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3Laboratory of Electromagnetics and Acoustics, École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland. (michael.mattes@epfl.ch).
4Departamento de Fı́sica Aplicada, Instituto de Ciencia de Materiales, Universidad de Valencia,

E-46100, Burjassot, Spain (benito.gimeno@uv.es).

Abstract

The accurate consideration of propagation losses in arbitrarily shaped waveguide based structures is studied in

this paper. For such a purpose, a software tool based on the perturbation of the boundary conditions on the waveguide

metallic walls and on the Boundary Integral - Resonant Mode Expansion (BI-RME) method has been developed.

To show the advantages of the proposed technique with respect to the classic power-loss method, the complex

propagation wavenumbers of a double ridge and an elliptical waveguide have been first computed and compared

with results of a commercial software based on the finite element technique. Next a circular, a sectorial shaped

and a triangular shaped waveguide have been considered. Then, a computer-aided design (CAD) software package

based on this modal analysis tool has been applied to predict the propagation loss effects in complex waveguide

structures, such as an evanescent mode ridge waveguide filter, a traditional dual mode filter with circular cavities,

and a twist component for K-band applications.

I. INTRODUCTION

The increasing capacity demands in telecommunication links can be fulfilled using higher frequency bands. Many

applications have therefore been raised to microwave and millimeter-wave bands. For instance, the upcoming next

satellite series is going to use Ka-band links to provide higher bandwidths [1]– [4]. Furthermore, future high-speed

telecommunications and video streaming will work around 60 GHz, whereas automotive radars will operate around

77 GHz [5]– [7]. At such higher frequencies, loss effects are more pronounced and can even alter the frequency

response of waveguide devices. In this context, the modelling of losses becomes more and more important in
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the design of key hardware for wireless and space communication systems, such as filters, couplers, polarizers,

orthomode transducers, diplexers and multiplexers [8]. As a consequence, the accurate prediction of propagation loss

effects within modern computer-aided design (CAD) tools of passive microwave and millimeter-wave waveguide

components is required [9]– [13].

Ohmic losses of hollow metallic waveguides are generally computed by means of the classic power loss method

[14]. Applications of this classical method can be found in [15] for rectangular and circular ridge waveguides, in

[16] for circular waveguides and in [17] for substrate-integrated waveguides (SIW). Such a technique provides a

correction in the real part of the propagation constant, which is obtained by assuming ideal fields in the waveguide

cross-section, and by imposing the Leontovich or impedance boundary condition over the contour [18]. This

approach has some inconveniences: it gives meaningless results at the modal cut-off frequency, where the modal

attenuation constant tends to infinity, and does not take into account the losses associated with evanescent modes.

These drawbacks can be overcome using the so-called perturbation of boundary conditions technique [19]. As

recently demonstrated in [20], this method can be used in the frequency range very close to and below cut-off.

Moreover, the effect of metal losses on the phase constant is also taken into account, since a complex propagation

wavenumber kz = β − jα for both propagative and evanescent modes is computed. Few contributions based on

this method can be found in the literature. In [21] and [22] it has been used to compute the complex propagation

constant of rectangular waveguide modes, whereas [23] and [24] are focused on circular and coaxial waveguide

modes, respectively. However, this technique has not yet been used to model wall ohmic losses in waveguides with

non-canonical shapes.

In this paper we extend the perturbation of boundary condition method to arbitrarily shaped waveguides whose

contour is composed of straight, circular and elliptical arcs. The complete modal chart of such waveguides has

been accurately computed using the Boundary Integral - Resonant Mode Expansion (BI-RME) method [25], [26],

and the resulting modal field representation has been employed to derive the complex propagation constant of

waveguide modes. This technique has been integrated into a CAD software package based on the Integral Equation

(IE) technique described in [27], [28]. Finally, this CAD software package has been used to accurately predict the

propagation loss effects in three different complex passive waveguide devices, providing a dramatic reduction in

CPU time over current finite-element commercial simulators.

II. COMPLEX MODAL PROPAGATION CONSTANT

Let us consider a hollow waveguide with arbitrary cross-section S of contour ∂S (see Fig. 1). From now and on,

with the aim of simplifying the notation, a zero subscript will only be used to denote the electromagnetic fields for

perfectly conducting walls. Note that the time factor ejωt is considered and omitted throughout this paper, being j

the imaginary unit and f = ω/(2π) the frequency.
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Fig. 1. Arbitrarily shaped waveguide of cross-section S and contour ∂S completely enclosed inside a rectangular box of cross-section

Sb. Definition of variables and local coordinate system.

