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PRECONDITIONED ITERATIVE METHODS FOR SOLVING
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Abstract. New preconditioning strategies for solving m × n overdetermined large and sparse
linear least squares problems using the conjugate gradient for least squares (CGLS) method are
described. First, direct preconditioning of the normal equations by the balanced incomplete fac-
torization (BIF) for symmetric and positive definite matrices is studied, and a new breakdown-free
strategy is proposed. Preconditioning based on the incomplete LU factors of an n× n submatrix of
the system matrix is our second approach. A new way to find this submatrix based on a specific
weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic
and implementational features of the new approaches and put them into the context of current
progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated
earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use
of the weighted transversal helps to improve the LU-based approach.
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1. Introduction. Linear least-squares (LS) problems

(1.1) min
x

‖b−Ax‖2,

where A ∈ R
m×n (m ≥ n) is a large and sparse matrix with full column rank, can be

solved iteratively using the conjugate gradient for least squares (CGLS) method [14],
which implicitly applies the conjugate gradient method to the normal equations

(1.2) ATAx = AT b.

For solving either large sparse systems of linear algebraic equations or LS prob-
lems, iterative methods may be preferred because they often require much less storage
than their direct counterparts. Their successful application often needs a good precon-
ditioner in order to achieve fast convergence rates. In particular, for systems of linear
equations arising from discretizations of three-dimensional boundary value problems,
the advantages of preconditioned iterative methods are clear and well documented in
the literature. However, less knowledge about their benefits for LS problems is avail-
able for various reasons. LS problems arising from various sources may differ very
much and may need differently preconditioned iterative methods. In other words, the
problem of robust and efficient iterative solutions of LS problems is much harder than
the iterative solution of systems of linear equations. This fact is implicitly underlined
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in the literature, where experiments with various strategies are often tightly restricted
to classes of problems that arise in such distant areas of engineering and applied re-
search as signal and control processing, statistics, geodesy, etc. An excellent source on
general and specialized solution strategies with a comprehensive treatment of various
applications is still the book [14].

In principal, three main classes of general-purpose preconditioning approaches
for solving problem (1.1) were proposed, studied, and subsequently enhanced by im-
provements from various authors. The most traditional approach is based on the
normal equations and a factorization of the symmetric positive definite matrix ATA.
Sources of the direct variant of this approach date back to [5]. In our context, the
preconditioner can be based on an incomplete factorization of ATA. A recent strategy
of this type that also uses implicit decomposition of the inverse of ATA was recently
introduced in [12]. Another type of preconditioner based on approximate inverses was
recently studied in a series of papers [27, 28, 29] having a starting point in the Ph.D.
thesis [26].

A lot of attention has been devoted to algorithms based on the incomplete QR
decomposition of A. This approach that provides a preconditioner for CGLS repre-
sents the second main source of preconditioning strategies, but there are other closely
related approaches less frequently used; see, e.g., [13]. An important theoretical fea-
ture of the QR-based approach without dropping is that we obtain QTQ = I. In
practice, the QR factorization causes a significant fill-in (for a recent source of many
references, see [30]), and finding a useful sparse incomplete QR decomposition is in-
herently difficult. Partly, it may be because modification and compensation strategies
of the incomplete QR decomposition are much less understood than analogous tech-
niques for the incomplete symmetric and positive definite (SPD) factorization; see,
e.g., [1, 2, 8, 37, 63]. Finding appropriate tools to modify the structure or factors for
the incomplete QR decomposition, whose power was shown in [52], turns out to be
an important open problem in this field. An interesting contribution that discusses
both theoretical and practical aspects of the Gram–Schmidt-based incomplete LQ de-
composition as well as other preconditioning techniques is given in [56]. For the first
attempts to develop a drop tolerance based incomplete orthogonalization by Givens
rotations, see [68] and the detailed overview [67], and also the incomplete orthogonal
decomposition based on static sparsity patterns in [47]. A recent theoretical overview
of the incomplete QR strategies based on Givens rotations is given in [3] and in the
subsequent paper [54].

One specific approach that uses an incomplete QR decomposition based on Gram–
Schmidt orthogonalization with no dropping in Q is developed in [48]. This method is
studied in [64] and [65], where it is shown that this approach can be also described as
a specific robust incomplete Cholesky (IC) decomposition, called Cholesky incomplete
modified Gram–Schmidt (CIMGS). Without going into details, its main idea can be
easily described considering the decomposition as a sequence of modifications of Schur
complements. If the decomposition is performed incompletely, the modifications are
semidefinite, and it is breakdown-free. Looking carefully at CIMGS in [65], we get
that, see also [6], the CIMGS method applied to the matrix B = ATA is equivalent
to the IC decomposition of B based on positive semidefinite updates proposed by
Tismenetsky in [63]. The resulting method is known to be rather robust [65, 8], and
this is the reason that we mention it here as a representative of the incomplete QR
approaches.

The third main alternative is the LU-based approach. It was introduced in [51]
as a direct solution method. It consists of partitioning the system matrix A with
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permuted rows as

PA =

(
A1

A2

)
,

where P denotes the row permutation matrix. The LS problem is then transformed
by multiplying A by A−1

1 from the right. The corresponding normal matrix is then
In+(A2A

−1
1 )TA2A

−1
1 , which should be easy to solve especially when m−n � n, since

the above matrix is a low rank modification of the identity matrix. The transformed
LS problem can then be solved either directly with stationary iterative methods such
as SOR, or with a nonsymmetric Krylov space iterative method where A−1

1 serves
as a preconditioner. Further, A−1

1 can be used as a preconditioner for the normal
equations. Note that if a complete decomposition of A1 with well-conditioned L is
available, then the Peters–Wilkinson method may be the method of choice [55] for
solving both dense and sparse problems.

In this paper we further develop both the first and the third approaches, i.e.,
the incomplete decomposition to solve the normal equations (1.2) as well as the LU-
based technique mentioned above, but our comparison covers also the incomplete QR
decomposition CIMGS. In the first approach treated here, namely, the incomplete
decomposition for the normal equations, we deal with the balanced incomplete fac-
torization (BIF) preconditioner for symmetric and positive definite matrices from [20];
see also [19]. In particular, we present a new breakdown-free algorithm for symmetric
and positive definite matrices and demonstrate that this strategy is a useful choice
for solving LS problems because of its robustness.

