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Abstract—Instantaneous frequency measurement receivers are
a well-established technology that is used for the ultrafast
characterization of pulsed microwave signals over a broad band-
width. Recently, numerous photonic approaches to instantaneous
frequency measurement (IFM) have been proposed and experi-
mentally demonstrated, with the ultimate aim of leveragingthe
benefits of optical technology to improve the performance ofal-
ready existent electronic solutions. Despite the numerousresults,
not so much attention has been paid so far to understand the
subtle implications that system imperfections can have on realistic
photonics-based IFM receivers. Here, we focus our attention in
one of the most promising among these IFM techniques, which is
based in optical power monitoring of a dual-sideband suppressed-
carrier modulation after a Mach-Zehnder interferometer (M ZI)
filter. We develop a time domain model for the rigorous analysis
of all major optical and electrical effects, including amplitude
imbalance and phase errors in the modulator and the MZI, as
well as on-pulse RF phase/frequency modulation. Simulations are
then used to illustrate the substantial effect that a non-perfectly
suppressed optical carrier can have on system performance.More
importantly, it is shown that in a non-ideal situation the system
amplitude comparison function critically depends with input RF
power, thus greatly limiting the dynamic range of the photonics-
based receiver. Some approaches to solve these issues are also
discussed.

Index Terms—Frequency measurement, Integrated optoelec-
tronics, Microwave measurements, Optical planar waveguides,
Optical waveguide filters.

I. I NTRODUCTION

DETECTING and characterizing electromagnetic activity
in nearly real-time is of critical importance for many

modern electronic warfare (EW) systems [1], [2]. For example,
radar warning receivers (RWR) installed in military aircrafts
continuously intercept and process radar signals during tactical
operations. Trains of detected RF pulses are usually classified
according to their physical characteristics, and these arethen
used to estimate the type and origin of the received waveforms.
By doing so, potential threats can be identified (such as hostile
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surveillance radars and radar guided weapons), and counter-
measures can be either manually or automatically taken, if
needed.

Due to the wide range of existent radar equipment, RWR
must be able to perform pulse measurements over a very
broad bandwidth (typically tens of GHz) while still offering a
quasi-instantaneous response. These stringent requirements are
typically met by means of dedicated instantaneous frequency
measurement (IFM) subsystems [3], [4]. Thanks to their spe-
cial architecture, which usually combines a sophisticatedmix
of high-speed digital and analog electronics, IFM receivers
can be used to estimate a wide range of RF pulse parame-
ters with sub-microsecond response times, including: Center
frequency (fRF ), pulse width (PW), pulse amplitude (PA)
and pulse repetition frequency (PRF). Furthermore, since IFM
systems directly measure the instantaneous frequency of the
RF signal, on-pulse phase/frequency modulation can also be
detected.

While electronic solutions are well established in the EW
and signals intelligence (SIGINT) markets, the past few years
have seen a remarkable increase in the proposal and develop-
ment of photonic approaches to IFM [5]–[20]. Similarly to the
well-known field of microwave photonics, which seeks to take
advantage of the unparalleled benefits that optical technology
can bring to microwave applications, all these techniques are
aimed at improving the performance of current electronics-
based IFM products. In fact, the exploding telecom growth
has imparted significant momentum in the development of
different photonic integration platforms, which have already
reached considerable levels of maturity in terms of functional-
ity and performance of their basic building blocks [21]–[23].
By exploiting the benefits of these technologies, integrated,
light-based systems hold the promise for potentially low
cost, compact footprint and high-bandwidth IFM equipment.
Among all the reported photonic approaches to IFM, those
based on detection and processing of optical powers stand out
as the most promising for a near and short term practical
implementation [6], [8], [9], [11], [12], [14], [15], [19],
[20], [24]. These avoid the need of microwave components
and circuits (such as detection logarithmic video amplifiers),
and only require the use of high sensitivity (i.e, low dark
current) photodiodes and high dynamic range transimpedance
amplifiers.

So far, most reported results have focused on proof-of-
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Fig. 1. Schematic diagram of the photonic IFM system under analysis.
TL: Tunable laser. MZM: Mach-Zehnder Modulator. MZI: Mach-Zehnder
Interferometer. BC: Bias Controller. PD: Photodetector. ACF: Amplitude
Comparison Function.

principle experimental demonstrations, with little in-depth
discussions on the subtleties and trade-offs associated with im-
perfect system operation. Besides, just continuous wave (CW),
frequency domain analyses under highly ideal conditions
have been provided in order to exemplify the main working
principle behind each technique, as well as to provide a
theoretical basis for the experimental data. This approachhas
two important shortcomings. First, frequency domain analyses
are only able to compute the response of an IFM system under
CW operation. This means that they can not capture temporal
trade-offs, which are of great importance in practical systems
where very short (and possibly chirped) RF pulses need to be
measured. Second, idealistic theoretical analyses often neglect
key effects that can impose severe performance constraints.
For example, in one of our previous works we pointed out
to the fact that the presence of a residual optical carrier in
the modulator output can induce a significant bias error on
the estimated central frequency of the received signal, and
that this error is in fact dependent on input RF power [24].
Since residual optical carrier power arises from amplitude
imbalance and phase errors in the modulator, it is obvious then
that their impact on system performance needs to be carefully
considered. A notable exception is a recent work by Harmon
et al. [25], where a model for analog photonic links that can
be applied to some IFM approaches is presented. This model
accounts for some realistic effects like amplitude imbalance
in the Mach-Zehnder interferometer (MZI) as well as bias
phase errors in the modulator and the MZI. However, other
important parameters (such as modulator amplitude imbalance
and photodiodes dark currents) are not included, and only CW
operation is considered.

