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Abstract

Motivated by the conceptual problems concerning the quantisation of gravity, the
Dutch theoretical physicist G. ’t Hooft (1999 Nobel prize in physics) put forward the
notion that quantum mechanics must be the emergent theory of some underlying, de-
terministic theory. This proposal usually goes by the name quantum mechanics as an
emergent phenomenon. This research line, initiated by ’t Hooft in the late 1990’s, has
been the subject of intense research over the last 15 years, by ’t Hooft himself as well as
by many other researchers. In this PhD thesis we present our own approach to quantum
mechanics as an emergent phenomenon.

According to the emergence paradigm for quantum mechanics, information–loss
effects in the underlying deterministic theory lead to the arrangement of states of the
latter into equivalence classes, that one identifies as quantum states of the emergent
quantum mechanics. In brief, quantisation is dissipation, according to ’t Hooft.

Moreover it has been argued in the literature that, in the presence of weak gravi-
tational fields, quantum effects must be indistinguishable from thermal effects. Since
the latter are typically dissipative in nature, the presence of a weak gravitational field
should provide a framework in which quantum effects can be explained as due to ther-
mal, dissipative fluctuations. Furthermore, since gravitational effects can be locally
gauged away (thanks to the equivalence principle), there should exist some kind of
equivalence principle for quantum effects, i.e., some kind of relativity principle for the
notion of quantumness as opposed to the notion of classicality. In this PhD thesis we
elaborate on this idea.

Once a reference frame is fixed, however, quantum effects cannot be gauged away,
and the statement quantisation is dissipation lends itself to a thermodynamical treat-
ment. In this thesis we also present one mechanism whereby quantum mechanics
is seen to emerge, thus explicitly realising ’t Hooft’s proposal. This mechanism is
based on a dictionary between semiclassical quantum mechanics, on the one hand, and
the classical theory of irreversible thermodynamics in the linear regime, on the other.
This thermodynamical formalism, developed by Nobel prize winners Onsager and Pri-
gogine, can be easily mapped into that of semiclassical quantum mechanics.
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Resumen

Motivado por los problemas conceptuales relativos a la cuantización de la gravedad,
el fı́sico teórico holandés G. ’t Hooft (premio Nobel de fı́sica en 1999) sugirió la noción
de que la mecánica cuántica pudiera ser la teorı́a emergente de alguna otra teorı́a de-
terminista subyacente. Dicha propuesta se conoce como la mecánica cuántica en tanto
que teorı́a emergente. Esta lı́nea de investigación, iniciada por ’t Hooft a finales de
los años 90, ha sido objeto de intenso estudio a lo largo de los últimos 15 años, tanto
por el mismo ’t Hooft como por numerosos otros investigadores. En esta tesis doc-
toral presentamos nuestra propia aproximación a la mecánica cuántica como fenómeno
emergente.

De acuerdo con este paradigma emergente para la mecánica cuántica, son efectos
de pérdida de información en la teorı́a determinista subyacente los que conducen a que
los estados de ésta última se agrupen en clases de equivalencia, las cuales clases se
identifican con los estados cuánticos de la mecáncia cuántica emergente. En breve, la
cuantización es disipación, según ’t Hooft.

Asimismo se ha argumentado en la literatura que, en presencia de campos gravita-
torios débiles, los efectos cuánticos son indistinguibles de los efectos térmicos. Dado
que éstos últimos son tı́picamente disipativos por naturaleza, la presencia de un campo
gravitatorio débil deberı́a proporcionar un entorno en el cual los efectos cuánticos
puedan entenderse como debidos a fluctuaciones térmicas, disipativas. Además, dado
que los campos gravitatorios pueden eliminarse localmente (gracias al principio de
equivalencia), deberı́a existir algún tipo de principio de equivalencia para los efectos
cuánticos, i.e., algún tipo de principio de relatividad para la noción de cuanticidad, por
oposición a la noción de clasicidad. En esta tesis doctoral elaboramos estas ideas.

Sin embargo, una vez fijado un sistema de referencia, los efectos gravitatorios ya
no pueden eliminarse, y la afirmación de que la cuantización es disipación se presta a
un tratamiento termodinámico. En esta tesis también presentamos un mecanismo me-
diante el cual la mecánica cuántica se ve emerger, comprobándose ası́ explı́citamente
la propuesta de ’t Hooft. Este mecanismo se basa en un diccionario entre la mecánica
cuántica semiclásica, por un lado, y la teorı́a clásica de la termodinámica irreversible
en el régimen lineal, por otro lado. Dicho formalismo termodinámico, desarrollado por
los premios Nobel Onsager y Prigogine, puede trasladarse fácilmente a la mecánica
cuántica semiclásica.
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Resum

Motivat pels problemes conceptuals en relació a la quantització de la gravetat, el
fı́sic teòric holandés G. ’t Hooft (premi Nobel de fı́sica en 1999) va suggerir la noció
de que la mecànica quàntica pogués ser la teoria emergent d’ alguna altra teoria deter-
minista subjacent. Aquesta proposta es coneix com a mecànica quàntica en tant que
teoria emergent. Aquesta lı́nia d’investigació, iniciada per ’t Hooft a finals dels anys
90, ha sigut intensament estudiada durant els últims 15 anys, tant pel mateix ’t Hooft
com per nombrosos altres investigadors. En aquesta tesi doctoral presentem la nostra
própia aproximació a la mecànica quàntica com a fenomen emergent.

D’acord amb aquest paradigma emergent per a la mecànica quàntica, són efectes
de pérdua d’informació en la teoria determinista subjacent els que condueixen a que
els estats d’aquesta última s’agrupen en classes d’equivalència, les quals s’identifiquen
amb els estats quàntics de la mecànica quàntica emergent. Breument, la quantització
és dissipació, segons ’t Hooft.

Aixı́ mateix, s’ha argumentat a la literatura que, en presència de camps gravitatoris
febles, els efectes quàntics són indistingibles dels efectes tèrmics. Com aquests últims
són tı́picament dissipatius per naturalesa, la presència d’un camp gravitatori feble hau-
ria de proporcionar un entorn en el qual els efectes quàntics es puguen entendre com
deguts a fluctuacions tèrmiques, dissipatives. A més a més, com que els camps gravita-
toris poden eliminar-se localment (gràcies al principi d’equivalència), hauria d’existir
algun tipus de principi d’equivalència per als efectes quàntics, i.e., algun tipus de prin-
cipi de relativitat per a la noció de quanticitat, per oposició a la noció de classicitat.
En aquesta tesi doctoral elaborem aquestes idees.

En canvi, una vegada fixat el sistema de referència, els efectes gravitatoris ja no
poden eliminar-se, i l’afirmació de que la quantització és dissipació es presta a un
tractament termodinàmic. En aquesta tesi també presentem un mecanisme mitjançant
el qual la mecànica quàntica es veu emergir, comprovant-se explı́citament la proposta
de ’t Hooft. Aquest mecanisme es basa en un diccionari entre la mecànica quàntica
semiclàssica, d’una banda, i la teoria clàssica de la termodinàmica irreversible en el
règim lineal, d’una altra banda. Aquest formalisme termodinàmic, desenvolupat pels
premis Nobel Onsager i Prigogine, pot traslladar-se fàcilment a la mecànica quàntica
semiclàssica.
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Chapter 1

Overview

The two basic pillars on which modern theoretical physics stands are quantum theory
and general relativity. These two theories were developed in the first quarter of the 20th
century. General relativity accounts for the gravitational force, while quantum theory
underlies the standard model of elementary particles.

1.1 A sketch of general relativity
According to Einstein’s theory of general relativity, the gravitational force is a man-
ifestation of the curvature of spacetime. An intuitive visualisation of this geometric
approach to gravity is given by the following analogy, frequently found in popular–
science books. Imagine a tablecloth spanned in a frame which is held fixed in a plane
parallel to the surface of Earth. Place a heavy steel ball in the middle of the tablecloth
and let a marble roll on the tablecloth. The tablecloth will be curved in the vicinity
of the steel ball, and the marble’s path will deviate from a straight line when it comes
close to it. This is a model of the solar system with the sun replaced by the steel ball,
the marble playing the role of a planet, and the 2–dimensional tablecloth replacing 3–
dimensional space. The marble’s path is attracted towards the steel ball—not because
there is a force between the marble and the steel ball, but because the geometry of the
tablecloth is curved in the neighbourhood of the steel ball.

General relativity is widely accepted as our best description of the physics of the
gravitational field. It has been successfully tested in countless experiments. The per-
ihelion rotation of Mercury, the deflection of light rays by the sun, the gravitational
redshift, gravitational lensing, the Big Bang and the expansion of the universe, are
perhaps the most spectacular among those predictions that have been tested experi-
mentally beyond any reasonable doubt. On a somewhat less solid experimental footing
stand other predictions, such as gravitational radiation and black holes.

Two of the above predictions are particularly remarkable because of their theoreti-

9



10 CHAPTER 1. OVERVIEW

cal implications. First, the prediction that the final state of massive stars is to undergo
gravitational collapse behind an event horizon and form a black hole containing a sin-
gularity, leads to a severe clash with quantum theory. The prediction concerning the
Big Bang is no less remarkable: there is a singularity in our past which constitutes, in
some sense, a beginning to the Universe. These two predictions of general relativity
amount to an admission of the breakdown of the theory itself. Indeed, the mere pres-
ence of a singularity seems to suggest that the theory has been pushed beyond its limits
of applicability.

One expects the physics of such singularities to be more correctly described by
some quantum version of gravity than it is by Einstein’s theory alone. There are good
reasons to believe that quantum effects should play a major role in explaining the true
physics of black holes and of the Big Bang. The extreme conditions believed to be
present at those singularities (high density, high temperature and length scales of the
order of the Planck length) require the notions of quantum mechanics for their correct
description.

1.2 A sketch of quantum theory
Physics before the advent of quantum mechanics is commonly referred to as classical.
Classical physics is a deterministic theory, its predictive power being not even limited
by the (necessarily finite) resolution of our experimental devices. This is so because, in
classical physics, it is always possible to compensate for experimental errors, at least
in principle.

Quantum mechanics, on the other hand, is constrained by Heisenberg’s principle
of uncertainty. The latter imposes a fundamental restriction on the accuracy to which
conjugate variables can be simultaneously measured. This restriction is independent of
our experimental skills and of our technological capabilities. A consequence of this es-
sential limitation is that quantum mechanics is an indeterministic, probabilistic, theory.

In everyday life, however, events appear to be causally connected by classical, de-
terministic laws. The reason indeterminism is negligible on a macroscopic scale is that
macroscopic bodies are composed of a huge number of quantum particles. Macro-
scopic bodies comprise some 1023 (Avogadro’s number) quantum particles; on the
average, their individual nondeterministic properties balance out. In technical terms
we say that this large number of particles decohere so, macroscopically, we can only
perceive a classical average which is deterministic.

These conceptual foundations of quantum mechanics have been the subject of
heated dispute ever since the early 1930’s, as the so–called Copenhagen interpreta-
tion was challenged by a few but very vocal (and very remarkable) physicists, Einstein
being one of them. At stake was not the predictive power of the new theory (something
everybody acknowledged without reservations) but, rather, its philosophical underpin-
ning: God doesn’t play dice! As time went by, the Copenhagen interpretation (as
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developed mainly by Bohr, Heisenberg and Born) won the day, and Einstein seemed
to lose the game. In a nutshell, Einstein accepted Copenhagen quantum mechanics
as a statistical theory, but refused to accept the loss of a fundamentally determinis-
tic, ontological character that the Copenhagen interpretation brought about. For him,
Copenhagen quantum mechanics was merely an effective probabilistic description of
some deeper, deterministic theory, where physical entities play an ontological role in-
dependently of observation.

As quantum mechanics became established, more domains of classical physics
came to be quantised. This, in turn, made the quantum theory even more successful.
A well–known example of the experimental success of quantum theory is the recent
discovery of the Higgs particle. Classical Yang–Mills theory can be consistently quan-
tised because, among other things, there is a systematic procedure for getting rid of
some nasty infinities that arise in the corresponding quantum theory. This procedure is
called renormalisation—much of the credit for this goes to ’t Hooft, who proved the
renormalisability of (nonabelian) quantum Yang–Mills theories.

However, general relativity adamantly resisted quantisation.

1.3 Quantum mechanics meets general relativity
Severe technical difficulties arose as soon as one tried to apply the principles of quan-
tum mechanics to the theory of relativity. Specifically, general relativity cannot be
consistently quantised because it is not renormalisable. Yet one would like to have a
quantum theory of gravity: a theory that describes the structure of spacetime at length
scales as tiny as the Planck length. At the same time, this would–be quantum theory of
gravity should be able to reproduce general relativity when considered at astronomical
length scales.

This (as of yet, unsuccessful) programme has come to be known as the quantisa-
tion of gravity; it is an outstanding problem in 20th–century theoretical physics that
penetrates deeply into the 21st century. Despite arduous efforts along many different
lines of approach, a consistent theory of quantum gravity still eludes us. Those few
approaches that have survived the test of time still face enormous challenges, falling
short of a providing completely satisfactory solution to the problem.

