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Abstract: We propose and explore the families of fully tunable, conditional 2 � 2 frequency-
domain beamsplitters that result from sideband coupling in phase modulators. Full tunability
is obtained by tailoring the driving voltage feeding the modulators, in a design based on
the symmetries of this voltage waveform. The most favorable case in terms of success
probability is that of first-sideband coupling, which can be implemented by the use of single-
tone phase modulation. The use of this device is illustrated by means of several examples
based on the use of a wavelength-routed source of pairs of single-photon frequency-
entangled states, showing immediate applications as a means of translating to the
frequency-domain quantum-processing protocols based on linear optics.

Index Terms: Quantum information, microwave photonics.

1. Introduction
Quantum optics is recognized as an attractive physical platform for the implementation of quantum
information communication and processing systems [1]. The basis of this success lies in the low
interactivity of photons with the environment, which is a fact that permits, on the one hand, the
remote distribution of quantum states of radiation in free space or guided media and, on the other, to
the use of standard photonic devices as controlled interaction regions designed to perform specific
quantum processing tasks. Due to the inherent richness in the radiation degrees of freedom,
several approaches have been employed to encode and process quantum information by optical
means. As the basic information-bearing entity, qubits can be optically encoded with one (single-rail
encoding) [2] or two different bosonic modes (dual-rail encoding) of the radiation field [3]. Qubit
encoding has been demonstrated with a variety of radiation modes, such as the states of
polarization [4], the spatial modes impinging beamsplitters and propagating in interferometers [5],
the relative phase between consecutive pulses [6], or different optical frequencies [7].

Frequency modes appear as a natural description of quantum radiation when photon wavepackets
with different central frequencies can be resolved in the spectral domain or, alternatively, when
broadband radiation is filtered in frequency bins [8], [9]. Their use as an encoding domain brings
up two main advantages. On one hand one can profit from the inherent broadband characteristic
of optical waveguides. In particular, optical fibers and integrated waveguides provide an immense
spectral bandwidth for telecommunications applications, which can also be exploited to accom-
modate a high number of optical modes for encoding quantum states. This in turn implies that a
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high-dimensional Hilbert space is at hand, at least in principle, to support richer computational tasks.
A second advantage resides in the fact that many mature photonic technologies and components
specifically designed to process individual frequency modes in the context of dense wavelength
division multiplexing (DWDM) telecommunications systems can be readily exploited for filtering,
multiplexing, demultiplexing, and routing operations required in quantum logic operations supported
by this particular encoding alternative.

Themanipulation of frequencymodes can be realizedwith optical modulators for providing coupling
between frequencies, together with a certain optical filtering technology for selecting and routing
different wavelengths. With respect to the modulation techniques, both acousto- [10]–[15] and
electrooptic [7], [9], [16] modulators have been used for performing quantum processing tasks. In its
simpler configuration, acousto-optic modulators provide a tunable coupling between two different
frequencies [12], thus permitting a compact implementation of 2 � 2 beamsplitters. However, their
bandwidth hardly reaches the gigahertz range, thus severely limiting the filtering techniques that can
be used in successive processing steps.

By contrast, electrooptic modulators [17] represent an attractive candidate for the implementation
of quantum operations involving frequency-domain coding. In first place, they operate as multimode
scattering devices where the value of the coupling coefficients between optical frequencies can be
controlled and tuned by means of an external control or modulation signal [18], [19]. The key
challenge is then to translate this basic functionality onto both simple linear optical operations such as
beamsplitting, phase shifting or more complex tasks implemented by means of unitary transforma-
tions. In the second place, since current state-of-the art phase modulators feature modulation
bandwidths in excess of 50GHz (even 9 100GHz for polymer devices) for loadmatched transmission
line travelling-wave devices [20]–[22], there is enough room for microwave and even millimeter-wave
control signals to be applied. This point is of critical importance in practice since then the modes
coupled by the device have enough frequency separation for standard optical filtering technologies to
be subsequently interfaced after the device, operating as amode selection stage. A third advantage is
that electrooptic modulation is one of the few functionalities that can be monolithically integrated with
waveguides and optical filters in the two main technologies for the implementation of photonic
integrated circuits, that is Silicon Photonics [22] and InP [23]. This opens the possibility of developing
integrated quantum photonic logic circuits [24], [25] and subsystems which provide further
advantages in terms of loss, stability, size, compactness, and cost. Finally, phase modulation
technology is available for a wide range of operating wavelengths with commercial devices covering
the range between 0.65 and 2 �m [26], [27]. These facts illustrate the importance of considering
modulation as a powerful enabling functionality for quantum information systems based on photonic
platforms.