The complex modal propagation wavenumbers (kz = β − j α) of such waveguide will be obtained from the

solution of equivalent perturbed problems for both TM and TE modes, which are derived using the perturbation of

boundary conditions technique. This section summarizes the main results obtained from applying such a technique,

which are expressed, in contrast to [20], in a suitable form for the application of the BI-RME method as described

in Section III.

A. TM modes

Following the method presented in [19], [20], the equivalent perturbed TM problem considering losses is

(∇2
t + k2c )Ψ = 0 (1a)

Ψ|∂S ≃ (1− j)

2
δ

(
ω

ωc0

)2 ∂Ψ0

∂n

∣∣∣∣
∂S

(1b)

being Ψ the TM scalar potential, kc the complex cut-off wavenumber, δ =
√
2/ωµ0σ the skin depth, σ the electrical

conductivity, and ωc0 the cut-off angular frequency of the unperturbed mode (lossless case).

The new complex propagation wavenumber can be obtained after applying Green’s theorem in two dimensions

[19]:

k2z ≃ k2z0 +
(1− j)

2
δ

(
ω

ωc0

)2
∮
∂S

∣∣∣∂Ψ0

∂n

∣∣∣2 dl∫
S |Ψ0|2dS

. (2)



4

Furthermore, equation (2) can be simplified considering that

et0 = −∇tΨ0 (3a)

ht0 = ẑ× et0 (3b)

∂Ψ0

∂n
= ∇tΨ0 · n̂ = (ẑ× ht0) · n̂ = ht0 · l̂ (3c)

where n̂ is the unit normal vector inward from the conductor and l̂ is the unit vector tangential to the conductor

surface (see Fig. 1), whereas et0 and ht0 are the normalized transverse electric and magnetic fields, respectively,

∫
S
∥et0∥2dS =

∫
S
∥ht0∥2dS =

∫
S
∥∇tΨ0∥2dS = 1. (4)

This normalization condition can be used for the evaluation of the denominator integral in (2). From Green’s

first identity we obtain

∫
S
∥∇tΨ0∥2dS =

∫
S
(∇tΨ0) · (∇tΨ0)dS

= k2c0

∫
S
|Ψ0|2dS = 1 (5)

thus from the last expression on the right-hand side of (5), we can get

∫
S
|Ψ0|2dS = 1/k2c0. (6)

As a result, and after using (3) and (6) in (2), we reach the final expression for the TM complex propagation

wavenumber in an arbitrarily shaped waveguide

k2z ≃ k2z0 +
(1− j)

2
δ

(
ω

ωc0

)2

k2c0

∮
∂S

|ht0 · l̂|
2
dl =

k2z0 +
(1− j)

2
δ

(
ω

c

)2 ∮
∂S

|ht0 · l̂|
2
dl (7)

where we have used that kc0 = ωc0/c, being c the light speed in vacuum.

B. TE modes

In a similar way, the equivalent TE eigenvalue problem considering losses is given by [20]

(∇2
t + k2c )Φ = 0 (8a)

∂Φ

∂n

∣∣∣∣
∂S

≃ −(1− j)

2
δ

(
ω2µ0ϵ0Φ0 −

k2z0
k2c0

∂2Φ0

∂l2

)∣∣∣∣∣
∂S

(8b)

where Φ is the TE scalar potential and k2z0 = ω2µ0ϵ0 − k2c0.

Then, after using the Green theorem in two dimensions, the complex propagation wavenumber for TE modes
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can be computed by

k2z ≃ k2z0 +
(1− j)

2
δ

∮
∂S

(
ω2µ0ϵ0 |Φ0|2 + k2

z0

k2
c0

∣∣∣∂Φ0

∂l

∣∣∣2) dl∫
s |Φ0|2dS

. (9)

As it was done for TM modes, this equation can be simplified considering that

et0 = ẑ×∇tΦ0 (10a)

ht0 = ẑ× et0 = −∇tΦ0 (10b)

∂Φ0

∂l
= ∇tΦ0 · l̂ = −ht0 · l̂ (10c)

and also the relationship between hz0 and Φ0

hz0 =
k2c0
kz0

Φ0. (11)

Since the TE scalar potential is also normalized according to
∫
S ∥∇tΦ0∥2dS = 1, from Green’s first identity (5)

it follows that ∫
S
|Φ0|2dS = 1/k2c0. (12)