To summarise: quantum mechanics and the theory of relativity have been exper-
imentally tested innumerable times, always extremely successfully. As long as one
remains within the limits of applicability of the corresponding theory, one can safely
state that both theories are right. Einstein’s theory of gravitation applies to the very
large macroworld (i.e., to astronomical scales, up to 1028 cm, the radius of the ob-
servable Universe). On the other hand, quantum theories describe the microworld (by
which we mean length scales about the size of an atom, typically 10−8 cm, and below).

Gravity appears to resist all attempts to quantise it.
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1.4 Quantisation—the accepted paradigm

Conceptual difficulties often require a change of mind, a change in the paradigms that
underlie one’s whole intellectual framework. This viewpoint is based on the conviction
that any theory necessarily has certain limits, and that therefore a change in approach
may be convenient, if not altogether necessary.

The quantisation of gravity is possibly one such case. The logic of the problem
can be summarised as follows. One is given Einstein’s classical theory of gravity. By
classical one means that Planck’s constant ~ is missing: it appears nowhere in the equa-
tions. Next one applies a set of heuristic rules known as quantisation. These rules have
been successfully applied to explain electrons, atoms, molecules, nuclei, and the whole
microworld known to us, so we have some degree of confidence in them. However,
they remain a set of heuristic rules that one applies more or less automatically, without
troubling oneself much about their range of applicability.

The current paradigm in theoretical physics thus reads: start with a classical the-
ory, then quantise. The resulting quantum theory is the better theory, its classical an-
cestor being just an approximation, sometimes a very coarse one. This paradigm has
dominated much of 20th–century physics so successfully, that many physicists find it
difficult to accept that there might be anything wrong with it. Perhaps the best exam-
ple of the application of this paradigm is that of quantum electrodynamics, the the-
ory of electrons and photons. In terms of explanatory power, predictive power and
theoretical–numerical accuracy checked against experiments, quantum electrodynam-
ics stands out supreme. This success story bears the names of Dirac, Feynman and
Schwinger, among others. After quantum electrodynamics (an abelian Yang–Mills the-
ory) comes the standard model of particle physics (a nonabelian Yang–Mills theory),
which unifies the electromagnetic force, the weak nuclear force, and the strong nuclear
force under a single principle. This second success story, also based on quantum me-
chanics, is associated with the names of Yang, Mills, Weinberg, Glashow and Salam,
among others.

So there must be something right about the quantisation paradigm—yet, the (straight-
foward) quantisation of gravity turned out to be a colossal failure. Could it be the quan-
tisation paradigm that fails?

In this PhD thesis we will analyse the possibility that the current paradigm (start
with a classical theory, then quantise) fails for the problem at hand. It has been sug-
gested by ’t Hooft that a possible reason for this failure lies in the misconception that
quantum mechanics is a fundamental theory. The suggestion that quantum mechanics
is not a fundamental theory is elaborated throughout this PhD thesis in detail.
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1.5 Emergence—a recent paradigm
So far one can state: either general relativity is not the ultimate theory of spacetime, or
quantum mechanics is not the ultimate theory of the microscopic world—or both.

’t Hooft takes the viewpoint that quantum mechanics as we know it, is not the ul-
timate theory of the microscopic world. This does not invalidate quantum mechanics
as we know it. Rather, according to ’t Hooft, quantum mechanics emerges as a prob-
abilistic description of an underlying deterministic theory. In this sense, ’t Hooft’s
view agrees with Einstein’s—but one still has to actually construct such a determinis-
tic theory in the first place, and then describe how quantum mechanics emerges from
it. Einstein fell short of achieving these two goals in his critique of the Copenhagen
interpretation, while ’t Hooft has taken a number of ground–breaking steps towards
achieving them [41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

This emergence property of quantum mechanics is analogous to that of classical
thermodynamics as derived from, say, the classical kinetic theory of gases. In the pas-
sage from the kinetic theory to the thermodynamical description there is a great deal of
information loss. At a microscopic level we can, at least in principle, follow the path
of each and every single molecule of gas. This entails a huge amount of information.
At a macroscopic level we renounce almost all this knowledge and satisfy ourselves
with just a handful of variables such as pressure, volume and temperature. Macro-
scopic properties can be understood and explained microscopically, but we renounce
this vast amount of information. The emergent theory has entirely different properties
from those of its underlying microscopic theory. Of course, classical thermodynamics
is also a deterministic theory, and in this sense the analogy with quantum mechanics
breaks down. However, this example serves well to illustrate the process of information
loss that, according to ’t Hooft, characterises the passage from an underlying determin-
istic theory to the probabilistic quantum mechanics that we observe and verify in our
labs.

The theory underlying Copenhagen quantum mechanics, called deterministic quan-
tum mechanics by ’t Hooft, must first and foremost be deterministic (as opposed to
probabilistic), and it must also exhibit information loss. It is a quantum theory because
it describes the microscopic world, but it is deterministic because it obeys some classi-
cal equation of motion. States in the deterministic theory are arranged, by a dissipative
process of information loss, into equivalence classes that the Copenhagen interpreta-
tion calls quantum states. To revert to our thermodynamical analogy, pressure can be
understood as arising from the collisions of gas molecules against the container walls.
Many different motions of the molecules will give rise to the same overall momentum
transfer to the wall and, therefore, to the same value of the pressure. Yet, a knowledge
of the pressure is far less detailed than a knowledge of the precise molecules, and the
precise paths they follow as they hit the wall. So one quantum state in the Copenhagen
interpretation (pressure) is the result of arranging very many different deterministic
states (configurations of molecules) into one equivalence class.



14 CHAPTER 1. OVERVIEW

Specifically, ’t Hooft proves the following existence theorem: For any quantum
system there exists at least one deterministic model that reproduces all its dynamics.

As in the previous thermodynamical analogy, the underlying deterministic theory
may have little in common (at least at first sight) with the emergent statistical theory.
In this way not only quantum mechanics is emergent, but possibly also its symmetries.
’t Hooft further argues that symmetries we are used to such as local gauge symmetry
in Yang–Mills theory, or diffeomorphism invariance in general relativity, may be emer-
gent symmetries that need not be present, at least in their usual form, in the underlying
deterministic models.

To summarise: if quantum mechanics truly is an emergent theory, then the quan-
tisation paradigm alluded to in section 1.3 certainly breaks down, because quantum
mechanics is not as fundamental as so far believed.

For completenes we would like to mention the following alternative to the state-
ment that quantum mechanics must be an emergent phenomenon. It is usually taken
for granted that the degrees of freedom of a spacetime continuum must be of a funda-
mental nature, i.e., irreducible pieces of data, or bits. However, Boltzmann’s dictum,
If something heats up, it has microstructure, applies to the spacetime continuum of
general relativity, because many known spacetimes can be assigned thermodynamical
properties like temperature, entropy, heat capacity, etc. We do not know yet what the
atoms of spacetime look like—in fact we are probably centuries away from developing
the necessary technology that would allow one to probe spacetime at the Planck scale.
However, the granularity of spacetime is a commonly accepted feature today, a feature
that becomes invisible at the energies currently available, thus causing the impression
of a continuum. In other words, spacetime might be an emergent phenomenon, too, as
much as quantum mechanics.

The point of view that the spacetime continuum is a thermodynamical average over
some (as yet unknown) atoms has been pioneered in recent years by Padmanabhan.
Although we will not follow Padmanabhan’s approach here, we believe it is worth
mentioning in our context of emergent quantum mechanics. Indeed, there exist con-
ceptual similarities in regarding a supposedly fundamental theory (quantum mechan-
ics in our case, relativity in Padmanabhan’s) as an effective, thermodynamical model.
We have drawn fruitful inspiration from a reading of Padmanabhan’s beautiful papers
[58, 67, 68, 69, 70, 71, 72]. Last but not least, we would also like to mention Verlinde’s
influential paper [92] on the entropic character of the gravitational force as another
source of inspiration for our own work.

1.6 Structure of this PhD thesis
This PhD thesis can be regarded as a natural continuation of the work begun in ref. [1].
In the latter, also a PhD thesis defended at Universidad Politécnica de Valencia under
the supervision of the two current advisors, two mechanisms were presented whereby
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quantum mechanics was explicitly seen to emerge, thus explicitly realising ’t Hooft’s
proposal.

Further analysing some of the ideas put forward in ref. [1] gave rise to the present
PhD thesis, which is based on the three published papers [29, 30, 31]. The publications
[30] and [31] are original research articles written as part of this PhD thesis. The paper
[29] contains a written version of the invited talk presented by J.M.I. at the Sixth In-
ternational Workshop DICE2012: Spacetime -Matter - Quantum Mechanics, from the
Planck Scale to Emergent Phenomena, Castiglioncello, Italy, Sept. 17-21, 2012. The
material therein was already partially presented and used in ref. [1].

The contents of chapter 1 of this thesis, being a general introduction, can be found
in many good expository articles and books on the subject; we claim no originality
regarding this chapter. For the same reason we hardly provide bibliographic references
within this chapter, since sources here are well known and easily accessible. Let us
merely state that here we have, to some extent, followed the introductory chapter of
ref. [1].

Chapter 2 contains a copy the article [29], which serves to set the scene and the
notations for the rest of the thesis. In chapter 3 there follows a copy of the article [30].
Next, chapter 4 contains a copy of the article [31]. Finally chapter 5 presents a brief
summary of our PhD thesis.

In order to respect, as closely as possible, the original text of the articles [29, 30, 31]
that make up this thesis, we decided to edit the source files of each article only min-
imally. This has the unavoidable consequence that there may be some overlap, espe-
cially between the contents of the corresponding introductions (sections 2.1, 3.1 and
4.1). For the same reason of minimal editing, some of the equations may appear re-
peated throughout different chapters within the text—but never more than twice. It
should be remembered, however, that each one of those articles was individually in-
tended as a publication in its own right, as selfcontained as possible.

This minimal editing was limited to the following points:
i) Repetitions in the bibliography were eliminated, since all references are listed to-
gether at the end of the thesis;
ii) The final sections of each chapter (sections 2.5, 3.4 and 4.4) have been renamed, with
respect to their counterparts in the corresponding articles, as “Conclusions to chapter
2”, “Conclusions to chapter 3” and “Conclusions to chapter 4”, respectively;
iii) The abstracts of the individual papers [29, 30, 31] appear collected in chapter 5,
instead of being presented at the beginning of each chapter.

Bearing all of this in mind, the introductory chapter 1 thus provides the common
thread that will allow the reader to navigate through the different chapters of this thesis.
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Chapter 2

Emergence from irreversibility

This chapter is based on the article Emergence from Irreversibility, by P. Fernández de
Córdoba, J.M. Isidro and Milton H. Perea, published in J. Phys. Conf. Ser. 442 (2013)
012033, available electronically as arXiv:1210.7785 [math-ph], and quoted
in the bibliography as ref. [29]. As compared with the original article [29], only those
minor rearrangements of the material have been made that were explained in section
1.6.

2.1 Introduction
The aim of this chapter is to establish a correspondence between quantum mechanics,
on the one hand, and the classical thermodynamics of irreversible processes, on the
other. This we do in order to provide an independent proof of the statement that quan-
tum mechanics is an emergent phenomenon.

Under the notion of an emergent phenomenon one usually understands the result of
coarse–graining, or averaging over some deeper–level structures. These finer degrees
of freedom, sometimes also called microscopic in order to distinguish them from the
emergent degrees of freedom, usually carry information in such a way that they can
be grouped together into higher structures, no longer microscopic, that give rise to the
emergent phenomena observed in macroscopic experiments. In coarse graining mi-
croscopic information into higher structures, one is renouncing a detailed knowledge
at a deeper level, in favour of some less–detailed averages, which are usually more
tractable data. The canonical example of an emergent theory is classical thermody-
namics, because it makes absolutely no assumption at all regarding the microscopics
of the models it applies to. The corresponding microscopic theory is statistical me-
chanics, out of which thermodynamics emerges.

That quantum mechanics qualifies as an emergent theory has been suspected for
some time [41, 44, 46, 47, 48]. In fact this topic has been the subject of a vast literature
in recent years; a very incomplete list of refs. would include [13, 21, 23, 24, 25, 54,
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55, 84, 87, 95]. The importance of the link between quantisation and dissipation has
been explained in [10, 11, 7, 8, 9]. Some of the authors’ previous work on this subject
is collected in refs. [1, 2, 3, 4].

In this work we draw on the fundamental link between quantum and dissipative
phenomena. By exhibiting a 1–to–1 map between quantum mechanics and the classical
thermodynamics of irreversible processes, the emergent nature of quantum mechanics
is laid bare. Especially relevant here are the classical and the irreversible properties of
the thermodynamics involved. “Classical” means absence of ~; “irreversible” implies
entropy production. As will be seen below, these two facts have a clear counterpart in
the quantum–mechanical description.

In section 2.2 we review some background information on the classical thermody-
namics of irreversible processes. This is necessary to establish the announced corre-
spondence, which is presented in section 2.3. The implications of this correspondence
for the quantum theory are examined in section 2.4. The discussion in section 2.5
rounds up our presentation with some suggestions for future work.