In this paper, we explore the optical phase modulator as a candidate for the implementation of
quantum operations involving frequency-domain coding, analyzing the operation regimes where
the modulator acts as a fully tunable 2 � 2 frequency beamsplitter (FBS). As a multimode device,
the output of phase modulators consists of a number of sideband frequency modes which are
created from a single input mode. The use of phase modulators thus requires a postselection of
a pair of frequency modes that act as the basic code set, an issue that is analyzed in Section 2.
The proper design of FBS, based on single-tone modulation, in treated in Section 3, and in
Section 4, we provide a simple optimization strategy for increasing its success probability. In
Section 5, we analyze a simple example where phase modulators, used as an FBS, provide pairs
of single-photon entangled states in frequency, in an arrangement that mimics standard schemes
using pairs of two-photon polarization entangled states or of single-photon entangled states. We
also discuss there its use in teleportation and in purification tasks. Finally, we end in Section 6 with
our conclusions.

2. Conditional Unitaries From Phase Modulation
In this section, we use standard operator algebra to describe the conditional operation of linear and
photon-number preserving systems from two complementary points of view, with particular emphasis
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in those operation modes leading to unitary transformations. Here, the postselection is performed in
terms of a prescribed set of outgoing modes. The first approach is based on conditional or
postselected states and the associated success probabilities, and is naturally formulated in the
Schrödinger representation. The second description, which is worked in Heisenberg image, follows
from the decomposition of a conditional unitary system as a unitary transformation followed by loss,
where the loss accounts for the success probability of the conditional implementation of the unitary.
Finally, we specialize these results for the specific case of the frequency modes generated by phase
modulators and set the problem of searching for conditional unitaries in terms of the classical Fourier
coefficients of the voltage function driving the modulator.

Let us consider a linear system described by its scattering matrix Ŝ, which connects two sets of
bosonic input and output modes as depicted in Fig. 1. Modes will be denoted with a lowercase
subindex so that j1k i ¼ âþk j0i is a one-photon state in mode k , and j0i is the vacuum state. These
mode indices are attached to logical input or output ports so that in general, a physical port in the
linear system could support both an input and an output logical mode. Uppercase subindices, as
those in Fig. 1, denote groups of modes. The total set of input and output modes, eventually infinite
in number, is denoted by K . The linear system is assumed to preserve the photon number, and
therefore, it can be described by its action over creation operators as

Ŝâþk 0Ŝ
þ ¼

X
k2K

âþk Skk 0 (1)

where Skk 0 are the matrix elements of Ŝ in the one-photon subspace Skk 0 ¼ h1k jŜj1k 0 i.
We will assume that the input states are contained in a certain finite-dimensional set of modes

I � K ; the complementary set to I, which we call
�
I , describes an ancilla in its vacuum state. In

general, an input state belonging to a finite-dimensional set of modes I may produce an output state
with infinite number of non-vacuum modes. This is the case of phase modulation [27], where modes
are indexed by frequency and where states contained in a single frequency mode are transformed
into states with infinite number of frequencies. We are interested, however, in schemes where the
output is effectively reduced to a finite-dimensional set of modes J , as shown in Fig. 1, where we
denote again with a bar its complementary output mode set J [ �J ¼ K .

The conditional operation of the linear device in Fig. 1 under single-photon inputs can be
described as follows. Let us assume that the input is j�i ¼ �i2I�i j1i i with �i2I j�i j2 ¼ 1. The output
photon is thus distributed in the K output modes. Then, the output is

Ŝj�i ¼
X

i2I;k2K
j1k iSki�i

¼
X

i2I;j2J
j1jiSji�i þ

X
i2I;j 02J

j1j 0 iSj 0 i�i : (2)

In the last part of the formula, we have separated the outputs in J and
�
J modes. The first state in this

decomposition, which is denoted j�0iJ , is the desired conditional output and is entirely determined by

Fig. 1. Scheme of a linear system. The input state is contained in the I modes (thick lines), whereas the
modes of the complementary set

�
I are in the vacuum state (thin lines). After the interaction, the state is

reduced to J modes, and output modes
�
J are discarded (thick broken lines followed by a box).
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submatrix Lji � Sji , with j 2 J and i 2 I. With this notation, the probability of the generation of a one-
photon state j�0iJ is

Prob1 ¼ J �0j�0h iJ

¼
X

i2I;j2J
j1jiLji�i

�����
�����
2

¼
X

i ;k2I;j2J
��kL

�
jk Lji�i ¼ �jLþLj�ð Þ (3)

where the star denotes complex conjugation, and ð�j�Þ denotes the standard scalar product
ð�j�Þ ¼ �i2I�

�
i �i . This success probability depends on both the input state and the submatrix L.

