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Abstract 

This paper proposes a cognitive approach for analyzing and reducing the Pareto optimal set for multi-

objective optimization (MOO) of structural problems by means of jointly incorporating subjective and 

objective aspects. The approach provides improved knowledge on the decision-making process and 

makes it possible for the actors involved in the resolution process and its integrated systems to learn from 

the experience. The methodology consists of four steps: (i) the construction of the Pareto set using MOO 

models; (ii) the filtering of the Pareto set by compromise programming methods; (iii) the selection of the 

preferred solutions, utilizing the relative importance of criteria and the Analytic Hierarchy Process 

(AHP); (iv) the extraction of the relevant knowledge derived from the resolution process. A case study on 

the reinforced concrete (RC) I-beam has been included to illustrate the methodology. The compromise 

solutions are obtained through the objectives of economic feasibility, structural safety, and environmental 

sustainability criteria. The approach further identifies the patterns of behavior and critical points of the 

resolution process which reflect the relevant knowledge derived from the cognitive perspective. Results 

indicated that the solutions selected increased the number of years of service life. The procedure produced 

durable and ecological structures without price trade-offs. 
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1 Introduction 

Quality, constructability, safety, and cost are conflict aspects that are usually considered in the planning 

and design of a project. Decisions made in such complex contexts require the development of new 

decisional tools and methods that provide more effective and realistic solutions [1,2]. Achieving a 

compromise solution from a cognitive perspective oriented to learning about the decision making process 

and educating the actors involved in the resolution process [3–5] is the main target for a cognitive multi-

objective optimization (MOO) model in the Knowledge Society. 

Metaheuristics have been used as an MOO technique in construction projects [6]. Chiu and Lin [7] 

maximized the maintenance strategies and minimized the life cycle cost, the failure probability, the 

cracking probability of concrete covers, and the maintenance times of RC buildings. Paya et al. [8] 

optimized RC building frames in terms of constructability, economic cost, environmental impact, and 

overall safety. Martinez-Martin et al. [9] minimized the economic cost, the reinforcing steel congestion, 

and the CO2 emissions of an RC bridge pier. The present study suggests that service life should be a 

criterion for dealing with structural decay from the design phase. The carbonation phenomenon is 

addressed from the perspective of RC decay and carbon capture [10–12]. 

On the other hand, MOO problems can be categorized in accordance with how the decision-maker (DM) 

articulates preferences. In this context, the use of Pareto set does not require a previous articulation of 

preferences. Many methods have been created with the intent of abbreviating the set of Pareto solutions 

[13]. The “knee method” [14] is a posteriori method that identifies the points for which an improvement 

in one objective results in a significant worsening of at least one other objective. Clustering methods 

gather solutions in groups to later provide some representative solutions [15]. Filtering methods eliminate 

solutions that offer little information to the designer. The filter can be applied after the Pareto set 

formation [16].  

The a-posteriori approach allows relevant knowledge to be obtained, since the decision making takes 

place after obtaining the multiple trade-off. However, the decision maker has to choose among a wide 

range of solutions. We address the gap between searching for multiple trade-off solutions, choosing 

preferred solutions and obtaining useful knowledge, by combining heuristic optimization with AHP. AHP 

has been integrated with many heuristic/meta-heuristic approaches to solve production planning problems 

[17]. Instead, little attention has been paid to the structural design context. 
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We propose a posteriori systematic procedure that filters the Pareto frontier, presents an easy technique to 

choose preferred solutions, and simultaneously provides relevant knowledge derived from the resolution 

process. The cognitive orientation of this approach is based on the exploitation of the mathematical model 

used for the multi-objective optimization of RC structural problems from a learning perspective. The 

mission is not only concerned with selecting a product (RC I-beam) but with extracting information that 

improves the existing knowledge about the decision making process and, finally, with educating the 

actors involved in the resolution of the problem. This 3P (Product, Process and Person) orientation [18] 

permits to deal with the new needs and challenges of the Knowledge Society, in particular the integration 

into the formal models of the objective aspects associated with the traditional scientific method with the 

subjective ones associated with the human factor [19]. 

This methodology is tested in a structural application to find a sustainable balance between the economic 

cost, the CO2 emissions and the service life of a high-strength RC I-beam. The cognitive orientation of 

this particular case provides valuable knowledge oriented toward achieving a sustainable structural design 

with the aim of educating the actors in this approach.  