2.2 Basics in irreversible thermodynamics
We first summarise, for later use, some basic elements of the classical thermodynamics
of irreversible processes in the linear regime [66, 76].

Let a thermodynamical system be given, deviating only slightly from equilibrium.
Assume that its entropy S depends on N extensive variables y1, . . . , yN , so we can
write S = S(y1, . . . , yN ). The tendency of the system to seek equilibrium is measured
by the thermodynamic forces Yk, defined to be the components of the gradient of the
entropy:

Yk :=
∂S

∂yk
. (2.1)

Now our system is away from equilibrium, but not too far away, so we can assume
linearity between the fluxes ẏk and the forces Yj :

ẏi :=
dyi

dτ
=

N∑
j=1

LijYj , Yi =

N∑
j=1

Rij ẏ
j , Rij = (Lij)−1. (2.2)

We use τ to denote thermodynamical time, and we suppose the above relation between
forces and fluxes to be invertible. A well–known result is Onsager’s reciprocity theo-
rem: the matrix L is symmetric,

Lij = Lji. (2.3)

By (2.2), the rate of entropy production can be written either as a quadratic form in the
fluxes, or as a quadratic form in the forces:

Ṡ =

N∑
j=1

∂S

∂yj
ẏj =

N∑
j=1

Yj ẏ
j =

N∑
i,j=1

Rij ẏ
iẏj =

N∑
i,j=1

LijYiYj . (2.4)
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We can Taylor expand the entropy S around equilibrium and truncate the series at
second order, to find

S = S0 −
1

2

N∑
i,j=1

sijy
iyj + . . . , (2.5)

where the matrix sij = −∂2S/∂yi∂yj |0 (the negative Hessian evaluated at equi-
librium) is positive definite. This truncation has the consequence that fluctuations
around equilibrium are Gaussian. Indeed, by Boltzmann’s principle, the probability
P (y1, . . . , yN ) of finding the values y1, . . . , yN of the extensive variables is given by

P (y1, . . . , yN ) = Z−1 exp

(
S

kB

)
= Z−1 exp

− 1

2kB

N∑
i,j=1

sijy
iyj

 , (2.6)

where Z is a normalisation factor.

For simplicity we set N = 1 in all that follows. Our aim is to calculate the
probability of any path y = y(τ) in the thermodynamical configuration space. A
cumulative distribution function Fn

(
y1
τ1

...

...
yn
τn

)
is defined such that it yields the prob-

ability that the thermodynamical path y(τ) lie below the barriers y1, . . . , yn at times
τ1 < τ2 < . . . < τn:

Fn

(
y1
τ1

. . .

. . .

yn
τn

)
:= P (y(τk) ≤ yk, k = 1, . . . , n) . (2.7)

A stationary process is defined to be one such that Fn is invariant under time shifts δτ :

Fn

(
y1
τ1

. . .

. . .

yn
τn

)
= Fn

(
y1

τ1 + δτ

. . .

. . .

yn
τn + δτ

)
. (2.8)

In other words, the system that has been left alone long enough that any initial condi-
tions have been forgotten. An unconditional probability density function fn

(
y1...yn
τ1...τn

)
is defined, such that the product

fn

(
y1 . . . yn
τ1 . . . τn

)
dy1 · · · dyn (2.9)

measures the probability that a thermodynamical path y = y(τ) pass through a gate
of width dyk at instant τk, for all k = 1, . . . n. Similarly, the conditional probability
density function f1

(
yk
τk

∣∣∣yk−1

τk−1

)
is such that the product

f1

(
yk
τk

∣∣∣yk−1
τk−1

)
dyk dyk−1 (2.10)

gives the probability that y = y(τ) pass through dyk at τk, given that it passed through
dyk−1 at τk−1. Finally a Markov process is defined to be one that has a short mem-
ory or, more precisely, one such that its cumulative, conditional probability function
satisfies

F1

(
yn+1

τn+1

∣∣∣y1
τ1

. . .

. . .

yn
τn

)
= F1

(
yn+1

τn+1

∣∣∣yn
τn

)
. (2.11)
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One can prove that, for a Markov process, the following factorisation theorem holds
[66]:

fn

(
y1 . . . yn
τ1 . . . τn

)
= f1

(
yn
τn

∣∣∣yn−1
τn−1

)
· · · f1

(
y2
τ2

∣∣∣y1
τ1

)
f1

(
y1
τ1

)
. (2.12)

Interesting about this factorisation theorem is the fact that f1
(
y1
τ1

)
is known from

Boltzmann’s principle. Therefore, by stationarity, all we need to know is

f1

(
y2

τ + δτ

∣∣∣y1
τ

)
, (2.13)

and solving the n–gate problem fn

(
y1...yn
τ1...τn

)
nicely reduces to solving the 2–gate prob-

lem f1

(
y2

τ+δτ

∣∣∣y1τ ).

Now, under the assumption that our irreversible thermodynamical processes is sta-
tionary, Markov and Gaussian, the conditional probability density (2.13) has been com-
puted in [66], with the result

f1

(
y2

τ + δτ

∣∣∣y1
τ

)
=

1√
2π

s/kB√
1− e−2γδτ

exp

[
− s

2kB

(
y2 − e−γδτy1

)2
1− e−2γδτ

]
. (2.14)

Here we have defined the thermodynamical frequency γ,

γ :=
s

R
, (2.15)

with R given as in (2.2) and s = −d2S/dy2|0. Furthermore, one can reexpress the
probability density (2.14) in terms of path integrals over thermodynamical configura-
tion space: up to normalisation factors one finds [66]

f1

(
y2
τ2

∣∣∣y1
τ1

)
=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{
− 1

2kB

∫ τ2

τ1

dτ L [ẏ(τ), y(τ)]

}
. (2.16)

Above we have defined the thermodynamical Lagrangian function L

L [ẏ(τ), y(τ)] :=
R

2

[
ẏ2(τ) + γ2y2(τ)

]
, (2.17)

whose actual dimensions are entropy per unit time.

2.3 Irreversible thermodynamics vs. quantum theory
We can now establish a precise map between quantum mechanics and classical, irre-
versible thermodynamics. Let t denote mechanical time, m the mass of the quantum
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particle under consideration, and ω the frequency of a harmonic potential experienced
by the particle.

In the first place, the thermodynamical time variable τ must be analytically contin-
ued into it:

τ ↔ it. (2.18)

Second, the thermodynamical frequency γ becomes the mechanical frequency ω of the
harmonic oscillator:

γ ↔ ω. (2.19)

Next we map the thermodynamical variable y onto the mechanical variable x:

y ↔ x. (2.20)

As a rule, x will be a position coordinate. Hence there might be some dimensional
conversion factor between x and y above, that we will ignore for simplicity. Bearing
this in mind, we will finally make the identification

s

2kB
↔ mω

~
(2.21)

between thermodynamical and mechanical quantities. We have expressed all the above
replacements with a double arrow↔ in order to indicate the bijective property of our
map between quantum mechanics and classical, irreversible thermodynamics.

On general grounds, applying the replacements (2.18), (2.19), (2.20) and (2.21),
one expects thermodynamical conditional probabilities to map onto mechanical condi-
tional probabilities1,

f1

(
y2
τ2

∣∣∣y1
τ1

)
↔ K(x2, t2|x1, t1), (2.22)

while thermodynamical unconditional probabilities are expected to map onto mechan-
ical unconditional probabilities:

f1

(y
τ

)
↔ |ψ(x, t)|2. (2.23)

Here K(x2, t2|x1, t1) denotes the quantum–mechanical propagator, and ψ(x, t) is the
wavefunction. As in (2.20) above, one must allow for possible numerical factors be-
tween probabilities on the thermodynamical and on the mechanical sides; otherwise
bijectivity is perfectly preserved.

Our expectations (2.22), (2.23) are borne out by experiment—experiment in our
case being explicit computation. Indeed one finds the following. For γ → 0, the
irreversible thermodynamics corresponds to the free quantum–mechanical particle:

K(free)(x2, t|x1, 0) =

√
kB
s
f1

(x2
it

∣∣∣x1
0

)
γ→0

, (2.24)

1While f1 is a probability density, K is a probability density amplitude; see ref. [3] for a discussion of
this issue.
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while, for γ 6= 0, the irreversible thermodynamics corresponds to the quantum me-
chanics of a harmonic oscillator:

f1

(x2
it

∣∣∣x1
0

)
= exp

(
iωt

2
− ∆V

~ω

)√
2mω

~
K(harmonic) (x2, t|x1, 0) . (2.25)

Above, V = mω2x2/2 is the harmonic potential, and ∆V = V (x2) − V (x1). More-
over, if ψ0(x) = exp

(
−mωx2/2~

)
is the harmonic oscillator groundstate, then it

holds that, up to normalisation,

f1

(x
it

)
= exp

(
−mω

~
x2
)

= |ψ(harmonic)
0 (x)|2, (2.26)

as expected.

Finally the path–integral representation of quantum–mechanical propagators,

K (x2, t2|x1, t1) =

∫ x(t2)=x2

x(t1)=x1

Dx(t) exp

{
i

~

∫ t2

t1

dt L [x(t), ẋ(t)]

}
, (2.27)

has a nice reexpression in terms of classical, irreversible thermodynamics. Indeed,
applying our dictionary (2.18), (2.19), (2.20) and (2.21) to the mechanical path integral
(2.27), the latter becomes the thermodynamical path integral already seen in (2.16).
This leads us to the following relation between the action integral I of the mechanical
system and the entropy S of its thermodynamical counterpart:

i

~
I ↔ 1

kB
S. (2.28)

It should be remarked that both I and S independently satisfy an extremum principle.
In the Gaussian approximation considered here, the respective fluctuations (measured
with respect to the corresponding mean values of I and S as given by their extremals)
are obtained upon taking the exponentials. We thus obtain the quantum–mechanical
wavefunction and the Boltzmann distribution function:

ψ =
√
ρ exp

(
i

~
I

)
, ρB = Z−1 exp

(
1

kB
S

)
. (2.29)

As usual, Z denotes some normalisation factor. Since, by the Born rule, we must have
ρB = |ψ|2, this provides us with an elegant expression combining thermodynamics
and quantum mechanics into a single equation:

ψ = Z−1/2 exp

(
1

2kB
S

)
exp

(
i

~
I

)
. (2.30)

Eqs. (2.28) and (2.30) are very inspiring, as they reveal a fundamental complemen-
tarity between the mechanical action integral (on the mechanical side) and the entropy
(on the thermodynamical side). We will later on return to the complementarity between
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these two descriptions, a feature already foreseen by Prigogine [77]. For the moment
let us simply remark the following consequence of this complementarity, namely, the
symmetrical role played by Planck’s constant ~ and Boltzmann’s constant kB . This
latter property, and the ensuing entropy quantisation, have been discussed at length in
refs. [2, 3].

2.4 Emergence from irreversibility
It has been claimed that quantisation is dissipation [4, 10, 11, 7, 8, 9, 21, 41, 44, 84]—
this claim is central to the emergence approach to quantum mechanics. In more precise
terms, the previous statement implies that quantum behaviour can be expected from
certain deterministic systems exhibiting information loss. One could compare this state
of affairs to the relation between (equilibrium) thermodynamics and (classical) statis-
tical mechanics. Namely, information loss in a microscopic theory (statistical mechan-
ics) arises as the result of averaging out over many degrees of freedom; the emergent
theory (thermodynamics) contains less information than its microscopic predecessor.

Thanks to the map established in section 2.3, the picture presented here features
quantumness as an intrinsic property of dissipative systems. Conversely, by the same
map, any quantum system features dissipation. In our picture, irreversibility and quan-
tumness arise as the two sides of the same coin, thus becoming complementary de-
scriptions of a given system (complementarity being understood here in Bohr’s sense
of the word). As opposed to the emergence property discussed above, the two theo-
ries (quantum mechanics and irreversible thermodynamics) contain exactly the same
amount of information. It is interesting to observe that closely related views regarding
the complementarity between mechanics and thermodynamics were defended long ago
by Prigogine [77].

Now it has been (rightly) pointed out that correspondence and emergence are not
quite the same concept [52]. This notwithstanding, we can still argue that quantum
mechanics continues to arise as an emergent phenomenon in our picture. This is so
because Boltzmann’s dictum applies: If something heats up, it has microstructure. In
other words, every thermodynamics is the coarse graining of some underlying statisti-
cal mechanics. Thus the mere possibility of recasting a given theory in thermodynam-
ical language proves that the given theory is the coarse–grained version of some finer,
microscopic theory.

2.5 Conclusions to chapter 2
As a technical remark, we should point out that we have worked throughout in the
Gaussian approximation. On the thermodynamical side of our map this corresponds to
the linear response theory; on the mechanical side this refers to the harmonic approx-
imation. Within the regime of applicability of this assumption we can safely claim to
have provided a rigorous proof of the statement that quantum mechanics is an emergent
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phenomenon, at least in the Gaussian approximation.

