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Abstract

In this paper, based on Ostrowski’s method, a new family of eighth-order methods
for solving nonlinear equations is derived. In terms of computational cost, each iter-
ation of these methods requires three evaluations of the function and one evaluation
of its first derivative, so that their efficiency indices are 1.682, which is optimal ac-
cording to Kung and Traub’s conjecture. Numerical comparisons are made to show
the performance of the new family.
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1 Introduction

In this work, we consider iterative methods to find a simple root α of the nonlinear equation
f(x) = 0, where f : I ⊂ R→ R is a scalar function on an open interval I.

In the last years, many modified methods have been proposed to improve the local order of
convergence of the Newton’s method, see for example [1–7] and references therein. King in [3]
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developed a one-parameter family of fourth-order methods, which is written as

yn = xn − f(xn)
f ′(xn)

,

xn+1 = yn − f(xn)+βf(yn)
f(xn)+(β−2)f(yn)

f(yn)
f ′(xn)

,
(1)

where β ∈ R is a parameter. In particular, Ostrowski’s method [8] is a member of this family when
β = 0, and it can be written as

xn+1 = xn − f(xn)

f ′(xn)

f(xn)− f(yn)

f(xn)− 2f(yn)
,

being yn the step of Newton’s method.

As the order of an iterative method increases, so does the number of functional evaluations per step.
The efficiency index (see [8]) gives a measure of the balance between those quantities, according
to the formula I = p1/d, where p is the order of convergence of the method and d the number of
functional evaluations per step. Kung and Traub conjectured in [9] that the order of convergence
of any multipoint method cannot exceed the bound 2d−1, (called the optimal order). Thus, the
optimal order for a method with 3 functional evaluations per step would be 4. King’s method [3],
Ostrowski’s method and Jarrat’s method [10] are some of optimal fourth-order methods, because
they only perform three functional evaluations per step. In order to compare the different methods,
we also use the operational index, defined in [11] as IO = p1/op, where op is the total number of
products and quotients per iteration.

Recently, based on Ostrowski’s or King’s methods, some higher order multipoint methods have
been proposed for solving nonlinear equations. For example, Liu and Wang developed in [5] a family
of variants of Ostrowski’s method with eighth-order convergence by weight function methods. This
family, which we will refer as LW8, is written as

yn = xn − f(xn)
f ′(xn)

,

zn = xn − f(xn)
f ′(xn)

f(xn)−f(yn)
f(xn)−2f(yn)

,

xn+1 = zn − f(zn)
f ′(xn)

[(
f(xn)−f(yn)
f(xn)−2f(yn)

)2
+ f(zn)

f(yn)−αf(zn)
+ G(µn)

]
,

(2)

where α is constant, µn = f(zn)/f(xn) and G(µn) denotes a real-valued function. The same
strategy is used by Sharma et al. in [6] and Kou et al. in [4]. On the other hand, Bi et al. [1]
also presented a new family of eighth-order methods based on King’s methods and the family of
sixth-order iteration methods developed by Chun et al. [12]. This family, denoted BRW8, has the
following expression:

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)−(1/2)f(yn)
f(xn)−(5/2)f(yn)

f(yn)
f ′(xn)

,

xn+1 = zn −H(µn) f(zn)
f [zn,yn]+f [zn,xn,xn](zn−yn)

,

(3)
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where µn = f(zn)/f(xn), H(µn) represents a real-valued function and divided differences are
denoted by f [, ].

In this paper, based on Ostrowski’s method, we present a new family of optimal eighth-order of
convergence, without using other derivatives than the first. The rest of the paper is organized as
follows: in Section 2 we describe our family of variants of Ostrowski’s method and we show its
optimal order of convergence. In Section 3, different numerical tests confirm the theoretical results
and allow us to compare these variants with other known methods mentioned in the Introduction.
Concluding remarks are given in the last section.

