
Surface Registration Techniques
Applied to Archaeological
Fragment Reconstruction

Programa de Doctorado en Automática, Robótica e Informática Industrial
Instituto de Automática e Informática Industrial

July, 2015

Eduardo Vendrell VidalDirector and tutor:
Carlos Sánchez BelenguerPh.D. Dissertation of:

To Ana and Eduardo.

Abstract

Reconstruction of broken archaeological artifacts from fragments is a very time-consuming
task that requires a big effort if performed manually. In fact, due to budgetary limitations,
this is not even attempted in countless sites around the world, leaving vast quantities of
material unstudied and stored indefinitely.

This Thesis dissertation faces the application of surface registration techniques to the
automatic re-assembly of broken archaeological artifacts from fragments. To efficiently
do so, the reconstruction problem has been divided into two groups: 3 degrees of freedom
and 6 degrees of freedom problems. This distinction is motivated for two major reasons:
archaeological interest of the application and computational complexity of the solution.

First kind of problems (3 degrees of freedom) deal with 2D objects or with flat 3D ob-
jects, like ripped-up documents or frescoes, respectively. In both cases, the mural paintings
and engravings on the fragments’ surface are of huge importance in the field of Cultural
Heritage Recovery. In this sense, archaeologically speaking, the value of the reconstruc-
tion is not the final model itself, but the information stored in the upper surface. In terms
of computation complexity, the reduced solution space allows using exhaustive techniques
to ensure the quality of the results, while keeping execution times low. A fast hierarchical
technique is introduced to face this kind of problems. Starting from an exhaustive search
strategy, the technique progressively incorporates new features that lead to a hierarchi-
cal search strategy. Convergence and correction of the resulting technique are ensured
using an optimistic cost function. Internal search calculations are optimized so the only
operations performed are additions, subtractions and comparisons over aligned data. All
heavy geometric operations are carried out by the GPU on a pre-processing stage that only
happens once per fragment.

Second kind of problems (6 degrees of freedom) deal with more general situations,
where no special constraints are considered. Typical examples are broken sculptures,
friezes, columns... In this case, computational complexity increases considerably with
the extra 3 degrees of freedom, making exhaustive approaches prohibitive. To face this
problems, an efficient sparse technique is introduced that uses a pre-processing stage to
reduce the size of the problem: singular key-points in the original point cloud are selected

based on a multi-scale feature extraction process driven by the saliency of each point. By
computing a modified version of the PFH descriptor, the local neighborhood of each key-
point is described in a compact histogram. Using exclusively the selected key-points and
their associated descriptors, a very fast one-to-one search algorithm is executed for each
possible pair of fragments. This process uses a three-level hierarchical search strategy
driven by the local similarity between key-points, and applying a set of geometric con-
sistence tests for intermediate results. Finally, a graph-based global registration algorithm
uses all the individual matches to provide the final reconstruction of the artifact by creating
clusters of matching fragments, appending new potential matches and joining individual
clusters into bigger structures.

Resumen

La reconstrucción de objetos arqueológicos fracturados a partir de fragmentos es una ac-
tividad que, si se realiza manualmente, supone un gran coste temporal. De hecho, debido
a restricciones presupuestarias, esta tarea no llega a abordarse en incontables yacimien-
tos arqueológicos, dejando grandes cantidades de material sin ser estudiado y almacenado
indefinidamente.

La presente propuesta de tesis aborda la aplicación de técnicas de registro de superfi-
cies a el re-ensamblado automático de objetos arqueológicos fracturados a partir de frag-
mentos. Por motivos de eficiencia, el problema de la reconstrucción se ha dividido en dos
grupos: problemas de 3 grados de libertad y problemas de 6 grados de libertad. Esta dis-
tinción está motivada por dos razones: (1) el interés arqueológico de la aplicación final de
las técnicas desarrolladas y (2) la complejidad computacional de la solución propuesta.

El primer tipo de problemas (3 grados de libertad) se enfrenta a objetos bidimensio-
nales o tridimensionales planos como documentos fragmentados y frescos, respectiva-
mente. En ambos casos, los murales y grabados sobre la superficie de los fragmentos
son de gran importancia en el ámbito de la conservación del patrimonio cultural. En este
sentido, desde el punto de vista arqueológico, el valor de la reconstrucción final no radica
en el modelo en sí, sino en la información almacenada sobre su superficie. En términos
de complejidad computacional, el reducido espacio de soluciones permite emplear técni-
cas de búsqueda exhaustivas que garantizan la corrección de los resultados obtenidos con
tiempos de ejecución acotados. La técnica propuesta para abordar este tipo de problemas
parte de una estrategia exhaustiva y, progresivamente, incorpora nuevas optimizaciones
que culminan con una técnica íntegramente jerárquica. La convergencia y corrección de la
solución propuesta están garantizadas gracias a una función de coste optimista. Los cálcu-
los internos durante las búsquedas han sido optimizados de modo que sólo son necesarias
operaciones de adición/substracción y comparaciones sobre datos alineados en memoria.
Todas las operaciones complejas asociadas a la manipulación de datos geométricos son
realizadas por la GPU durante una etapa de pre-procesamiento que se ejecuta una sola vez
por fragmento.