Using the fact that any potential can be transformed into the free potential or into the
harmonic potential by means of a suitable coordinate transformation (as in Hamilton–
Jacobi theory [62, 27, 28]), one would naively state that the Gaussian approximation
is good enough to “prove” that quantum mechanics is an emergent phenomenon also
beyond the Gaussian regime. However, this “proof” overlooks the fact that quantisation
and coordinate changes do not generally commute. Therefore the previous reasoning
invoking Hamilton–Jacobi can only be seen as a plausibility argument to support the
statement that quantum mechanics must remain an emergent phenomenon also beyond
the Gaussian approximation. There is, however, abundant literature dealing with the
emergent nature of quantum mechanics, regardless of the Gaussian approximation,
using techniques that are very different from those presented here, and with a spectrum
of applicability that ranges from the smallest [23, 51] to the largest [57, 75].



Chapter 3

Emergent QM as a thermal
ensemble

This chapter is based on the article Emergent Quantum Mechanics as a Thermal En-
semble, by P. Fernández de Córdoba, J.M. Isidro and Milton H. Perea, published in
Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450068, available electronically as
arXiv:1304.6295 [math-ph], and quoted in the bibliography as ref. [30]. As
compared with the original article [30], only those minor rearrangements of the mate-
rial have been made that were explained in section 1.6.

3.1 Introduction
It has been known for long that weak interactions violate CP–invariance [16]. By the
CPT theorem of quantum field theory, time invariance must also be violated in weak
interactions; recent observations [61] confirm this expectation. Now quantum field
theory is an extension of quantum mechanics. Since time invariance is naturally imple-
mented in the latter, it would appear that only CP–violating quantum field theories can
also violate time invariance, because quantum mechanics as we know it is symmetric
under time reversal.

Actually such is not the case. A number of firmly established quantum–gravity
effects have been shown to be intrinsically irreversible; for background see, e.g., [41,
56, 93, 94, 97] and references therein. From the independent perspective of statistical
physics [77] it has also been suggested that time irreversibility should be taken into
account at the more fundamental level of the differential equations governing mechan-
ical processes. This is in sharp contrast with standard thinking, where irreversibility is
thought to arise through time–irreversible initial conditions imposed on the solutions to
time–reversible evolution equations. In view of this situation, a number of authors have
called for the due modifications to the standard quantum–mechanical formalism (for a
detailed account and original references see, e.g., [74]). Specifically, in this paper we
tackle the problem of incorporating some form of time irreversibility at the level of the
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differential equation governing evolution [77].

Closely related to this viewpoint is the emergent approach to physics. The latter
has been the subject of a vast literature (see [13] for a comprehensive review), but
let us briefly mention some noteworthy aspects. The notion of an emergent theory,
that is, the concept that a given physical theory could be an effective model of some
deeper–level degrees of freedom, has been postulated of a number of existing theories,
most notably of gravity and of quantum mechanics. In the particular case of the lat-
ter, refs. [5, 21, 22, 40, 44, 46, 48, 88] address this issue from a number of different
perspectives. The paradigm that quantisation is dissipation, implicitly present in some
of the above approaches, has been made precise in [11, 8]. Frequently, these takes on
quantum physics can be completely recast in purely classical terms [6, 54, 95]. An
alternative perspective, based on classical nonequilibrium thermodynamics [66], has
been advocated in [2, 4, 29]. Beyond quantum mechanics, the relevance of nonequilib-
rium physics for quantum gravity and strings has been emphasised recently [36, 52].

The basic physical assumption we will make use of posits that spacetime is not a
fundamental concept, but rather an emergent phenomenon instead. In fact this hypoth-
esis is not at all new (for references and background see, e.g., [56]), some of its most
recent incarnations being [67, 68, 92]. Once spacetime is no longer regarded as a fun-
damental concept, but rather as a derived notion, then every theory that makes use of
spacetime concepts automatically qualifies as emergent. Such is the case of quantum
mechanics. For our purposes it will suffice to concentrate on the time variable and
expose its emergent nature. We will therefore try to express time in terms of thermody-
namical quantities, and explore the consequences for the quantum theory. Again, the
notion of time as having a thermodynamical origin is not new [12, 17], having reap-
peared more recently in [37, 78, 81, 80]; see also [20, 35, 38, 39] for related views. New
to our approach is the notion that an emergent time variable automatically implies that
quantum theory itself qualifies as an emergent phenomenon. Specifically, the possibil-
ity of reexpressing the nonrelativistic Schroedinger equation in purely entropic terms
(instead of its usual Hamiltonian language) implies that quantum mechanics involves
some degree of coarse graining of microscopic information. In our approach, the very
existence of an entropy operator replacing the Hamiltonian operator is an inequivocal
clue of this coarse graining.

To begin with, we would like to draw attention to the following analogy. On one
hand we have the quantum–mechanical time–energy uncertainty relation

∆E∆t & ~. (3.1)

On the other hand, in the theory of irreversible thermodynamics [65, 66], one computes
the average product of the fluctuations of the entropy and the temperature for a thermo-
dynamical system slightly away from equilibrium (this is the linear regime, also called
the Gaussian approximation). This product turns out to be given by [59]

∆S∆T = kBT, (3.2)
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kB being Boltzmann’s constant. The change of variables

τ := ln

(
T

T0

)
, (3.3)

where T0 is some reference temperature, reduces (3.2) to

∆S∆τ & kB . (3.4)

In (3.4) we have taken the liberty of replacing the equality sign of (3.2) with an in-
equality; the latter is saturated in the Gaussian approximation (used in the derivation of
(3.2)). Beyond the Gaussian regime, one expects the inequality to hold strictly. As we
will see, the analogy between (3.1) and (3.4) is more than just a happy coincidence—it
is in fact anything but accidental.

3.2 Emergent time
Let t and T respectively denote nonrelativistic time and absolute temperature, as mea-
sured by an inertial observer that will be kept the same throughout. We posit that t−1

equals T modulo dimensional factors:

C

t
=
kB
~
T. (3.5)

Here C is a dimensionless numerical factor, whose value we will pick presently in or-
der to suit our needs. Modulo this C, which will play a prominent role in what follows,
the relation (3.5) between time and temperature was postulated long ago by de Broglie
[12]. A related change of variables has been used more recently in [82].

Beyond purely dimensional grounds, there are deeper motivations for Eq. (3.5).
Specifically, in [4, 29] we have established a map between quantum mechanics (in the
Gaussian approximation) and the classical theory of irreversible thermodynamics (in
the linear regime).1 In this latter theory [66] we have N independent thermodynamical
coordinates y1, . . . , yN on which the entropy S depends, andN conjugate forces Yk :=
∂S/∂yk. Let t′ denote thermodynamical time. The assumption of linearity between
the velocities ẏk and the forces Yj amounts to

ẏi =
dyi

dt′
=

N∑
j=1

LijYj , Yi =

N∑
j=1

Rij ẏ
j , Rij = (Lij)−1. (3.6)

Under the assumption that the underlying microscopic dynamics is time–reversible, the
constant matrix Lij turns out to be symmetric (Onsager’s reciprocity theorem) [65]. By
(3.6), the time rate of entropy production can be written either as a quadratic form in
the velocities, or as a quadratic form in the forces:

Ṡ =

N∑
i,j=1

Rij ẏ
iẏj =

N∑
i,j=1

LijYiYj . (3.7)

1As argued in [4, 29], the linear regime in irreversible thermodynamics is the analogue of the semiclassi-
cal, or Gaussian, approximation to quantum mechanics.
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We see that it is not the entropy S, but its time rate of production Ṡ, that plays the role
of a (harmonic) Hamiltonian, because2

Ṡ =
dS

dt′
=

1

2

N∑
i,j=1

(
Rij ẏ

iẏj + LijYiYj
)
. (3.8)

Here again we see that inverse time can be regarded as temperature. In Eqs. (3.6)–
(3.8) above, the thermodynamical time t′ and the mechanical time t are related as per
the Wick rotation, t′ = it [4, 29]. Thus we expect a thermodynamical approach to
quantum mechanics to involve the complexification of time. Multiplying (3.5) through
by H/T , one realises that (3.5) is roughly equivalent to

C
dS

dt
=
kB
~
H, (3.9)

which bridges the gap between the mechanical point of view (the right–hand side of
(3.9)) and the thermodynamical point of view (the left–hand side). The above is a
handwaving argument to justify equating the time variation of the entropy with the
energy (modulo dimensional constants); we will actually derive Eq. (3.9) later on
(see (3.26)). Eq. (3.9) is also important because it holds beyond its Gaussian limit
given in (3.8). In what follows we will work out in detail the relationship between the
mechanical and the thermodynamical points of view expressed above.

3.3 Entropy vs. energy

3.3.1 The energy picture
For reasons that will become apparent presently let us call quantum mechanics, in its
standard formulation, the energy picture of quantum mechanics; we will also use the
termH–picture.3 The evolution of pure quantum states is governed by the Schroedinger
equation,

i~
dψ

dt
= Hψ. (3.10)

The general solution to the above reads ψ(t) = U(t)ψ(0), where

U(t) := T exp

(
− i

~

∫ t

0

H(t̃)dt̃

)
, (3.11)

and T denotes the ordering operation along the evolution parameter t̃. When t ∈ R,
the time–evolution operators U(t) define a 1–parameter group of unitary operators that
ensure the reversibility of time flow in the H–picture.

2Lij is positive definite for a dissipative process, hence also Rij .
3We use the term picture instead of its synonym representation in order to avoid confusion with the

technical meaning of the latter term in quantum–mechanical contexts such as choice of basis in Hilbert
space, or group representation, or similar. Expressions such as Schroedinger picture, or Heisenberg picture,
or related terms used in standard quantum mechanics should also not be confused with our use of the word
picture.
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3.3.2 The entropy picture
The purpose of this section is to develop the entropy picture of quantum mechanics, or
the S–picture for short.

Under the combined changes of variables (3.5) and (3.3), the evolution equation
(3.10) becomes

− ikB
C

dψ

dτ
= Sψ, (3.12)

where we have defined the entropy operator S

S :=
H

T
. (3.13)

The new evolution parameter τ is dimensionless, while S carries the dimension of an
entropy. Our time variable τ coincides with the thermal time of [17, 78, 81], the latter
specified to the nonrelativistic limit correponding to the Schroedinger wave equation.
We will see presently that C ∈ C, so our evolution variable τ will actually be a com-
plexified (or Wick–rotated), nonrelativistic, dimensionless, thermal–time variable.

The solution to the evolution equation (3.12) can be written as

ψ(τ) = SC(τ)ψ(0), τ ≥ 0, (3.14)

where

SC(τ) := T exp

(
iC

kB

∫ τ

0

S(τ̃)dτ̃

)
(3.15)

and T denotes the ordering operation along the the evolution parameter τ̃ . If we now
pick C ∈ R, the evolution operators {SC(τ), τ ∈ R} in (3.15) form a 1–parameter
group of unitary operators.

As long as C remains real, Eqs. (3.12)–(3.15) above simply restate standard quan-
tum mechanics using the alternative set of variables (τ, S). It is only for C /∈ R that
time evolution can become irreversible. For this purpose let us set, dropping an irrele-
vant real normalisation,

C := eiϕ, ϕ ∈ R. (3.16)

On the complex plane, (3.16) corresponds to Wick–rotating the time axis by an angle
ϕ. Now certain special values of ϕ are known to correspond to specific physical situa-
tions. For example, ϕ = 0 corresponds to standard quantum mechanics, while ϕ = π
implements the time reverse of ϕ = 0. The value ϕ = −π/2 gives a positive real
argument within the exponential of (3.15); we will see in section 3.3.3 that this cor-
responds to the case of maximal entropy production, or maximal dissipation. Finally,
the value ϕ = π/2 gives a negative real argument within the exponential of (3.15);
this will turn out to correspond to the unphysical situation of maximal antidissipation.
All other values of ϕ therefore correspond to intermediate situations between exactly
unitary evolution (eventually, time–reversed) and maximal dissipation (eventually, an-
tidissipation). For obvious reasons we must pick the quadrant corresponding to the
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forward time direction and positive dissipation, i.e., ϕ ∈ [−π/2, 0]. Let the dimension-
less variable x ∈ R be a measure of the external gravitational field acting on the particle
of mass m described by the Hamiltonian H , such that x = 0 describes the absence of
gravitation, and x → ∞ describes the case of a strong gravitational field acting on
m. From what is known concerning the effects of gravitational fields on the quantum
mechanics of particles we expect the phase ϕ to depend on x roughly as follows:

ϕ(x) = −π
2

(
1− e−x

)
, x ≥ 0. (3.17)

Indeed, for x = 0 we have a perfectly unitary evolution (ϕ = 0) as befits quantum
particles in the absence of gravitation, while for strong gravitational fields (x → ∞)
we have ϕ → −π/2, and unitarity gives way to dissipation. Of course, the precise
profile (3.17) for the function ϕ(x) is just one out of many possible, but it captures
the right physical behaviour, namely, that gravitational fields induce thermal dissipa-
tive effects in the quantum theory, in such a way as to render quantum uncertainties
indistinguishable from statistical fluctuations [85, 86]. In the absence of a gravitational
field, any inertial observer perceives a clear–cut separation between these two types of
fluctuations.