2 The methods and analysis of convergence

We consider the iteration scheme consisting of three steps. The first step is the Ostrowski’s iteration
to get zn from xn, that is

zn = xn − f(xn)

f ′(xn)

f(xn)− f(yn)

f(xn)− 2f(yn)
,

where yn is the iteration of Newton’s method. The second and third steps calculate xn+1 from the
new point zn by the family of methods given by

un = zn − f(zn)
f ′(xn)

(
f(xn)−f(yn)
f(xn)−2f(yn)

+ 1
2

f(zn)
f(yn)−2f(zn)

)2
,

xn+1 = un − f(zn)
f ′(xn)

α1(un−zn)+α2(yn−xn)+α3(zn−xn)
β1(un−zn)+β2(yn−xn)+β3(zn−xn)

,
(4)

where αi, βi ∈ R, i = 1, 2, 3.

The order of convergence of this family is analyzed in the following result.

Theorem 1 Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R −→ R
in an open interval I. If x0 is sufficiently close to α, then the iterative schemes described by (4)
have optimal eight convergence order, for α2 = α3 = 0, α1 = 3(β2 + β3) and β2 + β3 6= 0.

Proof: Let en be the error in xn, that is en = xn − α. By using Taylor’s expansion around x = α
and taking into account f(α) = 0, we have

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n

]
+ O(e9

n), (5)

and

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + 7c7e

6
n + 8c8e

7
n

]
+ O(e8

n), (6)

where ck =
f (k)(α)

k!
f ′(α), k = 2, 3, . . ..
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So, using (5) and (6), we obtain

yn − α = xn − α− f(xn)

f ′(xn)

= c2e
2
n + (−2c2

2 + 2c3)e
3
n + (4c3

2 − 7c2c3 + 3c4)e
4
n + (−8c4

2 + 20c2
2c3 − 6c2

3 − 10c2c4 + 4c5)e
5
n

+(16c5
2 − 52c3

2c3 + 28c2
2c4 − 17c3c4 + c2(33c2

3 − 13c5) + 5c6)e
6
n

−2(16c6
2 − 64c4

2c3 − 9c3
3 + 36c3

2c4 + 6c2
4 + 9c2

2(7c
2
3 − 2c5) + 11c3c5

+c2(−46c3c4 + 8c6)− 3c7)e
7
n + O(e8

n).

Again expanding f(yn) around α, we have

f(yn) = f ′(α) [c2e
2
n − 2(c2

2 − c3)e
3
n + (5c3

2 − 7c2c3 + 3c4)e
4
n − 2(6c4

2 − 12c2
2c3 + 3c2

3 + 5c2c4 − 2c5)e
5
n

+(28c5
2 − 73c3

2c3 + 34c2
2c4 − 17c3c4 + c2(37c2

3 − 13c5) + 5c6)e
6
n

−2(32c6
2 − 103c4

2c3 − 9c3
3 + 52c3

2c4 + 6c2
4 + c2

2(80c2
3 − 22c5)

+11c3c5 + c2(−52c3c4 + 8c6)− 3c7)e
7
n] + O(e8

n).

(7)
Now, from (5), (6) and (7), we obtain

zn − α = xn − α− f(xn)

f ′(xn)

f(xn)− f(yn)

f(xn)− 2f(yn)

= (c3
2 − c2c3)e

4
n − 2(2c4

2 − 4c2
2c3 + c2

3 + c2c4)e
5
n

+(10c5
2 − 30c3

2c3 + 12c2
2c4 − 7c3c4 + 3c2(6c

2
3 − c5))e

6
n

−2(10c6
2 − 40c4

2c3 − 6c3
3 + 20c3

2c4 + 3c2
4 + 8c2

2(5c
2
3 − c5) + 5c3c5 + c2(−26c3c4 + 2c6))e

7
n + O(e8

n).

Taylor expansion of f(zn) around α is

f(zn) = f ′(α) [(c3
2 − c2c3)e

4
n − 2(2c4

2 − 4c2
2c3 + c2

3 + c2c4)e
5
n

+(10c5
2 − 30c3

2c3 + 12c2
2c4 − 7c3c4 + 3c2(6c

2
3 − c5))e

6
n

−2(10c6
2 − 40c4

2c3 − 6c3
3 + 20c3

2c4 + 3c2
4 + 8c2

2(5c
2
3 − c5) +5c3c5 + c2(−26c3c4 + 2c6))e

7
n] + O(e8

n).