The ILU approach has been slightly overlooked if we consider just the papers
published in recent years. An explanation may be the lack of attention devoted to
the choice of the submatrix A1 used for this type of preconditioning. Our proposal is
exactly in this direction. The incomplete LU decomposition is based on the generally
known ILUT algorithm [57], although we have also developed the BIF preconditioner
for solving nonsymmetric problems that was shown to be rather robust in [21]. The
core of the strategy is the matrix reordering that chooses the leading submatrix A1

of A. The reordering is based on an algorithm for finding the weighted transversal
(matching) using the sparsity structure and magnitudes of entries of A. Such an ap-
proach was introduced and motivated for square matrices in [53], and it was efficiently
implemented for nonsymmetric systems of linear equations in [33] and [34]; see also
[7]. Although the reordering entails an additional small overhead and may result in
instabilities for very ill-conditioned problems [14, 40], the results of numerical exper-
iments in Tables 2 and 3 show that it sometimes leads to better performance than
that of the approach based on the normal equations.

The paper is organized as follows. In section 2 we present the enhanced BIF
algorithm accompanied by some theoretical results and propose its application to
computing the incomplete factorization of the matrix ATA. In section 3 we describe
the LU-based approach and the new reordering technique used to find the submatrix
A1. In section 4 we show the results of the numerical experiments. Section 5 outlines
the main conclusions.

2. The BIF for the normal equations. As mentioned, there is a long list
of previous attempts to precondition the normal equations with various types of IC
factorizations. The preconditioning strategy we propose here uses the LDLT de-
composition arising from the (shifted) (I − (ATA)−1)−1-biconjugation applied to the
normal equations [20]; see equation (4) in [25]. Our approach, in contrast to standard
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IC decompositions, computes also an approximation of the inverse Cholesky factor of
ATA. It is well known that because of the larger conditioning of ATA, some standard
approaches become less stable [14]. One possibility to obtain a robust decomposi-
tion of a matrix is to exploit properties of its inverse. This strategy was shown to
be successful for standard incomplete LU decompositions of nonsymmetric matrices
[16, 17, 18] when the estimates related to the inverse of such matrices are used to
monitor and control dropping of the decomposition. A different algorithm that also
uses information from the inverse is the robust incomplete factorization (RIF) intro-
duced in [11] that has been also been applied to solve LS problems in [12]. Recent
work [26], see also [29], proposed ATA-biconjugation, which uses L−1, the inverse of
the L factor of the Cholesky factorization, as an auxiliary intermediate quantity. It
was derived in an interesting way starting with explicit expressions for the Moore–
Penrose pseudoinverse originally proposed by Greville [42] instead of applying the
approximate inverse preconditioner (AINV) directly to ATA [9]. It is worth noting
that Greville’s method for computing the pseudoinverse can also be derived from a
general framework given in [23, Theorem 3.1.3], but we do not give the details since
this connection is not needed in this work.

Our method is based on a biconjugation process that allows the computation of a
decomposition of the inverse of a given matrix; see [19]. When applied to a symmetric
positive definite matrix B = ATA, it computes the factors Z, Ds, and V satisfying

(2.1) s−1I −B−1 = s−2ZD−1
s V T ,

where s > 0 is a given scalar. Algorithmically, the columns of Z and V are computed
from

(2.2) zk = ek −
k−1∑
i=1

vTi ek
sri

zi and vk = yk −
k−1∑
i=1

yTk zi
sri

vi

for k = 1, 2, . . . , n, where ek is kth unit vector, yk = (bk − sek)T , bk denote the kth
row of B, and ri = 1+vii/s are the elements of the diagonal matrix Ds. It was proved
in [20] that the decomposition B = LDLT and the decomposition (2.1) satisfy

Z = L−T , V = LD − sL−T , and Ds = s−1D.

Thus, the Cholesky factorization of B and its inverse can be computed simultane-
ously with the biconjugation process described. Furthermore, both the direct and the
inverse factors are influenced by their counterparts since the computations can be cou-
pled in two ways. The motivation that lies behind the process is to obtain more robust
incomplete decompositions. This coupling was first performed in [20] via synchronized
dropping in the approximations of L and L−1 based on the relations derived in [18].
Later on, the approach proposed in [21] extended this coupled decomposition to the
nonsymmetric case and the resulting approach was again found rather robust and
efficient. Both papers also contain algorithmic schemes and a description of the im-
plementation that is based on sparse data structures and incompleteness by dropping.

To design an algebraic preconditioning algorithm to solve least squares prob-
lems, we have to consider additional constraints. First, note that the system matrix
B = ATA of the normal equations is often significantly denser than A. This implies
that aggressive dropping to keep the preconditioner sparse must be applied. As a
consequence, the standard incomplete decompositions may become unstable and the
convergence of the iterative method can fail. Also, incomplete decompositions that
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are parametrized often need fine tuning of the parameters to avoid breakdown, in par-
ticular, for the normal equations. Summarizing this, devising robust preconditioning
algorithms is even more crucial for solving the normal equations by preconditioned
iterative methods. This is the reason why we propose the use of the BIF precondi-
tioner which allows the coupled computation of both the direct and inverse factors of
B, and a special care is devoted to computation of diagonal entries.

It was shown that the balanced incomplete decomposition is breakdown-free for
H-matrices, but it may fail for symmetric and positive definite matrices. We present
a new version for the symmetric positive definite matrices satisfying the breakdown-
free property. It is obtained by reformulating the computation of pivots using the
quadratic form defined by the symmetric and positive definite matrix B, and keeping
the computation of both factors in V mutually dependent. The new compact scheme
of the balanced incomplete decomposition is displayed in Algorithm 2.1 as a dense
code without dropping.

Let us note that the columns of Z = L−T and the diagonal elements of D are
contained in the upper triangular part of V ; see [20]. More precisely, the kth columns
of Z and the upper part of V are related by zk = −[vT1:k−1,k/s, 0, . . . , 0]

T + ek, and
the kth pivot is dk = vkk + s. This is the reason why Algorithm 2.1 is described only
in terms of the matrix V using equation (2.8) of [2] and the equalities given below in
the proof of Theorem 2.1.