However, if the dimensionality of I and J coincide and we engineer L to be proportional to an unitary
matrix, L ¼ ffiffiffiffiffi

ps
p

U with
ffiffiffiffiffi
ps
p

a positive scalar, the conditional output can be written as

j�iJ ¼
ffiffiffiffiffi
ps
p X

i2I;j2J
âþj j0iUji�i �

ffiffiffiffiffi
ps
p X

i2I
�i ĉþi j0i (4)

with ĉþm standard bosonic operators ½ĉm; ĉþn � ¼ �mn. The success probability is then independent of the
input Prob1 ¼ ps. Therefore, the realization of conditional unitary operations reduces to the
identification of submatrices L proportional to unitaries.

Alternatively, the operation of the linear device can be described in Heisenberg image, where the
output j modes are given by

b̂j � Ŝ
þ
â0j Ŝ ¼

X
k2K¼I[I

Sjkâk

¼
X
m2I

Ljmâm þ
X
n2I

Sjnân �
X
m2I

Ljmâm þ ŝj (5)

with ŝj accounting for the coupling with the input
�
I vacuum modes. Using the standard bosonic

commutation relations for âm and b̂j , we get [26]

ŝp; ŝþq
h i

¼ �pq �
X
n2J

LpnL�qn: (6)

In the case of L being proportional to an unitary matrix, the vacuum modes can be written as

ŝj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps d̂ j

q
with ½ d̂m; d̂þn � ¼ �mn so that

b̂j ¼
ffiffiffiffiffi
ps
p X

m2J
Ujmâm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps

p
d̂ j ¼

ffiffiffiffiffi
ps
p

ĉ j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps

p
d̂ j (7)

which shows that the linear system acts as the combination of a unitary transformation U followed
by a beamsplitter with transmission ps, as shown in Fig. 2. The probability of successful

Fig. 2. Equivalent representation of the conditional unitary in terms of a beamsplitter with transmission
equal to the success probability ps .
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transformation of a input state with N photons by unitary U is given by ProbN ¼ pN
s ; otherwise,

some of the photons are lost in the complementary set
�
J .

The postselection to J can be performed in principle by placing a detector that collects the output
modes

�
J , which is a procedure that implements the detection of the loss port in the equivalent

model of Fig. 2. Ideally, the absence of detection validates the postselection, whereas a click
detects the exit of at least one photon through the

�
J modes. With non-unity detection efficiency and

single-photon inputs, failure of detection simply decreases the yield of the postselection, as the
output in J would be the vacuum state. However, for inputs with N photons the absence of detection
of M photons exiting in

�
J would validate a situation where the N �M remaining photons circulate

toward J . In this case, the validation of the postselection is to be performed a posteriori, by use of a
coincidence analysis between N output ports J .

We are interested in the conditional realization of beamsplitters for the specific case of phase
modulation, where the device couples modes labeled by frequency. To this end, we focus on a 2-D
input mode set I attached to optical frequencies !0 and !1. For practical reasons, the difference
between these frequencies !1 � !0 9 0 is assumed to belong to the microwave range (10–40 GHz),
since this is the spectral region of operation for which the intersection between efficient mode
coupling by phase modulators and mode filtering by photonic components (i.e., Fiber Bragg
Gratings and Arrayed Waveguide Gratings) is met by the current state-of-the-art technologies. The
mode frequency is denoted as a subindex j1!i ¼ âþ! j0i. The standard operation regime of phase
modulators is with a periodic driving function with angular frequency �, so that the device creates,
from a certain frequency !, new frequency modes at !n ¼ !þ n� with n ¼ 0;	1;	2; . . . Index n
represents the sideband index, and the modulator only couples frequencies separated by n�.
Therefore, the operation of the modulator is to be designed to provide sideband coupling, i.e.,
!1 � !0 ¼ n� for some n.