2 Preferred solutions in Pareto Sets [PS]2 for multi-objective optimization problems 

This paper proposes a four-step methodology for identifying the preferred solutions for the DM in Pareto 

sets (see Figure 1). In the first step, MOO leads to a range of optimal solutions termed the Pareto set of 

solutions. The second step reduces the number of Pareto points using the closest solutions to the ideal, 

according to three Minkowsky metrics (Figure 2). We propose a filter that selects the closest solution to 

the ideal point according to random Analytic Hierarchy Process (AHP) [20] pairwise comparison 

matrices, which guarantee good consistency. 
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Figure 1. [PS]2-methodology 

 

Figure 2. Compromise solution using the L2 norm 

The three metrics of the Minkowski family used for filtering the Pareto set are the Manhattan (L1), 

Euclidean (L2) and Tchebycheff (L∞). The distance from any point z(x) Є Z ⊂ Rq to the ideal vector is 

evaluated in the p norm by (1): 

�� = �����	, �∗, �	 = [∑ λ�
����∗ − ����	�

��
��� ]�/�      p=1,2… 
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L∞= lim
�→�

��= max
���,…,�

λ� ���∗ − ����	� (1) 

Note that zj(x), j = 1, …, q are the criteria addressed in the problem that, without prejudice to the 

generality, are supposed to be maximized,  z* = (z1
*,…,zq

*) is the ideal vector, and λj (j = 1, …, q) are the 

weights associated with the criteria (2). These weights are composed of a subjective component (wj), 

which incorporates the relative importance of each criterion, and an objective component (δj) to normalize 

the values associated with the criteria. The criteria priorities (wj) are obtained through the AHP pairwise 

comparison matrices [20]. The expert priorities are randomly selected in the second stage (Section 3.2).  

 λ� = ��  �⁄ = "#
$%&'() �*#�+	�

 (2) 

The third step involves choosing the preferred solution according to the DM’s preferences. The priorities 

are provided by a set of experts (Section 3.3). We use the AHP to derive the subjective components of the 

criteria priorities or weights. Finally, the fourth stage uses a cognitive approach to extract the relevant 

knowledge derived from the resolution process. 

3 Case study  

3.1 Step 1: Multi-objective optimization 

3.1.1 Mathematical modeling 

The problem outlined by this paper consists in designing a RC I-beam which involves the optimization of 

three objective functions and the simultaneous checking of constraints gi imposed by design codes. Eq. 

(3), Eq. (4) and Eq. (6) evaluate the objective functions for the economic cost (C), the CO2 emissions (E), 

and the service life (SL).  

 C��	 = ∑ �- . /-��	-∈01  (3) 

where pi are the unit prices and mi are the measurements. The indices set (Ic) of structural costs includes 

concrete, steel, formwork, placing, and CO2 costs.    

 E��	 = ∑ 3- . /-��	-∈04 − 5167��	 (4) 

Note that ei is equal to the unit emissions, CCO2 is the kilograms of CO2 captured by the concrete surface 

(5), and Ie is the indices set contributing to the structural emissions. The CO2 capture was evaluated 

according to Equation (5) by García-Segura et al. [21] based on the predictive models of Fick’s First Law 

of Diffusion and the study of Lagerblad [22] and Collins [11]. 
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 5167��	 = 8��	 ∙ :;���	 ∙ <��	 ∙ 5=> ∙ �< ∙ ?��	 ∙ @   (5) 

with the carbonation rate coefficient, k(x), depending on the variable concrete strength; the years of the 

structure service life (SL(x)); the quantity of Portland cement per cubic meter of concrete (c(x)); the CaO 

content in Portland cement (CaO = 0.65); the proportion of calcium oxide that can be carbonated (pc = 

0.75); the exposed surface area of concrete (A(x)), which is conditioned by the geometric variables; and 

the chemical molar fraction CO2/CaO (M = 0.79). Eq. (6) evaluates the service life: 

 ;���	 = AB�+	C�+	D
7
+ FG∙B�+	

∅I�&	∙JK
 (6) 

where r is the variable concrete cover (mm), k is the carbonation rate coefficient (mm/year0.5), ∅r is the 

most restrictive variable for the bar diameter (mm), and vc is the corrosion speed (µm/year). 