Algorithm 2.1.

for k = 1 : n do
vk = bk − sek
for i = 1 : k − 1 do

v1:i−1,k = v1:i−1,k − bTk zi
zTi Bzi

v1:i−1,i

vi,k = s
bTk zi

zTi B zi

vk:n,k = vk:n,k − bTk zi
zTi B zi

vk:n,k

end for
zk = −[vT1:k−1,k/s, 0, . . . , 0]

T + ek
end for
This algorithm computes the LDLT decomposition of B as it is stated in the

following theorem.
Theorem 2.1. Algorithm 2.1 obtains the matrix V = LD − sL−T where L and

D are the Cholesky factors of B = LDLT . Furthermore, the computation of V is
breakdown-free for any dropping of off-diagonal entries in V .

Proof. The only change in Algorithm 2.1 with respect to the BIF algorithm is
the computation of the denominator in the equations. Since Z = L−T and zi in
Algorithm 2.1 is its ith column, it follows that

zTi Bzi = zTi LDLT zi = eTi Dei = di = sri.

Then the computation of the columns of the matrix V by the algorithm is just
(2.2), where the pivot di is computed in another way. Further, since B is symmetric
and positive definite and zi �= 0, at least its ith entry is nonzero (equal to 1), we have
that zTi Bzi > 0 even if dropping is applied.

To further improve the quality of the preconditioner, we introduce a modification
following the ideas proposed by Tismenetsky [63] that we briefly describe here. This
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approach assumes that each column lk of the exact factor L is split as lk = l̄k+ l̂k such
that l̄k and l̂k have orthogonal patterns. Then the Tismenetsky algorithm decomposes
in each step the matrix increased by E = L̂L̂T , where E is an additional positive
semidefinite local error matrix. E typically reflects the entries of L that are small in
some sense and kept in L̂. The same splitting as in the Tismenetsky decomposition
can be applied also to BIF for computation of the lower triangular part of V . Assume
that each lower triangular part vk:n,k of the column k of V is expressed as a direct
sum vk:n,k = v̄k:n,k + v̂k:n,k such that v̄k:n,k and v̂k:n,k have orthogonal patterns.
Theorem 2.2 formally describes the Tismenetsky decomposition based on the lower
triangular part of V that is breakdown-free.

Theorem 2.2. Consider Algorithm 2.1 applied to a symmetric and positive def-
inite matrix B with the computation of vk:n,k replaced by

(2.3) vk:n,k = vk:n,k −
∑
i<k

v̄ki �=0

v̄ki
vii + s

(v̄k:n,i + v̂k:n,i)−
∑
i<k

v̂ki �=0

v̂ki
vii + s

v̄k:n,i

for k = 1, . . . , n. Let D = diag(V )+sI and let L be the unitary lower triangular matrix
such that has the same strictly lower triangular part as V D−1. Let B̂ = LDLT with
B̂ = B + E for some positive semidefinite matrix E. Then, the computation of V is
breakdown-free.

Proof. In exact arithmetic, Algorithm 2.1 computes a matrix V such that V =
LD − sL−T . Equation (2.8) of [21] states bTk zi = lkidi = vki and also di = vii + s.
Then the modification in (2.3) is just the Tismenetsky algorithm for any choice of
the splitting of vectors vk = v̄k + v̂k if the entry vkk remains in v̄k. Then, by the
proposition stated on page 336 of [63], the new algorithm is breakdown-free.

The exact update in (2.3) removes coupling of the computation of the direct and
inverse factors in V that we consider to be important for the decomposition robustness.
In our experiments, we use Algorithm 2.2, where the update (2.3) is reformulated in
the sense of Theorem 2.1 and allows safe incomplete implementation. The coupling
of the upper and lower triangular parts of V is restored via the bilinear form that
makes the incomplete decomposition also breakdown-free.

Algorithm 2.2.

for k = 1 : n do
vk = bk − sek
for i = 1 : k − 1 do

v1:i−1,k = v1:i−1,k − bTk zi

zTi B zi
v1:i−1,i

vi,k = s
bTk zi

zTi B zi

vk:n,k = vk:n,k −
∑
i<k

v̄ki �=0

v̄ki
zTi B zi

(v̄k:n,i + v̂k:n,i)−
∑
i<k

v̂ki �=0

v̂ki
zTi B zi

v̄k:n,i

end for
zk = −[vT1:k−1,k/s, 0, . . . , 0]

T + ek
Split vk:n,k in two vectors, v̄k:n,k and v̂k:n,k with orthogonal pattern such that
vk:n,k = v̄k:n,k + v̂k:n,k

end for

3. LU preconditioning for least squares problems. The class of LU pre-
conditioners for the least-squares problems based on splitting of A with permuted
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rows

(3.1) PA =

(
A1

A2

)

mentioned in the introduction was thoroughly considered in [15]. It was noted there
that such preconditioned iterative methods have very good convergence properties
provided that the permutation matrix P is chosen such that the matrix AA−1

1 is well-
conditioned. The resulting Krylov space method for the preconditioned system was
deeply studied in [39]. It was also shown in [15] that a simple reformulation of the
LU preconditioned algorithm can be easily adapted to solve generalized least-squares
problems.

Our main goal here is to show that the LU preconditioner based on an incomplete
decomposition can sometimes successfully compete with the other methods, as our
experiments in section 4 show. The proposed strategy is based on finding a good row
reordering P of A such that A1 has a stable incomplete decomposition A1 ≈ L1U1

and PA(L1U1)
−1 is well-conditioned. To find the reordering, we use the concept of

maximum transversal of a matrix. Moreover, after computing the transversal we still
keep the possibility to choose the pivot from the whole matrix A when the incomplete
LU decomposition of A1 is actually performed.

We recall that a transversal M of a m × n sparse matrix A is a subset of its
nonzero entries such that no two of them are in the same row and also no two of them
are in the same column. Being M , a transversal is a necessary and sufficient condition
for permuting the subset M to the diagonal. M is called a maximum transversal if
its cardinality is as large as possible. If A has full column rank, then all maximum
transversals have n elements, thus obtaining a maximum transversal is a way to
find a permutation P of A such that the n diagonal entries of PA are the nonzero
entries of the transversal. An efficient implementation of the basic algorithm that
finds the maximum transversal [46] was given in [36]; see also a recent survey [32].
The corresponding problem in graph theory is often called the maximum bipartite
matching problem.

To enforce stronger diagonal dominance of the permuted matrix and therefore try
to satisfy the two desirable properties of the splitting (3.1) stated above, additional
constraints on the choice of the transversal M are imposed. Taking into account the
magnitude of the entries for square nonsymmetric matrices, convert this problem into
a variant of the weighted bipartite matching problem [33, 34, 53], also referred to as
the assignment problem [22]. Experiments with preconditioned iterative methods can
be found in [7]. Its application to symmetric and indefinite systems has been studied in
[35, 43, 60]. Here we introduce a transversal-based reordering for rectangular matrices
of size m× n, m ≥ n.