Here, and to the best of our knowledge, the first time-
domain-based theoretical analysis of an already reported
IFM technique based on a double-sideband suppressed-
carrier (DSB-SC) optical modulation and a MZI filter is
presented [12]. We focused on this particular architecture
because, contrary to similar techniques based on more com-
plex filter structures [24], an MZI only requires a single
bias electrode, which eliminates the need of complex control
electronics for the continuous adjustment of the filter transfer
function. This makes this architecture particularly suited for its
implementation as an application specific photonic integrated
circuit (ASPIC) with current state-of-the-art technology[26].

Furthermore, the simplicity of this filter naturally lends itself
to be described by closed-form formulas, helping to better
ascertain its intrinsic limitations, as well as to perform calibra-
tion corrections after appropriate measurements. Our analysis
allows to compute the impact of amplitude imbalance and
phase errors in both the Mach-Zehnder modulator (MZM) and
the MZI, as well as the effect of temporal phase/frequency
modulation in an incoming RF pulse, among other impair-
ments (such as insertion losses and non-zero dark currents).
Thus, it can serve as a powerful analysis and design tool for
the development of IFM systems based on this particular tech-
nique, as well as for better understanding experimental data.
Moreover, the results of our analysis show that great attention
must be paid to the dependence of system performance with
input RF power, since it can be significantly degraded when
considering realistic parameter values on the photonic system.
This is an important consideration that must be addressed
with care when comparing photonics-based IFM systems with
their electronic counterparts, which typically boast outstanding
dynamic range specifications.

This work is organized as follows: First, a short description
of the operation principle behind the analyzed IFM technique
is presented, followed by the main assumptions and formulas
of the time domain analysis. Second, some temporal trade-offs
that follow from these equations are discussed. Third, numer-
ical simulations are performed to evaluate the relative impact
of each considered parameter on system performance. Fourth,
realistic values extracted from state-of-the-art components are
employed to illustrate the significant effect of input RF power
in the frequency bias error. Finally, possible techniques for
mitigating this effect are proposed along with a summary of
the main results and conclusions.

II. IFM T HEORY

A. Operation principle

Before going into a detailed theoretical description, it is
illustrative to first review the basic idea behind this particular
photonic approach to IFM. For that purpose, it is best to resort
to a simplified frequency domain model, which gives a quick
and visual interpretation of the underlying mechanism. The
readers are nevertheless referred to the original work by Zou
and coworkers for a more detailed explanation [12].

A system diagram of the technique can be seen in Fig. 1.
It can be briefly described as follows. First, a CW laser
source is introduced into a push-pull MZM, whose bias has
been previously set at the minimum transmission point. The
MZM is being fed by a continuous RF tone of unknown
frequency (fRF ) and amplitude (ARF ). Under ideal circum-
stances (no amplitude imbalance and bias phase error), the
MZM bias forces the optical carrier to perfectly interfere
destructively with itself at the output of the interferometer,
self-cancelling out. If the input RF power is low, then mainly
the first order sidebands are present in the signal power
spectrum, creating what is commonly known as a DSB-SC
optical modulation. Finally, the signal is introduced intoa
MZI whose maximum/minimum transmission point (upper and
lower branch, respectively) has been set to match the laser
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Fig. 2. Difference between single-drive and series push-pull operation in
a MZM. Note that in the former case the carrier amplitude in each arm is
different, while in the latter it remains balanced since themodulation process
affects both arms equally.

central wavelength. Because of the complimentary nature of
the spectral response of the MZI outputs, the first-order optical
sidebands experience different levels of optical attenuation
at each output. Finally, the powers are measured with two
photodiodes (PD1 and PD2 in Fig. 1). Their ratio, also known
as Amplitude Comparison Function (ACF), is only dependent
on the spectral shape of the filter (which either has been
previously characterized or is known by design), and the RF
modulation frequency. As a result, an estimation (ˆfRF ) of the
unknown RF frequency can be found by just measuring two
DC photocurrents, calculating their ratio and then computing
the mathematical operation below:

ˆfRF =
FSR
2π

arccos

(

± 1

γ

(ACF− 1)

(ACF+ 1)

)

(1)

where FSR stands for the Free Spectral Range of the MZI,γ is
the measured peak-to-notch optical power ratio of the MZI
transfer function (see [12]) and ACF stands for the measured
DC photocurrent ratio (PD1 divided by PD2). Notice that there
are two possible solutions (+ and −), depending on which
definition of ratio is chosen. If the ACF is defined as PD1/PD2,
then the positive solution must be computed, and viceversa.

As a final remark, note that due to the non-injective proper-
ties of thearccos() function, only frequency values between 0
and FSR/2 can be recovered without ambiguity. Besides, the
MZI transfer function must be well known (FSR andγ) in
order to avoid frequency errors during the estimation process.
These errors arise due the fact that different input frequency
estimations (ˆfRF ) are obtained for different values ofγ
and FSR even if the same photocurrent ratio is measured.
Thus, either these variations (caused due to manufacturing
tolerances) are kept low in order to set an upper limit on the
frequency error, or hardware-embedded calibration curvesare
employed to compensate for systematic errors, of course at the
expense of an increase in cost and computational complexity.

