the parallelism of this algorithm
is based on the estimation of a unique signal per thread. The proposed ZF-
SIC CUDA implementation is composed by a single kernel, which must
estimate Ns signals in parallel. Algorithm described in Fig. 4.9 shows the
required steps to launch the kernel.

First, it is necessary to allocate memory and copy the input (T, R, ỹ)
matrices. The output list shall contain the estimated vectors L related to
the Ns signals and must be allocated in the GPU global memory (GM) be-
fore starting the kernel execution. Here, P denotes the data type mmp path

72 Implementation of Hard-Output MIMO Detectors

Input: T ∈ CM×nv , R ∈ CnT×nT , ỹ ∈ CnR×Ns

Output: L ∈ PNs

function [L] = dt cu zfsic(R, ỹ)
1. Allocate and copy T, R and ỹ in GPU GM
2. Allocate output data L in GPU GM
3. Copy constellation symbols O in GPU CM
4. Select block and grid configuration with nth = Ns

5. [L] = kernel zfsic(T,R, ỹ)
6. Copy L in CPU
end

ZF-SIC Kernel-Launcher Pseudocode

Figure 4.9. Zero Forcing SIC Kernel-launcher for Ns signals.

This launcher calls the kernel in Fig. 4.10.

structure with the field s in integer format.

As the matrices used in MIMO systems can be considered quite small,
the main computational cost source is the step of quantizing to obtain the
estimated symbol at each level. This function goes through the constella-
tion to return the symbol. Constellation symbols will not change during
the execution and are read only, then they are very suitable to be kept in
constant memory (CM). From now on it will be assumed that the input,
auxiliary and output variables are stored in GPU global memory. Only
variables that can be stored in constant memory will be marked out for the
explanation of the algorithms.

Figure 4.10 shows the kernel zfsic pseudocode, where each CUDA thread
applies the ZF-SIC method using the n-th received signal. Then, the num-
ber of threads necessary for the appropiatte grid dimension is nth = Ns.
The output of the kernel is a list which contains the estimated vector Ln.s
and its Euclidean Distance Ln.η for each processed signal n.

4.2.2 Performance Results

Some experiments have been carried out in order to compare the para-
llel implementations of the hard-output ZFSIC on multi-core and GPU. Its
execution time was compared to the unoptimized and sequential implemen-

4.2. Zero Forcing SIC Detector Implementation 73

function [L] = kernel zfsic(T, R, ỹ)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. if n < Ns

4. for i = nT : −1 : 1

5. x = Q
{

ỹi,n−
∑nT

j=i+1 TLn.sj,Γi,j

Ri,i

}

6. Ln.si = 〈x〉
7. end

8. Ln.η =
∑1

i=nT

∣∣∣ỹi,n −
∑nT

j=i TLn.sj ,Γi,j

∣∣∣
2

9. end
end

KERNEL ZFSIC Pseudocode

Figure 4.10. Zero Forcing SIC detection by the z-th thread

for Ns signals called from Kernel-Launcher in Fig. 4.9

tation (i.e. without the EEDC optimization) codename U.

Table 4.1 shows the execution time in miliseconds for a 6×6 system with
16-QAM symbols as a function of the simulated signals (Nc). The speedups
(SP) are defined as the ratio between the execution time of unoptimized
version (U) and the rest of versions presented in this section. Version (U)
GPU refers to the parallel GPU version without EEDC.

It can be observed that, generally, the higher the number of signals,
the higher the achieved speedup for the OpenMP versions. However, the
performance degrades drastically using 32 and 48 threads caused for the
hyperthreading technology (HT). HT creates for each physical processor
two virtual or logical cores, and shares the workload between them when
possible. The execution time is increased due to the additional costs of
creation, management and memory accesses of these virtual threads. Note
that, the gain obtained using EEDC in this detector improves up to 10%
the detector performance (see execution time for 1 OpenMP threads in
Table 4.1).

The experimental GPU measurements in Table 4.1 show as CUDA ver-
sion fails to accelerate the sequential version when the number of signals
is small. This is due to the lower complexity and the non parallel pat-
tern of the ZFSIC detector. This problem gradually disappears when the

74 Implementation of Hard-Output MIMO Detectors

complexity of the detection stage increases, for example with the number
of tranmistter antennas (nT). In this escenario, where very large MIMO
arrays are considered, the CUDA detector is up to 7 times faster than
unoptimized version (see Fig. 4.11).

Table 4.1. Time Execution comparison in miliseconds and

speedup (SP) of ZFSIC detector with different library config-

urations for a 6 × 6 system using 16-QAM constellation as a

function of the simulated signals (Nc).

Nc = 1000 Nc = 10000 Nc = 100000

Time[ms] SP Time[ms] SP Time[ms] SP

U 0.82 1.00 7.96 1.00 71.24 1.00

O
p

en
M

P
T

h
re

a
d
s

1 0.75 1.09 7.51 1.06 65.03 1.10

2 0.69 1.19 5.92 1.34 37.71 1.89

4 0.65 1.26 4.94 1.61 20.54 3.47

8 1.40 0.59 1.40 2.35 5.69 6.67

12 1.38 0.59 1.42 2.18 5.61 9.50

24 3.18 0.26 1.78 1.71 4.47 10.70

32 3.84 0.21 2.90 1.30 2.74 4.64

48 30.35 0.03 46.00 0.30 0.17 1.86

GPU 208.95 0.39 · 10−2 235.27 0.03 23.19 3.07

(U) GPU 200.80 0.40 · 10−2 203.74 0.04 23.06 3.09

When the EEDC is used in GPU version, the time execution is not
reduced but also increases (see execution times for GPU and (U) GPU ver-
sions in Table 4.1). This is mainly due to the time required to transfer the
matrix T to the GPU memory since can be higher than the gain obtained
from its use. Nevertheless, when the system size increases the transfer time
and the reduction achieved with EEDC are equated (see Fig. 4.11). In any
case, the use of the EEDC optimization in CUDA seems not adequate for
the ZFSIC detector.

4.3 ML Exhaustive Detector Implementation

Let us consider the problem

4.3. ML Exhaustive Detector Implementation 75

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

n
T
 = n

R

E
xe

cu
tio

n
T

im
e

[s
ec

]

(U) No efficient ED
1 OpenMP Thread
32 OpenMP Threads
(U) GPU
GPU

Figure 4.11. Time Execution comparison in seconds of the

unoptimized ZFSIC detector to the fastest OpenMP and GPU

implementation for a nR × nT system with 16-QAM constel-

lation and Nc = 100000.

ŝ = arg min
s∈OnT

‖y −Hs‖2, (4.7)

where, O denotes the constellation of size |O| = 2m = M . The Maximum-
Likehood Exhaustive (MLE) detector can directly solve problem (4.7) by
an exhaustive search over the set of nT -dimensional lattice points s ∈ OnT .
Using the QR decomposition such as in section 2.3.1, problem (4.7) can be
expressed as:

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2
 , (4.8)

or alternatively if EEDC is considered:

76 Implementation of Hard-Output MIMO Detectors

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

T〈sj〉,Γi,j

∣∣∣∣∣∣

2
 . (4.9)

This problem can be represented as a decision tree, such as figure 4.12,
with nT +1 layers and M branches emerging from each non-leaf node. Each
path can be identified with a unique identifier denoted by q ∈ {1, . . . ,MnT }.
The complete q-th tree-path can be easly obtained by using function as
s = tree path(q,O, nT) described in Figure 4.13.

O1

O1

O1

1

O2

2

O2

O1

3

O2

4

O2

O1

O1

5

O2

6

O2

O1

7

O2

8

i = 1

i = 2

i = 3

i = 4

q

Figure 4.12. Decoding tree of the MLE algorithm for a 3×3

MIMO system with BPSK symbols.

function [s] = tree path(q, O, n)
1. M = length(O)
2. q = q − 1
3. for i = 1, 2, ..., n
4. si = Orem(q,M)+1,
5. q = d q

M e
6. end
end

q-th Tree Path

function [s] = tree path(q, n)
1. M = length(O)
2. q = q − 1
3. for i = 1, 2, ..., n
4. si = rem(q,M) + 1,
5. q = d q

M e
6. end
end

q-th Tree Path in integer format

Figure 4.13. Pseudocode of tree path function: gets n con-

secutive constellation symbols of the q-th tree-path.

4.3. ML Exhaustive Detector Implementation 77

function [path] = dt c mle(R, ỹ)
1. L = ∅
2. #pragma omp parallel for
3. for q = 1 :MnT

4. path.s = tree path(q,O, nT)
5. path.η = ‖ỹ −Rpath.s‖2
6. L = L ∪ path
7. end
8. path = min(L, 1)
end

MLE pseudocode

Figure 4.14. ML Exhaustive Pseudocode.

Fig. 4.14 illustrates the necessary steps to estimate a signal vector with
the MLE detector. The main loop performs an exhaustive search over the
total possible symbol vectors path.s ∈ OnT . Once the constellation symbols
for a given q-th tree-path have been obtained, its Euclidean Distance is
calculated in step 5. If EEDC is being considered, η is calculated adding
different elements of the pre-built matrix T [see Chapter 3, Section 3.4].
The algorithm maintain a list L with the paths that have been considered
up to now. This list is updated every time a new path is explored in step
6. Finally, we can obtain the ML solution searching the path with the
minimim ED. This is done in step 8 by using function min(L, nK), which
returns the nK minimum paths of L. In the MLE detector, this function is
used with nK = 1 in order to find the lattice point that minimizes (4.7).

The calculation of all combinations in the main loop can be executed in
parallel. Then, the MnT iterations can be distributed among the threads
by using the pragma omp parallel for as a simple way to parallelize the
algorithm. Note that in cases where M and nT are too small, the algo-
rithm performance can decrease specially when it uses a significant number
of threads because the workload cannot exploit all the computational re-
sources. To overcome this problem, the library decides the most appropriate
loop to parallelize when the number of signals to simulate Nc is greater than
MnT . Thus the parallelized loop is the one that runs the buffer with the
received signals during Nc instants (see Fig. 4.3). On the other hand when

78 Implementation of Hard-Output MIMO Detectors

we have a suitable number of possible combinations, the MLE detector will
be parallelized keeping the pragma in step 2.

4.3.1 CUDA Implementation

The proposed MLE GPU implementation is composed of one single kernel
that parallelizes the steps 3-7 of Fig. 4.14 estimating Ns × MnT paths
at once. In Kernel 4.16 each thread computes the accumulated Euclidean
distance Ln,q.η for a given signal n and the q-th path considered. Therefore
nth = Ns · MnT threads are needed to explore every tree-branch. Once
the kernel has finished the computation, the CPU gets the list with the
candidate paths and obtains the minimum path for each signal vector (see
step 7 in Fig.4.15).

Input: T ∈ CM×nv , ỹ ∈ CnR×Ns

Output: F ∈ PNs

function [F] = dt cu mle(T, ỹ)
1. Allocate and copy T and ỹ in GPU GM
2. Allocate output data L ∈ PNs×MnT in GPU GM
3. Select block and grid configuration with nth = Ns ·MnT

4. [L] = kernel mle(T, ỹ)
5. Copy L in CPU
6. for n = 1 : Ns

7. Fi = min(Li,:, 1)
8. end
end

MLE Kernel-Launcher Pseudocode

Figure 4.15. ML Exhaustive Kernel-launcher for Ns signals.

This launcher calls the kernel function in Fig. 4.16.

4.3.2 Performance Results

The performance of the MLE detector has been investigated for a 6 × 6
system using 16-QAM constellation and considering Nc = 1000 signals
transmitted. Analyzing the experimental results depicted in Table 4.2, we

4.3. ML Exhaustive Detector Implementation 79

function [L] = kernel mle(T, ỹ)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Tree-Path identifier q ∈ {1, ...,MnT }
4. if n < Ns

5. Ln,q.s = tree path(q, nT),

6. Ln,q.η =
∑1

i=nT

∣∣∣ỹi,n −
∑nT

j=i TLn,q.sj ,Γi,j

∣∣∣
2

7. end
end

Kernel MLE Pseudocode

Figure 4.16. Calculation of one of the branches of the MLE

detector by the z-th thread for Ns signals. This kernel is called

from Kernel-Launcher in Fig. 4.15.

can find that the EEDC optimization improves the performance up to 26%

for the OpenMP version and
T(U) GPU

TGPU
= 1.28·105

1.11·105 ≈ 15% for the GPU one. If
we compare with the results obtained in the ZFSIC detector which achieved
a improvement of the 10%, we can see how the MLE detector takes more
benefit from this optimization. This is due to two main reasons. On the
one hand, the number of PED calculated for MLE is much higher than
those calculated by the ZFSIC. On the other hand, the ZFSIC needs both
matrices (T and R) to quantize the estimated symbol. Thus, causing more
conflicts in the cache memory and increasing the data transfer costs in the
GPU version.

It can be appreciated the good scalability of the MLE detector, since
the speedup increases with the number of OpenMP threads. In this case
the hyperthreading should be enabled because improves the performance
(up to 27 times faster than sequential execution). GPU implementation
using EEDC boost the performance of the multi-core version achieving a
speedup of 29. Note that, the execution time of unoptimized version (U)
is dramatically reduced from 54 minutes to approximately 100 seconds.

80 Implementation of Hard-Output MIMO Detectors

Table 4.2. Time Execution in miliseconds and speedup (SP)

of the MLE detectors for a 6 × 6 system using 16-QAM con-

stellation with Nc = 1000.

Time[ms] SP

U 32.56 · 105 1.00

O
p

en
M

P
T

h
re

a
d
s

1 25.71 · 105 1.26

2 13.29 · 105 2.44

4 6.75 · 105 4.82

8 3.67 · 105 8.87

12 2.49 · 105 13.07

24 1.68 · 105 19.38

32 1.49 · 105 21.85

48 1.21 · 105 26.90

GPU 1.11 · 105 29.33

(U) GPU 1.28 · 105 25.43

4.4 Schnorr-Euchner SD Implementation

The Schnorr-Euchner Sphere Decoder (SESD) performs a search from the
top to the bottom of the tree with radius reduction. The sphere decoding
methods arise aiming to reduce the range of search, seeking uniquely those
lattice points that lie in a hypershera of radius r, around the received vector
y. The SD search can be expressed introducing this constraint in (4.8) as
follows:

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

Ri,jsj

∣∣∣∣∣∣

2

≤ r



 , (4.10)

or if EEDC is considered:

ŝ = arg min
s∈OnT





1∑

i=nT

∣∣∣∣∣∣
ỹi −

nT∑

j=i

T〈sj〉,Γi,j

∣∣∣∣∣∣

2

≤ r



 . (4.11)

Figure 4.17 shows the pseudocode of the SESD algorithm. As can be
seen, it is similar to the MLE detector. However the detector works in this

4.4. Schnorr-Euchner SD Implementation 81

case with a initial radius, which is used to discard solutions with higher
Euclidean Distances. The algorithm uses a path, called minpath, to store
the path with the minimum ED explored so far, thus at the end minpath
contains the lattice point that minimizes Eq. (4.10). This path takes as
input an initial radius r and is updated each time a leaf node (path) is
reached with cumulative metric smaller than minpath.η. The minpath
is updated setting minpath.η = path.η, and continues exploring the tree
with a smaller sphere radius. Thus the algorithm will not consider branches
from nodes with ED larger than minpath.η (see step 6). In this way, invalid
points are discarted since after having explored a certain point in the search
set, the algorithm must be only interested in visiting those points that are
even closer to the target than the recently visited points.

function [path] = dt c sesd(R, ỹ, r)
1. minpath.η = r
2. for q = 1 : prune :MnT

3. path.s = tree path(q,O, nT)
4. for i = nT : −1 : 1

5. path.η = path.η +
∣∣∣ỹi −

∑nT

j=iRi,jpath.sj

∣∣∣
2

6. if path.η > minpath.η
7. break
8. end
9. end
10. if i = 0 //Leaf node visited
11. minpath.s = path.s
12. minpath.η = path.η
13. end
14. prune =M i−1

15. end
16. path = minpath
end

SESD pseudocode

Figure 4.17. Schnorr-Euchner Sphere Decoder Pseudocode.

82 Implementation of Hard-Output MIMO Detectors

When the Accumulated Euclidean Distance for a particular tree-branch,
denoted by q, in a particular tree level i is greater than the current radius
minpath.η, the algorithm can reject nodes and subtrees with higher dis-
tances in the next search thus accelerating the detection process. The num-
ber of consecutive branches to be descarted can be calculated as prune =
M i−1.

Figure 4.18 shows an example of detection for a 4×4 MIMO system with
BPSK constellation (M = 2). As can be seen the accumulated Euclidean
distance of branch q = 3 in level i = 2 is 9, which is larger than the
actual radius 8 (framed in red). Then, the next branch to be computed
is q = 3 + M i−1 = 5. In the same way for branch q = 5 at level i = 3
the tree-paths to be discarded (rectangular nodes) can be calculated as
M i−1 = 22 = 4. In order to accelerate the computation of the next node
to be visited, a vector called P is created before the detection as

Pi = M i−1 for i = 1, . . . , nT + 1 (4.12)

0

4

7

9

1

2

8

2

1

3

9

3

prune = 2

4

5

4

10

5

prune = 4

6 7 8

i = 1

i = 2

i = 3

i = 4

q

10

Figure 4.18. Decoding tree of the SESD algorithm for a 3×3

MIMO system with BPSK symbols.

In contrast to the MLE detector, the main loop can not be parallelized
since the SESD updates adaptively the search radius when a new leaf node
is reached. Then, OpenMP implementation distributes the computation of
the received signals in Nc time instants among the OpenMP threads (see
Fig. 4.3.

4.4. Schnorr-Euchner SD Implementation 83

4.4.1 CUDA Implementation

The proposed SESD GPU implementation is composed of one single kernel,
which is responsible for the estimation of Ns signals in parallel. Figure 4.19
shows the steps needed by the algorithm to launch the kernel. First, it is
necessary to allocate and copy T and ỹ matrices. Output (L) and auxiliary
(D) lists related to the Ns signals must also be previously allocated. The
pruning pattern P will not change during the execution and is read only,
therefore it can be stored in constant memory (GPU-CM). Next, the Kernel
4.20 is launched with the appropiate grid dimension.

Input: T ∈ CM×nv , ỹ ∈ CnR×NS , L ∈ PNs

Output: L ∈ PNs

function [L] = dt cu sesd(T, ỹ, L)
1. Allocate and copy T and ỹ in GPU GM
2. Allocate and copy input/output data L in GPU GM
3. Allocate auxiliary data D ∈ PNS in GPU GM
4. Copy prunning pattern P in GPU CM
5. Select block and grid configuration with nth = NS

6. [L] = kernel sesd(T, ỹ, L, D)
7. Copy L in CPU
end

SDSE Kernel-Launcher Pseudocode

Figure 4.19. Schnorr-Euchner Sphere Decoder Kernel-

launcher for Ns signals. This launcher calls the kernel in Fig.

4.20.

As mentioned in the OpenMP implementation, the inner loop can not
be parallelized since the radius changes when a new leaf node is reached,
for this reason we can only parallelize the first loop. Each CUDA thread
explores the tree (for each signal n) to find the ML solution considering all
possible alternatives and discarding those showing a distance larger than
the current radius. Note that, list of paths L acts as input and output of
the kernel, since contains at the input the initial radius for each signal. For
this reason should be copied in GPU memory before the launch of kernel

84 Implementation of Hard-Output MIMO Detectors

(see step 2). This list is also used to store the ML solution for each signal
vector processed. A list of paths, called D, is used as an auxiliary list where
the information of each branch considered during the tree exploration will
be stored.

function [L] = kernel sesd(T, ỹ, L, D)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. if n < Ns

4. for q = 1 : prune : MnT

5. Dn.s = tree path(q, nT)
6. for i = nT : −1 : 1

7. Dn.η = Dn.η +
∣∣∣ỹi,n −

∑nT

j=i TDn.sj ,Γi,j

∣∣∣
2

8. if Dn.η > Ln.η
9. break
10. end
11. end
12. if i = 0 //Leaf node visited
13. Ln.s = Dn.s
14. Ln.η = Dn.η
15. end
16. prune = Pi−1,
17. end
18. end
end

KERNEL SDSE Pseudocode

Figure 4.20. SESD detection by the z-th thread for Ns sig-

nals. This kernel is called from Kernel-Launcher in Fig. 4.19.

4.4.2 Performance Results

The complexity of tree-search detectors is commonly measured in number
of expanded nodes, since this allows a fair comparison among different
algorithms. Considering a constellation of size M , the number of visited
nodes for a MLE detector (nMLE) can be easily calculated as follows:

4.5. Automatic Sphere Decoder Implementation 85

nMLE =

nT∑

i=1

M i. (4.13)

Let us consider the simulation a 6× 6 system using a 16-QAM constel-
lation. Initial radius is set to infinite and Nc = 1000 transmitted signals.
The number of nodes of MLE detector is nMLE = 17.895.696.000 nodes,
however for SESD detector is reduced to nSESD = 82.850.278 nodes. Table
4.3 shows the execution time of the SESD detector with the MIMO system
considered above as a function of the simulated signals (Nc). By comparing
Tables 4.2 and 4.3, we can observe that the reduction of expanded nodes is
also reflected in the reduction of the execution time regarding to the MLE
detector. Furthermore, EEDC calculation allows to reduce considerably
the execution time.