A well known strategy that has been used for square matrices considers the max-
imum transversal M = {ap(1),1, . . . , ap(n),n}, such that the product

(3.2)

n∏
j=1

|ap(j),j |

is maximized over all possible bijective maps p : {1, . . . , n} → {1, . . . , n}. Here we are
interested mainly in generally rectangular matrices, but it is still worth noting that if
A is a generalized diagonally dominant matrix (M- or H-matrix), then the maximum
of the product (3.2) is attained by the transversal formed by the main diagonal entries,
that is, no reordering is needed.
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Theorem 3.1.

(a) Let A be an H-matrix with nonsingular comparison matrix. Then

n∏
j=1

|ajj | ≥
n∏

j=1

|ap(j),j | for any permutation p of {1, . . . , n}.

(b) If there is a permutation matrix P such that PA is an H-matrix, then the
algorithm that finds a maximum transversal maximizing the product (3.2)
provides a permutation matrix P ′ such that P ′A is an H-matrix.

Proof.
(a) Since A is an H-matrix there exists a diagonal matrixD with positive diagonal

entries such that

|ajj | dj ≥
∑
k �=j

|akj | dk.

Let p be an arbitrary permutation of the set {1, . . . , n}, different from the
principal one. Then for each j, one has |ajj | dj ≥ |ap(j),j | dp(j). Then

n∏
j=1

|ajj | dj ≥
n∏

j=1

|ap(j),j | dp(j)

and the result follows.
(b) It is an easy consequence of part (a), since the product of the absolute values

of the diagonal entries of the H-matrix PAmaximizes the product (3.2).
As is well known, the condition of being generalized strictly diagonally dominant

guarantees the successful computation of many preconditioners. According to The-
orem 3.1, the strategy of maximizing the product (3.2) reorders matrices such that
they are in most cases more diagonally dominant.

In [33] it is proved that maximizing the product (3.2) is equivalent to minimizing
the sum of weights

(3.3)

n∑
j=1

|cp(j),j |

defined as

(3.4) cij =

{
log āj − log |aij |, aij �= 0,
∞, aij = 0,

where āj = maxi |aij | is the maximum magnitude of an entry of the jth column of A.
To take into account other problem features such as the matrix sparsity, the definition
of the weights in (3.4) may be modified.

However, in the rectangular case, A ∈ R
m×n with m ≥ n, this definition of the

weights cij may not be suitable for the following reason. To decompose the n × n
leading submatrix A1 of PA, the row dominance is more important than the column
one, because we concentrate on obtaining a well-conditioned matrix A1 and also in
the stability of its incomplete LU decomposition. Observe that even in the case that
A contains a submatrix that is an H-matrix, the above strategy does not guarantee
finding that submatrix, as can be seen in Example 1.

Then, we redefine the weights as

(3.5) cij =

{
log āi − log |aij |, aij �= 0,
∞, aij = 0,
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where āi = maxj |aij | is the maximum magnitude of an entry of the ith row of
A. The injective map p : {1, . . . , n} → {1, . . . ,m} that minimizes the sum (3.3) is
computed, and entries of the corresponding transversal are permuted to the diagonal
of A to provide the permuted matrix PA. Now, the product of diagonal entries is not
maximized over the set of all row permutations of A.

Example 1. Consider the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

A2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

3
5 6 8
3 5 6
2 3 4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Our method (3.5) leads to choosing the well-conditioned submatrix formed by the
first three rows of A to form A1 instead of choosing the last ones (with entries of
larger magnitudes) as strategy (3.4) does. Clearly, A1 is an M-matrix, and it is better
conditioned and has more stable factorization than A2, which is not an M-matrix.
Observe that AA−1

1 has condition number 8.29, which is smaller than the one of
AA−1

2 , which is 13.59.
Moreover, since our goal is to compute an incomplete factorization of the chosen

submatrix, sparsity is another point to be considered. We propose to modify the
weights (3.5) as

(3.6) c̄ij = θcij + (1 − θ)

(
ri

rmax

)
cij ,

where ri is number of nonzero entries in row i, rmax = maxi ri and 0 ≤ θ ≤ 1. For
values of θ greater than 0.5, the magnitude of the matrix entries is emphasized.

4. Numerical experiments. In this section we present the results of some
numerical experiments aimed at assessing the performance of the BIF preconditioner
for least squares problems and the new approach to find a useful splitting (3.1) for
the LU-based preconditioner. We also compare them with some other well known
methods. All codes developed for the tests were written in FORTRAN 95 and have
been compiled with Intel Fortran Composer XE 2013. For the experiments we used
one processor of an Intel Core2 Q6700 (2.66GHz, 4GB RAM).

The number of rows m, number of columns n together with a short description of
each matrix source are summarized in Table 1. All matrices can be found in the Tim
Davis collection of sparse matrices [31]. Note that because of typographical reasons,
the full matrix names were in Tables 2 and 3 abbreviated. With respect to the matrices
representing constraints for the simplex method of linear programming, we note that
they proceed from specific types of problems, see [4], and they may be difficult to use
especially for combinatorial preprocessings since their nonzero entries are often chosen
from a very restricted set of numerical values. Note that these matrices had to be
transposed in order to havem > n, and in some cases they were automatically regular-
ized by removing linearly dependent columns. Regularization by removing their last
column was also needed for the popular animal breeding matrices, although we have
not found anywhere in the literature that these matrices do not have full column rank.

The stopping criterion used for CGLS was based on the backward error. Namely,
we stopped the iterations as soon as the residual 2-norm of the kth approximation of
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Table 1

Test problems.