B. Time domain analysis

We now start by assuming that at the input of our system
there is an arbitrary, real, passband microwave signal of the
form

VRF (t) = ARF p(t) cos (2πfRF t+ φRF (t)) (2)

where ARF is the amplitude,p(t) is a normalized pulse
shape (that is,p(t) ≤ 1), fRF is the central frequency of
the RF signal andφRF (t) accounts for a possible on-pulse
phase/frequency modulation (such as those of chirped radars).

This unknown waveform, of which we wish
to estimate its instantaneous frequency (defined
as f(t) = fRF + (1/2π)∂φRF (t)/∂t), is then employed
to modulate a CW laser. From now on, optical signals will
be described by low-pass, analytic (i.e. complex-valued)
functions of time. These will be written with an upper tilde,
in order to distinguish them from the real-valued signals
associated with input RF pulses and detected photocurrents.
As an example, a CW laser can be simply described
as Ẽo(t) =

√
Poe

jφo(t), where Po is the output power
and φo(t) models the laser phase noise. For the sake of
simplicity, phase noise will not be considered (φo(t) = 0).

It has been stated in the previous section that the purpose
of the MZM is to encode the microwave signal information
into a DSB-SC modulation, from which its instantaneous
frequency can be estimated after appropriate optical and
electrical processing. As it will be shown later, the ability
of the MZM to reduce the power of the optical carrier is
crucial for obtaining a RF power independent estimation of
the instantaneous frequency. Due to its critical role, appropriate
modelling of possible non-ideal effects is mandatory. In fact,
not only non-ideal parameters can affect the quality of the
DSB-SC modulation, but also the topology of the MZM itself.
As shown in the system diagram of Fig. 2, it is important for
the modulation process to take place inside a push-pull MZM.
The main reason is that by differentially driving both arms of
the MZM (push-pull operation) one can ideally achieve perfect
carrier suppression. On the contrary, if only one arm is modu-
lated, then the powers of the optical carriers travelling oneach
branch are no longer different (due to energy conservation,a
certain fraction of the carrier power in the modulating arm is
diverted to create the sidebands). Since they have no equal
amplitudes, the two optical carriers can no longer perfectly
interfere destructively, even if they are exactly out of phase and
no power imbalance exists in the modulator branches. Thus,
differentially driving the MZM is of fundamental importance
for achieving perfect carrier suppression. For that purpose,
either a series push-pull architecture or a dual-drive MZM
with an external 180◦ RF hybrid can be employed. The latter
implies that external RF imperfections in the hybrid (power
imbalance and phase errors) must be additionally accounted
for, whereas the former avoids the use of external, expensive
RF circuits, reducing costs and simplifying the set-up. This
implies that series push-pull MZMs are the optimal choice
for this particular application. Fortunately, this is one of the
most typical topologies found in both LiNbO3 (x-cut) and
InP modulators, so off-the-shelf high-performance components
are readily available [27]–[29].

We will subsequently assume that a series push-pull MZM is
being employed, which can be characterized by the following
parameters (see Fig. 3):

• φM : Modulator bias phase.
• βo(t): Arbitrary time-varying phase modulation index due

to the RF signal (this is,(1/2)(π/V AC
π )VRF (t)). Here,
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V AC
π stands for the dynamic voltage requiredin one arm

of the MZM to induce aπ phase shift on the travelling
optical wave, and the1/2 factor is due to the push-pull
operation. Also notice thatV AC

π normally depends on the
frequency of the modulating signal. It thus accounts for
all those physical processes that can affect modulation
efficiency, such as RF losses, as well as impedance and
velocity mismatch.

• κUp
MZM and κDown

MZM : Electric field attenuation factors
as seen by the laser field when it propagates trough
the upper/lower arms of the interferometer, respec-
tively (see Fig. 3). These only account for losses and
imbalance, and thus exclude the phase shifts in the optical
couplers.

In practiceκUp
MZM and κDown

MZM can not be directly mea-
sured. Typically, only the optical transmission curve versus
DC voltage is available. This curve is indeed defined by the
maximum and minimum optical power transmission points
(Tmax and Tmin), as well as by the DC bias voltage pe-
riodicity. We can however relate the two electric field at-
tenuation factors to the measured MZM transmission curve
by noting that Tmax = (κUp

MZM + κDown
MZM )2 and

Tmin = (κUp
MZM − κDown

MZM )2. In order to simplify the
notation, we will rewrite these factors as

κUp
MZM = αM + βM (3)

κDown
MZM = αM − βM (4)

whereαM andβM are defined as

αM =
κUp
MZM + κDown

MZM

2
(5)

βM =
κUp
MZM − κDown

MZM

2
(6)

Now, it is easy to see that

Tmax = 4α2
M Tmin = 4β2

M (7)

which are directly related to the optical extinction ratio (ER)
and insertion losses (IL) of the device, in linear units:

ERM =
Tmax

Tmin
=

α2
M

β2
M

(8)

ILM = Tmax = 4α2
M (9)

Thus, by just measuring both the ER and IL of the MZM,
αM andβM can be computed through Eqs. (8) and (9). Ideally,
ER = ∞ and IL = 1, so αM = 1/2 andβM = 0. Also
note that there are two possible values ofβM (either positive
or negative) that result in the same ER. This is due to the fact
that it is in general not possible to know which arm is causing
more attenuation than the other.

