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Abstract

The present Ph.D. Thesis considers epidemiological mathematical models based

on ordinary differential equations and shows its application to understand the co-

caine consumption epidemic in Spain. Three mathematical models are presented

to predict the evolution of the epidemic in the near future in order to select the

model that best reflects the data. By the results obtained for the selected model,

if there are not changes in cocaine consumption policies or in the economic envi-

ronment, the cocaine consumption will increase in Spain over the next few years.

Furthermore, we use different techniques to estimate 95% confidence intervals and,

consequently, quantify the uncertainty in the predictions. In addition, using several

techniques, we conducted a model sensitivity analysis to determine which parame-

ters are those that most influence the cocaine consumption in Spain. These analysis

reveal that prevention actions on cocaine consumer population can be the most ef-

fective strategy to control this trend.





Resumen

La presente Tesis considera modelos matemáticos epidemiológicos basados en

ecuaciones diferenciales ordinarias y muestra su aplicación para entender la epi-

demia del consumo de cocáına en España. Se presentan tres modelos matemáticos

para predecir la evolución de dicha epidemia en un futuro próximo, con el ob-

jetivo de seleccionar el modelo que mejor refleja los datos. Por los resultados

obtenidos para el modelo seleccionado, si no hay cambios en las poĺıticas de con-

sumo de cocáına ni en el ámbito económico, el consumo de cocáına aumentará en los

próximos años. Además, utilizamos diferentes técnicas para estimar los intervalos

de confianza al 95% y, de esta forma, cuantificar la incertidumbre en las predic-

ciones. Finalmente, utilizando diferentes técnicas, hemos realizado un análisis de

sensibilidad para determinar qué parámetros son los que más influyen en el con-

sumo de cocáına. Estos análisis revelan que las acciones de prevención sobre la

población de consumidores de cocáına pueden ser la estrategia más efectiva para

controlar esta tendencia.





Resum

La present Tesi considera models matemàtics epidemiològics basats en equa-

cions diferencials ordinàries i mostra la seua aplicació per a entendre l’epidèmia

del consum de cocäına en Espanya. Es presenten tres models matemàtics per a

predir l’evolució d’aquesta epidèmia en un futur pròxim, amb l’objectiu de selec-

cionar el model que millor reflecteix les dades. Pels resultats obtinguts per al

model seleccionat, si no hi ha canvis en les poĺıtiques de consum de cocäına ni

en l’àmbit econòmic, el consum de cocäına augmentarà en els pròxims anys. A

més, utilitzem diferents tècniques per a estimar els intervals de confiança al 95% i,

d’aquesta manera, quantificar la incertesa en les prediccions. Finalment, utilitzant

diferents tècniques, hem realitzat un anàlisi de sensibilitat per a determinar quins

paràmetres són els que més influencien el consum de cocäına. Aquestos anàlisis rev-

elen que les accions de prevenció en la població de consumidors de cocäına poden

ser l’estratègia més efectiva per a controlar aquesta tendència.
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Chapter 1

Introduction

Cocaine consumption is growing at a worrying rate in developed and developing

countries [23, 80]. In Spain it is becoming a serious problem not only from an

individual health point of view but also from the public socioeconomic one [61,62].

Thus, it is in the interest of public health to study the dynamics of cocaine

consumption. In this dissertation, we analyse the evolution of people with habitual

cocaine consumption in Spain and simulate some health policy proposals and their

effect in reducing this population.

Spanish Government strategy on drug abuse appears in the National Plan on

Drugs [9, 61], issued by the Spanish Health Ministry. The objectives mentioned in

this document are:

1. The prevention of drug consumption, pointing out the health concerns pro-

duced by their consumption, delaying the age of the first contact with drugs, edu-

cation programmes and legal fight against drugs dealing.

2. To improve quantitative and qualitative research, to implement new treat-

ments, evaluate current therapy programmes and training to increase professional

competence of the people who work with drug abusers.

In this dissertation, we take cocaine consumption to be as socially transmitted

epidemic disease. We treat cocaine consumption as a disease that spreads through

social peer pressure or social contact. These social contacts have an influence on

the probability of transmission of cocaine consumption. These facts lead us to

propose an epidemiological-type model to study the evolution of this consumption.

This type of mathematical models have also been used in the study of other drug

addictions, such as alcohol, tobacco, ecstasy or heroin addiction [25,75,77,82] and

in the approach to other sociological topics that are spread by social contact as

1



2 Chapter 1. Introduction

obesity or extreme ideological behaviour [37,71].

1.1 Epidemiological models

The spread of infectious diseases has always been a potential public health concern

and it has influenced the economic and social development of the human society.

Thus, its prevention and control become extremely important.

Epidemiological models are an interesting approach to understand the transmis-

sion dynamics of infectious diseases. These models and their numerical simulations

allow us to make reliable predictions, identify the most important and sensitive

parameters and help to improve prevention and control strategies. Understanding

the dynamics of the spread of infectious diseases can lead to better approaches to

decrease the transmission of these diseases [7, 46].

Investigating and controlling infectious diseases is a complex task that has long

been carried out by mathematical modeling. Although it can go back to 1760

when Bernoulli used mathematical models for smallpox, the research of infectious

diseases, using deterministic mathematical models, actually began in the 20th cen-

tury. In 1906 a discrete time model for the spread of measles was proposed by

Hamer, which may have been the first model which assumed that the incidence

(number of new cases per unit time) depends on the product of the densities of

the susceptibles (individuals who might become infected if they are exposed) and

infectives [31]. In 1911 a differential equation model was used by the physician

Dr. Ross to describe the transmissions of malaria. In 1926 a compartmental model

proposed by Kermack and McKendrick established the foundations of the theory

of epidemic dynamics: the SIR model [31, 40]. In the Kermack and McKendrick’s

work, epidemics such as the plague (London 1665 - 1666, Bombay 1906) and cholera

(London 1865) were studied. Additionally, they obtained the epidemic threshold

such that if the density of susceptibles exceeds this threshold, an epidemic outbreak

occurs.

Epidemic models based on differential equations are mostly based on dividing

the population into different groups or compartments, depending on their status

with respect to the disease. In the Kermack and McKendrick SIR model, the

population is divided into three compartments: susceptibles (S ), individuals who

might become infected if they are exposed; infected (I ), individuals who are infected

and can transmit the disease; and removed (R), individuals who are removed or
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recovered from the infection and they cannot transmit the disease.

In this standard model, it is assumed that N=S+I+R, where N is the total

population. The transmission rate, β, is proportional to the total number of sus-

ceptibles. Therefore, we model this contact rate with the non-lineal term βSI/N .

Additionally, the recovery rate, γ, is proportional to the size of subpopulation I.

All the individuals in R remain immunes.

Based on these assumptions, the flow diagram of the SIR model is shown in

Figure 1.1.

Figure 1.1: Flow diagram of the SIR mathematical model.

The corresponding model equations are given by the following system of differ-

ential equations:

S′(t) = −βS(t)I(t)/N(t)

I ′(t) = βS(t)I(t)/N(t)− γI(t)

R′(t) = γI(t),

where the non-lineal term βS(t)I(t)/N(t) models the disease transmission.

This celebrated SIR model has been used and extended to model infectious dis-

eases, for example, exposed periods, vaccinations, isolations, quarantines, contact

rates, vertical and vectors transmissions. In addition, other more complex models

with ages, gender or spatial structure have also been studied [7, 46].

Mathematical epidemiology has grown exponentially in the last years and multi-

tude of mathematical models have been formulated and developed to study several

infectious diseases, such as measles, malaria, tuberculosis, sexually transmitted dis-

eases (STDs), AID/HIV, etc. Recently, systems of ordinary differential equations

are being used to study social epidemics, as alcoholism, smoking and drug abuse,

and in the approach of other social topics that are spread by social contact, such

as obesity [72], suicide or extreme ideological behaviour [71].
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1.2 Epidemiological models of drug abuse

Mathematical models, simpler than the reality, allow us to understand the global

dynamic behaviour of the drug consumption in the population and to help the

policymakers in targeting drug prevention and treatment.

Considering drug consumption as a disease that spreads through social peer

or social contact, some epidemiological-type models have been used to study the

evolution of drugs consumption, such as alcohol, heroin, tobacco, ecstasy or cocaine.

While social problems, such as alcohol and drug use, have been referred to in terms

of epidemics, only few have been published on the application of mathematical

modeling methods to such problems. In this dissertation, we will focus on the

models defined by ordinary differential equations (ODE).

Agent-based modeling and other computer-based simulations have been used

broadly in the Social Sciences since the 1990s as a means of understanding social

processes and dynamics. In 2006, Gorman et al. developed a preliminary agent-

based simulation model to explore both the social dynamics and the environmental

influences that affect drinking behaviour [25]. Specifically, this model examined the

iterations of three types of agents defined according to their current status (suscep-

tible nondrinkers, current drinkers and formal drinkers) as well as what happens

to these interactions when a new bar was introduced into the environment. Within

this framework, the basic model shows that even a single current drinker intro-

duced into a population of susceptibles could convert the population into drinkers

over time. However, including a new bar in the model both enhanced and soften

the rate of propagation, changing the dynamics.

In 2008, Sánchez et al. proposed an epidemiological model to study the dy-

namics of drinking behaviour. Building on similarities between drinking and “in-

fection”, a simple SDR (Susceptibles- Drinkers- Removed) model was described

within the context of the classic SIR epidemiological model [70]. From the analysis

of the “drinking-free” equilibrium, that is, the state where drinking is not part of

the culture, the model’s basic reproductive number, R0, and the basic reproductive

number with recovery (Rϕ) and relapse (Rρ) , were computed and an uncertainty

and sensitivity analysis was carried out. The basic reproductive number tells us

how many secondary infections will result from the introduction of one infected

individual into a susceptible population. The threshold value of R0 indicates under

what circumstances an epidemic will be avoided and if this does not happen, an
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endemic equilibrium of drug-users may be established in the population and eradi-

cation of drug-use could become more difficult. For more details related to R0 and

Rϕ, see [59, 70, 82]. In this work [70], conditions for the “successful” invasion of a

“non-drinking” culture were established. Model results were used to highlight the

impact of nonlinear interactions on the dynamics of the alcohol use at the popu-

lation level. The public health and social policy implications were discussed. It

was shown, for example, that if a drinking culture is established, it is difficult to

bring it to a level low enough to eliminate it completely. Moreover, this model

revealed that the basic reproductive number Rϕ (as a function of treatment) is not

always the key. In fact, it may be more effective to try to limit the average res-

idence times of susceptible individuals in drinking environments until treatments

with more sustained effects are identified and widely implemented.

Recently, drinking has also been modeled as a socially contagious process in

low-and high-risk connected environments [57]. A simple compartmental model

with two distinct drinking environments (low- and high- risk) and three classes

of drinkers (susceptible, moderate and heavy drinkers) was employed to examine

the effects of residence time upon the differential development and persistence

of heavy drinking. A threshold parameter, Rd (referred to as the drinking or

basic reproduction number) was computed. The parameter Rd gives the average

number of individual transitions from light to moderate drinking that result from

the introduction of a moderate drinker in a population of light drinkers. This model

shown that the increase on individual residence times in the community or increase

in the rate of progression to heavy drinking can lead to increase in the proportion

of heavy drinkers. It pays attention to the need to focus on reducing the risk of

progression in the high-risk environment and/or in placing or creating structures

that limit the “contagion” facilitated in these settings.

Furthermore, a stochastic model was derived from the deterministic formulation

described in [70] by Cintrón-Arias et al. [15]. The goal of this work was to quantify

the variability on drinking dynamics due to stochastic effects; intending to highlight

some of the differences and similarities between the deterministic and stochastic

approaches. Numerical simulations, which were obtained using known parameter

values, were carried out on both models (deterministic and stochastic model). From

sensitivity analysis, they concluded that the increase in the recovery rate, as well

as reductions in the relapse rate, have a positive effect. Therefore, they suggest

promoting reductions in the number of problematic drinkers. It was concluded it
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is in the best interest of treatment programmes to concentrate efforts preventing

temporarily recovered individuals from relapse into drinking [15].

Another interesting contribution was the system of differential equations pro-

posed in 2006 by Song et al. to model the peer-driven dynamics of ecstasy use.

After an analytical study of the model, the most influence factors on ecstasy use

were identified. Through analysis of threshold conditions and estimation of pa-

rameters, predictions for the future of ecstasy use in the United States were made.

Finally, all the parameters were varied with the aim to predict the most efficient

manner of decreasing ecstasy use by means of education [77]. This model shows

that, once a considerable number of people use ecstasy, decrease this number is

extremely difficult. In other words, a peer-driven drug epidemic should be avoided

at all costs.

Moreover, mathematical studies for assessing the dynamics of smoking have also

been conducted. In 1997 Castillo-Garsow et al. presented a general epidemiologi-

cal model (SDR model) to describe the dynamics of drug use among adolescents,

specifically tobacco use. Specific models are derived by considering other factors

that have been identified to have an effect on the growing trend of tobacco use. The

factors considered are peer pressure, relapse, counseling and treatment [11]. In this

work, the parameters of the models were estimated and a rough approximation

of the basic reproductive number R0 was determined. Based on these parame-

ters, some simulations were performed. It clearly points out the importance of

educational (preventive) measures against drug abuse.

Later, a slight refinement of this model was presented to account for variabil-

ity in smoking frequency, by introducing two classes of mild and chain smokers,

as well as the public health impact of smoking-related illnesses [75]. This study

shows that smoking and smoking-related illnesses can be effectively controlled in

a community if public health related to a threshold value known as the smokers

generation number, less than unity, are implemented. Recently, another epidemic-

type mathematical model has been developed to study the evolution of tobacco use

in Spain, with the aim to quantify the effect of the smoke-free law [27].

One of the first ODE models to opiate addiction, based on the principles of

mathematical epidemiology, was presented by White and Comiskey in 2007 [82].

Following standard methods, the population was divided into three classes, namely
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susceptibles, heroin users and heroin users undergoing treatment. In this work

they identified parameters of interest in the drug abuse dynamics and proposed an

epidemic threshold value, R0, the basic reproductive number. Sensitivity analysis

was performed on R0 and it was then used to examine the stability of the system.

A key result arising from this model is that prevention is indeed better than cure;

efforts to increase prevention are more effective in controlling the spread of habitual

drug use than efforts to increase the numbers of individuals accessing treatment.

Furthermore, this ODE model was revisited by Mulone and Straughan, who

proved that the positive equilibrium of the White and Comiskey model of heroin

epidemics is stable under the realistic condition that the relapse rate of those in

treatment returning to untreated drug use is greater than the prevalence rate of

susceptibles becoming drug users [58], that is, an epidemic in heroin use will never

occur, under this condition.

Moreover, Battista introduced a new mathematical model with more than three

classes of people and compared it with theWhite and Comiskey’s model [2], showing

the existence of stable equilibrium for both of them (the White and Comiskey model

and the Battista model), suggesting a situation where heroin use can be eradicated

(existence of ideal equilibrium) and a situation where drug use remains in society

(existence of endemic steady-states), depending on the values of parameters.

More recently, the White and Comiskey model has been modified to develop a

heroin epidemic model with distributed time delays [43,68]. In [43] the restriction

where the total population is constant was deleted, a delay effect in those returning

to untreated drug taking from a treatment programme was included, and finally a

delay model was developed. In [68], time dependent parameters, time dependent

total population size and distributed time delay to become heroin user have been

introduced. In both works, parameters of interest and the basic reproduction num-

ber R0 for the model and its threshold property (conditions for permanence and

extinction of the heroin use) have been identified.

In addition, the White and Comiskey model of heroin epidemics has been

modified to model the dynamics of methamphetamine use in a South African

province [63]. The stabilities of the model equilibria have been ascertained and

persistence conditions established. Furthermore, numerical simulations were per-

formed and the implications of the results in drug policy, treatment and prevention

were discussed.