Altogether, (3.16) and (3.17) yield

C(x) = exp

[
− iπ

2

(
1− e−x

)]
. (3.18)

For the rest of this paper we will concentrate on the limiting case of a weak gravitational
field. So we have4

C(ε) ' 1 + iε, ε = −πx
2
, x ≥ 0. (3.19)

It remains to identify a dimensionless variable x that can provide a physically rea-
sonable measure of a weak gravitational field acting on the quantum particle.5 It is
standard to parametrise such a field by the metric gµν = ηµν + hµν , where ηµν is the
Minkowski metric, and hµν a small correction. It is also convenient to introduce the
quantities hλµ := ηλαhµα and h := hαα = ησλhσλ. The linearised Einstein equations
read

−16πT νµ = ησλ
∂2

∂xσ∂xλ

(
hνµ −

1

2
ηνµh

)
, (3.20)

and we can take x = 〈h〉 as a variable that satisfies our needs, at least in the weak field
limit considered here. The angular brackets in 〈h〉 stand for the average value of the
function h over the spacetime region of interest. That 〈h〉 is nonnegative follows from
the fact that [89]

h = 4

∫
[Tαα ]

r
dxdydz, Tαα ≥ 0. (3.21)

The square brackets around the trace Tαα stand for the evaluation at a time earlier than
that of interest by the interval needed for a signal to pass with unit velocity from the

4We will henceforth drop terms of order ε2 and higher.
5In a sense, the situation analysed here is complementary to that described in ref. [53].
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element dxdydz to a point a distance r apart.

Substitution of (3.19) into (3.15) leads to

S1+iε(τ) := T exp

(
i− ε
kB

∫ τ

0

S(τ̃)dτ̃

)
, (3.22)

and the set {S1+iε(τ), τ ≥ 0} forms a 1–parameter semigroup of nonunitary operators.
In the limit ε = 0, the set {S1(τ), τ ∈ R} becomes again the 1–parameter group of
unitary operators given in (3.15) (with C = 1). The parameter ε allows for a continu-
ous transition between the unitary (ε = 0) and the nonunitary (ε 6= 0) regimes.

Our choice (3.19) yields in (3.12)

−(i + ε)kB
dψ

dτ
= Sψ. (3.23)

It makes sense to call (3.23) the entropic Schroedinger equation. Again, in the limit
ε = 0 we recover a Schroedinger–like equation,

−ikB
dψ

dτ
= Sψ. (3.24)

The ε term on the left–hand side of (3.23) can be regarded as a perturbative correction
to the derivative term in (3.24). We see that it breaks unitarity explicitly, already at
the level of the differential equation governing evolution. The physical reason for this
breakdown of unitarity is the presence of an external gravitational field, the strength of
which is parametrised by ε.

Altogether, Eqs. (3.22) and (3.23) define the S–picture of quantum mechanics.

3.3.3 S rather than H

One might argue that there is no need for the S–picture because theH–picture suffices.
Indeed it has been known for long that a simple, “phenomenological” implementation
of nonunitarity within the H–picture consists in the addition of a nonvanishing imagi-
nary part to the time variable t in (3.10):

(i + ε′)~
dψ

dt
= Hψ. (3.25)

Here ε′ ∈ R is a small (dimensionless) perturbation. What distinguishes (3.25) from
its entropic partner (3.23), and why is the latter to be preferred over the former?

In terms of the variables (t,H), invariance under translations in t is reflected in
the conservation of the Noether charge H . There exists no preferred origin t = 0 for
time. While (3.25) certainly leads to energy dissipation, the natural physical quantity
to describe dissipation is the entropy, where one expects to find dS/dt ≥ 0 instead of a
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conservation law. In the variables (τ, S) of (3.23), one expects to have no conservation
law at all; one actually finds6

dS

dt
=
kB
~

(1− iε)H, (3.26)

as anticipated in (3.9). Now, from (3.8) and the Wick rotation t′ = it, we conclude that
it is Im (dS/dt), and not Re (dS/dt), that accounts for dissipation. Indeed, recalling
(3.5), the real part of (3.26) is the usual thermodynamical definition of temperature,
∂S/∂E = 1/T . In other words, even if Re (dS/dt) = kBH/~ 6= 0, this latter equation
alone does not account for dissipation. Since

Im

(
dS

dt

)
= −εkB

~
H, (3.27)

there will be no conservation law for S under evolution in t if ε 6= 0. The same con-
clusion applies to evolution in τ . Furthermore, dissipation vanishes in the limit ε = 0
as had to be the case. Finally, for Eq. (3.27) to be consistent with the second law of
thermodynamics, we need to choose ε < 0, as anticipated in (3.19). This latter point is
obvious in the Gaussian approximation (3.8), where H is a positive–definite quadratic
form, but it also holds true beyond that approximation, because H is bounded from
below (if needed, one adds a constant to shift the energy of the groundstate, to make it
nonnegative).

As already remarked, the operators (3.22) are unitary iff ε = 0. Here we see that
their nonunitarity differs considerably in the two cases ε > 0 and ε < 0. Since τ ≥ 0,
had ε been positive, this would have turned the S1+iε(τ) into a semigroup of contrac-
tion operators [96], which would describe an unphysical antidissipative world. On the
contrary, the choice ε < 0 of (3.19) leads to the opposite behaviour, dilatation, which
is in agreement with the second law of thermodynamics.

In the H–picture, whenever the Hamiltonian is time–independent, there exist en-
ergy eigenstates φ satisfying Hφ = Eφ; the wavefunction ψ then factorises as ψ =
φ exp(−iEt/~). A similar property holds in the S–picture, assuming that H remains
t–independent, hence also τ–independent. In this latter case one can readily check that
the factorised wavefunctions

ψ = φ e(i−ε)τs, (3.28)

where φ does not depend on τ , lead to the eigenvalue equation

Sφ = skBφ, (3.29)

with s ∈ R playing the role of a dimensionless entropic eigenvalue. Again, eqs. (3.28)
and (3.29) above are in perfect agreement with the second law of thermodynamics.

To summarise, unitarity is violated in the S–picture, where ε < 0 appears, but
not in the H–picture, where the evolution equations (3.10) and (3.11) remain strictly

6Here we are assuming dH/dt = 0 for simplicity.
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valid. As such, this “change of picture” between H and S is an instance of Prigogine’s
nonunitary transformation [77]. The apparent dilemma, “Is unitarity violated or not?”,
will be resolved in section 3.3.6.

3.3.4 Uncertainty vs. the second law
It is common lore that, at least for large enough temperatures, quantum fluctuations
are negligible compared to thermal statistical fluctuations [59]. When stating that, in
the presence of a gravitational field, quantum fluctuations are inextricably linked with
thermal statistical fluctuations, one is postulating a new kind of uncertainty principle:
the indistinguishability between quantum and statistical fluctuations [14, 85, 86]. Here
we will provide an example of this indistinguishability. A look at Eq. (3.1) and a com-
parison of (3.23) with (3.10) leads one to conclude the following uncertainty relation:

∆S∆τ & kB . (3.30)

It is rewarding to see the product of thermal fluctuations found in (3.4) nicely matched
by the product of quantum–mechanical uncertainties (3.30). This is more than just a
coincidence—it is an expression of the fact that, in the presence of a gravitational field,
quantum uncertainties can be understood as statistical fluctuations possessing a ther-
mal origin [85, 86]. The above uncertainty relation leads to the factor 2kB replacing
the quantum of action ~, in perfect agreement with the results of [82].

Since τ is dimensionless, we can safely set ∆τ = 1 in (3.30) with the certainty that
this numerical value will not change upon changing units. This leads to

∆S ≥ kB > 0, (3.31)

which becomes the familiar second law of thermodynamics when written as

∆S ≥ 0. (3.32)

Strictly speaking, the equality in (3.32) is never attained, as kB > 0. However, in the
limit kB → 0 we can saturate the inequality in (3.32) and have ∆S = 0. The limit
kB → 0 has been argued to correspond to the semiclassical limit ~ → 0 of quantum
mechanics [2].7

We conclude that the quantum–mechanical uncertainty principle provides the re-
finement (3.31) of the second law of thermodynamics (3.32), to which it becomes
strictly equivalent in the semiclassical limit kB → 0.

3.3.5 Commutators vs. fluctuations
In the standard quantum–mechanical formalism, nonvanishing commutators account
for uncertainties. Fortunately for us, uncertainties can arise from fluctuations just as

7In order to conform to the conventions of ref. [92], in ref. [2] we have normalised the quantum of
entropy to the value 2πkB instead of the value 2kB used here.
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well as from commutators. In keeping with our previous arguments, here we will take
statistical fluctuations as our starting point, in order to arrive at commutators.

We will illustrate our point by means of an example. Consider a thermodynamical
system described by the temperature T , the pressure p, the volume V and the entropy
S. Now, in the Gaussian approximation, the probability P of a fluctuation ∆p, ∆V ,
∆T , ∆S is given by [59]

P = Z−1 exp

[
− 1

2kBT
(−∆p∆V + ∆T∆S)

]
. (3.33)

If we have an equation of state F (p, V, T ) = 0 we can solve for the temperature to
obtain T = g(p, V ). This allows us to rewrite (3.33) as

P = Z−1 exp

[
− 1

2kB

(
−∆p∆V

g(p, V )
+

∆T∆S

T

)]
. (3.34)

This somewhat clumsy expression can be further simplified if we assume our system
to be an ideal gas, pV = S0T :8

P = Z−1 exp

[
− 1

2kB

(
−S0

∆p∆V

pV
+

∆T∆S

T

)]
. (3.35)

Finally define the dimensionless variables

p1 := − ln

(
p

p0

)
, q1 := ln

(
V

V0

)
, p2 := ln

(
T

T0

)
, q2 :=

S

S0
, (3.36)

where p0, V0, T0, S0 are fixed reference values, to arrive at

P = Z−1 exp

[
− S0

2kB
(∆p1∆q1 + ∆p2∆q2)

]
. (3.37)

The argument of the above exponential is very suggestive. Indeed, let q1, q2 be coordi-
nates on the thermodynamical configuration space Y , and consider the (dimensionless)
symplectic form on the cotangent bundle T ∗Y given by

Ω = dp1 ∧ dq1 + dp2 ∧ dq2. (3.38)

We have
Ω = dθ, θ := p1 dq1 + p2 dq2. (3.39)

Now ∆p1∆q1+∆p2∆q2 equals the (symplectic) area of a 2–dimensional open surface
D within T ∗Y ,

∆p1∆q1 + ∆p2∆q2 =

∫
D

(dp1 ∧ dq1 + dp2 ∧ dq2) =

∫
D

dθ, (3.40)

8Here S0 is the mole number n times the gas constant R. Whether or not our system is an ideal gas is
immaterial, as the change of variables (3.36) can be modified appropriately without altering our conclusions.
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the boundary of which is ∂D 6= 0 (the surface D can be taken to be open precisely
because D is caused by a fluctuation). Applying Stokes’ theorem we can thus write for
the probability (3.37)

P = Z−1 exp

(
− S0

2kB

∫
D

Ω

)
(3.41)

= Z−1 exp

(
− S0

2kB

∫
D

dθ

)
= Z−1 exp

(
− S0

2kB

∫
∂D

θ

)
.

Starting from fluctuations, which render commutators unnecessary in the thermody-
namical description, we have arrived back at a mechanical description in terms of a
symplectic form. The inverse of the latter gives Poisson brackets and, upon quantisa-
tion, commutators. This simple example illustrates the thermodynamical analogue of
quantum commutators.

3.3.6 Quantumness vs. dissipation
To round up our presentation of quantum theory in thermodynamical terms, let us see
how suggestive Eq. (3.5) is of a closely related geometric construction.

Assume being given two copies of the complex plane C, one parametrised by the
complex coordinate z, the other by ω. Then the set formed by the two coordinate
charts {z ∈ C} and {w ∈ C} defines an (analytic) atlas covering the Riemann sphere
S2, where z = 0 (respectively, w = 0) corresponds to the north pole (respectively,
south pole). The transition between these coordinates is w = −1/z, which coincides
with (3.5) up to dimensional constants.

In this way it is very tempting to identify (t, T ) with (z, w); of course, the latter are
real 2–dimensional variables, while the former are real 1–dimensional. We may thus
regard the pair “time, temperature” as coordinates on a copy of the circle S1 that one
might call the circle of time, or the circle of temperature just as well [18]. Since the
circle S1 is a compact manifold, charting it smoothly requires at least two coordinate
charts (in our case T and t). In physical terms, temperature is the physical variable that
compactifies time, and viceversa [63]. The rotation (by 2π radians) of any circle S1

joining the north and south poles spans the whole sphere S2. This same geometrical
rotation (now by an angle ε) corresponds to the Wick rotation of (3.19). Thus Wick–
rotating the circle of time S1 by all possible angles generates the whole sphere S2.

Now, theH–picture discussed in section 3.3.1 corresponds to viewing quantum me-
chanics in the absence of dissipation. As already observed, this situation corresponds
to the absence of a gravitational field. On the Riemann sphere S2, the H–picture de-
scribes quantum mechanics with respect to an evolution parameter t that runs over the
real axis Im(z) = 0 within the coordinate chart {z ∈ C} around the north pole. Dissi-
pation appears when Wick–rotating this axis by ε < 0 as done in (3.19) and changing
variables as per (3.5), in order to work in the coordinate chart {w ∈ C} around the
south pole; this is how the S–picture of section 3.3.2 arises. The H–picture is purely
conservative (because it satisfies the conservation law dH/dt = 0), the S–picture is
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dissipative (because it satisfies the second law Im(dS/dt) ≥ 0) . We realise that the
S–picture involves dissipation/gravity, while the H–picture involves neither. This is
analogous to the equivalence principle of gravitation, whereby the action of a gravita-
tional field can be (locally) turned off by an appropriate change of coordinates.

