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Abstract

In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic

coupled systems with homogeneous boundary conditions of the type u, = Au,_,

Au(0,t)+B,u, (0,t)=0, Au(L,t)+B,u,(1,t)=0, 0<x<1, t>0, u(x,0)= f(x), where A is a

positive stable matrix and A, A,, B,, B, are arbitrary matrices for which the block matrix

(Al B,
A B,

] is non-singular, is proposed.
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1. Introduction

Coupled partial differential systems with coupled boundary-value conditions are frequent in different areas of
science and technology, as in scattering problems in Quantum Mechanics [1]-[3], in Chemical Physics [4]-[6],
coupled diffusion problems [7]-[9], modelling of coupled thermoelastoplastic response of clays subjected to
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nuclear waste heat [10], etc. The solution of these problems has motivated the study of vector and matrix Sturm-
Liouville problems, see [11]-[14] for example.
Recently [15] [16], an exact series solution for the homogeneous initial-value problem

u (xt)—Aug, (xt)=0, O0<x<1, t>0 )
Au(0,t)+Bu,(0,t)=0, t>0 )
Au(Lt)+B,u, (Lt)=0, t>0 (3)
u(x,0)=f(x), 0<x<1 (4)

where u= (ul,u2,~~-,um )T and f(x)= ( fL(x), (%), f, (x))T are a m -dimensional vectors, was cons-
tructed under the following hypotheses and notation:
1. The matrix coefficient A is a matrix which satisfies the following condition
Re(z)>0, VZGO‘(A) )

where o (C) denotes the set of all the eigenvalues of a matrix C in C™™. Thus, A is a positive stable
matrix (where Re(z) denotes the real partof zeC).
2. Matrices A, B,, i=1 2,are mxm complex matrices, and we assume that the block matrix

B
[Al 1] is regular, (6)
A B
and also that the matrix pencil
A + pB, is regular. (7)

Condition (7) is well known in the literature of singular systems of differential equations, see [17], and
involves the existence of some p, € C so that matrix A + p,B, isinvertible. In this case, matrix A + pB, is
invertible with the possible exception of at most a finite number of complex numbers p . In particular, we may
assume that p, e R.

Using condition (7) we can introduce the following matrices A and B, defined by

~ -1 = -1
A&:(A&+p081) A, Blz(Ai‘l'poBl) B, 8
which satisfy the condition A + p B, =1, where matrix | denotes, as usual, the identity matrix. Under

hypothesis (6), is it easy to show that matrix B, —(A2 +PoBz)|-5>1 is regular (see [18] for details) and we can
introduce matrices A, and B, defined by

~ ~ -1 ~ ~ -1
Azz[Bz_(Az"'PoBz)Bl] A Bzz[Bz_(Az""PoBz)BlJ B, ©)
that satisfy the conditions B, —(A, +p,B,)B, =1, B,A—-AB =1.
Under the above assumptions, the homogeneous problem (1)-(4) was solved in [15] [16] in two different

cases:
(a) If we consider the following hypotheses:

exist by e 5(B,)-{0}, b, e (B, ), and veC" {0}, such that (B, —b,1 }v=(B,~b,l)v=0  (10)

Then, if the vector valued function f (x) satisfies hypotheses

fec?([0,1])
(1-pyb,) £ (0)+b,f(0)=0 (11)

—[—1_b2 ;lpf’blej f(1)+b,f'(1)=0

®
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with the additional condition:
f(x) e Ker(B, —b1)NKer(B, -b,1), 0<x<1
and (12)
Ker (B, —by1 )N Ker (B, ~b, 1) is an invariant subspace with respect to matrix A,

where a subspace E of C" is invariant by the matrix AeC™" if A(E)cE, we can construct an exact
series solution u(x,t) of homogeneous problem (1)-(4). This construction was made in Ref. [15].
(b) If we consider the following hypotheses:

Oco(B,), a,eo(A,), and we have we C" —{0}, so that I§1w={;z—azle:0 (13)

Then, if the vector valued function f (x) satisfies the hypotheses
fec?([0.1])
f(0)=0 (14)
a,f(1)+f'(1)=0
under the additional condition:
f(x)eKer(B,)nKer(A -a,l), 0<x<1
and (15)

Ker(él)m Ker(A2 —-a,l ) is an invariant subspace respect to matrix A,

then we can construct an exact series solution u(x,t) of homogeneous problem (1)-(4). This construction was
made in Ref. [16].