While the electric field attenuation factors are essentially
constant with time, the modulator bias phase will slowly drift
as a result of changes in the operating conditions of the system,
including temperature changes, ageing and static electrical
charge accumulation. As a consequence, the bias phase of the
modulator needs to be carefully monitored and adjusted. Here,
we assume that an automatic bias control circuit is keeping
the upper output at the minimum transmission point except
for a possible phase error (φM = 0 + φe

M ), as shown in
Fig. 3. This phase error arises from possible limitations inthe
technique employed by the bias controller, which typicallyare
in the order of±1◦ [30]. In that case, the electric field at the
output of the MZM can be finally expressed as

ẼMZM (t) = Ẽo(t)
[

(αM + βM )ejβo(t) (10)

−(αM − βM )ejφ
e

M e−jβo(t)
]

The non-ideal DSB-SC modulation is then introduced into
an MZI. Making similar assumptions as in the previous case,
we have that the MZI can be described by the following
parameters:

• τI : Time delay difference between the upper and lower
arms of the interferometer, which is related to the FSR of
the filter by FSR= τ−1

I . It is assumed that the dispersion
of the interferometer delay line is first-order only, since
second-order effects (pulse broadening and distortion) are
negligible given the low propagation distances of practical
integrated devices.

• κUp
MZI andκDown

MZI : Real-valued constants that model the
electric field attenuation as seen by the laser when it
propagates through the branches of the MZI. As ex-
plained before, the related parametersαI and βI can
be computed by first measuring ERI and ILI , and then
using Eqs. (8) and (9). Please note that, if the output
coupler is not perfectly balanced, the MZI would need to
be modelled using 4 different electric field attenuation
constants. These would correspond to the 4 different
optical paths that the light follows within the device
before it recombines at the output ports. In that case,
both outputs of the MZI would need to be individually
characterized, yielding different insertion losses and ex-
tinction ratios for each port. In most practical devices,
however, the imbalance of the MZI is mainly due to
the extra loss caused by the longer propagation distance
in the upper arm (which can be significant if the FSR
is small), and not due to the imbalance of the output
coupler. In fact, integrated MZIs typically use MMIs as
output couplers, which are well-known for their inher-
ent robustness to manufacturing deviations. If properly
designed, these devices show outstanding performance
(see for example [31]), and thus their contribution to
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the overall imbalance can be considered of second order.
For simplicity, we will assume that this asymmetry in
the output coupler is negligible, so both outputs can be
characterized using just two parameters. Nevertheless,
these extra variables could be easily incorporated into
the model if they were required.

• φI : Interferometer bias phase. It is also assumed to be
continuously adjusted so that the wavelength of maximum
(minimum) transmission when coming out by the upper
(lower) output matches the emission wavelength of the
laser. That is,φI = π + φe

I , whereφe
I is a possible

phase error due to an imperfect control of the bias point.
As a result, the electric field at the upper/lower output of the
MZI can be written down as

ẼUp
MZI (t) =

[

(αI + βI)ẼMZM (t− τI)

+(αI − βI)ẼMZM (t)ejφ
e

I

]

(11)

ẼDown
MZI (t) = (−j)

[

(αI + βI)ẼMZM (t− τI)

−(αI − βI)ẼMZM (t)ejφ
e

I

]

(12)

Finally, both optical signals are detected in a couple of
low-speed, high sensitivity photodiodes (PD1 and PD2). The
photodetection process will be described as a current source
whose output linearly depends with the input, instantaneous,
time-averaged optical power (Po(t) = 1

T

∫ t+T/2

t−T/2
|Ẽ(t)|2dt)

impinging upon the pin junction. This averaging time is
assumed to be much higher than the period of the optical
signal, but lower than the temporal variations of the RF pulse
amplitude (p(t)), so that

i(t) ≃ R
∫ t

−∞

|Ẽ(s)|2h(t− s)ds+ IDark (13)

whereR stands for the photodiode’s responsivity,IDark is the
photodiode’s dark current, andh(t) is the current impulse
response of the whole output circuit. Since we are inter-
ested in low-speed operation (small bandwidth photodiodes),
h(t) can be modelled to first-order as a simple RC circuit:
H(ω) = (1+ jωRC)−1. Its 3 dB RF bandwidth is given by
f3dB = (2πRC)−1, whereR is the total output resistance
(series + load) andC is mainly dominated by the junction
capacitance.

Substituting Eq. (10) into both (11) and (12) yields
the electric fields at the input of the photodiodes.
Their time-averaged optical power is easily computed as
Po(t) = |Ẽ(t)|2 = Ẽ(t)Ẽ∗(t), from which output
photocurrents can be finally obtained through (13). Alterna-
tively, this last step can also be done by eliminating those RF
beating terms which are not below the cut-off frequency of
the photodiode.