Matrix m n nz Application

S 3,140 1,987 8,510 animal breeding
PHOTOGRAMMETRY2 4,472 936 37,056 photogrammetry
M 9,397 6,119 25,013 animal breeding
LP MAROS R7 9,408 3,136 144,848 linear programming
LP DFL001 12,230 6,071 35,632 linear programming
STORMG2-27 14,441 37,485 94,274 linear programming
TESTBIG 17,613 31,223 61,639 linear programming
LP OSA 07 25,067 1,118 144,812 linear programming
L 28,254 17,263 75,018 animal breeding
KEMELMACHER 28,452 9,693 100,875 computer graphics/vision
LP OSA 14 54,797 2,337 317,097 linear programming
DELTAX 68,600 21,961 247,424 example from S. Toledo
LANDMARK 71,952 2,704 1,151,232 problem from V. Pereyra
LP OSA 30 104,374 4,350 604,488 linear programming
LP KEN 18 154,699 105,127 358,171 linear programming
MESH DEFORM 234,023 9,393 853,829 image mesh deformation
IMAGE INTERP 240,000 120,000 711,683 image editing problem
SLS 1,748,122 62,729 6,804,304 statistics

the solution vector was smaller than α(||A||2||xk||2 + ||b||2). Note that this is only a
sufficient condition for convergence, see, e.g., the discussion in [24]. The constant α
was set to 10−6 for all problems except for the matrix LANDMARK for which 10−4

was used because of its lower final attainable accuracy. In all cases the initial guess
was x0 = 0, and the right-hand side b was chosen so that the solution was the vector
of all 1’s.

Before showing and discussing the results of experiments, let us describe the way
we present them. Arranging the results for more matrices and methods into tables is
often useful, but it may not reveal some visible and important differences among the
considered approaches. In particular, robustness of the methods is not easily described
by tables. This is the reason why we provide, for some matrices, graphs containing a
more detailed view visualizing some characteristic features of the methods that would
otherwise stay hidden.

Tables 2 and 3 contain results for CGLS preconditioned by the four different
incomplete decompositions of B = ATA: BIF, IC, AINV, and CIMGS. The imple-
mentation of the new breakdown-free BIF algorithm for the normal equations, sum-
marized in section 2, is based on [20]. In addition, in each step of the decomposition,
we computed the diagonal entries of the preconditioner from the bilinear form in a
straightforward way by an additional matrix-vector product and a dot product. The
BIF shift parameter s was fixed to 1 as in [20], and data structure for rows of the
matrix Vs stored at most lsize = 10 of the largest nonzero magnitudes. Further,
additional size of the intermediate memory used for each v̂k was fixed to lsize/2. IC
denotes the left-looking implementation of a standard drop-tolerance based IC decom-
position that was used in [12] to evaluate the RIF algorithm. AINV is the factorized
approximate inverse preconditioner [9]. Its right-looking implementation is used since
the computational complexity for sparse preconditioners should depend less on the
matrix ATA, which may be rather dense. Thus, the AINV computation depends more
on the sparsity of the computed approximate factor of the inverse of ATA. Finally,
we consider CIMGS, which is the incomplete QR factorization in which Q is exact
and only the factor R is computed incompletely. For the sake of efficiency, we used
for CIMGS the left-looking implementation proposed by Kaporin in [49], which uses
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Table 2

Sizes and iteration counts of the BIF, IC, AINV, and CIMGS preconditioners.

Matrix
BIF IC AINV CIMGS

size its size its size its size its

S
6,538 101 10,741 108 6,668 93 6,785 613

49,413 96 41,550 12 54,526 25 52,144 7

PHOTO2
1,283 90 1,385 73 1,359 112 1,303 ‡

39,427 84 39,076 133 36,657 857 59,578 38

M
6,239 182 7,633 176 7,408 174 6,897 ‡

141,982 142 94,847 17 93,856 42 113,736 249

MAR R7
18,469 9 18,642 8 18,645 7 21,111 71

317,000 5 339,081 2 298,517 4 342,635 2

DFL001
11,835 254 10,018 307 11,460 258 20,200 ‡
236,996 140 299,992 471 392,724 485 1,906,518 16

STRG2-27
26,671 327 26,824 149 32,685 ‡ 32,232 ‡
86,370 174 90,160 221 1,995,888 ‡ 7,728,742 ‡

TESTBIG
63,777 80 78,391 23 50,457 97 103,974 ‡

139,117 57 170,825 16 145,324 ‡ 2,039,655 ‡
OSA 07

1,969 19 2,162 29 2,824 88 3,363 256
2,057 19 3,515 42 4,533 55 55,288 11

L
40,289 167 21,802 196 46,237 153 30,908 ‡

145,093 167 208,634 26 213,759 55 626,399 ‡
KEMELM

72,649 193 83,702 ‡ 76,560 ‡ 71,461 116
264,143 193 282,019 ‡ 338,038 ‡ 122,725 63

OSA 14
2,873 46 2,740 25 4,531 37 4,587 227
3,276 19 7,156 45 7,323 71 117,933 16

DELTAX
172,992 146 165,613 161 180,488 150 165,432 ‡
344,066 118 318,554 137 314,330 128 335,724 ‡

LMARK
24,675 51 28,636 10 4,856 ‡ 24,337 ‡

105,577 26 122,692 ‡ 341,544 ‡ 98,334 2

OSA 30
4,954 30 4,773 27 4,354 39 22,781 215
5,289 20 7,652 32 8,501 33 217,051 20

KEN 18
198,210 469 423,006 396 128,779 316 235,711 ‡

1,013,707 438 1,662,023 429 253,550 354 1,003,559 674

MESH DF
119,070 115 118,555 ‡ 12,297 182 137,227 384
241,574 105 235,124 5 43,712 279 261,049 47

IMG IN
1,174,032 15 1,241,194 ‡ ‡ ‡ 1,077,003 133
1,575,791 10 1,352,400 ‡ ‡ ‡ 1,541,568 70

SLS
66,605 53 65,355 60 62,729 79 9,547,789 ‡
80,444 25 71,462 47 69,838 55 9,795,156 36

two drop tolerances. The smaller one is fixed to 10−4, and it simply means that the
nonzero fill-in entries smaller than this value are used only to modify the diagonal of
the preconditioner. The larger drop tolerance controls the size of the preconditioner.

Table 2 reports the number of nonzeros in the incomplete factor (under size) and
number of preconditioned CGLS iterations (under its). The complementary Table 3
reports the time to construct the preconditioner (under tp) and the time for the
iterative solution phase (under tit). In boldface, the best achieved timings (adding
time for the decomposition and for the preconditioned CGLS) for each problem are
highlighted although in some cases the differences are very small. For each matrix
we report two experiments. One corresponds to a very sparse preconditioner and the
other to a denser one. We always intend to couple the number of iterations with
the size of the preconditioner; see also the concept of efficiency in such comparisons
introduced in [61] that couples the size of the preconditioner and iteration count
together into a common quantity. Therefore, this way of presenting the results is
different than the approach used in [54], where the authors are interested in getting
the best preconditioner not depending on its size.
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Table 3

Timings to for the preconditioner and preconditioned CGLS for the BIF, IC, AINV, and
CIMGS preconditioners.