As it happens with the ZFSIC detector, the GPU SESD detector does
not has the expected performance. The problems with low complexity
and non parallel pattern are not suitable for GPU architecture. Moreover,
the warp divergence plays an important role in the poor performance. In
CUDA, threads are executed in warps of 32 threads, with all threads in
the warp executing the same instruction at the same time. However, in
the SESD detector different threads in a warp need to cope with different
tasks (see steps 8 and 12 if SESD kernel pseudocode in Fig. 4.20). This
is called warp divergence. The GPU hardware is not capable of executing
if and else statements at the same time. CUDA serializes the different
execution paths to generate correct code. For this reason, the OpenMP
version obtains better performance (up to 25 times faster than sequential
version) than CUDA version.

4.5 Automatic Sphere Decoder Implementation

The Automatic Sphere Decoder (ASD) was proposed in [35]. As the Schnorr-
Euchner SD, it is a breadth-first algorithm that does not need an initial
sphere radius to find the ML solution. This algorithm stores a list of paths
(L) during the tree exploration which contains and defines the bound be-
tween the explored part and the unexplored parts of the tree. In each
iteration it expands only the node with the shorter associated distance,
which is removed from the list. When the expanded node is a leaf node,

86 Implementation of Hard-Output MIMO Detectors

Table 4.3. Time Execution comparison in miliseconds and

speedup (SP) of SESD detector with different library config-

urations for a 6 × 6 system using 16-QAM constellation as a

function of the simulated signals (Nc).

Nc = 1000 Nc = 10000 Nc = 100000

Time[ms] SP Time[ms] SP Time[ms] SP

U 9.80 · 103 1.00 14.98 · 103 1.00 156.96 · 103 1.00

O
p

en
M

P
T

h
re

a
d
s

1 7.55 · 103 1.30 12.07 · 103 1.24 128.29 · 103 1.22

2 4.17 · 103 2.35 7.59 · 103 1.97 64.71 · 103 2.43

4 2.39 · 103 4.10 3.51 · 103 4.27 34.12 · 103 4.60

8 2.39 · 103 7.26 1.79 · 103 8.37 18.55 · 103 8.46

12 1.35 · 103 9.61 1.23 · 103 12.18 12.60 · 103 12.46

24 1.02 · 103 13.80 1.03 · 103 14.54 9.10 · 103 17.25

32 0.72 · 103 13.56 1.22 · 103 12.28 8.55 · 103 18.36

48 0.69 · 103 14.20 0.84 · 103 17.83 6.48 · 103 24.22

GPU 32.93 · 103 0.30 9.32 · 103 1.61 69.75 · 103 2.25

(U) GPU 45.79 · 103 0.21 12.99 · 103 1.15 96.42 · 103 1.63

the algorithm terminates and returns this path as the ML solution.

This algorithm has various disadvantages. The main one is the need for
a variable-size list of candidate solutions; as shown later can be a drawback
for some hardware implementations. Another major disadvantage of this
method is that the size of the list can grow too much as the algorithm
progresses. Thus, the proposed algorithm uses the following techniques to
reducing the size of the list and hence the computational cost:

• Initial radius: The nodes inside the list are purged in each iteration
using an initial radius. The radius used can be the distance provided
by a suboptimal and low-complexity detection algorithm such as Zero
Forcing SIC presented in section 2.3.1:

r = ‖y −HŝZF‖2. (4.14)

• Reordering channel matrix: A new order of the channel matrix is
used in order to discard the largest number of nodes at higher levels
and try to keep constant as much as possible the size of the list.

4.5. Automatic Sphere Decoder Implementation 87

The MIMOPack ASD detector allows to use a Column-Norm-Based
Ordering, which orders the columns of the matrix H by positioning
the columns with lowest 2-norm at first places. It suffices to make a
QR decomposition with pivoting, making zeros in the columns in the
increasing order of their 2-norm.

Algorithm represented in Fig. 4.25 shows the pseudocode of the ASD
method. The detector starts initializing the list with the root node, to
which is associated an accumulated ED equal to zero. In the higher level,
M nodes are expanded (see Fig.4.21) and stored in the list with the explored
paths (in blue). In each iteration, the ASD selects and expands the path
(in red in Fig.4.22) within the list with the smallest cumulative Euclidean
distance (minpath).

0

4

4

6

i = 1

i = 2

i = 3

i = 4

6

Figure 4.21. Decoding tree of a ASD 3 × 3 MIMO detector

with BPSK symbols: expansion of M nodes in the first level.

Additionally, the algorithm prunes those paths with cumulative ED
larger than r. This operation is done by the function purget tree() in step
11, which returns a list with the survivors paths. Then, the expanded
branch is replaced by its M children nodes and removed from the list. The
level of this new nodes will be equal to minpath.l − 1. The same process
continues (see Fig. 4.23) until the node to expand in the current iteration
is a leaf node (i.e minpath.l = 1). At the end of the algorithm minpath
contains the lattice point that minimizes (4.7) (filled in red in Fig. 4.24).

The ASD is another detector difficult to parallelize, since at each it-
eration the algorithm must select the minimum path and prune the tree.
However, the expansion of the M child nodes of the minimum path can be
done in parallel (see steps 2 and 13). As occurs in the MLE detector when
Nc is sufficiently large, the best option is to parallelize the loop and not

88 Implementation of Hard-Output MIMO Detectors

0

4

7

3

9

5

4

6

i = 1

i = 2

i = 3

i = 4

6

Figure 4.22. Decoding tree of a ASD 3 × 3 MIMO detec-

tor with BPSK symbols: selection and expansion of the node

with the smallest cumulative Euclidean distance in the first

iteration.

0

4

7

3

9

5

4

6

13

7

11

i = 1

i = 2

i = 3

i = 4

5

6

Figure 4.23. Decoding tree of a ASD 3 × 3 MIMO detec-

tor with BPSK symbols: selection and expansion of the node

with the smallest cumulative Euclidean distance in the second

iteration.

0

4

7

10

3

8

1

3

9

5

4

6

13

7

11

i = 1

i = 2

i = 3

i = 4

5

6

Figure 4.24. Decoding tree of a ASD 3 × 3 MIMO detector

with BPSK symbols: the detection is completed when the node

to expand in the current iteration is a leaf node.

4.5. Automatic Sphere Decoder Implementation 89

function [path] = dt c asd(R, ỹ, r)
1. L = ∅
2. #pragma omp parallel for
3. for q = 1 :M
4. path.l = nT
5. path.snT

= Oq

6. path.η = |ỹi −RnT ,nT
path.snT

|2
7. L = L ∪ path
8. end
9. minpath = min(L, 1)
10. L = purge tree(L, r)− {minpath}
11. while minpath.l > 1
12. i = minpath.l − 1
13. #pragma omp parallel for
14. for q = 1 :M
15. path.s = minpath.s
16. path.l = i
17. path.si = Oq

18. path.η = minpath.η+ |ỹi−
∑nT

j=iRi,jpath.sj |2
19. L = L ∪ path
20. end
21. minpath = min(L, 1)
22. if minpath.l > 1
23. L = purge tree(L, r)− {minpath}
24. end
25. end
26. path = minpath
end

Automatic SD PSEUDOCODE

Figure 4.25. Automatic Sphere Decoder Pseudocode.

90 Implementation of Hard-Output MIMO Detectors

the ASD internally. These decisions are transparent to the user and they
are performed by the library before the detection.

4.5.1 CUDA Implementation

As mentioned, the main disadvantage of the ASD detector is the need for
a variable-size list of candidate solutions, which can be a drawback for
some hardware implementations. Specially for GPU implementation, the
variable-size of lists and the inherent dependency between the levels of
the tree require barrier synchronization among threads that makes very
difficult its CUDA implementation. Fortunately, the ASD parallelization
can be done with the framework presented in section 4.8 dividing the tree in
multiple subtress that can be independently processed by multiple CUDA
threads.

4.5.2 Performance Results

To evaluate the performance of the proposed ASD OpenMP detector, the
time execution for a 6 × 6 system and a 16-QAM constellation varying
the number od transmitted signals with different number of threads are
compared in Table 4.4. Comparing the speedup results with those obtained
with the MLE and SESD schemes (tables 4.2 and 4.3, respectively), it can
be observe that OpenMP ASD does not obtain as good results when the
number of signals is small, mainly caused by the need to maintain large
lists for each thread and failures in cache derived from them. However, the
algorithm is scalable when the number of signals increases.

The performance of the ASD can be improved using the preprocessing
techniques presented in previous section. To validate them, the execution
times of four ASD configurations are illustrated in Figure 4.26: Pure ASD
detector without initial radius nor matrix channel ordering (ASD), using
an initial radius provided by the Zero Forcing SIC detector (ASD-R), using
the Column-Norm-Based Ordering (ASD-O) and using both radius and
ordering techniques at the same time (ASD-RO).

These techniques are simple and fast, allowing not only to accelerate
the detection but also to reduce the size of the node list. In Table 4.5,
the effect of the preprocessing techniques on the number and sizes of lists
created during the detection has been investigated. It can be observe that
the use of the combined ZFSIC radius and CBO ordering allows to reduce

4.5. Automatic Sphere Decoder Implementation 91

Table 4.4. Time Execution comparison in miliseconds and

speedup (SP) of ASD detector with different library configu-

rations for a 6 × 6 system using 16-QAM constellation as a

function of the simulated signals (Nc).

Nc = 1000 Nc = 10000 Nc = 100000

Time[ms] SP Time[ms] SP Time[ms] SP

U 0.45 · 103 1.00 2.94 · 103 1.00 121.01 · 103 1.00

O
p

en
M

P
T

h
re

a
d
s

1 0.43 · 103 1.05 2.84 · 103 1.04 119.37 · 103 1.01

2 0.25 · 103 1.80 1.79 · 103 1.64 66.94 · 103 1.81

4 0.13 · 103 3.46 0.89 · 103 3.30 36.67 · 103 3.30

8 0.08 · 103 5.63 0.44 · 103 6.68 20.22 · 103 5.98

12 0.07 · 103 6.43 0.34 · 103 8.65 15.40 · 103 7.86

24 0.08 · 103 5.63 0.30 · 103 9.80 10.84 · 103 11.16

32 0.08 · 103 5.63 0.24 · 103 12.25 8.57 · 103 14.12

48 0.12 · 103 3.75 0.28 · 103 10.50 7.29 · 103 16.60

1 2 4 8 12 24 32 48
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

OpenMP Threads

E
xe

cu
tio

n
T

im
e

[s
ec

]

ASD
ASD−R
ASD−O
ASD−RO

Figure 4.26. Time Execution comparison in seconds of ASD

with different detector settings, ASD-R, ASD-O, and ASD-

RO as a function of the number of OpenMP threads.

92 Implementation of Hard-Output MIMO Detectors

the number of list up to 28% and the average list size up to 40%. This
optimization can be noted in Fig. 4.26, where the ASD-RO is able to detect
the signals 2.26 times faster than classical ASD.

Table 4.5. Number of lists created, maximum and average

list sizes for the ASD with different library detector configu-

rations, ASD-R, ASD-O, and ASD-RO.

ASD ASD-R ASD-O ASD-RO

Number of lists created 222038 222038 160106 159945

Maximum list size 23686 19542 22846 21633

Avg. list size 2447 1635 2038 1448

4.6 K-Best Tree-Search Implementation

The K-Best Sphere Decoder (KBEST) is a Fixed-Complexity SD that ex-
pands the detection tree from top to bottom and considers only those K
survivor candidates with the smallest accumulated Euclidean distance at
each level of the tree.

A technique, which allows to increase the performance in terms of Bit
Error Rate of this algorithm, is to apply a previous stage called Full Ex-
pansion (FE), where in the first nE levels all the possible values of the
constellation for each survivor path are assigned to the symbol at the cur-
rent level.

The initial list of paths (L) contains the MnE candidates computed in
the Full Expansion stage (see Fig. 4.27). Once the PED of each path has
been computed with, the PED values are sorted in ascending order and
the K paths having the minimum PED values are stored in the list D. To
select the K survivors, function min(L, nK) is called with nK = K.

For each survivor path (nodes framed in red in Fig. 4.28), all the pos-
sible values of the constellation are assigned to the symbol at the current
level and its accumulated distance is calculated (see steps 8-13 of Fig. 4.29).
This process is repeated until the lowest level of the tree is reached. The
detected signal vector ŝ is given by the path from the root up to the leaf
node with the smallest accumulated ED (step 17).

4.6. K-Best Tree-Search Implementation 93

function [L] = fully expansion(R, ỹ, nE)
1. L = ∅
2. #pragma omp parallel for
3. for q = 1 :MnE

4. path.snT−nE+1:nT
= tree path(q,O, nE)

5. path.η =
∑nT−nE+1

i=nT

∣∣∣ỹi −
∑nT

j=iRi,jpath.sj

∣∣∣
2

6. L = L ∪ path
7. end
end

Fully Expansion pseudocode

Figure 4.27. Fully Expansion Stage Pseudocode.

0

4

7

9
Select smallest
ED (η)

Expand K

Expand K

FE stage

1

2

8

2

idML

1

3

9

5

4

6

8

10

3

2

12

4

4

2

11

i = 1

i = 2

i = 3

i = 4

q

5

6

Figure 4.28. Decoding tree of the K-Best algorithm for a

3× 3 MIMO system with K = 2 and BPSK constellation.

The main advantage of this method is that its maximum number of
paths is limited, yielding a fixed computational effort. In addition, the
complexity and memory requirements match at every level. This paralle-
lism among detection levels allows an easier hardware implementation of
the algorithm.

The fully expansion stage can be easily parallelized keeping the pragma
in Fig. 4.27 step 2. Additionally, the K-expansion can also be parallelized
since the K ·M branches can be explored independently (see steps 5 and 7
in Fig. 4.29).

94 Implementation of Hard-Output MIMO Detectors

function [path] = dt kbest(R, ỹ, nE , K)
1. [L] = fully expansion(R, ỹ, nE)
2. [D] = min(L,K)
3. L = ∅
4. for i = nT − nE : −1 : 1
5. #pragma omp parallel for
6. for k = 1 : K
7. #pragma omp parallel for
8. for q = 1 :M
9. path.s = Dk.s
10. path.si = Oq

11. path.η = Dk.η +
∑1

i=nT−nE

∣∣∣ỹi −
∑nT

j=iRi,jpath.sj

∣∣∣
2

12. L = L ∪ path
13. end
14. end
15. [D] = min(L,K)
16. end
17. path = min(D, 1)
end

K-Best SD pseudocode

Figure 4.29. K-Best Fixed Complexity Sphere Decoder Pseu-

docode.

4.6.1 CUDA Implementation

The proposed K-BEST GPU implementation is composed by two kernels.
The first one is responsible to calculate the accumulated Euclidean distance
for the first nE levels in the Full Expansion stage (see pseudocode in Fig.
4.30). The calculation of the ED in each branch of the tree is assigned
to a different thread. As can be seen in Algorithm 4.31, when all threads
finish their calculations in the FE stage, the list of paths L (distances and
symbols) is sent to the CPU to obtain the K survivors. The inherent
dependency between the levels of the tree requires synchronization barriers
among threads. Therefore, the second kernel includes only the calculation
of the cumulative distance for the new K ·M branches in the remaining
levels and does not carry out the sorting and calculation of the K-best
survivors; this process is done sequentally by the CPU (see pseudocode in
Fig. 4.32).

4.6. K-Best Tree-Search Implementation 95

function [L] = kernel fully expansion(T, ỹ, nE)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Tree-Path identifier q ∈ {1, ...,MnE}
4. if n < Ns

5. Ln,q.snT−nE+1:nT
= tree path(q, nE)

6. Ln,q.η =
∑nT−nE+1

i=nT

∣∣∣ỹi,n −
∑nT

j=i TLn,q.sj ,Γi,j

∣∣∣
2

7. end
end

KERNEL Fully Expansion Pseudocode

Figure 4.30. Calculation of one of the branches of the Fully

Expansion stage by the z-th thread for Ns signals. This kernel

is called from Kernel-Launcher in Fig. 4.31.

4.6.2 Performance Results

The evaluation ot he KBEST implementations has been carried out varying
the following parameters: the number of survivors (K), the number of
signals transmitted (Nc) and the number of levels to be fully expanded in
the FE stage (nE). The MIMO system considered is a 6 × 6 system with
16-QAM symbols.

Table 4.6 shows the execution time as a function of the number of
survivors K. In all cases, OpenMP outperforms the CUDA performance,
which fails to accelerate the sequential version. The main problem of the
CUDA code is the dependency between the levels of the tree of the K-
BEST detector. The K best survivor’s calculation cannot start until all
threads have finished the previous GPU computation. In the same way, it
cannot proceed with the following branches of the tree until the CPU has
not determined the new K survivors and sent such information back to the
GPU. The data transfer time on each level (see steps 12 and 14 in Fig.
4.31) of the tree worsens the performance of the GPU version, specially
when the size of the constellation and the number of survivors K increase.

However, the impact of this problem disappears gradually when the

96 Implementation of Hard-Output MIMO Detectors

INPUT: T ∈ CM×nv , ỹ ∈ CnR×Ns , nE , K
OUTPUT: F ∈ PNs

function [F] = dt cu kbest(T, ỹ, nE , K)
1. Allocate and copy T, ỹ in GPU GM
2. Allocate and copy output L ∈ PNs×MnE in GPU GM
3. Select block and grid configuration with nth = Ns ·MnE

4. [L] = kernel fully expansion(T, ỹ)
5. Copy L in CPU
6. for n = 1 : Ns

7. [Dn,:] = min(Ln,:,K)
8. end
9. Reallocate output L ∈ PNs×K·M in GPU GM
10. Select block and grid configuration with nth = Ns ·M ·K
11. for i = nT − nE : −1 : 1
12. Copy D in GPU Global Memory
13. [L] = kernel kbest(T, ỹ, D, i)
14. Copy L in CPU
15. Compute [D] such as steps 6-8
16. end
17. for n = 1 : Ns

18. Fi = min(Dn,:, 1)
19. end
end

K-Best SD Kernel-Launcher Pseudocode

Figure 4.31. K-Best Sphere Decoder Kernel-launcher for Ns
signals. This launcher calls kernels in Figures 4.30 and 4.32.

complexity of the detection stage increases, for example with the number
of tranmistted signals (Nc) in Table 4.7. But specially when the number
of levels in the FE stage (see Table 4.8) increases, because this part is very
paralelizable and has more computational burden, which helps to improve
the performance.

4.6. K-Best Tree-Search Implementation 97

function [L] = kernel kbest(T, ỹ, D, i)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Constellation identifier q ∈ {1, ...,M}
4. · Survivor identifier k ∈ {1, ...,K}
5. if n < Ns

6. q′ = k ·M + q,
7. Ln,q′ .s = Dn,k.s
8. Ln,q′ .si = q
9. Ln,q′ .η = Dn,k.η + |ỹi,n −

∑nT

j=i TLn,q′ .sj ,Γi,j |2
10.end
end

KERNEL KBest Pseudocode

Figure 4.32. Calculation of one of the branches of the K sur-

vivors expansion stage by the z-th thread for Ns time instants.

This kernel is called from Kernel-Launcher in Fig. 4.31.

Table 4.6. Time Execution comparison in miliseconds and

speedup (SP) of KBEST detector with different library con-

figurations for a 6×6 system using 16-QAM constellation with

Nc = 1000 and nE = 1 as a function of the number of survivors

K.

K = 2 K = 4 K = 10

Time[ms] SP Time[ms] SP Time[ms] SP

U 10.14 1.00 19.63 1.00 51.19 1.00

O
p

en
M

P
T

h
re

a
d
s

1 7.38 1.37 14.33 1.37 34.90 1.47

2 6.61 1.53 11.57 1.70 21.98 2.33

4 4.78 2.12 4.96 3.96 15.74 3.25

8 2.96 3.43 4.92 3.99 11.62 4.41

12 7.19 1.41 4.82 4.07 7.43 6.89

24 6.87 1.48 5.94 3.30 18.16 2.82

32 7.86 1.29 6.37 3.08 10.15 5.04

48 41.22 0.25 65.25 0.30 49.13 1.04

GPU 317.9 0.03 309.22 0.06 329.11 0.16

(U) GPU 317.92 0.03 322.1 0.06 333.32 0.15

98 Implementation of Hard-Output MIMO Detectors

Table 4.7. Time Execution comparison in miliseconds and

speedup (SP) of KBEST detector with different library con-

figurations for a 6×6 system using 16-QAM constellation with

nE = 1 and K = 10 as a function of the simulated signals (Nc).