The IG weak constraints are given by Eq. (7), and include those required to guarantee the structural safety 

and constructability. 

 GM�x	 + N- − �- 	= 	PQ-, i = 1, … , ST  (7) 

Finally, the feasible set (hard constraints) for the designer variables is given by Eq. (8): 

 U = Vx∈	WX|gM�x	 ≤ 0, i = 1,… ,m] (8) 

3.1.2 Variables and parameters 

The RC I-beam is defined by 20 discrete design variables (Figure 3). The geometry is defined by the 

depth (h), the width of the top flange (bfs), the width of the bottom flange (bfi), the thickness of the top 

flange (tfs), the thickness of the bottom flange (tfi), the web thickness (tw), and the concrete cover (r). 

Reinforcing bars are defined by the number of bars (n1, n2, n3) or the number of bars per meter (n4, n5) and 

the diameter (Ø1, Ø2, Ø3, Ø4, Ø5, Ø6, Ø7). The design distinguishes the transverse diameter in the supports 

and the midspan (3L/5). The lower reinforcement is divided into two systems, one covering the whole 

beam length (n2, Ø2) and another covering the midspan (n3, Ø3). Finally, the last variable describes the 

concrete compressive strength (fck), which varies between 30 and 100 MPa. This structure was also 

proposed by García-Segura et al. [21] to optimize self-compacting concrete. The parameters are the 

permanent distributed load (20 kN/m), the variable distributed load (10 kN/m), the beam span (15 m), the 

exposure class (IIb), the percentage of occluded air (< 4.5%), and the use of Portland CEM. 
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Figure 3: Design variables of the reinforced concrete I-beam 

3.1.3 Objective functions  

The total cost is the result of the construction unit costs involved in RC production and placement. Added 

to this are the CO2 cost established by the European Union Emission Trading Scheme [23]. The CO2 

emissions are the result of all material production and transport, as well as the emissions derived from the 

energy used for the beam placing. The unit prices pi and unit emissions ei (see Table 1) were obtained 

from the BEDEC ITEC database [24], with the exception of the plasticizer emission, which was obtained 

from the European Federation of Concrete Admixtures Associations [25], and the silica fume, which was 

considered not to produce emissions due to its waste origin.  

Carbonation is the main factor leading to RC decay when the structure experiences general exposure. At 

the same time, the carbonation absorbs CO2 and therefore this capture is deducted from the emissions. 

The amount of CO2 captured during the service life is assessed according to Eq. (5). The carbonation rate 

coefficient and the quantity of Portland cement per cubic meter of concrete are given in Table 2. 

The service life (6) is characterized by the number of years that the RC structure is capable of lasting 

according to the physical and chemical conditions to which it is exposed. The Spanish Concrete Code 

[26] considers that service life is the sum of the initiation of corrosion and its propagation [27]. The 
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maximization of this objective depends on the concrete used, the concrete cover, and the diameter of the 

reinforcing bars. All of these are part of the design variables. The corrosion speed has a value of 2 

µm/year in exposure class IIb [26]. 

3.1.4 Constraints 

The weak constraints (7) represent the serviceability and ultimate limit states (SLS and ULS) imposed by 

the Spanish Code [26] for this structure. The hard constraints (8) are the permissible set of values that can 

be adopted by the variables. The global analysis of the structure was carried out in accordance with a 

linear analysis methodology. The SLS for cracking does not allow the crack width to exceed 0.3 mm. The 

instantaneous and time-dependent deflection of the central section is limited to 1/250 of the beam span. 

The ULS checks the flexure and shear limit state. The ULS of flexure calculates the ultimate iteration 

diagram Nu–Mu and then checks whether the acting bending resultant Md is in the diagram. The shear 

limit state is verified similarly, as the ultimate force is greater or equal to the design load effect. In 

addition, the minimum amount of reinforcement for stress requirements and the geometrical conditions 

are also examined. Durability conditions demand a service life of 100 years; this is calculated by Eq. (6).  

3.1.5 Algorithm 

Multi-Objective Simulated Annealing (MOSA) has been widely used since Serafini [28] proposed it. 

Single-objective Simulated Annealing (SA) simulates the crystal formation process and is the basis of the 

multi-objective optimization. The temperature controls the mobility, so that at high temperatures the 

possibilities for movement are large. Thanks to this property, the algorithm explores all around the search 

space during the first iterations in order to later focalize the search around better results. Metropolis et al. 