Finally, after using (10), (11) and (12) in (9), the corresponding complex propagation wavenumber for TE modes

in an arbitrarily shaped waveguide can be written as

k2z ≃ k2z0 +
(1− j)

2
δk2z0

∮
∂S

(
ω2µ0ϵ0
k2c0

|hz0|2 +
∣∣∣ht0 · l̂

∣∣∣2) dl

= k2z0 +
(1− j)

2
δk2z0

[(
ω

ωc0

)2 ∮
∂S

|hz0|2 dl

+

∮
∂S

∣∣∣ht0 · l̂
∣∣∣2 dl] (13)

Note that in both (7) and (13) the dependence with ω is extracted from the integrals, which allows to compute

them using a suitable numerical algorithm only once for each involved mode.

III. APPLICATION OF THE BI-RME METHOD

A. Computation of modal spectrum and magnetic fields

To evaluate (7) and (13), we need to know the modal chart of the involved arbitrary shaped waveguide, as well

as the magnetic fields of its modes on the contour ∂S. To reach this aim, the well-known BI-RME method has been

used [25], and more specifically the extension proposed in [26]. This particular implementation allows a rigorous

treatment of waveguides whose arbitrarily shaped contour ∂S is composed of any arbitrary combination of straight,

circular and elliptical arcs.
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The transverse magnetic field of a TM and a TE mode of the arbitrary shaped waveguide is given by [26]

hTM
t0 (r) = ẑ×

[
−
∑
n

b′n

∮
∂S

∇tg
(
r, s′

)
un
(
l′
)
dl′

+
∑
m

a′m
k̃′m

ẽTM
m (r)

]
(14)

hTE
t0 (r) = ẑ×

[
1

kc0

∑
n

bn

∮
∂S

∇tg
(
r, s′

) ∂wn (l
′)

∂l′
dl′

+kc0

(∑
n

bn

∮
∂S

Ḡst
(
r, s′

)
· l̂
(
l′
)
wn
(
l′
)
dl′

+
∑
m

ẽTE
m (r)

k̃2m
am

)]
(15)

where r(x, y) and s′(x′, y′) are generic observation and source points, respectively; g is the static 2-D Green’s

function (satisfying Dirichlet boundary conditions) for the rectangular box Sb (see Fig. 1); Ḡst is a rapidly convergent

expression of the solenoidal dyadic Green’s function of such a rectangular resonator [25]; ẽTM
m , k̃′m, ẽTE

m , and k̃m are

the normalized modal vectors and cut-off wavenumbers of the TM and TE rectangular resonator modes, respectively;

and a′m, am, b′n and bn are the modal expansion coefficients (a′m, am) and amplitudes of the longitudinal (b′n) and

transverse (bn) components of the current density on the arbitrary contour at cut-off. The last four parameters and

the cut-off wavenumber kc0 of each arbitrary waveguide mode are obtained after solving an integral equation via

the Galerkin version of the Method of Moments, where the basis functions un (TM case) and wn (TE case) are

chosen to be overlapping piecewise parabolic splines, as detailed in [26].

Finally, and according to (13), the evaluation of the propagation constant of a TE mode also requires to know

the magnitude of the axial component of the magnetic field hTE
z0 on the contour ∂S, which can be easily derived

from the transverse surface current density at cut-off

∣∣∣hTE
z0 (r)

∣∣∣
∂S

= ∥n̂× Jt(l)∥ =

∣∣∣∣∣∑
n

bnwn(l)

∣∣∣∣∣ . (16)

Observe that all the modal terms included in the expressions (7) and (13) used to compute the complex propagation

constant can be derived from the modal information provided by the BI-RME method.

B. Solving the contour integrals

The numerical evaluation of expressions (7) and (13) implies the computation of the modal magnetic field

at certain boundary points, which is carried out by means of (14), (15) and (16). To evaluate the fields, the

integrals in (14) and (15) are normally split into different segments (basic contour element of the BI-RME method)

supporting each basis function un or wn. Each subintegral is then computed in a numerical way following a simple
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Gauss-Legendre quadrature rule. However, this numerical procedure cannot be applied when the observation point

r(x, y) approaches a source point s′(x′, y′) on the contour ∂S of the arbitrary waveguide, since singular integrals

(corresponding to the singularities of the g and Ḡst terms) appear. This situation occurs whenever the observation

point belongs to the particular segment where the integration is carried out.