The magnitude of these couplings can be described from the classical driving phase function xðtÞ
[27]. In terms of complex envelopes, the classical transformation induced by phase modulation is

AðtÞ ! ~AðtÞ ¼ AðtÞexp �ixðtÞ½ �: (8)

The driving function is periodic xðtÞ ¼ xðt þ T Þ to provide couplings between modes separated
� ¼ 2�=T , and its Fourier expansion is

exp �ixðtÞ½ � ¼
X1

k¼�1
Ckexpð�ik�tÞ: (9)

Then, the quantum coupling between frequency modes in the optical range is given by the classical
Fourier coefficients [27]

S!0! ¼ 1!0h jŜj1!i ¼ Cn (10)

where !0 ¼ !þ n�. Then, the scattering matrix of the device can be tailored by an appropriate
design of the classical driving function xðtÞ. This freedom, together with a proper selection of the
output frequency modes, permits the conditional realization of arbitrary 2 � 2 unitaries, as is
explained in the following sections.

3. Conditional Frequency-Domain 2 � 2 Beamsplitters
The conditional implementation of frequency-domain 2 � 2 beamsplitters can be described by
means of the layout shown in Fig. 3. Two input optical modes with frequencies !0 and !1,
respectively, are mixed within an electrooptic phase modulator producing two output optical modes
of frequencies given by !00 and !01, which, in general, can be different from !0 and !1. At the
modulator’s output, the selection of the two optical mode frequencies is achieved by means of a
multiple bandpass optical filter. In the case of the layout shown in Fig. 3, this is performed by a
Superimposed Fiber Bragg Grating (SFBG) [28]. With such an arrangement, the presence of a single
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photon in any other frequency mode than those corresponding to !0, and !1 is detected as a click in a
photon counter placed at the end of the device.

The general form for the operator L representing the coupling of the two input modes of frequencies
!0 and !1 to the two output modes of frequencies !00 and !

0
1, as shown in Fig. 4 ða 6¼ 0Þ, is given by

L ¼ S!00!0 S!01!0

S!00!1 S!01!1

� �
¼ Cq Cqþa

Cn�a Cn

� �
: (11)

To determine the unitary transformations that can be implemented by means of this transformation,
we impose the condition of Lþ � L being proportional to unity. Expressing the transition amplitudes in
(11) as Cq ¼ jCq jexpði�qÞ this condition transforms to the following identities:

jCq j ¼ jCnj
jCqþaj ¼ jCn�aj
�q þ �n ¼ �qþa þ �n�a þ � mod 2�: (12)

Note that in general, the transition amplitudes or, equivalently, the coefficients in the Fourier
expansion of xðtÞ in (9), can depend on external parameters governing the tunability of the phase
modulator. In principle, (12) can be solved for specific values of such external parameters.
Nevertheless, we are not interested in these solutions as they do not render parametric solutions for
the beamsplitters which could ultimately lead to tunable devices. We will however search for such
parametric solutions as a function of modulation functions xðtÞ fulfilling (12) by means of symmetries.
In addition, and as mentioned before, for practical reasons the periodicity of the modulation function
xðtÞ has to be such that 1=T ¼ �=2� 9 10 GHz to allow for the implementation of the optical filtering
of the output frequency modes using current state-of-the-art technologies. This condition limits the
possible options for xðtÞ since currently available arbitrary waveform generators are limited to clock
frequencies of a few gigahertz.

These observations allows us to focus our efforts in parametric families of modulating waveforms
xðtÞ composed of one or two harmonics with variable modulation indexes. More precisely, we

Fig. 4. General diagram showing the coupling between two input frequency modes to two output
frequency modes by means of a phase modulator.

Fig. 3. Circuit layout for the conditional implementation of frequency-domain 2 � 2 beamsplitters. The
Fiber Bragg Grating (FBG) is of the superimposed kind (that is, it shows two different bandpass
centered at !00 y !01, respectively, for which the filter reflectance is R ¼ 1). A click in the detector placed
at the end of the FBG signals the transmission of a photon outside the targeted output modes and,
hence, the unsuccessful realization of the beamsplitting operation.
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consider here either xðtÞ functions representing a single tone or generalized xðtÞ functions verifying
the symmetry properties of single-tone modulations, that is, odd symmetry f ðtÞ ¼ �f ð�tÞ and half-
wave symmetry f ðtÞ ¼ �f ðt þ T =2Þ. A more general approach can be followed whereby the two
later conditions are verified except for a time shift; therefore, modulation functions xðtÞ of the form
xðtÞ ¼ f ðt � t0Þ can be considered. Then the Fourier coefficients of xðtÞ, Cn, are related to those of
f ðtÞ, which we will denote by Dn, by the following relationship:

Cn ¼ ei�nDn (13)

being � ¼ ��t0. The symmetry properties that f ðtÞ must verify imply, in turn, the following
relationships:

D�n ¼ ð�1ÞnDn; Dn ¼ D�n: (14)

Hence, the Fourier coefficients Dn must be real, and moreover, if n is even, there is no phase
difference between Dn and D�n, while if n is odd, then the phase difference is �. Then, (13) and (14)
imply that �n ¼ n�þ argðDnÞ, with argðDnÞ ¼ 0 or �.

