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Increasing the order of convergence of iterative schemes for solving

nonlinear systems∗

Alicia Cordero†, Juan R. Torregrosa‡, Maŕıa P. Vassileva§

Abstract

A set of multistep iterative methods with increasing order of convergence is presented, for solving systems
of nonlinear equations. One of the main advantages of these schemes is to achieve high order of convergence
with few Jacobian and functional evaluations, joint with the use of the same matrix of coefficients in the most
of the linear systems involved in the process. Indeed, the application of the pseudocomposition technique on
these proposed schemes allows us to increase their order of convergence, obtaining new high-order, efficient
methods. Finally, some numerical tests are performed in order to check their practical behavior.
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1 Introduction

Many applied problems in Science and Engineering are reduced to solve to solve nonlinear systems numerically.
The numerical methods commonly used for solving these problems are iterative. A detailed study of the
techniques in construction of iterative methods can be found in the text of Traub [1].

Recently, for n = 1, many robust and efficient methods have been proposed in order to obtain high orders of
convergence, but in most cases the methods can not be extended to several variables. However, Babajee et al. in
[2] design Chebyshev-like schemes for solving nonlinear systems. In general, few papers for the multidimensional
case introduce methods with high order of convergence. The authors design in [3] a modified Newton-Jarrat
scheme of sixth-order; in [4] a third-order method is presented for computing real and complex roots of nonlinear
systems; Darvishi et al. in [5] improve the order of convergence of known methods from quadrature formulae;
Shin et. al. compare in [6] Newton-Krylov methods and Newton-like schemes for solving big-sized nonlinear
systems; in [7] a general procedure to design high-order methods for problems in several variables is presented;
moreover, the Adomian Decomposition has shown to be a useful tool to design new high-order methods (see [8]
and [9])

The pseudocomposition technique (see [10]) consists of the following: we consider a method of order of
convergence p as a predictor, whose penultimate step is of order q, and then we use a corrector step based on the
Gaussian quadrature. So, we obtain a family of iterative schemes whose order of convergence is min{q+ p, 3q}.
This is a general procedure to improve the order of convergence of known methods.

To analyze and compare the efficiency of the proposed methods we use the classic efficiency index I = p1/d

due to Ostrowski [11], where p is the order of convergence and d is the number of functional evaluations, per
iteration.

In this paper, we present three new Newton-like schemes, of order of convergence four, six and eight,
respectively. After the analysis of convergence of the new methods, we apply the pseudocomposition technique
in order to get higher order procedures.
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marip@intec.edu.do

1

Manuscript
Click here to view linked References

http://ees.elsevier.com/cam/viewRCResults.aspx?pdf=1&docID=19624&rev=0&fileID=179906&msid={1521D2CC-0459-4AC8-9277-36CBB4843494}


The convergence theorem in Section 2 is demonstrated by means of the n-dimensional Taylor expansion of
the functions involved. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable in D. By using the notation
introduced in [3], the qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn×· · ·×Rn −→ Rn

such that F (q)(u)(v1, . . . , vq) ∈ Rn. In the following, we will denote as

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 . . . vq

(b) F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1

Indeed, it is well known that, for ξ+ h ∈ Rn lying in a neighborhood of a solution ξ of the nonlinear system
F (x) = 0, Taylor’s expansion can be applied (assuming that the Jacobian matrix F ′(ξ) is nonsingular), and

F (ξ + h) = F ′(ξ)

[
h+

p−1∑
q=2

Cqh
q

]
+O[hp], (1)

where Cq = (1/q!)[F ′(ξ)]−1F (q)(ξ), q ≥ 2. We observe that Cqh
q ∈ Rn since F (q)(ξ) ∈ L(Rn × · · · × Rn,Rn)

and [F ′(ξ)]−1 ∈ L(Rn).
In addition, we can express the Jacobian matrix of F , F ′, as

F ′(ξ + h) = F ′(ξ)

