
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.media.2014.07.003

http://hdl.handle.net/10251/54429

Elsevier

Rudyanto, RD.; Kerkstra, S.; Van Rilowort, EM.; Fetita, C.; Brillet, P.; Lefevre, C.; Xue, W....
(2014). Comparing algorithms for automated vessel segmentation in computed tomography
scans of the lung: the VESSEL12 study. Medical Image Analysis. 18(7):1217-1232.
doi:10.1016/j.media.2014.07.003.



Comparing algorithms for automated vessel segmentation in

computed tomography scans of the lung: The VESSEL12 study

Rina D. Rudyantoa, Sjoerd Kerkstrab, Eva M. van Rikxoortb, Catalin Fetitac,
Pierre-Yves Brilletc, Christophe Lefevrec, Wenzhe Xued, Xiangjun Zhud, Jianming Liangd,
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James C. Rossf, George R. Washkof, Juan-Carlos Prietog, Marcela Hernández Hoyosh,

Maciej Orkiszg, Hans Meinei, Markus Hüllebrandi, Christina Stöckeri,
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Abstract

The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the per-

formance of different algorithms to identify vessels in thoracic computed tomography (CT)
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scans. Vessel segmentation is fundamental in computer aided processing of data generated by

3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any

real world application requires some form of automation. Several approaches exist for auto-

mated vessel segmentation, but judging their relative merits is difficult due to a lack of stan-

dardized evaluation. We present an annotated reference dataset containing 20 CT scans and

propose nine categories to perform a comprehensive evaluation of vessel segmentation algo-

rithms from both academia and industry. Twenty algorithms participated in the VESSEL12

challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results

have been published at the VESSEL12 website http://vessel12.grand-challenge.org.

The challenge remains ongoing and open to new participants. Our three contributions are:

(1) an annotated reference dataset available online for evaluation of new algorithms; (2)

a quantitative scoring system for objective comparison of algorithms; and (3) performance

analysis of the strengths and weaknesses of the various vessel segmentation methods in the

presence of various lung diseases.

Keywords: Thoracic Computed Tomography, Lung Vessels, Algorithm comparison,

Segmentation, Challenge

1. Introduction

The vasculature is involved in many diseases including the most lethal ones, such as

cardiovascular and cerebrovascular disease. Vascular trees are ubiquitous, found nearly in

every organ, complex and highly intertwined; and vessel segmentation is both a common and

a challenging task. Reliable quantitative medical image analysis requires automatic vessel

segmentation, whenever possible, to discriminate vessels from organs of interest. It is thus

not surprising that vessel segmentation has received a large amount of interest.

1.1. Overview of existing methods

To date, no single method can successfully segment vessels from every imaging modality

and every organ. The complexity of vessel segmentation in different organs and for different

purposes has given rise to multiple segmentation methods.
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Many methods rely on combination of vascular models, image features, and extraction

schemes; most models rely on some prior knowledge about the features of vessels such as

intensity, curvature, tubularity, centerline and smoothness. Applying Hessian-based scale-

space enhancement filters (Frangi et al., 1998; Sato et al., 1998; Krissian et al., 2000) results

in disconnection because filter response is low along bifurcations. Enhancement filters have

been combined with tracking (Aylward and Bullitt, 2002), bifurcation enhancement and

suppression of non-vessel structures (Zhou et al., 2006). Seed-point based algorithms have

also been used, in both region growing techniques (Lavi et al., 2004; Metz et al., 2007) and

fast marching techniques (Bülow et al., 2005). Other recent methods include fuzzy shape

representation (Agam et al., 2005), and fuzzy-connectedness (Kaftan et al., 2008). These

are but few of the most recent methods in vessel segmentation. A more exhaustive review

can be found in Lesage et al. (2009), which classified various vessel lumen segmentation

methods in contrast-enhanced imaging modalities (such as magnetic resonance angiography

and computed tomography angiography), analyzing the different models, features and ex-

traction schemes. A slightly older, extensive vessel segmentation review (Kirbas and Quek,

2004) classified the various methods according to which approach they belong to: pattern

recognition, model-based, tracking, artificial intelligence-based, or machine learning.

In analysis of data generated by 3D imaging modalities such as thoracic computed to-

mography (CT) scans, vessel segmentation is often required before proceeding to diagnose

higher order disease patterns. It has been used to aid segmentation of nearby anatomical

structures such as pulmonary lobes (Kuhnigk et al., 2005; Ukil and Reinhardt, 2009; Lassen

et al., 2012) and lung airways (Lo et al., 2010; Bülow et al., 2005). In computer-aided nod-

ule detection, having vessel segmentation reduces ambiguities and improves nodule detection

performance (Agam et al., 2005). Excluding vessel volume is also important where accurate

quantification is essential, such as follow-up studies of tumor volumetry (Reeves et al., 2006),

lung perfusion study (Risse et al., 2009), as well as parenchymal (Korfiatis et al., 2011) and

interstitial lung diseases (Marten et al., 2009; Kumar et al., 2012). Vessel segmentation is

fundamental in automated detection of lung-related conditions such as pulmonary emboli

that occur in pulmonary arteries (Masutani et al., 2002; Zhou et al., 2005; Peters et al.,
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2007). Pulmonary vessel tree dimensions also help to characterize pulmonary hypertension

(Linguraru et al., 2010; Matsuoka et al., 2010), and using these dimensions, to calculate

bronchoarterial ratio to characterize risk of cardiovascular diseases.

Segmenting vessels in the lungs has been addressed by various groups (Agam et al., 2005;

Shikata et al., 2004; Fetita et al., 2009a; Kaftan et al., 2008; Xiao et al., 2011) using variants

of the techniques described in the overview of existing methods. In lung images, there is a

natural contrast due to the high density difference between the vessels and the background,

lung parenchyma. Although it is relatively straightforward to use the difference in intensity

to segment vessels, there are other structures besides vessels having similar intensities (eg.

tumor nodules, dense lesion), and vessel trees are highly complex and highly intertwined.

There is a still more complicated task of distinguishing arteries from veins, which only few

have begun to explore (Lei et al., 2001; van Bemmel et al., 2003; Yonekura et al., 2007; Gao

et al., 2012).

1.2. Necessity of fair performance comparison

Producing a complete vessel tree segmentation for a single scan manually is a daunting

task. For multiple scans this requires a prohibitive amount of time and resources. As

a result, many vessel segmentations - as shown in the previously cited reviews (Kirbas

and Quek, 2004; Lesage et al., 2009) - are evaluated on a set of data particular to their

respective studies, and there is a lack of standardized reference data and validation criteria

to objectively compare various segmentation algorithms. The BrainWeb (Aubert-Broche

et al., 2006) project for vessels in brain magnetic resonance images provides a valuable,

although synthetic, reference.

Distinct from publicly available databases, collaborative efforts to solve complex prob-

lems gave rise to various challenge frameworks. Challenge frameworks provide a fair com-

parison and ability to analyze in depth the strengths and weaknesses of each method. Direct

comparison between algorithms becomes possible when standardized evaluation is performed

using standardized data. From most of these challenges emerged publicly available databases

for future comparison. Several past and ongoing challenge frameworks are listed on sites
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such as http://www.grand-challenge.org. The first one was the liver segmentation chal-

lenge SLIVER07 (Heimann et al., 2009). Several of these frameworks focus on vessels, e.g.

coronary artery centerline extraction CORONARY (Schaap et al., 2009), and carotid artery

lumen segmentation CAROTID (?). Several more challenges focusing on the lungs, include

nodule detection ANODE09 (van Ginneken et al., 2010), airway detection EXACT09 (Lo

et al., 2012), lung registration evaluation EMPIRE10 (Murphy et al., 2011), lung lobe anal-

ysis LOLA11 (http://www.lola11.com) and nodule volume change analysis VOLCANO’09

(http://www.via.cornell.edu/challenge).