In order to solve (12), we first note that the first two identities require that jqj ¼ jnj and
jq þ aj ¼ jn � aj. The first possible solution fq ¼ n; q þ a ¼ n � ag implies that a ¼ 0 and, therefore,
must be discarded, while fq ¼ n; q þ a ¼ a� ng and fq ¼ �n; q þ a ¼ n � ag imply that either q or
q þ a must be zero. These conditions are nevertheless a special case of the last possible solution
fq ¼ �n; q þ a ¼ a� ng, which only requires that n ¼ �q. For this later case, the phase condition in
(12) requires, in addition, that a must be odd. The resulting operator matrix is then given by

L ¼
Cq Cqþa

C�q�a C�q

� �

¼ ei�qDq ei�ðqþaÞDqþa

ð�1Þqþae�i�ðqþaÞDqþa ð�1Þqe�i�qDq

" #
(15)

where q is arbitrary and a odd. The corresponding success probability is ps ¼ D2
q þ D2

qþa.
Equation (15) shows that in these matrices, the output modes represent the 	q sidebands of

each of the input frequency modes. At the same time, these output modes are separated by an odd
number a of sidebands. It should be pointed out that from a practical point of view, and especially
within the microwave region, it is difficult to achieve high coupling coefficients for sidebands with a
high value of sideband index q, and hence, the relevant cases to be considered are those for which
q ¼ 0, a ¼ 1 (which we will call type A beamsplitters), and q ¼ a ¼ 1 (type B beamsplitters), as
shown in Fig. 5. These cases lead to the following matrices:

LA¼ D0 ei�D1

�e�i�D1 D0

� �
; LB¼ ei�D1 ei2�D2

e�i2�D2 �e�i�D1

� �
: (16)

We observe that in type A beamsplitters the diagonal elements are in phase, while in the
antidiagonal elements, the phase is tunable. On the other hand, type B beamsplitters induce an
additional � phase shift in the diagonal elements.

As a first example, we will analyze the frequency-domain beamsplitters that can be implemented
using a single radio-frequency tone phase modulation xðtÞ ¼ �sin ð�t þ �Þ, for which the Fourier

Fig. 5. Diagram showing the frequency band transitions for type A (left, q ¼ 0, a ¼ 1) and B (right,
q ¼ a ¼ 1) beamsplitters.
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coefficients are given by Cn ¼ ei�nJnð�Þ, where Jn is the Bessel function of first kind and order n.
In this case, the probabilities of success for the conditional beamsplitting operation are given,
respectively, by

ps;A ¼ J0ð�Þ2 þ J1ð�Þ2; ps;B ¼ J1ð�Þ2 þ J2ð�Þ2: (17)

One can also define, in analogy to the classical optical 2 � 2 coupler [17], the following coupling
constants:

�A ¼
J1ð�Þ2

J0ð�Þ2 þ J1ð�Þ2
; �B ¼

J2ð�Þ2

J1ð�Þ2 þ J2ð�Þ2
(18)

which classically determine the amount of power delivered from each input port to its crossed output.
The values for ps and � as a function of the modulation index � are represented in Fig. 6. It can be
observed, on the one hand, that type A beamsplitters cover the whole range of coupling constant
values for values of themodulation index� between 0 and 2.44, althoughwith a decreasing probability
of success (0.27 for � ¼ 1). On the other hand, typeB beamsplitters feature even lower probabilities of
success for the same value of coupling constant, the reason behind this being that type B
beamsplitters require the coupling to sidebands of higher order. We conclude that type B
beamsplitters and, in general, those involving higher sideband couplings are a less interesting option
from the practical point of view. The explicit operator form of the FBSÛ in (7) accounting for the tunable
type-A coupling of two frequencies !0 and !1 is

Ûð�Þ ¼ exp �iĤ!o ;!1ð�Þ=�h
h i

Ĥ!o ;!1ð�Þ ¼ i�hsin�1
ffiffiffiffiffiffiffiffiffiffi
�ð�Þ

ph i
ej�âþ!o

â!1 � e�j�â!o â
þ
!1

n o
: (19)

Finally, we point out that the set of 2 � 2 unitary transformations that can be implemented using
frequency encoding can be extended by use of a diagonalmatrixmodifying the phases of the outgoing
modes

U ¼ ei� 0
0 ei�0

� � ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

ei� ffiffiffi
�
p


e�i� ffiffiffi
�
p 	

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

� �
(20)

which is an extension that can be implemented by use of a dispersive medium where the outgoing
photon wavepackets carried at different frequencies undergo different group velocities.