[
I +

p−1∑
q=2

qCqh
q−1

]
+O[hp], (2)

where I is the identity matrix.
We denote ek = x(k) − ξ the error in the kth iteration. The equation e(k+1) = Lek

p +O[ek
p+1], where L is

a p-linear function L ∈ L(Rn × · · · × Rn,Rn), is called the error equation and p is the order of convergence.
We have organized the rest of the paper as follows: in the next section, we present the new methods of

order four, six and eight, respectively. Then, the pseudocomposition technique is applied on them and some
new higher-order schemes are obtained, which have also more interesting properties. Section 3 is devoted to the
comparison of the different methods by means of several numerical tests.

2 Proposed high-order methods

In the following, we will present a new multistep Newton-type scheme which reaches eighth-order of convergence
with five steps, and we will denote it as M8. In the analysis of convergence, we will proof that its first three
steps are a fourth-order scheme, denoted by M4, and its four first steps become a sixth-order method that will
be denoted by M6. The coefficients involved have been obtained optimizing the order the convergence and the
whole scheme requires three functional evaluations of F and two of F ′ to attain eighth-order of convergence.
Let us also note that no linear system must be solved at the second step and the linear systems to be solved in
the last three steps have the same matrix. So, the number of operations involved is not as high as it can seem.

Theorem 1 Let F : D ⊆ Rn → Rn be sufficiently differentiable in a neighborhood of ξ ∈ D which is a solution
of the nonlinear system F (x) = 0. We suppose that F ′(x) is continuous and nonsingular at ξ and x(0) close
enough to the solution. Then, the sequence {x(k)}k≥0 obtained by

y(k) = x(k) − 1

2

[
F ′

(
x(k)

)]−1

F
(
x(k)

)
,

z(k) =
1

3

(
4y(k) − x(k)

)
,

u(k) = y(k) +
[
F ′

(
x(k)

)
− 3F ′

(
z(k)

)]−1

F
(
x(k)

)
, (3)

v(k) = u(k) + 2
[
F ′

(
x(k)

)
− 3F ′

(
z(k)

)]−1

F
(
u(k)

)
,

x(k+1) = v(k) + 2
[
F ′

(
x(k)

)
− 3F ′

(
z(k)

)]−1

F
(
v(k)

)
,

2



converges to ξ with order of convergence eight. The error equation is:

ek+1 =
1

9

(
C3 − C2

2

) (
C4 − 9C3C2 + 9C3

2

)
e8k +O[e9k].

Proof: From (1) and (2) we obtain

F (x(k)) = F ′(ξ)
[
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k + C6e

6
k + C7e

7
k + C8e

8
k

]
+O[e9k], (4)

F ′(x(k)) = F ′(ξ)
[
I + 2C2ek + 3C3e

2
k + 4C4e

3
k + 5C5e

4
k + 6C6e

5
k + 7C7e

6
k + 8C8e

7
k

]
+O[e8k].

As
[
F ′(x(k))

]−1
F ′(x(k)) = I, we calculate

[F ′(x(k))]−1 =
[
I +X2ek +X3e

2
k +X4e

3
k +X5e

4
k +X6e

5
k +X7e

6
k +X8e

7
k

]
[F ′(ξ)]−1 +O[e8k],

where X1 = I and Xs = −
s∑

j=2

jXs−j+1Cj , for s = 1, 2, . . .

Then, y(k) = ξ + 1
2

(
ek + C2e

2
k −M

)
and z(k) = ξ + 1

3ek + 1
2

(
C2e

2
k −M

)
, where M = +M1e

3
k + M2e

4
k +

M3e
5
k +M4e

6
k +M5e

7
k +M6e

8
k +O[e9k] and Ms = Cs+2 +

s∑
j=1

Xj+1Cs−j+2 +Xs+2, s = 1, 2, . . .