Dynamical models have also been used to study the prevalence for the cocaine
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epidemic in the US. Toward the goal of designing effective drug control policy, in

1994 Everingham and Rydell created a model of how cocaine demand changes over

time using available data from the NHSDA (National Household Survey of Drug

Abuse) and other sources. They set up a Markovian model of population flows

that differentiates between light and heavy users [24]. It is referred to as the LH

model. Even though this model is not well suited for modeling epidemics on the

macro scale, this approach is useful for short- and intermediate- range prevalence

estimation. Although this model by itself is not predictive for the future evolution

of cocaine epidemic, it can project the evolution of epidemic given any hypothetical

scenario. In 2004 Everingham and Rydell’s Markov chain model of cocaine demand

was modified and updated in light of recent data [12]. The time-continuous version

of the time-discrete Everingham and Rydell’s model for the evolution of cocaine

consumption was developed by Behrens et al. (1999) and extended by introducing

an endogenous function of prevalence as initial condition. They carried out a

sensitivity analysis to understand how variations in the parameters affect both

the system and the levels of drug consumption and obtained significant results

regarding the optimum allocation of resources for treatment and prevention, where

the objective is to minimize social and control costs [3]. Focused on the LH model,

in 2004 Kaya studied how to bring down the prevalence of drug use to a target as

soon as possible [39].

More recently, instead of using the LH model, Caulkins et al. have used a SA

model. The SA model is much like the classic SIR models of infectious diseases,

with the difference that recovered users (R) are not modeled explicitly. It has been

parameterized for two different countries and used to simulate what might happen

if the policy was changed from use reduction to harm reduction or vice versa [13].

1.3 Uncertainty models

The translation from a real problem to a set of differential equations is a complex

task. Not only because of the difficulty of design a mathematical model, but by

the combination of the uncertainties involved.

Traditionally, the formal modeling of systems has been done via mathematical

models, which attempt to find analytical solutions enabling the prediction of the

behaviour of the system from a set of parameters and initial conditions. Computer

simulation is often used as an adjunct to, or substitution for, modeling systems for
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which simple closed form analytic solutions are not possible.

Scientific computing plays an ever-growing role in predicting the behaviour of

natural and engineered systems. However, whereas the simulations are generally

deterministic in nature, applications are steeped in uncertainty arising from a num-

ber of sources such as those due to manufacturing processes, natural material vari-

ability, initial conditions, conditions of the system, and the system surroundings.

Furthermore, the modeling and simulation process itself introduces uncertainty re-

lated to the form of the model as well as the numerical approximations employed in

the simulations. Each of these different sources of uncertainty must be estimated

and included in order to estimate the total uncertainty in a simulation predic-

tion. In addition, an understanding of the sources of the uncertainty can provide

guidance on how to reduce uncertainty in the prediction in the most efficient and

cost-effective way.

The flourishing of simulation-based scientific discovery has also resulted in the

emergence of the verification and validation (V&V) and uncertainty quantifica-

tion (UQ) disciplines. The goal of these emerging disciplines is to enable scien-

tists to make precise statements about the degree of confidence they have in their

simulation-based predictions. Here we focus on the UQ discipline which is essential

for validating and verifying computer models.

The main task of uncertainty quantification is to define and quantitatively de-

scribe these uncertainties. It can be defined as the

• identification (Where are the uncertainties?),

• characterization (Which form they have?),

• propagation (How do they evolve during the simulation?), analysis (How do

they influence?), and reduction

of all uncertainties in simulation models.

Identification

For a complete uncertainty quantification framework, all of the possible sources

of uncertainty must be identified and characterized. Sources of uncertainty can be
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broadly categorized as occurring in model inputs, numerical approximations or in

the form of the mathematical model.

A. Model Inputs. Model inputs include not only parameters used in the model

of the system, but also data from the surroundings. Model input data includes

things such as geometry, constitutive model parameters, initial conditions, and

can come from a range of sources including experimental measurement, theory,

other supporting simulations or even expert opinions. Data from the surrounding

includes boundary conditions and system excitation (mechanical forces or moments

acting on the system, forcing fields such as gravity and electromagnetism, etc.).

B. Numerical Approximation. Since complex differential equation-based models

rarely admit exact solutions for practical problems, approximate numerical solu-

tions must be used. The characterization of the numerical approximation errors

associated with a simulation is called verification. It includes discretization error,

iterative convergence error, round-off error and also errors due to coding mistakes.

C. Model Form. The model results come from all assumptions, conceptualiza-

tions, abstractions and mathematical formulations on which the model relies such

as ignored physics or physics coupling in the model. Model form uncertainties are

quantified using model validation procedures which include a comparison of model

predictions to experimental data and the extrapolation of this uncertainty structure

to points in the application domain where experimental data do not exist.

Characterization

While there are many different ways to classify uncertainty, we will use the tax-

onomy prevalent in the risk assessment community which categorizes uncertainties

according to their fundamental essence [16, 55, 81]. Thus, uncertainty is classified

as either aleatory or epistemic. All of these sources of uncertainty can be classified

as either purely aleatory, purely epistemic, or a mixture of aleatory and epistemic

uncertainty.

A. Aleatory Uncertainty is due to inherent variation or randomness and can

occur among members of a population or due to spatial or temporal variations.

Aleatory uncertainty is generally characterized by a probability distribution.
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B. Epistemic Uncertainty arises due to a lack of knowledge on the part of the

analyst conducting the modeling and simulation. Epistemic uncertainty is tradi-

tionally represented as either an interval with no associated probability distribution

or a probability distribution which represents degree of belief of the analyst, as op-

posed to frequency of occurrence discussed in aleatory uncertainty.

Propagation

Propagation of uncertainties can be performed forward and backward involving:

A. Analysis and quantification of the overall uncertainty in model outputs. At

the beginning this involves taking into account all sources of uncertainty, although it

has often been interpreted in the past more narrowly as quantifying the uncertainty

in outputs due to input uncertainty (Uncertainty Analysis).

B. The finding of the major sources of uncertainties (sensitivity analysis), i.e.,

identifying which parameters are the most relevant in contributing to uncertainty

in the prediction.

C. The determination of parameter posterior distributions based on data (cal-

ibration/data fusion).

D. The exploration of “interesting” regions in the parameter space (model ex-

ploration).

Several theories address the definition of uncertainty. These theories include

probability theory [26, 30], fuzzy set theory [84] and evidence theory [1, 56]. In

this dissertation, we work under the framework of probability theory, which pro-

vides a solid and comprehensive theoretical foundation and offers the most versatile

statistical tools.

The methods involved in this step include statistical analysis, experimental

error analysis and often, expert judgment [22]. Although how to quantify model

uncertainties and numerical uncertainties is still a topic of current research [19,83],

there are successful examples of quantifying the uncertainty sources in very complex

engineering systems [5, 67].

Once the sources of uncertainties are quantified, we need to calculate how these
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uncertainties propagate through the simulation to the quantities of interest. Many

techniques exist for propagating input uncertainties through the mathematical

model to obtain uncertainties in the system response quantities (SRQs). Sam-

pling techniques (e.g., Monte Carlo sampling or Latin hypercube sampling) are the

most common techniques to propagate input uncertainties through the model.

1.4 Overview of this dissertation

In the present dissertation we will present a mathematical epidemiological model to

study the dynamics of cocaine consumption in Spain. This model is based on dif-

ferential equations, within the context on the classic SIRS epidemiological model,

considering different levels in the drug abuse. Moreover, we predict the consump-

tion trends over the next few years. First, we will obtain a deterministic prediction

of the mathematical model and then, using different methods, we will introduce

uncertainty in the model. This fact allows us to evaluate how uncertainty in the

parameters influences uncertainty in the model and to obtain credible intervals for

the cocaine consumption prevalence in Spain over the next few years. Furthermore,

we carry out a sensitivity analysis of the mathematical model to determine which

parameters are those that most influence the model in order to propose some public

health strategies to reduce cocaine consumption.

The methods used in order to evaluate how uncertainty in the parameters in-

fluences uncertainty in the model output are the following:

• Monte Carlo method. This method provides approximate solutions to a vari-

ety of mathematical problems by performing statistical sampling experiments.

A Monte Carlo simulation is based on performing multiple model evalua-

tions using random or pseudo-random numbers to sample from probability

distributions of model inputs, depending on a priori information. The results

of these evaluations can be used to both evaluate the uncertainty in model

output and perform a sensitivity analysis to identify critical inputs of the

model.

This method proceeds as follows:

1. Generate sample values of the inputs of the model (parameters and

initial conditions) from their assumed probability density function.
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2. Solve the deterministic system of differential equations corresponding to

each value (or group of values).

3. Calculate mean and variance of the solutions set.

To perform uncertainty analysis we implemented the LHS algorithm. LHS

belongs to the Monte Carlo stratified sampling methods. It is a sophisticated

and efficient method for achieving equitable sampling of all input parameters

simultaneously. For each parameter a probability density function is defined

and stratified into N equal probability intervals. A single value is then se-

lected randomly from every interval and this is done for every parameter. In

this way, each interval for each parameter is sampled exactly once (without

replacement). Thus, the entire range for each parameter is explored. Distri-

butions of the outcome variables can then be derived directly by running the

model N times with each of the sampled parameters set [32,49].

• Approximate Bayesian computation (ABC method). This method has been

conceived to infer posterior distribution in case where likelihood functions are

computationally intractable or too costly to evaluate. In ABC methods, the

evaluation of the likelihood is replaced by a simulation-based procedure.

The ABC methods have the following generic form:

1. Sample a parameter vector from some proposal distribution.

2. Simulate a dataset from the model described by a conditional probability

distribution.

3. Compare the simulated dataset with the experimental data, using a

distance function and tolerance (that is the desired level of agreement

between simulated dataset and experimental data).

• Bootstrap method. The goal of bootstrap confidence interval theory is to cal-

culate confidence limits for the parameters from their distribution (density

function). Bootstrapping can handle violations of the maintained assump-

tions of traditional methods. The main idea behind bootstrapping is resam-

pling. Roughly the idea is as follows: to construct many “new” data sets

by resampling the original data set, and estimate the parameter value(s) for

each of these “new” data sets, generating a distribution of parameter esti-

mates. Using the resulting empirical distribution of parameters, estimate the

confidence intervals.
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The residual method used to study error terms for the estimated parameters

is implemented as follows:

1. Fit the model to the actual data by optimizing the parameter values.

2. Compute the error terms for the optimum parameter values. An error

term is actual data minus model output.

3. Resample the error terms using a parametric technique and obtain new

error values.

4. Construct new perturbed data sets by adding the resampled error terms

to the model output.

5. For each new set of perturbed data, compute the parameters which best

fit the model with the new set of perturbed data.

Repeat steps 3, 4 and 5 many times to obtain a sufficiently large boot-

strap sample for the parameters of the model.

In this dissertation, we model the dynamics of cocaine consumption in Spain

with differential equations considering uncertainty in the parameters. Note that

we only consider uncertainty in parameters and not in the initial condition because

the initial condition of the model is determined using a representative sample of the

Spanish population. Therefore, we assume that it is known without uncertainty

and it is not considered as a random variable. To quantify uncertainties, first we

identify all of them, considering uncertainties occurring in model inputs (param-

eters estimations), numerical approximations (characterization of the numerical

approximation error) and model form (using model selection). We characterize all

the uncertainties considered as epistemic. Then, we will focus on the propagation

of uncertainties through the model, using the methods described above (LHS, ABC

and Bootstrap). The proposed UQ framework is used to predict an average be-

haviour and obtain a confidence interval for cocaine consumption in Spain over the

next few years.



Chapter 2

Predicting cocaine consumption

in Spain: A mathematical

modeling approach

In this Chapter 1, we present an epidemiological-type mathematical model to anal-

yse the evolution of cocaine consumption in Spain. Also we predict the consumption

trends over the next few years. First, we will obtain a deterministic prediction of

the mathematical model and then, using the LHS method, we will introduce uncer-

tainty in the model. This fact allows us to obtain credible intervals for the cocaine

consumption prevalence in Spain. Furthermore, we carry out a sensitivity analysis

of the mathematical model in order to propose some public health strategies to

reduce cocaine consumption.

2.1 Introduction

Cocaine consumption is growing at a worrying rate in developed and developing

countries [23, 80]. In Spain, it is becoming a serious problem not only from an

individual health point of view but also from the public socioeconomic one [61,62].

Table 2.1 shows the prevalence rates for the last years. We notice that cocaine

consumption is increasing from 1995 to 2007.

1The contents of this chapter have been published in E. Sánchez, R. J. Villanueva, F.J. Santonja,

and M. Rubio: Predicting cocaine consumption in Spain: a mathematical modeling approach.

Drugs: Education, Prevention and Policy, 18(2), 108-115, 2011.
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Table 2.1: Evolution of the proportion of non-consumers (N), occasional consumers

(Co), regular consumers (Cr) and habitual consumer subpopulations (Cb) for dif-

ferent years. The data have been obtained from the Drug National Observatory

Reports [53,54,61,62].

Year N Co Cr Cb

1995 0.944 0.034 0.018 0.004

1997 0.948 0.032 0.015 0.005

1999 0.948 0.031 0.015 0.006

2001 0.911 0.049 0.026 0.014

2003 0.903 0.059 0.027 0.011

2005 0.884 0.070 0.030 0.016

2007 0.874 0.080 0.030 0.016

2.2 Methods

Recently, it has been shown how our social contacts shape our life. Everything we

feel, do or say may spread through the people we know and conversely, the people

we know influence the way we are [14]. Following this idea, we are going to consider

that cocaine consumption is a behaviour or habit that may be transmitted socially.

Thus, it can be treat as a disease that spreads through social peer pressure or social

contact. These social contacts have an influence on the probability of transmission

of cocaine consumption. These facts lead us to propose an epidemiological-type

mathematical model to study the evolution of this consumption. This type of

mathematical models have also been used in the study of other drug addictions

(alcohol, tobacco, ecstasy, etc.) and other social topics (obesity, extreme ideological

behaviour, etc.), as we discussed in the Section 1.2.

2.2.1 Mathematical model

2.2.1.1 Building the model

In order to build the mathematical model, the 15-64-year-old Spanish population

is considered and divided into four subpopulations, according to the classification

defined by the Spanish Health Ministry [53,54,61,62]:
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• N(t): Non-consumers, individuals who have never consumed cocaine.

• Co(t): Occasional consumers, individuals who have consumed sometimes in

their life.

• Cr(t): Regular consumers, individuals who have consumed in the last year.

• Cb(t): Habitual consumers, individuals who have consumed in the last month.

Furthermore, we consider the following assumptions:

1. Let us assume population homogeneous mixing. That is, each individual may

transmit the consumption habit to any other one [59].

2. The transitions between the different subpopulations can be modeled as fol-

lows:

(a) Let us consider that the newly recruited 15-year-old individuals become

members of the N(t) subpopulation, i.e., we consider that they have

never consumed cocaine before.

(b) Once an individual begins cocaine consumption, he/she becomes an oc-

casional consumer, Co(t). If this person increases the cocaine consump-

tion he/she may become a regular consumer, Cr(t). If this individual

continues with his/her consumption, he/she may become a habitual con-

sumer, Cb(t).

(c) An individual of subpopulation Cb(t) becomes a member of subpopula-

tion N(t), non-consumer subpopulation, if he/she decides to give up the

cocaine consumption and go into therapy. This reasoning is based on the

assumption given by expert clinicians after patients go into therapy. In

this work we have considered therapy as the only way to reduce cocaine

consumption once patient became aware of its problem. This detail was

proposed by the expert, the clinical psychologist.

(d) An individual in N(t) transits to Co(t) because people in Co(t), Cr(t) or

Cb(t) transmit cocaine consumption habit by social contact at rate β.