[29] established the probability of acquiring a thermal state proportional to exp (–∆E/T). In contrast, 

Glauber [30] proposed a function that also rejects favorable solutions. Eqs. (9) and (10) show, 

respectively, the Metropolis and Glauber criteria. This paper studies both criteria to determine which is 

the most appropriate.  

 random < ∏ 3d
ef,ghef,i

jk-�l
-��  (9) 

 random < ∏ �

�m4
ef,ghef,i

jk

-�l
-��  (10) 
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where the meaning of the term fi,t is the value of the objective function i for the current solution (t=1) or 

the working solution (t=0), and Ti is the temperature associated to the objective function. Figure 4 shows 

the flowchart of the MOSA process. The initial temperature is calculated following Medina’s method 

[31]. Once the temperatures for the three objectives are calibrated, a feasible solution is obtained. This 

solution is transformed by carrying out a small random variation of the 20% of the variables to a higher or 

lower value. The new solution is checked and evaluated. Then, the Pareto condition checks whether the 

solution is not shadowed by any Pareto solution. If it is a feasible solution and satisfies the Pareto 

condition, the solution is updated and included in the Pareto set of solutions. In case the solution complies 

with the Metropolis or Glauber criterion but not the Pareto condition, the solution is also updated even if 

it is not included in the Pareto front. This process is repeated until the temperature is lower than the initial 

temperature divided by 1,000,000 and there are no acceptances in 50 consecutive Markov chains. Note 

that the temperature decreases once a Markov chain ends (T = αT) by means of a coefficient of cooling 

(α). To improve the search, the algorithm restarts every five chains from any of the solutions in the Pareto 

surface.  
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Figure 4: Flowchart of the MOSA process 

3.1.6 Performance of the multi-objective model 

The program was coded in Intel® Visual FORTRAN Compiler Integration for Microsoft Visual Studio 

2010 with an INTEL® CoreTM i7-3820 CPU processor with 3.6 GHz. In order to calibrate the algorithm 

parameters, several values have been used for the MOSA algorithm with the Metropolis and Glauber 
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criteria. The algorithm was executed 15 times to obtain the Pareto front. This ensures the solution quality 

for each objective according to the methodology proposed by Payá-Zarforteza et al. [32], based on the 

extreme value theory. The difference between the minimum cost and CO2 emissions obtained from the 15 

runs and the extreme value estimated using the three-parameter Weibull distribution that fits 2000 MOSA 

results is less than 0.99% and 0.62%, respectively. The best results for each algorithm and the algorithm 

parameters are summarized in Table 3. 

The Metropolis criterion achieved the best results with Markov chains of 30,000 iterations and a cooling 

coefficient of 0.95. Using the Glauber criterion, better solutions in terms of cost and emissions were 

included in the Pareto set of solutions. That is because hard-to-find regions surrounded by few good 

solutions can be found by this algorithm thanks to the probability to reject better solutions. In this case, 

Markov chains of 10,000 iterations are recommended and a coefficient of cooling (α) of 0.95 (see Table 

3). The solution is modified by a small random movement; 20% of the variables are modified by a higher 

or lower value. Therefore, Multi-Objective Simulated Annealing with Glauber criterion (MOSA-G) was 

chosen. 

Figure 5 shows the Pareto set for the three objectives. The results are presented, highlighting the variable 

concrete strength. There was a clear trend towards increasing concrete strength and service life 

improvement. Indeed, a life of 500 years was only achieved by high-strength concrete. On the other hand, 

the emission reduction was influenced by the concrete strength for the same service life. The reduction in 

concrete strength led to better solutions in terms of CO2 emissions but worse solutions from an economic 

point of view. It is worth noting that bigger cross-sections of low-strength concrete with a smaller amount 

of steel maximize the CO2 capture and reduce the embedded emissions. The correlation between the 

emissions, the cost, the service life and the concrete strength is represented by a multiple linear regression 

(see Eq. (11)) with R2= 0.87 

E�kgCO7	 = 6181.476	– 1.281 ∙ C�€	 + 4.916 ∙ fck�MPa	 + 0.196 ∙ SL�years		 (11) 
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Figure 5: Pareto set of solutions 

In the following, the Pareto set as ranges of service life (see Figure 6) is presented. Concrete from 30 to 