C. Temporal trade-offs

Now, and prior to developing on the exact formulas of the
detected photocurrents, it is instructive to have a look at their
general form. Due to the multiplication (or beating) among
all possible combinations of the delayed and non-delayed
modulated electric fields, these electrical signals are made of
a linear combination of quasi-DC (low speed) and RF (high-
speed) terms. However, it is important to note that, out of all
beating terms, only those formed by a multiplication between
a delayed and non-delayed signal contain information about
the instantaneous frequency that is to be measured. To see
this, we can write down the general formula for one of these
beating terms as

i′(t) ∝ ℜ{ejβo(t)e−jβo(t−τI)} = (14)

= ℜ{ejz(t) cos (θ(t))e−jz(t−τI) cos (θ(t−τI))}
where by simple identification
z(t) = (1/2)(π/V AC

π )p(t)ARF , θ(t) = 2πfRF t+ φRF (t)
andℜ{} stands for the real part of a complex number.

After employing the well-known Jacobi-Anger expansion
(ejz(t) cos (θ(t)) =

∑+∞

n=−∞
jnJn

(

z(t)
)

ejnθ(t)) and assuming
that the photodiode RC circuit perfectly filters all high-order
RF terms, this equation can be reformulated as

i′(t) ∝ Jo(z(t))Jo(z(t− τI))+ (15)

+ 2

+∞
∑

n=+1

Jn(z(t))Jn(z(t− τI)) cos (n(θ(t) − θ(t− τI))

Equation (15) has some important consequences. First, it
tells us that the amplitude of the detected quasi-DC pho-
tocurrent is dependent on the first-order difference between
time-delayed copies of the RF instantaneous phase (2πfRF t+
φRF (t)). Given that bothτI andz(t) are sufficiently small, this
difference provides a good estimate (f̂(t)) to the instantaneous
frequency of the RF signal (f(t)) that we want to measure.
This is,

f̂(t) =
1

2π

θ(t) − θ(t− τI)

τI
= (16)

= fRF +
1

2π

φRF (t)− φRF (t− τI)

τI
≃

≃ fRF +
1

2π

∂φRF (t)

∂t
= f(t)

Thus, theinstantaneous frequency of the RF signal (and not
only central frequency) can indeed be extracted by measuring
the amplitude of the quasi-DC photocurrent. Ultimately, this
means that chirped RF signals can be measured and charac-
terized, provided that the variation time of the chirped signal
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IDC = 4(1 +
1

ERI
)(1 +

1

ERM
) (22)

iζ(β) = 4(1 +
1

ERI
)(1− 1

ERM
) cos (φe

M )Jo(2β) (23)

σ = 4(1− 1

ERI
) cos (φe

I) (24)

i∆(β) =

[

(1− cos (φe
M )) +

1

ERM
(1 + cos (φe

M ))

]

J2
o (β) (25)

iΣ(β, fRF , φRF (t)) = 2

+∞
∑

n=+1

[

(1 − (−1)n cos (φe
M )) +

1

ERM
(1 + (−1)n cos (φe

M ))

]

J2
n(β) cos (n[2πfRF τI + φRF (t)− φRF (t− τI)])

(26)

is slow enough to be detected by the low-pass response of the
photodiodes.

Second,z(t) (which is related to the amplitude of the RF
waveform), needs to be kept low. Otherwise, contributions
due to higher-order terms in the Bessel expansion will start
to dominate, inducing an error in the estimated instantaneous
frequency. This can be more easily seen by employing the
frequency domain formalism mentioned before. When the
input RF power is high enough, higher-order harmonics in
the signal spectrum dominate over both the carrier and the
first-order ones.

Third, the instantaneous frequency can not be obtained
unless the temporal duration of the input RF pulse is at least
longer than the interferometer time delay (Tmin ≥ τI ), as
shown in Fig. 4. Otherwise, the productJ1(z(t))J1(z(t−τI))
will be zero and the instantaneous frequency of the signal
will have no impact on the detected photocurrent. Last but not
least, the finite response time of the photodiode implies that
the steady-state value of the beating term is not reached until a
certain time after the RF pulse enters the MZM. Settling times
of RC circuits are typically specified as multiples (κ1) of the
RC time constant (τRC = RC), where the exact value ofκ1

depends on the level of convergence to the final steady-state
value specified in %. As a consequence, a reliable estimation
of f(t) implies that the minimum duration of an RF pulse
must satisfy

TON
min ≥ τI + κ1τRC (17)

whereκ1 is an arbitrary real constant (typically,κ1 ≥ 5 for a
convergence value better than 99%).

Usually, τI is much lower than κ1τRC , so that
TON
min ≃ κ1τRC . Also, since we are only interested in the

quasi-DC beating terms, the photodiode 3 dB bandwidth must
be much lower than the minimum instantaneous frequency
(fmin) in order to filter out all unwanted RF contributions.
This is, f3dB = (2πτRC)

−1 = κ2fmin, beingκ2 an arbitrary
constant much lower than 1. Substituting these relations and

definingκ = κ1/(2πκ2), we finally have that

TON
min ≥ κ

fmin
(18)

Thus, it can be seen that there exists an intrinsic trade-
off between the minimum temporal width of an input pulse
and the minimum measurable instantaneous frequency. As a
consequence, quasi-DC instantaneous frequencies (fmin → 0)
can not be measured except for very long input RF pulses
(Tmin → +∞).