Therefore, the contagion is a non-linear term modeled by

βN(t)(Co(t) + Cr(t) + Cb(t)). The remainder transits are governed by

terms proportional to the sizes of the subpopulations:

i. γCo(t) to transit from Co(t) to Cr(t),
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ii. σCr(t) to transit from Cr(t) to Cb(t),

iii. εCb(t) to transit from Cb(t) to N(t).

Using the above assumptions, a dynamic cocaine consumption model for Span-

ish population is given by the following non-linear system of ordinary differential

equations (t, time in years):

N ′(t) = µP (t)− dNN(t)− β
N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
+ εCb(t) (2.1)

C ′
o(t) = β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
− dCCo(t)− γCo(t) (2.2)

C ′
r(t) = γCo(t)− dCCr(t)− σCr(t) (2.3)

C ′
b(t) = σCr(t)− dCCb(t)− εCb(t) (2.4)

P (t) = N(t) + Co(t) + Cr(t) + Cb(t)

where the parameters of the model are:

• µ, rate of people entering into the system. Taking into account the low

mortality rates of people younger than 15, we are going to suppose that this

rate is the birth rate in Spain.

• dN , death rate in Spain.

• dC , death rate for cocaine consumers. Obviously, this death rate is higher

than death rate for non-consumers.

• β, transmission rate due to social pressure to consume cocaine.

• γ, rate at which an occasional consumer transits to the regular consumption

subpopulation.

• σ, rate at which a regular consumer transits to the habitual consumption

subpopulation.

• ε, rate at which a habitual consumer goes into therapy and becomes a non-

consumer.

Figure 2.1 shows the diagram for the evolution dynamics of cocaine consumption

in Spain. The boxes represent the subpopulations and the arrows represent the

transitions between the subpopulations. Arrows are labeled by their corresponding

model transition terms.
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Figure 2.1: Flow diagram of the mathematical model for the dynamics of cocaine

consumption in Spain.

2.2.1.2 Scaling the model

Data shown in Table 2.1 are related to the percentages of population, but the

equations shown above are related to the number of individuals. It leads us to

transform the model into the same units as data. Hence, we scale the model in

order to estimate the unknown parameters by fitting it with data in Table 2.1.

Parameters estimation is shown in the next section.

Following the ideas developed in [33, 36, 50] about how to scale models where

the size of the population depends on the time, we are going to obtain the equations

of the scaled model.

If we add the four equations of the model, eqs. (2.1)–(2.4), we get:

P ′(t) = µP (t)− dNN(t)− dCCo(t)− dCCr(t)− dCCb(t). (2.5)

Dividing both members by P (t) we have that:

P ′(t)

P (t)
= µ− dN

N(t)

P (t)
− dC

Co(t)

P (t)
− dC

Cr(t)

P (t)
− dC

Cb(t)

P (t)
. (2.6)

If we define the rates (depending on time) as:

n =
N

P
, co =

Co

P
, cr =

Cr

P
, cb =

Cb

P
, (2.7)
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then, equation (2.6) can be transformed into:

P ′

P
= µ− dNn− dCco − dCcr − dCcb (2.8)

where

n+ co + cr + cb = 1 (2.9)

According to this, we can compute the derivative of n defined in eq. (2.7).

n′ =
N ′P −NP 2

P 2
=

N ′

P
− n

P ′

P
(2.10)

Multiplying (2.1) by 1/P and substituting by the corresponding rates defined

in (2.7), using (2.8) and (2.9), (2.10) can be transformed into:

n′ = µ− βn(co + cr + cb) + εcb − nµ+ n(dC − dN )(co + cr + cb) (2.11)

In an analogous way, we also obtain:

c′o = βn(co + cr + cb)− γco − µco + nco(dN − dC) (2.12)

c′r = γco − σcr − µcr + ncr(dN − dC) (2.13)

c′b = σcr − εcb − µcb + ncb(dN − dC) (2.14)

These are the scaled equations. Now, model and data are in the same units, so

we will be able to compare them directly. Note than n+ co + cr + cb = 1.

We will focus in system (2.11)–(2.14) in the rest of the chapter.

2.2.2 Parameters estimation

We have estimated the parameters µ, ε, dN and dC using available data in literature.

The other parameters of the model (β, γ and σ) have been estimated, by least

squares, by fitting the model with data from Table 2.1.

Using sources of literature we have obtained the following estimations:

• µ = 0.01 years−1. We consider the average Spanish birth rate between years

1995 and 2007 [35].

• dN = 0.008388 years−1 is the average Spanish death rate between years 1995

and 2007 [35].



2.2 Methods 21

• dC = 0.01636 years−1 is the death rate for cocaine consumers. This value

has been estimated taking into account that, in Spain, approximately 6.8%

of mortality is due to drugs consumption [53] and the value of dN .

• ε = 0.0000456 years−1. To estimate the rate at which a habitual consumer

goes into therapy and becomes a non-consumer, we define ε=ε1×ε2×ε3×ε4×ε5,

where:

– ε1 is related to the average percentage of the subpopulation of habitual

consumers. Using data from Table 2.1 corresponding to the National

Drug Observatory Reports, the average value of population with habit-

ual consumption is 0.93%, i.e., ε1 = 0.0093.

– ε2 is the percentage of habitual consumers in therapy. From official

data [53], 4.25% of habitual consumers begin a therapy programme every

year in the Comunidad Valenciana. We assume the same rate for the

whole of Spain. Then, ε2 = 0.0425.

– ε3 is the time a habitual consumer takes before going into therapy. More-

over, using the average value presented in literature [8,10,20,52], a habit-

ual consumer takes about 9 years before going to therapy. That means

than ε3 = 1/9.

Therefore, the percentage of habitual consumers in therapy per year is

0.00439%. To be precise, 0.0093×0.0425×1/9=0.0000439.

Additionally, around 52% of the individuals on therapy recover with an

average of 6 months [8, 20,38,42,52,73,78]. Therefore:

– ε4 = 0.52 is the average percentage of success for therapy programmes.

– ε5 = 1/0.5 indicates that the success in therapy programmes is reached

after half a year.

Then, we obtained:

ε = ε1×ε2×ε3×ε4×ε5 = 0.0093×0.0425×1/9×0.52×1/0.5 = 0.0000456.

On the other hand, taking as the initial conditions of the model (year 1995, i.e.,

t=0), N(t = 0) = 0.944, Co(t = 0) = 0.034, Cr(t = 0) = 0.018 and Cb(t = 0) =

0.004, the parameters β, γ and σ have been estimated by fitting the scaled model

with data from Table 2.1.
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In order to compute the best fitting, we carried out computations withMathematica

[51]. To estimate the parameters mentioned (β, γ and σ), we implemented a func-

tion

F: R3 → R
(β, γ, σ) → F(β, γ, σ)

whose variables are β, γ and σ and such that:

1. Solve numerically (NDSolve[ ]) the scaled system of differential equations

with initial values N(t = 0) = 0.944, Co(t = 0) = 0.034, Cr(t = 0) = 0.018

and Cb(t = 0) = 0.004 and the parameter values defined above (µ = 0.01, dN

= 0.008388, dC = 0.01636, ε = 0.0000456).

2. For t = year 1995, year 1997, year 1999, year 2001, year 2003 and year

2005, corresponding to the biannual drugs use surveys, evaluate the computed

numerical solution for each subpopulation N(t), Co(t), Cr(t) and Cb(t).

3. Compute the mean square error between the values obtained in Step 2 and

the real data presented in Table 2.1. This is the definition of function F.

Function F takes values in R3 (β, γ and σ) and returns real values. Hence, we

minimize this function using the Nelder-Mead algorithm that does not need the

computation of any derivate or gradient, impossible to know in this case [60,66].

In order to find a global minimum the feasible chosen domain is

D = [0, 1] ×[0, 1] ×[0, 1] ⊂ R3,

and it is divided in disjoint subdomains where, in each one, Nelder-Mead algorithm

is applied. We stored all the minima obtained and, among them, the values of β, γ

and σ that minimize the function F are β = 0.09614, γ = 0.0596 and σ = 0.0579.

Table 2.2 summarizes all the estimated parameters of the model.

As we commented previously, the modeling and simulation itself introduces un-

certainty related to the form of the model as well as the numerical approximations

employed. Each of these sources of uncertainty must be estimated and included in

order to estimate the total uncertainty in the prediction with the aim to report on

how to reduce it in the most efficient and effective manner. In the next section we

will explain the technique used to incorporate uncertainty in the model.
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Table 2.2: Parameters of the mathematical model.

Parameter Value (years−1)

µ 0.01

dN 0.008388

dC 0.01636

β 0.09614

γ 0.0596

σ 0.0579

ε 0.0000456

2.2.3 LHS method

Latin Hypercube Sampling (LHS) method is a type of stratified Monte Carlo sam-

pling method [4, 45, 64]. LHS allows an un-biased estimate of the average model

output, with the advantage that it requires fewer samples than simple random

sampling to achieve the same accuracy. It is a sophisticated and efficient method

for achieving equitable sampling of all input parameters simultaneously.

In LHS the estimation uncertainty for each input parameter is modeled by treat-

ing each input parameter as a random variable. For each parameter a probability

density function is defined and stratified into N equal probability intervals, which

are then sampled. N represents the sample size. It is usual to use the uniform

distribution centered at deterministic parameter estimators in the absence of data

to inform on the distribution for a given parameter. A single value is then selected

randomly from every interval and this is done for every parameter. In this way,

each interval for each parameter is sampled exactly once (without replacement).

Thus, the entire range for each parameter is explored. Distributions of the outcome

variables can then be derived directly by running the model N times with each of

the sampled parameters set [32,49].

In our model for predicting cocaine consumption in Spain, we assume that all

the parameters follow a uniform probability distribution. The ranges of variation

of the parameters have been as follows:

• Birth and death rates (µ, dN and dC), have remained fixed because in the

years that the model is defined these parameters do not vary significantly
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(median 0.010109, 0.008797 and 0.016201, standard deviation 0.0007030,

0.0002339 and 0.0003029, respectively). Their values are shown in Table

2.2.

• The intervals for the parameters β, γ and σ, are chosen assuming that the

value of the parameter presented in Table 2.2 may have a perturbation not

greater than 100% (Unbiased maximum likelihood estimation).

• The parameter ε is moved according to the intervals detailed in Table 2.3:

– The intervals for ε2 (percentage of habitual consumers in therapy) is cho-

sen assuming that the value of the parameter may have a perturbation

not greater than 100% (unbiased maximum likelihood estimation).

– The interval for ε3 (years of cocaine consumption before therapy) is

chosen assuming the years of cocaine use before therapy presented in

Dutra study [20], 5-15 years.

– The interval for ε4 (success rate of therapy programmes) is chosen taking

into account all of the programmes analysed in Dutra study [20]. This

percentage takes into account all of the programmes analysed in Budney

et al. [8], Dutra et al. [20], Mercer and Woody [52], Johnson et al. [38],

Levin et al. [42], Schmitz et al. [73] and Stotts et al [78].

– The interval for ε5 (time of treatment) is chosen assuming a perturbation

not greater than 100% to consider all of the treatments studied in Dutra

study [20].

LHS was used to generate 5000 different values of the parameters. Then we used

these samples to run 5000 evaluations of the model. The results of these evaluations

allow us to determinate the 95% confidence intervals to the consumption predictions

for each year.

2.3 Results

2.3.1 Predictions

The graphical representation of the model fitting and the predictions in the next

few years can be seen in Figure 2.2. Points represent data from Table 2.1. The

green line corresponds to the deterministic solution and the red lines correspond

to the 95% confidence intervals obtained by LHS method.
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Table 2.3: Parameters values

Parameter Deterministic value Interval

β 0.09614 [0,0.19]

γ 0.0596 [0,0.12]

σ 0.0579 [0,0.12]

ε2 0.0425 [0,0.085]

ε3 1/9 [0.06,0.2]

ε4 0.52 [0.32,0.72]

ε5 1/0.5 [0,4]

We noted a decreasing trend in non-consumer subpopulation, N(t). Also, there

is an increasing trend of cocaine consumption in Spain, that is, of occasional con-

sumers subpopulation, Co(t), regular consumers subpopulation, Cr(t), and habitual

consumers subpopulation, Cb(t). In Table 2.4, some of the numerical values de-

picted in Figure 2.2 are presented.

Table 2.4: Model predictions for years 2007, 2010, 2012 and 2015 of percentage

of non-consumers (N), occasional consumers (Co), regular consumers (Cr) and

habitual consumers (Cb).

Year N Co Cr Cb

2007 0.869 0.078 0.034 0.019

2010 0.842 0.093 0.040 0.025

2012 0.821 0.105 0.046 0.028

2015 0.785 0.125 0.055 0.035

If there are not changes in current cocaine consumption policies in the next

few years, the model predicts that 78.5%, 12.5%, 5.5% and 3.5% of 15-64-year-old

individuals in Spain will be, by year 2015, non-consumer, occasional consumer,

regular consumer and habitual consumer, respectively.

Additionally, the LHS method allows us to obtain a prediction by intervals

for each subpopulation over the next few years. The ranges of variation of the

parameters have been shown previously in Table 2.3. The intervals for the different
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Figure 2.2: Numerical simulations of the fitted mathematical model. Points are

data from Table 2.1. The green line corresponds to the deterministic solution and

the red lines correspond to the 95% confidence intervals obtained by LHS method.

Moreover, the predictions for the following years until 2020 are included.

subpopulations for 2011 to 2015 are shown in Table 2.5. We can observe that data

and the deterministic solution falls within the interval of prediction for all the years

and for all the subpopulations. However, as time goes on, the intervals are greater.

With the aim to improve this result, we will apply other techniques in the following

chapters in order to control the range of the prediction intervals.

2.3.2 Sensitivity analysis

In order to propose some strategies to control the epidemic, we carry out a sen-

sitivity analysis. We performed several simulations varying the parameters of the

model in order to find out what the influence of the changes on the final solution

(cocaine consumption) is.

The objectives of the Spanish Government strategy on drug abuse [9, 61] are:
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Table 2.5: 95% credible intervals (CI) for the period 2011–2015 of percentage

of non-consumers (N), occasional consumers (Co), regular consumers (Cr) and

habitual consumers (Cb). Credible intervals are calculated considering the 2.5%

and 97.5% percentile for each year.

N Co Cr Cb

Year 2011

Median 0.8335 0.0997 0.0359 0.0216

95% CI [0.5485,0.9546] [0.0102,0.3517] [0.0068,0.1365] [0.0043,0.0648]

Year 2012

Median 0.8229 0.1060 0.0377 0.0228

95% CI [0.5091,0.9552] [0.0096,0.3818] [0.0065,0.1510] [0.0044,0.0729]

Year 2013

Median 0.8117 0.1124 0.0399 0.0242

95% CI [0.4699,0.9558] [0.0091,0.4123] [0.0063,0.1673] [0.0044,0.0819]

Year 2014

Median 0.8000 0.1188 0.0418 0.0257

95% CI [0.4315,0.9563] [0.0087,0.4426] [0.0061,0.1835] [0.0045,0.0920]

Year 2015

Median 0.7879 0.1256 0.0439 0.0271

95% CI [0.3944,0.9569] [0.0082,0.4707] [0.0060,0.2001] [0.0045,0.1029]

1. The prevention of drug consumption, pointing out the health concerns pro-

duced by their consumption, delaying the age of the first contact with drugs,

education programmes and the legal fight against drugs dealing.

2. To improve quantitative and qualitative research, to implement new treat-

ments, evaluate current therapy programmes and training to increase the

professional competence of the people who work with drug abusers.

These policies, related to prevention and treatment, involve focused efforts on con-

trolling parameters β (contagion rate) and ε (rate at which a habitual consumer

goes into therapy and becomes a non-consumer), respectively. The parameter ε is

associated with the implementation of new treatments, evaluation of current ther-
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apy programmes, training plans to increase professional competence of the people

who work with drug consumers, etc. That is, the parameter ε is associated with

treatment policies, while the parameter β is associated with prevention policies.