The foregoing arguments implement a relativity of the notion of quantumness vs.
dissipation by means of U(1)–transformations. However this U(1) symmetry of Wick
rotations is broken the very moment one selects a specific value for ε. Hence the dis-
tinction between quantumness and dissipation (falsely) appears to be absolute, while
in fact it is not. In particular, just as gravity can be (locally) gauged away, so can dissi-
pation. Turn this argument around to conclude that quantumness, or alternatively dis-
sipation, can be gauged away, although never the two of them simultaneously. Quan-
tumness is gauged away in the limit ϕ → −π/2, while dissipation is gauged away in
the limit ϕ → 0.9 Moreover, our statement concerning the relativity of dissipation is
equivalent to our statement concerning the relativity of quantumness. A concept closely
related to this latter notion was put forward in [79]. Compare now the concept relativ-
ity of quantumness with its transpose quantum relativity, or quantum gravity as usually
called: beyond the pun on words, these two concepts appear to be complementary, in
Bohr’s sense of the term “complementarity”.

3.4 Conclusions to chapter 3

The approach to quantum mechanics presented in this chapter represents an attempt to
meet the requirement (demanded e.g. in [75, 85, 86], among others) that gravity be
incorporated into the foundations of quantum theory. The absence of a link between
quantum and gravitational effects in the standard formulation of quantum theory is a
feature that has been claimed to lie at the heart of some of the conceptual difficulties
facing the foundations of quantum mechanics.

Specifically, in this paper we have presented a thermodynamical approach (follow-
ing the classical theory of irreversible thermodynamics [65, 66, 77]) that provides a
viable answer to this request, at least in a certain limit to be specified below. The incor-
poration of gravitational effects in a discussion of the principles of quantum mechanics
is being addressed here through the appearance of dissipation as a gravitational effect.
In this way the time–reversal symmetry of quantum mechanics is destroyed. Nonuni-
tarity is implemented here by means of a Wick rotation; the latter is a consequence
of gravitation. In fact Wick rotations of the time axis are the quantum–mechanical
counterpart to the equivalence principle of gravitation. Just as gravity can be (locally)
gauged away, so can dissipation/quantumness.

For ease of reference, below we present Eqs. (3.5), (3.22), (3.23), (3.27) and (3.30)
again in order to summarise the relevant expressions of the S–picture of quantum me-

9Since we have systematically dropped terms of order ε2 and higher, some of our expressions may need
amendments before taking the limit ϕ→ −π/2, but this does not invalidate our reasoning.
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chanics developed in this paper. We have

eiε

t
=
kB
~
T, τ = ln

(
T

T0

)
, (3.42)

which relates inverse time and temperature through a Wick rotation by a small, dimen-
sionless parameter ε < 0. The latter encodes the strength of an external gravitational
field; in the absence of gravitation we have ε = 0. Applying the change of variables
(3.42), the usual Schroedinger equation and the uncertainty principle become

kB
dψ

dτ
= (i− ε)Sψ, S =

H

T
, ∆S∆τ & kB , (3.43)

where the Hamiltonian operator H is replaced with the entropy operator S. This en-
tropic Schrodinger equation is solved by ψ(τ) = S(τ)ψ(0), where the evolution oper-
ators S(τ) in the dimensionless parameter τ , defined as

S(τ) := T exp

(
i− ε
kB

∫ τ

0

S(τ̃)dτ̃

)
, (3.44)

satisfy a 1–parameter semigroup of nonunitary operators (above, T denotes operator
ordering along the parameter τ̃ ≥ 0). Finally the expression

Im

(
dS

dt

)
= −εkB

~
H (3.45)

relates the rate of entropy production to the Hamiltonian operator, while at the same
time fixing the sign of ε to be negative, in compliance with the second law of thermo-
dynamics.

The previous equations hold in the limiting case of a weak gravitational field acting
on a quantum particle described by the same equations. In view of the smallness of
ε in (3.44), it is only for large values of τ that one can hope to measure the appear-
ance of unitarity loss. It is important to realise that, by just switching back and forth
between the energy picture (standard quantum mechanics) and the entropy picture (as
summarised in Eqs. (3.42), (3.43), (3.44) and (3.45)), either quantumness or dissi-
pation can be gauged away, though never the two of them simultaneously. This fact
we take as a reflection of the equivalence principle of relativity, whereby gravitational
fields can be (locally) gauged away by means of coordinate changes.

The postulate (3.5) (first presented long ago by de Broglie [12] without the Wick
rotation eiε) leads to considering time as emergent a property as temperature itself . In
this way unitarity violation can also be regarded as an emergent phenomenon.
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Chapter 4

The irreversible quantum

This chapter is based on the article The Irreversible Quantum, by P. Fernández de
Córdoba, J.M. Isidro, Milton H. Perea and J. Vazquez Molina, published in Int. J.
Geom. Meth. Mod. Phys. 12 (2015) 1550013, available electronically as arXiv:
1311.2787 [quant-ph], and quoted in the bibliography as ref. [31]. As com-
pared with the original article [31], only those minor rearrangements of the material
have been made that were explained in section 1.6.

4.1 Introduction

In his Nobel Prize Lecture, Prigogine advocated an intriguing type of “complementar-
ity between dynamics, which implies the knowledge of trajectories or wavefunctions,
and thermodynamics, which implies entropy” [77]. Another Nobel Prize winner, ’t
Hooft, has long argued that quantum mechanics must emerge from some underlying
deterministic theory via information loss [49]. Entropy is of course intimately related
to information loss, hence one expects some link to exist between these two approaches
to quantum theory.

In an apparently unrelated venue, the Chapman–Kolmogorov equation [19]

F (z1)F (z2) = F (z1 + z2), (4.1)

is a functional equation in the unknown F , where z1, z2 are any two values assumed
by the complex variable z. It has the general solution

Fa(z) = eza, (4.2)

with a ∈ C an arbitrary constant. Implicitly assumed above is the multiplication rule
for complex numbers. In other words, (4.2) solves (4.1) within a space of number–
valued functions. If we allow for a more general multiplication rule such as ma-
trix multiplication (possibly infinite–dimensional matrices), then the general solution

39
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(4.2) of the functional equation (4.1) can be allowed to depend parametrically on a
z–independent, constant matrix or operator A acting on some linear space:

FA(z) = ezA. (4.3)

The functional equation (4.1), in its different guises, will play an important role in what
follows. We see that its solutions are by no means unique, depending as they do on the
space where one tries to solve the equation. Moreover, we will see that the question of
specifying one solution space or another will bear a close relation to the question posed
at the beginning—namely, the duality between thermodynamics and mechanics, on the
one hand, and the emergence property of quantum mechanics, on the other.

LetX and Y respectively stand for the configuration spaces of a mechanical system
and a thermodynamical system, the latter taken slightly away from equilibrium. We
will be interested in the quantum theory based on X , and in the theory of irreversible
thermodynamics in the linear regime based on Y [66]. There exist profound analo-
gies between these two theories [4, 30, 64, 82, 83]. Furthermore, seeming mismatches
between the two actually have a natural explanation in the context of the emergent ap-
proach to quantum theory [5, 13]; closely related topics were analysed long ago in [12]
and more recently in [15, 26, 32, 33, 34, 58, 63, 73, 90, 91]. One of these mismatches
concerns the irreversibility of time evolution in the thermodynamical picture, as op-
posed to its reversibility in the quantum–mechanical picture.

The standard quantum formalism is invariant under time reversal. This is reflected,
e.g., in the fact that the Hilbert space of quantum states L2(X ) is complex and self-
dual [96], so one can exchange the incoming state |φ〉 and the outgoing state 〈ψ| by
Hermitean conjugation, without ever stepping outside the given Hilbert space L2(X ).
On the other hand, the thermodynamical space of states is the complex Banach space
L1(Y) of complex–valued, integrable probability densities φ : Y → C. This is in
sharp contrast to the square–integrable probability density amplitudes of quantum the-
ory. Now the topological dual space to L1(Y) is the Banach space L∞(Y) [96]. These
two spaces fail to qualify as Hilbert spaces. In other words, for any |φ) ∈ L1(Y) and
any (ψ| ∈ L∞(Y),1 the respective norms ||φ||1 and ||ψ||∞ are well defined, but nei-
ther of these derives from a scalar product. All there exists is a nondegenerate, bilinear
pairing

( ·|· ) : L∞(Y)× L1(Y) −→ C (4.4)

taking the covector (ψ| and the vector |φ) into the number (ψ|φ):

(ψ|φ) :=

∫
Y
ψ∗φ. (4.5)

Under these circumstances there is no exchanging the incoming state |φ) ∈ L1(Y) and
the outgoing state (ψ| ∈ L∞(Y), as they belong to different spaces. Therefore time

1We follow the notations of ref. [4]. In particular, the round brackets in |φ) and (ψ| refer to L1(Y) and
its topological dualL∞(Y), respectively, while the angular brackets of the quantum–mechanical ket |φ〉 and
bra 〈ψ| refer to L2(X ) and its topological dual L2(X ). Concerning the measure on X and Y , see below in
the main text.
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reversal symmetry is lost. We see that dispensing with the scalar product in quantum
theory is the same as dispensing with time reversal symmetry.

We have in [4, 30] touched on several basic issues concerning a thermodynamical
formalism for quantum theory. Specifically, a map has been constructed between the
quantum mechanics of a finite number of degrees of freedom, on the one hand, and the
theory of irreversible processes in the linear regime, on the other. The current paper
elaborates further on the properties of a thermodynamical dual theory for emergent
quantum mechanics. The underlying logic might be briefly summarised as follows:
i) it has been claimed that thermodynamics is complementary, or dual, to mechanics;
ii) mechanics is symmetric under time reversal while thermodynamics is not;
iii) dispensing with time reversal symmetry is the same as dispensing with the scalar
product in quantum theory;
iv) the representation of the Chapman–Kolmogorov equation (4.1) on the quantum me-
chanical Hilbert space L2(X ) makes decisive use of the scalar product;
v) here we construct representations of (4.1) on the thermodynamical Banach spaces
L1(Y) and L∞(Y), where no scalar product is present.

For simplicity we will henceforth assume X and Y both equal to R, the latter en-
dowed with the Lebesgue measure.

The aim of our paper is not to reformulate the theory of irreversible thermodynam-
ics as originally developed in [66]. Rather, we intend to exhibit irreversibility as a key
property of quantum–mechanical behaviour.

4.2 Different representations for Chapman–Kolmogorov

4.2.1 The quantum–mechanical representation
In quantum mechanics it is customary to write (4.1) as

U(t1)U(t2) = U(t1 + t2), t ∈ R, (4.6)

and to call it the group property of time evolution. If H denotes the quantum Hamilto-
nian operator (assumed time–independent for simplicity), then (4.6) is solved by ma-
trices such as (4.3), here called time–evolution operators and defined as

U(t) := exp

(
− i

~
tH

)
. (4.7)

The solutions of (4.6) satisfy the differential equation

i~
dU

dt
= HU(t), H = i~

dU

dt

∣∣∣
t=0

. (4.8)

Comparing (4.7) with (4.3) we have z = t and A = −iH/~. The U(t) are unitary on
L2(R). In a basis of position eigenfunctions |x〉, the matrix elements of U(t) equal the
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Feynman propagator: 〈x2|U(t2 − t1)|x1〉 = K (x2, t2|x1, t1). In terms of the latter,
one rewrites the group property (4.6) as

K (x3, t3|x1, t1) =

∫
dx2K (x3, t3|x2, t2)K (x2, t2|x1, t1) . (4.9)

There is a path integral for the Feynman propagator K:

K (x2, t2|x1, t1) =

∫ x(t2)=x2

x(t1)=x1

Dx(t) exp

{
i

~

∫ t2

t1

dt L [x(t), ẋ(t)]

}
, (4.10)

where L is the classical Lagrangian function.

To summarise, the operators (4.7) provide a unitary representation of the commu-
tative group (4.6) on the Hilbert space L2(R).

4.2.2 Intermezzo
Here we recall some technicalities to be used later; a good general reference is [96].

L1(R) is the space of all Lebesgue measurable, absolutely integrable functions
φ : R −→ C, i.e., functions such that

∫
R |φ(y)|dy < ∞. This is a complex Ba-

nach space with respect to the norm ||ψ||1 :=
∫
R |φ(y)|dy.2 A denumerable basis (a

Schauder basis) exists for L1(R).