The Taylor expansion of F ′(z(k)) is

F ′
(
z(k)

)
= F ′(ξ)

[
I +

2

3
C2ek +Q2e

2
k +Q3e

3
k +Q4e

4
k +Q5e

5
k +Q6e

6
k +Q7e

7
k +Q8e

8
k

]
+O[e9k],

where

Q2 =
3

4
C2

2 +
1

3
C3,

Q3 = −4

3
C2M1 +

4

3
C3C2 +

4

27
C4,

Q4 = −4

3
C2M2 +

4

3
C3α1 +

8

9
C4C2 +

5

81
C5,

Q5 = −4

3
C2M3 −

4

3
C3α2 − 4C4β1 +

40

81
C5C2 +

2

81
C6,

Q6 = −4

3
C2M4 +

4

3
C3α3 − 4C4β2 − 5C5γ1 +

20

81
C6C2 +

7

243
C7,

Q7 = −4

3
C2M5 +

4

3
C3α4 − 4C4β3 − 5C5γ2 − 6C6δ1 +

28

81
C7C2 +

8

729
C8,

being

α1 = −4

9
(M1 + C2

2 ),

α2 = −4

9
(M2 − C2M1 −M1C2),

α3 = −4

9
(M3 − C2M2 +M2

1 −M2C2),

α4 = −4

9
(M4 − C2M3 +M1M2 +M2M1 −M3C2),

β1 = − 8

27
(2α1 + C2

2 − 4M1),

β2 = − 8

27
(2α2 + C2α1 −M1C2 − 4M2),

β3 = − 8

27
(2α3 + C2α2 −M1α1 −M2C2 − 4M3),
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γ1 = −1

3
β1 +

4

27
C2

2 − 2

81
M1,

γ2 = −1

3
β2 −

2

3
C2β1 −

4

27
3M1C2 −

2

81
M2,

and

δ1 = −1

3
γ1 +

16

243
C2

2 − 2

243
M1.

Then, the following Taylor expansion can be obtained,

F ′(x(k))− 3F ′(z(k)) = F ′(ξ)[−2I + T2e
2
k + T3e

3
k + T4e

4
k + T5e

5
k + T6e

6
k + T7e

7
k] +O[e8k],

where Ts = (s+ 1)Cs+1 − 3Qs, s = 2, 3, . . . So,

[F ′(x(k))− 3F ′(z(k))]−1 = [−1

2
I + Y3e

2
k + Y4e

3
k + Y5e

4
k + Y6e

5
k + Y7e

6
k + Y8e

7
k] +O[e8k],

where

Y3 = −1

4
T2,

Y4 = −1

4
T3,

Y5 = −1

8
(2T4 + T 2

2 ),

Y6 = − 1

16
(4T5 + 2T2T3 + 2T4T2 + T 3

2 ),

Y7 = − 1

16
(4T6 + 2T2T4 + 2T 2

3 + 2T4T2 + T 3
2 ),

Y8 = − 1

32
(8T7 + 4T2T5 + 4T3T4 + 4T4T3 + 2T 2

2 T3 + 4T5T2 + 2T2T3T2 + 2T4T
2
2 + T 4

2 ).

The following calculation is necessary to obtain the error equation of the third step of the iterative process:

[F ′(x(k))− 3F ′(z(k))]−1F (x(k)) = −1

2
ek − 1

2
C2e

2
k +N3e

3
k +N4e

4
k +N5e

5
k +N6e

6
k +N7e

7
k +N8e

8
k +O[e9k],

where N3 = −1

2
C3 + Y3, and Ns = −1

2
Cs +

s∑
j=4

Yj−1Cs−j+2 + Ys, s = 4, 5, . . . Then,

u(k) − ξ = y(k) − ξ + [F ′(x(k))− 3F ′(z(k))]−1F (x(k))