Thus, in order to analyse the strategies of Spanish Government against drug abuse,

the six health policies simulated here, related with the ones mentioned above, are:

1. Variation on the percentage of habitual consumers in therapy. It involves a

variation in parameter ε2.

2. Variation on the time that a habitual consumer takes before going into ther-

apy. It involves a variation in parameter ε3.

3. Variation on the success rate of therapy programmes. It involves a variation

in parameter ε4.

4. Variation on the duration of therapy programmes. It involves a variation in

parameter ε5.

5. Variation on the transition rate from non-consumers to occasional consumers.

It involves a variation of parameter β.

6. Variation of all these parameters (ε2, ε3, ε4, ε5 and β) together.

Note that the first four policies involves a variation in parameter ε, i.e., they

are associated with treatment policies, while the fifth one involves a variation in

parameter β, i.e., it is associated with prevention policies. In the last one all the

parameters are modified. Therefore, it combines both policies.

To vary ε2, ε3, ε4, ε5 and β, we assume that all of them follow a uniform

probability distribution with support on the intervals [0, 0.085], [0.06, 0.2], [0.32,

0.72], [0, 4] and [0, 0.19], respectively, according to the intervals shown in Table

2.3. It is usual to use the uniform distribution in the absence of data.

LHS technique described above was used to generate 5000 different values of the

parameters ε2, ε3, ε4, ε5 and β (input). Then we used these samples to run 5000

evaluations of the model. The results of these evaluations allow us to determinate

the 95% confidence intervals to the consumption predictions. The obtained pre-

dictions (regular consumption and habitual consumption) for year 2011 and year

2015 after the variation of the parameters can be observed in Table 2.6 and Table

2.7.
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Note that the variation of the epsilons produces a variation in the 95% confi-

dence interval smaller than 10−2. Moreover the perturbation of parameter β leads

to larger variations in output than the rest of the perturbed parameters. This fact

allows us to say that health prevention policies (the ones related with parameter β)

may have a noticeable effect on the reduction of drug consumption. Alternatively,

if prevention policies are disregarded, cocaine consumption will increase.
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Table 2.6: Sensitivity analysis: regular consumption

Strategy 1 Variation of the regular consumers in therapy (ε2)

Regular consumers(%) year 2011 year 2015

95% confidence interval [4.34,4.34] [5.54,5.54]

Mean 5000 realizations 4.34 5.54

Model estimation 4.3 5.5

Strategy 2 Variation of the time before going into therapy (ε3)

Regular consumers(%) year 2011 year 2015

95% confidence interval [4.34,4.34] [5.54,5.54]

Mean 5000 realizations 4.34 5.54

Model estimation 4.3 5.5

Strategy 3 Variation of the rate of therapy success (ε4)

Regular consumers(%) year 2011 year 2015

95% confidence interval [4.34,4.34] [5.54,5.54]

Mean 5000 realizations 4.34 5.54

Model estimation 4.3 5.5

Strategy 4 Variation of the duration of therapy programmes (ε5)

Regular consumers(%) year 2011 year 2015

95% confidence interval [4.34,4.34] [5.54,5.54]

Mean 5000 realizations 4.34 5.54

Model estimation 4.3 5.5

Strategy 5 Variation of the transition rate to occasional consumers (β)

Regular consumers(%) year 2011 year 2015

95% confidence interval [1.66,9.80] [1.49,14.36]

Mean 5000 realizations 4.89 6.51

Model estimation 4.3 5.5

Strategy 6 Variation of ε2, ε3, ε4, ε5 and β (all together)

Regular consumers(%) year 2011 year 2015

95% confidence interval [1.66,9.80] [1.49,14.36]

Mean 5000 realizations 4.89 6.51

Model estimation 4.3 5.5
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Table 2.7: Sensitivity analysis: habitual consumption

Strategy 1 Variation of the habitual consumers in therapy (ε2)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [2.62,2.62] [3.56,3.56]

Mean 5000 realizations 2.62 3.56

Model estimation 2.6 3.5

Strategy 2 Variation of the time before going into therapy (ε3)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [2.62,2.62] [3.56,3.56]

Mean 5000 realizations 2.62 3.56

Model estimation 2.6 3.5

Strategy 3 Variation of the rate of therapy success (ε4)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [2.62,2.62] [3.56,3.56]

Mean 5000 realizations 2.62 3.56

Model estimation 2.6 3.5

Strategy 4 Variation of the duration of therapy programmes (ε5)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [2.62,2.62] [3.56,3.56]

Mean 5000 realizations 2.62 3.56

Model estimation 2.6 3.5

Strategy 5 Variation of the transition rate to occasional consumers (β)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [1.80,4.09] [2.03,6.58]

Mean 5000 realizations 2.75 3.85

Model estimation 2.6 3.5

Strategy 6 Variation of ε2, ε3, ε4, ε5 and β (all together)

Habitual consumers(%) year 2011 year 2015

95% confidence interval [1.80,4.09] [2.03,6.58]

Mean 500 realizations 2.75 3.85

Model estimation 2.6 3.5
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2.4 Conclusion

In this chapter, we propose a type-epidemiological mathematical model applied to

cocaine consumption in Spain. If there are not changes in current cocaine con-

sumption policies over the next few years, the model predicts a decreasing trend in

non-consumer subpopulation, while there is an increasing trend in all the consumer

subpopulations, that is, occasional, regular and habitual consumer subpopulations.

Specifically, the model predicts that 78.5%, 12.5%, 5.5% and 3.5% of 15-64-year-old

individuals in Spain will be, by the year 2015, non-consumer, occasional consumer,

regular consumer and habitual consumer, respectively. In addition, we have intro-

duced uncertainty in the model, considering uncertainty in the parameters estima-

tion. Then, the 95% credible intervals for cocaine consumption prediction for the

period 2011–2015 have been estimated, for the different subpopulations. Using the

LHS method, the model predicts the following intervals for cocaine consumption

in 2015: [39.44%, 95.69%], [0.82%, 47.07%], [0.60%, 20.01%] and [0.45%, 10.29%]

for non-consumer, occasional consumer, regular consumer and habitual consumer,

respectively.

Furthermore, we can associate the parameters of the model with policies of the

Spanish Health Ministry. Parameter β is associated with prevention policies and

parameter ε with treatment policies. After the simulation of different hypothetical

scenarios where different health policies are performed, we can conclude that pre-

vention policies seems to be the best effective strategy to reduce the population of

regular and habitual consumers. Similar conclusions have been obtained in other

works [43, 68, 77, 82]. We note that taking into account random perturbations on

β, the 95% confidence interval prediction presents the most important variability,

i.e., modifications in prevention programmes (variations of β) are the best option

to modify the levels of consumption (confidence interval).

In the other cases, the ones related to parameters ε2, ε3, ε4 and ε5, the variations

on the parameters do not produce noticeable variations on the confidence intervals

(cocaine consumption prediction). This happens because the percentage of habitual

consumers that begin therapy every year is around 4.25% as we mentioned in the

section “Sensitivity analysis”, and it is a very small amount of the total population.

Obviously this is not the only epidemiological model designed to study the

spread of cocaine use, and it is not the only one capable of simulating scenar-
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ios, with a view to informing and assisting policy-makers in targeting prevention

and treatment resources for maximum effectiveness. However, to the best of our

knowledge, the model presented is the first one applied to Spain with real data.

In the following chapter we will present other mathematical models to study

the dynamics of cocaine consumption in Spain and we will check that the model

defined in this chapter is the one that best explains the Spanish situation. More-

over, with the aim to improve and to control the uncertainty in estimation, in

the following chapters we will use other different methods for confidence interval

estimation, the ABC and the Bootstrap methods. These methods will be applied

to the model defined in this chapter. Our objective will be to reduce the range

of the prediction intervals, whenever the real data fall within them. Estimate the

parameters assuming uncertainty allows us to predict considering the parameters

uncertainty.





Chapter 3

Approximate Bayesian

Computation (ABC) method

for model selection and

confidence interval parameters

estimation

In this chapter, three possible scenarios (three mathematical models) are presented

to study the evolution of cocaine consumption in Spain and using an Approximate

Bayesian Computation (ABC) technique we will select the model that best matches

the Spanish situation. We will check that the model defined in the previous chapter

is the one that best explains this situation. Then, the ABC algorithm is applied to

this cocaine consumption model, for which parameters and credible intervals are in-

ferred. Moreover, ABC provides information about model sensitivity to parameter

changes.

3.1 Introduction

Population dynamic models present unknown parameter values or impossible to

measure directly. For that reason, assessing the uncertainty about their estimates

and model predictions is a key point. Population dynamical models, commonly

used in the study of epidemics and other complex population processes, have tra-

35
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ditionally been considered deterministic, i.e., with constant coefficients in these

equations. However, in many situations, equations with random coefficients are

better suited in describing the real behaviour of the quantities of interest than their

counterparts with deterministic coefficients. It is the case of the social epidemics.

Predicting in social epidemics is an exercise that involves uncertainties. A number

of interesting issues, such as sampling, rounding errors and lack of information in

the parameter estimation processes, need to be addressed.

In this chapter we will present the use of Approximate Bayesian Computation

(ABC) approach to study the evolution of cocaine consumption epidemic in Spain

by a mathematical model based on ordinary differential equations with randomness

in the parameters. The ABC method allows us to consider that the parameters

are random variables and to obtain the evolution of the solution of the mathemat-

ical model considering the effects of the randomness on the predictions. A first

deterministic version of the cocaine consumption mathematical model considered

was presented in [69] and in the previous chapter. Additionally, ABC methods,

also known as likelihood-free techniques, have been conceived to infer posterior

distribution in case where likelihood functions are computationally intractable or

too costly. In these methods, the evaluation of the likelihood is replaced by a

simulation-based procedure. Although there is a wide variety of tools available

for parameter estimation and, to a lesser extent, model selection, the ABC SMC

(Sequential Monte Carlo) method yields reliable parameter estimates with cred-

ible intervals, can be applied to different types of models (e.g. deterministic or

stochastic models), is computationally efficient, allows discrimination among a set

of candidate models and gives us an assessment of parameter sensitivity.

3.2 Methods

3.2.1 Mathematical models

In this section, we propose three feasible models, based on differential equations, to

study the transmission dynamics of cocaine consumption in Spain and using Ap-

proximate Bayesian Computation (ABC) technique we will select the model that

best describes this situation. We will check that the model that best explains it,

that is, the model that fits the data better, is the one described in the previous

chapter. Then, we will work with it for the rest of the dissertation. There are obvi-

ously other alternatives to model this dynamical process (delay models, stochastic
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models, etc.), but in this work we restrict ourselves to the three models described.

3.2.1.1 Model 1

In order to build the mathematical model, the 15-64-year-old Spanish population

is considered and divided into four subpopulations, following the division proposed

in the previous chapter:

– N(t): Non-consumers, individuals who have never consumed cocaine.

– Co(t): Occasional consumers, individuals who have consumed sometimes in

their life.

– Cr(t): Regular consumers, individuals who have consumed in the last year.

– Cb(t): Habitual consumers, individuals who have consumed in the last month.

The evolution of the different subpopulations for the last years has been shown

in Table 2.1. However, in this case, we update the database incorporating more

recent available data (year 2009). In the following table (Table 3.1) we can see the

evolution of the different subpopulations for the last years.

Table 3.1: Evolution of the proportion of non-consumers (N), occasional consumers

(Co), regular consumers (Cr) and habitual consumer subpopulations (Cb) for dif-

ferent years. The data have been obtained from the Drug National Observatory

Reports (Spanish Ministry of Health) [61,62].

Year N Co Cr Cb

1995 0.944 0.034 0.018 0.004

1997 0.948 0.032 0.015 0.005

1999 0.948 0.031 0.015 0.006

2001 0.911 0.049 0.026 0.014

2003 0.903 0.059 0.027 0.011

2005 0.884 0.070 0.030 0.016

2007 0.874 0.080 0.030 0.016

2009 0.860 0.102 0.026 0.012
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Model 1 (m1) is the model defined in Chapter 2, with some improvement. In

this case, the same assumptions are considered and the same definitions for the

parameters of the model are used. However, as well as in the previous chapter we

considered different mortality rates for cocaine consumers from non-consumers, and

we admitted this mortality rate was the same to all the cocaine consumers, here

we go beyond. In this new version of the model shown in the last chapter, we do

not only consider different mortality rates between consumers and non-consumers.

Furthermore, we suppose that this mortality rate is different for the different types

of consumers. Also, we admit that this mortality is higher when the consumption

increases. That is, if we denote:

• dc1 , death rate for occasional cocaine consumers,

• dc2 , death rate for regular cocaine consumers,

• dc3 , death rate for habitual cocaine consumers,

then,

dc1 ≤ dc2 ≤ dc3 .

The transitions between the subpopulations N , Co, Cr and Cb according to

the model 1 (m1) are shown in Figure 3.1 and are described by the equations

(3.1)–(3.5).

dN(t)

dt
= µP (t)− dNN(t)− β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
+

+εCb(t), (3.1)

dCo(t)

dt
= β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
− dc1Co(t)− γCo(t) (3.2)

dCr(t)

dt
= γCo(t)− dc2Cr(t)− σCr(t) (3.3)

dCb(t)

dt
= σCr(t)− dc3Cb(t)− εCb(t) (3.4)

P (t) = N(t) + Co(t) + Cr(t) + Cb(t) (3.5)

In this first model, we admit that the only possibility to decrease cocaine con-

sumption is by therapy if the consumers are in Cb. That is, we consider that

an individual of subpopulation Cb becomes a member of subpopulation of non-

consumers, N , if he/she decides to give up the cocaine consumption and go into

therapy.
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Figure 3.1: Flow diagram of the mathematical model 1 for the dynamics of cocaine

consumption in Spain. The boxes represent the subpopulations and the arrows represent

the transitions between the subpopulations. Arrows are labeled by their corresponding

model transition terms.

3.2.1.2 Model 2

Model 2 (m2) is defined taking into account the same subpopulations as model 1

but in this case we consider a new transition, Cr to Co, modeled by αCr. Then, this

model has an additional parameter, α, which is the rate at which a regular consumer

becomes an occasional consumer by decreasing his/her frequency of consumption.

The introduction of this new transition is in order to test the hypothesis that a

non-problematic consumption can be controlled.

In this second model, we consider the possibility that a regular consumer can

decrease his/her cocaine consumption (without therapy) and he/she can become

an occasional consumer. In the first one, we admit that the only possibility to

decrease cocaine consumption is by therapy if the consumers present a monthly

frequency of consumption (habitual consumers).

The transitions between the subpopulations N , Co, Cr and Cb according to

the model 2 (m2) are shown in Figure 3.2 and are described by the equations

(3.6)–(3.10) (in bold, the new term introduced).
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Figure 3.2: Flow diagram of the mathematical model 2 for the dynamics of cocaine

consumption in Spain. The dashed arrow is the additional one corresponding to model 2.

dN(t)

dt
= µP (t)− dNN(t)− β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
+

+εCb(t), (3.6)

dCo(t)

dt
= β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
− dc1Co(t)− γCo(t)+αCr(t)(3.7)

dCr(t)

dt
= γCo(t)− dc2Cr(t)− σCr(t)−αCr(t) (3.8)

dCb(t)

dt
= σCr(t)− dc3Cb(t)− εCb(t) (3.9)

P (t) = N(t) + Co(t) + Cr(t) + Cb(t) (3.10)

3.2.1.3 Model 3

To define model 3 (m3), we consider a new subpopulation, T , made up of habitual

cocaine consumers who decide to give up consumption and go into therapy. The

new data are shown in Table 3.2.

Model 3 has two additional parameters and a different definition for ε as follows:

• ε, rate at which habitual consumers enter into therapy.