Taking into account that the dyadic Green’s function Ḡst behaves as log |r− s′|2 when s′ → r, the second

integral in (15) can be evaluated following the procedure (with minor modifications) already described in [26], and

will not be discussed here. However, in (14) and (15) appear two new types of integrals that deserve a detailed

description. These integrals are related to the transverse gradient of the static 2D Green’s function

∇tg =
∂g

∂x
x̂+

∂g

∂y
ŷ (17)

which has the following rapidly convergent expression due to the Poisson summation formula:

∂g

∂x
=

1

4a

∞∑
s=−∞

C10
s + C01

s − C00
s − C11

s (18a)

∂g

∂y
=

1

4b

∞∑
r=−∞

K10
r +K01

r −K00
r −K11

r (18b)

with

Cpq
s =

sin
(
T x
p

)
cosh

[
π
a (y − (−1)q y′ + 2sb)

]
− cos

(
T x
p

) (19a)

Kpq
r =

sin
(
T y
p

)
cosh

[
π
b (x− (−1)q x′ + 2ra)

]
− cos (T y

p )
(19b)

where T x
p = π

a (x− (−1)p x′) and T y
p = π

b (y − (−1)p y′).

The singularity lies on C00
0 and K00

0 , which are the only terms that tend to infinity when the field point approaches

the source point. In this case, the gradient of the static 2D Green’s function (see (17)–(19)) can be split into a

singular part ∇tgs including the singular terms

∇tgs =
∂gs
∂x

x̂+
∂gs
∂y

x̂ = −
[
C00
0

4a
x̂+

K00
0

4b
ŷ

]
(20)

so that

∂gs
∂x

= − 1

4a

sin(πa (x− x′))

cosh(πa (y − y′))− cos(πa (x− x′))
(21a)

∂gs
∂y

= − 1

4b

sin(πb (y − y′))

cosh(πb (x− x′))− cos(πb (y − y′))
(21b)

and a regular part ∇tgr containing the remaining terms in (18). The singular term can be divided again into two

new components, a term ∇T gss isolating the singularity (of the form 1/ |r− s′|) and a regular term ∇T gsr =
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∇tgs − ∇T gss that tends to zero when s′ → r. The particular expression for both terms depends on the contour

shape (i.e. straight, circular or elliptical).

Using the same parametrization of straight, circular and elliptical shapes already employed in [26], with ξ being

the dummy normalized parameter between [−0.5, 0.5] that runs the segments composing each arc, it can be proved

that for a straight segment of length L and angle θ (defined between the linear arc and the x-axis) whose points

are given by

x = x0 + (ξ + 0.5)L cos θ (22a)

y = y0 + (ξ + 0.5)L sin θ (22b)

where (x0, y0) is the coordinate of the starting segment point, the singular term ∇tgss is of the form

∇tgss = −cos θx̂+ sin θŷ

2πL (ξ − ξ′)
. (23)

On the other hand, for a circular segment of radius r, center (x0, y0), initial angle φ1 and final angle φ2

x = x0 + r cosφ (ξ) (24a)

y = y0 + r sinφ (ξ) (24b)

with φ (ξ) = φ1 +∆φ (ξ + 0.5) and ∆φ = φ2 − φ1, the isolated singular term is

∇tgss =
sinφ (ξ)x̂− cosφ (ξ)ŷ

2πr∆φ (ξ − ξ′)
. (25)

Finally, for an elliptical segment with major and minor semiaxes ae and be, initial and final elliptical angles η1

and η2, which is rotated an angle α with respect to the x-axis, the parametrization in terms of ξ takes the form

x = x0 + ae cosα cos η (ξ)− be sinα sin η (ξ) (26a)

y = y0 + ae sinα cos η (ξ) + be cosα sin η (ξ) (26b)

being (x0, y0) the center of the ellipse, η(ξ) = η1+∆η (ξ + 0.5) the elliptical angle and ∆η = η2−η1, the extracted

singular term ∇tgss is now given by

∇tgss =
Kx

e x̂+Ky
e ŷ

2πae∆η (ξ − ξ′)
(27)
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with

Kx
e =

cosα sin η (ξ) + (be/ae) sinα cos η (ξ)

sin2 η (ξ) + (be/ae)
2 cos2 η (ξ)

(28a)

Ky
e =

sinα sin η (ξ)− (be/ae) cosα cos η (ξ)

sin2 η (ξ) + (be/ae)
2 cos2 η (ξ)

. (28b)

The singular integrals in (14) and (15), related to the transverse gradient of g, can now be split into a regular

one with ∇tgr + ∇tgsr, that can be straightforwardly computed using a numerical algorithm, and a contribution

including ∇tgss that must be analytically solved.