Observe that under the different hypotheses (a) and (b), the exact solution of problem (1)-(1) is given by the
series

u(x,t):a((l—pobl)x—bl)C(O)+ﬂﬂZ€:fe""2AtXAn(x)C(in), xe[0,1], t>0 (16)

where, under hypothesis (a), the value of « is given by

(1_ b, + o,bib, )(1—p0b1)

1 if b, =1
: an)
o 4oty ratih)a-ah)

and F s the set of eigenvalues 4, € (nn,(n +l)n) , Where A, is the solution of the equation

acot(2) = L= 00 )=o) e (18)

by

with an additional solution A, (0,x) if

(1_b2 + pbib, )(1—p0b1)

<1 (19)
by
and under hypothesis (b), the value of « is given by
1 if —a,=1
= (20)
0 if —a,=1
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and F s the set of eigenvalues 4, € (nn,(n +l)n) , Where A, is the solution of the equation

Acot(1) = -a, (21)
with an additional solution 4, (0,x) if
—a, <1 (22)
Under both hypotheses (a) and (b), the value of X, (x), C(4,) and C(0) aregiven by
X, (x)= ((1—p0b1)sin(Anx)—bl/incos(/inx)) (23)
C(h)- j:((l—Pobl)Sin(&nx)—blxlncos(ﬁ,nx)) f (x)dx 24)

j:((l— poby )sin (4, x)— blxincos(/inx))2 dx

and

(o) Ll=pti)0) F () 5)
[o((2= poby) x b, )" dx

taking b, =0 in Formulaes (23)-(25) if we consider hypothesis (b).

The series solution of problem (1)-(4) given in (16) presents some computational difficulties:

(a) The infiniteness of the series.

(b) Eigenvalues A, are not exactly computable because Equation (18) (or Equation (21) under hypothesis
(b) holds) is not solvable in a closed form, although well known and efficient algorithms for approximation,
see references [13] [19] [20].

(c) Other problem is the calculation of the matrix exponential, which may present difficulties, see [21] [22]
for example.

For this reason we propose in this paper to solve the following problem:

Given an admissible error ¢ >0 and a bounded subdomain D|[t,,t,]=[0,1]x[t,,t,], t, >0.How do we
construct an approximation that avoids the above-quoted difficulties and whose error with respect to the
exact solution (16) is less than = uniformly in DJt,,t,]?

This paper deals with the construction of analytic-numerical solutions of problem (1)-(4) in a subdomain
D[t,,t,]=[0,1]x[t,.t,], t, >0, with a priori error &> 0. The work is organized as follows: in Section 2 we

construct the approximate solution. In Section 3 we will introduce an algorithm and give an illustrative example.

Throughout this paper we will assume the results and nomenclature given in [15] [16]. If B :(blj) is a
matrix in C™", its 2-norm denoted by |B|| is defined by ([23], p. 56)
B
18] - sup
wo 2],
where for avector y in C", ||z||2 is the usual euclidean norm of vy, and the 2-norm satisfies
max|bij | <|B[<m max|bij|
i ]
Let us introduce the notation
a(C)=max{Re(z);zec(C)} (26)
and by ([23], p. 556) it follows that
k
m-1 \/EB tk
"etB " < (B}t é ‘ - '“ 7

©
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2. The Proposed Approximation