(8)
So, from (5), (6), (7) and (8) we have

un − α = zn − α− f(zn)

f ′(xn)

(
f(xn)− f(yn)

f(xn)− 2f(yn)
+

1

2

f(zn)

f(yn)− 2f(zn)

)2

= 3(c3
2 − c2c3)

2e7
n − (1/4)(c2(c

2
2 − c3)(97c4

2 − 194c2
2c3 + 53c2

3 + 44c2c4))e
8
n + O(e9

n).

Finally, the expression of the asymptotic error is
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xn+1 − α = un − α− f(zn)

f ′(xn)

α1(un − zn) + α2(yn − xn) + α3(zn − xn)

β1(un − zn) + β2(yn − xn) + β3(zn − xn)

= − 1

β2 + β3

(α2 + α3)(c
3
2 − c2c3)e

4
n +

1

(β2 + β3)2

[
(6α2β2 + 5α3β2 + 7α2β3 + 6α3β3)c

4
2

−(10α2β2 + 9α3β2 + 11α2β3 + 10α3β3)c
2
2c3 + +2(α2 + α3)(β2 + β3)c

2
3

+ 2(α2 + α3)(β2 + β3)c2c4] e
5
n + O(e6

n),

and, in order to get sixth-order, it is necessary to fix the value of some parameters, specifically
α2 = α3 = 0 and β2 + β3 6= 0. Then, the error equation becomes:

xn+1 − α = − 1

β2 + β3

(α1 − 3(β2 + β3))(c
3
2 − c2c3)

2e7
n

+
1

4(β2 + β3)2
c2(c

2
2 − c3)

[
(−97(β2 + β3)

2 + 4α1(9β2 + 10β3))c
4
2

+2(97(β2 + β3)
2 − 2α1(17β2 + 18β3))c

2
2c3 + (β2 + β3)(16α1 − 53(β2 + β3)c

2
3)

+4(β2 + β3)(4α1 − 11(β2 + β3))c2c4] e
8
n + O(e9

n).

Finally, if α1 = 3(β2 + β3) the convergence order of any method of the family (4) arrives to eight,
and the error equation is

en+1 =
1

4(β2 + β3)
c2(c

2
2 − c3)

[
(11β2 + 23β3)c

4
2 − 2(5β2 + 11β3)c

2
2c3

−5(β2 + β3)c
2
3 + 4(β2 + β3)c2c4

]
e8

n + O(e9
n).

Note that there is no restriction on the value of β1, and the values of β2 and β3 must satisfy
β2 + β3 6= 0. Moreover, it is easy to prove that it is not possible to reach the ninth-order of con-
vergence. 2

So, we have obtained an eight-order convergence family of methods with two degrees of freedom:

yn = xn − f(xn)
f ′(xn)

,

zn = xn − f(xn)
f ′(xn)

f(xn)−f(yn)
f(xn)−2f(yn)

xn+1 = un − f(zn)
f ′(xn)

3(β2+β3)(un−zn)
β1(un−zn)+β2(yn−xn)+β3(zn−xn)

,

(9)

where un = zn − f(zn)
f ′(xn)

(
f(xn)−f(yn)
f(xn)−2f(yn)

+ 1
2

f(zn)
f(yn)−2f(zn)

)2
and β2 + β3 6= 0.