= L4e
4
k + L5e

5
k + L6e

6
k + L7e

7
k + L8e

8
k +O[e9k],

being Ls = Ns −
1

2
Ms−2, s = 4, 5, . . .

In order to obtain the error of the fourth step, v(k) − ξ, we calculate

[F ′(x(k))− 3F ′(z(k))]−1F (u(k)) = −1

2
L4e

4
k − 1

2
L5e

5
k +R6e

6
k +R7e

7
k +R8e

8
k +O[e9k],

where

R6 = −1

2
L6 + Y3L4,

R7 = −1

2
L7 + Y3L5 + Y4L4,

R8 = −1

2
L8 − C2L4 + Y3L6 + Y4L5 + Y5L4.
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and

v(k) = ξ + 2Y3L4e
6
k + 2(Y3L5 + Y4L4)e

7
k + 2(−C2L4 + Y3L6 + Y4L5 + Y5L4)e

8
k +O[e9k].

Finally,

[F ′(x(k))− 3F ′(z(k))]−1F (v(k)) = −Y3L4e
6
k − (Y3L5 + Y4L4)e

7
k + [C2L4 − Y4L5 − Y5L4 + Y3R6]e

8
k +O[e9k].

and the error equation of the method is:

x(k+1) = v(k) + 2[F ′(x(k))− 3F ′(z(k))]−1F (v(k))

= ξ − 1

2
T2(L6 + 2R6)e

8
k +O[e9k].

This error can be expressed, in terms of Ci, s = 2, 3, . . . as

ek+1 =
1

9
(C3 − C2

2 )(C4 − 9C3C2 + 9C3
2 )e

8
k +O[e9k].

2

Let us note that the number of operations (per iteration) needed to execute this procedure is not as high as
it can seem, as the linear system to be solved in steps third to fifth have the same matrix of coefficients. So,
this multistep procedure is very competitive as it will be showed in the numerical section.

It is known (see [10]) that, by applying the pseudocomposition technique, it is possible to design methods
with higher order of convergence. We will see in the following how this technique modify the properties of the
proposed schemes.

Theorem 2 [10] Let F : D ⊆ Rn → Rn be differentiable enough D and ξ ∈ D a solution of the nonlinear system
F (x) = 0. We suppose that F ′(x) is continuous and nonsingular at ξ and x(0) close enough to the solution. Let
y(k) and z(k) be the penultimate and final steps of orders q and p, respectively, of a certain iterative method.
Taking this scheme as a predictor we get a new approximation x(k+1) of ξ given by

x(k+1) = y(k) − 2

[
m∑
i=1

ωiF
′(η

(k)
i )

]−1

F (y(k)),

where η
(k)
i =

1

2

[
(1 + τi)z

(k) + (1− τi)y
(k)

]
and τi, ωi i = 1, . . . ,m are the nodes and weights of the orthogonal

polynomial corresponding to the Gaussian quadrature used. Then,

1. the obtained set of families will have an order of convergence at least q;

2. if σ = 2 is satisfied, then the order of convergence will be at least 2q;

3. if, also, σ1 = 0 the order of convergence will be min{p+ q, 3q};

where
n∑

i=1

ωi = σ and
n∑

i=1

ωiτ
j
i

σ
= σj with j = 1, 2.

Each of the families obtained will consist of subfamilies that are determined by the orthogonal polynomial
corresponding to the Gaussian quadrature used. Furthermore, in these subfamilies it can be obtained methods
using different number of nodes corresponding to the orthogonal polynomial used (see Table 1). According to
the proof of Theorem 2 the order of convergence of the obtained methods does not depend on the number of
nodes used; so, the method will be more efficient as lower is the number of nodes employed.