Let (x,t)e D[t,,t,]=[0,1]x[t,,t,], t, >0, be and we take an admissible error ¢ > 0. Observe first that given
(24), using Parseval’s identity for scalar Sturm-Liouville problems, see [24] and ([11], p. 223), one gets that

e <[t dx 4, eF

Thus, we can take a positive constant M > 0, defined by

M = ] () o

(28)
satisfying
lc()[ <™, 2eF (29)
Moreover, by (23), we have
X, (%) =[((L- 2oy )sin(2,%) ~biay008(2,%)|” <[1- o+ [0 22 + 201~ poby 3] 4.
If we define >0 by
p =max{1- piby[* " 1 ooty I (30)
we have that
X, () <p@+a), AeF (31)
On the other hand, we know from (27) that
k k 72k
e P NHA” v
He B A Yy
where, as A, >1, n>1, we have for telt,t]:
K 2
“e-Azﬂzr 2 < e 2(WAY mz‘? ‘\/HA“ b 24m-4 _ |2 gam-dg2a(WA _ |2 54 (/»iAme—Za(A)ﬂnzto) (32)
= k1 n n n n
where
na[WmaAll ¢
¥ Hti>0 (33)

k=0 k!

- - - —. 2 . .
Observe that for a fixed m>0 the numerical series Z AiMe 2e(WAl g convergent, because using
AneF

Lemma 1 of Ref. [15] if hypothesis (a) holds, or Lemma 2 of Ref. [16] if hypothesis (b) holds, one gets
limA =,

lim(4,,, —4,)=m, and by application of D*Alembert’s criterion for series:
n—w n—o

4m
i it [ e | g 2] et a-) (042 M im a(AYgr(n )
n—m an now| A -

n

= gmn=
n—oo
n

then

lim A4me 2(WAh 0, (34)
Taking into account that (1+ 4, )2 >1 and M >0, B>0,itfollows that

&
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1 1
75 < > <1
MpB(1+4,) > MpL

and by (34) there is a positive integer n, so that

1
MB(1+ 4, ) L2
Using (29), (31), (32) and (36), if n>n,, we have

2 2 2

e, (x)e (4) X, (9 e ()

As eigenvalues 4, € (nm,(n+1)m), then, for n>1 it follows that

» 2
Aime 2o o vn>n,

2 2
< He""lﬂt

.1
Aot

i i

Taking into account that = 90" from (37) one gets that

2

e "X, (X)C(4,)

AneF AneF
n>ng n>ngy
1
S 27
neF ﬂ’n
n=ny
1
Sl
nzng N
B n4 i 1
90 “Znt

We take the first positive integer n, so that
n 4
Z%zn——f, n >n,
n* 90 3

n=1

We define the vector valued function u(x,t,n;) as

u(x,t,n)= a((l—pobl)x—bl)c(0)+Anz€:fe"5“xjﬂ (X)C(4,), (xt)eD[t,t]

Using (38) one gets that

||u(x,t)—u(x,t,nl)||2 < AZ e’/l"z’“x/In (x)C(4,)

2 — Mﬂ(l‘}‘ﬂn )2 L2/1n74 (i:me_za(A)}ﬁto ) < 2;4

(35)

(36)

@37)

(38)

(39)

(40)

(41)
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thus
Ju(xt)—u(x.t.n,)[ g%, (x,t)e D[ty 4] (42)

Remark 1. Note that to determine the positive integer n, we need to check condition (36), which requires
knowledge the exact eigenvalues A4,. From Ref. [15] [16] it is well know that A, € (nn,(n +1)n) , then

ﬂ4me—2a(A)ln2t0 < (nn)4m e—Za(A)n2ﬂ2t0
and by (35), we can replace condition (36) by take the first positive integer n, satisfying

(nm)™ gr2etAn’ate 1 ~. (43)
M 8L
Approximation u(x,t,n;) defined by (41) involves computation of the exact eigenvalues 4, n<n,
which is not easy in practice. Now we study the admissible tolerance when one considers approximate eigen-
values A, , n<n, inexpression (41), taking