In terms of computational cost, the developed methods require only four functional evaluations.
So, their efficiency indices are 81/4 = 1.682, that is, the new family of methods reach the optimal
order of convergence eight, conjectured by Kung and Traub.
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3 Numerical results

In this section we check the effectiveness of the new optimal eighth order family of methods (4),
taking α1 = 3, β1 = β3 = 0 and β2 = 1, which is denoted by M8 and the last step of its iterative
expression is

xn+1 = un − 3
f(zn)

f ′(xn)

un − zn

yn − xn

,

compared with the classical Newton’s (N2) and Ostrowski’s (O4) methods, the optimal eighth
order methods, BRW8, with H(t) = 1 + 2t

1+αt
and α = 1; and LW8 with α = 1 and G(t) = 4t. In

order to get this aim, let us consider the following nonlinear test functions, which are the same as
in [2,4].

• f1(x) = x3 + 4x2 − 15, α ≈ 1.6319808055661,
• f2(x) = xex2 − sin2 (x) + 3 cos (x) + 5, α ≈ −1.2076478271309,
• f3(x) = sin(x)− x

2
, α ≈ 1.8954942670339,

• f4(x) = 10xe−x2 − 1, α ≈ 1.6796306104285,
• f5(x) = cos(x)− x, α ≈ 0.73908513321516,
• f6(x) = sin2(x)− x2 + 1, α ≈ 1.4044916482153,
• f7(x) = e−x + cos(x), α ≈ 1.7461395304080.

Nowadays, high-order methods are important because numerical applications use high precision in
their computations; for this reason numerical computations have been carried out using variable
precision arithmetic in Matlab 7.1 with 2000 significant digits. The computer specifications are:
Intel(R) Core(TM)2 Quad CPU, Q9550 @ 2.83GHz with 4.00GB of RAM.

Table 1 shows, for some initial estimations, the number of iterations required to obtain |xn+1 −
xn| < 10−200 or |f(xn+1)| < 10−200, the value of function f in the last iteration, the distance
between the two last iterations, the mean elapsed time (e-time) after 100 performances of the
program, calculated by means of the command ”cputime” of Matlab, and the computational
order of convergence (COC), ρ, introduced in [13]:

ρ ≈ ln(|xn+1 − α| / |xn − α|)
ln(|xn − α| / |xn−1 − α|) . (10)

The value of α used in (10) have been calculated by Newton’s method with 500 exact digits.
Moreover, in Table 1, denoted by COC, appears the last coordinate of vector ρ when the variation
between its coordinates is small.

Numerical results are in concordance with the theory developed in this paper. In all the cases, the
results obtained with our new methods are similar than the other optimal methods. In fact, the
elapsed time that appears in Table 1 is completely understood by means of the operational index
of the different methods:

IOBRW8 = 8
1
11 < IOM8 = 8

1
9 < IOLW8 = 8

1
8 < IOO4 = 4

1
3 < ION2 = 21,

6



that is, methods that have the same optimal order of convergence only differ in the mean elapsed
time if the number of products and quotients per iteration are different.

4 Conclusions

We have obtained a new family of variants of Ostrowski’s method. The convergence order of these
methods is eight, and consist of three evaluations of the function and one evaluation of the first
derivative per iteration, so they have an efficiency index equal to 81/4 = 1.682. Therefore, the
family of methods agrees with the conjecture of Kung-Traub for n = 4 and its operational index
is similar than the corresponding one of other known methods.

Acknowledgement

The authors would like to thank the referees for the valuable comments and for the suggestions
to improve the readability of the paper.

References

[1] W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eighth-order convergence for solving
nonlinear equations, Journal of Computational and Applied Mathematics, 255 (2009) 105–112.

[2] M. Grau, J.L. Dı́az-Barrero, An improvement to Ostrowski root-finding method, Applied
Mathematics and Computation, 173 (2006) 450–456.

[3] R. King, A family of fourth order methods for nonlinear equations, SIAM Journal Numer. Anal., 10
(1973) 876–879.

[4] J. Kou, X. Wang, Some improvements of Ostrowski’s method, Applied Mathematics Letters, 23
(2010) 92–96.

[5] L. Liu, X. Wang, Eighth-order methods with high efficiency index for solving nonlinear equations,
Applied Mathematics and Computation, 215 (2010) 3449-3454.

[6] J.R. Sharma, R. Sharma, A new family of modified Ostrowski’s methods with accelerated eighth
order convergence, Numerical Algorithms, 54 (2010) 445–458.