For the TM case, the basic singular integral (using the normalized parameter ξ′) involves the parabolic expression

of the generic basis function un in the segment, c2ξ′2 + c1ξ
′ + c0, and the term ∇tgss (ξ, ξ

′) corresponding to the

particular segment shape. If a straight segment is used, this analytical integral is given by

L

∫ 0.5

−0.5
−cos θx̂+ sin θŷ

2πL (ξ − ξ′)

(
c2ξ

′2 + c1ξ
′ + c0

)
dξ′

= −cos θx̂+ sin θŷ

2π
Is (ξ, c2, c1, c0) (29)

where Is is the singular integral defined in Appendix A. For a circular segment, we have

r |∆φ|
∫ 0.5

−0.5

sinφ (ξ)x̂− cosφ (ξ)ŷ

2πr∆φ (ξ − ξ′)

(
c2ξ

′2 + c1ξ
′ + c0

)
dξ′

= ±sinφ (ξ)x̂− cosφ (ξ)ŷ

2π
Is (ξ, c2, c1, c0) (30)

using the positive sign for an anticlockwise segment (i.e., if φ2 > φ1 so that ∆φ > 0).

On the other hand, the resulting integral in the elliptical case must be solved using a more elaborated procedure

since now dl′ = fe (ξ
′) dξ′ with

fe
(
ξ′
)
= ae |∆η|

√
1− e2 cos2 (η (ξ′)) (31)

where e denotes the ellipse eccentricity. The singular integral can therefore be written as

ae |∆η|
∫ 0.5

−0.5

Kx
e x̂+Ky

e ŷ

2πae∆η (ξ − ξ′)

(
c2ξ

′2 + c1ξ
′ + c0

)
fe
(
ξ′
)
dξ′

= ±Kx
e x̂+Ky

e ŷ

2π

∫ 0.5

−0.5

c2ξ
′2 + c1ξ

′ + c0
ξ − ξ′

fe
(
ξ′
)
dξ′

= ±Kx
e x̂+Ky

e ŷ

2π
fe (ξ)

[
Is (ξ, c2, c1, c0)

−
∫ 0.5

−0.5

c2ξ
′2 + c1ξ

′ + c0
ξ − ξ′

(
1− fe (ξ

′)

fe (ξ)

)
dξ′
]

(32)

because fe (ξ
′) = fe (ξ) [1− (1− fe (ξ

′) /fe (ξ))].

Again, the positive sign in (32) is used for anticlockwise segments where ∆η > 0. It is also worth saying that
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from L’Hôpital rule
1− fe (ξ

′) /fe (ξ)

ξ − ξ′

∣∣∣∣
ξ′=ξ

=
∆η

2
e2

sin (2η (ξ))

f2
e (ξ)

(33)

so that the last integral in (32) can also be computed using a numerical integration procedure.

The analytical integrals corresponding to the transverse gradient of g in the TE case (see first integral in (15))

can be evaluated more easily since

∂wn (l
′)

∂l′
dl′ =

∂wn (l
′)

∂ξ′
∂ξ′

∂l′
dl′ =

(
2d2ξ

′ + d1
)
dξ′ (34)

thus expressions (29) and (30) are valid if both are divided by the segment length and also Is (ξ, c2, c1, c0) is

replaced with Is (ξ, 0, 2d2, d1), being d2, d1 and d0 the coefficients of the parabolic expression of the basis function

wn (l
′) in the integration segment.

In the elliptical TE case the term fe (ξ) does not appear due to (34), and the singular integral is now given by

ae |∆η|
∫ 0.5

−0.5

Kx
e x̂+Ky

e ŷ

2πae∆η (ξ − ξ′)

(
2d2ξ

′ + d1
)
dξ′

=
Kx

e x̂+Ky
e ŷ

2πae∆η
Is (ξ, 0, 2d2, d1) (35)

where Is is the singular integral given in Appendix A.

IV. RESULTS

In this section, the accuracy of the proposed technique is completely verified with several application examples.