Nc = 1000 Nc = 10000 Nc = 100000

Time[ms] SP Time[ms] SP Time[ms] SP

U 51.19 1.00 4.14 · 102 1.00 37.85 · 102 1.00

O
p

en
M

P
T

h
re

a
d
s

1 34.90 1.47 3.24 · 102 1.28 29.37 · 102 1.29

2 21.98 2.33 1.96 · 102 2.11 15.61 · 102 2.42

4 15.74 3.25 1.00 · 102 4.14 8.03 · 102 4.71

8 11.62 4.41 0.93 · 102 4.45 4.45 · 102 8.51

12 7.43 6.89 0.54 · 102 7.67 6.12 · 102 6.18

24 18.16 2.82 0.34 · 102 12.18 2.81 · 102 13.47

32 10.15 5.04 1.07 · 102 3.87 10.25 · 102 3.69

48 49.13 1.04 1.08 · 102 3.83 2.88 · 102 13.14

GPU 329.11 0.16 5.64 · 102 0.73 26.32 · 102 1.44

(U) GPU 333.32 0.15 5.78 · 102 0.72 26.58 · 102 1.42

4.7 Hard-Output Fixed-Complexity Sphere Decoder

In [39], a method called Fixed-Complexity Sphere Decoder (FSD) was pro-
posed in order to address simultaneously performance and fixed compu-
tation aspects. Algorithm 4.34 shows the pseudocode of FSD algorithm,
which combines a preprocessing stage with a tree-search composed of two
stages:

• Full Expansion (FE): In the first nE levels, all the possible values of
the constellation for each survivor path are assigned to the symbol at
the current level (coloured in red in Fig. 4.35).

• Single-Path Expansion (SE): The SE stage starts from each retained
path and obtains the remaining unknows, those coloured in blue in
the lowest nT − nE tree-levels (see 4.35) using Succesive Interference
Cancellation (SIC) (see section 2.3.1).

The symbols are detected following a specific ordering also proposed
by the authors in [39]. As it was shown in [77], the maximum detection
diversity can be achieved with the FSD if the following value of nE is chosen:

4.7. Hard-Output Fixed-Complexity Sphere Decoder 99

Table 4.8. Time Execution comparison in miliseconds and

speedup (SP) of KBEST detector with different library con-

figurations for a 6×6 system using 16-QAM constellation with

Nc = 100000 and K = 10 as a function of the number of levels

nE to be expanded in the FE stage.

nE = 2 nE = 3 nE = 4

Time[ms] SP Time[ms] SP Time[ms] SP

U 4.86 · 103 1.00 36.14 · 103 1.00 766.69 · 103 1.00

O
p

en
M

P
T

h
re

a
d
s

1 3.81 · 103 1.28 30.64 · 103 1.18 625.79 · 103 1.23

2 2.36 · 103 2.06 16.24 · 103 2.23 316.90 · 103 2.42

4 1.21 · 103 4.02 8.37 · 103 4.32 172.69 · 103 4.44

8 0.56 · 103 8.68 4.39 · 103 8.23 92.11 · 103 8.32

12 0.52 · 103 9.35 2.98 · 103 12.13 61.89 · 103 12.39

24 0.34 · 103 14.29 2.50 · 103 14.46 44.77 · 103 17.13

32 0.28 · 103 17.36 1.90 · 103 19.02 37.10 · 103 20.67

48 0.47 · 103 10.34 1.76 · 103 20.53 26.66 · 103 28.76

G
P

U GPU 2.73 · 103 1.78 11.17 · 103 3.24 88.95 · 103 8.62

(U) GPU 2.78 · 103 1.75 11.94 · 103 3.03 88.86 · 103 8.63

nE ≥
√
nT − 1. (4.15)

The preprocessing stage (see Fig. 4.1) orders the columns of the chan-
nel matrix H in order to place the signals that suffers the largest noise
amplification in the first nE levels, since no candidate is being discarded
at this level and the final performance will not be altered. In the same
way, the signals that suffer the smallest noise amplification will be placed
at SE levels. The steps to carry out for each column (i = nT , . . . , 1) are
the followings:

• The pseudoinverse H†i = (HH
i Hi)

−1HH
i is computed, where (Hi)

is the matrix formed by the columns of the indices not selected in
previous iterations.

• The column index j is selected according to:

j =

{
arg max‖H†i‖2, if a symbol for FE is searched

arg min‖H†i‖2, otherwise.
(4.16)

100 Implementation of Hard-Output MIMO Detectors

This preprocessing needs a high computational cost since requires the
computation of a pseudoinverse of matrix H†i = (HH

i Hi)
−1HH

i in every
step. By using the QR decomposition we can to perform the pseudoinverse
by solving one linear system that is next presented. Let us call

H†i = (HH
i Hi)︸ ︷︷ ︸
G

−1HH
i . (4.17)

If we perform the decomposition of Hi such as Hi = QiRi (see Fig. 4.33),
matrix G can be expressed as:

G = ((QiRi)
H(QiRi))

−1 = (RH
i QH

i QiRi)
−1 = (RH

i IRi)
−1 = R̃−1

i R̃−Hi .
(4.18)

As HH
i = RH

i QH
i = [R̃H

i 0]QH
i , the right hand side of the equation

(4.17) can be expressed as:

GHH
i = R̃−1

i R̃−Hi [R̃H
i 0]QH

i = R̃−1
i [I 0]QH

i = R̃−1
i Q̃

(1)H
i (4.19)

where Q̃
(1)H
i = [I 0]Q̃H

i , see Fig. 4.33.

Hi = Q̃
(1)
i Q̃

(2)
i 0

R̃i

Figure 4.33. QR decomposition of matrix Hi

Now (4.17) can be equivalently expressed as H†i = R̃−1
i Q̃

(1)H
i and can

obtain H†i solving the following upper triangular system:

R̃iH
†
i = Q̃

(1)H
i . (4.20)

4.7. Hard-Output Fixed-Complexity Sphere Decoder 101

function [path] = dt c hfsd(R, ỹ, nE)
1. [L] = fully expansion(R, ỹ, nE)
2. #pragma omp parallel for
3. for q = 1 :MnE

4. for i = nT − nE : −1 : 1

5. Lq.si = Q
{

ỹi−
∑nT

j=i+1 Ri,jLq.sj

Ri,i

}

6. end

7. Lq.η = Lq.η +
∑1

i=nT−nE

∣∣∣ỹi −
∑nT

j=iRi,jLq.sj

∣∣∣
2

8. end
9. path = min(L, 1)
end

Hard Fixed SD pseudocode

Figure 4.34. Hard Fixed Complexity Sphere Decoder Pseu-

docode.

Note that, the MnE independent branches of the hard-output FSD can
be simultaneously executed by different threads using the pragma in Fig.
4.34 step 2.

4.7.1 CUDA Implementation

Algorithm described in Fig. 4.36 shows the steps needed to launch the ker-
nel. The proposed FSD GPU implementation is composed by one single
kernel that is responsible for calculating the accumulated Euclidean dis-
tance for the first nE levels in the Full Expansion stage and also obtains
the remaining unknows (those in the lowest nT −nE tree-levels) using SIC.
Then, the MnE independent branches of the hard-output FSD scheme of
all signals are simultaneously executed by different threads. The output of
the kernel is a matrix list L which contains the MnE explored paths for
each transmitted signal. This matrix is copied to the CPU memory, which
calculates the path with the minimum distance in order to obtain the final
solution.

102 Implementation of Hard-Output MIMO Detectors

n
E
=

2
F
E

n
T
−

n
E
=

3
S
E

(S
IC

)

Figure 4.35. Decoding tree of the FSD algorithm for a 5× 5

MIMO system with nE = 2 and QPSK modulation.

Input: T ∈ CM×nv , R ∈ CnT×nT , ỹ ∈ CnR×Ns , nE

Output: F ∈ PNs

function [F] = dt cu hfsd(T, ỹ, nE)
1. Allocate and copy T, R and ỹ in GPU GM
2. Allocate output data L ∈ PNs×MnE in GPU GM
3. Copy constellation symbols O in GPU CM
3. Select block and grid configuration with nth = Ns ·MnE

4. [L] = kernel hfsd(T, R, ỹ)
5. Copy L in CPU
6. for n = 1 : Ns

7. Fn = min(Ln,:, 1)
8. end
end

Hard Fixed SD Kernel-Launcher Pseudocode

Figure 4.36. Hard Fixed Complexity Sphere Decoder Kernel-

launcher for Ns signals. This launcher calls kernel in Fig. 4.37.

4.7.2 Performance Results

Table 4.9 collects the execution time values of the FSD implementation in
miliseconds for a 6 × 6 system and a 16-QAM constellation as a function
of the simulated signals (Nc).

As occurs with the ZFSIC detector, the use of the EEDC does not
achieve the expected performance. This is more noticiable in the case of
GPU implementation whose time execution is increased. The FSD algo-

4.8. WinTrees: a Divide-and-Conquer framework for Tree-Search-Based MIMO de-

tectors 103

function [L] = kernel hfsd(T, R, ỹ, nE)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Tree-Path identifier q ∈ {1, ...,MnE}
4. if n < Ns

5. Ln,q.snT−nE+1:nT
= tree path(q, nE)

6. Ln,q.η =
∑nT−nE+1

i=nT

∣∣∣ỹi,n −
∑nT

j=i TLn,q.sj ,Γi,j

∣∣∣
2

7. for i = nT − nE : −1 : 1

8. x = Q
{

ỹi,n−
∑nT

j=i+1 TLn,q.sjΓi,j

Ri,i

}

9. Ln,q.si = 〈x〉
10. Ln,q.η = Ln,q.η + |ỹi,n −

∑nT

j=i TLn,q.sj ,Γi,j
|2

11. end
12. end
end

KERNEL Hard Fixed SD Pseudocode

Figure 4.37. FSD detection by the z-th thread for Ns signals.

This kernel is called from Kernel-Launcher in Fig. 4.36.

rithm uses Fully Expansion in the first nE levels and SIC technique in the
remaining nT − nE levels. SIC function needs to compare each estimated
symbol with each constellation symbol in step 5 in Fig. 4.34. This quan-
tization affects the performance obtained with CUDA version because it
creates serious problems related to the warp divergence. For this reason,
when the number of levels in the FE stage becomes higher, the number
of SIC levels (nT − nE) decreases and the CUDA version obtains better
speedup than OpenMP version (see Fig. 4.38). Here, the number of fully
expanded levels is calculated as nE ≥

√
nT − 1.

4.8 WinTrees: a Divide-and-Conquer framework for

Tree-Search-Based MIMO detectors

An original framework, called WinTrees, has been developed to facilitate
the free-design and implementation of tree-based MIMO detectors. This

104 Implementation of Hard-Output MIMO Detectors

Table 4.9. Time Execution comparison in miliseconds and

speedup (SP) of FSD detector with different library configu-

rations for a 6 × 6 system using 16-QAM constellation with

nE = 2 as a function of the simulated signals (Nc).

Nc = 1000 Nc = 10000 Nc = 100000

Time[ms] SP Time[ms] SP Time[ms] SP

U 121.67 1.00 1007.71 1.00 9407.4 1.00

O
p

en
M

P
T

h
re

a
d
s

1 111.32 1.09 1014.22 0.99 8654.10 1.09

2 57.07 2.13 566.60 1.78 5445.70 1.73

4 33.68 3.61 281.80 3.58 2387.30 3.94

8 17.15 7.09 144.32 6.98 1243.90 7.56

12 14.42 8.44 99.90 10.09 856.10 10.99

24 16.64 7.31 89.51 11.26 702.11 13.40

32 15.48 7.86 71.02 14.19 564.21 16.67

48 74.84 1.63 109.4 9.21 712.38 13.21

GPU 308.72 0.39 378.9 2.66 793.05 11.86

(U) GPU 302.01 0.40 376.1 2.68 760.32 12.37

framework is primarly devised to ease the parallelization of any kind of
hard output detector but it can be also used for sequential detector imple-
mentations. As the name suggests, WinTrees starts from a detection tree
and gets or wins small subtrees following a divide and conquer strategy
[78]. Then, the main problem is transformed in several subproblems that
can be independently processed (figure 4.39).

Figure 4.40 enumerates the steps done by the framework’s kernel in
multi-core mode. The first phase generates the subproblems in three steps:
Exhaustive Expansion, Pruning Subtrees and Remodel System. In a second
phase the framework executes simultaneously the NWT detectors paralleliz-
ing the loop (step 7) or not, depending on the user requirements. The last
phase takes the final decision using the outputs of all the subproblems. Note
that, Exhaustive Expansion stage can also be parallelized with OpenMP
(Fig. 4.27) or CUDA (Fig. 4.30). The user can also parallelize the loop in
step 7), distributing the NWT subproblems among different CUDA cores.
Fig 4.41 shows how list D can be calculated with the MIMOPack algorithms
presented in this chapter.

For example, the detection tree depicted in Fig. 4.39 shows a 5 × 5

4.8. WinTrees: a Divide-and-Conquer framework for Tree-Search-Based MIMO de-

tectors 105

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

n
T
= n

R

S
pe

ed
up

 (
S

p)

32 OpenMP Threads
(U)GPU

n
E
 = 3

n
E
 = 2

n
E
 = 4

Figure 4.38. Speedup (SP) comparison of FSD detector with

different library configurations for a nR × nT MIMO system

with 16-QAM constellation and Nc = 10000 signals.

Subproblem 1
3× 3 MIMO system

Subproblem 2
3× 3 MIMO system

Subproblem 3
3× 3 MIMO system

Subproblem 4
3× 3 MIMO system

S
u
b
T
re
es

G
en

er
at
io
n

E
x
p
an

si
on

P
ru
n
e

P
ar
al
le
l
S
ta
ge

Figure 4.39. WinTrees stages for a detection tree of a 5× 5

MIMO system using a BPSK constellation with nE = 2 levels

exhaustive expanded.

MIMO system with a BPSK constellation (M = 2) that can be split into 4
different MIMO systems of size 3× 3 as follows:

106 Implementation of Hard-Output MIMO Detectors

function [̂s, η] = hard wintrees(R, ỹ, nE [, r] [, K])
1. D = ∅
2. [L] = fully expansion(R, ỹ, nE)
3. [L] = purge tree(L, r) or [L] = min(L,K)
4. [R̆, y̆] = resize model(R, ỹ,L)
5. NWT = length(L)
6. #pragma omp parallel for
7. for n = 1 : NWT

8. path = third party detector(R̆, y̆n,:)
9. path.snT−nE+1:nT

= Ln.s
10. path.η = path.η + Ln.η
11. D = path ∪ D
12. end
13. path = min(D, 1)
14. η = path.η
15. ŝ = path.s
end

C/OpenMP Framework pseudocode for third party detectors

Figure 4.40. Framework Pseudocode for third party detec-

tors.

• Exhaustive Expansion: In the nE = 2 upper levels of the tree, all
branches are considered. Thereby, NWT = MnE = 4 partial euclidean
distances (PED) are computed, one for each explored branch. For a
given branch, the latest nE components of s are fixed. After that,
the partial euclidean distance (PED) is computed using a submatrix
of matrix R and a subvector of the received vector ỹ (see Fig. 4.42).

It should be noted that the parallelism degree achieved by the frame-
work depends directly on the number of exhaustive levels considered
(nE) since it determines the number of subproblems that can be in-
dependently computed.

• Pruning Subtrees: The framework incorporates a parameter that al-
lows to reduce the number of generated subproblems to solve. In the
framework the following types of pruning are allowed:

– Radius: The subproblems with the Partial Euclidean Distances

4.8. WinTrees: a Divide-and-Conquer framework for Tree-Search-Based MIMO de-

tectors 107

function [̂s, η] = hard wintrees(R, ỹ, nE [, r] [, K] [, det])
1. [L] = fully expansion(R, ỹ, nE)
2. [L] = purge tree(L, r) or [L] = min(L,K)
3. [R̆, y̆] = resize model(R, ỹ,L)
4. if CUDA
5. [D] = dt cu name wrapper(R̆, y̆, det)
6. else
7. [D] = dt c name wrapper(R̆, y̆, det)
8. end
9. for n = 1 : NWT

10. Dn.snT−nE+1:nT
= Ln.s

11. Dn.η = Dn.η + Ln.η
12. end
13. path = min(D, 1)
14. η = path.η
15. ŝ = path.s
end

Framework pseudocode for MIMOPack detectors

Figure 4.41. Framework Pseudocode for MIMOPack detec-

tors.

R11 R12 R13 R14 R15

0 R22 R23 R24 R25

0 0 R33 R34 R35

0 0 0 R44 R45

0 0 0 0 R55







ỹ1

ỹ2

ỹ3

ỹ4

ỹ5







s1

s2

s3

s4

s5







n
E
=

2
n

T
−

n
E
=

3

Figure 4.42. Data used in the WinTrees Exhaustive Expan-

sion stage.

greater than a radius (r) provided by the user will be discarded.

– K-Best: Only the K best subproblems will be considered in the

108 Implementation of Hard-Output MIMO Detectors

detection process (i.e the K subproblems with the lowest PED).
This type of pruning not only allows to reduce the complexity
of the detection but also adjust the parallelism degree to the
platform where the detector will be executed selecting a suitable
value of K.

• Resized System: The exhaustive expansion and pruning stages gener-
ates jointly NWT different subproblems, thus, it is necessary to resize
the overall detection problem. Now, the nT ×nT original MIMO sys-
tem becomes NWT different nT − nE × nT − nE MIMO systems. For
the sake of simplicity, henceforth, the subtree size will be named as
nST = nT − nE . For each subproblem, the received symbol vector ỹ
will be different since is affected by the estimated symbols computed
up to now (see Fig. 4.42), thus it is necessary to compute them after
the computation of the remaining estimated symbols i ∈ {1, . . . , nST }
for each subproblem n as:

y̆i,n = ỹi −
nT∑

j=nST+1

Ri,jLn.sj . (4.21)

R11 R12 R13 R14 R15

0 R22 R23 R24 R25

0 0 R33 R34 R35

0 0 0 R44 R45

0 0 0 0 R55







ỹ1

ỹ2

ỹ3

ỹ4

ỹ5







s1

s2

s3

s4

s5







n
E
=

2
n

T
−

n
E
=

3

Figure 4.43. Data used in the WinTrees Resized System

stage.

The stage of subtrees generation, NWT detectors can be launched si-
multaneously (or not) to proceed with the detection. This step of the
framework uniquely needs a portion of the original matrix R, denoted by
R̆ (see Fig. 4.44). Through this scheme, the user can run its own detector

4.8. WinTrees: a Divide-and-Conquer framework for Tree-Search-Based MIMO de-

tectors 109

or any other provided by the MIMOPack library in the boxes colored in
gray in Fig. 4.39.

R̆11 R̆12 R̆13 R14 R15

0 R̆22 R̆23 R24 R25

0 0 R̆33 R34 R35

0 0 0 R44 R45

0 0 0 0 R55







y̆1

y̆2

y̆3

ỹ4

ỹ5







s1

s2

s3

s4

s5







n
E
=

2
n

T
−

n
E
=

3

Figure 4.44. Data used by the subproblems generated by the

WinTrees Generation Subtrees process.

Once all subproblems have finished, the framework has a list of possible
solutions in D. To complete the detection, in step 13, the framework gets
the path with the minimum distance.

Observe that the algorithms implemented using this framework have
been devised by means of a Divide-and-Conquer (D&C) approach and the
theoretical computational cost may suffer a complexity reduction, either in
a sequential implementation or in a parallel one. Let us consider, for exam-
ple, the MLE performance as target for the framework. The sequential MLE
algorithm (see Fig. 4.14) exhibits a computational cost of Θ(MnT · n2

T).
The corresponding D&C approach would show a sequential computational
cost of Θ(MnT · (nT − nE)2). Thus, the D&C approach provides a theo-
retical speedup Sp = MnT · (nT

nT−nE)2, even in a sequential implementation.

The theoretical parallel speedup can reach up to Sp = MnE · (nT
nT−nE)2 if

MnE processors were used.

Graphical results represented in Figure 4.45 illustrate the execution
time comparison between the MLE sequential demodulator without the use
of WinTrees, and the WinTrees parallelization with OpenMP and CUDA
MLE demodulators (see Fig. 4.40,for the framework performance). In the
OpenMP version, the NWT threads are distributed among all the CPU
cores. On the other hand, the CUDA version creates a grid with nth = NWT

threads such that a single CUDA core solves one subproblem.

110 Implementation of Hard-Output MIMO Detectors

12 4 8 12 16 24 32 48
0

10

20

30

40

50

60

70

80

OpenMP Threads

S
pe

ed
up

 (
S

P
)

CUDA (n

E
=4)

OpenMP (n
E
=4)

CUDA (n
E
=3)

OpenMP (n
E
=3)

OpenMP (n
E
=2)

CUDA (n
E
=2)

n
th

= 65536n
th

= 256

n
th

= 16

Figure 4.45. Speedup of a MLE detector parallelized using

WinTrees framework with different library configurations over

a 6× 6 MIMO system with 16QAM modulation.

4.9 Conclusions

In this chapter, several Hard-Output MIMO configurable detectors with
different complexities have been implemented in OpenMP and GPU. The
detection stage is highly accelerated through exploiting two parallelism lev-
els: first, independent parts of the considered algorithms are processed in
parallel and, second, the detection step is carried out simultaneously for all
signals in the simulation system through forwarding each one to a different
thread.