• ϕ, rate at which people in therapy, leave therapy and return to habitual

consumption.

• dc4 , death rate of people in therapy.
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Table 3.2: Evolution of the proportions of the subpopulations defined for model 3 for

different years.

N Co Cr Cb T

1997 0.947953 0.032 0.015 0.005 0.0000466

1999 0.947887 0.031 0.015 0.005 0.0001127

2001 0.910788 0.049 0.026 0.014 0.0002116

2003 0.902585 0.059 0.027 0.011 0.0004154

2005 0.883483 0.070 0.030 0.016 0.0005174

2007 0.873509 0.080 0.030 0.016 0.0004907

2009 0.859545 0.102 0.026 0.012 0.0004546

Figure 3.3: Flow diagram of the mathematical model 3 for the dynamics of cocaine

consumption in Spain. The dashed arrows are the additional ones corresponding to model

3.

The transitions between the subpopulations N , Co, Cr and Cb according to

the model 3 (m3) are shown in Figure 3.3 and are described by the equations

(3.11)–(3.16) (in bold, the new terms introduced).
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dN(t)

dt
= µP (t)− dNN(t)− β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
(3.11)

dCo(t)

dt
= β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
− dc1Co(t)− γCo(t) (3.12)

dCr(t)

dt
= γCo(t)− dc2Cr(t)− σCr(t) (3.13)

dCb(t)

dt
= σCr(t)− dc3Cb(t)− εCb(t)+ ϕT(t) (3.14)

dT (t)

dt
= εCb(t)− ϕT(t)− dc4T(t) (3.15)

P (t) = N(t) + Co(t) + Cr(t) + Cb(t) + T (t) (3.16)

Data in Table 3.1 and Table 3.2 are in percentages and models are defined

considering individuals. Therefore, we also have to scale the three models pre-

sented in this chapter. In order to do it, techniques shown in [33, 36, 50] are used

and the process is similar to the one described in the previous chapter. In this

chapter, we are not going to show the process and the scaled models because it

is a technical transformation and the resulting does not provide extra information

about the models. Additionally, the scaled models have the same parameters as

the non-scaled models with the same meaning and in order to avoid introducing

new notation, we are going to consider that the subpopulations N(t), Co(t), Cr(t)

and Cb(t) correspond to the percentage of non-consumers, occasional consumer,

regular consumers and habitual consumers. Note that the models used in ABC

algorithm are the scaled models.

We have already presented three models and then we have to decide which one

describes better the evolution of cocaine consumption in Spain. To do this, we are

going to use the ABC SMC technique described by T. Toni et al. in [79]. Before

the posterior distribution estimation is processed, prior probability distribution for

the parameters needs to be defined as well as the initial condition of the model.

3.2.2 Parameters estimation

In order to specify a joint prior distribution for the parameters of the mathematical

model,

θ = (µ, dN , dc1 , dc2 , dc3 , β, γ, σ, ε),
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separate sources of information are used to specify each of these prior distributions.

Therefore, we specify the model parameters to be independent a priori and having

a uniform distribution. It is usual to use the uniform distribution centered at deter-

ministic parameter estimators in the absence of data to inform on the distribution

for a given parameter.

– Taking into account the information provided by the Spanish Statistical Office

[35] for the period 1995–2009, minimum and maximum values for µ and dN are

defined (unbiased maximum likelihood estimation for the uniform distribution

parameters).

– Let us consider the cases of γ and σ parameters. The outflow for Co is γCo

therefore the condition 0 6 γCo 6 Co must be satisfied. Then dividing by

Co, we have 0 6 γ 6 1. Analogously, σ must satisfy 0 6 σ 6 1.

– For parameter β we consider that the outflow βN(Co +Cr +Cb)/P must be

less than subpopulation N for each t. This leads to the following condition

for β:

β 6 P

Co + Cr + Cb
=

1

co + cr + cb
=

1

n− 1
, (3.17)

where n = N/P .

Then, taking into account that 0 6 n < 1, the general condition for β is

0 6 β 6 ∞. However, since in our case n is always less that 0.95 (note that

we are estimating the model for the period 1995–2009; see Table 3.2), then

by (3.17), our range of variation for β will be 0 6 β 6 20.

– As we have shown in the previous chapter and in [69], we know that ε =

0.0000456. The interval for ε is chosen assuming unbiased maximum like-

lihood estimation. For this parameter, the maximum likelihood estimation

of Uniform(0, ε) is the maximum of the sample considered to estimate the

parameter, i.e., the only value of the sample, the known value of the param-

eter. In this case, the expected value of parameter ε is a half of its known

value. Therefore, if we consider the distribution defined by Uniform(0, 2×ε),

we have that its expected value is the known value of the parameter.

– The intervals for dc1 , dc2 and dc3 are chosen taking into account that mor-

tality was four to eight times higher among cocaine users than age and sex
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peers in the general population [17]. Therefore, we can admit that this pa-

rameters have a range of variation defined by [4×min{dN}, 8×max{dN}].
Additionally, we consider that dc1 6 dc2 6 dc3 .

These prior distributions are summarized in Table 3.3.

Table 3.3: Prior distribution for the parameters of the models. These values are for

the period 1995–2009. We assume that all the parameters follow a uniform probability

distribution. It is usual to use the uniform distribution in the absence of data to define

a more informative prior distribution. Minimum and maximum values shown in the table

are the ranges of variation of the parameters.

Min Max

µ 0.008343 0.009228

dN 0.009227 0.010944

dc1 0.0369 0.0875

dc2 0.0369 0.0875

dc3 0.0369 0.0875

β 0.0 20

γ 0.0 1

σ 0.0 1

ε 0.0 0.00009

α 0.0 1

We assume that the initial condition of the models, that is, the prevalence of

cocaine consumption in 1995 (see Table 3.1) is known without uncertainty and it is

not considered as a random variable. Note that the initial condition is determined

using a representative sample of the Spanish population.

3.2.3 Approximate Bayesian Computation method

Taking into account Bayesian paradigm, Approximate Bayesian Computation (ABC)

methods can be used to evaluate posterior distributions without having to calculate

likelihoods, using a simulation-based procedure.

Let θ be a parameter vector of a differential equation system to be estimated and

π(θ) its prior probability distribution. The objective is to estimate the parameters

of the system. To do this, we try to obtain their posterior distribution π(θ|x), where
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x are the observed data. Thus, we will obtain an approximation of it taking into

account the Bayes’ theorem where we know that π(θ|x) ∝ f(x|θ)π(θ) and f(x|θ) is
the likelihood of θ given the data x. Note that, unfortunately, the likelihood term

f(x|θ) is usually unknown and it is expensive or impossible to calculate. In this

context, ABC is an interesting alternative to estimate π(θ|x), that only requires

being able to sample pseudo-observations from f(·|θ).

In this work, we apply the ABC method based on Sequential Monte Carlo

(ABC SMC) for model selection presented by T. Toni et al. in [79]. This Bayesian

approach is based on the study of the evidence provided by the data (x) in favor

of one model over the other. In our case, observed data, x, are shown in Table 3.1.

Since we have presented three models, we are going to compare them in pairs. To

be precise, the objective is to obtain a set of N parameter vectors of the model m,

θ(m), divided between the two models, that satisfies the final condition that the

prediction x∗ given by model m with values of the parameters θ(m) has a distance

less than a desired tolerance level ϵT from the observed data, that is, d(x∗, x) ≤ ϵT .

At the end of the process, we select the model having the highest number of θ(m)

that satisfy this condition. To obtain a final estimation of the parameters, we will

have intermediate estimations, that is, populations of N parameter vectors θ(m),

by refining the values of the maximum distance permitted in each iteration. In

other words, we sample considering that the tolerance level decreases until ϵT .

This algorithm proceeds as follow:

Step 1. Initialize ϵ1, ϵ2, · · · , ϵT , where ϵ1 > ϵ2 > · · · > ϵT

Set the population indicator t = 0.

Step 2.

Step 2.0. Set the particle indicator i = 1 (i varies from 1 to N).

Step 2.1. Approach the model selection problem by including a ‘model pa-

rameter’ m ∈ {1, 2, 3}, where 3 is the number of models, as an additional

discrete parameter and denote the model-specific parameters as θ(m).

In our case, m = 1 for model 1, m = 2 for model 2 and m = 3 for model

3 and π(m) is the same for the three models (π(m)=1
3). Sample a model

indicator m from the prior distribution for each model π(m). Denote

this model indicator as m∗, where m∗ = 1, 2, 3.
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If t = 0, sample the parameter vectors, θ∗∗, from the previous distri-

bution, π(θ(m∗)). Thus we obtain a set of values for the parameters of

model m from a uniform distribution for each of them.

Note that the parameter vectors from the previous distribution are de-

noted by a single asterisk, and after perturbation the vectors are denoted

by a double asterisk.

If t > 0, sample a parameter vector θ∗ from the previous population

of the parameters {θ(m∗)t−1} with weights w(m∗)t−1 and perturb θ∗ to

obtain a new set of values θ∗∗ ∼ Kt(θ|θ∗), where the perturbation kernel

Kt is a non-parametric way to estimate the probability density function

of a random variable. A kernel is a non-negative real-valued integrable

function K satisfying the following two requirements:
∫ +∞
−∞ K(u) du = 1

and K(−u) = K(u) for all values of u. In our case, we have considered

the uniform distribution to define it.

If π(θ∗∗) = 0 return to Step 2.1.

Simulate a candidate dataset x∗ ∼ M(x|θ∗∗,m∗), where M(x|θ∗∗,m∗)

is the dynamic model 1 (m1) if m∗ = 1, the dynamic model 2 (m2) if

m∗ = 2 and the dynamic model 3 (m3) if m
∗ = 3.

Verify that the prediction given by this set of values satisfies the condi-

tion for the distance d(x∗, x) ≤ ϵt, where x are the observed data:

If d(x∗, x) ≤ ϵt, go to Step 2.2.

If d(x∗, x) ≥ ϵt, return to Step 2.1.

Step 2.2. Assign weights for this set of parameters.

Set m
(i)
t = m∗ and add θ∗∗ to the population of particles {θ(m∗)t}, and

calculate its weight as:

w
(i)
t =

 1, if t = 0
π(θ∗∗)∑N

j=1 w
(j)
t−1Kt(θ

(j)
t−1,θ

∗∗)
, if t > 0

If i < N , set i = i+ 1, go to Step 2.1.

Step 3. Normalize the weights for the N obtained vectors θ(m), with a set of

parameters for each one, for every m.

If t < T , set t = t+ 1 and go to Step 2.0.

Note that the procedure is:
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(a) Select model m∗ from the prior distribution π(m).

(b) Select the parameter vector θ∗∗.

(c) Simulate output x∗ from the model selected using the parameter vector θ∗∗.

(d) Compute the distance d(x∗, x). If d(x∗, x) 6 ϵ, accept and store θ∗∗ for model

m∗ otherwise reject it.

(e) Return to step (a).

The output of the algorithm is a sample of parameters from the distribution

π(θ|d(x∗, x) 6 ϵ). If ϵ is small enough, the distribution π(θ|d(x∗, x) 6 ϵ) will be an

optimal approximation of the posterior distribution π(θ|x).
The parameter estimation for each model is calculated simultaneously with the

model selection. The model with the highest posterior probability will have the

greater number of particles. This ensures a good estimation of its parameters.

In the following section, we are going to use the ABC SMC approach to select

the model that best describes the evolution of cocaine consumption in Spain. As

we commented above, we are going to compare the three defined models in pairs.

In addition, the ABC algorithm provides us an approximation to the posterior

probability distribution of the parameters of the selected model. It will be used to

predict the evolution of cocaine consumption in Spain over the next few years, by

credible intervals.

3.3 Results

3.3.1 Model selection

In a first step, we are going to compare model 1 (m1) with model 2 (m2) and then,

we will compare the best model obtained (between this two first models) with the

third model.

3.3.1.1 Selection between model 1 and model 2

The values of ϵt that we have used to compare model 1 (m1) with model 2 (m2) are

ϵ1 = 0.0160, ϵ2 = 0.0090, ϵ3 = 0.0070 and ϵ4 = 0.0066. These values are defined
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considering the deterministic fitting of the model 1 in the least square sense. The

definition intervals shown in Table 3.3 are used in this deterministic fitting of the

parameters of the model 1. The distance function d(·; ·) is defined by the root

mean square error. Note that the distance between the observed prevalence data

(Table 3.1) and the deterministic solution for model 1 is 0.006138. Then, the lowest

distance to be reached is expected to be close to this number. Therefore, we choose

the tolerance level ϵi accordingly. We take T = 4 and we have considered N = 1000

for the number of particles.

Figure 3.4 shows the distributions obtained for the parameter θ(m) for each

iteration t = 1, 2, 3, 4 according to the four values of ϵt. We can see how the number

of times that the algorithm selects the model 2 is decreasing as ϵt is decreasing.

Finally, only model 1 is selected. Thus, we can conclude that model 1 is the one

that best describes the evolution of the subpopulations.

Figure 3.4: Evolution of the number of parameters vectors, θ(m), corresponding to model

1 and model 2 in each population t = 1, 2, 3, 4.

3.3.1.2 Selection between model 1 and model 3

Now we are going to compare model 1 (m1) with model 3 (m3) in an analogous way.

In this case, the values of ϵt that we have used to ensure the transition from the

prior distributions for the parameters to the posterior distributions are: ϵ1 = 1.0,
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ϵ2 = 0.5, ϵ3 = 0.3 and ϵ4 = 0.13. Note that the selection of the values of ϵt is

arbitrary and it does not matter whenever they satisfy the condition of decreasing

order. In addition, we take T = 4 and N = 1000.

Since in data for model 3 the values for the subpopulation T are very small

compared to N , Co, Cr and Cb, we have to define the distance between our data

and the deterministic solutions provided by the models by means of the relative

error. Using the absolute error, the contribution to the error corresponding to

the subpopulation T is negligible, and the algorithm does not take it into account

resulting in a bad fit of the data. Then, since the selection of the distance does not

influence the results (see [79]), we define it as follows:

d(x∗, x) =

n∑
i=1

∣∣∣∣(x∗)i − (x)i
(x)i

∣∣∣∣
where x∗ are the values predicted by the model, x are the data values and n is

the total number of data values for all the subpopulations together.

Figure 3.5 shows the distributions obtained for the parameter θ(m) for each

iteration t = 1, 2, 3, 4 according to the four values of ϵt. We can see how the number

of times that the algorithm selects the model 3 is decreasing as ϵt is decreasing.

Finally, only model 1 survives. Thus, we can conclude that model 1 is the one that

best describes the evolution of cocaine consumption in Spain. Therefore, we will

work with this model in the rest of the dissertation. Note that this selected model

is the one presented in the previous chapter, with slight improvements (more recent

data and the definition of the mortality rates for cocaine consumers in a decreasing

order).

In addition, the ABC algorithm provides us an approximation to the posterior

distributions for the parameters of the selected model, in this case, model 1. This

fact allows us to predict the evolution of cocaine consumption in Spain as we will

see in the following section.

3.3.2 Posterior probability of the parameters of model 1

In order to know the posterior distribution of the parameters, we consider its

prior distributions shown in Table 3.3 and the perturbation kernel definition for

each one (see [79]). Then, we apply the ABC SMC approach. In each sample

{1, . . . , T} the number of values for the parameters is N = 1000. Taking into
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Figure 3.5: Evolution of the number of parameters vectors, θ(m), corresponding to model

1 and model 3 in each population t = 1, 2, 3, 4.

account the application on ordinary differential systems presented in [79], we take

T = 4. The four ϵt values are ϵ1 = 0.0223, ϵ2 = 0.0148, ϵ3 = 0.0099 and ϵ4 =

0.0066. The distance function d(·; ·) is defined by the root mean square error.

Note that the output of the ABC SMC algorithm consists of 1000 different vectors

θ = (µ, dN , dc1 , dc2 , dc3 , β, γ, σ, ϵ). If we take any of these parameter vectors and we

solve the dynamical system, Eqs. (3.1)–(3.5), the distance between the obtained

solution (for years shown in Table 3.1) and the observed prevalences is less than ϵ4

= 0.0066. This value is considered taking into account the deterministic estimation

of the model in the mean square sense.