Matrix
BIF IC AINV CIMGS

tp tit tp tit tp tit tp tit

S
0.05 0.13 0.02 0.17 0.12 0.13 0.02 0.86
0.20 0.24 0.08 0.05 0.45 0.08 0.33 0.03

PHOTO2
0.05 0.20 0.03 0.16 0.16 0.23 0.03 ‡
0.35 0.27 0.06 0.42 0.44 2.54 0.09 0.16

M
0.03 0.44 0.05 0.43 0.13 0.42 0.03 ‡
0.98 0.89 0.23 0.09 0.69 0.21 0.27 1.36

MAR R7
0.92 0.06 0.27 0.05 0.55 0.05 0.30 0.42
4.11 0.08 0.80 0.03 4.49 0.06 2.15 0.03

DFL001
0.17 0.94 0.05 1.12 0.17 0.94 0.11 ‡
2.56 1.37 2.09 5.32 4.02 6.60 98.60 0.84

STRG2-27
0.44 2.31 0.11 1.06 0.44 ‡ 0.44 ‡
1.34 1.55 0.32 1.98 88.30 ‡ 172.00 ‡

TESTBIG
7.36 0.56 1.72 0.18 5.24 0.64 1.53 ‡

13.90 0.52 3.72 0.17 1.85 ‡ 52.20 ‡
OSA 07

0.06 0.13 0.05 0.19 0.20 0.55 0.06 1.58
0.07 0.12 0.06 0.27 0.22 0.33 0.09 0.09

L
0.28 1.11 0.09 1.20 0.34 0.90 0.03 ‡
1.42 1.61 0.73 0.31 2.29 0.50 3.81 ‡

KEMELM
2.55 1.47 0.14 ‡ 0.25 ‡ 0.13 0.56

11.10 2.46 0.40 ‡ 1.16 ‡ 0.31 0.56

OSA 14
0.16 0.59 0.13 0.34 0.39 0.47 0.11 2.86
0.16 0.25 0.11 0.59 0.52 0.89 0.20 0.27

DELTAX
14.10 2.64 0.92 2.86 2.89 2.70 0.75 ‡
26.40 2.66 1.77 3.02 5.80 2.71 1.09 ‡

LMARK
1.14 1.75 0.62 0.41 0.70 ‡ 0.59 ‡
2.64 1.03 0.72 ‡ 2.26 ‡ 0.81 0.12

OSA 30
0.29 0.72 0.25 0.64 0.36 0.92 0.24 5.17
0.30 0.49 0.25 0.76 0.90 0.78 0.40 0.61

KEN 18
0.90 14.20 0.72 15.00 0.58 8.69 0.25 ‡
4.95 22.70 2.93 30.70 2.00 11.10 2.68 32.70

MESH DF
1.14 4.63 0.34 ‡ 0.36 6.82 0.33 15.60
1.85 4.57 0.47 0.28 0.41 10.2 0.55 2.12

IMG IN
46.3 1.11 5.38 ‡ ‡ ‡ 0.71 9.08
75.4 0.87 6.35 ‡ ‡ ‡ 1.21 5.66

SLS
4.17 16.6 3.51 18.20 4.06 24.00 ‡ ‡
4.24 7.91 3.46 14.40 5.68 16.80 458.00 20.30

An important goal of the experiments was also to demonstrate completely differ-
ent robustness of the approaches with respect to the sizes of generated preconditioners.
The preconditioners sharing the same line in the tables were chosen such that they
have approximately the same sizes for the compared approaches, but it was not possi-
ble to achieve this in some cases. Then, a significantly lower size of the preconditioner
means that an algorithm was not able to generate a larger preconditioner, possibly
also because of the implementation. A significantly larger size for a particular method
means that it was not possible to obtain a useful preconditioner of the size similar
to other methods because of some numerical problems (breakdowns in construction
or nonconvergence of the preconditioned iterative method). For example, BIF pre-
conditioners for the OSA matrices are always generated very sparse and they are
surprisingly still very efficient. Limited internal memory in BIF here may help to
interrupt some fill-in dependencies in the decomposition very early, and the final fac-
tor is then always sparse [20]. The implementation of BIF that limits memory for
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Fig. 1. Comparison of the BIF and IC preconditioned CGLS for the matrix S from the animal
breeding package.

10
3

10
4

10
5

10
6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nu
m

be
r 

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 

 
 BIF least squares
 IC least squares

Fig. 2. Comparison of the BIF and IC preconditioned CGLS for the matrix M from the animal
breeding package.

the rows of V may not generally allow one to obtain preconditioners that imply very
small iteration counts. Later we show that IC is rather susceptible to breakdowns or
maybe needs a large number of iterations for significant sizes of the preconditioner,
but we tried to avoid these unstable cases in Tables 2 and 3. To get a more compre-
hensive view of the behavior of the IC preconditioner including possible instabilities,
one should consult instead Figures 1, 2, and 3.

It appears from the tables that the performance of BIF and IC is similar from
the point of view of the rate of convergence of the preconditioned CGLS method.
Time to compute BIF is higher than for IC, but not prohibitive. It can sometimes
be as high as for AINV. Note that the time to compute the BIF factors for larger
problems is smaller than for AINV because of the internal memory restriction for
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Fig. 3. Comparison of the BIF and IC preconditioned CGLS for the matrix L from the animal
breeding package.

V mentioned above. On the other hand, the timings, especially for larger matrices,
are increased by the breakdown-free computation of the diagonal entries with the full
bilinear form. It pays off from the point of view of robustness since it is the only
method that successfully solves all the considered problems. CGLS preconditioned
by AINV can sometimes be rather competitive for sparser preconditioners. AINV
turns out to be slower when a denser incomplete decomposition is needed. This be-
havior corresponds to our expectation that sparse approximate inverses often easily
capture characteristic features of the matrix, but in order to get higher accuracy, they
may need more nonzeros than IC. But the difference may not be always prohibitive,
and even denser AINV preconditioners may be useful, in particular, in parallel im-
plementations [10]. Results for the CIMGS preconditioner also agree with previous
computational experience [49, 62, 8, 66]. In most cases, CIMGS cannot generate pre-
conditioners which would be sparse and powerful at the same time. If more fill-in is
allowed, the method may converge very fast. Since the incomplete QR decomposition
hidden behind CIMGS does not drop elements in Q, the whole construction may take
significant time.