Using similar arguments, it is also easy to see that
TOFF
min ≥ κ1τRC = TON

min. As a result, an approximate upper
limit on the maximum measurable pulse repetition frequency
(PRF) of the input pulses is obtained:

PRFmax ≤ 1

2TON
min

=
fmin

2κ
(19)

D. Non-ideal Amplitude Comparison Function

So far, just the general form of the detected low-speed
photocurrents has been analyzed in order to get a deeper un-
derstanding of their intrinsic temporal trade-offs. Now, we turn
to their exact expressions, which will allow us to compute the
effect of each parameter on system performance. To do this,
we will assume for simplicity that the amplitude of an input RF
pulse has reached a steady state after a certain time (as seenin
Fig. 4), so thatz(t) = β = (1/2)(π/V AC

π )ARF . Appropriate
substitutions and a considerable amount of algebra yield the
following equations:

iUp = η
(

IDC − iζ(β) + σ[i∆(β) + iΣ(β, fRF , φRF (t))]
)

+ IDark

(20)

iDown = η
(

IDC − iζ(β) − σ[i∆(β) + iΣ(β, fRF , φRF (t))]
)

+ IDark

(21)

whereiUp and iDown are the detected quasi-DC photocurrents
in the upper/lower photodiodes (PD1 and PD2, respectively),
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η = (ILM IL IRPo/16), IDark is the photodiode’s dark
current, and the definition of all the other terms can be foundin
Eqs. (22) to (26). Note that both extinction ratios (ERM , ERI )
and insertion losses (ILM , ILI ) are given in linear units.

The exact form of the ACF when the currents are sampled
by a couple of ideal analog-to-digital converters (ADC) can
now be immediately computed as

ACF(β, fRF , φRF (t)) =
iUp

iDown
(27)

Although complex at first sight, the final ACF is made of
mainly three types of terms. The first one (IDC ) does not
depend on the characteristics of the RF signal, but only on
the parameters of the optical system. The second and third
ones (iζ(β) and i∆(β)) are dependent on RF power through
the parameterβ (phase modulation index). The last one,
iΣ(β, fRF , φRF (t)), depends on RF power, central frequency
and RF instantaneous phase, and contains the contributions
from first and high-order harmonics in the signal spectrum.
Under a first-order approximation most of these residual terms
can be usually neglected, leading to an ACF which is essen-
tially independent of RF power. However, as we shall see in the
next section, the impact of a combination of realistic parameter
values induces significant deviations in its shape. Furthermore,
they introduce a non-negligible RF power dependence of the
ACF curve that should be carefully taken into account in the
design stage of any photonics-assisted IFM system based on
this particular technique.

III. S IMULATION RESULTS AND DISCUSSION

Thanks to the developed theoretical analysis, it is now
easy to quantitatively assess the influence of each parameter
on system performance. As it has been stated, the core of
this particular IFM technique relies on establishing a direct
one-to-one relationship between the ratio of two detected
optical powers (quasi-DC photocurrents) and the instantaneous
frequency of an arbitrary RF signal. In order for the system
to yield accurate results, this mapping must be unique and
independent of any other characteristic of the RF signal (such
as power), which means that the ACF should not vary for RF
pulses of different amplitudes. Furthermore, the exact shape of
the ACF must be precisely known. Otherwise, systematic bias
errors are introduced in the instantaneous frequency recovery
process. Under perfect system operation, the measured ACF
should fit a curve of the form:

ACF(f(t)) =
1 + cos (2πf(t)/FSR)
1− cos (2πf(t)/FSR)

(28)

In practice, realistic parameter values in the optical system
(such as finite extinction ratios in both the MZI and MZM),
significantly deviate the measured ACF from its ideal response.
Thus, insight into the relative impact of each individual
parameter can be gained by just looking at how much the
non-ideal ACF deviates from its perfect response when these
parameters fluctuate around their ideal values. Higher ACF
deviations for similar parameter fluctuations will mean higher
system sensitivity, helping us to determine the most critical
ones. From now on, we will assume for simplicity that the
input signal is not chirped, so thatf(t) = f = fRF .

A. Impact of individual parameters in system performance

As a first example, consider the effect of a non-zero phase
error due to imperfect operation of the bias controllers in
both the MZI and the MZM. In the MZI case (Fig. 5a),
this phase error induces a wavelength offset between the MZI
spectral transfer function and the optical carrier. As a result,
the ACF shape changes, since the optical attenuations seen
by the first-order sidebands as the RF frequency is being
swept are now different. For example, a value ofφe

I = 90◦

would yield a completely flat ACF. This is due to the fact that
the optical carrier would be now situated at the quadrature
bias point of the MZI, where the attenuation induced by the
upper/lower MZI outputs at different RF frequencies is exactly
the same, independently of modulation frequency. A value of
φe
I = 180◦ would be equivalent to computing the inverse

ratio (iDown/iUp), which is an horizontally mirrored image of
the original ACF. In the MZM case (Fig. 5b), the existence
of a bias phase error leads to a non-infinite suppression of
the optical carrier, even if ERM = +∞. This is due to the
fact that the upper/lower branch of the MZM are no longer
perfectly ouf ot phase. Now the ACF is modified asymetrically,
which can be easily understood by noting that there exists a
contribution to the total photocurrent due to the residual optical
carrier. In the lower branch (minimum transmission point of
the MZI) this residual carrier is completely suppressed since
it is located at the MZI notch, and thus does not affectiDown.
However, in the upper branch (maximum transmission point
of the MZI) the relative contribution of this term toiUp gets
higher as the first-order optical sidebands get more and more
attenuated (higher normalized frequencies). Thus, the ACF
gets more distorted at higher normalized frequencies, as itis
shown in Fig. 5b. Also note that this effect is very sensitive
in the MZM case. Phase deviations of a few degrees (2◦, 4◦)
yield the same amount of distortion as deviations of tens of
degrees (18◦, 36◦) in the MZI.

