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The range of the restriction map for a multiplicity variety in

Hörmander algebras of entire functions

José Bonet, and Carmen Fernández

Abstract

Characterizations of interpolating multiplicity varieties for Hörmander algebras Ap(C)
and A0

p(C) of entire functions were obtained by Berenstein, Li and Vidras [3] and [4] for a
radial subharmonic weight p with the doubling property. In this note we consider the case
when the multiplicity variety is not interpolating, we compare the range of the associated
restriction map for two weights q ≤ p and investigate when the range of the restriction
map on Ap(C) or A0

p(C) contains certain subspaces associated in a natural way with the
smaller weight q.

1 Introduction and preliminaries

In this paper we consider the following question on interpolation for radial Hörmander alge-
bras of entire functions on the complex plane: Assume that a multiplicity variety V is not
necessarily interpolating on a radial Hörmander algebra Ap(C) (resp. A0

p(C)), in this case
the restriction map (see the precise definitions below) needs not be surjective. Let q ≤ p
be another weight. We investigate conditions to ensure that the sequence space canonically
associated with the interpolation for Aq(C) (resp. A0

q(C)) is contained in the range of the
restriction map defined on the bigger space Ap(C) (resp. A0

p(C)). Our results complement
recent work by Ounäıes [18] and Massaneda, Ortega-Cerdà and Ounäıes [13].

A function p : C →]0,∞[ is called a weight function if it satisfies the following properties:
(w1) p is continuous and subharmonic, (w2) p is radial, that is, p(z) = p(|z|), z ∈ C, (w3)
log(1 + |z|2) = o(p(z)) as |z| → ∞; and (w4) p is doubling, i.e. p(2z) = O(p(z)) as |z| → ∞.
We use here and in the rest of the paper Landau’s notation of little o-growth and capital
O-growth. The space of entire functions is denoted by H(C). It is a Fréchet space when it is
endowed with the topology of uniform convergence on the compact sets in C.

Given a weight p, we define the following weighted spaces of entire functions (see e.g. [5],
[2], [3], [4]):

Ap(C) := {f ∈ H(C) : there is A > 0 : sup
z∈C

|f(z)| exp(−Ap(z)) < ∞},

endowed with the inductive limit topology, for which it is a (DFN)-algebra (cf. [14]); and
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A0
p(C) := {f ∈ H(C) : for all ε > 0 : sup

z∈C
|f(z)| exp(−εp(z)) < ∞},

endowed with the projective topology, for which it is a nuclear Fréchet algebra (cf. [15]).
For undefined notation on complex analysis we refer the reader to [1] and [2], and for

functional analysis to [16].
Clearly A0

p(C) ⊂ Ap(C). Condition (w3) implies that A0
p(C) contains the polynomials, and

condition (w4) implies that the spaces are stable under differentiation. Weighted algebras of
entire functions of this type have been considered since the work of Berenstein and Taylor [5]
by many authors; see e.g. [2] and the references therein. Braun, Meise and Taylor studied in
[8], [14] and [15] the structure of (complemented) ideals in these algebras. A characterization
of closed principal ideals in non-radial Hörmander algebras in of holomorphic functions of
several variables is provided in [7].

Here are some examples: When p(z) = |z|s, then Ap(C) consists of all entire functions of
order s and finite type or order less than s; and A0

p(C) is the space of all entire functions of
order at most s and type 0. For s = 1, Ap(C) is the space of all entire functions of exponential
type, and A0

p(C) is the space of entire functions of infraexponential type.
Throughout this paper V = {(zk,mk)|k ∈ N} denotes a multiplicity variety, that is, a

sequence of different points (zk)k with limk→∞ |zk| = ∞ and a sequence (mk)k of positive
integers corresponding to the multiplicities at the points zk.

By Weierstrass interpolation theorem (see e.g. [1]), the restriction map

RV : H(C) →
∏
k∈N

Cmk , RV (g) :=

(g(l)(zk)

l!

)
0≤l<mk


k

,

is surjective.
We associate with a multiplicity variety V = {(zk,mk)|k ∈ N} and a weight p the following

sequence spaces

Ap(V ) := {a = (ak,l) ∈
∏
k∈N

Cmk | there is B > 0 : sup
k∈N

mk−1∑
l=0

|ak,l| exp(−Bp(zk)) < ∞},

endowed with the inductive limit topology; and

A0
p(V ) := {a = (ak,l) ∈

∏
k∈N

Cmk | for all ε > 0 : sup
k∈N

mk−1∑
l=0

|ak,l| exp(−εp(zk)) < ∞},

endowed with the projective topology, for which it is a Fréchet space.
It is well-known that RV (Ap(C)) ⊂ Ap(V ) and RV (A0

p(C)) ⊂ A0
p(C); see [5], [2], [3], [4]. A

multiplicity variety is called interpolating for Ap(C) (resp. for A0
p(C)) if RV (Ap(C)) = Ap(V )