U(x,t,nl):a((l—pobl)x—bl)C(O)+r;le":z“xzn (x)c(4,) (44)

where
X5 (%)= ((1—p0bl)sin (/Tnx)—blzncos(;ﬂx)), x[0,1] (45)
C(/A%;) _ _[0((1—pobl)sin(Zx)—blZcos(Zx)) f (x)dx )

J'Ol((l—pobl)sin(Zx)—bﬁgcos(;ﬂx))z dx
with C(0) defined by (25). Note that
e MX, (x)C(4,)-e M X, (x)C(4,)

= (e“mﬂfz’*t —g AN ){(1— ob; )sin (/Tnx) = bl/Tncos(/Tnx)} C (/Tn)

(47)
+e A {(1—p0b1)sin (ﬂTnx)—bl/Tncos(/Tnx)—(l—pobl)sin (A,X)+ blxlncos(/lnx)}c (/Tn)
+e N {(1—p0b1)sin(/1nx)—b1/1ncos(/1nx)}(C(/Tn)—C(/In ))
It is easy to see that
‘(1—p0b1)sin(an)—bjncos(zjx) <fi- pobu|+ [0 4, (48)
|(l—p0b1)sin (2,%)=1,2,c08 (4, X)| < [1— poby | +]by | 2, (49)
and
‘(1—p0b1)sin (Z;x)—blfncos(/?nvx)—(l—pobl)sin (2,X)+b,A,c08 (A, X ) 60
< (- poly | +]by|(1+ 2)) |2, = 4|
Replacing in (47) and taking norms, one gets
He—;z;\‘xg (x)c(fn)_e“nz’“xﬂn (X)C(4,)[< g A _gAin (|1—p0b1|+|bl|fn) C(;ﬂ)
+He-*n2‘“ (- ooy ] @+ 2 )2 - A )fe (&) 6

_,2
4 lle

O,

C(4)-C(4)|-

(|1_p0b1|+|b1|in)
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We define 1(p) for p>0 by

1(p)= J;((l—pobl)sin (px)—bl,ocos(,ox))2 dx
by applying the Cauchy-Schwarz inequality for integrals and (28), one gets:

We have

I ool 21 Gof a2 = v

1 1 ~
smjo(|1—pobl|+|bl|/1n)||f (x)]x
11— ol | +]by| 4,
< I(Z) Io"f

N vy

'(4)

(x)|| dx

Taking y >0 satisfying

it follows that

min{1(p),p=4,.p =2} 21/

n<m

lo(%)

<7([L- oo+ ool 4, )M

Moreover, working component by component:

C(Zr:)i _C(ﬂ'n)i

: (1— pyby )sin (/Tnx)— b4, cos(;ﬂx)

(x)] dx

:xa (x) f, (x)dx J‘:X% (x) f, (x)dx

TFS IS

(1(20)=1(Z)) [ X (0) £ ()= 1(Z) [ (X, ()= X (%)) (x)x

()1 (4)

Applying the Cauchy-Schwarz inequality for integrals again:

and

k

X

oo o

o

ol(xan (x)=X;, (X)) f, (x)‘dx
< ([1— poby | +]by| (24 2,)) |2,

=l 00F

(x)| dx

1
2

(%)

(52)

(83)

(54)

(55)

(56)

(67

(58)
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1

(- pubi |+ )0 ) = A1 O e (59)

By (55) and taking into account (57) and (58):

ol

) (j;|fi () dx) 1(4)-1(7)
L ey
Note that from the definition of 1(p), (52), it follows that

IERRIES HIMAANN S RN SN

then, replacing in (60) one gets

(Ele o o
I Te s (LRGN (62)

(o2l )

1

X, (01, (x)‘dx+ (2]

<

k

(%5, (=%, () fi(0fax) (60

1
2

+‘|(1n)—|(i])

(- poby|+[61] 2+ )

j’\r;_/’;’n

(61)