1.3. Objectives

The aim of VESSEL12 Challenge, organized in conjunction with the International Sym-

posium on Biomedical Imaging 2012 (ISBI’12), is to provide a public platform to compare

the performance of different segmentation algorithms to identify lung vessels in thoracic com-

puted tomography (CT) data. An additional goal is to characterize what kind of anatomical

neighbourhood may complicate vessel segmentation, for example the presence of nodules,

dense consolidation and parenchymal or bronchial abnormalities.

1.4. Contributions

The first contribution of this paper is an annotated reference data set. Constructing

such a data set is an extremely labor-intensive task. Secondly, we propose a quantitative

scoring system for objective comparison of algorithms. Thirdly, we present an evaluation of

the strengths and weakness of the various vessel segmentation methods in the presence of

various lung diseases.

1.5. Structure

In Section 2 of this paper, we describe the images that make up the reference data, the

method to select points for evaluation and the data annotation process. In Section 3, we de-

scribe the evaluation categories, the evaluation process for each submission, and the scoring

system used. In Section 4, we describe the challenge setup and challenge participation, both

before and after the ISBI’12 Challenge Workshop. In Section 5, we describe the results. In

5



Section 6, we discuss the challenge evaluation, the influence of lung pathologies, and the

performance of each segmentation method, with a conclusion in Section 7.

2. Material and Methods

2.1. Data collection

The scans for this challenge were collected from the anonymized image repositories of

three hospitals: University Medical Center Utrecht (Utrecht, The Netherlands), the Univer-

sity Clinic of Navarra (Pamplona, Spain), and Radboud University Nijmegen Medical Centre

(Nijmegen, The Netherlands). The data included both clinical exams taken for a variety of

indications, and scans from two lung cancer screening trials: NELSON, the Dutch-Belgian

randomized controlled lung cancer CT screening trial (van Klaveren, 2011) and I-ELCAP,

the International Early Lung Cancer Action program (de Torres et al., 2007). In the insti-

tutes where approval of the institutional ethics committee is required, a written consent for

retrospective studies had been previously obtained from each participant.

The variety of sources ensures that a wide range of clinical images typically used in diag-

nostic settings is present in the dataset: high and low resolution, standard or low-dose chest

CT, and Angio-CT —CT with intravenous contrast; each with their own scanning param-

eters and reconstruction kernels. Scanners from three major manufacturers were included:

Philips, Siemens, and Toshiba. We selected CT scan images taken from individual patients

diagnosed with a spectrum of lung pathologies, including diffuse interstitial disease, pul-

monary thromboembolism, pulmonary hypertension, alveolar inflammation, lung nodules,

and emphysema. To ensure that the images were as isotropic as possible, we selected only

thin slice images having slice spacing between 0.59 mm and 0.89 mm, averaging at 0.74 mm.

Accurate vessel segmentation requires thin slice data, as vessels are often blurred out in CTs

with thicker slices. From this cohort of images, we finally selected 20 scans, described in

Table 1. This heterogeneous data closely reflects the diversity of CT scans encountered in

clinical practice.

All twenty scans were then anonymized and made available for download to registered

VESSEL12 challenge participants in Meta (MHD/raw) format. To facilitate vessel segmen-
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Table 1: Description of the twenty CT scans that make up the VESSEL12 challenge dataset.
Angio-CT: CT with contrast agent, LD: low-dose, HR: high resolution, ILD: (diffuse) interstitial lung disease

Scan Image Type Pathology Scanner and Kernel Spacing

(mm)

Z-spacing

(mm)

# of

slices

kV/mAs

01 Angio-CT Alveolar

inflammation

Siemens SOMATOM

Sensation 64, B60f

0.76 1 355 120/40

02 Chest CT Alveolar

inflammation

Philips Mx8000 IDT 16, B

Kernel

0.71 0.7 415 140/74

03 Chest CT ILD Philips Mx8000 IDT 16, B

Kernel

0.62 0.7 534 120/77

04 LD Chest CT ILD Toshiba Acquilion ONE,

FC55

0.86 1 426 100/44*

05 Chest CT ILD Philips Mx8000 IDT 16, B

Kernel

0.72 0.7 424 140/73

06 Angio-CT ILD Siemens SOMATOM

Sensation 64, B30f

0.63 1 375 120/81

07 LD Chest CT ILD Toshiba Acquilion ONE,

FC55

0.69 1 461 100/23*

08 Chest CT ILD Philips Mx8000 IDT 16, B

Kernel

0.78 0.7 442 140/64

09 Angio-CT ILD Siemens SOMATOM

Sensation 64, B25f

0.68 1 543 100/150

10 Angio-CT ILD Toshiba Acquilion ONE,

FC83

0.88 1 426 120/68*

11 Angio-CT ILD and emphysema Toshiba Acquilion ONE,

FC83

0.77 1 421 100/120

12 Angio-CT Secondary pulmonary

arterial hypertension

Toshiba Acquilion ONE,

FC83

0.8 1 446 100/92*

13 Angio-CT Pulmonary

thromboembolism

Toshiba Acquilion ONE,

FC83

0.89 1 471 120/117*

14 LD Chest CT Pulmonary

thromboembolism

and emphysema

Toshiba Acquilion ONE,

FC83

0.71 1 386 100/33*

15 Angio-CT Pulmonary

thromboembolism

Siemens SOMATOM

Sensation 64, B25f

0.65 1 378 100/150

16 LD Chest CT Small nodules Toshiba Acquilion ONE,

FC83

0.75 1 451 100/38*

17 Angio-CT Nodules and diffuse

abnormalities

Siemens SOMATOM

Sensation 64, B25f

0.59 1 429 100/135

18 Chest CT Normal Philips Brilliance 16P, B

Kernel

0.78 0.7 408 140/73

19 HR Chest CT Small nodules Toshiba Acquilion ONE,

FC83

0.69 1 396 120/68*

20 LD Chest CT Emphysema Toshiba Acquilion ONE,

FC55

0.75 1 406 100/32*

* Toshiba Acquilion ONE modulates the dosage during acquisition. Average dose over all slices is given.
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tation only within the lung areas, the lung masks for each image were also provided. The

lung masks were generated using the method described in van Rikxoort et al. (2009) and

were slightly edited manually in a few cases where necessary.

2.2. Reference Data Annotation

In this challenge we use real world data. Therefore, human annotation is the only method

of obtaining a reliable reference. Since it is not feasible to perform manual segmentation of

the entire vessel tree for all twenty scans, manual annotation was performed only on specific

pre-generated points of interest (POIs). In addition, for evaluation of specific vessel-like

structures and abnormalities within the lung, points were freely chosen by the annotators.

Using fully human annotation has its limitations. Due to the partial volume effect,

human performance at assessing whether a voxel on the border of a vessel is truly part

of a vessel (i.e. consists of more than 50% of vessel), is at best erratic. Taking this into

consideration, the POIs were generated to avoid most of the vessel border points, following

an approach previously proposed by van Dongen and van Ginneken (2010).

Figure 1: (Left) Original axial section from scan 01; (Right) Same slice after blurring, overlaid with automatically generated
POIs. The POIs are local maxima, sorted by intensity and pruned to be further than five voxels apart. Squares in the figure
have been magnified for illustration purpose.

To automatically generate POIs, we first computed the 3D local maxima on a blurred

version of each scan. Blurring was done on each axial slice using a Gaussian kernel with a
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scale of 1.0 mm (see Figure 1). To prevent points from being too close to each other, the list

of initial points was pruned. First, the points were sorted by density in descending order.

Starting from the top of the list, moving downwards, all points within distance of five voxels

to a point higher on the list were removed. As the majority of points selected in this way

turn out to be vessels, an equal number of randomly generated points at least five voxels

from any other point were then added to the list of POIs. For each scan, four axial sections

along the z-axis direction were filled with POIs in this way. In each scan, we have selected

sections which are approximately evenly distributed in the z-axis and which contain a large

proportion of lung tissue. Figure 2 illustrates the location of the four sections in which POIs

have been generated from two scans.