45 MPa presented the best results for service lives between 100 and 200 years. If the service life rises to 

300 years, concrete from 45 to 55 MPa should be chosen. Thereby, when we lengthen the service life to 

400 years, 60 MPa concrete is also used. Finally, to achieve a service life of 400-500 years, concrete of 

50-80 MPa is the best choice. Note that 90 and 100 MPa concretes are not Pareto solutions. Four 

parabolic fits may be used to describe the relationship between the cost (C) and the emissions (E) for 

service lives between 100 and 500 years (see Figure 6). The service life may be increased from 100 to 

500 years by increasing the cost by 1% (obtained from the points (2895.48, 2713.78, 109.04) and 

(2912.15, 3115.03, 500)). Alternatively, the service life improvement involves a 10% increment in CO2 

emissions (obtained from the points (3242.66, 2258.91, 107.85) and (3169.70, 2486.74, 500)). Therefore, 

the findings indicated that durable structures can be designed without trade-offs in price or emissions. 
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Figure 6: Pareto set according to service life range 

3.2 Step 2: Distance minimization 

In this step, the filter selected the closest solution to the point, according to random AHP pairwise 

comparison matrices. The consistency of the judgments was guaranteed and the sum of the weights 

provided by the matrix was always equal to one. The process reduced the Pareto set to a set of 

compromise solutions. This was undertaken for each metric (L1, L2, and L∞). By analyzing the results, we 

reached conclusions under the influence of the DM and the metric used. Besides, the interpretation of the 

results provides knowledge regarding the characteristics of structural solutions which seek a good balance 

between criteria. In turn, the effect on the criteria values will show the contribution of each criterion to 

the ecological and economic sustainability. 

Figures 7–18 show the best solutions for the metrics L1, L2, and L∞ according to the criteria priorities. The 

vertices represent the points where the weight of the cost (S1), the emissions (S2) and the service life (S3) 

are equal to one. The first three figures illustrate the concrete strength. Figure 7 shows the closest 

solutions when using the L1 metric. In this case, only seven solutions from the 299-solution Pareto set 

resulted in compromise solutions. Therefore, the problem was drastically diminished. High-strength 

concrete (fck > 50 MPa) was used for any combination of weights. As the emission weight increased, the 

concrete strength decreased. Figures 8 and 9 display the results for the metrics L2 and L∞. The Euclidean 

metric reduced the problem to 18 solutions and the Tchebycheff metric expanded the possibilities to 46. 

Both revealed that the concrete with greater prospects for selection was 55 MPa concrete, since 50% of 

the compromise solutions used this grade of concrete. Figures 10–12 compare the cost results for the 
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metrics L1 and L∞. The findings indicated that L1 and L2 were more dependent on the criteria priorities. 

However, the variance of results decreased when using the L∞ metric. The cost criterion was not severely 

affected by the improvement of other criteria. Therefore, compromise solutions presented a gradual cost 

variation influenced by the criteria priorities. 

 

Figure 7: Compromise solutions according to the criteria priorities and L1 metric. Results of concrete 

strength 
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Figure 8: Compromise solutions according to the criteria priorities and L2 metric. Results of concrete 

strength 

 

Figure 9: Compromise solutions according to the criteria priorities and L∞ metric. Results of concrete 

strength 
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Figure 10: Compromise solutions according to the criteria priorities and L1 metric. Results of cost 

 

Figure 11: Compromise solutions according to the criteria priorities and L2 metric. Results of cost 
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Figure 12: Compromise solutions according to the criteria priorities and L∞ metric. Results of cost 

Similar findings can be outlined when comparing the emissions (see Figures 13–15). The Tchebycheff 

metric found solutions with lower emissions. Likewise, more intermediate solutions (2700–2900 kg CO2) 

were closer to the ideal solution using this metric. The most carbon-intensive solutions (3100–3200 kg 

CO2) were only selected when the emission weight was near to zero and the metric was L1. On the other 

hand, low-carbon solutions (2400–2600 kg CO2) were chosen as long as the emission weight was greater 

than 0.3. The findings indicated that optimizing the emission criterion does not lead to a compromise 

solution, since the minimum emission solution was not included. However, small values of emissions that 

guarantee a long-term approach form the majority of the solutions.  
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Figure 13: Compromise solutions according to the criteria priorities and L1 metric. Results of CO2 

emissions 

 