The topological dual space to L1(R) is L∞(R), a duality between the two being
given in Eqs. (4.4), (4.5). L∞(R) is the space of all Lebesgue measurable functions
ψ : R −→ C that are essentially bounded, i.e., functions that remain bounded on all
R except possibly on a set of measure zero. L∞(R) is a Banach space with respect to
the norm || · ||∞, defined as follows. A nonnegative number α ∈ R is said to be an
essential upper bound of ψ whenever the set of points y ∈ R where |ψ(y)| ≥ α has
zero measure. The norm ||ψ||∞ is the infimum of all those α:

||ψ||∞ := inf
{
α ∈ R+ : α essential upper bound of ψ

}
. (4.11)

A key property is that one can pointwise multiply ψ ∈ L∞(R) with φ ∈ L1(R) to
obtain ψφ ∈ L1(R) because

∫
R |ψφ|dy < ∞; this is used decisively in the pairing

(4.5). Another key property of L∞(R) is that it admits no Schauder basis.

The space L1(R) is canonically and isometrically embedded into its topological
bidual, i.e., L1(R) ⊂ L1(R)∗∗. Since L1(R) is nonreflexive, this inclusion is strict, a
property that will be used later on.3 Finally, the absence of a scalar product on L1(R)
and L∞(R) does not prevent the existence of unitary operators on them, the latter being
defined as those that preserve the corresponding norm.

2Just for comparison, the norm on the Hilbert space L2(R) is ||φ||2 :=
(∫

R |φ(y)|
2dy
)1/2.

3The topological complementary space to L1(R), i.e., the space Z such that L1(R)∗∗ = L1(R)⊕Z, is
known in the literature, but it will not be necessary here.
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4.2.3 The representation in irreversible thermodynamics

In statistics, the Chapman–Kolmogorov equation (4.1) was well known before the ad-
vent of quantum theory [19]. Here one is given a certain measure space Y (here as-
sumed equal to R endowed with the Lebesgue measure) and the corresponding Banach
spaces L1(R) and its topological dual L∞(R). These two will become carrier spaces
for representations of the Chapman–Kolmogorov equation (4.1).

One calls f1
(
y2
τ2

∣∣∣y1τ1 ) the conditional probability that the random variable y ∈ R
takes on the value y2 at time τ2 provided that it took on the value y1 at time τ1. Then
one usually writes the Chapman–Kolmogorov equation (4.1) in a manner similar to
(4.9),

f1

(
y3
τ3

∣∣∣y1
τ1

)
=

∫
dy2 f1

(
y3
τ3

∣∣∣y2
τ2

)
f1

(
y2
τ2

∣∣∣y1
τ1

)
, (4.12)

which expresses the Bayes rule for conditional probabilities. A representation of this
equation by means of linear operators U(τ) on L1(R) and on L∞(R) would thus have
to satisfy the algebra

U(τ1)U(τ2) = U(τ1 + τ2), (4.13)

which is again a presentation of (4.1). We can immediately read off the matrix elements
of U(τ):

(y2|U(τ2 − τ1)|y1) = f1

(
y2
τ2

∣∣∣y1
τ1

)
. (4.14)

As opposed to the quantum–mechanical case, the carrier space for the representation
of the algebra (4.13) is Banach but not Hilbert. The reason for this is that one deals
directly with probabilities rather than amplitudes.

The question arises: if one were to express the matrix (4.14) in the form given by
the general solution (4.3), then clearly one would have z = τ , but what would the op-
erator A be? It is mathematically true, though physically unsatisfactory, to claim that
A would be (proportional to) the logarithm of U(τ). One of the purposes of this paper
is to determine the operator A explicitly, and to interpret it in the terms stated in the
introduction. However, in order to do this, a knowledge of the conditional probabilities
f1

(
y2
τ2

∣∣∣y1τ1 ) is needed.

There are a number of instances in which the f1
(
y2
τ2

∣∣∣y1τ1 ) are known explicitly.
An important example is that of classical, irreversible thermodynamics of stationary,
Markov processes in the linear regime. For such processes one has [66]

f1

(
y2
τ2

∣∣∣y1
τ1

)
=

1√
2π

s/kB√
1− e−2γ(τ2−τ1)

exp

[
− s

2kB

(
y2 − e−γ(τ2−τ1)y1

)2
1− e−2γ(τ2−τ1)

]
.

(4.15)
The notation used here is that of [4]. Specifically, kB is Boltzmann’s constant, the
entropy S is a function of the extensive parameter y, and we expand S in a Taylor
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series around a stable equilibrium point. Up to quadratic terms we have

S = S0 −
1

2
sy2 + . . . , s := −d2S

dy2

∣∣∣
0
> 0. (4.16)

Moreover, the assumption of linearity implies the following proportionality between
the thermodynamical force Y := dS/dy and the flux ẏ := dy/dτ it produces [66]:

ẏ = LY, L > 0. (4.17)

The Onsager coefficient L must be positive for the process to be dissipative. Finally
γ := sL. Sometimes one also uses R := L−1, so γ = s/R.

The following path–integral representation for the conditional probabilities (4.15)
of these models is noteworthy [66]:

f1

(
y2
τ2

∣∣∣y1
τ1

)
=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{
− 1

2kB

∫ τ2

τ1

dτ L [ẏ(τ), y(τ)]

}
. (4.18)

The above exponential contains the thermodynamical Lagrangian L, defined as

L [ẏ(τ), y(τ)] :=
R

2

[
ẏ2(τ) + γ2y2(τ)

]
, ẏ :=

dy

dτ
. (4.19)

The path integral (4.18) is the thermodynamical analogue of (4.10). The corresponding
thermodynamical momentum py equalsRdy/dτ , whereR plays the role of a mass, and
the thermodynamical HamiltonianH corresponding to (4.19) reads

H =
1

2R
p2y −

Rγ2

2
y2. (4.20)

It must be borne in mind, however, that the dimensions of L andH are entropy per unit
time. With this caveat, we will continue to callH a Hamiltonian.

4.2.4 Mapping thermodynamics into quantum mechanics
For the processes considered in (4.15) we claim that one can define operators on L1(R)
and on L∞(R)

U(τ) := exp

(
− 1

2kB
τH
)

(4.21)

with H suitably chosen, such that their matrix elements coincide with those given in
(4.14). Hence the U(τ) will provide a representation of the algebra (4.13). In what
follows we construct U(τ) explicitly, but one can already expect the argumentH of the
exponential (4.21) to be some operator version of the thermodynamical Hamiltonian
function given in (4.20). For this reason we have not distinguished notationally be-
tween the two. This operator H will also turn out to be (proportional to) the unknown
operatorAmentioned after eq. (4.14). From (4.21) it follows that the thermodynamical
analogue of the quantum–mechanical equation (4.8) is

−2kB
dU(τ)

dτ
= HU(τ), H = −2kB

dU(τ)

dτ

∣∣∣
τ=0

. (4.22)
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We can resort to our previous work [4] in order to identify the operator H in its
action on L1(R) and on L∞(R). In [4] we have established a map between quantum
mechanics in the semiclassical regime, on the one hand, and the theory of classical,
irreversible thermodynamics of stationary, Markov processes in the linear regime, on
the other hand. In the mechanical picture, the relevant Lagrangian and Hamiltonian
functions are

L =
m

2

(
dx

dt

)2

− mω2

2
x2, H =

1

2m
p2x +

mω2

2
x2. (4.23)

Comparing them with their thermodynamical partners (4.19) and (4.20), we see that
the mechanical and the thermodynamical functions can be transformed into each other
if we apply the replacements4

ω ↔ γ,
mω

~
↔ s

2kB
, x↔ y, (4.24)

as well as the Wick rotation
τ = it. (4.25)

Furthermore, Boltzmann’s constant kB is the thermodynamical partner of Planck’s con-
stant ~ multiplied by 2 [82]:

~↔ 2kB . (4.26)

As a consistency check one can apply all the above replacements to (4.7) in order to
arrive at

U(t) = exp

(
− i

~
tH

)
↔ exp

(
− 1

2kB
τH
)

= U(τ). (4.27)

However, we still have to identify the operator H in its action on thermodynamical
states. This will be done in section 4.3.1.

4.2.5 Incoming states vs. outgoing states
In principle, thermodynamical states are normalised probability densities, hence ele-
ments of L1(R). However, as we will see shortly, this viewpoint must be extended
somewhat. For this purpose let us call the elements of L1(R) incoming states. Incom-
ing linear operators Oin are defined

Oin : L1(R) −→ L1(R), (4.28)

so as to map incoming states |φ) ∈ L1(R) into incoming states Oin|φ) ∈ L1(R).
Incoming states are postulated to evolve in time according to

−2kB
d|φ)

dτ
= Hin|φ), (4.29)

4While the first two replacements in Eq. (4.24) are dimensionally correct without any further assump-
tions, the third identification also requires that x and y have the same dimensions. Since this need not always
be the case, a dimensionful conversion factor must be understood as implicitly contained in the replacement
x↔ y, whenever needed.
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whereHin is an incoming linear operator, to be identified presently.

The space of outgoing states is the topological dual of L1(R), hence L∞(R). Out-
going linear operators Oout are similarly defined

Oout : L∞(R) −→ L∞(R), (4.30)

in order to map outgoing states (ψ| ∈ L∞(R) into outgoing states (ψ|Oout ∈ L∞(R).
The operator OTin that is transpose to an incoming operator Oin is defined on the topo-
logical dual space:

OTin : L∞(R) −→ L∞(R). (4.31)

In this way OTin is actually an outgoing operator Oout
5. By definition the transpose

satisfies

(ψ|OTin|φ) = (ψ|Oin|φ), ∀ (ψ| ∈ L∞(R), ∀ |φ) ∈ L1(R). (4.32)

What equation should govern the time evolution of outgoing states? Clearly it can
only be

−2kB
d(ψ|
dτ

= (ψ|HTin = (ψ|Hout, (4.33)

therefore
−2kB

d

dτ
(ψ|φ) = (ψ|HTin|φ) + (ψ|Hin|φ). (4.34)

The right–hand side of the above is generally nonzero: it expresses the irreversibil-
ity property of time evolution in thermodynamics. This is a far cry from the time–
symmetric case of standard quantum mechanics, where i~d(〈ψ|φ〉)/dt = 0.

One further point deserves attention. In standard quantum mechanics on L2(R),
the matrix element 〈ψ|O|φ〉 =

∫
dxψ∗(x)Oφ(x) naturally carries the dimensions of

the operator O; here both ψ∗(x) and φ(x) have the dimension [x]−1/2 of a probability
amplitude on R. In the thermodynamical dual to quantum theory, the incoming state
|φ) ∈ L1(R) carries the dimension [y]−1 because it is a probability density, while the
outgoing state (ψ| ∈ L∞(R) is dimensionless because it is not meant to be integrated
on its own. It is only upon taking the pairing (4.5) that (ψ| will be integrated against
O|φ). So the dimensions of (ψ|O|φ) are again correct, although the dimensional bal-
ance between incoming and outgoing states that existed in L2(R) has disappeared.

Altogether, dispensing with the scalar product in quantum theory is the same as
dispensing with time reversal symmetry. Moreover, dispensing with the scalar prod-
uct has the consequence that, as thermodynamical states, one must regard not just the
elements of L1(R) but also those of its topological dual L∞(R).

5Since the topological bidual (L1(R))∗∗ contains more than just L1(R), we stop short of stating that
“The transpose OT

out to an outgoing operator Oout is an incoming operator Oin”. The previous statement,
trivially true in finitely many dimensions and still true on L2(R), no longer holds in our context, with the
consequence that twice transposing does not give back the original operator. We will see in section 4.3.2 that
this fact has far–reaching implications.
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4.3 The thermodynamical oscillator
For mechanics we use the dimensionless coordinate x ∈ R. Then the quantum har-
monic oscillator equation on L2(R) reads(

− d2

dx2
+ x2

)
w(x) = εw(x), ε ∈ R, (4.35)

where ε is a dimensionless energy eigenvalue.

4.3.1 The oscillator on the Banach spaces L1(R) and L∞(R)
For thermodynamics we use the dimensionless coordinate y ∈ R. Then the dimension-
less thermodynamical momentum is represented as −id/dy, and the equation for the
thermodynamical oscillator reads

−
(

d2

dy2
+ y2

)
w(y) = σw(y) σ ∈ R. (4.36)

Above, σ is a dimensionless eigenvalue (entropy per unit time), which we require to be
real for physical reasons. With respect to (4.35), the only change in (4.36) is the sign of
the potential term (see (4.19) and (4.20)). Eq. (4.36) identifies the operatorH explicitly
in its action on L1(R) and L∞(R), a question posed in section 4.2.4. Specifically, for
the action of the Hamiltonian on the initial states we have

Hin = − d2

dy2
− y2 : L1(R) −→ L1(R). (4.37)

The operatorHout is formally the same asHin, but it acts on the dual space:

Hout = − d2

dy2
− y2 : L∞(R) −→ L∞(R). (4.38)

In order to solve (4.36) we first look for a factorisation of w(y) in the form

w(y) = h(y) exp(αy2), α ∈ C, (4.39)

where α is some constant to be picked appropriately. With (4.39) in (4.36) one finds

d2

dy2
h(y) + 4αy

d

dy
h(y) +

[
(2α+ σ) + (4α2 + 1)y2

]
h(y) = 0. (4.40)

The choice α = i/2 simplifies (4.40) considerably:

d2

dy2
h(y) + 2iy

d

dy
h(y) + (i + σ)h(y) = 0. (4.41)
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Finally the change of variables z = ei
3π
4 y reduces (4.41) to

d2

dz2
h̃(z)− 2z

d

dz
h̃(z)− (1− iσ)h̃(z) = 0, (4.42)

where we have defined h̃(z) := h
(

e−i
3π
4 z
)

= h(y). Now (4.42) is a particular
instance of the Hermite differential equation on the complex plane,

H ′′(z)− 2zH ′(z) + 2νH(z) = 0, ν ∈ C. (4.43)

In our case we have 2ν = −1+iσ with σ ∈ R, so ν /∈ N. When ν /∈ N two linearly in-
dependent solutions to the Hermite equation are given by the Hermite functions Hν(z)
and Hν(−z), where [60]

Hν(z) =
1

2Γ(−ν)

∞∑
n=0

(−1)nΓ
(
n−ν
2

)
n!