The distance between the observed prevalence data (Table 3.1) and the deter-

ministic solution is 0.00645, therefore the lowest distance to be reached is expected

to be close to this number and we choose the tolerance level ϵT accordingly. In our

case we have defined ϵ4 considering a difference of 2% with the mean square error

(0.00645). Note that we choose ϵ1, ϵ2, ϵ3 and ϵ4 in decreasing order and we select

the values to ensure that the distribution gradually evolves towards the posterior

one, i.e., the distribution defined by ϵ4. The others ϵt are chosen increasing 50%

the value of ϵt+1, i.e. ϵ3 = ϵ4 + 0.5× ϵ4, ϵ2 = ϵ3 + 0.5× ϵ3 and ϵ1 = ϵ2 + 0.5× ϵ2.

Note that we performed the computations with other values for ϵt and the results

were similar.

Table 3.4 summarizes the posterior distribution of the final parameter sample.
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For example, we obtain that the median time (1/γ) that an occasional consumer

takes to become a habitual consumer is approximately 15 years (1/0.067643 =

14.78 years) –95% confidence interval: 13-18 years–. Also, as indicated by the

median value of σ, 14 years (1/0.072904) are necessary for a regular consumer to

be a habitual consumer.

Table 3.4: Summary of the posterior (fitted) probability distributions for the model

1 parameters.

Parameter 2.5th 25th 50th 75th 97.5th

percentile percentile percentile percentile percentile

µ 0.008392 0.008615 0.008791 0.008980 0.009200

dN 0.009287 0.009730 0.010068 0.010455 0.010870

dc1 0.037407 0.041954 0.047139 0.053695 0.067030

dc2 0.045338 0.056014 0.062998 0.069565 0.079426

dc3 0.057828 0.070810 0.076774 0.082069 0.086483

β 0.116593 0.122941 0.127008 0.132320 0.143290

γ 0.057021 0.063710 0.067866 0.071813 0.078001

σ 0.055923 0.065737 0.072790 0.079982 0.089422

ε 3.32×10−6 2.42×10−5 4.36×10−5 6.21×10−5 8.52×10−5

3.3.3 Predictions

To assess the predictive performance of our model, we ran 1000 times the dynamical

model selected (Eqs.(3.1)–(3.5)) using the posterior parameter values inferred by

ABC SMC. We obtain the posterior distribution of model predictions required by

running the cocaine consumption model once for each parameter set stored (see

Table 3.4). This means that we obtained 1000 values for the prediction of the

prevalences at a given year. Then, we can define 95% credible intervals for each

year for the proportions of non-consumer, occasional consumers, regular consumers

and habitual consumers.

Figure 3.6 displays the observed cocaine consumption prevalence together with

the corresponding model predictions intervals for each year. It shows predictions

during the period 1995–2009 and the following six years. In this work, all the
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computations were performed using Matlab [34].

(a) Non-consumers (b) Occasional consumers

(c) Regular consumers (d) Habitual consumers

Figure 3.6: Probabilistic predictions for cocaine consumption population in Spain for the

following years until 2015. The points represent the observed data, the dotted lines are

the 2.5% and 97.5% percentiles and the continuous one is the median of the 1000 outputs

of the model for each year. The error bars for cocaine consumption prevalence in period

1995-2009 are also shown.

Figure 3.6 shows that the model predicts a decreasing trend in non-consumer

subpopulation, N(t). Also, there is an increasing trend in all the populations of

cocaine consumers, that is, occasional consumers, Co(t), regular consumers, Cr(t),
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and habitual consumers, Cb(t). However, the interval for cocaine consumption in

2009, according to the data from Table 3.1 shows a slight decrease in the percentage

of regular consumers and habitual consumers. This decrease may be due to the

effect of the cocaine consumption control plan proposed by the Spanish Health

Ministry in 2007 [62]. Although our model predicts an increase in cocaine consumer

subpopulations for the next years, we can observe that the interval for cocaine

consumption in 2009 and the interval for model predictions in the same year have

a non-zero intersection. Then, our predictions are in accordance with the interval

for real data.

In Table 3.5, some of the numerical values depicted in Figure 3.6 are presented,

for the period 2011–2015.

Table 3.5: 95% Credible intervals (CI) for the period 2011–2015 of percentage of non-

consumers, occasional consumers, regular consumers and habitual consumers. Credible

intervals are calculated considering the 2.5% and 97.5% percentile for each year.

N Co Cr Cb

Year 2011

Median 0.8393 0.1037 0.0371 0.0200

95% CI [0.8306, 0.8478] [0.0963, 0.1110] [0.0315, 0.0431] [0.0151, 0.0241]

Year 2012

Median 0.8293 0.1099 0.0395 0.0214

95% CI [0.8201, 0.8383] [0.1022, 0.1175] [0.0336, 0.0457] [0.0162, 0.0258]

Year 2013

Median 0.8189 0.1163 0.0420 0.0229

95% CI [0.8091, 0.8283] [0.1083, 0.1243] [0.0359, 0.0485] [0.0174, 0.0275]

Year 2014

Median 0.8079 0.1231 0.0446 0.0245

95% CI [0.7977, 0.8179] [0.1146, 0.1313] [0.0382, 0.0514] [0.0187, 0.0294]

Year 2015

Median 0.7965 0.1300 0.0474 0.0262

95% CI [0.7858, 0.8070] [0.1211, 0.1386] [0.0408, 0.0545] [0.0200, 0.0314]

Therefore, we can conclude that if there are no changes in current cocaine con-
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sumption habits over the next few years, the model predicts that 79.65% ([78.58%,

80.70%]), 13.0% ([12.11%, 13.86%]), 4.74% ([4.08%, 5.45%]) and 2.62% ([2.00%,

3.14%]) of 15-64-year-old individuals in Spain will be, in the year 2015, non-

consumers, occasional consumers, regular consumers and habitual consumers, re-

spectively.

Now, we are going to find out which model parameters (of model 1) are the

most sensitive to the selected model. This sensitivity analysis allows us to propose

some strategies to control cocaine consumption.

3.3.4 Sensitivity analysis

We use principal component analysis (PCA) to quantify the sensitivity of the sys-

tem. Principal component analysis is a mathematical procedure that uses an or-

thogonal transformation to convert a set of initially correlated variables into a set

of uncorrelated variables called principal components. The number of principal

components is less than or equal to the number of original variables. This transfor-

mation is defined in such a way that the first principal component has the largest

possible variance (that is, accounts for as much of the variability in the data as

possible), and each successive component in turn has the highest variance possible

under the constraint that it is orthogonal to (i.e., uncorrelated with) the preceding

components.

Given the parameter vector θ = (θ1, ..., θp), the principal components (PCs) are

given by the linear combination of θ, χi = ai1θ1 + ...+ aipθp, for i = 1, ...k and for

k ≤ p, where p denotes the dimension of the parameter vector.

In our case, the parameter vector is θ = (µ, dN , dc1 , dc2 , dc3 , β, γ, σ, ε), and p =

9 is the number of parameters of our model and the dimension of θ.

The principal components (PCs) are the eigenvectors of the variance-covariance

matrix, denoted by Σ. Σ is a square matrix whose main diagonal are the variances

of each of the one-dimensional distributions and elements outside the diagonal are

the corresponding covariances between two variables. In our case, the variables are

the model parameters, specifically, the last population of N particles obtained from

the ABC algorithm.

ai = (ai1, ..., aip) is the normalized eigenvector associated with the ith eigen-

value of Σ, λi, and aij describes the projection of parameter θj onto the ith eigen-

parameter, θi.
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The variance of the ith PC is given by λi and the total variance of all PCs

equals
∑p

i=1 λi = trace(Σ). Therefore, the eigenvalue λi associated with the ith

PC explains a proportion

λi

trace(Σ)

of the variation in the population of points. The smaller is λi, the more sensitive is

the system to the variation of the eigenparameter χi (because it explains a smaller

proportion of the total variance). Therefore, in contrast to the interest in the first

PC in most PCA applications, our main interest lies in the smallest PC. The last

PC extends across the narrowest region of the posterior parameter distribution and,

therefore, provides information on parameters to which the model is the most sensi-

tive. In other words, the smallest PCs correspond to stiff parameter combinations,

while the larger PCs may correspond to weak parameter combinations [29].

Figure 3.7 shows how much the variance is explained by each PC. Since the

dimension of our parameter vector θ = (µ, dN , dc1 , dc2 , dc3 , β, γ, σ, ε) is 9, we have

9 principal components. We can observe that the smallest PC corresponds to the

ninth component.
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Figure 3.7: PCA of the set of accepted particles (with all the parameters). The first PC

explains 36.03% of the total variance, the second 13.95%, the third 11.46%, the fourth

10.96%, the fifth 10.96%, the sixth 7.94%, the seventh 6.39%, the eighth 2.38% and the

ninth 0.01% of the variance.

Table 3.6 summarizes which parameters contribute the most to these PCs, that

is, it shows the contribution of each parameter on each component.

Table 3.6: Components matrix PCA (with all the parameters).

Component

Parameter 1 2 3 4 5 6 7 8 9

µ -0.100 -0.015 0.492 0.842 0.187 0.027 0.053 -0.004 0.003

dN -0.056 0.137 -0.687 0.231 0.671 0.044 0.008 -0.017 -0.006

dc1 0.691 -0.597 -0.088 0.012 0.025 0.367 0.124 -0.057 0.064

dc2 0.835 -0.035 -0.007 0.053 0.093 -0.385 -0.220 0.304 0.025

dc3 0.613 0.451 0.043 -0.061 0.013 -0.169 0.622 -0.008 0.007

β 0.913 -0.370 0.014 0.031 0.012 0.136 0.042 0.009 -0.086

γ 0.819 0.281 0.072 0.018 0.034 -0.216 -0.302 -0.324 0.010

σ 0.401 0.672 0.094 -0.028 -0.029 0.578 -0.170 0.115 0.002

ϵ -0.108 -0.091 0.541 -0.464 0.687 0.024 -0.002 0.000 0.000
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As we commented above, our interest is in the ninth component. Looking at

this, the analysis reveals that the last PC mainly extends in the direction of a

linear combination of parameters β and dc1 . Note that the values assigned to these

parameters (-0.086 and 0.064, respectively) are higher than the others and that we

have considered only the parameters whose weight in the component is higher than

0.05. Looking at the eighth component, the model is also somewhat less sensitive

to variation in γ, dc2 and σ (values of -0.324, 0.304 and 0.115, respectively). The

model is therefore the least sensitive to changes in parameters dN and ε, which is

also supported by the composition of the other PCs. Thus, we can conclude that

the model is most sensitive to changes parameters β, dc1 , γ, dc2 and σ.

With the aim to analyse the strategies of the Spanish Government against drug

abuse, natality and mortality rates are not included in the PCA analysis, since we

cannot change the value of these parameters to reduce cocaine consumption. This

way, we carry out the PCA analysis, considering only four parameters: β, γ, σ and

ε. Results can be seen in Figure 3.8 and Table 3.7.

Figure 3.8: PCA of the set of accepted particles (without natality and mortality parame-

ters). The first PC explains 20% of the total variance, the second 19.64%, the third 16.48%

and the fourth 7.18% of the variance.
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Table 3.7: Components matrix PCA (without natality and mortality parameters).

Component

Parameter 1 2 3 4

β 0.792 0.064 -0.492 0.356

γ 0.889 0.080 -0.100 -0.440

σ 0.627 0.060 0.757 0.175

ϵ -0.161 0.987 -0.007 0.002

Looking at the last component, we can conclude that the model is most sensitive

to changes in parameters γ, β and σ (values assigned of -0.440, 0.356 and 0.175),

respectively, and therefore the least sensitive to changes in parameter ε. This

outcome agrees with the results obtained considering the nine components, and

with the information obtained from the previous chapter where we have shown

that prevention policies (the ones related with parameters β, γ and σ) are the best

effective strategy to modify the cocaine consumption, i.e., to reduce the population

of regular and habitual consumers.

3.4 Conclusions

In this chapter we have presented an application of the Approximate Bayesian

Computation scheme (ABC scheme) for model selection describing the evolution

of cocaine consumption in Spain and we have been able to specify the dynamics

of this process selecting the model that best explains the observed proportions of

non-consumers, occasional consumers, regular consumers and habitual consumers.

Taking into account the obtained results, we can conclude that if an individual

starts with cocaine consumption he/she can increase his/her consumption to prob-

lematic levels.

The selection of model 1 instead of model 2 allows us to say that regular con-

sumers (that is, individuals with a non-addictive level) do not reduce significantly

the level of cocaine consumption, maybe because they do not consider that this

consumption level can be a problem. On the other hand, as model 1 is considered

better than model 3, we can reject the inclusion of a new subpopulation of habit-

ual cocaine consumers in therapy, maybe because this subpopulation is very small

compared to the others.

In addition, the ABC scheme provides us with an approximation to the pos-
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terior probability distributions for the parameters of the selected model. Thus,

using an ABC approach, we obtain probabilistic predictions of the evolution of

the cocaine consumption in Spain over the next few years. Particularly, the model

predicts that 79.65% ([78.58%, 80.70%]), 13.0% ([12.11%, 13.86%]), 4.74% ([4.08%,

5.45%]) and 2.62% ([2.00%, 3.14%]) of 15-64-year-old individuals in Spain will be,

by year 2015, non-consumer, occasional consumer, regular consumer and habit-

ual consumer, respectively. If we compare these predictions with the obtained in

the previous chapter (using the LHS method), we can observe than the credible

intervals achieved with the ABC approach are smaller.

Furthermore, we carry out a sensitivity analysis of the selected model (model

1), that is the one that best explains the cocaine consumption in Spain. To do this,

we have used PCA to identify which parameters influence more the model output,

i.e., the prevalence of cocaine consumption in Spain. In this case, the conclusions

obtained are similar to the ones in Chapter 2, where we also obtained that we

have to focus the efforts on prevention policies to achieve a decrease in cocaine

consumption.

In the next chapter, we propose another method to quantify the uncertainty of

dynamical systems. Using the bootstrap method, we will obtain a new confidence

interval estimation for the cocaine consumption model in Spain.





Chapter 4

The bootstrap method for

confidence interval parameters

estimation

To obtain accurate results from mathematical and computer models is often com-

plicated due to the presence of uncertainties in experimental data used to estimate

parameter values. In this chapter, we assess the uncertainty about parameters es-

timates and model predictions using the bootstrap method for confidence interval

estimation. We will apply it to the dynamics of cocaine consumption in Spain

model presented in Chapter 2 and improved in Chapter 3 (model 1), which is the

one that best describes the cocaine consumption dynamics, as we demonstrated in

the previous chapter. Thus, we obtain future predictions of cocaine consumption

in Spain by credible intervals. Additionally, a sensitivity analysis is carried out in

order to identify the most important parameters of the model. In this case, the

method applied is different from the other ones employed in the previous chap-

ters, although the objective is the same: to design strategies to control cocaine

consumption.

4.1 Introduction

Confidence interval analysis is one of the most significant statistical tests to val-

idate parameter reliability. However, while tools for estimating parameters have

improved and are now easy to use in system dynamics software, less attention has

61
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been paid to the problem of finding confidence intervals around the estimated pa-

rameters. The goal of bootstrap confidence interval theory is to calculate confidence

limits for the parameters from their distribution.