First, we have computed the complex modal propagation constants of three well-known waveguides, i.e., a double

ridge waveguide, an elliptical waveguide and a circular waveguide. These results have been successfully validated

with numerical data provided by the commercial software HFSS [29], and have also been compared with the classic

power-loss method. Next a circular sectorial shaped and a triangular shaped waveguide have been considered.

Then, we have analyzed and predicted the propagation loss effects in three complex passive waveguide devices: an

evanescent mode ridge waveguide filter, a dual mode filter with circular waveguide cavities, and a twist component

for K-band applications. All the simulations have been obtained on a Intel Core i7-970 platform at 3.2 GHz

with 12-GB RAM.

A. Study of propagation losses in arbitrarily shaped waveguides

First of all, to fully validate the theory developed, we have performed the modal analysis of a double ridge

WR-75 (19.05× 9.525 mm) waveguide with a finite conductivity value of σ = 5.8 · 107 S/m. Figure 2(a) shows in

a semi-logarithmic scale the attenuation constant for some of the first double ridge waveguide modes (h = 2.976

mm and w = 4 mm) computed using the power-loss method, the proposed method based on the perturbation of
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Fig. 2. Attenuation (a) and phase constant (b) for some of the first double ridge waveguide modes (h = 2.976 mm and w = 4 mm)

in a standard WR-75 waveguide with σ = 5.8 · 107 S/m.
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Fig. 3. Attenuation (a) and phase constant (b) for the first five elliptical waveguide modes (ae = 10 mm and be = 4.3589

mm), with a finite conductivity value of σ = 5.8 · 107 S/m.

the boundary conditions and HFSS. Note that the proposed technique does not fail at the cut-off frequency, in

contrast with the classic power-loss technique that provides an infinite value for α. In Fig. 2(b) we also represent

the phase constant for the same modes. The results predicted by the proposed technique are successfully compared

with HFSS data for each analysis frequency. However, the computer time employed by the proposed technique

has been 0.89 s per frequency point, while the computer time required by the HFSS code in the discrete

sweep has been 31 s per frequency point (after using 4926 triangles in the wave port).

The next example deals with the analysis of an elliptical waveguide with major semiaxis ae = 10 mm,

minor semiaxis be = 4.3589 mm (eccentricity e = 0.9), and a finite conductivity value of σ = 5.8 · 107 S/m.
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For verification purposes, Fig. 3 compares in a semi-logarithmic scale the attenuation constant and the phase

constant for the first five elliptical waveguide modes computed with the power-loss method, the proposed

method and HFSS. As it can be observed, an excellent agreement between our results and HFSS data is

obtained.

In order to demonstrate the variation of the cut-off wavenumber in presence of losses, Fig 4 shows the

relative shift (|(kc0 −Real{kc}) /kc0|) for the TE11 cut-off wavenumber of a circular waveguide (r = 5

mm) in terms of conductivity. The difference between lossless and lossy cut-off wavenumbers increases with

frequency and for lower conductivity.

Once the proposed theory has been successfully validated with well-known waveguides and to demonstrate

the power of the proposed technique, we have analyzed two additional arbitrarily shaped waveguides: a

circular sectorial and a triangular shaped waveguide [30], [31]. In Fig. 5 the attenuation and phase constant

for the first three modes of a 90o circular sectorial waveguide (r = 6 mm) with a finite conductivity value

of σ = 107 S/m are represented. Fig. 6 plots the complex modal propagation constants for the first three

triangular shaped waveguide modes (a = 7 mm and h = 5 mm, with these dimensions the waveguide do not

have analytic solution) with the same conductivity value of σ = 107 S/m are also represented.

B. Full-wave analysis of complex structures including propagation losses

After the validation of the proposed technique with the previous benchmark tests, it is applied to the analysis of

modern passive devices involving arbitrarily shaped waveguides. For such purpose, we have integrated the method

presented in this paper into a CAD software package based on the integral-equation technique described in [28]. The

application of this full-wave technique requires the knowledge of the modal chart of all arbitrarily shaped

waveguide sections involved in the structure, which is determined following the BI-RME technique [26], as

pabsopac
Comentario en el texto
circular sectorial waveguide [30] and also a triangular shaped waveguide without known analytical solution [31].

pabsopac
Tachado

pabsopac
Tachado
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Fig. 5. Attenuation (a) and phase constant (b) for the first three circular sectorial shaped waveguide modes (r = 6 mm),
with a finite conductivity value of σ = 107 S/m.
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Fig. 6. Attenuation (a) and phase constant (b) for the three triangular shaped waveguide modes (a = 7 mm and h = 5 mm),
with a finite conductivity value of σ = 107 S/m.

well as the new complex propagation constants computed as indicated in Section II. The final objective is

to obtain a multimodal representation of each junction and each waveguide section in terms of generalised

impedance matrices (GIM), which are finally connected to derive the electromagnetic response of the entire

structure.

