A method to approximate the hyperbolic sine of a matrix

Emilio Defez\textsuperscript{1,†}, Jorge Sastre\textsuperscript{2}, Javier Ibáñez\textsuperscript{3}, Jesús Peinado\textsuperscript{3} and Michael M. Tung\textsuperscript{1}

\textsuperscript{1}Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia. Spain.

\textsuperscript{2}Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia. Spain.

\textsuperscript{3}Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia. Spain.

Abstract. In this paper a method for computing hyperbolic matrix sine based on Hermite matrix polynomial expansions is presented. An error bound analysis is given.

Keywords: Hyperbolic matrix sine, Hermite matrix polynomial.
MSC 2000: 15A16, 65F60

\textsuperscript{†}Corresponding author: edefez@imm.upv.es
Received: January 24th, 2014
Published: March 1st, 2014

1. Introduction

The hyperbolic sine of a matrix is defined by 

$$\sinh(A) = \left( e^{A} - e^{-A} \right) / 2,$$

where $A \in \mathbb{C}^{r \times r}$. In general, functions of a matrix are used in many areas of science and engineering. In particular, matrix exponential $e^{A}$ and matrix functions sine and cosine have been those that have received the most attention, not only for its computational difficulties but also for its importance in solving differential systems of first and second order, see for example [1, 2].

To approximate the hyperbolic sine of a matrix we need to compute approximations of the matrix exponential $e^{A}$ and compute its inverse, $e^{-A}$, which may be costly numerical and computationally. A possible alternative is to use

$$\sinh(A) = i \cos \left( A - \frac{i\pi}{2} I \right), \quad \sinh(A) = -i \cosh \left( A - \frac{i\pi}{2} I \right)$$
and approximate the cosine or the hyperbolic cosine of a matrix, but this
approach has the disadvantage, however, to require complex arithmetic even
though the matrix \( A \) is real – usually in applications – which contributes sub-
stantially to the computational overhead.

In this work we propose a method to evaluate \( \sinh(A) \) avoiding com-
plex arithmetic whenever possible. The proposed method use Hermite matrix
polynomial expansions of \( \sinh(A) \) in order to perform a very accurate and
competitive method for computing them.

This work is organized as follows. Section 2 summarizes previous results of
Hermite matrix polynomials and includes a new Hermite series expansion of
the matrix hyperbolic sine with the respectively error bounds. An illustrative
example is given in section 3.

Throughout this paper, \([x]\) denotes the integer part of \( x \). The matrices \( I_r \)
and \( \theta_{r \times r} \in \mathbb{C}^{r \times r} \) denote the matrix identity and the null matrix of order \( r \),
respectively. For a matrix \( C \in \mathbb{C}^{r \times r} \), we denote by \( \|C\| \) its 2-norm defined in
[3, p. 56] by

\[
\|C\| = \sup_{x \neq 0} \frac{\|Cx\|_2}{\|x\|_2},
\]

where for a vector \( y \in \mathbb{C}^r \), \( \|y\|_2 \) denotes the usual euclidean norm.

2. Hermite matrix polynomial series expansions of hyperbolic ma-
trix sine. Error bound.

For the sake of clarity in the presentation of the following results, we recall
some properties of Hermite matrix polynomials which have been established in
[4] and [5]. From (3.4) of [5] the \( n \)-th Hermite matrix polynomial is defined
by

\[
H_n\left(x, \frac{1}{2}A^2\right) = n! \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(-1)^k (xA)^{n-2k}}{k!(n-2k)!},
\]

for an arbitrary matrix \( A \in \mathbb{C}^{r \times r} \). Taking into account the three-term recur-
cence relationship (3.12) of [5, p. 26], it follows that

\[
H_n\left(x, \frac{1}{2}A^2\right) = xAH_{n-1}\left(x, \frac{1}{2}A^2\right) - 2(n-1)H_{n-2}\left(x, \frac{1}{2}A^2\right), \quad n \geq 1
\]

\[
H_{-1}\left(x, \frac{1}{2}A^2\right) = \theta_{r \times r}, \quad H_0(x, \frac{1}{2}A^2) = I_r
\]

and from its generating function in (3.1) and (3.2) [5, p. 24] one gets

\[
e^{xtA - t^2I} = \sum_{n \geq 0} \frac{1}{n!} H_n\left(x, \frac{1}{2}A^2\right) t^n, \quad |t| < \infty,
\]
where $x; t \in \mathbb{C}$. Then, after taking $y = tx$ and $\lambda = 1/t$ in (3) it follows that

$$e^{Ay} = e^{\frac{1}{2}x^2} \sum_{n \geq 0} \frac{1}{\lambda^n n!} H_n \left( \lambda y, \frac{1}{2} A^2 \right), \quad \lambda \in \mathbb{C}, \ y \in \mathbb{C}, \ A \in \mathbb{C}^{r \times r}. \quad (4)$$