Figure 14: Compromise solutions according to the criteria priorities and L2 metric. Results of CO2 

emissions 
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Figure 15: Compromise solutions according to the criteria priorities and L∞ metric. Results of CO2 

emissions 

Figure 16 shows the robustness of the service life when L1 is used. All solutions had a service life greater 

than 450 years. However, Figures 17 and 18 show lower values of service life. The percentage of 

solutions whose service life was greater than 450 years was 76 and 65% for the L2 and L∞ metrics, 

respectively. In general terms, the findings indicate that L∞ seeks a good balance between criteria with 

less dependence on weighting, while L1 has a greater correlation with weights. At the same time, the 

results show that the service life criterion has a direct relation with sustainability, since long-term 

structures obtain a good equilibrium between the criteria chosen to achieve this goal.  
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Figure 16: Compromise solutions according to the criteria priorities and L1 metric. Results of service life  

 

Figure 17: Compromise solutions according to the criteria priorities and L2 metric. Results of service life 
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Figure 18: Compromise solutions according to the criteria priorities and L∞ metric. Results of service life 

3.3 Step 3: Analytic Hierarchy Process 

The objective of this step is to introduce the DM’s preferences for selecting the preferred solution. Expert 

preferences were provided through pairwise comparison matrices using Saaty´s fundamental scale [20], 

specified in Table 4. The matrix measures the relative importance of the compared elements. Besides, the 

consistency of the judgments was verified. Finally, the criteria priorities measured in an absolute scale 

were obtained with the eigenvector method, since this is the most widely used. For this example, a set of 

experts provided by consensus the pairwise comparison matrix, which is shown in Table 5. The priorities 

derived were w = (w1, w2, w3) = (0.637, 0.105, 0.258). The consistency ratio (CR) guaranteed a good 

consistency as it was lower than 0.1 (CR = 0.037).  

Table 6 gives the preferred solutions for each metric. The second and third closest solutions are provided 

for drawing conclusions regarding concrete strength. Both L1 and L2 achieved the same solutions. The 

concrete strength was 80 MPa for the three solutions. Looking at the criteria, the service life obtained the 

maximum value of 500 years. Regarding the L∞ metric, the best solution corresponded to 70 MPa 

concrete, whereas the second and third solutions used 60 MPa concrete. In this case, the cost was 

increased while the service life and the emissions were reduced to minimize the distance.  
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3.4 Step 4. Cognitive approach 

Finally, the preferred solutions were compared with the best solution for the minimum cost in a single 

objective optimization [33]. Table 7 shows that the preferred solutions were about 3 and 4% more 

expensive. However, the emissions were 7 and 11% lower and the service life was improved by about 

233%. Comparing the mean characteristics of the preferred solutions, it is worth noting the reduction in 

the amount of steel and the increment in depth, concrete strength, and concrete cover. High depth led to 

an increment in CO2 capture and therefore an emission reduction. High-strength concrete and greater 

concrete cover increased the service life. Compared with the other metrics, the Tchebycheff metric 

preferred the more ecological and less economical solutions. Therefore, this metric selected greater 

concrete cover and lower concrete strength to achieve a lifetime of 500 years.  

4.  Conclusions 

This paper presents a methodology for generating, analyzing and filtering the Pareto optimal set and 

selecting the preferred solution for the multi-objective optimization of structural problems. At the same 

time, the economic and ecological sustainability of a high-strength concrete I-beam is examined. The 

study proposes costs, CO2 emissions, and service-life as criteria for attaining a sustainable structural 

design. In the first step of the methodology, the Pareto optimal set is defined using the multi-objective 

optimization technique. The comparative analysis of these non-dominated solutions provides a guide to 

enhancing the sustainability of the structural design. The second step reduces the number of Pareto points 

using the closest solutions to the ideal, according to the three Minkowsky metrics. These compromise 

solutions represent 2%, 6% and 15% of the Pareto set, depending on which metric is used: the Manhattan 

(p = 1), Euclidean (p = 2), or Tchebycheff (p = ∞). The cognitive orientation for the compromise 

solutions provides the information that promotes learning about the decision-making process. While the 