(resp. RV (A0
p(C)) = A0

p(C)). After the seminal work by Berenstein and Taylor [5], a geometric
characterization of the interpolating varieties for Ap(C) (resp. for A0

p(C)) was obtained by
Berenstein and Li [3] (resp. Berenstein, Li and Vidras [4]). An easier proof was presented by
Ounäıes [17] (see also [11]). These geometric characterizations were formulated in terms of
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the counting function and the integrated counting function of the multiplicity variety V , that
are defined as follows: For z ∈ C and r > 0, we set

nV (z, r) :=
∑

|z−zk|≤r

mk,

and

NV (z, r) :=

∫ r

0

nV (z, t) − nV (z, 0)

t
dt + nV (z, 0) log r.

Here is the geometric characterizations of interpolating varieties mentioned above. We
include them explicitly, since they will be used repeatedly in the paper.

Theorem 1.1 Let V = {(zk,mk)|k ∈ N} be a multiplicity variety and let p be a weight.
(a) (Berenstein, Li [3]) V is interpolating for Ap(C) if and only if

(i) NV (r, 0) = O(p(r)) as r → ∞, and

(ii) NV (zk, |zk|) = O(p(zk)) as k → ∞.

(b) (Berenstein, Li and Vidras [4]) V is interpolating for A0
p(C) if and only if

(i) NV (r, 0) = o(p(r)) as r → ∞, and

(ii) NV (zk, |zk|) = o(p(zk)) as k → ∞.

This result has been extended in different directions. Massaneda, Ortega-Cerdà and
Ounäıes [12] gave a geometric description of the interpolating varieties for the algebra of
Fourier transforms of distributions and Beurling ultradistributions with compact support on
the real line, improving earlier results by Ehrenpreis, Malliavin and Squires. This corresponds
to spaces of type Ap(C) for non radial weights p. The case of Roumieu ultradistributions was
studied by Zio lo [21]. The arguments of Berenstein and Li [3] were simplified by Hartmann
and Massaneda [11] and by Ounäıes [17] using Hörmander’s L2 estimates for the ∂ equation,
treating also weights that are radial but not doubling. In [18] Ounäıes uses divided differences
to characterize those sequences that are in the range RV (Ap(C)) of the restriction map RV

when the multiplicity variety satisfies the assumption (a) (i) in Theorem 1.1. This work was
continued later by her jointly with Massaneda and Ortega-Cerdà in [13]. Traces of functions in
Bargmann-Fock spaces on lattices of critical density are investigated by Buckley, Massaneda
and Ortega-Cerdà in [10]. We also refer the reader to the references in the aforementioned
papers.

Let us formulate precisely the problems considered in this note. Let q and p two weights
such that q(z) = O(p(z)) as |z| → ∞. In this case, Aq(C) ⊂ Ap(C) and Aq(V ) ⊂ Ap(V ).
By Theorem 1.1 (a), if V is interpolating for Aq(C), then it is interpolating for Ap(C). Now
assume that the two weights are really different, i.e. q(z) = o(p(z)) as |z| → ∞. Is there a
multiplicity variety V such that V is interpolating for Ap(C), but not for Aq(C)? The answer
is affirmative as we show in Theorem 2.4. As a complement to this result, we prove that if
the range RV (Ap(C)) contains the sequence space Aq(V ) associated with the weight q, then
V is interpolating for Ap(C). In other words, if every sequence in the space Aq(V ) can be
interpolated by a function in Ap(C), then every sequence in the larger space Ap(V ) can be
interpolated by a function in Ap(C). See Proposition 2.2. A somewhat similar phenomenon
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appeared in the range of convolution operators on spaces of non quasianalytic functions; cf.
[6]. The corresponding results for the Fréchet spaces A0

q(C) ⊂ A0
p(C) are investigated in

Section 3.

2 Subspaces of the restriction map on Ap(C)

Lemma 2.1 Let V = {(zk,mk)|k ∈ N} a multiplicity variety and let q and p be weights such
that q(z) = O(p(z)) as |z| → ∞. If the restriction map RV satisfies Aq(V ) ⊂ RV (Ap(C)), then

there is a sequence (fk)k ⊂ Ap(C) such that f
(l)
k (zj) = 0, 0 ≤ l < mj, for each k and j, except

f
(mk−1)
k (zk)/(mk − 1)! = 1; and there is a constant A > 0 such that |fk(z)| ≤ A exp(Ap(z))
for each z ∈ C and each k ∈ N.