A study of the execution time for different number of signals and system
sizes was carried out to evaluate the influence of these parameters on the
library performance.

The selected methods were also implemented in a sequential and unop-
timized version. The execution times of this implementation were compared
to the execution times of the proposed OpenMP and GPU implementations.

4.9. Conclusions 111

Speedup results showed that the multi-core and GPU-based detector per-
forms up to 30 times faster than sequential versions for some cases. More-
over, the speedup increases with the system size and number of transmitted
signals, showing the interest of multi-core and GPU implementations for
configurations managing many signals simultaneously in very large MIMO
systems.

Efficient Euclidean distance calculation reduces 20 − 30% the time
needed to calculate the ED in the exploration tree for most detectors. How-
ever, for ZFSIC and FSD detectors, the simultaneous use of both matrices
R and T worsens the performance in some cases. This is mainly due to the
extra memory accesses to the matrix T and to the failures in cache memory
for OpenMP versions. For the CUDA versions EEDC optimization is not
recommended since the time required to transfer the matrix T to the GPU
memory can be higher than the gain obtained from it use.

Additionally, a divide-and-conquer framework called WinTrees was pre-
sented and assessed. WinTrees was designed to assist the parallelization of
Hard-Output detectors. Its D&C approach makes possible the reduction
of the detection complexity, either in a sequential implementation or in
parallel one. Results showed that the speedup increases with the number
of subproblems genrated from the original MIMO tree-search, achieving a
speedup up to 70 for GPU computing and 45 for the multi-core version.

Future work is needed to decrease the runtime for these Hard-Output
detectors. Implementations of the detectors are made in a generic manner
to allow their execution on any type of NVIDIA GPU architecture. Howe-
ver, depending on the model installed on the user’s platform, some specific
features (e.g shared memory, nested parallelism, streams) may be exploited
to decrease the execution time. Therefore, the algorithms will be reimple-
mented wherever possible, in order to optimize them for each architecture.
Last, it can be remarked that some information presented in this chapter
has been published in international journals. The OpenMP implementation
of the FSD has been reported in [79]. The paper containing the design and
GPU implementation using shared memory and different GPU features of
the FSD was reported in [76].

112 Implementation of Hard-Output MIMO Detectors

Implementation of Soft-Output MIMO Detectors

5

114 Implementation of Soft-Output MIMO Detectors

Implementation of Soft-Output MIMO Detectors

5
The use of soft detection in MIMO-BICM is necessary to improve the

reliability of the MIMO-BICM systems with respect to the use of hard de-
tection. The optimal demodulator is the soft-output maximum a posteriori
probability (MAP) detector. This detector is the best in terms of BER but
needs a high computational power.

In this chapter, we propose a set of efficient soft-output detectors that
allow to reduce the computational complexity of a MAP detector. Prelimi-
nary results show that our implementations achieve a significant complexity
reduction. Furthermore, as seen in the previous chapter, the use of the ef-
ficient Euclidean Distance Calculation (EEDC) allows to reduce up to 25%
the execution time.

5.1 Introduction

The soft output detection is used in Bit-Interleaved Coded Modulation
(BICM) MIMO systems [21], where the information bits b are encoded
and optionally interleaved before the transmission [see Chapter 2, Section
2.1.1]. A channel encoder replicates some of the information to be trans-

116 Implementation of Soft-Output MIMO Detectors

mitted, so that the receiver can recover the original information even when
data losses occur or the channel conditions are not too good. The main
task of the soft output MIMO detector is to produce the estimation of the
coded and interleaved received bits c in terms of log-likehood ratios LLRs
as:

Λi,k = log
P(ci,k = 1|y,H)

P(ci,k = 0|y,H)
, (5.1)

for all bits i = 1, ..., nT , k = 1, . . . ,m in the label coded c. The sign of an
LLR-value Λi,k indicates whether the corresponding bit ci,k is more likely
to be 0 or 1, thus negative values indicates 0 and positive values 1. The
magnitude |Λi,k| denotes the reliability of the estimate ci,k = sign(Λi,k).
Large magnitudes indicate high confidence, whereas low magnitudes corre-
spond to estimates with low reliability. These LLRs are deinterleaved (if
needed) and used by the channel decoder to make final decisions about the
transmitted sequence bits b̂.

Figure 5.1 shows the necessary steps to carry out the Soft-Output de-
tection, where most of them are common to the hard-output detection.
MIMOPack also allows the execution of the soft output detectors in differ-
ent execution modes. Figure 5.2 shows the pseudocode for the detector in
sequential, multi-core, multi-GPU and heterogeneus modes that are man-
aged identically to that view in chapter 4, section 4.1. The chapter is
organized as follows: first the Maximum A Posteriori Probability (MAP)
and Max-Log Detectors Implementation (MLA) are introduced. These de-
tectors exhibit good performance in terms of Bit Error Rate but have a
huge computational complexity. For this reason, two suboptimal soft de-
tectors based in a extension of the list provided by the Hard-Ouput FSD
were implemented: the Soft Fixed Complexity Sphere Decoder (SFSD) and
the Fully Parallel Soft Fixed Sphere Decoder (FPSD).

Each description contains the C/OpenMP pseudocode and the CUDA
algorithm version. In order to make an assessment of the MIMOPack Soft-
Output detectors, a performance subsection is presented for each detector,
which shows time measurements with different configurations taken on the
Computer System A described in Chapter 3, Section 3.1.3.

5.1. Introduction 117

Start Soft-
Output Detection

Input data: H,
y, det, conf

Read
det.ordering
parameter

Reordered
Detection?

Calculate
Permutation
Matrix P

Permute channel
matrix H = PH

Calculate QR
decomposition

H = QR

Calculate
ỹ = QHy

Read det.eedc
parameter

EEDC?

Construct
matrix T

Read det
and config
parameters

[Λ] =
soft detector([R][,T], ỹ, det, conf)

Reordered
Detection?

Permute LLRs
Λ = PΛ

End Soft-Output
Detection

yes

yes

yes

no

no
no

1

2
3

Figure 5.1. Flow Chart of Soft-Output detection.

118 Implementation of Soft-Output MIMO Detectors

function [Λ] = soft detector(R, ỹ, det, conf)
1. Nc = size(ỹ, 2)
2. Ngpus

c = Nc ∗ conf.pw
3. if Ngpus

c = 0
4. omp set num threads(conf.ncpus)
5. [ΛNgpus

c +1:Nc,:,:] = dts c name wrapper(R, ỹ:,Ngpus
c +1:Nc

, det)
6. else if Ngpus

c = Nc

7. #pragma omp parallel for num threads(conf.ngpus)
8. for dev = 1 : conf.ngpus

9. Ndev =
Ngpus

c

conf.ngpus

10. ini = (dev − 1) ·Ndev + 1
11. end = dev ·Ndev

12. if dev = conf.ngpus

13. end = Ndev

14. end
15. setDevice(dev)
16. [Λini:end,:,:] = dts cu name wrapper(R, ỹ:,ini:end, det)
17. end
18. else
19. omp set nested(1)
20. #pragma omp parallel sections num threads(2)
21. #pragma omp section
22. Get [Λ1:Ngpus

c ,:,:] such as steps 7-17
23. #pragma omp section
24. Get [ΛNgpus

c +1:Nc,:,:] such as steps 4-5
25. end
end

MIMOPack Soft detector pseudocode

Figure 5.2. MIMOPack Soft-Output Detector Pseudocode:

Calling OpenMP/CUDA wrapper functions Fig. 5.3 and Fig.

5.4.

5.2 Maximum A Posteriori Probability and Max-Log

Detectors Implementation

Assuming that all transmit vectors are equally likely, the optimal soft MAP
(OMAP) demodulator calculates the exact LLR for ci,k as

5.2. Maximum A Posteriori Probability and Max-Log Detectors Implementation119

function [Λ] = dts c name wrapper(R, ỹ, det)
1. Nc = size(ỹ, 2)
2. #pragma omp parallel for
3. for n = 1 : Nc

4. [Λn,:,:] = dts c name(R, ỹ:,n[, det.nE])
5. end
end

C/OpenMP Soft-Output detection wrapper pseudocode

Figure 5.3. C/OpenMP Soft-Output detection wrapper

pseudocode called from Fig. 5.2. Parameters depend on the

detector chosen.

function [Λ] = dts cu name wrapper(R, ỹ, det)
1. [nT , Nc] = size(ỹ)
2. Ns = gpu name fitting(model,Nc, nT)
3. for n = 1 : Nc

Ns

4. ini = (n− 1) ·Ns + 1
5. end = n ·Ns

6. [Λini:end,:,:] = dt cu name(R, ỹ:,ini:end[, det.nE][, det.Niter])
7. end
end

CUDA Soft-Output detection wrapper pseudocode

Figure 5.4. CUDA Soft-Output detection wrapper pseu-

docode called from Fig. 5.2. Parameters depend on the de-

tector chosen.

Λi,k = log
P(ci,k = 1|y,H)

P(ci,k = 0|y,H)
= log

∑
s:si∈O1

k
e
− ‖ỹ−Rs‖2

σ2
w

∑
s:si∈O0

k
e
− ‖ỹ−Rs‖2

σ2
w

, (5.2)

where candidates s : si ∈ Ouk are selected if the bit [si]k is equal to u. Here,
[si] denotes the binary-valued representation of the constellation symbol
si. This requires the computation and summation of |O|nT probabilities,
leading to prohibitive computational complexity. In the decision-tree per-

120 Implementation of Soft-Output MIMO Detectors

spective, the MLA needs to compute the euclidean distance of each branch,
‖ỹ −Rs‖2 in expresion (5.2). Let us consider the detection tree depicted
in Fig. 5.5 of a 3×3 MIMO system with QPSK constellation of size M = 4
(i.e each constellation symbol is represented with m = log2M = 2 bits). As
an example, the LLR Λ2,1 will be calculated using the Euclidean Distances
of branches with leafs nodes filled in red (nodes with 1st bit of 2nd symbol
set to 1 or [s2]1 = 1) in the numerator and those filled in blue (nodes with
1st bit of 2nd symbol set to 0 or [s2]1 = 0) in denominator of equation 5.2.

0001 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

00 01 10 11

00

00 01 10 11

01

00 01 10 11

10

00 01 10 11

11

Figure 5.5. Binary-valued representation of the complete

decoding tree for a 3× 3 using QPSK (m = 2) constellation.

Pseudocode described in Fig. 5.6 shows the steps necessary to calculate
the LLRs with the Maximum A Posteriori Probability (MAP) detector. As
can be seen the first part of the algorithm is identical to that described in
the MLE detector in section 4.3. Once the Euclidean distances have been
calculated for each possible solution s ∈ OnT using the fully expansion
algorithm with nE = nT (see Chapter 4, Fig. 4.27) the algorithm proceeds
calculating the LLRs as Fig. 5.7. L is a structure which contains, the
tree-path formed by nT constellation symbols in L.s and the accumulated
Euclidean distance in L.η. Note that, the computation of each LLR for
each layer i and each bit position k can be done in parallel (step 1 and 3
in Fig. 5.7).

A look-up table (LUT) of M ×m entries, called G, is used in order to
find, efficiently, the set of symbols Ouk with k = 1, . . . ,m and u ∈ {0, 1}.
This LUT avoids the need of obtaining each time the representation of si
in binary format. Matrix G contains the representation of all constellation
symbols in binary format. Table 5.1 shows the LUT G associated to the
detection tree of figure 5.5.

The use of a Max-Log Approximation (MLA) detector can reduce the

5.2. Maximum A Posteriori Probability and Max-Log Detectors Implementation121

function [Λ] = dt c map(R, ỹ, σ2
w)

1. L = fully expansion(R, ỹ, nT)
2. Λ = llr map(L,G, σ2

w)
end

MAP pseudocode

Figure 5.6. Maximum A Posteriori Probability Detector

Pseudocode. The detector calls fully expansion function in

Chapter 4, Fig. 4.27 and llr map function in Fig. 5.7.

function [Λ] = llr map(L,G, σ2
w)

1. #pragma omp parallel for
2. for i = 1 : nT
3. #pragma omp parallel for
4. for k = 1 : m
5. d0 = d1 = 0
6. for q = 1 : lenght(L)
7. x = Lq.si
8. if G〈x〉,k = 1

9. d1 = d1 + e
−Lq.η

σ2w

10. else

11. d0 = d0 + e
−Lq.η

σ2w

12. end
13. end
14. Λi,k = log(d1

d0)
15. end
16. end
end

LLR MAP pseudocode

Figure 5.7. MAP Calculation of the bits LLRs. This function

is called from Fig. 5.6.

complexity of the MAP detector. Algorithm described in Fig. 5.8 shows
the pseudocode of the MLA demodulation, where the computation of the
LLRs for each code bit is calculated using the max-log approximation as
follows (see Fig. 5.9):

122 Implementation of Soft-Output MIMO Detectors

Table 5.1. Look-up table G for a QPSK contellation of size

M = 4 and m=2 bits per symbol.

i
k

2 1

1 0 0

2 0 1

3 1 0

4 1 1

Λi,k ≈
1

σ2
w

[
min

s:si∈O0
k

‖ỹ −Rs‖2 − min
s:si∈O1

k

‖ỹ −Rs‖2
]
. (5.3)

function [Λ] = dt c mla(R, ỹ, σ2
w)

1. L = fully expansion(R, ỹ, nT)
2. Λ = llr mla(L,G, σ2

w)
end

MLA pseudocode

Figure 5.8. Max-Log Approximation Detector Pseudocode.

The detector calls fully expansion function in Chapter 4, Fig.

4.27 and llr mla function in Fig. 5.9.

5.2.1 CUDA Implementation

The proposed MAP and MLA GPU implementations exhibit a similar al-
gorithmic scheme. Both CUDA codes are composed by two kernels that
work together to perform the estimation of the Ns signals.

Algorithm 5.10 shows the needed steps to carry out the detection using
GPU. As can be seen, matrix G contains the representation of all constel-
lation symbols in binary format. This data will not change during the
execution and is read only, then can be stored in constant memory in order
to get faster memory accesses. The next step launches the kernel mle [see

5.2. Maximum A Posteriori Probability and Max-Log Detectors Implementation123

function [Λ] = llr mla(L,G, σ2
w)

1. #pragma omp parallel for
2. for i = 1 : nT
3. #pragma omp parallel for
4. for k = 1 : m
5. d0 = d1 = 1e6
6. for q = 1 : lenght(L)
7. x = Lq.si
8. if G〈x〉,k = 1 and Lq.η < d1

9. d1 = Lq.η
10. end
11. if G〈x〉,k = 0 and Lq.η < d0

12. d0 = Lq.η
13. end
14. end
15. Λi,k = d0−d1

σ2
w

16. end
17. end
end

LLR MLA pseudocode

Figure 5.9. MLA Calculation of the bits LLRs. This function

is called from Fig. 5.8.

Chapter. 4, Figure 4.16]. Each thread is in charge of computing the ac-
cumulated ED for a given signal n and a possible q-th combination of the
range OnT . Note that, the list of pahts L does not need to be copied to
the CPU, since data stored in global memory remains unchanged and can
be used for the following kernel.

Once the MnT Euclidean Distances have been calculated for each sig-
nal, the detector must obtain the soft information. Depending on the de-
tector selected (MAP or MLA) Kernel of Fig. 5.11 or Kernel of Fig. 5.12
will be launched. In this case the number of blocks are computed with
nth = Ns ·m · nT . Each thread is in charge to compute an LLR Λn,i,k for a
determinated signal n using Eq. 5.2 or Eq. 5.3 respectively.

5.2.2 Performance Results

In order to assess the performance of the parallel implementations, we have
evaluated the execution times of the MLA and MAP detectors described

124 Implementation of Soft-Output MIMO Detectors

Input: T ∈ CM×nv , ỹ ∈ CnR×Ns , σ2
w

Output: Λ ∈ RNs×nT×m

function [Λ] = dt cu map(T, ỹ, σ2
w)

1. Allocate and copy T and ỹ in GPU GM
2. Allocate output data L ∈ PNs×MnT in GPU GM
3. Select block and grid configuration with nth = Ns ·MnT

4. [L] = kernel mle(T, ỹ)
5. Select block and grid configuration with nth = Ns · nT ·m
6. Allocate output data Λ in GPU GM
7. Copy look-up table G in GPU CM
8. if MAP detector is selected
9. [Λ] = kernel llr map(L, σ2

w)
10. else
11. [Λ] = kernel llr mla(L, σ2

w)
12. end
13. Copy Λ in CPU

end

MAP and MLA Kernel-Launcher Pseudocode

Figure 5.10. MAP and MLA Kernel-launcher for Ns time

instants. Calling kernels in Fig. 5.11 and 5.12.

in the previous section. The experimental environment used to evaluate
the Soft-Ouput detectors is the same as the one mentioned in Chapter 4,
Section 4.1.3.

Table 5.2 shows experimental results for MAP and MLA detectors of
a 4× 4 MIMO system with 16-QAM constellation and Nc = 10000 signals.

Comparing costs of the unoptimized versions U with the execution time
using a single OpenMP thread, we can see that the EEDC optimization
achieves a significant complexity reduction. The detection is done up to
1.20 times faster. On the other hand parallel execution with OpenMP
dramatically reduces response time for soft MAP detection running up to 21
times faster than U version. CUDA parallelization outperforms OpenMP
implementation for the MAP detector (≈ 50x faster). Nevertheless the
speedup with 48 OpenMP for the MLA detector is better than the CUDA
one, since the MLA detector has low complexity than MLA algorithm and
the LLR calculation needs more comparisons, which implies more warp

5.3. Soft Fixed Sphere Decoder Implementation 125

function [Λ] = kernel llr map(L, σ2
w)

1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Layer position i ∈ {1, ..., nT }
4. · Bit position k ∈ {1, ...,m}
5. if n < Ns

6. d0 = d1 = 0
7. for q = 1 : lenght(L)
8. x = Lq.si
9. if Gx,k = 1

10. d1 = d1 + e
−Lq.η

σ2w

11. else

12. d0 = d0 + e
−Lq.η

σ2w

13. end
14. end
15. Λn,i,k = log(d1

d0)
16. end
end

Kernel MAP Pseudocode

Figure 5.11. Computation of the LLR for the MAP by the

z-th thread for NS signals. This kernel is called from Kernel-

Launcher of Fig. 5.10.

divergence problems.

5.3 Soft Fixed Sphere Decoder Implementation

In Chapter 4, Section 4.7 the Hard-Output Fixed Complexity SD (FSD)
tree search was described for uncoded MIMO detection, which is able to
aproximate the performance of the MLE detector combining a channel ma-
trix ordering with a search over a subset of the whole transmit constellation
S ⊂ OnT . The FSD detection process can be written as

ŝFSD = arg min
s∈S
‖y −Hs‖2. (5.4)

However, the interest in coded transmissions is not only to find the
ML solution (̂sFSD) but also to obtain a set of candidates around the ML
solution with different bit values, which can be used to calculate the LLR

126 Implementation of Soft-Output MIMO Detectors

function [Λ] = kernel llr mla(L, σ2
w)

1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Layer position i ∈ {1, ..., nT }
4. · Bit position k ∈ {1, ...,m}
5. if n < Ns
6. d0 = d1 = 1e6
7. for q = 1 : lenght(L)
8. x = Lq.si
9. if Gx,k = 1 and Lq.η < d1

10. d1 = Lq.η
11. end
12. if Gx,k = 0 and Lq.η < d0

13. d0 = Lq.η
14. end
14. end
15. Λn,i,k = d0−d1

σ2
w

16. end
end

Kernel MLA Pseudocode

Figure 5.12. Computation of the LLR for the MLA by the

z-th thread for NS signals. This kernel is called from Kernel-

Launcher of Fig. 5.10.

information of the transmitted bits b [see Chapter. 2, Section 2.1.1]. The
Soft Fixed Sphere Demodulation (SFSD) was proposed in [80] to provide
soft information (LLRs) through an improved list of candidates around the
ML solution with different bit values.

It is useful to realize that the Euclidean distance of the solution ŝFSD

of the hard-output FSD detection problem (2.13) directly provides one of
the two minima in expression (5.3), denoted in what follows as ηFSD:

ŝFSD = arg min
s∈S
‖y −Hs‖2, ηFSD =

∥∥y −HŝFSD
∥∥2
, (5.5)

The second minimum in (5.3) for each i = 1, . . . , nT and k = 1, . . . ,m,
can be computed as

5.3. Soft Fixed Sphere Decoder Implementation 127

Table 5.2. Time Execution comparison in seconds and

speedup (SP) of the MLE detectors for a 4 × 4 system using

16-QAM constellation with Nc = 10000.