First, we have considered a five order evanescent mode waveguide filter with ridges in both the upper and lower

walls, originally designed in [32]. These filters provide compact size and excellent out-of-band response, carrying

out some of the design requirements for passive waveguide filters in modern communication systems for space and

pabsopac
Comentario en el texto
generalized

Perdon, Stephan, por el cambio de criterio. La revista es británica, por lo que lo correcto sería utilizar "generalised", pero ya que esta todo el texto escrito en inglés americano, es mas correcto dejarlo como generalized
(se me olvidó deshacer este cambio en la versión que te mandé)
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Fig. 7. Geometrical parameters of the symmetrical evanescent mode ridge waveguide filter: in a) the transverse section of the

housing; in b) the transverse section of the ridge waveguides; in c) the longitudinal section of the filter.

TABLE I

DIMENSIONS (in mm) OF THE FIVE-ORDER EVANESCENT MODE RIDGE WAVEGUIDE FILTER (ah × bh = 6.0× 7.49 mm).

w h t1 l1 t2 l2 t3 l3

2.7 3.506 0.25 0.901 6.61 1.435 7.065 1.433

terrestrial applications. Figure 7 shows the geometrical parameters of the symmetrical filter under consideration.

The structure is implemented in a hollow and uniform below cut-off rectangular waveguide commonly referred

as housing (ah × bh), which is ended with standard WR-90 waveguide access ports above cut-off. The ridges are

centered and have the same width w and height h; all the dimensions are summarized in Table I.

Figure 8(a) shows the magnitude of the scattering parameters for the evanescent mode filter. The passband

response was designed to be centered at 10 GHz with 300 MHz of bandwidth. We have simulated the structure

considering lossless walls and also with a finite conductivity value of σ = 5.8 · 107 S/m. In this second case we

included the propagation losses using both the classical power-loss and the proposed method. A frequency shift of

about 10 MHz is observed in the response with finite conductivity. HFSS results confirm the downwards frequency

shift, although the ripple of the S11 parameter has not reached full convergence after 35 iterations. This shift,
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Fig. 8. In a) magnitude of the scattering parameters of the five order evanescent mode ridge waveguide filter described in Fig. 7

and Table I. In b) detailed view of the magnitude of the transmission coefficient (S21) in the passband for the same filter.

caused by a variation of the value of the phase constant β, is not predicted by the power-loss method.

Furthermore, a different minimum insertion loss level (see Fig.8(b)) is obtained by the power-loss method (0.46

dB), HFSS (0.55 dB) and the proposed technique (0.54 dB). Note that the rectangular housing is under cut-off,

so its losses are not taken into account by the traditional power-loss method. For comparison, such results were

obtained using 50 accessible modes, 300 basis functions, and 700 kernel terms in the in the analysis of each

discontinuity. These simulating parameters involved a total CPU effort of 14 minutes (201 frequency points) on the

Intel Core i7-970 platform at 3.2 GHz with 12-GB RAM, while HFSS simulation takes close to 10 hours, which

is approximatively forty times slower than using our software.

Next, the theory developed in Sections II and III has been used to analyze the propagation loss effects of a

dual-mode filter with circular cavities for narrow Ka-band applications. The four-pole filter, centered at 30 GHz

and with 120 MHz of bandwidth, has been designed using the FEST3D synthesis tool [33]. In the proposed filter

topology, the circular cavities are coupled through a cross iris, and are connected with input and output WR-28

port waveguides (7.112× 3.556 mm) by means of rectangular irises; additionally, coupling and tuning screws with

rectangular cross-section are placed inside each cavity. The coupling screws are placed, respectively, at 45 and 135

degrees with respect to the x-axis. In order to independently adjust each resonance in the same circular cavity, the

tuning screws are set in the horizontal and vertical axes. The dimensions of the input/output rectangular irises are

4.118 × 1.0 mm, the radius of both circular cavities is 4.6 mm and their length is 9.025 mm; the horizontal arm

of the cross iris has dimensions 2.965 × 0.5 mm and the vertical arm 0.5× 3.516 mm; the thickness of all irises

is set to 1 mm. Finally, the width of the screws is 1 mm and their penetration depths in the cavities are 1.046, 0.4
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Fig. 9. In a) magnitude of the scattering parameters of a four order dual-mode filter with circular cavities; in b) detailed view of

the magnitude of the transmission coefficient (S21) in the passband.

and 0.744 mm, respectively, for the horizontal, vertical and diagonal one.