Proof. The space Ap(C) is the inductive limit of the sequence of Banach spaces (Ap,n(C))n
defined as follows

Ap,n(C)) := {f ∈ H(C) | ||f ||p,n := sup
z∈C

|f(z)| exp(−np(z)) < ∞}.

The Banach sequence space

X1 := {a = (ak,l) ∈
∏
k∈N

Cmk | ||a||1 := sup
k∈N

mk−1∑
l=0

|ak,l| exp(−q(zk)) < ∞}

is continuously included in the space Aq(V ). By assumption X1 ⊂ Aq(V ) ⊂ RV (Ap(C)) ⊂
∪n∈NRV (Ap,n(C))). Since the inclusion i : Aq(V ) → Ap(V ) is continuous, we can apply
Grothendieck factorization theorem [16, Theorem 24.33] to find n ∈ N such that X1 ⊂
RV (Ap,n(C)) and moreover, the unit ball B1 of X1 is contained in the image by RV of a
bounded subset C of Ap,n(C). The sequence (ak)k defined by ak := (akj,l), a

k
j,l = 0, 0 ≤ l < mj ,

for each k and j, except akmk−1,k = 1, is contained in B1. Since B1 ⊂ RV (C), for each k ∈ N
we can find fk ∈ C such that RV (fk) := ak. Since C is bounded in Ap,n(C), it is easy to see
that the sequence (fk)k satisfies all the required conditions. 2

Proposition 2.2 Let V = {(zk,mk)|k ∈ N} a multiplicity variety and let q and p be weights
such that q(z) = O(p(z)) as |z| → ∞. If the restriction map RV satisfies Aq(V ) ⊂ RV (Ap(C)),
then RV (Ap(C)) = Ap(V ), i.e. V is interpolating for Ap(V ).

Proof. The proof follows the steps of the proof of Theorem 1.2.7 in Section 1.2 of Ounäıes’

thesis [19]. We first apply Lemma 2.1 to find g0 ∈ Ap(C) such that g
(l)
0 (z1) = 0 for 0 ≤ l < m1,

except g
(m1−1)
0 (z1) = 1 and g

(l)
0 (zj) = 0 for all j > 1 and 0 ≤ l < mj . The function

f(z) := (z − z1)g0(z), z ∈ C, belongs to Ap(C) by conditions (w3) and (w4), f ̸= 0, and the
multiplicity variety V is contained in the set of zeros Z(f) of f . We can now apply Jensen’s
formula, as in the proof of [19, Lemma 1.2.2], to conclude that NV (r, 0) = O(p(r)) as r → ∞;
i.e. condition (a) (i) in Theorem 1.1 is satisfied.

Now we check that condition (a) (ii) in Theorem 1.1 also holds. To do that, we apply
Lemma 2.1 to find the sequence (fk)k ⊂ Ap(C) satisfying the conditions stated there. Set
gk(z) := (z − zk)fk(z), z ∈ C, k ∈ N. By conditions (w3) and (w4), there is a constant B, not
depending on k, such that |gk(z)| ≤ B exp(B(p(z) + p(zk))) for each z ∈ C and each k ∈ N.
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If |z− zk| ≤ |zk|, we have p(z) ≤ p(2|zk|) ≤ Cp(zk) +C for some constant C > 0 by condition
(w4). Therefore we can apply Jensen’s formula to gk(z)/(z − zk)mk in the disc of center zk
and radius |zk| as in the proof of [19, Theorem 1.2.7] to conclude that there is D > 0 such
that NV (zk, |zk|) ≤ Dp(zk) + D for all k ∈ N, and NV (zk, |zk|) = O(p(zk)) as k → ∞. 2

In the proof of Theorem 2.4 below we will apply [3, Corollary 4.11]: If a multiplicity variety
V = {(zk,mk)|k ∈ N} satisfies |zk+1| ≥ L|zk|, k ∈ N, for some constant L > 1, then V is
interpolating for Ap(C) if and only if NV (r, 0) = O(p(r)) as r → ∞ and mk log |zk| = O(p(zk))
as k → ∞.

Lemma 2.3 If p is a weight such that p(t) = 0 for each t ∈ [0, 1], then the function p(t)/ log t
is non-decreasing and tends to ∞ as t → ∞.