MAP MLA

Time[sec] SP Time[sec] SP

U 305.72 1.00 89.79 1.00

O
p

en
M

P
T

h
re

a
d
s

1 290.46 1.18 73.92 1.21

2 162.65 1.94 39.64 2.27

4 78.29 3.88 20.81 4.31

8 42.40 7.28 11.17 8.04

12 28.76 10.53 7.68 11.69

24 20.41 15.33 5.98 15.02

32 17.69 18.38 4.96 18.10

48 14.45 22.91 3.93 22.85

GPU 6.15 47.95 5.84 15.38

(U) GPU 6.76 45.22 5.90 15.22

η̄i,k = min

s:siεO
[sFSD
i

]k̄
k

‖y −Hs‖2 , (5.6)

where [sFSD
i]k̄ denotes the bit-negation of bit [sFSD

i]k. Then, the LLRs can
be calculated as show in Fig. 5.16:

Λi,k =
1

σ2
w

(ηFSD − η̄i,k)(1− 2[ŝFSD
i]k). (5.7)

The second term in (5.7) is used to adjust the sign depending if ηFSD

corresponds to the first or the second minimum in (5.3).

The SFSD performs a predeterminated tree-search composed of three
different stages (see Fig. 5.14). The first two stages (FE and SE) are known
as the hard-output stage or FSD detection:

• A full expansion of the tree (FE) in the first (highest) nE levels. At
the FE stage, for each survivor path, all the possible values of the
constellation are assigned to the symbol at the current level.

128 Implementation of Soft-Output MIMO Detectors

• A single-path expansion (SE) in the remaining tree-levels nT − nE .
The SE stage starts from each retained path and proceeds down in the
tree calculating the solution of the remaining succesive-interference-
cancellation (SIC) problem as:

ŝi = Q
{
ỹi −

∑nT
j=i+1Ri,j ŝj

Ri,i

}
, i = nT , . . . , 1. (5.8)

• A Soft-Output extension (SOE) to provide soft information by ob-
taining an improved list of candidates [39]. Figure 5.13 shows the
search-tree of the SFSD for the case with nT = 3 and QPSK sym-
bols. The method starts from the list of candidates computed in the
FSD detection and adds new candidates to provide more information
about the counter bits. Note that, all the possible values of the cons-
tellation for each survivor path in the first nE levels are assigned to
the symbol at the current level (i.e. all the necessary values to com-
pute the LLRs of the symbol bits in the first nE levels are available).
Therefore, the list extension must start from the nT −nE level of such
path.

To begin the list extension, the best Niter paths are selected from the
initial hard-ouput FSD list (in this example, Niter = 1). This is based
on the heuristics that the lowest-distance paths may be candidates
differing from the best paths in only some bits. The symbols belong-
ing to these Niter paths ŝFSD = [O4O2O2] = [110101]T are picked up
from the root up to a certain level i = nT − nE = 2, and, at level
i − 1, additional log2M branches are explored, each of them having
one of the bits of the initial path symbol negated (see Fig. 5.15). For
example when the first level is expanded, the symbol [O2] = 01 be-
comes 01̄ = 00 negating the 1st bit and 0̄1 = 11 negating the 2nd bit.
In the same way, if the last level is expanded, the symbol [O4] = 11
becomes 11̄ = 10 negating the 1st bit and 1̄1 = 01 negating the 2nd
bit. Afterwards, these new partial paths are completed following the
SIC path, as done in the hard-ouput FSD scheme. The same opera-
tion is repeated until the lowest level of the tree is reached (branches
coloured in green in Fig. 5.13).

In order to accelerate this expansion, a look-up table (LUT) of M×m
entries, called N , is built before the detection. This matrix contains
a list of m constellation symbols resulting of the k-th bit negation for

5.3. Soft Fixed Sphere Decoder Implementation 129

each constellation symbol Oi. For example using the QPSK constel-
lation for the symbol O2 its binary representation is 01 (see look-up
table G in Table. 5.1). Negating the 1st bit, it becomes 01̄ = 00, then
N1,1 = 0, negating the 2nd bit, it becomes 0̄1 = 11, then N1,2 = 3
(see Table 5.3).

Table 5.3. Look-up table N for a QPSK constellation of size

M = 4 and m=2 bits per symbol.

i
k

2 1

1 2 1

2 3 0

3 0 3

4 1 2

10 01 10 11 10 11

i = 1

i = 2

i = 3

i = 4

00

00

01 10 11

01

10

10

00

11

Figure 5.13. List generated by the SFSD algorithm for a

3× 3 MIMO system with QPSK modulation (M = 4, m = 2)

and Niter = 1.

5.3.1 CUDA Implementation

Algorithm described in Fig. 5.17 shows the steps to perform the SFSD
detection. The data for input and output variables are allocated and copied
into the GPU-GM memory. In this case, matrices G, N and constellation
symbols O are copied into constant memory. The O variable is needed
to perform the quantization Q(·) in the SIC problem. The list of paths L
contains the information of the MnE +Niter ·m ·(nT −nE) computed paths:
MnE branches of the Hard-Output stage and the Niter ·m · (nT − nE) new
branches of the Soft-Output extension (SOE) stage.

130 Implementation of Soft-Output MIMO Detectors

function [Λ] = dt c sfsd(R, ỹ, σ2
w)

1. [L] = dt c hfsd(R, ỹ, nE) // steps 1-8
2. [D] = min(L, Niter)
3. #pragma omp parallel for
4. for b = 1 : Niter

5. #pragma omp parallel for
6. for i = nT − nE + 1 : −1 : 1
7. #pragma omp parallel for
8. for k = 1 : m
9. path = negated path(Db,N , k, i)
10. L = L ∪ path
11. end
12. end
13. end
14. Λ = llr sfsd(L,G,D1, σ

2
w)

end

SFSD pseudocode

Figure 5.14. Soft Fixed Sphere Demodulation Pseudocode.

Calling Hard-Output FSD detector function in Chapter 4, Fig.

4.34, list extension algorithm in Fig. 5.15 and llr sfsd func-

tion in Fig. 5.16.

Kernel of Fig. 4.37 used for the FSD detector, is used to calculate
the MnE branches of the FSD stage. At the output, we have the list of
candidates paths L. After the hard-output FSD part is finished, the CPU
is in charge to calculate the Niter minimum distances and store it in the
matrix D in ascendent order for each signal. This list is copied in the GPU
global memory. Then, kernel negated paths obtains the Niter ·m ·(nT −L)
new candidates per time index n which are equally distributed among all
the threads (see Fig. 5.18). As mentioned, in the SOE stage, additional m
branches are explored in the remaining (nT −nE) levels. Each of them have
one of the bits of the initial path symbol negated. As occurs with matrix
G, the matrix N is constant for the entire simulation, then it will be also
copied in constant memory.

After this, the final step finds the minimum distances of paths having

5.3. Soft Fixed Sphere Decoder Implementation 131

function [path] = negated path(hpath,N , k, i)
1. x = hpath.si
2. path.s = hpath.s
3. path.si = ON〈x〉,k
4. for l = i− 1 : −1 : 1

5. path.sl = Q
{

ỹl−
∑nT

j=l+1 Rl,jpath.sj

Rl,l

}

6. end

7. path.η =
∑1

l=nT

∣∣∣ỹl −
∑nT

j=lRl,jpath.sj

∣∣∣
2

end

SFSD Negated Path pseudocode

Figure 5.15. SFSD Negated Path Pseudocode. This function

is called from Fig. 5.14.

the counter bits within the list and computes the log2M · nT LLRs. These
operations are simultaneously executed by the Kernel described in Fig.
5.19.

5.3.2 Performance Results

Due to the lower complexity of the suboptimal SFSD method, we can
simulate trasmissions with higher complexity. Figure 5.20 illustrates the
speedup comparison using a nR × nT system and Nc = 10000 signals,
variyng the number of transmitter (nT) and receiver (nR) antennas with
different constellation sizes. The execution times can be viewed in Tables
5.8, 5.9 and 5.10 for the QPSK, 16-QAM and 64-QAM, respectively. The
OpenMP version times have been obtained using 24 OpenMP threads.

The value of Niter is {2, 4, 6} for QPSK, 16-QAM and 64-QAM, respec-
tively and nE = d√nT e − 1. As we can see, the multi-core version have
better performance than CUDA version when the computational burden is
insufficient to exploit the capabilities of the GPU (i.e. for QPSK constella-
tion). When the number of transmitter antennas nT and constellation size
increases, the CUDA implementation gives better performance than multi-
core version. This is more noticeable from nT = 10, since the number of
levels in the FE stage is fixed to nE = 3.

132 Implementation of Soft-Output MIMO Detectors

function [Λ] = llr sfsd(L,G,minpath, σ2
w)

1 #pragma omp parallel for
2. for i = 1 : nT
3. x = minpath.si
4. #pragma omp parallel for
5. for k = 1 : m
6. dmin = 1e6
7. for q = 1 : lenght(L)
8. xn = Lq.si
9. if G〈x〉,k 6= G〈xn〉,k and Lq.η < dmin
10. dmin = Lq.η
11. end
12. end
13. Λi,k =

(minpath.η−dmin)·(1−2·G〈x〉,k)
σ2
w

14. end
15. end
end

LLR SFSD pseudocode

Figure 5.16. SFSD Calculation of the bits LLRs. This func-

tion is called from Fig. 5.14.

5.4 Fully Parallel Soft Fixed Sphere Demodulation

In SFSD detector, a smart list extension based on the lowest distance paths
within the initial FSD list is proposed, however, such extension is performed
in an almost totally sequential way, which alters the algorithm parallelism
degree. For this reason, we proposed a soft-output demodulator in [75] that
performs a fully parallel list extension: the fully parallel FSD (FPFSD). The
proposed approach is purely based on the hard-output FSD scheme.

The list of candidates and distances necessary to obtain soft infor-
mation is calculated through nT hard-output FSD searches, each with a
different channel matrix ordering. The nT different channel orderings en-
sure that a different layer (level) of the system is placed at the top of the
tree each time. This way, candidate paths containing all the bit labelling
possibilities in every level are guaranteed and, thus, soft information about
all the bit positions is always available. Recall that, for nT = 4, 4 hard-

5.4. Fully Parallel Soft Fixed Sphere Demodulation 133

Input: T ∈ CM×nv , T ∈ CnT×nT , ỹ ∈ CnR×Ns

Output: Λ ∈ RNs×nT×m

function [Λ] = dt cu sfsd(T, R, ỹ)

1. Allocate and copy T, R, ỹ in GPU GM
2. Allocate and copy output L ∈ PNs×MnE+Niter·m·(nT−nE) in GPU GM
3. Select block and grid configuration with nth = Ns ·MnE

4. [L] = kernel hfsd(T, R, ỹ)
5. Copy L in CPU
6. for n = 1 : Ns

7. [Dn,:] = min(Ln,:, Niter)
8. end
9. Allocate and copy D in GPU GM
10. Copy N in GPU CM
11. Select block and grid configuration with nth = Ns ·Niter ·m · (nT − nE)
12. [L] = kernel negated path(L, D)
13. Select block and grid configuration with nth = Ns · nT ·m
14. Copy G in GPU CM
15. [Λ] = kernel llr sfsd(L, D)
end

SFSD Kernel-Launcher Pseudocode

Figure 5.17. Soft Fixed Sphere Demodulation Kernel-

launcher for Ns time instants. Calling kernels in Fig. 4.37,

Fig. 5.18 and Fig. 5.19.

output FSD independent searches such as the one in Fig. 4.35 should be
carried out, each with a different channel matrix ordering with nE = 1.
These tree-searches can be carried out totally in parallel (see Fig. 5.21).

In [39], a special ordering was proposed to place the detection layers
associated to the less reliable received symbols at the top of the tree. In this
way, FE was performed for those symbols to make the solution independent
of the decision in these levels. The rest of the symbols were detected from
the most reliable one to the less. This ordering strategy, although showing
good performance, involves the calculation of a pseudoinverse matrix with
cost O(n3

T) at each of the nT iterations, leading to a complexity of O(n4
T).

On the other hand, the calculations to be carried out for each iteration are
not independent among them, and, no parallelism can be exploited at such
preprocessing stage proposed in [39]. Thus, this approach was discarded
for our parallel implementation. We propose the use of a much simpler

134 Implementation of Soft-Output MIMO Detectors

function [L] = kernel negated paths(L, D)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., NS}
3. · Path identifier p ∈ {1, ..., Niter ·m · (nT · nE)}
4. · Selected path b ∈ {1, ..., Niter}
5. · Layer position i ∈ {1, ..., nT − nE}
6. · Bit position k ∈ {1, ...,m}
7. if n < Ns

8. q = MnE + p // Initial position extended list
9. x = Dn,b.si
11. Ln,q.s = Dn,b.s
12. Ln,q.si = Nx,k

13. for l = i− 1 : −1 : 1

14. x = Q
{

ỹl,n−
∑nT

j=l+1 TLn,q.sjΓl,j

Rl,l

}

15. si,p,n = 〈x〉
16. end

17. Ln,q.η =
∑1

l=nT

∣∣∣ỹl,n −
∑nT

j=l TLn,q.sj ,Γl,j

∣∣∣
2

18. end
end

KERNEL SOE Pseudocode

Figure 5.18. Calculation of new candidates for the SFSD

detector by the z-th thread for Ns signals. This kernel is called

from Kernel-Launcher of Fig. 5.17.

ordering strategy that is fully parallel and easy to implement in either
multi-core or GPU. First, the norms of the columns of the channel matrix
are obtained (requiring nT product, nT − 1 sums, and one squaredroot
operation each) and sorted in ascending order (n2

T flops in the worst case).
Thus, the complexity of this proposed ordering is O(n2

T). Note that this
can be computed considerably faster if the norms are processed in parallel
(see Algorithm in Fig. 5.22 step 1). Generally, this ordering leads to more
reliable decisions than random ordering since symbols with the highest
signal-to-noise ratio are detected before those with the lowest, thus reducing
error propagation. Once the norm-based ordering is available in vector
norm, the nT orderings needed by the FPFSD are directly built based on

5.4. Fully Parallel Soft Fixed Sphere Demodulation 135

function [Λ] = kernel llr sfsd(L, D, σ2
w)

1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Layer position i ∈ {1, ..., nT }
4. · Bit position k ∈ {1, ...,m}
5. if n < Ns
6. dmin = 1e6
7. x = Dn,1.si
8. for q = 1 : lenght(L)
9. xn = Lq.si
10. if Gx,k 6= Gxn,k and Lq.η < dmin
11. dmin = Lq.η
12. end
13. end
14. Λn,i,k =

(Dn,1.η−dmin)·(1−2·Gx,k)
σ2
w

15. end
end

Kernel LLR SFSD Pseudocode

Figure 5.19. Computation of the LLR for the SFSD by the

z-th thread for Ns signals. This kernel is called from Kernel-

Launcher of Fig. 5.17.

this initial norm-based ordering. Taking into account the aforementioned
requirements, the first level of each new ordering is assigned a different
detection position to guarantee the availability of soft information for all
the possible bit values in every system level.

Note that, as when using the FSD ordering, the reliability of the symbol
placed in the FE stage is irrelevant. Then, the remaining levels are ordered
following the initial column-norm-based ordering but skipping the level that
was already set on the top (∆ = {normi} ∪ ({1, 2, · · · , nT } − {normi})).
The example in Table 5.7 shows how the ordering is set up for a particu-
lar column-norm-based ordering of a 4 × 4 channel, which in this case is
{2, 4, 3, 1}. As the first row of Table 5.7 shows, the ith proposed order-
ing starts the data detection at the i-th tree-level, being i ∈ {1, 2, 3, 4}.
Then, the remaining levels are explored following the column-norm-based

136 Implementation of Soft-Output MIMO Detectors

Table 5.4. Time Execution comparison in seconds of SFSD

detector with different library configurations for a system using

QPSK constellation as a function of the number of transmitted

antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 0.2 · 10−1 0.06 · 10−1 3.11 · 10−1

4 0.7 · 10−1 0.10 · 10−1 3.04 · 10−1

8 2.52 · 10−1 0.30 · 10−1 3.14 · 10−1

10 7.72 · 10−1 0.45 · 10−1 3.59 · 10−1

12 9.73 · 10−1 0.56 · 10−1 3.50 · 10−1

14 13.10 · 10−1 0.73 · 10−1 3.34 · 10−1

16 16.50 · 10−1 0.92 · 10−1 3.67 · 10−1

18 21.66 · 10−1 1.14 · 10−1 3.85 · 10−1

20 26.21 · 10−1 1.37 · 10−1 4.10 · 10−1

Table 5.5. Time Execution comparison in seconds of SFSD

detector with different library configurations for a system using

16-QAM constellation as a function of the number of transmit-

ted antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 0.27 0.11 0.35

4 0.80 0.12 0.36

8 2.21 0.15 0.37

10 33.48 1.88 1.07

12 44.08 2.39 1.22

14 57.60 3.05 1.42

16 71.11 3.60 1.70

18 89.96 4.43 2.00

20 103.59 5.40 2.41

ordering in column 2.

5.4. Fully Parallel Soft Fixed Sphere Demodulation 137

Table 5.6. Time Execution comparison in seconds of SFSD

detector with different library configurations for a system using

64-QAM constellation with Nc = 10000 as a function of the

number of transmitted antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 3.35 0.42 0.77

4 12.03 0.70 0.92

8 33.42 1.86 1.27

10 2812.85 138.71 70.51

12 3719.92 186.10 81.56

14 4590.03 233.80 96.49

16 5586.36 293.54 114.71

18 6604.37 358.22 131.94

20 7691.20 444.28 151.81

Table 5.7. Symbol detection position and corresponding tree-

level for the involved FPFSD orderings in an example with

nT = 4

Detection Norm-based Order Order Order Order

position Ordering 1 2 3 4

1st 2 1 2 3 4

2nd 4 2 4 2 2

3rd 3 4 3 4 3

4th 1 3 1 1 1

5.4.1 CUDA Implementation

Algorithm 5.23 shows the steps needed to perform the FPFSD detection.
Once the relevant data has been allocated and copied in the GPU. Kernel in
Fig. 5.24 calculates the EDs of the M branches for each f -th order matrix
and n time instants. Once the Euclidean Distances have been calculated,
the detector must obtain the soft information. The LLRs are computed
using Kernel in Fig. 5.12.

138 Implementation of Soft-Output MIMO Detectors

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

n
T

S
pe

ed
up

 (
S

P
)

64QAM (GPU)
64QAM (OpenMP)
16QAM (GPU)
16QAM (OpenMP)
QPSK (OpenMP)
QPSK (GPU)

n
E
 = 3

n
E
 = 4

n
E
 = 2

Figure 5.20. Speedup (SP) comparison for the SFSD detec-

tor for a nR×nT system considering Nc = 10000 with different

constellations and number of transmitter antennas.

5.4.2 Performance Results

As in the case of SFSD scheme, the lower complexity of the subopti-
mal FPFSD method allows to simulate trasmissions with higher complex-
ity. Figure 5.25 has been obtained using a nR × nT system considering
Nc = 10000 signals variyng the number of transmitter and receiver anten-
nas (nT) and constellation types. The execution times can be viewed in
Tables 5.8, 5.9 and 5.10 for the QPSK, 16-QAM and 64-QAM, respectively.
The OpenMP version times have been obtained using 24 OpenMP threads.

The speedup results of the parallel FPFSD implementations can be
seen in Figure 5.25. As we can be observed, the multi-core version shows
better performance than CUDA version when the size of the constellation
is small. When the number of transmitter antennas nT and constellation
size increases, the CUDA implementation exhibits better performance than
the multi-core version.

5.4. Fully Parallel Soft Fixed Sphere Demodulation 139

function [Λ] = dt c fpfsd(R, ỹ)
1. L = ∅
2. #pragma omp parallel for
3. for i = 1 : nT
4. [D] = dt c hfsd(R:,:,i, ỹ:,i, 1)
5. L = L ∪ D
6. end
7. Λ = llr mla(L,G, σ2

w)
end

FPFSD pseudocode

Figure 5.21. Fully Parallel Soft Fixed Sphere pseudocode.

Calling Hard-Output FSD detector function in Chapter 4, Fig.

4.34 and llr mla function in Fig. 5.9.

INPUT: H ∈ CnR×nT , y ∈ CnR×Nc

OUTPUT: R ∈ RnT×nT×nT , ỹ ∈ RnR×nT×Nc

function [R, ỹ] = fpfsd precoding(H, y)
1. #pragma omp parallel for
2. for i = 1 : nT

3. normi = ‖H:,i‖2
4. end
5. [norm] = sort(norm)
6. #pragma omp parallel for
7. for i = 1 : nT

8. ∆ = {normi} ∪ ({1, 2, · · · , nT } − {normi})
9. H:,∆ = QR:,:,i

10. #pragma omp parallel for
11. for n = 1 : Nc

12. ỹ:,i,n = QHy:,n

13. end
14. end
end

FPFSD PREPROCESSING PSEUDOCODE

Figure 5.22. Fully Parallel FSD preprocessing stage pseu-

docode.