Next, the impact of a non-infinite ER in the Mach-Zehnders
can be examined. For the MZI case, it is well-known that this
implies an upper bound on the ratio between the maximum and
minimum transmission points of the transfer function. Thus,
a finite ER yields an upper/lower bound on the ACF, which
in fact occurs when the first-order sidebands are located at
either the notch of the lower branch (fRF = 0) or at the
notch of the upper branch (fRF = FSR/2). As a result,
the ACF symmetrically deviates from the ideal one, and its
maximum/minimum values match the ER of the MZI (see
Fig. 5c). In the MZM (Fig. 5d), the effect of a finite ER is
essentially equal to that of a bias phase error: Because of the
imperfect amplitude imbalance in the MZM arms, the optical
carrier is not perfectly suppressed, and this basically leads to
an asymmetrical deviation of the ACF due to the same reasons
as those mentioned in the previous paragraph. Again, note that
the impact of a residual optical carrier is significantly higher
than that of a finite ER in the MZI. Similar ACF deviations
are obtained in the MZM case for extinction ratios that are
20 dB higher than those in the MZI.

Last, it is also important to analyze how and why the ACF
shape changes for different input RF power levels. As an
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Fig. 5. Simulated ACFs for different system imperfections.(a) Bias phase error in the MZI. (b) Bias phase error in the MZM. (c) Finite extinction ratio in
the MZI. (d) Finite extinction ratio in the MZM. Simulation values for all four figures are: Zin = 50 Ω, PRF = 0 dBm, V AC

π = 3 V, Po = 20 mW
andR = 0.9 A/W. All other parameters, except that under analysis, are assumed ideal.

example, two extreme situations are plotted in Fig. 6. Fig. 6a
illustrates the effects of an extremely high input RF power,
while Fig. 6b shows the effect of very low powers. In the
first case, the ACF gets considerably distorted because of
the high value of the phase modulation index (β). At this
point, the contributions to the total photocurrent due to the
high-order harmonics (J2

2 (β), J
2
3 (β) . . . ) dominate over the

first-order ones (J2
1 (β)), which is a direct consequence of

the behaviour of the Bessel functions at highβ values. For
illustration purposes, the contribution of these terms to the
upper photocurrent is shown in Fig. 7 for an RF power of
+25 dBm. It can be seen that the third-order term is already
significant. Only odd orders (n = 1, 3, 5) are shown because,
under ideal conditions, all even order terms are zero. In
the second case (Fig. 6b), the amplitude of the first-order
sidebands goes to zero asβ decreases. Neglecting all other
system parameters, this implies that the relative contribution
of this term to the total photocurrent decreases as comparedto
that of the dark current, which is constant and does not depend
on RF power. As a result, the ACF gets flatter and flatter as the
RF power decreases, and the ratio approaches that of the two
residual dark currents, which is 1 (0 dB) assuming that they
are equal. These two examples show that, even considering
almost perfect operation, there exists an optimum RF power

at which the ACF is closest to the ideal response.

B. Combined impact of parameters in system performance

So far, all simulations have considered only one parameter
at time. While this served our purpose of understanding their
individual impact, it does not provide a complete vision on
the interaction and combined effect of all of them at the same
time. Consequently, we now consider a more realistic situation,
where reasonable values for all system parameters based
on state-of-the-art devices and integration technologiesare
included. These can be found in Table I along with appropriate
references, when needed. Simulation results are plotted in
Fig. 8. Fig. 8a shows the evolution of the measured ACF over
the whole frequency range ([0-FSR/2]) when the input power
varies between +10 dBm and -20 dBm, a typical range for
commercial, electronics-based IFM systems (which normally
reach down to -50 dBm [32]). It can be seen that the ACF at
+10 dBm is near the optimum point mentioned in the previous
paragraph, where just a small deviation at both high and low
frequencies is observed due to optical system imperfections
(phase errors, amplitude imbalance, etc.). When the power is
reduced, though, the ACF flattens and asymptotically tends to
a constant value of +25 dB. This can be understood by noting
that the photocurrents generated by the residual optical carrier
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Fig. 6. Effect of (a) high powers and (b) low powers in ACF. Simulation values are: Zin = 50 Ω, V AC
π = 3 V, Po = 20 mW, R = 0.9 A/W and

IDark = 1 nA. All other parameters are ideal.

now dominate over the dark current contribution, which is
fairly small in state-of-the-art, low-speed InGaAs photodiodes.
As a consequence, when RF power is very low the ACF
approximates the extinction ratio of the MZI (25 dB in this
case), which is in fact the optical power ratio between the
carrier at the maximum transmission point (MZI upper branch)
and the minimum transmission point (MZI lower branch).