(%), ~c ()<

-2

We take
A2 max{ﬂn,fn} (63)
n<m
then, if we define
A=[1-poby|+[0|(1+A), B=2[1-pyb|+2[0|A (64)
from (54) we have that
“C(/T )| <ravm (65)
and from (62) and (53):
1
- (0o o NV
‘c(zn)i ~C(4,), ST{A+AB(| (%)) 2} Ry
1
_ (j:| £ (x)[ dx)2 y{A+AB;/;}‘Z ~ 4| (66)
< N}/{A+AB;/;} A=)
Using the 2-norm properties, from (66) we have
1
”C(Z)—c(ﬂ,n )H < (j;| f (0 olx)2 y{A+ABy;}‘Iﬂ - 4| (67)

By other hand, we can write

©
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2 2 2 2207 \at
einAt_eﬂﬂAtzeﬂﬂAl£e( ) _IJ

where taking norm, applying (32) and (33) together the mean value theorem, under the hypothesis ?

one gets
‘e, An_ g [y [e[zﬂz-iﬂf)u B 1]
< g loa(AN? mzl (\/_AZ "A”tl) e(ﬂﬁfﬂ?JHAHh 1
) k!
< e—toa(A)Az L*ti A" 4A911HAH2A ‘Z _ﬂn"
where
e 1(fA2 ||A||tl)
k=0
Replacing in (51) we obtain
e, ()0 (R )=, (x)C (4, )] <™ L [afanet =A% 7,

where

+e—t0a(A)A L}/NAZ "r:_

I
+e o N AM ;/{.A + ABy? } .

:s?

§ = AP IMe N (L L (L4 BYy )+ L 4t | A e™

Given ¢>0 and n,, consider approximations 2 of A, for n<n, satisfiying

then

Ju(x.tin)—a(xt,n)|=

A =2 |<min{1, Ve
nsn | /3n,S

> (e, (x)e(Z) -, (X)C(;tn))

n<ny
< 3l x . (0)C(4 )X, (x)C(4)
n<ny
<Y'S|4, -
n<ny
Je
<sn, Y
1«/§n18
_Je
\/51

<1,

(68)

(69)

(70)

(71)
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and therefore

||u(x,t,nl)—ﬁ(x,t,n1)||2s%, (x,t)e D[ty t,]. (72)

Remark 2. From (61), and taking into account the definition of A and B given in (64), it follows that

‘|(zn)—|(2;)‘sAB s

so that, if |Z:—/1n

is enough small, it can take 1(4,)~ | (;1:) in the computation of y.

Similarly, can be taken in practice

Az max{7,} (73)

1<n<m

instead of the definition (63).

~2
Approximation a(x,t,n,) need to compute the exact value of the matrix exponential e However, the

~2
approximate calculation of the exponential matrix e * can be performed by methods such as those based on
the Taylor series, [25] [26], based on Hermite matrix polynomials, [27], and other existing methods in the

literature, see [22] [23] for example. Suppose we take the matrix App(e’fnz’“) as an approximation of matrix

iat

e , S0 that

<et, teftt] & >0 n<n (74)

e;InzAt B App(efT”ZAt )

We define the approximation 2/(x,t,n,) by:

U(X,t, nl) = a((l_pobl)x_bl)c (0)+ zApp(eiznZAt )xﬂ] (X)C (Z) (79)

n<ny

and from (65), (64) and (45) one gets that

Jla(xtn) -2 (xtn)| <

3 (e aople ¥ Jx; (ffe ()

n<ny
<> y AANM

n<ny

<y A*IMY, D&,

n<ny

e—)T;ZAt — App (e—)T;ZAt )

We take
K = max{e,} (76)

1<n<m

and suppose we make the approximation accurate enough satisfying condition

K< L (77)
‘/gnltﬁ’AzN
Thus, if K satisfies (77) it follows that
la(xtn)-u(xtn)| s%, (78)

and from (42), (72) and (78):

O,
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Ju(xt) U (xtn)[ =u(xt)—u(xtn)+u(xtn)-a(xtn)+a(xtn)-u(xtn)[

< ||u(x,t)—u(x,t,nl)||2 +||u(x,t,nl)—ﬂ(x,t,nl)”2 +||L](x,t,nl)—L{(x,t,nl)”2

& ¢ ¢
S+ =+=
3 3

"3
=¢.