140 Implementation of Soft-Output MIMO Detectors

Input: T ∈ CM×nv , R ∈ CnT×nT×nT , ỹ ∈ CnT×nT×Ns

Output: Λ ∈ RNs×nT×m

function [Λ] = dt cu hfsd(T, ỹ)
1. Allocate and copy T, R and ỹ in GPU GM
2. Allocate output data L ∈ PNs×nT ·M in GPU GM
3. Copy constellation symbols O in GPU CM
4. Select block and grid configuration with nth = Ns · nT ·M
5. [L] = kernel fpfsd(T, R, ỹ)
6. Select block and grid configuration with nth = Ns ·m · nT
7. [Λ] = kernel llr mla(L, σ2

w)
8. Copy Λ in CPU
end

FPFSD Kernel-Launcher Pseudocode

Figure 5.23. Fully Parallel FSD Kernel-launcher for Ns time

instants. Calling algorithm in Fig. 5.24 and kernel in Fig.

5.12.

function [L] = kernel fpfsd(R, ỹ)
1. Calculate using the thread global index z:
2. · Time slot identifier n ∈ {1, ..., Ns}
3. · Tree-Path identifier p ∈ {1, ...,M}
4. · FPFSD ordering index f ∈ {1, ..., nT }
5. if n < Ns

6. q = f ·M + p
7. Ln,q.snT

= q
8. for i = nT − nE : −1 : 1

9. x = Q
{

ỹi,f,n−
∑nT

j=i+1 Ri,j,fLn,q.sj

Ri,i,f

}

10. Ln,q.si = 〈x〉
11. end

12. Ln,q.η =
∑1

i=nT

∣∣∣ỹi,f,n −
∑nT

j=iRi,j,fOLn,q.sj

∣∣∣
2

13. end
end

KERNEL FPFSD Pseudocode

Figure 5.24. Fully Parallel FSD Kernel pseudocode. This

kernel is called from Fig. 5.23.

5.5. Conclusions 141

Table 5.8. Time Execution comparison in seconds of FPFSD

detector with different library configurations for a system using

QPSK constellation as a function of the number of transmitted

antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 0.14 · 10−1 0.13 · 10−1 3.105 · 10−1

4 0.66 · 10−1 0.10 · 10−1 3.03 · 10−1

8 2.85 · 10−1 0.31 · 10−1 3.23 · 10−1

10 4.34 · 10−1 0.73 · 10−1 3.22 · 10−1

12 6.24 · 10−1 1.20 · 10−1 3.48 · 10−1

14 8.39 · 10−1 1.16 · 10−1 3.36 · 10−1

16 11.31 · 10−1 2.42 · 10−1 3.34 · 10−1

18 15.54 · 10−1 2.58 · 10−1 3.37 · 10−1

20 19.58 · 10−1 2.97 · 10−1 4.13 · 10−1

Table 5.9. Time Execution comparison in seconds of FPFSD

detector with different library configurations for a system using

16-QAM constellation as a function of the number of transmit-

ted antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 0.06 0.01 0.31

4 0.23 0.03 0.32

8 1.11 0.22 0.32

10 1.79 0.32 0.35

12 2.58 0.40 0.37

14 3.69 0.34 0.38

16 5.03 0.37 0.42

18 6.73 0.44 0.45

20 8.70 0.53 0.52

5.5 Conclusions

This chapter has presented a set of Soft-Output detectors. The MAP and
MLA detectors are the best in terms of bit error rate but require high
computing resources. For this reason two detectors based on the fixed-

142 Implementation of Soft-Output MIMO Detectors

Table 5.10. Time Execution comparison in seconds of

FPFSD detector with different library configurations for a sys-

tem using 64-QAM constellation with Nc = 10000 as a func-

tion of the number of transmitted antennas (nT).

nT 1 OpenMP thread (U) 24 OpenMP threads GPU

2 0.28 0.03 0.31

4 1.11 0.18 0.33

8 4.98 0.40 0.42

10 8.39 0.57 0.53

12 12.59 0.76 0.63

14 18.00 1.04 0.78

16 24.58 1.38 0.92

18 32.37 1.79 1.15

20 41.44 2.26 1.36

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

n
T

S
pe

ed
up

 (
S

P
)

64QAM (GPU)
64QAM (OpenMP)
16QAM (GPU)
16QAM (OpenMP)
QPSK (OpenMP)
QPSK (GPU)

Figure 5.25. Speedup (SP) comparison for the FPFSD de-

tector for a nR × nT system considering Nc = 10000 with

different constellations and number of transmitter antennas.

5.5. Conclusions 143

complexity sphere decoder have been implemented in MIMOPack library.

A study of the execution time for different number of signals, system
sizes and constellation sizes was carried out to evaluate the influence of
these parameters on the library performance.

The selected methods were also implemented in a sequential and un-
optimized version. The execution times of the both multi-core and GPU
parallel soft-output schemes were compared to the execution times of the
sequential and unoptimized versions. Speedup comparison showed that the
multi-core and GPU-based detector performs up to 30 times faster than
sequential versions for some cases. For the MAP and SFSD detector the
GPU detects 50 times faster than the unoptimized version. The parallell
implementations is shown to be scalable when the constellation and MIMO
system sizes are large.

In the previous chapter, the impact of the EEDC optimization on the
Hard-Output detector performance was determined. In this chapter it has
been confirmed that indeed the use of this technique boost also the efficiency
of the Soft-Output detection up to 20%.

As in the Hard-Output detection, future work is needed to optimize
the detection stage using the features of the different GPUs.

Finally, it can be remarked that some information reported in this chap-
ter has been published in international journals. The OpenMP implemen-
tation of the SFSD has been reported in [76]. The SFSD was used for the
implementation of a iterative receiver for energy saving MIMO ID-BICM
systems in [81]. The paper containing the design and GPU implementation
using shared memory and different GPU features of the FPFSD is reported
in [75] and [82].

144 Implementation of Soft-Output MIMO Detectors

MIMOPack Software Package 6

146 MIMOPack Software Package

MIMOPack Software Package 6
This chapter presents MIMOPack, a set of optimized functions to per-

form some of the most complex stages in Multiple-Input Multiple-Output
(MIMO) communication systems. It is a meaningful software package that
implements a set of Hard and Soft output detectors. These detectors are
highly configurable and have been optimized to run on a wide range of
architectures increasing the portability of scientific codes between different
computing environments. MIMOPack aims to become a usefull library for
the research community facilitating the development of versatile and scal-
able parallel applications and also to speed up simulation platforms, which
are commonly used to assess different technologies proposed by companies
involved in standardization processes. MIMOPack is freely-available and
it can be downloaded from http://www.inco2.upv.es/mimopack/index.

html.

6.1 Introduction and Objectives

The existence of libraries becomes a useful tool that allows the specialist in
a particular field to focus on solving their specific problems and save hours
of programming some optimized computing routines. Nowadays, there exist

http://www.inco2.upv.es/mimopack/index.html
http://www.inco2.upv.es/mimopack/index.html

148 MIMOPack Software Package

different signal processing libraries covering a wide range of scientific and
technological applications as Aquila [83], Signal Processing Toolbox [84],
Communication System Toolbox [18] and IT++ [19]. Unfortunately few of
them offer specific functions for simulating MIMO communication systems
able to take advantage of high performance computers.

For example, Communication System Toolbox provide different func-
tions to take profit of parallel computing over multi-core processors, but
most of them are not prepared to work on GPUs. Similarly, IT++ pro-
vides mathematical, signal processing and communication functions but
nowadays it does not have any kind of support to use GPUs. There is
an unfilled space in the field of communication systems libraries: a multi-
core/GPU-oriented library for MIMO communication sytems. It is true
that it involves a broad set of processing methods that are dependent on
the channel conditions and systems parameters. The creation of a library
with these features is a challenge both of scientific and technological im-
portance.

The library proposed in this document, named MIMOPack [85], aims at
solving some of the most complex stages in a MIMO communication system.
These problems are fundamentally: preprocessing techniques, hard and soft
output detectors and precoding techniques. Our main goal is to provide
with a high performance library that will help to ease the implementation
of codes without having to know different programming languages and ma-
chine architectures. The design of this library must cope with the following
features:

1. High performance computing. It should allow optimum performance
on today’s computers with parallel architectures and easy adaptation
to new implementations as they come.

2. Portability. It should be possible its use on different hardware/soft-
ware environments, without fundamental changes of the code.

3. Friendly. It should provide the possibility of its general use even for
non-expert users.

4. Gradual development. Software and hardware evolution must be had
in mind. This will also allow the feedback needed to ensure the quality
of developments.

6.2. Design and Specifications 149

This chapter presents the basic ideas that have helped to design the
library and give an overview of its functionality. The current form of the
library and what are the next updates to be included in the short term are
also described.

6.2 Design and Specifications

The library is written in C language and composed by several modules.
Double-precision complex version is available. The library is continuosly
growing, the updated release collects a set of functions divided in blocks
depicted in Figure 6.1:

• Hard-Output detection:

– Linear: Zero Forcing with Succesive Interference Cancellation.

– Maximum Likelihood: ML Exhaustive Decoder, Schnorr Euch-
ner Sphere Decoder and Automatic Sphere Decoder.

– Fixed Complexity: K-Best Sphere Decoder and Hard Fixed Com-
plexity Sphere Decoder.

– Wintress framework: it is a divide and conquer framework de-
vised to ease the parallelization of any kind of hard output de-
tector but it can be used also for sequential detector implemen-
tations.

• Soft-Output detection:

– Maximum Likelihood: Maximum A Posteriori Probability and
Max-Log detectors.

– Fixed Complexity: Soft Fixed Complexity Sphere Decoder and
Fully Parallel Fixed Complexity Sphere Decoder.

• Preprocessing:

– Channel matrix ordering: Column-Norm-Based, Fixed Sphere
Decoder and Fully Parallel FSD orderings.

– Channel matrix decomposition: QR decomposition computed
with a series of Givens rotations.

150 MIMOPack Software Package

• Modulation/Demodulation: functions prepared for BPSK, QPSK,
16QAM and 64QAM constellations.

• Channel: Random AWGN channel and channel emulator (i.e. emu-
late the transmission go through a matrix channel).

• Detection Tree functions: K-Best and radius tree-pruning, Euclidean
Distance Calculation, Efficient Euclidean Distance Calculation, etc.

• Simulation: random simulation data and various performance func-
tions (e.g. BER, SER, execution time, throughput, etc.).

• Configuration: different functions to set and check the platform con-
figuration.

• Mathematical: includes mathematical functions for complex num-
bers.

• Miscellaneous: printing, sorting and miscellaneous functions.

Figure 6.1. Simulation chain through the MIMOPack library

modules.

The interface of the functions are common to all environments in order
to ease its use, regardless of the machine where it was executed. This feature
increases the portability of codes between different computing platforms.
Nowadays, it supports the execution of the routines on a sequential/multi-
core processor, GPU/multi-GPU devices and heterogeneous mode (i.e. multi-
core/multi-GPU). Only NVIDIA GPUs are supported. It is expected in

6.3. Documentation and Website description 151

future releases to deal with AMD GPUs using OpenCL and Intel Xeon Phi
coprocessor. Furhtermore, most of them ready to be called from MATLAB
through MEX-Files.

6.3 Documentation and Website description

The website structure of MIMOPack is organized in a usual manner (see
Figure 6.2). Thus, it has a “Main page” and some tabs for “Installation”,
“Documentation”, “Test”, “FAQs” and so on. The main page shows a pre-
sentation of the website, the licensing and last version news (see Fig. 6.2).
Besides, a brief description of the research group involved in the devel-
opment of the package and the related projects are outlined. The most
relevant tabs provide information like:

• Documentation. A link to the Doxygen generated documentation
is shown. In this documentation we can find all the library API
specifications.

• Test. In this tab it is shown how to carry out performance tests to
obtain the timing and precision results of the installed package in the
machine.

• FAQs. The “Frequently Asked Questions” tab includes general ques-
tions, installation questions, how to use or program with MIMOPack,
questions or problems about different platforms or operating systems
and miscellaneous questions.

• References. Includes bibliographic references used to produce MI-
MOPack: list of published work produced during the MIMOPack
design and other related publications.

• Installation. It contains two sections: “How to install” and “Down-
load”. In the “Download” section the last version of the software can
be chosen and downloaded.

152 MIMOPack Software Package

Figure 6.2. MIMOPack Website: Home

6.4 Support and Development

MIMOPack emerged as a result of various research projects in the Interdis-
ciplinary Computation and Communication Group (INCO2). MIMOPack
has provided several publications and research works developed for many
years. See for example references [75][76][79][81][85]. Among the projects
that have contributed to the development of MIMOPack only those projects
actives currently are citated:

• PROMETEO II: High Performance Computation and Communica-
tions and Applications in Engineering (PROMETEOII/2014/003. Gen-
eralitat Valenciana. Spain.)

6.5. Configurability and Data Structures 153

• DISCOSOUND: Distributed and Collaborative Processing of Sound
Signals: Algorithms, Tools and Applications (TEC2012-38142-CO4).

• PROMETEO: High Performance Computing Tools for solving Signal
Processing Problems on Parallel Architectures (PROMETEO/2009/013.
Generalitat Valenciana. Spain.)

• SMaGGic: Spatial audio systems based on Massive parallel process-
ing of multichannel acoustic signals with General Purpose Graphics
Processing Units (GPGPU) and Multi-cores (TEC2009-13741. Min-
isterio de Ciencia e Innovación. Spain).

• COPABIB: Automatic Development and Tuning of Parallel Libraries
for Scientific Computation (TIN2008-06570-C04-02. Ministerio de
Ciencia e Innovación. Spain).

• PAID-UPV: Development and Implementation of Computational Ker-
nels for Software Defined Radio Platforms on Multicore/Manycore
Architectures (PAID-05-10).

Although initially MIMOPack is the work of the mentioned group,
author intention is to incorporate to MIMOPack developments of others
researchers that meet the specifications, objectives and philosophy that
surround the library. In this sense, through the library’s Web site it is
possible to contact the author both for discuss ideas in relation to the
codes or for collaborating on the development of new routines.

6.5 Configurability and Data Structures

In this section data structures used by the library to configure each of the
stages or elements of a simulation are presented. It also shows some of
the functions that perform the initialization of these variables. The mod-
ules that can be configured are: execution platform, modulation, detector,
WinTrees framework and MIMO system simulation.

6.5.1 Platform Configuration

The library allows to assign the type and number of resources to use during
the execution. For a given C source code, the user may specify a different

154 MIMOPack Software Package

distribution of the computational resources for each function through the
configuration of the mmp config structure, which comprises the following
parameters:

typedef struct{

int n_cpus:

int n_gpus:

double pw:

}mmp_config;

where:

• int n cpus: Number of OpenMP threads.

• int n gpus: Number of GPUs. The library automatically selects those
with more CUDA cores on the detected devices.

• double pw: Percentage of workload that will be delivered among the
n gpus. The remaining workload (1 - pw) will be computed by n cpus
OpenMP threads.

Two commands are currently provided to allow the correct configura-
tion of the environment: set mmp config and check config. The first
function is used to fix parameters of the mmp config structure. In order
to ensure the proper configuration, the library implements the function
check config, which checks the properties of the execution platform and
indicates the setup incompatibilities, if any. These routines can be called
from a C source code as follows:

mmp config set mmp config(int n gpus, int n cpus, double pw);
void check config(mmp config config);

A calling example could be the following. We are going to use a con-
figuration with 80% of workload for two GPUs and 20% of workload for 12
OpenMP threads:

6.5. Configurability and Data Structures 155

mmp_config my_configuration;

my_configuration = set_mmp_config(2, 12, 80);

check_config(my_configuration);

6.5.2 QPSK and QAM Modulation Configuration

The modulation in MIMOPack is defined by using mmp modulator struc-
ture. The real and imaginary parts of the complex variables (e.g constella-
tion, channel matrix, transmitted signals, etc.) are stored independently:
real (denoted with the prefix “ r”) and imaginary (denoted with the prefix
“ i”):

typedef struct{

int M;

int m;

double *cons_r;

double *cons_i;

double *PM;

double *bounds;

long int *pattern;

int *gray_lut;

int *neg_lut;

}mmp_modulator;

where:

• int M: Modulation or constellation size M ∈ {2, 4, 16, 64}.
• int m: Number of bits to represent each constellation point (m =
log2M).

• double *cons r: Real part of the constellation values.

• double *cons i: Imaginary part of the constellation values.

• double *PM: Real-valued representation of constellation.

156 MIMOPack Software Package

• double *bounds: Bounds to quantize when the constellation is ex-
pressed as a set of consecutive integers.

• long int *ppattern: It contains the pruning pattern vector P used for
the SESD detector.

• int *gray lut: Look-up table G. It contains the representation of all
constellation symbols in binary format G. This variable is used in the
LLR computation by the Soft-Output detectors.

• int *neg lut: Look-up table N . It contains, a list of m constellation
symbols resulting of the k-th bit negation for each constellation sym-
bol, Oi. This variable is used in the LLR computation by the SFSD
detector.

The following function can be used to construct the modulator. The
user provides only the size of the constellation and the number of transmit-
ter antennas, the library itself fills the rest of the fields when the function
is executed:

mmp modulator set mmp modulator(int M, int nT);

6.5.3 MIMOPack Detector Configuration

Each detector can be initialized filling the following mmp detector struc-
ture in order to select not only the type of the detector but also different
optimization techniques to be used in the detection module. This structure
is composed by the following fields:

typedef struct{

char *name;

char *ordering;

int nE;

int K;

double *r;

double n_v;

bool eedc;

}mmp_detector;

6.5. Configurability and Data Structures 157

where:

• char *name: Detector type, being name ∈ {“zfsic”, “mle”, “sdse”,
“asd”, “kbest”, “hfsd”, “map”, “mla”, “sfsd”, “fpfsd”}.
• char *ordering: Matrix ordering type, being ordering ∈ {“cbo”, “hfsd”,

“fpfsd”, “none”}.
• int nE: Number of fully expansion levels.

• int K: Number of survivors for K-best detector.

• int Niter: Selected paths in the SFSD-SOE stage.

• double *r: Initial radius for sphere decoders. This array must contain
a radius for each signal considered in the simulation.

• bool eedc: It indicates if Efficient Euclidean Distances optimization
must be used.

Different functions are provided by the package to configure each de-
tector:

mmp detector
set dt zfsic(char *ordering, bool eedc);
set dt mle(char *ordering, bool eedc);
set dt sesd(char *ordering, bool eedc, double *r, int Nc);
set dt asd(char *ordering, bool eedc, double *r, int Nc);
set dt kbest(char *ordering, bool eedc, int K, int nE);
set dt hfsd(char *ordering, bool eedc, int nE);
set dt map(char *ordering, bool eedc);
set dt mla(char *ordering, bool eedc);
set dt sfsd(char *ordering, bool eedc, int nE, int Niter);
set dt fpfsd(char *ordering);

A calling example is the following. We are using a Sphere Decoder
using a common initial radius = ∞ to decode Nc = 1000 signals with
column-based-norm ordering and EEDC optimization:

158 MIMOPack Software Package

mmp_detector my_detector;

int i;

int Nc=1000

double *radius = (double *) malloc(Nc*sizeof(double));

for(i = 0; i < Nc; i++){

radius[i] = 1e6;

}

my_detector = set_dt_sesd("cbo", true, radius, Nc);

6.5.4 MIMOPack WinTrees Framework Configuration

If WinTrees framework is used, the mmp framework structure should be
defined, where is selected: the type of pruning, the number of levels to
be fully expanded and the MIMOPack detector. This structure has the
following fields:

typedef struct{

char *prune;

char *ordering;

int nE;

int nK;

double r;

bool use_mmp;

mmp_detector detector;

}mmp_framework;

where

• char *prune: Prunning type, being prune ∈ {“kbest”, “radius”, “none”}.
• char *ordering: Matrix ordering type, being ordering ∈ {“cbo”, “hfsd”,

“none”}.

6.5. Configurability and Data Structures 159

• int nE: Number of fully expansion levels.

• int nK: Number of survivors for K-best considered in the pruning
stage.

• double r: Radius considered in the pruning stage.

• bool use mmp: It indicates if MIMOPack detector must be used in
each subtree.

• mmp detector detector: MIMOPack detector configuration.

The following function can be used to initialise the framework:

mmp framework set framework(int nE, int nK, double r, char *prune,
char *ordering, mmp detector detector, bool use mmp);

6.5.5 MIMO Simulation Configuration

The data structure that works with the simulation contains the whole in-
formation related to the MIMO system that is currently being simulated.
Precise data of the simulation such as the number of signals to be transmit-
ted (Nc) or variation of the channel (Lch) is also considered. Furthermore,
this data structure stores the performance results after the detection, such
as: bit error rate, symbol error rate and throughput.

typedef struct{

int nT,

int nR,

double snr,

double pot_s,

int Nc,

int Lch,

double ber;

double ser;

double bps;

double itime;

double etime;

mmp_dt_time dt_time;

}mmp_simulation;

160 MIMOPack Software Package

where:

• int nT: Number of transmitter antennas.

• int nR: Number of receiver antennas.

• double snr: Signal-to-Noise Ratio in dB.

• double pot s: Power of the transmitted vector.

• int Nc: Number of signals to be transmitted.