Figure 2: Illustration of the slices and annotated POIs in scan 01 (left) and 06 (right) after labeling process; red points indicate
those which are marked as vessels, green non-vessels.

For each POI to be annotated, the graphical interface (developed using MevisLab (Ritter

et al., 2011)) displays the corresponding slice centered at the point to be evaluated. The

point to be classified is also shown in three orthogonal sideviews: axial, coronal and sagittal.

For both main and sideview displays, 4 mm Average Intensity Projection reformatting was

used to better discriminate noise from small vessels. Having orthogonal views is important
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for the annotators to be able to distinguish vessels from structures which may look vessel-

like when viewed only from a single plane. In addition, annotators could zoom in or scroll

through the scan in the z-direction. Each point to be annotated was shown sequentially.

The annotation of the POIs was performed by three trained medical students. Training

was done in three stages: (1) two hours of initial familiarization with the graphical interface,

(2) 8.5 hours of free testing annotation, followed by (3) a revision with radiologists, before

the actual annotation of all images was performed. During the familiarization and free

testing sessions, all annotators were trained to distinguish the appearance of vessels as seen

through all three orthogonal views. Each annotator worked individually to mark POIs and

labeled it with one out of four possible labels: vessel, lung parenchyma, airway wall, or

lesion. Only POIs for which all three annotators agreed on the label have been included in

the analysis.

Specific types of lesions that only occur occasionally - rare among the POIs - such as

atelectasis, fibrosis, adhesive straining, consolidation and mucus filled bronchi, were interac-

tively added by a radiologist going through all scans. Similarly, the number of automatically

generated POIs labeled as airway wall points is too low for reliable statistics, therefore the

annotators were asked to specifically label additional airway wall points in each scan. Fur-

thermore, extra POIs labeled as lung nodules were generated by a nodule-detecting CAD

system (Murphy et al., 2009), which were then manually reviewed by the annotators. Only

points on structures that were visually confirmed to represent pulmonary nodules were then

included.

2.3. Training Data

We did not initially provide any training data for this challenge. Upon request of several

participants, reference data was published for three example CT scans outside the original

set of 20 scans. This reference data has been constructed using the same procedure as the

original dataset. The three scans and their annotations are intended as an illustration of

the annotation process rather than a machine learning dataset.
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3. Evaluation

3.1. Evaluation Categories

Performance of vessel segmentation algorithms cannot be adequately captured in a single

parameter. We therefore defined several metrics which express segmentation performance

in specific contexts. We looked at sensitivity of methods in segmenting larger and smaller

vessels, and specifically focused on the effect of the presence of disease-induced confounding

structures. Diseases such as interstitial lung disease, cystic fibrosis, asthma and chronic

obstructive pulmonary disease (COPD) can cause lung tissue to deform into structures

which might be mistaken for vessels. In addition, such diseases can be accompanied by

mucus production, filling the bronchi, giving rise to images in which a bronchus suddenly

looks like a vessel.

For nodule detection, the most widely studied CAD task in chest CT, good vessel seg-

mentation helps to eliminate false positives on vessels, and yet it is crucial that nodules do

not get classified as vessels. Similarly, there are also vessels within consolidations, which

may take up significant volume that is not strictly part of the lesion.

To evaluate different performance aspects of vessel segmentation algorithms, we present

nine evaluation categories, as summarized in Table 2.

• Principal (1st)

The Principal category evaluates how well the algorithm distinguishes vessels from

non-vessels. All the points given the same label by three annotators independently

make up the principal dataset that is used for this category. A total of 9419 points

across all 20 scans were annotated. Of these, the annotators unanimously agreed upon

the labels of 7352 points (78%). This is the general evaluation category used for overall

ranking.

• Small vessel (2nd), Medium vessel (3rd), and Large vessel (4th)

These categories evaluate to what extent the vessel sizes affect segmentation perfor-

mance. Vessel points from the Principal category are subdivided into three subsets:
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Table 2: Categories used for the evaluation. Note that only unanimously labeled automatic points have been included.
AW: airway wall, DL: dense lesion, MB: mucus-filled bronchi, *Large: greater than -615 HU after blurring, **Medium: between
-765 and -615 HU after blurring, ***Small: less than -765 HU after blurring

Category Source Positive Class Negative Class Number of points
Total Positive Negative

1 Principal
(ALL)

Automatic All vessel points All non-vessel points 7352 2238 5114

2 Large vessel Automatic All large* vessel
points

All non-vessel points 5891 777 5114

3 Medium
vessel

Automatic All medium**
vessel points

All non-vessel points 5860 746 5114

4 Small vessel Automatic All small*** vessel
points

All non-vessel points 5818 704 5114

5 Vessel/Airway
walls

Automatic +
Interactive

All vessel points All automatic +
interactively added
AW points

8101 2238 5863

6 Vessel/Dense
lesion

Automatic +
Interactive

All vessel points All automatic +
interactively added
DL points

2702 2238 464

7 Vessel/Mucus-
filled
bronchi

Automatic +
Interactive

All vessel points Interactively added
MB points

2336 2238 98

8 Vessel-in-
lesion/Lesion

Automatic +
Interactive

All vessels points
within consolidation

All automatic +
interactively added
DL points

401 146 255

9 Vessel/Nodules CAD All vessel points All CAD-detected
nodule points
manually verified

3227 2238 989
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large, medium and small. As proxy for vessel size, we used the intensity of a point after

1 mm Gaussian blurring, assuming lower intensity points belong to smaller vessels. In

the set of all vessel points from the Principal category, we used the 33rd and the 66th

percentile intensity values as dividing points between large medium and small vessels.

We divided the data into large (intensity higher than -615 HU), medium (intensity

between -765 and -615 HU) and small (intensity lower than -765 HU) vessels. The

threshold values were used on both contrast and non-contrast images, as separating

these two image types does not yield significant difference in the values calculated. To

these three groups of vessel points, all the non-vessel points were added to make up

the Large vessel, Medium vessel, and Small vessel categories, respectively. See Figure

3 (a-c) for examples.

• Vessel/Airway walls (5th)

The Vessel/Airway walls category was designed to evaluate the ability of segmentation

methods to distinguish vessels from airway walls (see Figure 3 (d)). Airway walls have

tissue density values similar to vessels, and are therefore easily confounded with vessels.

Part of the airway wall points in this category are points labeled as airway walls in

the principal dataset. Because these are relatively few in number, airway wall points

were interactively added. These airway wall points were then combined with an equal

number of vessel points from the Principal category.

(a) (b) (c) (d)

Figure 3: A slice from scan 05 showing (a) small (-818HU), (b) medium (-727HU) and (c) large (-382HU) vessel points. The
post-blurring CT values of each vessel point is within the range of CT values corresponding to each vessel size classification.
(d) Point showing airway wall.
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• Vessel/Dense lesions (6th), Vessel/Mucus-filled bronchi (7th), and Vessel-in-Lesion

/Dense lesions (8th)

(a) (b) (c) (d)

Figure 4: Examples of lesions which might be confounded with vessels: (a) mucus-filled bronchus (scan 12) is shown here as a
bright tubular structure with an air bubble, (b) dense lesions (scan 01), (c) fibrosis (scan 02), and (d) nodule (scan 01).

The three categories Vessel/Dense lesions, Vessel/Mucus-filled bronchi, and Vessel-

in-lesion/Dense lesions, are designed to evaluate the ability of segmentation methods

to distinguish several types of dense abnormalities from vessels. The datasets for

these categories contain lesions that can be divided roughly into three classes: (1)

dense lesions, which include atelectasis, fibrosis, adhesive straining, and other dense

lesions, (2) mucus-filled bronchi, which are airways that instead of being clear, are filled

with liquid such as mucus, which might lead them to be identified as high-intensity

tubular structures, and (3) consolidations, which may also contain vessels, visible only

in contrast scans. Figure 4 shows examples of dense abnormalities present.