Let us note that these methods, obtained by means of Gaussian quadratures, seem to be known interpolation
quadrature schemes such as midpoint, trapezoidal or Simpson’s method (see [12]). It is only a similitude, as
they are not applied on the last iteration x(k), and the last step of the predictor, but on the two last steps of

5



Quadratures
Number of nodes Chebyshev Legendre Lobatto Radau

σ σ1 σ σ1 σ σ1 σ σ1

1 π 0 2 0 2 0 2 -1
2 π 0 2 0 2 0 2 0
3 π 0 2 0 2 0 2 0

Table 1: Quadratures used

the predictor. In the following, we will use a midpoint-like as a corrector step, which corresponds to a Gauss-
Legendre quadrature with one node; for this scheme the order of convergence will be at least min{q+ p, 3q}, by
applying Theorem 2. As this corrector on any of the new methods does only need a new functional evaluation
of the Jacobian matrix, the efficiency of the resulting procedure will be maximum. So, by pseudocomposing on
M6 and M8 there can be obtained two procedures of order of convergence 10 and 14 (denoted by PsM10 and
PsM14), respectively. It is also possible to pseudocompose on M4, but the resulting scheme would be of third
order of convergence, which is worst than the original M4, so it will not be considered.

Following the notation used in (3), the last step of PsM10 is

x(k+1) = u(k) −
[
F ′

(
v(k) + u(k)

2

)]−1

F (u(k)), (5)

and the last three steps of psM14 can be expressed as

v(k) = u(k) + 2
[
F ′

(
x(k)

)
− 3F ′

(
z(k)

)]−1

F
(
u(k)

)
,

w(k) = v(k) + 2
[
F ′

(
x(k)

)
− 3F ′

(
z(k)

)]−1

F
(
v(k)

)
, (6)

x(k+1) = v(k) −
[
F ′

(
w(k) + v(k)

2

)]−1

F (v(k)).

If we analyze the efficiency indices (see Figure 1, we deduce the following conclusions: the new methods M4,
M6 and M8 (and also the pseudocomposed PsM10 and PsM14) improve Newton and Jarratt’s schemes (in fact,
the indices of M4 and Jarratt’s are equal). Indeed, for n ≥ 3 the best index is that of M8. Nevertheless, none
of the pseudocomposed methods improve the efficiency index of their original partners. However, in the next
section the application of PsM10 and PsM14 on certain cases will show some interesting properties.

3 Numerical results

Now, we test the presented schemes in order to check their effectiveness. Numerical computations have been
performed in MATLAB R2011a by using variable-precision arithmetic, which uses floating-point representation
of 2000 decimal digits of mantissa. The computer specifications are: Intel(R) Core(TM) i5-2500 CPU @
3.30GHz with 16.00GB of RAM. Each iteration is obtained from the former by means of an iterative expression
x(k+1) = x(k) − A−1b, where x(k) ∈ Rn, A is a real matrix n × n and b ∈ Rn. The matrix A and vector b are
different according to the method proposed, but in any case, we use to calculate inverse −A−1b the solution
of the linear system Ay = b, with Gaussian elimination with partial pivoting. The stopping criterion used is
||x(k+1) − x(k)|| < 10−200 or ||F (x(k))|| < 10−200.

Firstly, let us consider the following nonlinear systems of different sizes:

1. F1 = (f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, . . . , xn)
T and fi : Rn → R, i = 1, 2, . . . , n, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , n− 1,

fn(x) = xnx1 − 1.

6
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Figure 1: Efficiency index of the different methods for different sizes of the system

When n is odd, the exact zeros of F1(x) are: ξ1 = (1, 1, . . . , 1)T and ξ2 = (−1,−1, . . . ,−1)T .

2. F2(x1, x2) = (x2
1 − x1 − x2

2 − 1,− sin (x1) + x2) and the solutions are ξ1 ≈ (−0.845257,−0.748141)
T
and

ξ2 ≈ (1.952913, 0.927877)
T
.

3. F3(x1, x2) = (x2
1 + x2

2 − 4,− exp (x1) + x2 − 1), being the solutions ξ1 ≈ (1.004168,−1.729637)T and
ξ2 ≈ (−1.816264, 0.837368)T .