• int Lch: Variation of the channel, it is the number of tranmistted
signals vectors with the same channel matrix.

• double ber: Bit Error Rate.

• double ser: Symbol Error Rate.

• double bps: Bits per second processed (throughput).

• double itime: Time stamp when the simulation has been initiated.

• double etime: Time stamp when the simulation has been completed.
When the simulation ends, it contains the time execution in seconds.

• mmp dt time det time: It contains the execution time of the different
stages of the detection.

A command is provided by the package to configure the simulation
parameters:

mmp simulation
new simulation(int nT, int nR, int Nc, int Lch, double snr, double
pot s);

The mmp dt time structure is composed by five parameters, one for
each step considered in the detection schemes depicted in Chapter 4, Fig. 4.1
and Chapter 5, Fig. 5.1.

typedef struct{

double ord;

double qr;

double opt;

6.5. Configurability and Data Structures 161

double dt;

double dac;

}mmp_dt_time;

where:

• double ord: Execution time in seconds of the channel ordering stage.

• double qr: Execution time in seconds of the QR decomposition stage.

• double opt: Execution time in seconds of the EEDC preprocessing
stage.

• double dt: Execution time in seconds of the hard/soft detector stage.

• double dac: Execution time in seconds of the divide and conquer
process stage when the Wintress framework is used.

6.5.6 Simulation Random Data

The user can use optionally the mmp data structure to store the whole
information related to the simulation without the need to manually allocate
memory. This structure has de following form:

typedef struct{

double *H_r;

double *H_i;

int *bits;

double *s_r;

double *s_i;

double *y_r;

double *y_i;

double *sm_r;

double *sm_i;

double *ped;

double *llr;

}mmp_data;

where:

162 MIMOPack Software Package

• double *H r: Real part of the channel matrices.

• double *H i: Imaginary part of the channel matrices.

• int *bits: Bits to be transmitted.

• double *s r: Real part of the signals to be transmitted.

• double *s i: Imaginary part of the signals to be transmitted.

• double *sm r: Real part of the estimated signals.

• double *sm i: Imaginary part of the estimated signals.

• double *y r: Real part of the received signals.

• double *y i: Imaginary part of the received signals

• double *ped: Euclidean Distance of the estimated signal.

• double *llr: Log-likelihood ratio computed by the soft output detec-
tors.

The following function creates the necessary variables to perform a
simulation with MIMOPack. This function requires information of the
different system, simulation and constellation sizes.

mmp data simulation data(int Nc, int Lch, int nR, int nT, int m);

6.6 MIMO Detection Functions

The first release of MIMOPack has been developed to achieve portability of
codes across different computing environments (multi-core and GPUs). The
library addresses the source code portability through common interfaces.

Hard and Soft output detectors have the same interface regardless of
the execution platform. The function configuration is performed by pass-
ing the mmp simulation, mmp config, mmp modulator and mmp detector
structures. The detector takes as input parameters the complex-valued
channel matrix (H) and the received complex-valued signals vectors (y).
The output of the hard detectors are the estimated complex-valued signal
vectors (sm) and the associated euclidean distances (ED). On the other
hand, the output of the soft detectors are the Log-likelihood ratios (LLR).

6.7. Installation and Test 163

void mmp hard detector(mmp simulation &sim, mmp config conf,
mmp modulator mod, mmp detector detector, double *ED, double
*sm r, double *sm i, double *H r, double *H i, double *y r, double
*y i);

void hard wintrees(mmp simulation &sim, mmp config conf,
mmp modulator mod, mmp framework framework, double *ED,
double *sm r, double *sm i, double *H r, double *H i, double *y r,
double *y i);

void mmp soft detector(mmp simulation &sim, mmp config conf,
mmp modulator mod, mmp detector detector, double *LLR, double
*H r, double *H i, double *y r, double *y i);

These functions call internally other specific functions that perform the
preprocessing and detection stages depending on the user-selected input pa-
rameters. The list of all available functions with the relevant documentation
can be found in section “Documentation” of the MIMOPack website.

6.7 Installation and Test

MIMOPack release is composed by two folders. The first one stores the
library only for multicore processor (c-mimopack-1.0.tar.gz) and the other
one takes care for GPUs or heterogeneous systems (multi-core/GPU) (cu-
mimopack-1.0.tar.gz). The user must download the suitable version for his
platform before starting the installation.

The first step for installing MIMOPack is to unpack the distribution
tarball from “Download” website section. On a system with GNU tar
installed, the package can be unpacked with the following command:

~$ tar zxf cu-mimopack-1.0.tar.gz

164 MIMOPack Software Package

After unpacking the tarball you have to enter the newly created direc-
tory as

~$ cd cu-mimopack-1.0

You need to enter to the folder lib and run the installed script. You
can specify in the first parameter the GPU architecture:

~$ cd lib

~/cu-mimopack-1.0/lib$./install sm_35

In order to determine whether the installation has been successfully
carried out, the tarball contains a simple example of simulation. You have
to enter into the test folder located within the main directory and run the
make test script.

~$ cd ../examples

~/cu-mimopack-1.0/examples$./make_test

If any compilation problem has been reported, you can run the test
and use the library as

~/cu-mimopack-1.0/examples$./test

6.8 Example of simulation with MIMOPack

Let us consider a MIMO system with nT = 6 transmitter and nR = 6 re-
ceiver antennas and a certain signal-to-noise ratio (SNR). The input data
stream is split equally into de nT transmit antennas. The baseband equiv-
alent model for this system is given by

y = Hs + v, (6.1)

where s represents the transmitted signal vector composed of the elements
resulting of mapping sets of information bits to symbols belonging to a cer-
tain constellation O of size M = 16. Vector y denotes the received symbol

6.8. Example of simulation with MIMOPack 165

vector, and v is a complex additive white Gaussian noise vector. The de-
tection problem in MIMO systems consists in determining the transmistted
vector, denoted sm, with the highest reliability. In practice, the detection
problem is carried out by solving the following least squares problem

sm = arg min
s∈OnT

‖y −Hs‖2. (6.2)

To exemplify the use of the library, we show below an example for a sim-
ulation of the transmission of Nc = 1000 signals where the channel remain
constant in the entire transmission. The detector is the ML Exhaustive
and the parallelization is done by one GPU.

As we can see, there is an initial stage where some paremeters of the
platform, modulator and simulation are configured (see lines 16-22). After
that, we need to generate the random information bits to be transmitted.
Next, these bits are multiplexed and mapped into constellations symbols.
Furthermore it is necessary to generate the random channel values to sim-
ulate the conditions of the link. Note that, the input data bits and channel
matrix H are in this example randomly generated. However, the user can
provide their own input data. Then, we initialize the timer to assess the
performance of the detector (MLE detector in line 29) with the configu-
ration selected in the line 16. Finally, the user must save the simulation
results to calculate some statistics (e.g. execution time, bit error rate,
symbol error rate or throughput).

To evaluate the aforementioned proposed example, several simulations
have been carried out to evaluate the complete MIMOPack functionality.
The use-case scenarios represent different platform configurations provi-
sioned in a High Performance computer today. We defined and used five
execution types: (i) sequential and unoptimized; (ii) multi-core; (iii) sigle-
GPU; (iv) multi-GPU; and (v) heterogenous execution modes. The exper-
imental environment used to evaluate this example is the same as the one
mentioned in Chapter 4, Section 4.1.3.

Figure 6.4 illustrates the speedup reached using the MLE MIMOPack
detector with different platform configuration. The curve denoted by 80%
(1 GPU) stands for the speedup obtained for the detection with conf.pw =

80. The number of signals computed by the GPU is selected as N
(gpus)
c =

1000 · 80
100 = 800 and the number of signals computed by the multi-core

166 MIMOPack Software Package

/*

* mle_simulation.cu - example in C with mimopack.h library.

* Performs the MLE detection of 1000 signals for a 6 x 6 MIMO system

* with 16-QAM constellation using MIMOPack with one GPU.

*

*/

#include <mimopack.h>

int main(int argc, char **argv){

1. mmp_simulation sim;

2. mmp_modulator mod;

3. mmp_config conf;

4. mmp_data data;

5. mmp_detector detector;

6. int n_cpus = 0; // Number of OpenMP threads

7. int n_gpus = 1; // Number of GPUs

8. int pw = 100; // GPU workload percentaje

9. int nT = nR = 6; // Number of transmitter/receiver antennas

10. int M = 16; // Constellation size

11. int snr = 5; // Signal to Noise Ratio in DB

12. int pot_s = 1; // Power of the transmitted vector

13. int Nc = 1000; // Number of signals to be transmitted

14. int Lch = 1000; // Assume constant channel

15. bool eedc = 1; // Use EEDC

16. conf = set_mmp_config(num_gpus, omp_threads, work_gpu);

17. mod = set_modulator(M, nT);

18. if(!check_config(conf))

19. return 0;

20. int nbits = Nc*mod.m*nT;

21. sim = new_simulation(nT, nR, Nc, Lch, snr, pot_s);

22. data = simulation_data(Nc, Lch, nR, nT, mod.m);

23. detector = set_dt_mle("mle", "none", 1);

24. init_timer(sim);

25. generate_bits(data.bits, Nc*mod.m*nT);

26. random_awgn_channel(data.H_r, data.H_i, Lch, Nc, nT, nR);

27. qam_mapper_demux(mod, data.bits, Nc*mod.m*nT, data.s_r, data.s_i);

28. emulate_transmission(data.H_r, data.H_i, data.s_r, data.s_i,

data.y_r, data.y_i, sim.pot_n, Nc, Lch, nT, nR);

29. mmp_hard_detector(sim, conf, mod, detector, data.ped, data.sm_r, data.sm_i,

data.H_r, data.H_i, data.y_r, data.y_i);

30. save_simulation(sim, mod, data.s_r, data.s_i, data.sm_r, data.sm_i);

31. stop_timer(sim);

32. printf("Bit Error Rate = %f\n", sim.ber);

33. printf("Time ordering = %f\n", sim.dt_time.ord);

34. printf("Time QR decomposition = %f\n", sim.dt_time.qr);

35. printf("Time EEDC preprocessing = %f\n", sim.dt_time.opt);

36. printf("Time detection = %f\n", sim.dt_time.dt);

37. printf("Simulation time = %f\n", sim.etime);

38. return 0;

}

Figure 6.3. Example of MIMOPack simulation: it performs

the MLE detection of Nc = 1000 signals for a 6 x 6 MIMO

system with 16-QAM constellation on one GPU.

6.8. Example of simulation with MIMOPack 167

12 4 8 12 24 32 48
0

10

20

30

40

50

60

70

OpenMP Threads

S
pe

ed
up

 (
S

P
)

80%(2 GPUs)
2 GPUs
80%(1 GPU)
1 GPU
OpenMP

20% with 48 OpenMP threads

Figure 6.4. Speedup (Sp) comparison of the unoptimized

MLE detector for the OpenMP and GPU implementations. A

6×6 MIMO system with 16-QAM constellation and Nc = 1000

for different library configurations is considered.

as N
(cpus)
c = Nc − N (gpus)

c = 200 signals with 48 OpenMP threads. Sim-
ilarly, curve denoted by 80% (2 GPU) detects simultaneosly 800 signals
with 2 GPU. The experimental results show that the proposed hetero-
geneous implementation (80% (2 GPU)) outperforms the other methods.
The distributed heterogeneous scheme allows to detect the signals up to 66
times faster than the unoptimized version. It can be seen from Fig. 6.4
that the OpenMP version is scalable when the number of threads increases
and obtains up to 27 of speedup. In this case hyperthreading technology
improves the performance when 48 threads are used. Note that, the use of
two GPUs (see 2 GPUs curve in Fig. 6.4) does not imply a fifty per cent
reduction in the execution time, this is because the transferences to the
GPU memories do not overlap and the bandwidth of the PCI bus might be
a bottleneck when it receives a high volume of data. Even so, the simul-
taneous use of two GPUs allows to decrease considerablelly the detection

168 MIMOPack Software Package

time with respect the single GPU version (see 1 GPU curve in Fig. 6.4).

6.9 Conclusions

This chapter presents a first contribution to the MIMOPack library. This
library is in constant evolution and needs a careful work of maintenance
and development to bring new functionalities. Nevertheless, current library
design and functionality allows easily to perform a wide range of simulations
by setting properly the parameters depending on the MIMO scenario. This
is especially useful for research centers and companies working in developing
communication standards.

MIMOPack is a user-friendly portable software. Common interfaces
enable to perform various tests on different platforms without requiring
any changes of the code. Moreover, its modular and configurable structure
allows a problem dependent configuration. It is designed to select the plat-
form configuration among the available multi-core and GPU architectures,
set the MIMO system parameters and simulate the transmission changing
several meaningful parameters.

Experimental results show how MIMOPack can be used to run MIMO
communication simulations up to 70 times faster using simultaneously a
multi-core and multi-GPU platform. However, if the user does not have
access to such a powerful machine he can also run his simulations in a faster
way (up to 30x faster using a single GPU or 2 dodeca-core processors).

Conclusions 7

170 Conclusions

Conclusions 7
The overall aim of this research is to deepen into the MIMO Commu-

nications Systems algorithms and, specially, into the task of MIMO data
detection. Researchers from different nature and with various objectives
use these algorithms to study and develop technologies used in current
MIMO communication systems. Usually these studies are expensive since
require large hours of simulation and programming. The motivation of this
research came from the necessity of developing a library containing, not
only a wide range of receivers able to operate with different performance
and complexity types, but also efficient versions of them in order to per-
form the detection in the shortest possible time; thus facilitating the work
of these stakeholders.

This chapter summarizes the findings of this research work, revisiting
the research objectives given in the introductory chapter. First, Section
7.1 reviews the contents of this study, outlining the main conclusions that
were extracted from each chapter. Section 7.2 contains a list of works pub-
lished during the course of candidature for the PhD degree. Additionally,
recommendations for future research will be discussed in the final section.

172 Conclusions

7.1 Main Contributions

The main contribution of this research work has been the development of
a high performance library, called MIMOPack, to implement the funda-
mental modules and processes carried during the transmission on a MIMO
communication system. The goal of this work was to implement a set of
parametrizable routines, highly optimized, with the aim to address certain
needs that comercial libraries do not cover. This library is freely-available
and can be downloaded from http://www.inco2.upv.es/mimopack/index.

html. Current release contains a tree-search-based framework, 6 different
hard output detectors, 4 soft output detectors, 2 matrix orderings and
mathemathical and miscellaneous functions.

The final complexity of a MIMO system simulation depends heavily on
three factors: the number of transmitter/receiver antennas, the constella-
tion type and the detector used at the reception. For this reason, different
types of detectors have been developed which can be classified into two
general groups: hard-output and soft-output detectors, being the last ones
those used in encoded transmissions. Each detector presents different per-
formance in terms of Bit Error Rate (BER). Normally the most accurate
(optimal) are those that need greater computational power. The design of
the receivers not only has been devised to reduce the computational cost
using the massively parallel computing capabilities of modern architectures
(e.g GPUs), but different preprocessing modules have been integrated in
order to accelerate them and increase the performance of those detectors
that are considered not optimal.

The implementation of several MIMO hard and soft detection algo-
rithms was described. Both, hard- and soft-output tree-search-based al-
gorithms were implemented in OpenMP for multi-core architectures and
CUDA for NVIDIA GPU devices even in a heterogeneous way. An efficient
way to determine the Partial Euclidean Distances was additionally assessed
and proposed to decrease the complexity of the detection process.

The computational times of the proposed efficient and parallel imple-
mentations were compared with their sequential execution and no optimized
version in order to provide speedup results. Results were taken with a large
number of transmitted signals and they showed that MIMOPack impleme-
nations will improve and accelerate the simulations up to 70 times faster.
Even including those using detectors that could not be properly addressed

http://www.inco2.upv.es/mimopack/index.html
http://www.inco2.upv.es/mimopack/index.html

7.2. List of Publications 173

without HPC machines (e.g ML Exhaustive detection).

A divide-and-conquer framework, called WinTress, for the design of
thee-search based MIMO detectors was also proposed. This framework
decomposes the initial detection tree into independent subtrees that can
be simultaneously processed on a parallel architecture. This feature makes
it a very suitable tool for several detectors especially for those with lower
parallelism degree. Furthermore, the framework allows to fix the comple-
xity of the detector by selecting a finite number of subtrees or reduce the
number of them by using an initial radius. The performance results showed
that the proposed framework achieves a good speedup even in a sequential
implementation due to the Divide-and-Conquer scheme.

This work provides insight about the importance and the benefits of
high performance computing in the scientific world, in particular for sig-
nal processing researchers, for whom MIMOPack will enable models and
simulations with increased complexity. The ease of use, flexibility and
portability are key features that determine the success of a software which
can convert MIMOPack library in a interesting support tool for academic
and industrial researchers.

7.2 List of Publications

A list of published work produced during the course of candidature for the
degree is presented in what follows.

Refereed ISI Journals

• C. Ramiro, A.M. Vidal and A. Gonzalez. “MIMOPack: A High
Performance Computing Library for MIMO communication systems”.
The Journal of Supercomputing, vol. 71, no. 2, pp. 751-760, Febru-
ary 2015.

• C. Ramiro, M.A. Simarro Haro, F. J.Mart́ınez-Zaldivar, A.M.Vidal,
A. Gonzalez, “A GPU implementation of an iterative receiver for en-
ergy saving MIMO ID-BICM systems”. Journal of Supercomputing,
vol. 70, no. 2, pp. 541-551, January 2014.

174 Conclusions

• C. Ramiro, S. Roger, A. Gonzalez, V. Almenar, A.M. Vidal, “Multi-
Core Implementation of a Fixed-Complexity Tree-Search Detector for
MIMO Communications”. Journal of Supercomputing, vol. 65, no.
3, pp. 1010-1019, November 2013.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. M. Vidal, “Fully
parallel GPU Implementation of a Fixed-Complexity Soft-Output
MIMO Detector”, IEEE Transactions on Vehicular Technology, vol.
61, no. 8, pp. 3796-3800, July 2012.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. M. Vidal, “An
Efficient GPU Implementation of Fixed-Complexity Sphere Decoders
for MIMO Wireless Systems”, Integrated Computer-Aided Engineer-
ing, vol. 19, no. 4,pp. 341-350, September 2012.

Peer-reviewed non-ISI Journals

• M. Simarro, C. Ramiro, F.J. Martinez-Zaldivar, A.M. Vidal, A.
Gonzalez, G. Piñero, V.M. Garcia, “Parallel Implementation Strate-
gies for MIMO ID-BICM Systems”, in Waves, vol. 5, pp.1889-8297,
2013.

• V.M. Garcia, A. Gonzalez, C. Gonzalez, F.J. Martinez-Zaldivar, C.
Ramiro, S. Roger, A.M. Vidal, “The impact of GPU/Multicore in
Signal Processing: a quantitative approach”, in Waves, vol. 3, pp.
96-106, 2011.

Papers in International Conferences

• C. Ramiro, A.M. Vidal and A. Gonzalez, G. “Efficient Soft-Output
Detectors: Multi-core and GPU implementations in MIMOPack Li-
brary”. Proceedings of the 5th International Conference on Pervasive
and Embedded Computing and Communication Systems, (PECCS),
Angers, Loire Valley, France, February 2015.

• C. Ramiro, A.M. Vidal and A. Gonzalez, G. “MIMOPack: A HPC
Library for MIMO Communication Systems”. Doctoral Consortium

7.2. List of Publications 175

paper in the 5th International Conference on Pervasive and Em-
bedded Computing and Communication Systems (PECCS), Angers,
Loire Valley, France, February 2015.

• C. Ramiro, A.M. Vidal and A. Gonzalez, G. “A HPC Library for
MIMO communication systems: overview and prospectus”. Pro-
ceedings of the 14th International Conference on Computational and
Mathematical Methods in Science and Engineering, (CMMSE), Rota,
Cadiz, Spain, June 2014.

• M. Simarro, C. Ramiro, F.J. Martinez-Zaldivar, A.M. Vidal, A.
Gonzalez, G. “A parallel iterative MIMO receiver with variable com-
plexity detectors”. Proceedings of the 13th International Conference
on Computational and Mathematical Methods in Science and Engi-
neering (CMMSE), Cabo de Gata, Almeŕıa, Spain, June 2013.

• C. Ramiro, J.J. López-Esṕın, D. Giménez, A.M. Vidal. “Two-Stage
Least Squares Algorithms with QR Decomposition for Simultaneous
Equations Models on Heterogeneous Multicore and Multi-GPU Sys-
tems”, ICCS (International Conference on Computational Science),
Procedia CS, vol. 9, pp. 2004-2007, 2012.

• C. Ramiro, S. Roger, A. Gonzalez, V. Almenar, A.M. Vidal, “Paral-
lel Implementation of a Fixed-Complexity MIMO detector on a Multi-
Core System”. Proceedings of the 12th International Conference on
Mathematical Methods in Science and Engineering (CMMSE), La
Manga, Spain, July, 2012.