In contrast-enhanced images, some vessels are visible even within the dense lesions, as

shown in Figure 5. In the Vessel-in-Lesion/Dense lesions category, only vessel points

from the principal dataset and points within dense lesions, added by a radiologist,

were included.

• Vessel/Nodules (9th)

The last category evaluated the ability of segmentation methods to distinguish vessels

from nodules. Figure 4(d) shows an example of a nodule.
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(a) (b) (c)

Figure 5: Examples of vessels found within dense lesion (from contrast scan 05) shown in three orthogonal views: (a) axial, (b)
sagittal, and (c) coronal. Window level has been modified to preferentially increase contrast for this illustration purpose only.

3.2. Submission format requirement

To ensure that all results provided by the participants of the VESSEL12 Challenge could

be fairly evaluated, the submission requirement was standardized. For each scan, the partici-

pant was asked to submit an image of 8-bit unsigned char, with each voxel value representing

the probability (between 0 to 255) of that voxel being a vessel. Binary submissions were

also accepted. Each submission was then evaluated for all the categories described in the

earlier section.

3.3. Evaluation methods of submitted data

Figure 6: Overview of processes in the evaluation method
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For each scan in the VESSEL12 dataset, each submission contains a full vessel tree

segmentation. Our evaluation data consists of hundreds of labeled points in each scan (see

Section 3.1 for an exact numerical breakdown). Evaluating a submission then consists of

iterating over each point and checking whether the submissions label corresponds to the

label given by the panel of annotators.

An important question arises here: should anything which is probably a vessel be labeled

as such, or should only vessels which are absolutely certain be labeled? Different medical

applications have different requirements: an application scanning for lung emboli will require

a high sensitivity, while preprocessing for nodule detection will emphasize specificity. To

evaluate algorithm performance without confining ourselves to any specific application, we

use Receiving Operator Characteristic (ROC) curve analysis.

An ROC curve yields information about an algorithms’ performance at different levels

of sensitivity. This type of analysis requires a probabilistic segmentation, in which each

voxel is assigned a probability of being a vessel. A probabilistic segmentation can yield

many binary segmentations—including only those with probabilities higher than the given

threshold value. An ROC curve is created by plotting the sensitivity against 1-specificity.

High thresholds will typically yield a segmentation with low sensitivity but good specificity,

and lower threshold typically increases sensitivity but loses specificity. We refer readers

unfamiliar with ROC to Fawcett (2006) for further treatment of ROC analysis.

The principal metric for VESSEL12 evaluation is the area under the ROC curve (Az).

A purely random classifier would give a point along the diagonal line of no-discrimination,

giving an Az score of 0.5. The ideal curve, correctly classifying all positive voxels while

making no mistakes, would go through the point (0,1) in the upper left corner, yielding an

Az score of one.

When the submission is in binary format, only a single operating point will be obtained

in the ROC curve. To compare performance to probabilistic submissions, a signed distance

transform was computed on each binary submission. In this way the binary segmentation is

transformed into an approximation of a probabilistic segmentation.

Additionally, ROC curve analysis also yields an optimal specificity/sensitivity point,
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which we define as the point on the ROC curve closest to point (1,0). For binary submissions,

the original submission (distance transform thresholded at zero) is taken as the optimal

specificity/sensitivity point.

The evaluation method is summarized in Figure 6.

3.4. Scoring

ROC curve analysis was performed on all the nine categories described in Table 2. In

the ISBI’12 VESSEL12 challenge, methods were ranked according to their score on the

Principal category. This category was chosen as the most unbiased overall measure of vessel

segmentation performance. To evaluate various aspects of segmentation performance in

detail, scores on the other eight categories are published for each method in addition to the

principal score.

4. Challenge Setup

4.1. Challenge format

Teams from both academia and industry were invited to participate in the challenge.

We sent out notifications to various medical imaging mailing lists and individual invitations

to authors as well as research groups that have previously published on the topic of vessel

segmentation.

We opened online registration on November 15th, 2011, and made the data available

for download on January 6th, 2012. Between the latter date and the day of the ISBI’12

Challenge, May 2nd, 2012, we worked to develop the annotation interface, annotate the

reference data, define the evaluation categories and automate the online evaluation process.

4.2. Challenge Participants

Out of 113 registered teams, more than half downloaded the data, and a total of 14 teams

submitted their segmentations in time for the challenge day - resulting in 20 methods - with

several teams submitting results from multiple methods. After the challenge day, three more

teams uploaded their algorithm results, and one previously signed up team uploaded two new
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submissions. The labels A to W will henceforth be used to refer to each submission. Teams

which did not upload algorithm descriptions or who explicitly asked to remain anonymous

were excluded from the analysis (n=2, methods A and R). To set up a baseline performance

evaluation, we have included two reference methods: density method and vesselness filter

method.

Table 3: Challenge Participants and Submission Types

TeamAlgorithm Type Multi-
scale

Postprocessing

Probabilistic
B Thresholding N/A Airway wall and nodules removal

C Hessian-based No Large low-vesselness structure removal

D Hessian-based Yes No

E Hessian-based Yes No

G Hessian-based Yes Airway walls removal

H Hessian-based Yes No

I Hessian- and region growing-based No Airway walls removal

K Hessian-based Yes Histogram equalization

L Hessian-based Yes Histogram equalization

M Hessian-based Yes Histogram equalization

N Hessian-based Yes Histogram equalization

Q Hessian-based Yes Histogram equalization

Binary
F Hessian- and region growing-based Yes No

J Machine-learning N/A Large nodule removal

O Region growing-based N/A Airway walls removal

P Hessian-based Yes Airway walls and lobe fissure removal

Reference
R1 Thresholding N/A No

R2 Hessian-based Yes No

Post-Challenge Submissions
S Machine-learning Yes No

T Hessian-based Yes No

U Hessian-based Yes No

V Hessian- and region growing-based Yes (Preprocessing) Airway walls removal

W Hessian- and region growing-based Yes Yes

4.3. Brief description of each submission

Only teams which submitted their algorithm descriptions have been included in this

section, described below and summarized in Table 3.
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The various submissions used techniques that can be classified as: (1) variants or direct

use of Hessian-based “vesselness” filters, (2) variants of region growing methods, or (3)

thresholding-based methods, or (4) machine-learning based methods.

Method B (Telecom SudParis, France) applied hysteresis thresholding within the seg-

mented lung parenchyma region, coupled with a 3D connectivity criterion between vessels

and mediastinal region (Fetita et al., 2009a). The airway wall areas were previously removed

from the lung parenchyma exploting airway lumen segmentation (Fetita et al., 2009b) and

lumen caliber-related wall thickness information (Fetita et al., 2010). Finally, a shape fil-

ter based on medial axis and vessel caliber analysis (Fetita et al., 2010) was applied to

remove juxtavascular nodules or fibrosis tissue. To obtain probabilities, Euclidian distance

transform was then applied to the binary response.

Method C (Arizona State University, USA) used Hessian-based vesselness (Zhou et al.,

2007), followed by vesselness-oriented level set (Zhu et al., 2009) and removal of large struc-

tures with low vesselness response. The probabilities were generated by applying a Gaussian

kernel (size=6, σ=1.5) to the vessel segmentation.

Method D (Bahcesehir University, Turkey) employed Hessian-based vesselness on images

denoised by 3D median filtering. The scale of the filter was selected empirically as two to

achieve robustness of the algorithm. The probabilistic values were trained with the help

of the training dataset. Log transformation was then performed to discriminate whenever

possible - from the difference in variance - false positives from true positives. Finally, after

post-processing the vessel regions were highlighted in the probability map. Details can be

found in Oksuz et al. (2013).

Method E (Brigham and Women’s Hospital, USA) first deconvolved the images, then

pre-blurred them with a bank of discrete Gaussian kernels with ten scales, uniformly dis-

tributed in the range [0, 6] pixels. Scale-space particle sampling was then performed to find

strongest Hessian matrix-based response (Estepar et al., 2012). The particle scale was used

to estimate vessel radius. Log transformation was then applied to transform binary response

to probability.