In Fig. 9(a) we compare the magnitude of the scattering parameters of this filter considering the lossless case

and a structure made of aluminum with a finite conductivity value of σ = 3 · 107 S/m; in this second case we show

the results obtained with both methods. As in the previous case, we can find relevant differences in the results:

again a noticeable downwards frequency shift of 11 MHz in the electrical response (9% of the filter bandwidth)

is predicted when we use the perturbation of boundary conditions technique, and a higher minimum insertion loss

level (see Fig.9(b)) is obtained with respect to the traditional power-loss method.

Finally, in order to check the validity of the software tool with real measurements, the twist component for

K-band application originally designed in [26] has also been analyzed. The structure presents a compact geometry

based on a soft rotation of the E-field through successive square, circular and elliptical waveguides. A detailed

view of the internal pieces of the device is shown in Fig. 10; the input/output ports are standard WR-34 rectangular

waveguides (8.636× 4.318 mm); the two square waveguides have a side of 8.636 mm and length of 1.8 mm; the

central piece is composed of two circular waveguides of radius 6.1 mm and length 1.60 mm, and an inner elliptical

iris of length 0.30 mm with major semiaxis of 6.0 mm, minor semiaxis of 3.9 mm, and a rotation of 45◦ degrees

with respect to the x-axis. The measurements of a prototype of such device, operating at 26.3 GHz and with a

bandwidth of approximately 2 GHz, have been completely recovered by simulated data using a conductivity value

of σ = 106 S/m. The frequency shift with respect to the lossless case is negligible in this structure, since ohmic

losses are very small (due to the absence of resonances and the 2 GHz bandwidth). The authors have also verified

that the frequency shift increases with insertion loss, and therefore is more relevant in narrow-band and sensitive
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Fig. 10. Comparison between simulated and measured scattering parameters for the manufactured 90-twist component. To recover

the measurements, a finite conductivity value of σ = 106 S/m has been assumed in the simulation.

devices operating at high frequency bands.

V. CONCLUSIONS

This paper opens the application range of the perturbation of boundary conditions method to waveguides whose

contour is composed of any combination of straight, circular and elliptical arcs. As a result, the rigorous evaluation

of propagation losses in structures based on arbitrarily shaped waveguides can be carried out, overcoming the

limitations of the classic power-loss method: computation of the attenuation constant in the vicinity of the cut-off

frequency, losses associated with the evanescent modes, and effect of losses on the phase constant. The new modal

analysis tool has been first successfully verified through three examples of well-known waveguides: a double-

ridge waveguide, an elliptical waveguide and a circular waveguide, and also applied to a sectorial shaped

waveguide and a triangular waveguide. Then, such tool has been integrated into a CAD software package for

the advanced prediction of the propagation loss effects in complex waveguide components. The resulting full-wave

analysis tool has revealed to be around forty times faster than the well-known finite element commercial software

widely used to evaluate component losses. In addition, comparative benchmarks demonstrate that the proposed

technique predicts a downwards frequency shift in the electrical response of waveguide devices that can be critical

for sensitive narrow-band applications. This frequency shift, caused by a variation of the value of the phase constant

β due to the ohmic losses, cannot be predicted by the traditional power-loss method.
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APPENDIX A

ANALYTICAL SOLUTION FOR THE SINGULAR INTEGRAL

This appendix includes the analytical solution of the singular integral emerging in the evaluation of the contour

integrals which involves the transverse gradient ∇tg

Is(ξ, a2, a1, a0) =

∫ 0.5

−0.5

a2ξ
′2 + a1ξ

′ + a0
ξ − ξ′

dξ′

=

∫ ξ+0.5

ξ−0.5

a2 (ξ − u)2 + a1 (ξ − u) + a0
u

du

= (a2ξ + a1) [ξ (log |ξ + 0.5| − log |ξ − 0.5|)− 1]

+ a0 [log |ξ + 0.5| − log |ξ − 0.5|] . (36)
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