[7] A. Cordero, J.L. Hueso, E. Mart́ınez, J.R. Torregrosa, New modifications of Potra-Pták’s method with
optimal fourth and eighth order of convergence, Journal of Computational and Applied Mathematics,
234 (2010) 2969–2976.

[8] A.M. Ostrowski, Solutions of equations and systems of equations, Academic Press, New York-London,
1966.

7



[9] H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iteration, Applied Mathematics
and Computation, 21 (1974) 643–651.

[10] P. Jarrat, Some fourth order multipoint iterative methods for solving equations, Mathematical
Computation, 20 (1966) 434-437.

[11] J.F. Traub, Iterative methods for the solution of equations, Chelsea Publishing Company, New York,
1982.

[12] C. Chun, Y. Ham, Some sixth-order variants of Ostrowski root-finding methods, Applied Mathematics
and Computation, 193 (2007) 389–394.

[13] S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order
convergence, Applied Mathematics Letters, 13(8) (2000) 87–93.

8



Table 1
Numerical results

N2 O4 BRW8 LW8 M8

f1, x0 = 2 |xn+1 − xn| 6.4650e-110 9.6816e-058 7.9134e-059 7.5148e-049 7.1376e-054

|f(xn+1)| 3.7181e-218 1.0251e-228 0 0 0

COC 2.0000 4.0000 7.8747 8.0000 8.0000

iter 8 4 3 3 3

e-time 0.0881 0.0902 0.1356 0.1103 0.1242

f2, x0 = −1 |xn+1 − xn| 1.8805e-128 1.8368e-056 4.0748e-028 3.9269e-043 1.0709e-050

|f(xn+1)| 1.0787e-254 8.8236e-223 9.7125e-217 0 0

COC 2.0000 4.0000 8.0047 8.0000 8.0000

iter 9 4 3 3 3

e-time 0.5759 0.5479 0.2736 0.2442 0.2594

f3, x0 = 1.9 |xn+1 − xn| 6.0762e-166 2.5639e-164 3.5525e-168 7.0879e-155 4.8032e-161

|f(xn+1)| 0 0 0 0 0

COC 2.0000 4.0000 7.7670 7.7606 7.5698

iter 7 4 3 3 3

e-time 0.6759 0.5633 0.5627 0.5620 0.5622

f4, x0 = 1.5 |xn+1 − xn| 2.0290e-108 3.0429e-053 6.6497e-055 3.5595e-045 5.3098e-52

|f(xn+1)| 1.0878e-215 1.9108e-210 0 0 0

COC 2.0000 3.9999 7.9314 8.0000 8.0000

iter 8 4 3 3 3

e-time 0.5000 0.3448 0.3445 0.3440 0.3440

f5, x0 = 1 |xn+1 − xn| 7.1182e-167 3.5827e-074 3.3062e-083 1.6619e-066 5.2538e-082

|f(xn+1)| 0 7.0526e-296 0 0 0

COC 2.0000 4.0000 7.9999 8.0000 8.0000

iter 8 4 3 3 3

e-time 0.6687 0.5633 0.5788 0.5630 0.5780

f6, x0 = 1.5 |xn+1 − xn| 2.6094e-148 1.6166e-075 6.2434e-086 2.3305e-066 3.8163e-072

|f(xn+1)| 1.3245e-295 6.9915e-300 0 0 0

COC 2.0000 4.0000 7.7689 8.0000 8.0000

iter 8 4 3 3 3

e-time 0.9068 0.6725 0.6751 0.6413 0.6461

f7, x0 = 2 |xn+1 − xn| 9.5606e-170 4.5563e-070 2.6708e-080 2.8428e-061 5.3453e-078

|f(xn+1)| 0 1.0461e-279 0 0 0

COC 2.0000 4.0000 7.9460 8.0988 7.9182

iter 8 4 3 3 3

e-time 0.8758 0.7199 0.7137 0.7020 0.7090
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