Method F (CREATIS, Universite de Lyon, France & Universidad de los Andes, Colom-
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bia) is based on a variational region growing (VRG) approach introduced in Rose et al.

(2009), which performs energy minimization using a region-descriptor function. Similar

to Pacureanu et al. (2010), this function enforces an appropriate range of gray-levels and a

tubular shape of the segmented structures by combining an intensity term and a vesselness

term calculated with the Hessian-based Sato’s filter (Sato et al., 1997). These two terms

were normalized by the respective maximum values found within the volume of interest (lung

mask). The vesselness was calculated at scales between 0.2 and 6.0. The seeds for VRG

were selected using the Hessian-based criteria proposed by Lo et al. (2010).

Method G (Radboud University Nijmegen Medical Center, the Netherlands) used nor-

malized multiscale Frangi’s vesselness (Frangi et al., 1998) filter (scales=7, σ=1.0 to 4.5

mm), followed by optimal local thresholding. Airway wall exclusion was then performed to

reduce false positives, and distance transform was applied to the final segmentation (van

Dongen and van Ginneken, 2010).

Method H (Fraunhofer MEVIS, Germany) is very basic, using multiscale Frangi’s ves-

selness method (Frangi et al., 1998) (scales=4, σ=0.9, 1.6, 2.3 and 3 mm) without prepro-

cessing.

Method I (Fraunhofer MEVIS, Germany) generated seeds for region growing using Frangi’s

vesselness filter with 1 mm scale resulting in vesselness image V (~x). Seedpoint precursors

were then defined as any voxel above the 97th percentile of intensity values. Final seedpoints

~si were obtained after spatial filtering: a shrunk (eroded) lung mask was used to exclude

all seedpoints less than 15mm away from the outer lung boundary. In addition, a simple

bronchi segmentation was used to remove seedpoints within bronchi. Region growing was

then performed on V (~x), starting from ~si, in direction of descending vesselness values. For

the “probabilistic segmentation mask” P (~x), we output masks for different threshold values

of the Region Growing:

P (~x) = max
(
g ·Rθ(g) (~x)

)
where Rθ (~x) is a binary result mask (0 for background, 1 for vessel voxels) resulting from

Region Growing in direction of descending vesselness values, stopping at the vesselness
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threshold θ. Every possible gray value g ∈ [1 . . . 255] is linearly mapped to a threshold

θ (g) = θmax · g
255

(θmax was set to 100 for the submission).

In method J (Universitat Politècnica de València, Spain), images were first normalized

to 8 bits (0 to 255). Area opening filter was applied to reduce noise and local bright objects

that have an area lower than λ (8 pixels), followed by close-hole operator to enhance vessel

structures. Classification was then performed using K-means clustering (k=3), followed by

3D filtering to remove spurious elements —such as tumors —with size lower than certain

threshold (4000 voxels).

Method K (LUMC, the Netherlands & Hunan University, China) performed Frangi’s

vesselness (σ=1, 2, and 3 mm) filter. The free parameters were chosen as α = β = 0.5 as

recommended in Frangi et al. (1998) and c = 500 (related to the intensity range in lung

CT data). All output images were first rescaled to a range [0, 106] and rounded to the

nearest integer. Subsequently, histogram equalization was employed in order to have an

equal distribution of the responses at a certain threshold. Finally, the result was rescaled to

the range [0, 255].

Method L (LUMC, the Netherlands & Hunan University, China) was similar to submission

K. The vesselness enhancement filter that was used, however, was a central adaptive medial-

ness function, inspired by the work of Krissian et al. (2000). It is defined as −λ2/λ3(λ2 +λ3)

when the sum of all eigenvalues is less than zero, and zero otherwise. It uses no free param-

eters.

Like method L, the processing in method M (LUMC, the Netherlands & Hunan Univer-

sity, China), is similar to submission K. The vesselness enhancement filter used was the same

as L, except that the underlying Gaussian kernel to compute the eigenvalues was replaced

by a bi-Gaussian kernel (Xiao et al., 2013). The traditional Gaussian operator has infinite

support and its response is therefore influenced by structures adjacent to a vessel. The bi-

Gaussian kernel, however, allows independent selection of foreground and background scales.

By taking a narrower local neighborhood for contrast computation, closely located adjacent

structures can be separated better, while keeping the intra-vessel noise suppressing ability

of the conventional Gaussian scale space.

21



Similar to what was described in method K, method N (LUMC, the Netherlands &

Hunan University, China) also performed postprocessing. The vesselness enhancement filter

however was based on a strain energy tensor decomposition, measuring intensity contrast,

structure strength and shape. These measures were combined with an intensity continuity

term along the vessel and a step edge suppression mechanism. Details can be found in Xiao

et al. (2011).

Method O (Technical University of Lodz, Poland) first normalized input data to the range

of [0, 1]. Assuming bimodal histogram distribution, region growing was then performed

using 26-connectivity from seed areas - defined as regions of more than 50 pixels above the

value at the object histogram peak. The intensity threshold was individually determined by

averaging the peak values of the bimodal histogram for each normalized CT scan. Airway

segmentation was performed to explicitly exclude airway walls.

Method P (Norwegian University of Science and Technology, Norway) used a multiscale

tubular detection filter that fits a spline instead of circle, adapted from Krissian et al. (2000).

Response was calculated as the average dot product of the inward normal of the spline and

the direction of the underlying gradient vector. Region growing was performed to connect

voxels with high tubularity response. A conservative segmentation of airway, followed by

dilation to obtain airway walls, and lung lobe fissure segmentation were then performed to

remove these known structures.

Method Q (Shahed University, Iran) employed a modified Frangi filter, followed by mul-

tiscale medialness. Radius was estimated by graph analysis, and finally vessel was grown

from medial axis using estimated radius.

Reference method R1 (density method) is based on the assumption that vessels have

higher density than the surrounding lung tissue and airways. Simply rescaling the values

of all voxels between -1024 and 200HU, to the range of 0 to 255, gives a segmentation in

which any structure with higher intensity are given higher probability of being vessels. The

density method should then find most vessels, but also mistake other structures for vessels.

Reference method R2 (vesselness filter method) used a vesselness filter implemented as

a module (MLModule “Vesselness”) by MevisLab was employed with seven scales, evenly
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distributed from 1 to 4.5 mm.

4.4. Post-ISBI’12 submissions

Three more teams uploaded their submissions post-ISBI’12 Challenge Day. Methods S

(University of Alberta), T (Universidad Politécnica de Madrid), and U (Graz University of

Technology), enjoy the advantage of being able to study the performance of the methods

submitted pre-challenge. Methods V and W were submitted by a pre-ISBI’12 participant,

CREATIS.

Method S (University of Alberta, Canada) used stacked multiscale feature learning. The

features are learned from sample patches, randomly extracted at multiple scales from a

6-level Gaussian pyramid expansion of the data. Filter banks are learned using spherical

k-means (Coates and Ng, 2012). A two-layer stacked representation was obtained by per-

forming the learning on the outputs of the first layer. Each layer had 32 features. While

learning is from randomly sampled patches, usage is by conventional convolution with the

image data to obtain the filter response vector for each voxel. The three example scans were

used for training a L2-regularized logistic regression classifier using the learned voxel features

as inputs. The parameters were selected using 10-fold cross validation. Final probability

was then obtained by linearly scaling the predicted probabilities to [0,255].

Method T (Universidad Politécnica de Madrid, Spain) used a modified multiscale Frangi’s

vesselness enhancement filter, by incorporating airway wall information to penalize the prob-

ability of a voxel being a vessel (Jimenez-Carretero et al., 2013). Airways enhancement was

first performed applying eigenvalue analysis of the Hessian to give a higher response in dark

tubes. Voxels where the plane perpendicular to the airway direction eigenvector intersects

a hollow sphere of radius σ, with wall thickness w (estimated from the maximum scale),

following Montaudon et al. (2007), were then marked as airway walls. The probability of

being a vessel of each voxel was then subtracted by its probability of being airway wall.