Bootstrapping, introduced in the late 1970s [21], is a widely used and robust

method but its use in dynamic models is rare. Bootstrapping can handle violations

of the maintained assumptions of traditional methods (e.g., the likelihood ratio

method) such as error terms autocorrelated, heteroskedastic, censored and non-

normally distributed. It is also valid for small samples whereas traditional methods

are valid only asymptotically (which involves taking a large sample).

The main idea behind bootstrapping is resampling, that is, finding many “new”

data sets by resampling the original data set, and estimate the parameter value(s)

for each of these “new” data sets, generating a distribution of parameter estimates.

Using the resulting empirical distribution of parameters, estimate the confidence

intervals.

Considering the general procedure presented by G. Dogan [18], we will study

error terms for the estimated parameters and resample these terms using a residual

bootstrapping.

4.2 Methods

In this section we present the bootstrap method used. Following the general pro-

cedure presented by G. Dogan, we use the error terms for this purpose. An error

term is actual data minus model output. First, we study the error terms to deter-

mine their probability distribution and then we will apply the parametric bootstrap

method on the residuals to estimate the confidence intervals.

4.2.1 Error terms analysis

In order to know the probability distribution of the error terms (see step 3 in the

process presented in section 4.2.2), the following points should be kept in mind to

designing an appropriate resampling scheme for bootstrapping:

1. Check whether the error terms are autocorrelated.

2. Check whether the error terms are normally distributed.
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Before checking these points, we compute the error terms. First, we fit the

model to the actual data by optimizing the parameter values, using the Nelder-

Mead algorithm described in Chapter 2. Note that the model is described by the

equations (4.1)- (4.5).

dN(t)

dt
= µP (t)− dNN(t)− β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
+

+εCb(t), (4.1)

dCo(t)

dt
= β

N(t)(Co(t) + Cr(t) + Cb(t))

P (t)
− dc1Co(t)− γCo(t) (4.2)

dCr(t)

dt
= γCo(t)− dc2Cr(t)− σCr(t) (4.3)

dCb(t)

dt
= σCr(t)− dc3Cb(t)− εCb(t) (4.4)

P (t) = N(t) + Co(t) + Cr(t) + Cb(t) (4.5)

Then, we compute the error terms for the optimum parameter values. The

results can be seen in Table 4.1.

Table 4.1: Residual or error terms, denoted as e1(t), e2(t), e3(t) and e4(t). N(t),

Co(t), Cr(t) and Cb(t) are the real data (Table 3.1) and N̂(t), Ĉo(t), Ĉr(t) and

Ĉb(t) are the model predictions.

Year e1(t) e2(t) e3(t) e4(t)

N(t) - N̂(t) Co(t) - Ĉo(t) Cr(t) - Ĉr(t) Cb(t) - Ĉb(t)

1997 (t = 1) -0.012389272 0.007266849 0.003880928 0.001241495

1999 (t = 2) -0.021936760 0.014162516 0.005429750 0.002344494

2001 (t = 3) 0.004241248 0.002756792 -0.003428359 -0.003569682

2003 (t = 4) 0.000027072 0.000112998 -0.001734472 0.001594402

2005 (t = 5) 0.005305699 -0.002714428 -0.001506171 -0.001085100

2007 (t = 6) -0.000030146 -0.003683237 0.002254647 0.001458736

2009 (t = 7) -0.003073993 -0.015767403 0.010555656 0.008285740
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Once the error terms are calculated, we are going to check the two points

discussed above.

1. Check whether the error terms are autocorrelated.

Partial autocorrelation measures the degree of association between two time

instants, when the effect of a set of controlling random variables is removed. It

is the linear dependence of a variable with itself at two different points in time.

Thus, if the value of a variable at time t depends on its value in the previous

instant, plus a random term, the process is autoregressive of first order (AR(1)).

If the dependency is established with the p previous values, the process will be

autoregressive of order p (AR(p)). Our aim is to study if the error terms ei, for

i=1, 2, 3, 4, in t instant depends on the p previous values. Thus, the AR(p) process

is defined as:

ei(t) = ρi,1ei(t− 1) + ρi,2ei(t− 2) + ...+ ρi,pei(t− p) + εi(t)

where:

• εi(t) is a white noise process and, therefore, with zero mean, constant variance

and zero covariance,

• ρi,j are partial autocorrelation coefficients, that measure the additional effect

of the variable ei(t− j) on ei(t), defined as [28]:

ρi,j =
Cov(ei(t), ei(t− j))√
V ar(ei(t)V ar(ei(t− j))

, j = 1, 2...t− 1.

To detect the presence of autocorrelation we can use graphical methods and

hypothesis tests. Partial autocorrelation plots are a commonly used tool to identify

the order of an autoregressive model [6]. To determine when an estimated partial

autocorrelation coefficient is considered zero, despite this empirical value, statistical

contrasts have been performed to set confidence bands above which the coefficients

are significant. If all the correlation coefficients are within these limits the process

is considered white noise. When there are no coefficients within the bands, we have

to find a pattern of behaviour as autoregressive scheme.

In Figure 4.1 the partial autocorrelation function (PACF) is plotted for each

error term. As we can see, all the coefficients are inside these limits (between -1
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and 1), for any possible lag. Then, we can affirm that the error terms are not

autocorrelated.

Figure 4.1: PACF for each error term.

This graphical method is complemented by other numerical methods such as the

Ljung-Box test. It is one of the most used statistical tests to check the hypothesis of

independence in a given time series. Instead of testing randomness at each distinct

lag, it tests the “overall” randomness based on a certain number of lags.

If the residuals are independent, their first p autocorrelations are zero for any

value of p (where p is the lag). Then, the contrast of Ljung-Box tests the null
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hypothesis that the first p autocorrelations are zero. That is:

H0: ρi,1 = ρi,2 = ... = ρi,p = 0 (No autocorrelation)

H1: ρi,j ̸= 0 for j∈ {1, 2, ..., p} (Autocorrelation)

The statistic test is [44]:

Q = n(n+ 2)

p∑
j=1

ρ̂2i,j
N − j

∼ χ2
p

where:

• n is the sample size,

• ρ̂i,j =

n∑
t=j+1

ei(t)ei(t− j)

n∑
t=1

ei(t)
2

is the sample autocorrelation at lag j,

• p is the number of lags being tested.

Results obtained after checking the Ljung-Box test are shown in Table 4.2.

Table 4.2: Ljung-Box test

error term lag 1 lag 2 lag 3 lag 4 lag 5

e1(t) 0.525 0.792 0.630 0.560 0.667

e2(t) 0.206 0.419 0.598 0.578 0.078

e3(t) 0.584 0.626 0.396 0.212 0.226

e4(t) 0.818 0.963 0.994 0.420 0.538

None of the test statistic values are statistically significant (p-value> 0.05)

therefore the claim that there is autocorrelation should be rejected.

2. Check whether the error terms are normally distributed.

Normality of the distribution of errors is determined by using non-parametric

tests. We carry out the Kolmogorov-Smirnov and Shapiro-Wilk tests to check the

normality of each error term and, then, we complete the study using Mardia’s
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multivariate test to check the normality of the random vector (e1(t), e2(t), e3(t)).

Note that e4(t) = −
3∑

i=1

ei(t). That is why we will not consider e4(t) in the Mardia’s

test.

The Kolmogorov-Smirnov test tries to measure the fit between the empirical

distribution function of a sample and the theoretical distribution function. It con-

siders the hypothesis test:

H0: Normal distribution.

H1: No normal distribution.

This test is based on evaluating the statistic [41,76]:

Dn = sup
x

|Fn(x)− F (x)|

where:

• supx is the supremum of the set of distances.

• Fn = 1
n

n∑
i=1

IXi≤x is the empirical distribution function, where IXi≤x is the

indicator function, equal to 1 if Xi ≤ x and equal to 0 otherwise.

• F is the theoretical distribution function. In our case, it will be the normal

distribution, i.e., F (x) =

∫ x

−∞

1

σ
√
2π

e−
1

2

(
u− µ

σ

)2

du.

The Shapiro-Wilk test is based on studying the fit of the data plotted on the

probability graph in which each data is a point whose abscissa is the observed value

of probability for a given value of the variable, and whose ordinate is the expected

value of probability. This statistic measures the strength of a line adjustment. The

higher this statistic is the greater disagreement with the normal line. Therefore we

reject the null hypothesis. In this test the null and the alternative hypothesis are

the same as the ones used for the previous test.
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The Shapiro-Wilk test tests if a sample x1, ..., xn comes from a normally dis-

tributed population using the following statistic test [74]:

W =

(
n∑

i=1

aix(i)

)2

n∑
i=1

(x(i) − x)2

where:

• x(i) is the ith order statistic, i.e., the ith- smallest number in the sample,

• x = (x1 + ...+ xn)/n is the sample mean,

• the constants ai are defined considered the following vector expression:

(a1, ..., an) =
mTV −1

(mTV −1V −1m)1/2

where m = (m1, ...,mn)
T and m1, ...,mn are the expected values of the or-

der statistics x(i) of independent and identically-distributed random variables

sampled from the standard normal distribution, and V is the covariance ma-

trix of those order statistics.

Goodness-of-fit analysis suggests that each error term is normally distributed.

The p-values for each error term and for both tests are presented in Table 4.3.

Table 4.3: Error terms normality

e1(t) e2(t) e3(t) e4(t)

Kolmogorov-Smirnov

p-value 0.200 0.200 0.200 0.159

Shapiro-Wilk

p-value 0.185 0.937 0.655 0.375

In order to complete the normality analysis of the error terms, Mardia’s mul-

tivariate normality test is applied to the random vector (e1(t), e2(t), e3(t)). Note

that e4(t) = −
3∑

i=1

ei(t).
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Multivariate normality tests check if a given set of data are similar to the mul-

tivariate normal distribution. The null hypothesis is that the data set is similar to

the normal distribution therefore a sufficiently small p-value indicates non-normal

data. That is, it considers:

H0: Multivariate normal distribution.

H1: Non-multivariate normal distribution.

Mardia’s test is based on multivariate extensions of skewness and kurtosis mea-

sures. For a random sample X = (x1, ..., xn) from a p-variate distribution, Mar-

dia’s [47, 48] defined the p-variate skewness and kurtosis statistics by:

b1p =
1

n2

n∑
i=1

n∑
j=1

{
(
x(i) − x̄

)′
S−1 (xj − x̄)}3

b2p =
1

n

n∑
i=1

{
(
x(i) − x̄

)′
S−1 (xi − x̄)}2

where S is the sample covariance matrix.

Mardia’s uses the skewness and kurtosis statistics to test for multinormality. If

the data come from a multivariate normal distribution, i.e., H0 is accepted, then:

n

6
b1p ∼ χ2(

p(p+1)(p+2)
6

)
√
n
(b2p − p(p+ 2))√

8p(p+ 2)
∼ N(0, 1)

The p-values for Mardia’s test are shown in Table 4.4:

Table 4.4: Mardia’s test

statistic p-value

skewness 5.07483218 0.82188626

kurtosis 9.43779247 0.08957112
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Since all p-values are higher than 0.05, we can accept that vector (e1, e2, e3)

presents a multivariate normal distribution. To be precise, we accept that:

(e1, e2, e3) ∼ N3




µe1

µe2

µe3

 ,


σ2
e1 cov(e1, e2) cov(e1, e3)

cov(e2, e1) σ2
e2 cov(e2, e3)

cov(e3, e1) cov(e3, e2) σ2
e3


 ,

where µei and σei , i = 1, 2, 3, are the mean and the standard deviation of ei,

respectively, and cov(ei, ej) is the covariance between ei and ej , for i, j = 1, 2, 3,

and i ̸= j.

All these parameters can be easily estimated using the descriptive statistics

of the error terms, calculated from Table 4.1. Finally, we obtained the following

distributions for the error terms:

(e1, e2, e3) ∼ N3




−0.00398

0.00030

0.00221

 ,


9.6576× 10−5 −5.7724× 10−5 −2.6800× 10−5

−5.7724× 10−5 8.8315× 10−5 −1.3318× 10−5

−2.6700× 10−5 −1.3318× 10−5 2.3995× 10−5




Therefore, we can apply the bootstrap method to estimate cocaine consumption

in Spain.

4.2.2 The bootstrap method

The residual method used is implemented as follows [18]:

1. Fit the model to the actual data (see Table 3.1) by optimizing the parameter

values. We will use the Nelder-Mead method to search in the parameter space

to find parameter values that minimize the sum of squared errors.

2. Compute the error terms for the optimum parameter values. An error term

is actual data minus model output.

e(t) = y(t) - ŷ(t)

where:

• e(t) is the vector made up of the error terms,
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• y(t) is the vector defined by the real data,

• ŷ(t) is the vector generated by the model output.

3. Resample the error terms using a parametric technique and obtain new error

values for each value of t. Denote the new error terms ei∗(t). Each i value

(i = 1, 2, ..., n) represents a new error term set. Thus, ei∗(t) is the resampled

error term for the ith data set at time t. As we have seen in the previous

section, e4(t) = −
3∑

i=1

ei(t) and

(e1, e2, e3) ∼ N3




−0.00398

0.00030

0.00221

 ,


9.6576× 10−5 −5.7724× 10−5 −2.6800× 10−5

−5.7724× 10−5 8.8315× 10−5 −1.3318× 10−5

−2.6700× 10−5 −1.3318× 10−5 2.3995× 10−5




Then, we use this distribution to resample the error terms.

4. Generate new perturbed data sets (yi∗(t)) by adding the resampled error

terms to the model output:

yi∗(t) = ŷi(t) + ei∗(t)

5. For each new data perturbation calculated, compute the parameters that best

fit the model with the perturbed dataset.

Repeat steps 3, 4 and 5 many (n) times to obtain a sufficiently large bootstrap

sample for the parameters of the model.

At the end of the process, we will have n estimates for the parameters. Then we

will use these samples to run n times the model. The results of these evaluations

will allow us to estimate confidence intervals for the model outputs, i.e., for the

prevalence of cocaine consumption over the next few years. This approach has been

used in other similar studies [65].

4.3 Results

4.3.1 Predictions

4.3.1.1 Generating new perturbed data

Once we have studied error terms, we are going to resample these terms us-

ing parametric bootstrapping. Bearing in mind data from Table 3.1, we gener-
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ate random shortlists of three components (e1, e2, e3) following the multivariate

distribution given above. Thus, we have seven vectors (e1(t), e2(t), e3(t)) for

t = 1997, 1999, 2001, 2003, 2005, 2007 and 2009.

We add them to the model output, obtaining a new set of perturbed data. For

each new data perturbation calculated, we compute the parameters that best fit

the model with the new perturbed dataset, in the least square sense, using the

same Nelder-Mead procedure we used to estimate the parameters of the model in

Chapter 2, and store them.

We repeat this procedure 5000 times in order to obtain 5000 set of parameters

that fit each set of perturbed data.

4.3.1.2 Obtaining confidence intervals for model outputs

For each one of the 5000 set of parameters, we solve the system of differen-

tial equations (4.1)-(4.5) and compute the output of the solution, i.e., cocaine

consumption for the four subpopulations N(t), Co(t), Cr(t) and Cb(t), for t =

1997, 1999, 2001, 2003, 2005, 2007 and 2009. Thus, for each t and for each subpop-

ulation, we have a set of 5000 model output values.

Then, we compute the mean and the 95% confidence interval by percentiles 2.5

and 97.5. Obtained results can be seen in Figure 4.2. In these graphs we can ob-

serve, for each subpopulation, the data from Table 3.1 (points), the deterministic

model prediction (line) and the 95% confidence intervals (error bars). The points

inside the confidence intervals are the mean of the 5000 outputs for every subpop-

ulation in every time instant. We can observe that confidence intervals contain the

real data from 2001 to 2009 (data obtained from Table 3.1).