Summarizing, the following results has been established:
Theorem 1. We consider problem (1)-(4) satisfying hypotheses (5), (6) and (7). Let £>0,
D[t,.t, ] =[0.1]x[t,.t,]- Suppose that the hypothesis (a) is verified, this ensures that there is an exact solution

u(x,t) of problem (1)-(4), see Ref. [15]. Let «, a(A), M, B and L be the constant defined by (17),
(26), (28), (30) and (68) respectively. Let n, and n, be positive integers satisfying conditions (43) and (40).
Let A bethe n, -first approximate roots of the equation (18), each one in the interval (nn,(n +1)1r), nsn;,

and let 1, be the approximation of the additional solution A, e (0,7) to be consider if condition (19) holds.

Let >0 be satisfying (53) and let A, A, B and L be the positive constants defined by (63), (64) and
(68) respectively. Suppose that the approximations A, satisfy (71), where S is the constant defined by (70).

_ ~2
Suppose that the approximations App(e"ﬂz‘“) of matrices e ™, for n<n, satisfy that the approximation

error is less than K, where K is a positive constant which satisfies (77). Consider the functions in (X)

n<n, defined by (45) and vectors C(}Tn) n < n,, defined by (46), joint the vector C(0) defined by (24) if

a # 0. Then, the vector valued function z/(x,t,n;) defined by (75) satisfies

Ju(xt)-u(xtn)| <& (xt)eD[tyt]

Theorem 2. We consider problem (1)-(4) satisfying hypotheses (5), (6) and (7). Let ¢ >0, and we consider
the subdomain DJt,,t,]=[0,1]x[t,.t,]. Suppose that the hypothesis (b) is verified, this ensures that there is an
exact solution u(x,t) of problem (1)-(4), see Ref. [16]. Let o, «(A), M and L be the constant
defined by (20), (26), (28) and (68) respectively. Let n, and n, be positive integers satisfying conditions (43)
and (40). Take B =1 and b =0.Let A bethe n, -first approximate roots of the equation (21), each one in
the interval (nn,(n +1)n), n<n,,andlet Z be the approximation of the additional solution 4, (0,x) to
be consider if condition (22) holds. Let y >0 be satisfying (53) and let A, A, B and L* be the positive
constants defined by (63), (64) and (68) respectively. Suppose that the approximations A, satisfy (71), where

i At

S is the constant defined by (70). Suppose that the approximations App(e‘z\"zAt) of matrices e , for

n<n, satisfy that the approximation error is less than K, where K is a positive constant which satisfies
(77). Consider the functions X (x), n<n, defined by (45) and vectors C(Z) n<n,, defined by (46),

joint the vector C(0) defined by (24) if « = 0. Then, the vector valued function z/(x,t,n,) defined by (75)
satisfies

Ju(xt)-u(xtn) <& (xt)eD[t,t]

3. Algorithm 1, Algorithm 2 and Example

We can give the following algorithms, according to the hypothesis (a) or (b) is satisfied, to construct the
approximation z/(x,t,n,).

()
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Algorithm 1. Construction of the analytic-numerical solution of problem (1)-(4) under hypotheses (a) in the subdomain
D[t,,t,]=[0,1]x[t,,t,], t, >0, with a priori error bound &>0.

1: Compute the constant p, satisfying (7).
2: Determine b, and b, satisfying (10). Compute constant « defined by (17).

3: Compute constants || A

. a(A), M, B, L defined by (26), (28), (30) and (68) respectively.
4: Determine the first positive integer n, which satisfies (43).
5: Determine the first positive integer n, which satisfies (40).

6: Determine approaches 4 of the n, -first roots of Equation (18) each one in the interval (kn,(k +1)n) , k<n,, joint the approximation of the

additional solution 4, €(0,) if condition (19) holds.
7:Compute 1(p) for p=4 , n<n anddetermine y>0 satisfying (53).