Method U (Graz University of Technology) used a multiscale vessel enhancement fil-

ter adapted from the tube detection filter by Bauer et al. (2010), followed by centerline

extraction. Vessel enhancement consisted of an analysis of the Hessian eigenvectors and
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computation of an offset vesselness function containing the gradient information sampled

at circles of different radii perpendicular to the tube direction (eigenvector with smallest

eigenvalue), a local symmetry measure, and an adaptive vesselness threshold. Centerline

fragments from non-maxima suppression were then connected using a shortest path algo-

rithm, and the vessel radius was estimated using a spherical ray-cast approach, which was

finally refined by minimizing a geodesic active contour energy, as proposed by Reinbacher

et al. (2010). The final probability was obtained by weighting the segmentation based on

the original vesselness response, which was rescaled to [0,255]. The method was presented

in more detail in Helmberger et al. (2013).

Method V used the same variational region growing (VRG) approach and same ini-

tialization as method F. However, the vesselness term was calculated using the Frangi’s

filter (Frangi et al., 1998) at scales ranging from 0.2 to 3.5, and the lung mask was modified

as follows. The volume of interest was eroded to reduce false positives near the pleural

surface. The bronchi and their walls were masked. To do so, first the bronchial tree was

segmented by region growing with leakage detection (Mori et al., 2000), which iteratively

increases a threshold value until the number of voxels aggregated in one iteration becomes

too large. Then the branches of the segmented tree were dilated proportionally to the

branch thickness. The tree was successively pruned by morphological opening with a bank

of increasing-size structuring elements, thus generating several trees, each one only keeping

the branches thicker than the structuring element. Each of these trees was then dilated with

a structuring element half as large as the one used for opening. The final bronchial-tree

mask was obtained as union of all the dilated trees.

Method W is a probabilistic version of method V. It uses the binary segmentation result

and the vesselness map calculated by method V. The latter were scaled to fit the dynamics

required from the submissions. Each voxel belonging to the segmented vascular tree was

assigned the value of the corresponding voxel from the vesselness map, while the voxels

beyond the vessel tree were assigned zeros. The method was presented in more detail in

Orkisz et al. (2014).
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5. Results

On the principal dataset, the Az value was calculated for each individual image, as well

as combining all points. For each submission, the optimal threshold —threshold at which

the optimal specificity/sensitivity was obtained —was calculated with the principal dataset

and was used as the optimal threshold across the other datasets. Each submission received

a table containing the Az score and the specificity and sensitivity point at the optimal

threshold, across all nine datasets as well as for each of the twenty scans.
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Figure 7: (Left) Individual submissions’ ROC curves for Principal Category, shown for 19 probabilistic methods (solid line)
and 4 binary methods (dotted line). Letter indicates the position of optimal specificity/sensitivity point, data for methods
below (0.5, 0.5) in sensitivity and specificity are not shown. (Right) Zoomed in ROC curves for top five performing methods.

For the Principal category, the majority of methods do a good job segmenting vessels,

with the median performer having Az score of 0.932, and thirteen submissions scoring more

than 0.9 (see Table 4 and 5 for exact scores breakdown). Individually, the top five meth-

ods have very similar optimal specificity-sensitivity points (above 0.93/0.93), as shown in

Figure 7 (right).

Analyzing the different categories, however, shows a wide spread (see Figure 8 (left))

in the performance for every category except for Large Vessels (4th), where all submissions

generally perform very well - as expected, gradually worsening in Medium Vessels (3rd)
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Table 4: Scores for all submissions across all categories. Principal Rank is derived from the Az score on the Principal category.
For each method, Average Rank indicates the average of its rank across all categories.
(Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense
Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

Principal

score

Az score for each category As of ISBI’12 Post-ISBI’12

1 2 3 4 5 6 7 8 9 Average
Rank

Principal Average
Rank

Principal

Probabilistic

B 0.837 0.665 0.885 0.947 0.819 0.709 0.660 0.627 0.735 9.9 13 13.2 18

C 0.812 0.583 0.862 0.972 0.658 0.479 0.355 0.712 0.355 13.6 14 17.8 19

D 0.980 0.976 0.979 0.985 0.934 0.635 0.607 0.757 0.358 6.2 5 7.9 6

E 0.852 0.645 0.918 0.974 0.766 0.655 0.597 0.699 0.557 10.0 12 13.2 17

G 0.932 0.885 0.954 0.955 0.912 0.625 0.404 0.649 0.461 10.7 10 13.1 12

H 0.984 0.972 0.986 0.993 0.908 0.555 0.397 0.654 0.330 8.1 1 10.1 2

I 0.981 0.975 0.985 0.983 0.943 0.706 0.617 0.750 0.617 4.0 3 5.2 4

K 0.975 0.952 0.975 0.995 0.738 0.565 0.462 0.750 0.336 8.3 6 10.8 7

L 0.984 0.979 0.982 0.991 0.940 0.624 0.513 0.734 0.300 6.7 1 8.2 2

M 0.981 0.978 0.983 0.981 0.941 0.679 0.619 0.752 0.397 5.1 3 6.4 4

N 0.956 0.964 0.955 0.949 0.953 0.726 0.661 0.652 0.466 7.1 8 8.9 10

Q 0.561 0.479 0.485 0.709 0.492 0.528 0.450 0.651 0.571 14.7 18 18.9 23

Binary

F 0.739 0.444 0.766 0.981 0.544 0.510 0.276 0.790 0.385 12.9 15 16.7 20

J 0.652 0.448 0.566 0.920 0.376 0.419 0.184 0.829 0.544 14.4 17 18.4 22

O 0.737 0.500 0.742 0.947 0.556 0.554 0.236 0.779 0.580 12.7 16 16.6 21

P 0.902 0.821 0.921 0.955 0.865 0.683 0.462 0.645 0.507 10.3 11 13.1 13

Reference

R1 0.970 0.929 0.984 0.995 0.775 0.471 0.416 0.745 0.248 9.6 7 12.4 9

R2 0.946 0.933 0.946 0.957 0.948 0.792 0.707 0.730 0.788 5.9 9 7.4 11

Post-ISBI’12 submissions

S 0.986 0.977 0.986 0.994 0.944 0.667 0.595 0.654 0.439 - - 6.2 1

T 0.972 0.943 0.983 0.987 0.900 0.58 0.509 0.763 0.287 - - 9.9 8

U 0.863 0.781 0.848 0.951 0.851 0.712 0.677 0.646 0.659 - - 12.0 16

V 0.874 0.673 0.950 0.982 0.794 0.480 0.364 0.696 0.281 - - 16.0 15

W 0.879 0.693 0.953 0.976 0.845 0.583 0.495 0.766 0.367 - - 12.2 14
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Figure 8: (Left): Performance by Evaluation Categories, showing Az score distribution across all methods.
(Right) Performance of all methods on the Principal category, analyzed by individual images. Notice there is no single pathology
or image type that presents particular difficulty in vessel segmentation. A slightly smaller spread could be observed for images
14 and 20, although the median performances for these images remain comparable with the rest.
(Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense
Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

and Small Vessels (2nd). This reveals that small vessels segmentation is still generally

difficult. Airway walls (5th category) are also source of false positives for many submissions.

Several categories are more difficult - such as Vessel/Dense Lesions (median Az score: 0.625),

Vessel/Mucus-filled Bronchi (median Az score: 0.509) and Vessel/Nodules (median Az score:

0.461).