El segundo tipo de problemas (6 grados de libertad) se enfrenta a situaciones más
generales, en las que ninguna restricción especifica puede ser asumida. Ejemplos típicos
son esculturas fragmentadas, frisos, columnas. . . En este caso, la complejidad computa-
cional incrementa considerablemente debido a los 3 grados de libertad adicionales por lo
que el coste temporal de las estrategias exhaustivas resulta prohibitivo. Para abordar este
tipo de problemas, se propone una técnica dispersa eficiente apoyada en una fase de pre-
procesamiento cuyo objetivo consiste en reducir la talla de los datos de entrada: a partir
de las nubes de puntos originales, puntos clave singulares son identificados gracias a un
proceso de extracción de características multi-escala apoyado en el valor de saliencia de
cada punto. Mediante el cálculo de una versión modificada del descriptor PFH (Persistent
Feature Histograms), el vecindario local de cada punto clave es descrito en un histograma
compacto. Empleando únicamente estos puntos y sus descriptores asociados, un algoritmo
de búsqueda uno-a-uno muy rápido se ejecuta sobre cada par de fragmentos. Dicho pro-
ceso emplea una estrategia de búsqueda jerárquica de tres niveles, dirigida por la similitud
entre puntos clave y que aplica un conjunto de tests de consistencia geométrica sobre los
resultados intermedios. Finalmente, un algoritmo de registro global toma como datos de
entrada todas las correspondencias individuales para generar la reconstrucción final del
objeto.

Resum

La reconstrucció d’objectes arqueològics fracturats a partir de fragments és una activi-
tat que, si es realitza manualment, suposa un gran cost temporal. De fet, a causa de
restriccions pressupostàries, esta tasca no arriba a abordar-se en incomptables jaciments
arqueològics, deixant grans quantitats de material sense ser estudiat i emmagatzemat in-
definidament.

La present proposta de tesi aborda l’aplicació de tècniques de registre de superfícies a
l’re-enssamblatge automàtic d’objectes arqueològics fracturats a partir de fragments. Per
motius d’eficiència, el problema de la reconstrucció s’ha dividit en dos grups: problemes
de 3 graus de llibertat i problemes de 6 graus de llibertat. Esta distinció està motivada per
dues raons: (1) l’interès arqueològic de l’aplicació final de les tècniques desenvolupades i
(2) la complexitat computacional de la solució proposada.

El primer tipus de problemes (3 graus de llibertat) s’enfronta a objectes bidimensionals
o tridimensionals plans com documents fragmentats i frescos, respectivament. En tots dos
casos, els murals i gravats sobre la superfície dels fragments són de gran importància en
l’àmbit de la conservació del patrimoni cultural. En este sentit, des del punt de vista arque-
ològic, el valor de la reconstrucció final no es basa en el model en si, sinó en la informació
emmagatzemada sobre la seva superfície. En termes de complexitat computacional, el re-
duït espai de solucions permet emprar tècniques de recerca exhaustives que garanteixen
la correcció dels resultats obtinguts amb temps d’execució acotats. La tècnica proposada
per abordar aquest tipus de problemes part d’una estratègia exhaustiva i, progressivament,
incorpora noves optimitzacions que culminen amb una tècnica íntegrament jeràrquica. La
convergència i correcció de la solució proposada estan garantides gràcies a una funció
de cost optimista. Els càlculs interns durant les recerques s’han optimitzat de manera que
només són necessàries operacions d’addició / substracció i comparacions sobre dades alin-
eats en memòria. Totes les operacions complexes associades a la manipulació de dades ge-
omètriques són realitzades per la GPU durant una etapa de pre-processament que s’executa
una única vegada per fragment.

El segon tipus de problemes (6 graus de llibertat) s’enfronta a situacions més gene-
rals, en què cap restricció especifica pot ser assumida. Exemples típics són escultures
fragmentades, frisos, columnes ... En este cas, la complexitat computacional s’incrementa
considerablement a causa dels 3 graus de llibertat addicionals pel que el cost temporal
de les estratègies exhaustives resulta prohibitiu. Per abordar este tipus de problemes, es
proposa una tècnica dispersa eficient recolzada en una fase de pre-processament l’objectiu
del qual consisteix a reduir la talla de les dades d’entrada: a partir dels núvols de punts
originals, s’identifiquen punts clau singulars gràcies a un procés d’extracció de caracterís-
tiques multi-escala recolzat en el valor de saliència de cada punt. Mitjançant el càlcul
d’una versió modificada del descriptor PFH (Persistent Feature Histograms), els veins lo-
cals de cada punt clau és descriuen en un histograma compacte. Emprant únicament estos
punts i els seus descriptors associats, un algoritme de cerca un-a-un molt ràpid s’executa
sobre cada parell de fragments. Aquest procés fa servir una estratègia de cerca jeràrquica
de tres nivells, dirigida per la similitud entre punts clau i que aplica un conjunt de tests de
consistència geomètrica sobre els resultats intermedis. Finalment, un algoritme de registre
global pren com a dades d’entrada totes les correspondències individuals per generar la
reconstrucció final de l’objecte.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Document Organization . 5