8: Compute A, A, B and L defined by (63), (64) and (68) respectively.
9: Compute S defined by (70)

10: Check that approximations /Tn satisfy (71). Otherwise return to step 6 and calculate approximations )Tn more precisely.
11: Compute K satisfying (77).

12: Compute approximations App(e’fﬂz“‘) of matrices e ™ ,for n<n, so thatthe error in each one approach is less than K.
13: Compute functions X (x), n<n,, defined by (45).

14: Compute vectors C(Z) , n<n,, defined by (46). If «#0, compute C(O) defined by (24).

15: Compute the approximation 2{(x,t,n,) defined by (75).

Algorithm 2. Construction of the analytic-numerical solution of problem (1)-(4) under hypotheses (b) in the subdomain
D[t,,t,]=[0,1]x[t,,t,], t, >0, with a priori error bound &>0.

1: Compute the constant p, satisfying (7).
2: Determine a, satisfying (13). Compute constant ¢ defined by (20). Take b =0 and g=1.

3: Compute constants || A

. a(A), M, L defined by (26), (28) and (68) respectively.
4: Determine the first positive integer n, which satisfies (43).
5: Determine the first positive integer n, which satisfies (40).

6: Determine approaches }T" of the n, -first roots of Equation (21) each one in the interval (kn,(k +1)n) , k<n,, joint the approximation of the
additional solution 4, €(0,7) if condition (22) holds.
Continue with the step 7 of Algorithm 1

Example 1. We will construct an approximate solution in the subdomain D[0,1]=[0,1]x[0.1,1], with a

priori error bound &=1072, of the homogeneous parabolic problem with homogeneous conditions (1)-(4),
where the matrix Ae C** is chosen

2 00 -1
1 21 -2
A= (79)
-1 02 1
0 00 1

and the 4x4 matrices A, B, ie{1,2},are

)
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00O0TO O 0100
a0 000, [T 000
1o o1 0/ oo o0 1/
0 001 0 00O
(80)
1000 1 000
0100 1 000
Bl= y 82=
00O0TO O 0010
00O0T O 0 001
Also, the vectorial valued function f (x) will be defined as
0
x? -1
f(x)= 81
=" (81)
0
This is precisely the example 1 of Ref. [15] whose exact solution is given by:
T ons1)? 0
32(-1)"e 220 tcos(7t(2n+1)xj
u(x,t)=|> - 2 L (82)
=0 7 (2n+1)° 0
0

We will follow algorithm 1 step by step:
1. Hypothesis (a) holds with m =4 . Note that although A is singular, taking p, =1€ R, the matrix pencil

A +poBy =14 (83)
is regular. Therefore, we take p, =1.

2. Performing calculations similar to those made in Ref. [15], one gets that b =1, b, =0 and a=0.
3. It is easy to calculate |A|=3.67571, o(A)={1,2}, thus o(A)=2. Similarly M =8/15, f=1 and

L =101.589.
4. Note that
1 000018168,
M L
Then, by (43):
_0.4(32 )2
n=3=(3n)°e " 1437405 L
M L
n=a= (4n)*e " 1428708200 < L
M L
then we take n, =4.
5. We have
4 4 -2
n=d=|> 1 T 100 0000237971,
Sk 0 3

5 4 -2
n=5= [Zi—“—+ 193 j = 0.00136203,

then we cantake n, =5>n,=4.
6. We need to determinate the n, -first roots of equation
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Acot(2)=0

We can solve exactly this equation, A, :g+ nm, n=1..-,5, with an additional solution 7, €]0,x[, be-

cause
(1=b,+ptib)(1=ph) _, _,
by
and then 4, =g.
In summary, 4, =g, A =3?n, A =5?n, A =7?n, Ay =9?n,/15 =%. We take the approximate values

(50 exact decimal)

TO =1.5707963267948966192313216916397514420985846996876,
J, = 4.7123889803846898576939650749192543262957540990627,
4, = 7.8539816339744830961566084581987572104929234984378,
A, =10.995574287564276334619251841478260094690092897813,
A, =14.137166941154069573081895224757762978887262297188,
s

=17.278759594743862811544538608037265863084431696563.