4. F4(x1, x2, x3) = (x2
1+x2

2+x2
3−9, x1x2x3−1, x1+x2−x2

3) with three roots ξ1 ≈ (2.14025, −2.09029, −0.223525)T ,
ξ2 ≈ (2.491376, 0.242746, 1.653518)T and ξ3 ≈ (0.242746, 2.491376, 1.653518)T .

Table 2 presents results showing the following information: the different iterative methods employed (Newton
(NC), Jarratt (JT), the new methods M4, M6 and M8 and the pseudocomposed PsM10 and PsM14), the number
of iterations Iter needed to converge to the solution Sol, the value of the stopping factors at the last step and
the computational order of convergence ρ (see [13]) approximated by the formula:

ρ ≈ ln(||x(k+1) − x(k)||)/(||x(k) − x(k−1)||)
ln(||x(k) − x(k−1)||)/(||x(k−1) − x(k−2)||)

. (7)

The value of ρ which appears in Table 2 is the last coordinate of the vector ρ when the variation between their
coordinates is small. Also the elapsed time, in seconds, appears in Table 2, being the mean execution time for
100 performances of the method (the command cputime of Matlab has been used).

We observe from Table 2 that, not only the order of convergence and the number of new functional evaluations
and operations is important in order to obtain new efficient iterative methods to solve nonlinear systems of
equations. A key factor is the range of applicability of the methods. Although they are slower than the
original methods when the initial estimation is quite good, when we are far from the solution or inside a region
of instability, the original schemes do not converge or do it more slowly, the corresponding pseudocomposed
procedures usually still converge or do it faster.

The advantage of pseudocomposition can be observed in Figures 2a, 2b (methods M6 and PsM10) and 3a,
3b (methods M8 and PsM14) where the dynamical plane on R2 is represented: let us consider a system of two
equations and two unknowns (the case F3(x) = 0 is showed), for any initial estimation in R2 represented by its
position in the plane, a different color (blue or orange, as there exist only two solutions) is used for the different
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(a) M6
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(b) PsM10

Figure 2: Real dynamical planes for system F3(x) = 0 and methods M6 and PsM10

solutions found (marked by a white point in the figure). Black color represents an initial point in which the
method converges to infinity, and the green one means that no convergence is found (usually because any linear
system cannot be solved). It is clear that when many initial estimations tend to infinity (see Figure 3a), the
pseudocomposition ”cleans” the dynamical plane, making the method more stable as it can find one of the
solutions by using starting points that do not allow convergence with the original scheme (see Figure 2b).

We conclude that the presented schemes M4, M6 and M8 show to be excellent, in terms of order of conver-
gence and efficiency, but also that the pseudocomposition technique achieves to transform them in competent
and more robust new schemes.
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Function Method Iter Sol ||x(k) − x(k−1)|| ||F (x(k))|| ρ e-time (sec)

F1 NC 9 ξ1 1.43e-121 2.06e-243 2.0000 9.1371

x(0) = (0.5, . . . , 0.5) JT 5 ξ1 1.43e-121 1.07e-487 4.0000 8.8336
M4 5 ξ1 1.43e-121 1.07e-487 4.0000 8.2902
M6 4 ξ1 7.81e-092 2.92e-553 5.9995 9.1314
M8 3 ξ1 1.90e-025 1.12e-206 8.3236 8.7721

PsM10 3 ξ1 1.83e-044 3.36e-449 10.3015 8.9779
PsM14 3 ξ1 7.24e-082 2.26e-1152 14.2939 10.6858

F1 NC 18 ξ1 2.83e-113 8.02e-227 2.0000 18.5877

x(0) = (0.001, . . . , 0.001) JT 9 ξ1 2.37e-056 8.02e-227 4.0000 15.8859
M4 9 ξ1 2.37e-056 8.02e-227 4.0000 14.7889
M6 8 ξ1 1.14e-139 2.76e-840 6.0000 17.8668
M8 7 ξ1 1.49e-099 1.58e-799 7.9928 19.8457