Pareto set offered solutions with 30-80 MPa concrete, the reduction to a set of compromise solutions 

recommended high-strength concrete. Moreover, these solutions imply longer-life structures. The DM's 

preferences, provided by mean of the judgments of the pairwise comparison matrix, were then used to 

choose the preferred solutions. These solutions increased service-life by 233% and reduced emissions by 

7% and 11%; costs only increased by about 3% and 4%. 
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APPENDIX: Notation 

The following symbols are used in this paper: 

A (m2) = exposed surface area of concrete;  

bfs (m) = width of the top flange; 

bfi (m) = width of the bottom flange; 

C (€) = economic cost; 

c (kg/m3)= quantity of Portland cement per cubic meter of concrete;  

CaO = CaO content in Portland cement;  

CCO2 (kg) = CO2 captured; 

CR = consistency ratio; 

E (kg) = CO2 emissions; 

ei (kg CO2/m3, kg CO2/m2, kg CO2/kg, kg CO2/m, kg CO2/tCO2) = unit emissions; 

f i,t (€, kg CO2, years)= objective functions; 

fck (MPa)= concrete compressive strength; 

gi = constraints; 

h (m) = depth; 

Ic = indices set of structural costs; 

Ie = indices set of structural emissions; 

IG = indices set of structural constraints; 

k (mm/year0.5) = carbonation rate coefficient; 

L1 = distance to the ideal using Manhattan metric; 

L2 = distance to the ideal using Euclidean metric; 

L3 = distance to the ideal using Tchebycheff metric; 

M= chemical molar fraction CO2/CaO; 

mi (m3, m2, kg, m, tCO2) =measurements; 

Md (KN.m) = acting bending resultant 

ni = number of bars; 

p = distance norm 

pc = proportion of calcium oxide that can be carbonated;  

pi (€/m3, €/m2, €/kg, €/m, €/tCO2) = unit prices; 
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r (mm) = concrete cover; 

Si= simplex vertices; 

SL (year) = service life; 

T (€, kg CO2, years) = temperature; 

tfi (m) = thickness of the bottom flange; 

tfs (m) = thickness of the top flange; 

tw (m) = web thickness; 

vc (µm/year) = corrosion speed; 

zj (€, kg CO2, years) = criteria; 

wj = weights of importance criteria; 

α = coefficient of cooling;  

Øi (mm) = the diameter of bars; 

∅r (mm) = most restrictive variable for the bar diameter; 

λj (€-1, kg CO2
-1, years-1) = normalized weights of importance criteria; 
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List of Tables and Figures 

Table 1: Unit prices and CO2 emissions considered in the RC I-beam 

 Construction units Cost (euros) 
CO2 emissions 

(kg) 

m3 Concrete HA-30 in beams 97.67 259.61 

m3 Concrete HA-35 in beams 102.37 277.61 

m3 Concrete HA-40 in beams 107.07 295.61 

m3 Concrete HA-45 in beams 111.77 313.61 

m3 Concrete HA-50 in beams 116.47 331.61 

m3 Concrete HA-55 in beams 121.17 349.61 

m3 Concrete HA-60 in beams 125.87 367.61 

m3 Concrete HA-70 in beams 135.27 403.61 

m3 Concrete HA-80 in beams 144.67 439.61 

m3 Concrete HA-90 in beams 154.07 475.61 

m3 Concrete HA-100 in beams 163.47 511.61 

kg Steel B-500-SD 1.24 3.03 

m2 Formwork in beams 33.81 2.08 

m Beam placing 16.86 39.43 

t CO2 CO2 cost 6.00  

 

 

Table 2.  Mix design properties and cement content 

Unit k (mm/year0.5) c (kg/m3) 

Concrete HA-30 in beams 3.71 280 

Concrete HA-35 in beams 3.01 300 

Concrete HA-40 in beams 2.50 320 

Concrete HA-45 in beams 2.11 350 

Concrete HA-50 in beams 1.81 400 

Concrete HA-55 in beams 1.57 457 

Concrete HA-60 in beams 1.38 485 

Concrete HA-70 in beams 1.09 493 

Concrete HA-80 in beams 0.89 497 

Concrete HA-90 in beams 0.74 517 

Concrete HA-100 in beams 0.63 545 
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Table 3.  Summary of the best algorithms results 

Criterion 

Variables 

changed in 

each 

iteration (%) 

Restart 

criterion 

(number 

of chains)  

Markov 
chain 

Cooling 
coefficient 

Cost (€) 
Emission 
(kg CO2) 

Service 
life 

(years) 

Metropolis 20 5 30,000 0.95 2880.435 2305.574 500 

Glauber 20 5 10,000 0.95 2872.351 2258.911 500 

 

Table 4.  Saaty’s fundamental scale [17] 

Numerical 
scale 

Verbal scale Explanation 

1 Same importance 
The two elements make a similar contribution to the 
criterion. 

3 
One item moderately more 
important than another 

Judgment and earlier experience favor one element 
over another. 