Fig. 6. Coupling constants (left) and success probability (right) for type A (continuous) and type B
(broken trace) frequency-domain beamsplitters.
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4. Optimization of Conditional Frequency-Domain 2 � 2 Beamsplitters
In a second step within our design process, we will try to improve the probability of success for type
A beamsplitters described by (16), which, in the previous section, have been shown to be the most
attractive option. This process entails the addition of a second modulation tone at a triple frequency
3 � and in phase with the tone at � to preserve the aforementioned symmetry properties. Hence,
the modulation function is now given by

xðtÞ ¼ �1sinð�t þ �Þ þ �3sinð3�t þ 3�Þ: (21)

We first of all proceed to optimize the values of �1 y �3 to obtain a maximum value for ps while
keeping � fixed. This can be achieved by adapting a standard optimization procedure used in
diffractive optics for the design of Fourier array illuminators [28]. With this aim, we first observe that
type A beamsplitters are defined by the moduli of the first Fourier coefficients jC0j2 and
jC1j2 ¼ jC�1j2. Ideally, these values must be ð1� �Þ and �, respectively; nevertheless, in practice,
we can only assure that the values of these coefficients will be proportional to the objectives, that is,
jC0j2 ¼ 	ð1� �Þ and jC1j2 ¼ 	� for a given constant 	. The closest solutions to the ideal one will be
those for which the former identities are fulfilled and provide the highest possible value of 	. In other
words, the objective function to be minimized will be

Objð�1; �3; 	Þ ¼
1
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ð�1; �3Þj j2�	�
h i2

þ C0ð�1; �3Þj j2�	ð1� �Þ
h i2r

: (22)

If the objective function achieves a minimum value of zero, then an exact design can be obtained for
the beamsplitter of coupling constant �, and simultaneously, the proportionality constant 	 will
coincide with the probability of success ps.

Fig. 7 shows in continuous trace the value of ps versus � for a single-tone modulation following
the first equations in (17) and (18). Dotted curves show similar results for the case of two tone
optimized modulation using increments in � of 0.02. The optimization process has been performed
by means of standard minimization routines using a two-step procedure. First, we performed a
series of optimizations for each value of �, using for the seed value of �1 as that corresponding to
the single-tone modulation case plus 15% random variations, for �3 the value 0.5 plus another 15%
of random variations, and, for 	, a default value 	 ¼ 0:5. This permits to easily obtain an estimate of
the increase in success probability around the single-tone setting for each value of �. Then, we
refined the best results obtained for each �. An increment in the probability of success can be
observed which is higher for higher values of �, reaching up to a value of 0.37 for � ¼ 1. Despite the
fact that this increment may seem moderate, the technique shows a simple and efficient method to
improve the versatility of phase modulation.

Fig. 7. Probability of success (left) and modulation indices (right) as a function of the coupling constant
for single-tone modulation (continuous trace curves) and two optimized modulation tones (dots and
squares).
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Finally, as an example, Fig. 8 plots the modulation waveforms and the transition probabilities
optimized for the case of � ¼ 0:5 for which

LA ¼
ffiffiffiffiffi
ps
2

r
1 ei�

�e�i� 1

� �
: (23)

The probability of success for this gate optimized according to (22) is ps ¼ 0:61.

5. A Wavelength-Routed Source of Pairs of Single-Photon
Frequency-Entangled States
In this section, we provide some examples of the use of phase modulators as FBS. These examples
are based on the schematic platform depicted in Fig. 9, which produces fully tunable pairs of single-
photon frequency-entangled states which are additionally routed to four different output ports. This
platform can be considered the frequency equivalent to standard setups using coding in spatial
modes or in polarization. Referring to that figure, degenerate pairs of single photons are produced by
spontaneous parametric down-conversion (SPDC) in a nonlinear crystal and injected into fiber by use
of fiber couplers (FC). In order to properly define the initial frequency bin, the SPDC emission is
first filtered to a narrow bandwidth�!� � around the degenerate frequency!0, which is a procedure
that reduces the spectral distinguishability of signal and idler photons. For � in the microwave range
(10–40GHz), frequency binswith bandwidths�! in the gigahertz range are thus necessary, for which
several filtering techniques can be employed (see [30] and [31]). In Fig. 9, the filtering is schematically
implemented by fiber Bragg gratings G1. Alternatively, pairs of indistinguishable single photons can

Fig. 9. Scheme of the wavelength-routed source of pairs of frequency-encoded dual-rail qubits.