Now, let us have a closer look at the experiments for some of the matrices. Pre-
conditioning with IC and BIF of the CGLS method using the three matrices from the
animal breeding package is depicted on Figures 1–3. The IC preconditioner for these
matrices shows significant instability for a large range of drop tolerances. The behav-
ior of BIF corresponds to our expectations on its robustness. Further, we can see that
if the IC preconditioner works, it can be faster than the BIF strategy in many cases.
Summarizing this observation, IC is often faster but it is more often unstable than
the BIF approach. Let us emphasize that if the preconditioners would be compared
only by taking a few results for the tables, we would not see the whole story. An
important question is the proportion in which the algorithm and the implementation
contribute to this picture. One of the characteristic features of our BIF implemen-
tation mentioned in [20] and above is that we store the factor V by rows in a fixed
space that does not allow to obtain very large preconditioners. The experiments for
matrices LP KEN 18 (see Figure 4) and LP DFL001 (see Figure 5) demonstrate this
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Fig. 4. Comparison of the BIF preconditioning and ICT preconditioning of CGLS for the
matrix LP KEN 18.
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Fig. 5. Comparison of the BIF and IC preconditioning of CGLS for the matrix LP DFL001.

fact. In particular, a closer look at the iteration counts for BIF and IC shows again
that IC is not stable with respect to the size of the preconditioner, in particular for
preconditioners of medium size. Note that in both cases, CGLS preconditioned by IC
was unable to converge within a maximum number of 5,000 iterations. These figures
once more confirm that the information contained in the figures may reveal more of
the real complexity of the comparison, and in some sense, is also complementarity of
the different approaches.

We also show results of all the considered methods graphically in one figure.
Figure 6 compares the iteration counts for the matrix HIRLAM (m = 1,385,270, n =
452,200, nz = 2,713,200) [45] from the meteorological application that was also used
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Fig. 6. Comparison of LS preconditioned by the four considered preconditioners for the matrix
HIRLAM.

in the experiments in [12]. None of the tested methods is unstable for this matrix.
IC works rather well, and BIF works also reasonably well, although it is sometimes
slower. One of the main messages of this figure is to confirm that CIMGS is very
good once the size of the preconditioner is sufficiently large, and it may be very poor
if the preconditioner is kept sparse. AINV also solves the problem rather well if the
decomposition is kept sparse. Otherwise, AINV needs consistently more iterations,
but neither approach is prohibitive.

The second set of results represents the LU-based preconditioning, which is the
strategy that decomposes only a submatrix A1 of A. Clearly, this type of precondi-
tioning may be rather weak whenever A1 represents only a small part of the structural
and numerical properties of A. One may think it will happen whenever m � n, but
the experiments show that there is not clear evidence of this implication. Tables show
only a small part of our test set, namely, the matrices that lead to convergence. We
are interested in showing that the preprocessing based on the weighted transversal
for rectangular matrices may bring advantages. We will see that such preprocessing
turns out to be a useful tool for developing better techniques to solve LS problems
iteratively that may be further enhanced by a multilevel approach; see [52].

Tables 4 and 5 present results of CGLS preconditioned by A−1
1 . For both ex-

periments with the LU preconditioner, we used the dual dropping algorithm ILUT
with drop tolerance τ equal to 0.1, allowing at most ten nonzeros in a row of the
ILUT preconditioner. This choice of parameters is a compromise for the set of ma-
trices of various sizes and from various applications. Our preliminary experience that
considered smaller τ and more allowed fill-in lead for larger matrices to high compu-
tational times. In both cases, we preprocessed the matrices by the described weighted
transversal strategy that chooses A1. We have also used the related nonsymmetric
scaling described in [53] and [33], and the weights for the weighted transversal were
fixed as in (3.6) to θ = 0.55. Nevertheless, this setting for the reordered and scaled
test matrices was not critical since the algorithm was in many cases unsensitive to
changes in θ.
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Table 4

Preconditioning CGLS based on decomposition of A1 using the weighted transversal.

Matrix tp tit size its
S 0.01 0.20 5,368 149
M 0.02 0.87 16,812 294
LP MAROS R7 0.10 0.02 3,136 24
L 0.02 4.19 43,785 588
TESTBIG 0.02 0.19 28,018 26
LP OSA 07 0.02 0.39 1,118 69
LP OSA 14 0.02 0.84 2,337 71
LP OSA 30 0.06 1.53 4,350 69

Table 5

Preconditioning CGLS based on decomposition of A1 based on the weighted transversal and
dynamic partial pivoting.

Matrix tp tit size its
S 0.02 0.20 5,271 128
M 0.03 0.80 15,990 266
LP MAROS R7 0.02 0.17 15,565 26
KEMELMACHER 0.21 2.15 30,195 315
TESTBIG 0.04 0.75 45,777 104
LP OSA 07 0.01 0.34 1,118 56
L 0.03 2.87 42,980 400
LP OSA 14 0.03 0.71 2,337 56
LP OSA 30 0.06 1.29 4,350 56
SLS 0.65 45.9 62735 151

Table 4 depicts results with the standard ILUT decomposition of A1 without
any additional pivoting. Then, for experiments in Table 5, ILUT uses also the partial
pivoting for finding the pivot of the largest magnitude in each column searching among
the nonzero entries from all m rows of A. This pivoting dynamically modifies the
original choice of A1.

We can see that once the transversal based strategy is applied, the LU precondi-
tioning is able to improve some of the iteration counts. Sometimes it does not improve
the results, but in general it turns out to be helpful. Consider, e.g., results for the
matrix TESTBIG in Table 4. Here we get the convergence in 26 iterations for a much
smaller preconditioner than in the algorithms based on the normal equations. Clearly,
in this case the submatrix A1 was able to capture important characteristic features of
A having the dimension around two thirds of the dimension of A, but also, for some
other matrices, very efficient runs with respect to the preconditioners based on the
normal equations were observed, as for the matrices LP MAROS R7 and LP OSA 07
that are solved faster. Also note that CGLS performed badly in other cases for which
m is not much greater than n, as for the animal breeding matrices.