Next, we wish to determine the series expansion in terms of Hermite matrix polynomials for the matrix hyperbolic sine $\sinh (Ay)$. Given an arbitrary matrix $A \in \mathbb{C}^{r \times r}$, using (4) in combination with [5, p. 25], it follows that $H_n(-x, A) = (-1)^n H_n(x, A)$. Thus, one obtains the following, required expression:

$$\sinh (Ay) = e^{\frac{1}{2}x^2} \sum_{n \geq 0} \frac{1}{2^{2n+1}(2n+1)!} H_{2n+1} (y, \frac{1}{2} A^2). \quad (5)$$

Denoting by $SH_N(A, \lambda)$ the $N$th partial sum of series (5) for $y = 1$, one gets

$$SH_N(\lambda, A) = e^{\frac{1}{2}x^2} \sum_{n=0}^{N} \frac{H_{2n+1} (\lambda, \frac{1}{2} A^2)}{\lambda^{2n+1}(2n+1)!} \approx \sinh (A), \ \lambda \in \mathbb{C}, \ A \in \mathbb{C}^{r \times r}. \quad (6)$$

It is easy to show the following bound for Hermite matrix polynomials based on $||A^2|| \neq 0$, see [6], using the Taylor series for the hyperbolic sine:

$$\left\| H_{2n+1} \left( x, \frac{1}{2} A^2 \right) \right\| \leq \frac{(2n+1)! \| A \|}{\| A^2 \|^{\frac{1}{2}}} \sinh \left( |x| \| A^2 \|^{\frac{1}{2}}, \right), \ \forall x \in \mathbb{R}, \ n \geq 0. \quad (7)$$

Therefore, using (6) and bound (7), it follows that:

$$\| \sinh (A) - SH_N(\lambda, A^2) \| \leq e^{\frac{1}{2}x^2} \sum_{n=0}^{N} \frac{H_{2n+1} (\lambda, \frac{1}{2} A^2)}{\lambda^{2n+1}(2n+1)!} \frac{\sinh \left( |\lambda| \| A^2 \|^{\frac{1}{2}}, \right)}{\| A^2 \|^{\frac{1}{2}}} \frac{1}{(\lambda^2 - 1)\lambda^{2N+1}}. \quad (8)$$

If $\lambda > 1$, given a priori error $\varepsilon > 0$ and taking the first positive integer $N$ so that

$$N > \log \left( \frac{e^{\frac{1}{2}x^2} \| A \| \sinh \left( |\lambda| \| A^2 \|^{\frac{1}{2}}, \right)}{\varepsilon \| A^2 \|^{\frac{1}{2}} (\lambda^2 - 1)} \right) \frac{1}{2 \log (\lambda)} - 1 \quad (9)$$

one gets

$$\| \sinh (A) - SH_N(\lambda, A^2) \| \leq \varepsilon.$$
3. An example.

Let $A$ be a non-diagonalizable matrix defined by

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$ 

Using the minimal theorem [7, p. 571] the exact value of the hyperbolic matrix sine is

$$\sinh (A) = \begin{bmatrix} 1.81343020392 & 0 & 0 & 1.81343020392 & 0 \\ 1.81343020392 & 0 & 0 & 1.81343020392 & 0 \\ 2.45165921420 -1.17520119364 & 1.17520119364 & 3.62686040785 & 0 \\ 1.81343020392 & 0 & 0 & 1.81343020392 & 0 \\ 1.54680758967 & 0.80732175247 & 1.54308063482 & 1.91468703084 & 1.17520119364 \end{bmatrix}.$$ 

It is easy to check that $\|A\| \approx 3.42347$, $\|A^2\|^{\frac{1}{2}} \approx 2.83667$. Choosing $\lambda = 10$ and $\varepsilon = 10^{-5}$, the estimate (9) requires to take $N = 7$:

$$SH_7(10, A) \approx \begin{bmatrix} 1.81343020383 & 0 & 0 & 1.81343020383 & 0 \\ 1.81343020383 & 0 & 0 & 1.81343020383 & 0 \\ 2.45165921402 -1.17520119364 & 1.17520119364 & 3.62686040767 & 0 \\ 1.81343020383 & 0 & 0 & 1.81343020383 & 0 \\ 1.54680758940 & 0.80732175247 & 1.54308063482 & 1.91468703057 & 1.17520119364 \end{bmatrix},$$

with an error

$$\|\sinh (A) - SH_7(10, A)\| = 5.06825 \times 10^{-10}.$$ 

Note that the number of terms required to obtain a predetermined accuracy tends to be smaller than the one provided by (9). For instance, taking $N = 5$ and the same $\lambda = 10$ one finds

$$\|\sinh (A) - SH_5(10, A)\| = 2.52331 \times 10^{-6}.$$ 

The specific choice of parameter $\lambda$ can still be further refined. Thus, for $N = 6$ and $\lambda = 6.21566$, one gets

$$\|\sinh (A) - SH_6(6.21566, A)\| = 1.33576 \times 10^{-8}.$$ 

Acknowledgements

This work has been partially supported by the Universitat Politècnica de València Grant PAID-06-11-2020 and the Generalitat Valenciana GV/2013/035.
References