5 
One item significantly more 
important than another 

Judgment and earlier experience strongly favor one 
element over another. 

7 
One item much more important 
than another 

One element dominates strongly. Its domination is 
proven in practice. 

9 
One item very much more 
important than another. 

One element dominates the other with the greatest 
order or magnitude possible 

 

Table 5.  Pairwise comparison matrix 

 Cost Emission Service life W 

Cost 1 5 3 0.637 

Emission 1/5 1 1/3 0.105 

Service life 1/3 3 1 0.258 

CR = 3.7% 

 

Table 6.  Preferred solutions for the Lp metrics with p = 1, 2, ∞. 

  Weights 0.637 0.105 0.258  

Metric Solution Distance Cost (€) 
Emission 

(kg CO2) 

Service life 

(years) 

fck 

(MPa) 

L1 

143 0.0338 2,929 2,973 500 80 

144 0.0338 2,930 2,971 500 80 

263 0.0339 2,931 2,969 500 80 

L2 

143 0.0253 2,929 2,973 500 80 

144 0.0253 2,930 2,971 500 80 

263 0.0253 2,931 2,969 500 80 

L∞ 

291 0.0188 2,969 2,847 500 70 

244 0.0190 2,965 2,851 495 60 

73 0.0195 2,954 2,731 462 60 
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Table 7.  Mean characteristics for the cost-optimized and preferred solutions 

 

Cost-optimized 
(single objective 

optimization) 

Preferred solution L1 and 
L2 metric (multi-

objective optimization) 

Preferred solution L∞ 

metric (multi-objective 
optimization) 

h (mm) 1250 1400 1500 

bfs (mm) 250 350 300 

bfi (mm) 200 200 200 

tfs (mm) 170 100 80 

tfi (mm) 130 130 130 

tw (mm) 80 80 90 

r (mm) 17 19 21 

fck (MPa) 45 80 70 

Steel (kg) 671.85 494.31 472.06 

Concrete (m3) 2.08 2.26 2.43 

CO2 capture(kg 
CO2) 169.17 213.82 265.95 

Cost (€) 2854.29 2929.31 2969.40 

Emission (kg CO2) 3204.17 2972.94 2847.00 

Service life (years) 150 500 500 
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Figure 1. [PS]2-methodology 

 

 

Figure 2. Compromise solution using the L2 norm 
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Figure 3: Design variables of the reinforced concrete I-beam 
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Figure 4: Flowchart of the MOSA process 
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Figure 5: Pareto set of solutions 

 

 

Figure 6: Pareto set according to service life range 
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Figure 7: Compromise solutions according to the criteria priorities and L1 metric. Results of concrete 

strength 

 

Figure 8: Compromise solutions according to the criteria priorities and L2 metric. Results of concrete 

strength 
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Figure 9: Compromise solutions according to the criteria priorities and L∞ metric. Results of concrete 

strength 

 

 

Figure 10: Compromise solutions according to the criteria priorities and L1 metric. Results of cost 
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Figure 11: Compromise solutions according to the criteria priorities and L2 metric. Results of cost 

 

Figure 12: Compromise solutions according to the criteria priorities and L∞ metric. Results of cost 
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Figure 13: Compromise solutions according to the criteria priorities and L1 metric. Results of CO2 

emissions 

 

Figure 14: Compromise solutions according to the criteria priorities and L2 metric. Results of CO2 

emissions 
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Figure 15: Compromise solutions according to the criteria priorities and L∞ metric. Results of CO2 

emissions 

 

Figure 16: Compromise solutions according to the criteria priorities and L1 metric. Results of service life  
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Figure 17: Compromise solutions according to the criteria priorities and L2 metric. Results of service life 

 

Figure 18: Compromise solutions according to the criteria priorities and L∞ metric. Results of service life 