The experiments given in the first part of this section targeting method robustness
may point out an explanation. Decomposing only a submatrix of A that may be rather
sparse can be considered a partial direct decomposition that does not imply breakdown
but also does not help much. Simply, the method can be far from transforming CGLS
into a convergent iterative method. Our point of view is that this is just the main
practical drawback of the LU preconditioner for solving LS problems. Despite the
observed behavior that could be caused by the overall instability of the preconditioned
CGLS, let us note that LU preconditioning may be a method of choice for the solution
of weighted least squares as shown in [15]. Another important advantage is that it
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is an algorithm that straightforwardly avoids forming ATA in the construction of a
preconditioner. This feature can be useful because of relatively low memory demands.
Further, since it uses the original block A2, the preconditioner turns out to be more
suitable for the matrix-free framework if A1 can be determined directly from the
application. But, taking into account also the fact that we are able to solve only
a part of the problems in this way, LU preconditioning is usually less efficient than
direct preconditioning of the normal equations. An open question is whether LU
preconditioning may be more powerful if another preconditioner is applied on the top
of the matrix A2A

−1
1 or when we apply the incomplete decomposition repeatedly to

A2A
−1
1 for A with m > 2n.
Let us finalize this section with some comments on additional experience obtained

with the complete LU preconditioning. In some cases we were able to show that even
the direct solver used to compute the complete LU decomposition of a square sub-
matrix may be slower whenever used as a preconditioner. Nevertheless, a preferable
way to use direct solvers for solving sparse LS problems is to keep the factor L as
well-conditioned as possible and to apply them to a reformulated system as pointed
out in [55]; see also [58, 59]. Therefore, we do not refer to these experiments here.
Also note that the strategy proposed here is a result of tests with other approaches
including some crash procedures for linear programming; see, e.g., [41] and P4/P5
preprocessings [44, 38, 50]. We have found that all these alternative preprocessings
need additional procedures to improve them. Their investigation is one of our future
tasks.

5. Conclusions and future work. In this paper we have described new pre-
conditioning strategies for solving sparse LS problems by preconditioned iterative
methods. In particular, we have evaluated the performance of BIF preconditioning
for the CGLS method. Moreover, we have further stabilized the BIF algorithm to
make it breakdown-free for symmetric and positive definite matrices. Our experimen-
tal results show the robustness of the BIF algorithm for solving LS problems that is in
line with previous work for systems of linear equations. Although solving LS problems
iteratively is rather hard, and up to now there has been no computational strategy
that would iteratively solve systems arising from a broad pool of various applications,
we probably do not exaggerate by saying that the BIF preconditioning belongs to the
family of algebraic preconditioners of choice, as recently found for RIF.

Further, we introduced a new preprocessing strategy for incomplete LU precon-
ditioning following earlier work proposed by Läuchli. It is based on the computation
of weighted maximum transversals by rows and also takes into account the sparsity of
the leading submatrix A1. Our experiments show that this reordering improves the
conditioning and sparse structure of this submatrix.

Our future work in the field of the LU preconditioning will consider stabilization of
the crash techniques developed for the simplex method of linear programming by some
postprocessing, multiple application of the Läuchli splitting, and combination with
the other techniques. In particular, we would like to consider hierarchical methods
to solve LS problems, continuing the pioneering work [52]. We intend to make the
resulting code publicly available as that of its predecessor, the RIF method.
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[12] M. Benzi and M. Tůma, A robust preconditioner with low memory requirements for large
sparse least squares problems, SIAM J. Sci. Comput., 25 (2003), pp. 499–512.
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[32] I. S. Duff, K. Kaya, and B. Uçar, Design, implementation, and analysis of maximum
transversal algorithms, ACM Trans. Math. Software, 38 (2011), pp. 13:1–13:31.

[33] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[34] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[35] I. S. Duff and S. Pralet, Towards stable mixed pivoting strategies for the sequential and
parallel solution of sparse symmetric indefinite systems, SIAM J. Matrix Anal. Appl., 29
(2007), pp. 1007–1024.

[36] I. S. Duff and T. Wiberg, Remarks on implementations of O(n1/2τ) assignment algorithms,
ACM Trans. Math. Software, 14 (1988), pp. 267–287.

[37] V. Eijkhout, On the existence problem of incomplete factorisation methods, Technical report
UT-CS-99-435, Department of Computer Science, University of Tennessee, 1999.

[38] A. M. Erisman, R. G. Grimes, J. G. Lewis, and W. G. Poole, Jr., A structurally stable mod-
ification of Hellerman–Rarick’s P4 algorithm for reordering unsymetric sparse matrices,
SIAM J. Numer. Anal., 2 (1985), pp. 369–385.

[39] R. Freund, A note on two block-SOR methods for sparse least squares problems, Linear Algebra
Appl., 88/89 (1987), pp. 211–221.

[40] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1983.

[41] N. I. M. Gould and J. K. Reid, New crash procedures for large systems of linear constraints,
Math. Program., 45 (1989), pp. 475–501.

[42] T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev., 2 (1960),
pp. 15–22.

[43] M. Hagemann and O. Schenk, Weighted matchings for preconditioning symmetric indefinite
linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 403–420.

[44] E. Hellerman and D. Rarick, The partitioned preassigned pivot procedure (P 4), in Sparse
Matrices and Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press,
New York, 1972, pp. 67–76.

[45] A. Holstad and I. Lie, On the Computation of Mass Conservative Wind and Vertical Velocity
Fields, Technical report 141, The Norwegian Meteorological Institute, Oslo, Norway, 2002.

[46] J. E. Hopcroft and R. M. Karp, A n5/2 algorithm for maximum matchings in bipartite
graphs, in the Conference Record of the Twelfth Annual Symposium on Switching and
Automata Theory, IEEE, East Lansing, MI, 1971.

[47] D. James, Conjugate Gradient Methods for Constrained Least Squares Problems (Least
Squares), Ph.D. thesis, University of North Carolina, 1990.

[48] A. Jennings and M. A. Ajiz, Incomplete methods for solving ATAx = b, SIAM J. Sci. Stat.
Comput., 5 (1984), pp. 978–987.

[49] I. E. Kaporin, High quality preconditioning of a general symmetric positive definite matrix
based on its UTU + UTR+ RTU decomposition, Numer. Linear Algebra Appl., 5 (1998),
pp. 483–509.

[50] J. L. Kennington and R. A. K. Mohamed, Recovery from numerical instability during basis
reinversion, Comput. Optim. Appl., 8 (1997), pp. 57–71.
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