Overall, we found no significant difference between the performance across all 20 scans

(see Figure 8 (right)). There is no single pathology that confounds the vessel segmentation

significantly. Rather, it is the presence of very specific structures caused by underlying lung

diseases (i.e. mucus-filled bronchi, nodules and dense lesions), which is the primary con-

founding factor among the submitted methods. We note, however, that in low-dose CT scans

of lungs affected by emphysema (images 14 and 20), performance spread is smaller, although

the median Az scores are comparable to the rest. This could be due to increased contrast ob-

served in emphysematous lungs, characterized by destruction of lung tissues, leaving larger

airspaces. We also found no statistical difference between segmentation performance for

27



contrast and non-contrast images.
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Figure 9: Operating point for each method calculated at principal optimal threshold is here shown for all non-principal
evaluation categories. Note the probabilistic methods (orange) generally have higher sensitivity than binary methods (black).

6. Discussion

In this section, we analyze the reference annotation process, the performance analysis by

ROC curves and trends, strengths and weaknesses of participating algorithms.

6.1. Reference annotation and evaluation

The points whose labels the annotators did not unanimously agree made up about 22%

of the total number of generated POIs. The majority of these points lie on the border of the

lungs. Revisiting the rest of these contested points reveals that label discrepancy did not

arise due to confounding structures which might look like vessels, but rather because many

of them are located on the edge of a vessel structure. The points which lie on the vessel

borders become interesting when we are addressing vessel sizes while, in the VESSEL12

Challenge, we focus on vessel detection and not in exact demarcation of vessel borders. To

avoid confusion about whether a POI is just on the border or just off the border of a vessel,

we included only the unanimously agreed POIs.
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Table 5: Optimal Specificity/Sensitivity points across all categories. For probabilistic methods, the optimal operating point
is calculated across all the points within the category. For binary methods, the optimal operating point is the original binary
submission.
(Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense
Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

Specificity/Sensitivity score for each category

1 2 3 4 5 6 7 8 9

Probabilistic

B 0.99/0.68 1.00/0.34 0.99/0.78 0.99/0.90 0.94/0.68 0.56/0.68 0.44/0.68 0.55/0.62 0.56/0.68

C 0.98/0.64 0.98/0.19 0.98/0.74 0.98/0.95 0.66/0.64 0.44/0.64 0.25/0.64 0.66/0.82 0.32/0.64

D 0.95/0.95 0.94/0.94 0.98/0.95 0.98/0.97 0.82/0.95 0.37/0.95 0.29/0.95 0.50/0.83 0.06/0.95

E 0.92/0.74 0.98/0.36 0.95/0.85 0.95/0.95 0.52/0.74 0.33/0.74 0.21/0.74 0.53/0.84 0.16/0.74

G 0.94/0.90 0.92/0.84 0.96/0.93 0.95/0.93 0.83/0.90 0.35/0.90 0.18/0.90 0.50/0.82 0.15/0.90

H 0.94/0.95 0.91/0.94 0.96/0.95 0.99/0.98 0.70/0.95 0.26/0.95 0.11/0.95 0.08/0.97 0.03/0.95

I 0.95/0.94 0.92/0.93 0.96/0.96 0.97/0.96 0.85/0.94 0.39/0.94 0.26/0.94 0.56/0.78 0.16/0.94

K 0.91/0.96 0.89/0.95 0.93/0.97 0.98/0.98 0.38/0.96 0.20/0.96 0.06/0.96 0.44/0.86 0.03/0.96

L 0.96/0.95 0.94/0.96 0.96/0.96 0.98/0.98 0.83/0.95 0.37/0.95 0.20/0.95 0.49/0.84 0.07/0.95

M 0.95/0.95 0.93/0.95 0.95/0.96 0.98/0.94 0.83/0.95 0.43/0.95 0.29/0.95 0.58/0.77 0.16/0.95

N 0.94/0.92 0.93/0.95 0.96/0.91 0.98/0.90 0.95/0.92 0.57/0.92 0.43/0.92 0.60/0.59 0.17/0.92

Q 0.95/0.17 0.95/0.01 0.95/0.02 0.95/0.45 0.79/0.17 0.88/0.17 0.70/0.17 0.93/0.36 0.98/0.17

Binary

F 0.83/0.56 0.33/0.65 0.78/0.61 0.98/0.97 0.28/0.56 0.42/0.56 0.14/0.56 0.57/0.91 0.29/0.56

J 0.56/0.60 0.41/0.59 0.51/0.58 0.94/0.84 0.08/0.60 0.31/0.60 0.00/0.60 0.34/0.96 0.53/0.60

O 0.75/0.59 0.43/0.59 0.76/0.59 0.98/0.89 0.26/0.59 0.42/0.59 0.02/0.59 0.63/0.79 0.59/0.59

P 0.95/0.84 0.94/0.71 0.96/0.88 0.96/0.92 0.74/0.84 0.48/0.84 0.16/0.84 0.60/0.64 0.35/0.84

Reference

R1 0.92/0.91 0.85/0.91 0.96/0.97 0.98/0.99 0.50/0.91 0.21/0.91 0.12/0.91 0.44/0.86 0.02/0.91

R2 0.88/0.89 0.85/0.89 0.89/0.88 0.90/0.89 0.89/0.89 0.57/0.89 0.38/0.89 0.69/0.70 0.53/0.89

Post-ISBI’12 Submissions

S 0.94/0.95 0.93/0.93 0.95/0.95 0.96/0.96 0.75/0.95 0.29/0.95 0.13/0.95 0.48/0.80 0.07/0.95

T 0.96/0.89 0.87/0.96 0.96/0.95 0.99/0.96 0.78/0.89 0.32/0.89 0.22/0.89 0.49/0.84 0.02/0.89

U 0.97/0.74 0.97/0.59 0.97/0.72 0.97/0.91 0.93/0.74 0.57/0.74 0.44/0.74 0.66/0.58 0.46/0.74

V 0.94/0.77 0.73/0.54 0.94/0.92 0.94/0.96 0.77/0.77 0.25/0.77 0.09/0.77 0.56/0.82 0.11/0.77

W 0.97/0.77 0.96/0.42 0.97/0.92 0.98/0.95 0.85/0.77 0.34/0.77 0.13/0.77 0.56/0.81 0.12/0.77
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Figure 10: Plotting the Az score for the Principal category using points from two slices against points from four slices per scan
shows consistent performance across the methods submitted. The red line indicates the identity line.

The manual annotation process is highly time consuming. It took an average of 14

hours for each evaluator to finish annotating all the automatically generated POIs in the

Principal category. A natural consequence of the evaluation process we adopted is that the

annotation process did not produce complete vessel trees, which may be useful for quick

visual evaluation. In addition, using only four sections from each image might seem to

suggest that we are evaluating over a minuscule proportion of the CT image. To ascertain

that our evaluation framework gives a stable result —that is, that we have evaluated on a

sufficiently large number of points —we compared the performance of the submissions using

the POIs generated for two sections only. As shown in Figure 10, we found no significant

difference between using only two slices and four slices (R=0.9995), suggesting that with

four slices we have sampled the points for the Principal category sufficiently.

When deciding on a procedure for evaluation, one faces a number of choices. We opted

for ROC analysis because it is a well-established, widely used paradigm. To allow methods

that produce a binary segmentation to participate, and to be able to directly compare these

methods with probabilistic methods, we decided to convert binary results into probabilistic
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results via a distance transform. A binary result has numerous possible corresponding

probabilistic distributions. The distance transform gives but one possibility. There is a

simple intuition behind this: the further away a voxel is from a confirmed vessel, the lower

the probability is for it to be a vessel. Upon hindsight, it is hard to say if this procedure

could really represent the actual probabilistic distribution of these methods.

We observe a marked difference in performance between the probabilistic and binary

submissions (see Figure 8 and Table 4), though not all binary submissions performed poorly,

as seen from Figure 8 - where Method P is a binary submission in the top 10 ranking for

the Principal category. Generally, probabilistic submissions seem to have higher sensitivity

than the binary methods in the Principal category (see Figure 9).

6.2. Strengths and weaknesses of the methods

Across all submissions, none used anatomic knowledge apart from density and structure

tubularity. To our knowledge, none used information about noise level associated with

different reconstruction kernels, nor average vessel density in contrast vs. non-contrast

scans, nor the average vessel tree volume that corresponds to different lung pathologies.