• F. Domene, S. Roger, C. Ramiro, G. Piñero, A. Gonzalez, “A Re-
configurable GPU Implementation for Tomlinson-Harashima Precod-
ing”, 37th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Kyoto, Japan, March 2012.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A.M. Vidal, “Rapid
Prototyping of MIMO Detectors Using Graphic Processing Units”,
First Women’s Workshop on Communications and Signal Processing,
Banff, Canada, July 2012.

176 Conclusions

Papers in National Conferences

• C. Ramiro, A.M. Vidal, A. Gonzalez, L. Vergara, A. Salazar. “To-
wards a High Performance Computing Library for MIMO Communi-
cation Systems”. XXIX Simposium Nacional de la Unión Cient́ıfica
Internacional de Radio (URSI), Valencia, Spain, September 2014.

• S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A.M. Vidal.“On
the use of graphic processing units for the efficient implementation of
MIMO detector”. XXVII Simposium Nacional de la Unión Cient́ıfica
Internacional de Radio (URSI), Elche, Spain, September 2012.

• F. Domene, S. Roger, C. Ramiro, G. Piñero, A. Gonzalez, “Effi-
cient implementation of multiuser precoding algorithms on GPU for
MIMO-OFDM systems”, XXVII Simposium Nacional de la Unión
Cient́ıfica Internacional de Radio (URSI), Elche, Spain, September
2012.

7.3 Future Work

Following the investigations described in this thesis, the main lines of re-
search that remain open are listed below:

• There are still different steps of MIMO communication systems sim-
ulation that can be accelerated by using multi-core and GPUs, such
as channel matrix estimation, space-time codes and precoding tech-
niques. In the short term it is intended to include new library modules
that have already been developed but have not been included in this
initial version:

– Multi-User precoding techniques: Zero-Forcing, Tomlinson Ha-
rashima, Lattice Reduction Aided Tomlison Harashima and En-
hanced Lattice Reduction Aided. The GPU implementatios have
been reported in [86].

– Low Density Parity Check Decoder which has been published in
[81].

7.3. Future Work 177

• Implementations of the detectors are made in a generic manner to al-
low the execution on any type of NVIDIA GPU architecture. However
depending on the model installed on the user’s platform some specific
features (e.g. shared memory, nested parallelism or streams) may be
considered to decrease the execution time. Therefore, the algorithms
will be reimplemented wherever possible, in order to optimize them
for each architecture.

• The library is optimized for its use on multicore and NVIDIA GPU
systems. However we are studing the implementation of some de-
tectors in new hardware architectures like Intel Many-Integrated-
Core Xeon Phi or other types GPUs that are not manufactured by
NVIDIA, leading to make implementations also in OpenCL.

• MIMOPack functions can be configured by selecting previously the
parameters of the execution platform, however the user could not
know in advance which are the optimal ones for obtain their results
as fast as possible. Thus, an open research line is to develop an
auto-optimization model in order to select the optimal parameters of
specific implementations (e.g. block size of threads on the GPU) and
also the optimum number and type of resources used to exploit the
best execution performance of the platform.

• The library is entirely implemented from the ground up. Some of the
auxiliary functions, such as vector and matrix operations, are already
implemented in a very efficient way by other libraries (e.g BLAS, LA-
PACK, MAGMA). Furthermore, there exists a library IT++ which
includes modules not implemented yet in MIMOPack. Hence, it
would be interesting to combine MIMOPack with other existing li-
braries in order to obtain better functionality and speed.

• A software with these characteristics requires continuous modifica-
tions: to fix bugs, improve performance, add functionality, etc. Soft-
ware maintenance is one of the most common and costly activities.
Therefore, mechanisms for the evaluation, control and modifications
will be developed.

178 Conclusions

7.4 Institutional Acknowledgements

This work has received financial support of the following projects:

• PROMETEO II: High Performance Computation and Communica-
tions and Applications in Engineering (PROMETEOII/2014/003. Gen-
eralitat Valenciana. Spain.)

• DISCOSOUND: Distributed and Collaborative Processing of Sound
Signals: Algorithms, Tools and Applications (TEC2012-38142-CO4-
01).

• PROMETEO: High Performance Computing Tools for solving Signal
Processing Problems on Parallel Architectures (PROMETEO/2009/013.
Generalitat Valenciana. Spain.)

• SMaGGic: Spatial audio systems based on Massive parallel process-
ing of multichannel acoustic signals with General Purpose Graphics
Processing Units (GPGPU) and Multi-cores (TEC2009-13741. Min-
isterio de Ciencia e Innovación. Spain).

• COPABIB: Automatic Development and Tuning of Parallel Libraries
for Scientific Computation (TIN2008-06570-C04-02. Ministerio de
Ciencia e Innovación. Spain).

• PAID-UPV: Development and Implementation of Computational Ker-
nels for Software Defined Radio Platforms on Multicore/Manycore
Architectures (PAID-05-10).

Bibliography

[1] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Per-
sonal Communications, vol. 6, no. 3, pp. 311–335, 1998.

[2] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview
of MIMO communications-a key to gigabit wireless,” Proceedings of the
IEEE, vol. 92, no. 2, pp. 198–218, 2004.

[3] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for next-generation
wireless systems,” Proceedings of the IEEE, vol. 95, no. 7, pp. 1430–
1469, 2007.

[4] 3GPP TS 36.201 V10.0.0, “Evolved Universal Terrestrial Radio Access
(e-utra); Physical layer general description,” December 2010.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and
challenges with very large arrays,” Signal Processing Magazine, IEEE,
vol. 30, no. 1, pp. 40–60, 2013.

[6] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Mas-
sive MIMO for next generation wireless systems,” arXiv preprint
arXiv:1304.6690, 2013.

[7] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner, “SODA: A high-performance DSP

180 Conclusions

architecture for software-defined radio,” Micro, IEEE, vol. 27, no. 1,
pp. 114–123, 2007.

[8] C.-H. Yang et al., “A multi-core sphere decoder VLSI architecture for
MIMO communications,” IEEE Global Telecommunications Confer-
ence (GLOBECOM), pp. 1–6, 2008.

[9] D. Wu, J. Eilert, and D. Liu, “Implementation of a high-speed MIMO
soft-output symbol detector for software defined radio,” Journal of
Signal Processing Systems, vol. 63, no. 1, pp. 27–37, 2011.

[10] NVIDIA, “GTC Presentation Archive, Signal and Audio Processing,”
online at: http://goo.gl/uqaQIj, 2015.

[11] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker,
“Sora: high-performance software radio using general-purpose multi-
core processors,” Communications of the ACM, vol. 54, no. 1, pp.
99–107, 2011.

[12] T. Nylanden, J. Janhunen, O. Silvén, and M. Juntti, “A GPU imple-
mentation for two MIMO-OFDM detectors,” in International Confer-
ence on Embedded Computer Systems (SAMOS). IEEE, 2010, pp.
293–300.

[13] G. Falcão, V. Silva, and L. Sousa, “How GPUs can outperform ASICs
for fast LDPC decoding,” in Proceedings of the 23rd International Con-
ference on Supercomputing. ACM, 2009, pp. 390–399.

[14] Y.-K. Chen, C. Chakrabarti, S. Bhattacharyya, and B. Bougard, “Sig-
nal processing on platforms with multiple cores: Part 1-Overview and
methodologies [from the guest editors],” Signal Processing Magazine,
IEEE, vol. 26, no. 6, pp. 24–25, 2009.

[15] L. J. Karam, I. AlKamal, A. Gatherer, G. A. Frantz, D. V. Ander-
son, and B. L. Evans, “Trends in multicore DSP platforms,” Signal
Processing Magazine, IEEE, vol. 26, no. 6, pp. 38–49, 2009.

[16] S. Tomov, R. Nath, D. Peng, and J. Dongarra, “MAGMA version 1.6
Users’ Guide,” online at: http://icl.cs.utk.edu/projectsfiles/magma/
doxygen/, 2011.

http://goo.gl/uqaQIj
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/

7.4. Institutional Acknowledgements 181

[17] CULA, “CULA Programmer’s Guide,” online at: http://www.
culatools.com/, 2014.

[18] T. MathWorks Inc., “Communication System Toolbox. Users Guide
Version 6.5,” online at: http://jp.mathworks.com/help/pdf doc/
comm/comm.pdf, 2014.

[19] IT++, “IT++ User’s Guide,” online at: http://itpp.sourceforge.net/
4.3.1/users guide.html, 2014.

[20] ETSI, “European Telecommunications Standards Institute,” online at:
http://www.etsi.org/index.php/membership.

[21] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp.
927–946, 1998.

[22] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs Technical Journal, vol. 1, no. 2, pp. 41–59, 1996.

[23] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best
sphere decoding for MIMO detection,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 3, pp. 491–503, 2006.

[24] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An in-
troduction to the multi-user MIMO downlink,” Communications Mag-
azine, IEEE, vol. 42, no. 10, pp. 60–67, 2004.

[25] J. J. Boutros, F. Boixadera, and C. Lamy, “Bit-interleaved coded mod-
ulations for multiple-input multiple-output channels,” in IEEE Sixth
International Symposium on Spread Spectrum Techniques and Appli-
cations, vol. 1. IEEE, 2000, pp. 123–126.

[26] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communica-
tion. Springer Science & Business Media, 2004.

[27] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search
in lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8,
pp. 2201–2214, 2002.

http://www.culatools.com/
http://www.culatools.com/
http://jp.mathworks.com/help/pdf_doc/comm/comm.pdf
http://jp.mathworks.com/help/pdf_doc/comm/comm.pdf
http://itpp.sourceforge.net/4.3.1/users_guide.html
http://itpp.sourceforge.net/4.3.1/users_guide.html
http://www.etsi.org/index.php/membership

182 Conclusions

[28] D. Micciancio and S. Goldwasser, Complexity of lattice problems: a
cryptographic perspective. Springer Science & Business Media, 2002,
vol. 671.

[29] J. Barry, E. Lee, and D. Messerschmitt, Digital Communications.
United States: Springer Science & Business Media, 2003 (3rd Edi-
tion).

[30] R. Harris, D. M. Chabries, and F. Bishop, “A variable step (vs) adap-
tive filter algorithm,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 34, no. 2, pp. 309–316, 1986.

[31] T. Kailath, H. Vikalo, and B. Hassibi, MIMO receive algorithms. Cam-
bridge University Press, 2005.

[32] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i. ex-
pected complexity,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2806–2818, 2005.

[33] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of computation, vol. 44, no. 170, pp. 463–471, 1985.

[34] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved
practical algorithms and solving subset sum problems,” Mathematical
programming, vol. 66, no. 1-3, pp. 181–199, 1994.

[35] K. Su, C. Jones, and I. Wassell, “An automatic sphere decoder,” Sub-
mitted to IEEE Transactions on Information Theory, 2004.

[36] W. Zhao and G. B. Giannakis, “Sphere decoding algorithms with
improved radius search,” IEEE Transactions on Communications,
vol. 53, no. 7, pp. 1104–1109, 2005.

[37] R. A. Trujillo, “Algoritmos paralelos para la solución de problemas de
optimización discretos aplicados a la decodificación de señales,” Ph.D.
dissertation, Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia, July 2009.

[38] V. M. Garcia-Molla, A. M. Vidal, A. Gonzalez, and S. Roger, “Im-
proved Maximum Likelihood detection through sphere decoding com-
bined with box optimization,” Signal Processing, vol. 98, pp. 284–294,
2014.

7.4. Institutional Acknowledgements 183

[39] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder for MIMO detection,” IEEE Transactions on Wireless
Communications, vol. 7, no. 6, pp. 2131–2142, 2008.

[40] M. Wu, Y. Sun, and J. R. Cavallaro, “Reconfigurable real-time MIMO
detector on gpu,” in Conference Record of the Forty-Third Asilomar
Conference on Signals, Systems and Computers. IEEE, 2009, pp.
690–694.

[41] B. Wu and G. Masera, “Analysis on parallel implementations of fixed-
complexity sphere decoder,” Science China Information Sciences,
vol. 56, no. 4, pp. 1–11, 2013.

[42] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A gpu implemen-
tation of a real-time MIMO detector,” in IEEE Workshop on Signal
Processing Systems (SiPS). IEEE, 2009, pp. 303–308.

[43] M. S. Khairy, C. Mehlfuhrer, and M. Rupp, “Boosting sphere decoding
speed through graphic processing units,” in European Wireless Con-
ference. IEEE, 2010, pp. 99–104.

[44] B. M. Hochwald and S. Ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Transactions on Communications,
vol. 51, no. 3, pp. 389–399, 2003.

[45] M. R. Butler and I. B. Collings, “A zero-forcing approximate log-
likelihood receiver for MIMO bit-interleaved coded modulation,” Com-
munications Letters, IEEE, vol. 8, no. 2, pp. 105–107, 2004.

[46] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE Journal on Selected Ar-
eas in Communications, vol. 26, no. 2, pp. 290–300, 2008.

[47] MathWorks, “Communication System Toolbox. Examples,” online at:
http://es.mathworks.com/help/comm/examples.html, 2014.

[48] T. MathWorks Inc., “Parallel Computing Toolbox. Users Guide
Version 6.5,” online at: http://www.mathworks.com/help/pdf doc/
distcomp/distcomp.pdf, 2014.

[49] J. W. Eaton, D. Bateman, and S. Hauberg, GNU octave. Network
Theory, 1997.

http://es.mathworks.com/help/comm/examples.html
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf

184 Conclusions

[50] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open source scientific
tools for Python,” http://www. scipy. org/, 2001.

[51] R. C. Whaley, “Atlas (automatically tuned linear algebra software),”
in Encyclopedia of Parallel Computing. Springer Science & Business
Media, 2011, pp. 95–101.

[52] MKL, “Intel Math Kernel Library. User’s Guide,” onlyne at: https://
software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf,
October 2012.

[53] AMD, “AMD Core Math Library. User’s Guide,” onlyne at:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/acml.pdf, October 2012.

[54] Taeyoon Kim and Dr. Jeffrey G. Andrews, “MIMO-OFDM Design
using LabVIEW,” onlyne at: http://users.ece.utexas.edu/∼jandrews/
molabview.html, 2003.

[55] LabView Intiative at Wireless Networking and Communication Group,
“MIMO Toolkit for LabView,” onlyne at: http://users.ece.utexas.
edu/∼rheath/research/mimo/labview/MIMOToolkit.zip, 2003.

[56] J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high-performance
programming. Newnes, 2013.

[57] A. Corp, “Heterogeneous System Architecture,” online at: http://
www.amd.com/es-xl/innovations/software-technologies/hsa, October
2014.

[58] The 500 most powerful commercially available computer systems,
“Top500.org,” online at: http://www.top500.org/lists/2014/11/,
November 2014.

[59] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical
weather prediction,” Parallel Processing Letters, vol. 18, no. 04, pp.
531–548, 2008.

[60] Y. Zhou, J. Liepe, X. Sheng, M. P. Stumpf, and C. Barnes, “GPU
accelerated biochemical network simulation,” Bioinformatics, vol. 27,
no. 6, pp. 874–876, 2011.

https://software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf
https://software.intel.com/sites/default/files/managed/9d/c8/mklman.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/acml.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/acml.pdf
http://users.ece.utexas.edu/~jandrews/molabview.html
http://users.ece.utexas.edu/~jandrews/molabview.html
http://users.ece.utexas.edu/~rheath/research/mimo/labview/MIMOToolkit.zip
http://users.ece.utexas.edu/~rheath/research/mimo/labview/MIMOToolkit.zip
http://www.amd.com/es-xl/innovations/software-technologies/hsa
http://www.amd.com/es-xl/innovations/software-technologies/hsa
http://www.top500.org/lists/2014/11/

7.4. Institutional Acknowledgements 185

[61] K. Zhang and J. U. Kang, “Real-time 4D signal processing and vi-
sualization using graphics processing unit on a regular nonlinear-k
Fourier-domain OCT system,” Optics express, vol. 18, no. 11, pp.
11 772–11 784, 2010.

[62] N. Kepler architecture, “NVIDIA Corporation,” online at: http://
www.nvidia.es/object/nvidia-kepler-es.html, 2012.

[63] A. Firepro Architecture, “Advanced Micro Devices (amd), inc.” on-
line at: http://www.amd.com/en-us/products/graphics/workstation/
firepro-3d/9000, 2015.

[64] CUDA Toolkit Documentation, Version 6.5, “NVIDIA Corporation,”
online at: http://docs.nvidia.com/cuda/#axzz3TuVZFm5G, 2014.

[65] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems.”

[66] N. GeForce GTX 750 Ti White Paper, “NVIDIA Corporation,”
online at: http://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf, 2014.

[67] NVIDIA Fermi architecture White Paper, “NVIDIA Corporation,”
online at: http://www.nvidia.com/content/pdf/fermi white papers/
nvidiafermicomputearchitecturewhitepaper.pdf, 2009.

[68] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” Computational Science & Engineer-
ing, IEEE, vol. 5, no. 1, pp. 46–55, 1998.

[69] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, p. 333, 1998.

[70] The MathWorks Inc., “Create C Source MEX-File,” online
at: http://es.mathworks.com/help/matlab/matlab external/
standalone-example.html, October 2009.

[71] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson, “A pro-
posal for an extended set of Fortran basic linear algebra subprograms,”
ACM Signum Newsletter, vol. 20, no. 1, pp. 2–18, 1985.

[72] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen,

http://www.nvidia.es/object/nvidia-kepler-es.html
http://www.nvidia.es/object/nvidia-kepler-es.html
http://www.amd.com/en-us/products/graphics/workstation/firepro-3d/9000
http://www.amd.com/en-us/products/graphics/workstation/firepro-3d/9000
http://docs.nvidia.com/cuda/#axzz3TuVZFm5G
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidiafermicomputearchitecturewhitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidiafermicomputearchitecturewhitepaper.pdf
http://es.mathworks.com/help/matlab/matlab_external/standalone-example.html
http://es.mathworks.com/help/matlab/matlab_external/standalone-example.html

186 Conclusions

“LAPACK: A portable linear algebra library for high-performance
computers,” in Proceedings of the ACM/IEEE Conference on Super-
computing. IEEE Computer Society Press, 1990, pp. 2–11.

[73] AMD, “AMD Core Math Library. User’s Guide,” online at:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/acml.pdf, October 2014.

[74] Grey Ballard and James Demmel and Andrew Gearhart, “Commu-
nication bounds for heterogeneous architectures.” LAPACK Working
Note, Tech. Rep. 239, Feb. 2011.

[75] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M. Vidal,
“Fully parallel GPU implementation of a fixed-complexity soft-output
MIMO detector,” IEEE Transactions on Vehicular Technology, vol. 61,
no. 8, pp. 3796–3800, 2012.

[76] ——, “An efficient GPU implementation of fixed-complexity sphere
decoders for MIMO wireless systems,” Integrated Computer-Aided En-
gineering, vol. 19, no. 4, pp. 341–350, 2012.

[77] J. Jaldén, L. G. Barbero, B. Ottersten, and J. S. Thompson, “The error
probability of the fixed-complexity sphere decoder,” Signal Processing,
IEEE Transactions on, vol. 57, no. 7, pp. 2711–2720, 2009.

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduc-
tion to algorithms. MIT press Cambridge, 2001, vol. 2.

[79] C. Ramiro, S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal,
“Multicore implementation of a fixed-complexity tree-search detector
for MIMO communications,” The Journal of Supercomputing, vol. 65,
no. 3, pp. 1010–1019, 2013.

[80] L. G. Barbero, T. Ratnarajah, and C. Cowan, “A low-complexity soft-
MIMO detector based on the fixed-complexity sphere decoder,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on. IEEE, 2008, pp. 2669–2672.

[81] C. Ramiro, M. Á. Simarro, F. Mart́ınez-Zald́ıvar, A. M. Vidal, and
A. González, “A GPU implementation of an iterative receiver for en-
ergy saving MIMO ID-BICM systems,” The Journal of Supercomput-
ing, vol. 70, no. 2, pp. 541–551, 2014.

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/acml.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/acml.pdf

7.4. Institutional Acknowledgements 187

[82] C. Ramiro, S. Roger, A. Gonzalez, V. Almenar, and A. M. Vidal,
“Parallel Implementation of a Fixed-Complexity MIMO detector on a
Multi- Core System,” in Proceedings of the 12th International Confer-
ence on Mathematical Methods in Science and Engineering. CMMSE,
2012.

[83] Zbigniew Siciarz, “Aquila: Open source DSP library for C++,” online
at: http://http://aquila-dsp.org/, 2010.

[84] T. P. Krauss, L. Shure, and J. N. Little, “Signal Processing Toolbox
for use with MATLAB,” 1994.

[85] C. Ramiro, A. M. Vidal, and A. Gonzalez, “MIMOPack: a high-
performance computing library for MIMO communication systems,”
The Journal of Supercomputing, vol. 71, no. 2, pp. 751–760, 2015.

[86] F. Domene, S. Roger, C. Ramiro, G. Piñero, and A. Gonzalez, “A
reconfigurable GPU implementation for Tomlinson-Harashima precod-
ing,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on. IEEE, 2012, pp. 1629–1632.

http://http://aquila-dsp.org/