PsM10 6 ξ1 5.07e-067 9.22e-675 9.8423 17.0695
PsM14 5 ξ1 4.22e-019 1.20e-273 - 17.2963

F2 NC 9 ξ1 2.45e-181 5.92e-362 2.0148 0.4069

x(0) = (−0.5,−0.5) JT 5 ξ1 9.48e-189 8.13e-754 4.0279 0.4338
M4 5 ξ1 9.48e-189 8.13e-754 4.0279 0.4401
M6 4 ξ1 1.34e-146 2.14e-878 5.9048 0.4209
M8 3 ξ1 3.38e-042 9.08e-335 7.7943 0.4590

PsM10 3 ξ1 1.09e-068 1.88e-685 10.2609 0.4660
PsM14 3 ξ1 1.65e-130 3.07e-1822 13.8766 0.5256

F2 NC 13 ξ1 2.20e-182 2.73e-364 1.9917 0.5524

x(0) = (−5,−3) JT 7 ξ1 2.10e-179 4.51e-716 3.9925 0.5111
M4 7 ξ1 2.10e-179 4.51e-716 3.9925 0.5390
M6 8 ξ1 2.55e-036 5.81e-216 - 0.8304
M8 nc

PsM10 5 ξ1 5.05e-131 3.95e-1306 10.3772 0.7004
PsM14 5 ξ1 6.67e-102 6.21e-1422 - 0.8777

F3 NC 11 ξ2 1.82e-164 3.33e-328 2.0000 0.3668

x(0) = (1, 4) JT 6 ξ2 4.88e-059 3.59e-235 3.9998 0.3749
M4 6 ξ2 4.88e-059 3.59e-235 3.9998 0.3844
M6 18 ξ2 1.33e-106 4.33e-638 - 1.5248
M8 23 ξ2 3.73e-097 3.65e-775 - 2.5126

PsM10 6 ξ2 6.26e-130 2.93e-1297 9.9820 0.7165
PsM14 nc

F3 NC 14 ξ2 3.95e-173 1.56e-345 2.0000 0.5614

x(0) = (0.8, 0.5) JT 7 ξ2 1.22e-073 1.42e-293 3.9999 0.5494
M4 7 ξ2 1.22e-073 1.42e-293 3.9999 0.4967
M6 8 ξ1 6.09e-051 3.72e-303 - 0.8240
M8 nc

PsM10 5 ξ2 7.36e-164 1.48e-1636 9.9935 0.7192
PsM14 6 ξ1 1.14e-167 0 13.8332 1.0149

F4 NC 10 ξ1 1.09e-135 1.55e-270 1.9995 0.6975

x(0) = (1,−1.5,−0.5) JT 5 ξ1 9.94e-073 2.09e-289 4.0066 0.6639
M4 5 ξ1 9.94e-073 2.09e-289 4.0066 0.6831
M6 4 ξ1 9.36e-057 4.86e-338 5.9750 0.7474
M8 4 ξ1 2.18e-124 1.26e-991 8.0041 0.9560

PsM10 3 ξ1 5.52e-028 5.38e-276 9.7714 0.7516
PsM14 3 ξ1 1.36e-050 1.27e-702 13.7136 0.9029

F4 NC 9 ξ3 8.90e-149 1.34e-296 2.0001 0.5830

x(0) = (1, 3, 2) JT 5 ξ3 3.64e-156 3.99e-623 3.9999 0.6203
M4 5 ξ3 3.64e-156 3.99e-623 3.9999 0.6218
M6 4 ξ3 1.79e-118 1.54e-708 5.9943 0.6959
M8 3 ξ3 7.20e-034 8.89e-268 7.7015 0.7022

PsM10 3 ξ3 2.16e-057 1.29e-570 9.7953 0.6933
PsM14 3 ξ3 1.02e-105 4.62e-1475 13.7602 0.8504

Table 2: Numerical results for functions F1 to F4
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