(2z)n. (4.44)

The above power series defines an entire function of z ∈ C for any value of ν ∈ C. Its
asymptotic behaviour is [60]:

Hν(z) ∼ (2z)ν −
√
πeiπν

Γ(−ν)
z−ν−1 ez

2

, |z| → ∞, π/4 < arg(z) < 5π/4. (4.45)

In (4.45) we have dropped subdominant terms, keeping only the leading contributions;
the angular sector π/4 < arg(z) < 5π/4 is imposed on us by the change of vari-
ables z = ei

3π
4 y made above for y ∈ R.

Altogether, two linearly independent solutions to (4.36) corresponding to the eigen-
value σ ∈ R are given by w±σ (y), where

w±σ (y) := H− 1
2+

iσ
2

(
±ei

3π
4 y
)

eiy
2/2. (4.46)

By (4.45), their asymptotic behaviour for |y| → ∞ is

w±σ (y) ∼
(
±2ei

3π
4 y
)− 1

2+
iσ
2

eiy
2/2 −

√
πe−π(σ+i)/2

Γ
(
1−iσ
2

) (
±ei

3π
4 y
)− 1

2−
iσ
2

e−iy
2/2.

(4.47)
We are looking for eigenfunctions within L1(R) and/or L∞(R). Eqn. (4.47) proves
that w±σ (y) ∈ L∞(R) but w±σ (y) /∈ L1(R).

4.3.2 The point spectrum of real eigenvalues
Summarising, the operator −d2/dy2 − y2 on L∞(R) has a point spectrum containing
the whole real line R.6 This subset (the real line R) of the point spectrum is twice de-
generate, the (unnormalised) eigenfunctions corresponding to σ ∈ R being given in Eq.

6Here we are restricting our attention to the point spectrum; for our purposes we need not compute the
full spectrum. Although the point spectrum of our operator on L∞(R) also contains nonreal eigenvalues
(see Eq. (4.48)), for physical reasons explained in the text we are only interested in real eigenvalues.
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(4.46). The same operator acting on L1(R) has a void point spectrum. This latter con-
clusion is not as tragic as it might seem at first sight—on the contrary, everything fits
together once one realises that evolution in thermodynamical time τ is irreversible, and
that the space L1(R), which admits a Schauder basis, has a topological dual L∞(R)
admitting no Schauder basis. Let us analyse these facts from a physical and from a
mathematical viewpoint.

Physically, an empty point spectrum on L1(R) just means that there can be no in-
coming eigenstates. Moreover, no incoming state can ever evolve into an incoming
eigenstate under thermodynamical evolution. This is an expression of irreversibility.
However, as a result of evolution in τ , one can perfectly well obtain outgoing eigen-
states. The latter remain outgoing eigenstates under thermodynamical evolution.

Mathematically, in standard quantum mechanics on L2(R) one is used to taking
the transpose of a matrix by exchanging rows with columns. Implicitly understood
here is the existence of Schauder bases in the space of L2(R) and in its topological
dual (again L2(R)). Once one diagonalises an operator, how can it be that its transpose
is not diagonal as well? While this cannot happen in L2(R), this can perfectly well
be the case when dealing with the spaces L1(R) and L∞(R), because L1(R) admits
a Schauder basis while L∞(R) does not. In turn, this is a consequence of the fact
that we are renouncing probability density amplitudes (elements of L2(R)) in favour
of probability densities (elements of L1(R)), as befits a thermodynamical description
of quantum theory.

One would like to identify the thermodynamical analogue of the quantum mechan-
ical vacuum state; one expects to somehow map the quantum–mechanical state of least
energy, or vacuum, into the thermodynamical state of maximal entropy. Let us recall
that the (unnormalised) quantum–mechanical vacuum wavefunction is exp(−x2/2).
The Wick rotation (4.25) introduces the imaginary unit, giving us the term exp(iy2/2)
in (4.46). Now ν = −1/2 + iσ/2 = 0 only when σ = −i, a possibility we have
excluded per decree. Let us temporarily sidestep this decree and observe that

−
(

d2

dy2
+ y2

)
e±iy

2/2 = ∓i e±iy
2/2 (4.48)

is very reminiscent of the equation governing the quantum–mechanical vacuum. The
thermodynamical density corresponding to the state exp(±iy2/2) equals the constant
unit function on R, which is nonnormalisable under || · ||1 in L1(R) but carries fi-
nite norm under || · ||∞ in L∞(R). As a perfectly uniform probability distribution,
exp(±iy2/2) is the thermodynamical state that maximises the entropy. All the eigen-
states in (4.46) are thermodynamical excitations thereof, hence they carry less entropy.
Of course, we cannot allow the eigenvalues σ = ±i within our point spectrum, but
the above discussion is illustrative because, by Eq. (4.47), all our thermodynamical
eigenstates (4.46) tend asymptotically to the states y−1/2 exp

[
± i

2

(
σ ln(y) + y2

)]
(or

linear combinations thereof). In other words, all our thermodynamical eigenstates can
be interpreted as fluctuations around a state of maximal entropy.
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4.3.3 Irreversibility vs. nonunitarity
A key consequence of irreversibility is nonunitarity. Contrary to the operators U(t)
of (4.7), which are unitary on L2(R), the operators U(τ) of (4.21) are nonunitary on
L∞(R).

Nonunitarity is readily proved. Let wσ ∈ L∞(R) be such that Houtwσ = σwσ .
Since σ ∈ R we have, by (4.21),

U(τ)wσ = exp

(
− τσ

2kB

)
wσ, τσ ∈ R, (4.49)

hence

||U(τ)wσ||∞ = exp

(
− τσ

2kB

)
||wσ||∞, τσ ∈ R, (4.50)

which proves our assertion. To summarise: combining (4.21), (4.37) and (4.38) we
find, after reinstating dimensional factors, that the operators

U(τ) = exp

[
τ

2kB

(
1

2R

d2

dy2
+
Rγ2

2
y2
)]

, τ ≥ 0, (4.51)

provide a nonunitary, infinite–dimensional representation of the Chapman–Kolmogorov
semigroup (4.13) on L∞(R). The space L1(R) also carries an infinite–dimensional
representation of (4.13) on which the operators (4.51) act.

It is interesting to observe that the eigenfunctions in (4.48), which we have dis-
carded for reasons already explained, circumvent the above proof because their eigen-
values are purely imaginary. Each one of them actually provides a 1–dimensional,
unitary representation of (4.13) on L∞(R).

4.4 Conclusions to chapter 4
Classical thermodynamics is the paradigm of emergent theories. It renounces the de-
tailed knowledge of a large number of microscopic degrees of freedom, in favour of a
small number of macroscopic averages that retain only some coarse–grained features
of the system under consideration. It has been claimed in the literature that quantum
mechanics must be an emergent theory [5, 13, 49]. As one further piece of evidence
in support of this latter statement, in this paper we have developed a thermodynamical
formalism for quantum mechanics.

In the usual formulation of quantum theory, one is concerned with the matrix el-
ements 〈ψ|O|φ〉 of some operator O, where the incoming state |φ〉 belongs to L2(R)
and the outgoing state 〈ψ| belongs to the topological dual space, again L2(R).

In the thermodynamical theory that is dual to quantum mechanics one is again con-
cerned with matrix elements of the type (ψ|O|φ). However, now the incoming state



4.4. CONCLUSIONS TO CHAPTER 4 51

is not square integrable but just integrable, |φ) ∈ L1(R), while the outgoing state
(ψ| ∈ L∞(R) belongs to a totally different space. Neither L1(R) nor its topological
dual L∞(R) qualify as a Hilbert space, because their respective norms do not derive
from a scalar product; they are just Banach spaces. The absence of a scalar product
is the hallmark of irreversibility. Indeed the thermodynamics that is dual to quantum
mechanics is that of irreversible processes (considered here in the linear regime).

One is often interested in the case when the operatorO is the time evolution opera-
tor U connecting the incoming and the outgoing states. Not being allowed to exchange
the incoming and the outgoing states in the transition probability (ψ|U|φ), because they
belong to different spaces, emphasis falls on the process U connecting these two. Ir-
reversibility manifests itself through the nonunitarity of the representation constructed
here for the Chapman–Kolmogorov equation. The latter is the functional equation sat-
isfied by U .

Incoming states |φ) ∈ L1(R) are probability densities, as opposed to the prob-
ability density amplitudes |φ〉 ∈ L2(R) of standard quantum theory. Outgoing states
(ψ| ∈ L∞(R) have a different physical interpretation. The norm ||·||∞ can be regarded
as a probability density that is not meant to be integrated. Indeed a general function
ψ ∈ L∞(R) need not be normalisable under the norms || · ||1 and || · ||2 on L1(R) and
L2(R) respectively. There is nothing unusual about this—scattering states in standard
quantum theory also give rise to nonnormalisable probability densities.

As an example, in section 4.3.1 we have worked out the point spectrum for the
thermodynamical harmonic oscillator. This implies solving the Schroedinger equation
for the repulsive potential V (y) = −y2, the wrong sign being due to the Wick rota-
tion connecting irreversible thermodynamics to mechanics. Not surprisingly, the point
spectrum is empty when diagonalising the Hamiltonian on the space L1(R), while ex-
hibiting rich features on the space L∞(R). In particular, all our eigenstates turn out to
be nonnormalisable under the norms || · ||1 and || · ||2 on L1(R) and L2(R) respectively,
hence they all are analogous to scattering states in standard quantum theory. However
all our eigenstates are normalisable under the norm || · ||∞ of L∞(R).

An apparently striking feature is the reluctance of incoming states to build eigen-
states of the Hamiltonian, as seen in section 4.3.2. This apparent difficulty disappears
once one realises that outgoing states make perfectly good eigenstates. Furthermore,
the existence of outgoing states that cannot be reached by the time evolution of any
incoming state whatsoever is another sign of irreversibility. We cannot renounce ir-
reversibility because we have programatically dispensed with time reversal symmetry.
Hence incoming eigenstates must go.
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Chapter 5

Overall summary

A very brief summary of the points analysed in this PhD thesis could be as follows:

i) In chapter 2, the emergent nature of quantum mechanics is shown to follow from
a precise correspondence with the classical theory of irreversible thermodynamics.
Specifically, the linear (or Gaussian) regime of the latter can be put in a 1-to-1 map
with the semiclassical approximation to quantum mechanics. The very possibility of
reinterpreting quantum mechanics as a thermodynamics proves that the former is an
emergent phenomenon. That is, quantum mechanics is a coarse–grained description of
some underlying degrees of freedom.

ii) In chapter 3 we start recalling that it has been argued that gravity acts dissi-
patively on quantum–mechanical systems, inducing thermal fluctuations that become
indistinguishable from quantum fluctuations. This has led some authors to demand that
some form of time irreversibility be incorporated into the formalism of quantum me-
chanics. As a tool towards this goal we propose a thermodynamical approach to quan-
tum mechanics, based on Onsager’s classical theory of irreversible processes and on
Prigogine’s nonunitary transformation theory. An entropy operator replaces the Hamil-
tonian as the generator of evolution. The canonically conjugate variable corresponding
to the entropy is a dimensionless evolution parameter. Contrary to the Hamiltonian,
the entropy operator is not a conserved Noether charge. Our construction succeeds in
implementing gravitationally–induced irreversibility in the quantum theory.

iii) In chapter 4 we have elaborated on the existing notion that quantum mechanics
is an emergent phenomenon, by presenting a thermodynamical theory that is dual to
quantum mechanics. This dual theory is that of classical irreversible thermodynam-
ics. The linear regime of irreversibility considered here corresponds to the semiclas-
sical approximation in quantum mechanics. An important issue we address is how
the irreversibility of time evolution in thermodynamics is mapped onto the quantum–
mechanical side of the correspondence.

53



54 CHAPTER 5. OVERALL SUMMARY



Bibliography

[1] D. Acosta, On the Emergent Aspects of Quantum Mechanics, in Relation to the
Thermodynamics of Irreversible Processes and Emergent Gravity, PhD thesis,
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[2] D. Acosta, P. Fernández de Córdoba, J.M. Isidro and J.L.G. Santander, An En-
tropic Picture of Emergent Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys.
9 (2012) 1250048, arXiv:1107.1898 [hep-th].
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