It can also be observed that in all cases the maximum
deviation from the ideal response takes place at high fre-
quencies. Thus, if no calibration curves are employed and
Eq. (28) is directly used to estimate the input instantaneous
frequency, the error introduced by this distortion will reach
its maximum at FSR/2. In other words: When an RF signal
with f = FSR/2 enters the IFM system, the normalized
bias error of the measurement process (defined asfe =
|f̂−f |/FSR) is maximum. This value provides an upper limit
on performance and can be easily computed as follows. First,
the non-ideal photocurrent ratio whenf = FSR/2 is computed
using Eq. (27) (ACF (β, FSR/2, 0)). Afterwards, this ratio is
inserted into Eq. (28), which can be solved to get an estimate

Norm. frequency (fRF/FSR)

 order

 order

 order

Fig. 7. Contribution of different order harmonic terms (n = 1, 3, 5) to the
upper photocurrent (iup). Simulation values are the same of those of Fig. 6a,
with PRF = + 25 dBm.

of the instantaneous frequency (f̂ ). Finally, the difference
between this estimate and 0.5 (normalized frequency when
f = FSR/2) is calculated, which gives the normalized bias
error (fe). The whole process is described by the equation
below:

fe = | 1
2π

arccos

(

(ACF(β, FSR/2, 0)− 1)

(ACF(β, FSR/2, 0) + 1)

)

− 0.5| (29)

The dependence offe versus RF power is shown in Fig. 8b
for three different values of both ERM and ERI . At high
RF powers, the ACF is closest to the optimum point, and a
normalized error below 0.05 is obtained for the three cases.As
RF power goes below 0 dBm, the bias error rapidly increases
until it reaches the maximum possible value (0.5), due to the
fast evolution of the ACF as the first-order sidebands approach
the residual optical carrier level. The threshold at which this
happens is lower for higher extinction ratios, though errors are
still significant over the whole power range.

From the previous simulations it can be concluded that, even
when using state-of-the-art equipment, stringent limitations
exist on the dynamic range of this photonics-assisted IFM
technique. As a first approach to solve this issue, a calibration
procedure at a fixed RF power is usually employed [24].
This basically entails characterizing the ACF after fabrication
and then embedding it into the system hardware. Afterwards,
the parametrized curve is used during the estimation process
instead of Eq. (28), which eliminates the non-zero bias error
that exists even near the optimum working point. However,
this approach only yields accurate results over a limited RF
power range, as the ACF significantly worsens at low RF
powers and thus the parametrized curve is no longer valid.
In that case, multiple ACF calibration curves measured at
different input RF powers would be needed. This approach
would in turn require a way to quickly measure the RF power
of the input pulse previous to the estimation process, and then
choosing the curve that was calibrated at a similar RF power.
Another option, that could even be used in combination with
the previous ones, would be to add a limiting amplifier at
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Fig. 8. (a) Evolution of ACF with different RF powers. (b) Normalized frequency bias error versus input RF power, assuming different values of both ERM
and ERI . All other simulation parameters are listed in Table I.

the input RF stage. Limiting amplifiers basically provide a
constant RF power signal at their output even if the input
power fluctuates over a wide dynamic range. In fact, they are
commonly employed in electronic-based IFM receivers [3].
With an auxiliary limiting amplifier, the system could be
optimized in such a way that the output RF power of the
amplifier would be near the optimum working point of the
photonic IFM system, thus minimizing error degradation over
a wider dynamic range. In any case, complexity and cost would
be added to the final solution.

IV. CONCLUSION

We have developed a time domain analytical model for
the analysis of system imperfections in a photonics-assisted
IFM technique based on a DSB-SC optical modulation and
a MZI filter. Unlike previous works, our model considers
all major optical and electrical effects, such as amplitude
imbalance and phase errors in the MZM and the MZI, as
well as dark currents in the photodiodes. Furthermore, it
includes the effect of phase/frequency modulation in the RF
pulse, which is an essential feature for the analysis of modern

TABLE I
SIMULATION PARAMETERS

Name Value Units References

Zin 50 Ω

V AC
π 3 V [28], [29]

ILM 5 dB [29]

ERM 25 dB [29]

φe

M
±1◦ degrees [30]

ILI 5 dB

ERI 25 dB

φe

I
±1◦ degrees [30]

Po 20 mW

R 0.9 A/W [33]

IDark 1 nA [33]

radar signals. Numerical simulations indicate that a finite
carrier suppression arising mainly from imperfections in the
MZM leads to significant degradation of the IFM system
performance. In particular, it has been shown that both the
extinction ratio and the bias phase error in the MZM are
the most critical parameters for achieving a low frequency
error. Our simulations also demonstrate that the system ACF
strongly depends on input RF power, thus leading to a poor
performance in terms of dynamic range even when using
parameter values from state-of-the-art devices. Overall,our
results suggest that a careful analysis and assessment of the
impact of RF power needs to be done when designing and
reporting on the performance of photonics-based IFM systems.
Finally, some ideas for alleviating this problem have been
discussed, such as the combined use of calibration curves and
limiting amplifiers in the input RF stage.
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[24] J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency
measurement using a double-sideband suppressed-carrier modulation
and an InP integrated ring-assisted Mach-Zehnder interferometer filter,”
Opt. Lett., vol. 38, no. 21, pp. 4316–4319, Nov. 2013.

[25] S. Harmon, V. Urick, J. Diehl, and K. Williams, “Tandem electrooptic
modulation and interferometric detection: Theory and application,” IEEE
Photon. Journal, vol. 5, no. 4, pp. 5 501 211–5 501 211, Aug. 2013.
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