Fig. 8. Modulation waveform xðtÞ (left) and transition probabilities (right) for a two-tone optimized phase
modulation ð� ¼ 0:5Þ type A beamsplitter. (Left) In thin black trace is the contribution to the waveform at
frequency � and in the dotted trace is the contribution at 3 �; thick trace is the total waveform.
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be obtained from the consecutive emission of a triggered quantum dot source, which typically have ns
wavepacket duration [32]. In either case, we denote the resulting two-photon state as j10i � j10i,
where subindices stand for frequency !0.

This state is then directed, after polarization alignment, to a pair of phase modulators PM
operating independently but with the same driving frequency � and output frequencies !00 and !01.
These output frequencies are first postselected in grating G2 and eventually routed by use of a four-
port circulator and gratings G3. The success of the conditional operation of the PM as a FBS can be
controlled by detectors at the output of G2 (not shown in the figure), which collect the output PM
modes not belonging to the code set f!00; !01g. The postselected state is then given by

�1 1000
0
1

�� �
þ 
1 0001

0
1

�� �� 	
� �2 1000

0
1

�� �
þ 
2 0001

0
1

�� �� 	
(24)

where subindices and primes stand for the outgoing frequencies. State (24) is a pair of single-
photon frequency-entangled states or, equivalently, a pair of frequency-encoded dual-rail qubits,
where different frequencies have been directed to different physical ports. If standard beamsplitters
were used instead of PM [33]–[36], the same state would have been coded in the spatial outgoing
ports of the beamsplitters. The proposed system then provides the advantage of using the
conditional PM as fully tunable beamsplitters and the fact that the output can be only frequency
encoded (when both frequencies are directed to the same output port) or with an additional spatial
encoding, routing frequencies to ports, as shown in the figure. We also notice that the polarization-
encoded analog of state (24) has been used in quantum processing tasks (see, for instance, [37]),
where two polarization-entangled pairs of photons are produced by the double pass of the pump
pulse through an SPDC medium.

The determination of the fidelity of the generated single-photon frequency-entangled in the pair
state (24) can be performed by adapting to the frequency domain the procedure used in [36].
Referring to Fig. 10, one of the photons in the SPDC pair is directed to detector DH , which heralds
the entrance of a photon in the left conditional generator of a frequency-encoded qubit state
implemented by phase modulator PMA. The output frequencies !00 and !

0
1 are not routed to different

ports, and the success of the postselection is determined by the absence of click in detector DA. For
concretion, let us assume that PMA is of type A and creates the maximally frequency-entangled
state j�þi001 ¼ ð1=

ffiffiffi
2
p
Þ½j100001i þ j000101i�. This state is directed to a second PM (PMB) and the

postselection success determined by detector DB . This second FBS acts as a 3-dB coupler
ð� ¼ 1=2Þ, as described by (23). The exits of PMB at !00 and !01 are read by detectors D0 and D1,
respectively. Then, it is straightforward to show that if both the generation in PMA of j�þi001 and the
postselection in PMB succeed, the probability of coincidences between DH and D0 (resp. DH and
D1) is given by cos2 ð�=2Þ (resp. sin2 ð�=2Þ), where � in (23) is the relative phase between zero and
first sidebands in type-A FBS. This RF phase � can be scanned through the PM driving voltage,
leading to the corresponding interferogram. If the generation of state j�þi001 is assumed to suffer
from phase damping so that the actual produced state is �001, the interferometric visibility V is a
measure of the fidelity F ¼ h�þj�j�þi001 ¼ ð1þ V Þ=2 [36].