Proof. The convergence of p(t)/ log t to ∞ as t → ∞ follows from condition (w3) of the
weight. On the other hand, since p is radial, continuous and subharmonic by conditions (w1)
and (w2), the function φ(t) := p(et), t ∈ [0,∞[ is increasing, convex and satisfies φ(0) = 0.
We can apply a well-known result, see e.g. [20, Lemma 4.42], to conclude that φ(t)/t, t ≥ 0,
is non-decreasing. This implies the conclusion. 2

Theorem 2.4 If q and p are weights such that q(z) = o(p(z)) as |z| → ∞, then there is a
multiplicity variety V = {(zk,mk)|k ∈ N} such that V is interpolating for Ap(C), but not for
Aq(C).

Proof. Passing to an equivalent weight, we may assume without loss of generality that
p(t) = 0 for each t ∈ [0, 1]. Therefore Lemma 2.3 implies that p(t)/ log t is non-decreasing.
We can also assume, passing again to an equivalent weight, that q ≤ p. We start with the
construction of the multiplicity variety by selecting r1 > e such that q(r1) > 1, and we set
m1 := [q(r1)], where [α] denotes the integer part of the real number α ≥ 0. Now find r2 > er1
such that q(r2)

log r2
> 2p(r1). This is always possible by condition (w3) for the weight q. Now we

select the multiplicity m2 :=
[
p(r2)
log r2

]
−m1. Since

p(r2)

log r2
≥ q(r2)

log r2
> 2p(r1) > m1 + 1,

we have m2 > 0. Proceeding by induction, suppose that r1 < ... < rk and m1, ...,mk are
already selected. We first apply condition (w3) for the weight q and the assumption q = o(p)
to select rk+1 > erk such that

q(rk+1)

log rk+1
> 2p(rk) and p(rk+1) ≥ 2k+1q(rk+1).

We set

mk+1 :=

[
p(rk+1)

log rk+1

]
−
[
p(rk)

log rk

]
.

As
p(rk+1)

log rk+1
≥ q(rk+1)

log rk+1
> 2p(rk) > 2

p(rk)

log rk
,
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we conclude mk+1 > 0. We now show that the multiplicity variety V = {(rk,mk)|k ∈ N}
satisfies the desired properties. We first prove that

(m1 + ... + mk) ≤ p(r), rk ≤ r < rk+1, k ∈ N.

Indeed, for rk ≤ r < rk+1, we have

(m1 + ... + mk) ≤
[
p(rk)

log rk

]
≤ p(r)

log r
.

Here the last inequality follows because p(t)/ log t is non-decreasing. In particular we have
mk log rk ≤ p(rk) for each j ∈ N. On the other hand, it is easy to see from the definition of
the integrated counting function that, for rk ≤ r < rk+1, NV (r, 0) ≤ (m1 + ... + mk) log r.
Therefore NV (r, 0) ≤ p(r) for each r ≥ r1. By construction rk+1 > erk for each k ∈ N, hence
we can apply [3, Corollary 4.11] to conclude that V is interpolating for Ap(C). It remains to
prove that V is not interpolating for Aq(C). To see this, observe that for each k ∈ N we have

mk log rk
q(rk)

≥ p(rk)

q(rk)
− log rk

q(rk)
− p(rk−1)

log rk−1

log rk
q(rk)

.

By our inductive construction, this implies

mk log rk
q(rk)

≥ 2k − log rk
q(rk)

− 1

2 log rk−1
,

that tends to infinity as k → ∞ by condition (w3) of the weight q. We can apply again [3,
Corollary 4.11] to conclude that V is not interpolating for Aq(C). 2

3 Subspaces of the restriction map on A0
p(C)

Proposition 3.1 Let V = {(zk,mk)|k ∈ N} a multiplicity variety and let q and p be weights
such that q(z) = O(p(z)) as |z| → ∞. If the restriction map RV satisfies A0

q(V ) ⊂ RV (A0
p(C)),

then RV (A0
p(C)) = A0

p(V ), i.e. V is interpolating for A0
p(V ).

Proof. We consider on RV (A0
p(C)) the quotient topology τ with respect to the surjective

linear map RV : A0
p(C) → RV (A0

p(C)). The space (RV (A0
p(C)), τ) is a Fréchet space by

[16, Proposition 25.3] with a topology finer than the one induced by A0
p(V ). By assumption