In Table 4.5, some of the numerical values depicted in Figure 4.2 are presented,

for the period 2011–2015. As we saw in the previous chapters, our model predicts

a decreasing trend in non-consumer subpopulation (N(t)) and an increasing trend

in all the populations of cocaine consumers (Co(t), Cr(t) and Cb(t)). In fact, if

there are no changes in current cocaine consumption habits over the next few

years, the model predicts that 78.15% ([0.7542,0.8082]), 12.38% ([0.1043,0.1442]),

5.87% ([0.0485,0.0686]) and 3.612% ([0.0254,0.0474]) of 15-64-year-old individuals

in Spain will be, in the year 2015, non-consumers, occasional consumers, regular

consumers and habitual consumers, respectively.
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(a) Non-consumers (b) Occasional consumers

(c) Regular consumers (d) Habitual consumers

Figure 4.2: Model predictions over the next few years. The error bars corresponding

to 95% confidence intervals in the same time instants as data.

4.3.2 Sensitivity analysis

Uncertainty and sensitivity analysis offer a way to assess the suitability of models

and to establish what factors affect the model outputs. In our case, the knowledge

of the most sensitive parameters can help us to design strategies to control cocaine

consumption. In this section, we use PRCC (partial rank correlation coefficient)

to identify the most important model parameters. PRCC analysis is a sensitivity

analysis method that calculates the PRCC for the input variables and the outputs.

This method is more robust than simple correlation coefficient analysis approach

because it uses rank transformation statistic. However, PRCC is not useful for

quantifying how much change occurs in the output variables by changing the value

of the input parameters. Thus, PRCC can be informative on which parameters

to target if we want to achieve specific goals. Calculation of PRCC enables the
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Table 4.5: 95% credible intervals (CI) for the period 2011–2015 of percentage

of non-consumers (N), occasional consumers (Co), regular consumers (Cr) and

habitual consumers (Cb). Credible intervals are calculated considering the 2.5%

and 97.5% percentile for each year.

N Co Cr Cb

Year 2011

Median 0.8290 0.0986 0.0456 0.0270

95% CI [0.8107,0.8468] [0.0844,0.1134] [0.03803,0.0528] [0.0194,0.0347]

Year 2012

Median 0.8179 0.1046 0.0486 0.0291

95% CI [0.7975, 0.8377] [0.0891,0.1206] [0.0404,0.0564] [0.02071,0.03755]

Year 2013

Median 0.8062 0.1108 0.0518 0.0313

95% CI [0.7837,0.8283] [0.0940,0.1282] [0.0430,0.0602] [0.0222,0.0406]

Year 2014

Median 0.7941 0.1172 0.0551 0.0337

95% CI [0.7693,0.8184] [0.0991,0.1361] [0.0457,0.0643] [0.0237,0.0439]

Year 2015

Median 0.7815 0.1238 0.0587 0.03612

95% CI [0.7542,0.8082] [0.1043,0.1442] [0.0485,0.0686] [0.0254,0.0474]

determination of the statistical relationships between each input parameters and

each outcome variable when controlling the effect of the rest of the parameters. This

procedure allows us to determine the independent effects of each parameter, even

when the parameters are correlated. The sign of the PRCC indicates the qualitative

relationship between each input variable and each output variable. A positive value

indicates that when the value of the input variable increases, the value of the output

will also increase. A negative value indicates a negative correlation between the

inputs and the output. The magnitude of PRCC measures the contribution of

the input variables to the output variable. PRCC are determined for each input

variable and the outcome variable as follows [4]:

• First, the outcome vector is added as an additional column in column number
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k+1 to the matrix of input values (parameters of the model), where k is the

number of input variables. The ordinal numbers representing the rank (1 to

N) of each of these columns are defined as the set (r1i, r2i, ..., rki, Ri), where

i = run number. The average rank µ = (1 + N)/2. A (k + 1) × (k + 1)

symmetric matrix (C) may be defined, with elements cij ,

cij =

N∑
t=1

(rit − µ)(rjt − µ)√√√√ N∑
t=1

(rit − µ)2
N∑
s=1

(rjs − µ)2

i, j = 1, 2, ..., k. (4.6)

• For the ci,k+1 elements Ri replaces rjt and rjs. The leading diagonal elements

of C are all ones. The matrix B is defined as the inverse of C.

B = [bij ] = C−1.

• The PRCC (ρi) between the ith input parameter and the outcome variable

is defined as

ρi =
−bi,k+1√
bi,ibk+1,k+1

. (4.7)

• The significance of a nonzero value of ρi is tested by computing ti. The

distribution of this variable approximates a Student’s T of N − 2 degrees of

freedom:

ti = ρi

√
N − 2

ρi
(4.8)

The PRCC method assumes a monotonic relationship between the input pa-

rameters and the output. Thus, we assess this assumption of monotonicity by

examining scatter plots, where each input variable is plotted against the outcome

variable, proportion of habitual consumers, Cb. Figure 4.3 shows this monotonic

relationship between the input variables and the proportion of habitual consumers,

Cb in 2013. We can observe a strong correlation between the parameters γ and σ

to Cb, some weak correlation between β and Cb and little or no correlation between

Cb and the other parameters. For the remaining years of the study, we obtained

similar results.

Then, the PRCC was calculated between each input parameter and Cb, pro-

portion of habitual consumers. It can be found in Table 4.6 that uncertainties
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estimating the values of γ, β, dC2, dC3 and σ are the most critical in the prediction

accuracy of the future proportion of habitual consumers. These values are, respec-

tively, in 2015, 0.74684, 0.56642, -0.510844, -0.49738 and 0.28924, which are higher

than the others. Thus, we can focus our efforts in these variables. The sign of the

PRCC identifies the qualitative relationship between the inputs and the output

variable. The positive value of the PRCC for most of the variables implies that

when the input variable increases, the future proportion of habitual consumers will

also increase. However, the future number of habitual consumers decreases as the

variables dC2 and dC3 increase.

Table 4.6: PRCC between each input variable and the output variable, for years

2011, 2012, 2013, 2014 and 2015 (with all the parameters).

Parameter 2011 2012 2013 2014 2015

µ 0.16995 0.17004 0.16986 0.16965 0.16962

p-value 1.03×10−33 9.51×10−34 1.11×10−33 1.33×10−33 1.37×10−33

dN 0.18188 0.18230 0.18293 0.18329 0.18377

p-value 1.90×10−38 1.28×10−38 7.05×10−39 5.01×10−39 3.16×10−39

dc1 -0.08829 -0.09670 -0.10493 -0.11257 -0.11934

p-value 4.00×10−10 6.28×10−12 1.02×10−13 1.42×10−15 2.52×10−17

dc2 -0.50433 -0.50551 -0.50659 -0.50778 -0.510844

p-value 0.00000 0.00000 0.00000 0.00000 0.00000

dc3 -0.51024 -0.50695 -0.50352 -0.50023 -0.49738

p-value 0.00000 0.00000 0.00000 0.00000 0.00000

β 0.47940 0.50464 0.52721 0.547863 0.56642

p-value 9.11305×10−286 0.00000 0.00000 0.00000 0.00000

γ 0.78726 0.77753 0.76742 0.75728 0.74684

p-value 0.00000 0.00000 0.00000 0.00000 0.00000

σ 0.36560 0.34430 0.32444 0.30585 0.28924

p-value 5.80×10−158 3.78×10−139 6.76×10−123 9.41×10−109 5.86×10−97

ε 0.03104 0.03347 0.03587 0.03787 0.04024

p-value 2.82×10−2 1.79×10−2 1.12×10−2 7.41×10−3 4.43×10−3
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As we mentioned in the previous chapter, we cannot change the value of natality

and mortality rates. Therefore, we repeat the PRCC analysis excluding these

parameters and, in this second analysis, we consider only four parameters: β, γ, σ

and ε. Results can be seen in Table 4.7.

Table 4.7: PRCC between each input variable and the output variable, for years

2011, 2012, 2013, 2014 and 2015 (without natality and mortality parameters).

Parameter 2011 2012 2013 2014 2015

β 0.37345 0.39794 0.42038 0.44116 0.46020

p-value 2.94×10−165 2.20×10−189 2.44×10−213 3.15×10−237 1.27×10−260

γ 0.74870 0.73800 0.72689 0.71571 0.70435

p-value 0.00000 0.00000 0.00000 0.00000 0.00000

σ 0.37846 0.36080 0.34476 0.33000 0.31648

p-value 5.05×10−170 1.35×10−153 1.52×10−139 2.52×10−127 1.03×10−116

ε -0.01291 -0.00860 -0.00445 -0.00072 0.00314

p-value 3.61×10−1 5.43×10−1 7.53×10−1 9.59×10−1 8.24×10−1

It shows that the parameters γ, β and σ (with values of 0.70435, 0.46020 and

0.31648, respectively, in 2015) are the most critical in the prediction precision of the

future proportion of habitual consumers. Thus, we can focus our efforts on these

variables. Note that these parameters are related to an increasing consumption.

Therefore we should decrease the rate of consumption in order to decrease cocaine

consumption over the next few years. In other words, we should focus on prevention

programmes. Note that this conclusion agrees with those obtained in the previous

chapters, although the techniques used are different.

4.4 Conclusions

In this chapter, we have used the bootstrap method for confidence interval esti-

mation and prediction to assess uncertainty about the model estimations. Using

this method, the model predicts that 78.15% ([75.42%, 80.82%]), 12.38% ([10.43%,

14.42%]), 5.87% ([4.85%, 6.86%]) and 3.61% ([2.54%, 4.74%]) of 15-64-year-old

individuals in Spain will be, by year 2015, non-consumer, occasional consumer,
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regular consumer and habitual consumer, respectively. If we compare these results

with the ones obtained in the previous chapters, we can conclude that the intervals

obtained with the bootstrap method are smaller than the intervals obtained with

LHS methods, but higher than the ABC confidence intervals.

In addition, we have identified, using the PRCC, the parameters which most

influence the prevalence of cocaine consumption in Spain. Note that these parame-

ters (β, γ and σ) are related to cocaine consumption contagion or transitions which

involve an increase in consumption. The conclusions obtained are similar to the

ones reached in the previous chapters, i.e., in order to reduce cocaine consumption,

prevention is the best strategy.



(a) Correlation with µ (b) Correlation with dN (c) Correlation with dC1

(d) Correlation with dC2 (e) Correlation with dC3 (f) Correlation with β

(g) Correlation with γ (h) Correlation with σ (i) Correlation with ε

Figure 4.3: Scatter plots comparing the total number of habitual consumers in

2013 (Cb) against each parameter. (g) and (h) show a strong correlation, (f) shows

some weak correlation and the other graphs show little or no correlation (see Table

4.6 for correlation coefficients).





Chapter 5

Conclusions

Due to the importance of the use of cocaine in developed countries and, in particu-

lar, in Spain, and considering this consumption as an epidemic that is transmitted

socially, in this Ph.D. Thesis we have defined a mathematical model to study the

evolution of cocaine consumption in Spain and predict that consumption in the

coming years.

In order to ensure that the defined model is the one that best fits the data, we

have considered other possible models (built taking into account the suggestion of

a clinical psychologist), and we found that, indeed, the first defined model is the

one that best reflects the data.

To the best of our knowledge, this is the only model defined in Spain consider-

ing the populations non consumers, occasional consumers, regular consumers and

habitual consumers, and using actual data provided by the surveys of the Drug

National Observatory Reports, PNSD.

Furthermore, given the uncertainty due to human behaviour, to the errors in the

data, rounding errors, etc., it is necessary to consider uncertainty in the definition

of the model. Thus, we are not satisfied only in the results the deterministic

model provides, and we wanted to go further, considering uncertainty in the model

parameters. In this way, we will be able to predict the use of cocaine in Spain over

the next years with 95% confidence intervals. To get this and in order to improve

and control the uncertainty in the estimations, we used three different techniques

to estimate 95% confidence intervals and, consequently, quantify the uncertainty in

the predictions: LHS (Latin Hipercube Sampling), ABC (Approximate Bayesian

Computation) and Bootstrap. The predictions obtained with each one of these

techniques for the year 2015 can be found in the Table 5.1:

81
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LHS ABC Bootstrap

Non-consumers [0.394, 0.957] [0.786, 0.807] [0.754, 0.808]

Occasional consumers [0.008, 0.471] [0.121, 0.139] [0.104, 0.144]

Regular consumers [0.006, 0.200] [0.041, 0.055] [0.049, 0.069]

Habitual consumers [0.005, 0.103] [0.020, 0.031] [0.025, 0.047]

Table 5.1: Model predictions with uncertainty for year 2015 of percentage of non-

consumers, occasional consumers, regular consumers and habitual consumers using

each one of the techniques: LHS, ABC and Bootstrap.

Studying the predictions with uncertainty provided for the model, we note that

the model predicts well in the short term with independence of the used technique,

although the intervals obtained with the LHS method are higher than the other

ones obtained with the ABC and bootstrap method. However, as time goes on, the

predictions are not as good as expected. This is because there are two issues we did

not include during the modeling: the Plan of Action Against Cocaine Consumption

proposed in 2007 by the Spanish Health Ministry, and the economic crisis that

emerged in 2008. Both facts have meant a considerable and unexpected decline in

the trend of consumption.

In addition, in this Ph.D. Thesis, we conducted a model sensitivity analysis

to determine which parameters are those that most influence cocaine consumption

in Spain. The result of this sensitivity analysis allows us to design public health

strategies and to analyse their effects on reducing cocaine consumption in the fu-

ture. We have used several techniques to carry out this sensitivity analysis and

the conclusion obtained in all cases is the same: prevention policies are the most

effective strategy in reducing cocaine consumption.

Finally, we want to summarize the main objectives we achieved in the present

Ph.D. dissertation:

• To define the first mathematical model to study the evolution of cocaine

consumption in Spain considering the populations non-consumers, occasional

consumers, regular consumers and habitual consumers, and with real data.

• To use techniques that allowed us to choose the model that best explains

reality, from among three proposed models taking into account the expert

opinion of a clinical psychologist.
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• To quantify the uncertainty in the model using different techniques (LHS,

ABC and Bootstrap) and be able to predict with accuracy cocaine consump-

tion in Spain with 95% confidence intervals.

• To carry out a model sensitivity analysis to determine which model param-

eters are those that most influence the cocaine consumption in Spain and

then, to conclude that the most efficient way of reducing this consumption

is through prevention policies. Consequently, it is worth investing efforts in

such policies.
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newald. Drinking as an Epidemic- a simple mathematical model with recovery

and relapse, in: K. Witkiewitz, G. Alan Marlett (Eds.). Therapists Guide to

Evidence Based Relapse Prevention, Princeton and Oxford, 2007.

[71] F.J. Santonja, A.C. Tarazona, and R.J. Villanueva. A mathematical model of

the pressure of an extreme ideology on a society. Computers and Mathematics

with Aplications, 56:836–846, 2008.

[72] F.J. Santonja, R.J. Villanueva, L. Jódar, and G. González. Mathematical mod-

eling of social obesity epidemic in the region of Valencia, Spain. Mathematical

and Computer Modelling of Dynamical Systems, 16:23–34, 2010.

[73] J. Schmitz, A. Stotts, H. Rhoades, and J. Grabowski. Naltrexone and relapse

prevention treatment for cocaine-dependent patients. Addictive Behaviors,

26:167–180, 2001.

[74] S.S Shapiro and M.B. Wilk. An analysis of variance test for normality (com-

plete samples). Biometrika, 52:591–611, 1965.

[75] O. Sharomi and A.B. Gumel. Curtailing smoking dynamics: A mathemati-

cal modeling approach. Applied Mathematics and Computation, 195:475–499,

2008.

[76] N. V. Smirnov. Estimate of deviation between empirical distribution functions

in two independent samples. Bulletin of Moscou University, 2:3–16, 1939.



92 Bibliography

[77] B. Song, M. Castillo-Garsow, K.R. Rı́os-Soto, M. Mejran, L. Henso, and
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