Fig. 10. Scheme for the determination of the fidelity of the generated frequency-encoded qubits using an
additional frequency beamsplitter.
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The proposed source can be used to translate to frequency encoding other systems based on
pairs of entangled single photons encoded in spatial modes. However, the simple substitution of a
number of deterministic spatial beamsplitters by conditional FBSs would incur in a progressive
decrease of processing rate. This is partly overcome by the wavelength-routing functionality of the
system described in Fig. 9, which provides the possibility of distributing state (24) to two locations,
i.e., Alice and Bob, where local operations are realized at equal wavelength. In Fig. 11, we briefly
present two examples of this architecture. The first of them, which is on the left side of Fig. 11, is an
analog of the teleportation experiment of single-photon qubits [33], [34]. A phase modulator is used
to create an arbitrary qubit state in dual-frequency basis, whereas the other produces the maximally
frequency-entangled state j�þi001. Then, (24) can be expressed as

� 1000
0
1

�� �
þ 
 0001

0
1

�� �� 	
� �þj i001

¼ �ffiffiffi
2
p 11j i00�j00i

0
1 þ


ffiffiffi
2
p j00i00 � j11i

0
1

þ 1
2
�j10i00 þ 
j01i

0
0

� 	
� j�þi01

� 1
2
�j10i0 � 
j01i

0
0

� 	
� j��i1 (25)

where j�	i01 ¼ ð1=
ffiffiffi
2
p
Þ½j10i01 	 j01i

0
1� aremaximally entangled single-photon Bell states at frequency

!01. Projecting (25) over each of these states at Alice’s location by use of the 3-dB coupler CA in Fig. 10
left teleports the qubit state to Bob with ð�Þ or without ðþÞ phase flip. The analysis of the teleportation
fidelity can be performed at Bob’s site by use of coupler CB and a piezoelectric transducer (PZT) to
scan the interferogram.

The second experiment on the right side of Fig. 11 is the frequency-encoded version of the
purification protocol of single-photon entangled states reported in [35] and [36]. In this case, the
goal is to distribute a single-photon entangled state j�ab

þ i between two locations. The channel is
assumed to induce phase damping so that we can only distribute

�ab ¼ F �ab
þ

�� �
�ab
þ


 ��þ ð1� F Þ �ab
�

�� �
�ab
�


 �� (26)

for a certain value of the fidelity F . The protocol of [35] and [36] distributes two copies of state (26)
and produces a single copy of the entangled state with increased fidelity. To this end, both copies of
(26) are mixed at each location by use of a beamsplitter, whose coupling constant is to be optimized
for the initial value of the fidelity and then detect each one of the two output ports of the
beamsplitter. As in the teleportation protocol, when only one of the detectors clicks, the reaming
modes share a single-photon entangled state with higher fidelity. A simplified version of the protocol
fixes the value of the coupling at a values 85/15 and 15/85, attaining a nearly optimal fidelity

Fig. 11. (Left) Teleportation. (Right) Purification.
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improvement for initial F 9 1=2. In the frequency-encoded version on the right side of Fig. 11, the
source is set to create a pair of single-photon frequency-encoded entangled states j�þi01 � j�þi01
and then distributed to Alice and Bob. Notice that the phase-damping channel, which in [36] was
implemented by use of two PZTs driven by noise, can be included here in the driving electronics of
each PM by simply dithering the phase of the local oscillator with random noise. Once distributed,
the protocol proceeds as in the single-frequency case. However, the verification procedure in [36],
which is shown in dotted curves in the figure, would require the use of an additional FBS.

6. Conclusion
In this paper, we have explored the families of fully tunable, conditional 2 � 2 FBSs that result from
sideband coupling in phase modulators. Full tunability is obtained by tailoring the driving voltage
feeding the modulators in a design based on the symmetries of this voltage waveform. The most
favorable case in terms of success probability is that of first-sideband coupling, which can be
implemented by use of single-tone phase modulation with a minimum success of 0.27 for maximum
coupling � ¼ 1. The use of a simple technique employing two microwave tones has been shown to
optimize this figure up to a minimum success of 0.37. Finally, the use of this device has been
exemplified with the analysis of a wavelength-routed source of pairs of single-photon frequency-
entangled states, which shows immediate applications as a means of translating to the frequency-
domain quantum-processing protocols based on linear optics.

The advantages of the use of modulation techniques, with basic functionalities such as
reconfigurability, wavelength-routing, high bandwidth, and possibility of integration with different
filtering and waveguiding technologies, are not exhausted by the examples presented here, which
have been based on probabilistic 2 � 2 unitary transformations. On the one hand, the possibility of
configuring different frequency couplings by the driving voltage permits the creation of different
families of qudit states coded in frequency. On the other, modulators represent an attractive
alternative when both speed and a high degree of reconfigurability are required, such as in recent
proposals of linear-optics realizations of channels for multimode qudits [38].
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