A0
q(V ) ⊂ RV (A0

p(C)). The inclusion i : A0
q(V ) → (RV (A0

p(C)), τ) has closed graph, since the
inclusion i : A0

q(V ) → A0
p(V ) is continuous. Hence, by the closed graph theorem [16, Theorem

8.8], i : A0
q(V ) → (RV (A0

p(C)), τ) is continuous. Let B be a bounded subset of A0
q(V ). Since

A0
q(V ) is nuclear, in particular Montel, B is relatively compact in (RV (A0

p(C)), τ). By [16,
Corollary 26.22], there is a compact, hence bounded, subset C of A0

p(C) such that B ⊂ RV (C).
Accordingly, selecting an appropriate bounded sequence in A0

q(V ) of elements with coordinates

0′s and 1′s, we find a bounded sequence (fk)k ⊂ A0
p(C) such that f

(l)
k (zj) = 0, 0 ≤ l < mj ,

for each k and j, except f (mk−1)(zk)/(mk − 1)! = 1. Since the sequence is bounded in A0
p(C),

for each n ∈ N there is An > 0 such that

|fk(z)| ≤ An exp(
1

n
p(z)), z ∈ C, k ∈ N.
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Setting gk(z) := (z − zk)fk(z), k ∈ N, we can apply condition (w3) of the weight to conclude
that for each n ∈ N there is Bn > 0 such that

|fk(z)| ≤ Bn exp(
1

n
p(z) +

1

n
p(zk)), z ∈ C, k ∈ N.

After these preparations, it is possible to proceed similarly as we did in the proof of Propo-
sition 2.2 to conclude that V satisfies conditions (b) (i) and (ii) of Theorem 1.1, thus V is
interpolating for A0

p(V ).
2

Theorem 3.2 If q and p are weights such that q(z) = o(p(z)) as |z| → ∞, then there is a
multiplicity variety V = {(zk,mk)|k ∈ N} such that V is interpolating for A0

p(C), but not for
A0

q(C).

Proof. Proceeding as in the proof of [15, Lemma 2.3] (see also [9, Lemmas 1.6 and 1.7]) we
can find another weight m such that q(z) = o(m(z)) and m(z) = o(p(z)) as |z| → ∞. By
Theorem 2.4 there is a multiplicity variety V which is interpolating for Am(C) but not for
Aq(C). Since m(z) = o(p(z)) as |z| → ∞, we can apply Theorem 1.1 (a) and (b) to conclude
that V is interpolating for A0

p(C). On the other hand, as V is not interpolating for Aq(C), it
follows again from Theorem 1.1 that it is not interpolating for A0

q(C). 2

We conclude this paper utilizing a reduction argument of Meise and Taylor [15] to obtain
a consequence of the main result of [18] on the description of the range RV (A0

p(C)) of the
restriction operator on A0

p(C) in terms of divided differences. To do this, let V = {(zk,mk)|k ∈
N} be a multiplicity variety and let p be a weight.

Given a sequence W := (wk,l)k∈N,0≤l<mk
of complex numbers, we denote by Φ(W ) :=

(ϕk,l)k∈N,0≤l<mk
the divided differences of W defined by induction as in [18]. We denote by

Ã0
p(V ) the set of all the sequences W := (wk,l)k∈N,0≤l<mk

such that their divided differences
Φ(W ) := (ϕk,l)k∈N,0≤l<mk

satisfy that for all ε > 0 there is Aε > 0 such that for all n ∈ N
and all |zk| ≤ 2n and 0 ≤ l < mk we have

δk,l := |ϕk,l|2n(l+m1+...+mk−1) ≤ Aε exp(εp(2n)).

Proposition 3.3 Let p be a weight. Let V = {(zk,mk)|k ∈ N} be a multiplicity variety
satisfying condition (b) (i) in Theorem 1.1, i.e. NV (r, 0) = o(p(r)) as r → ∞. Then the
range RV (A0

p(C)) of the restriction map on A0
p(C) coincides with Ã0

p(V ).

Proof. Given W ∈ Ã0
p(V ), for 2n ≤ R < 2n+1, define

g(R) := NV (R, 0) + log

(
sup

0≤l<mk,|zk|≤2n
δk,l

)
.

Then g(R) = o(p(R)) as R → ∞, and we argue as in the proof of [15, Lemma 2.3] (see also
[9, Lemmas 1.6 and 1.7]) to find a weight q such that g(R) = o(q(R)) and q(R) = o(p(R)) as
R → ∞. By [18, Theorem 1.11] we have W ∈ RV (Aq(C)). Since q(R) = o(p(R)) as R → ∞,
W ∈ RV (A0

p(C)). This yields Ã0
p(V ) ⊂ RV (A0

p(C)). To prove the other inclusion, for each
f ∈ A0

p(C) there is a weight q such that f ∈ Aq(C), NV (R, 0) = o(q(R)) and q(R) = o(p(R))
as R → ∞ (cf. [15, Lemma 2.3] and [9, Lemma 1.7]). We apply [18, Theorem 1.11] again to
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conclude RV (f) ∈ Ãq(V ) ⊂ Ã0
p(V ). This completes the description of the range in this case.

2
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