To their merit, several groups reported that their algorithms were adapted from vessel

segmentation in other organs or other modalities (e.g. liver from abdominal CT, brain MRI),

highlighting the relatively low barrier to develop algorithms for segmenting lung vessels.

For the challenge, each team was required to provide an estimate of the running time

of each method. However, running times are as reported by individual teams and each

algorithm has been run on different hardware specifications. As such, they were not exactly

comparable and we have decided not to include them in the analysis.

When we performed the optimal threshold calculation, the value tends towards a low

value (average: 90.3, min: 1, max: 204). There are two possible reasons: either many

submissions tend to favor higher sensitivity as opposed to specificity, as seen from the optimal

threshold value calculated, or they used a suboptimal conversion from other numeric types

to unsigned char required to represent the probability. A method which returns a larger

range of probability values that is not uniformly distributed would need to ensure that
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the conversion to the required range of 0 to 255, properly captures the method’s optimal

performance range.

The performance of each method is not uniform across all categories. Most methods

that performed well in the Principal category also did well in the others - the exceptions

include several top-performing methods which did not take into account that there are other

structures in the lungs with similar attributes - intensity or Hessian eigenvalues - such as

nodules and mucus-filled bronchi. Method H, for instance, scores 18th and 19th position

in the Mucus-filled bronchi (7th) and Nodules (9th) categories, while scoring 1st in the

Principal category (as of ISBI’12).

We find that most Hessian-based methods generally obtain the highest Az scores on the

Principal category. However, these methods still suffer in the evaluation categories con-

taining structures with Hessian eigenvalues similar to those of vessels (e.g. airway walls,

mucus-filled bronchi), since accurate determination of the structures depends highly on the

scale used. Using a large number of scales —seven—, the Hessian-based method R2 was

able to perform fairly in categories containing nodules, mucus-filled bronchi and dense le-

sions. Although structures such as nodules typically have eigenvalue scale signatures distinct

from vessels, when the number and range of scales used is inadequate, many Hessian-based

vesselness filters return a false significant response. See Figure 11(e) for examples.

Overall, the most difficult categories turn out to be Mucus-filled bronchi (7th) and Nod-

ules (9th). Several methods filtered the images to remove known non-vessel structures such

as fissures, airway walls, and nodules. Methods which explicitly exclude nodules have less

false positives on nodules, as can be seen in Figure 11(f). Similarly, airway wall exclusion also

reduces false positives, as shown in Figure 12. The Vessel-in-Consolidation/Consolidation

(8th) category is another difficult category; none of the methods was very successful in this

task.

Most intensity threshold-based methods include high-density structures in the lung which

are not vessels. For this reason, many submissions include postprocessing steps, which explic-

itly excludes known structures such as airway walls, nodules, and lobar fissures. However, the

postprocessing steps do not always ensure better performance. In many cases postprocessing
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(a) Original (b) Method S (c) Method L (d) Method M (e) Method R2 (f) Method J

Figure 11: Top to bottom: axial, sagittal, and coronal views. (a) Original scan of a nodule from scan 01. (b-d) Same slice
overlaid with vessel segmentations by top three teams (methods S, L and M). (e) Same nodule overlaid with segmentation by
method R2. As the size of the nodules are larger than the scales used for vessel enhancement filter, pixels at the nodule borders
return high response for vesselness. (f) Same nodule overlaid with segmentation from method J, which used explicit nodule
removal.

Figure 12: Effect of explicit exclusion of airway walls on vessel segmentation of scan 04 (left to right): original, with no airway
wall removal (method K), and airway wall excluded (method O) where the bright circles indicate airway walls which were
removed explicitly. Middle image shows oversegmentation, not severely penalized because our choice of evaluation method.
Refer to text of Subsection 6.2 for details.
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does not catch all false positives and could be improved.

One surprising observation could be made with regards to the baseline method R1 that

simply uses density as a predictor of vesselness. While multiscale vesselness filter methods

perform well in all categories, the much simpler density method performs admirably in nearly

all categories. This method completely fails, however, where confounding structures with

similar density as vessels are present: R1 is one of the worst performers in the categories

Vessel/Mucus filled bronchi (ranked 16th) and Vessel/Nodule (23rd among all participants).

6.3. Limitations of the methodology

Even though we included a large number of categories on which to assess the participating

methods, the evaluation procedure adopted for the VESSEL12 Challenge has its limitations.

First, the performance of the methods in determining vessel diameter cannot be evaluated.

Using our method to select POIs, negative points tend to be located in the lung parenchyma

— typically at several pixels from the real vessel border, thus not penalizing oversegmentation

close to vessel borders (see middle plot of Figure 12 for example of oversegmentation), nor

segmentation which includes voxels where vessels are obviously not to be found (e.g., noisy

area). For specifically measuring vessel size, manual precise annotations of vessel would have

to be painstakingly constructed by human experts, or a scan of a physical phantom with

tubes of known diameters could be used, but this would expand the scope of the challenge

substantially.

The prohibitive amount of time it took to manually segment the images made it

impractical to produce complete reference — which may be useful for comparing reconstructed

vasculature tree and evaluating the connectivity of the submissions. In the next section, we

address ways to improve a future version of the challenge without invalidating the existing

results.

6.4. Future of the VESSEL12 Challenge

Following the example of previous challenges, VESSEL12 will remain open to receive

new submissions and evaluate these in the same manner as all already submitted results,
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thus providing a fair comparison. As identified in the previous Section, there is a number of

limitations with respect to the evaluation procedure. Even though nine different categories

are reported, several aspects of the quality of vessels segmentations are not covered by these

nine metrics. However, the results of the submitted methods make it clear that methods

perform very differently on these nine categories (see Figure 9).

One of the ways to improve the challenge is to invite the research community to contribute

and extend the existing evaluation procedures. This can be done in two ways. The first

method is to upload new sets of labeled reference points. These could include new categories

of negative points not included in the current metrics, such as fissure points and vessel

junctions. Another category could be points deemed just inside and just outside vessel

cross-sections, to evaluate the accuracy of diameter measurements submitted by the various

methods —not captured by the current metrics. Users can then decide which combination

of negative and positive points should be evaluated, similar to the selection of sets of points

given in Table 2. The second method is to upload entirely new evaluation code in the form

of standard C++ or Python executables. This could be used to evaluate connectivity of

extracted vessels trees, for example. It could also pave the way to provide proper training

and testing data sets for the evaluation of future methods.

We believe that the possibility to add new evaluation metrics to an existing challenge

framework is a new step in its evolution that may stimulate further research in the area of

thoracic vessel segmentation in CT.

7. Conclusions

We have presented the VESSEL12 Challenge framework that allows for direct comparison

of vessel segmentation algorithms for thoracic CT data. Results show that there exist

substantial performance differences between methods.

Most methods that employ techniques that detect tubular structure (vesselness-based

approaches) do an admirable job in distinguishing vessels from lung parenchyma, with more

than half the submissions scoring more than 0.9 in the Principal category, and the top five
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methods scoring more than 0.97 in the more difficult category of small vessels. Not all meth-

ods perform as well, highlighting the difficulty of the task. The other evaluation categories,

however, demonstrate that none of submitted methods are capable of distinguishing vessels

from other dense structures in the lungs —parenchymal and bronchial abnormalities. Some

methods specifically remove well-known structures such as airway walls, but other commonly

present abnormalities pose a problem. We conclude therefore that highly accurate vessel

segmentation in the lungs is still very much an open problem.

We hope the contribution of the VESSEL12 Challenge will help future researchers in this

area. The manually annotated reference dataset for vessels in the lungs is available online

for testing of future algorithms. The categories proposed could also help those who are

designing lesion-specific algorithms to focus on certain aspects of lung vessel segmentation.

The evaluation of the various vessel segmentation methods in the presence of structures

caused by lung diseases could help those who are working on improving techniques, to better

understand the nature of the problem and address specific shortfalls of existing methods.
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