7. We calculate 1(p) for p=21,:
I %) =1.2337005501361698273543113749845188919142124259051,

I(4,]=11.103304951225528446188802374860670027227911833146,

(
(%)
I (ﬂ:) 30.842513753404245683857784374612972297855310647627,
(%)
(%)

(%

(4, )=99.929744561029756015699221373746030245051206498313,

=60.451326956672321540361257374241425703796408869350,

I (ﬂ:) =149.27776656647654910987167637312678592161970353452.

the smallest of them is | (ﬂ:) ,as 1/, ~0.810569 , we take y =0.82.

8.We have that A =17.3>4,, A=183, B=346 and L =1.77759x10°.

9. We have that S =1.56631x10%.
10. To be applicable the algorithm 1, the approximations 2, may satisfy:

<min 1,£ =7.37211x107*

\/§n18
As the roots were calculated with 50 decimal accurate, we accept these approximations of the roots.
11. We have to take K satisfying (77). In our case

K< L
«/§n1t1;/,42\/ﬁ

12. We have to compute approximations App(e‘l”zm) of matrices e*’mz’“, for n=0,1,2,3,4,5 with a maxi-

A~

n

=0.0000472137.

mum error K . In this case, using minimal theorem ([28], p. 571), we can determine the exact value of "
given by:

)
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e” 0 0 e (-1+e)
ok _ ;e’zss(2+s) e —es %e’zs (-2+2¢°+25+5°)
e—ZsS 0 e—Zs _e—ZSS
0 0 0 e’

then, we can obtain App(e*fnz’“) for n=0,1,2,3,4,5 replacing in (84).
13. Functions X - ( ) n=0,1---,4, defined by (45) are given by:
x) = —1.5707963267948966192c0s (1.5707963267948966192X
)=

—4.7123889803846898577cos(4.7123889803846898577 x

)
x )

74

=

X (

( (

(x) =—7.8539816339744830962c0s ( 7.8539816339744830962x ),
(x) =—-10.995574287564276335c05 (10.995574287564276335x),
(x) =-14.137166941154069573c0s (14.137166941154069573X),
(x)= ( )

s

N}

&

N

X
X~
X
X~
X

X)=-17.278759594743862812c0s(17.278759594743862812x ).

s

14. Vectors C (ﬂn , --+,5, defined by (46) are given by:

0
~ 0.65702286429979745210577812909559642508
= 0 ,
0
0
~ —0.0081113933864172524951330633221678570997
= 0 ,
0
0
~ 0.00105123658287967592336924500655295428012
0
0

0
C (Ag) =| —0.0002736455078299864440257301662205732716 |,
0

0
~ 0.0001001406590915710184584328805205908284
- . ,

0

0
~ —0.00004487554567992606052221693389082688512

0 .

0

(84)
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We don’t compute C(0) defined by (25) because a =0.
15. Compute 2{(x,t,n;) defined by (75), obtaining:

where
W(x,t) = -1.03204910e*****%**¢0s(1.57079633x ) + 0.0382240408e ~*****cos (4.71238898X)
—0.00825639281e1#*¥"%% ¢os(7.85398163x ) + 0.00300888951e ****%**® ¢0s(10.9955743X)
—0.00141570522e 7% c0s(14.1371669x ) + 0.000775393765e 1% c05(17.2787596X ).

and our approximation satisfies
Ju(xt)-u(xt.5) <102, (x,y)eD[0.L1]
As an example, consider the point (x,t)=(0.27,0.9) € D[0.1,1]. We have the approximation

0
—0.0110808
0
0

Z/I(O.27,0.9,5) =

It is easy to check that, from (82), one gets
|u(0.27,0.9)-14(0.27,09,5)| <10

4. Conclusion

In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems
with homogeneous boundary conditions of the type (1)-(4) has been presented. An algorithm with an illustrative
example is given.
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