2 Background on Shape Matching 7
2.1 Classification . 8
2.2 Input data . 8

2.2.1 Dimensionality . 8
2.2.2 Shape representation . 9

2.2.2.1 Feature detectors . 10
2.2.2.2 Descriptors . 12

2.3 Output match . 21
2.3.1 Correspondence representation 21
2.3.2 Full and partial correspondences 22
2.3.3 Dense and Sparse correspondences 23

2.4 Cost function . 23
2.4.1 General distance metrics . 23
2.4.2 Rigid alignment . 25
2.4.3 Non-rigid alignment . 26
2.4.4 Similarity-based correspondence 26

2.5 Search strategy . 27
2.5.1 Properties of existing search strategies 27
2.5.2 Solution paradigm . 29

2.5.2.1 Transformation and alignment search 29
2.5.2.2 Correspondence search 31
2.5.2.3 Hybrid search: ICP 32

XIII

3 Background on Automatic Fragment Reconstruction 35
3.1 Jigsaw Puzzles . 36
3.2 Contour Matching Techniques . 37
3.3 Surface Matching . 38
3.4 Multi-Feature Matching . 39
3.5 Multi-Piece Matching . 40

4 Acquisition 43
4.1 2D acquisition . 44
4.2 3D acquisition . 45

4.2.1 Residuals Analysis . 47
4.2.2 Electronic Microscope Analysis 52
4.2.3 Sublimation speed . 52
4.2.4 Conclusion . 54

5 3 Degrees of Freedom Approach 57
5.1 Overview . 58
5.2 Cost Function and Solution Space . 59
5.3 Pre-Processing . 60
5.4 Search Strategy . 63

5.4.1 Exhaustive Search . 63
5.4.2 Hierarchical Orientations . 66
5.4.3 Hierarchical Displacements . 70
5.4.4 Hierarchical Search . 73
5.4.5 Many-to-Many Search . 74

5.5 Results . 76
5.5.1 Performance evaluation . 76
5.5.2 Griphos dataset . 80
5.5.3 Many-to-many sample implementation 84

5.6 Conclusions and Future Work . 85

6 6 Degrees of Freedom Approach 87
6.1 Overview . 88
6.2 Pre-processing . 90

6.2.1 Feature extraction . 90
6.2.2 Keypoint selection . 95
6.2.3 Descriptor calculation . 97

6.3 One-to-one search strategy . 100
6.3.1 Local similarity . 100
6.3.2 Geometric consistence . 101
6.3.3 Search strategy . 103

6.4 Many-to-many search strategy . 105
6.5 Results . 109

6.5.1 Pre-processing . 109
6.5.2 One-to-one search . 113
6.5.3 Many-to-many search . 120

6.6 Conclusions and Future Work . 122

7 Applications to Self-localization problems 123
7.1 Fast Indoor Localization for Mobile Robots 123

7.1.1 Overview . 124
7.1.2 Calibration . 125
7.1.3 Segmentation . 125

7.1.3.1 Data acquisition . 126
7.1.3.2 Line inference . 126
7.1.3.3 Line filtering . 129
7.1.3.4 Corner extraction . 130

7.1.4 Localization . 131
7.1.4.1 Matching calculation 131
7.1.4.2 Cost function . 133

7.1.5 Results . 133
7.1.6 Conclusions and Future Works 137

7.2 Indoor Localization for Inspection and Verification 137
7.2.1 Overview . 138
7.2.2 The Sensors . 139

7.2.2.1 The Kinect Sensor . 139
7.2.2.2 The Velodyne Sensor 142

7.2.3 Kidnapped Robot Solver . 143
7.2.4 Tracking and Relocalizing Algorithms 148

7.2.4.1 Real-time ICP algorithm 148
7.2.4.2 Tracking . 152
7.2.4.3 Relocalization . 154

7.2.5 Parameter Optimization . 155
7.2.5.1 Tracking lost detection 156
7.2.5.2 Relocalization test . 157
7.2.5.3 Optimization framework 158

7.2.6 Results . 159
7.2.7 Conclusions and Future Works 164

8 Conclusions 167

Bibliography 169

A 6 DOF One-to-One results 185
A.1 Brick dataset . 185
A.2 Venus dataset . 187
A.3 Cake dataset . 189
A.4 Sculpture dataset . 191
A.5 Gargoyle dataset . 193

List of Figures

2.1 Feature selection and descriptor computation 9

4.1 Pixel neighborhood . 44
4.2 Cyclododecane sublimation . 46
4.3 Residuals for the calibration chart . 48
4.4 Residuals for model ES . 49
4.5 Residuals for model CO . 50
4.6 Residuals for model MO . 51
4.7 Electronic microscope comparison of whitening sprays 52
4.8 Cyclododecane sublimation speed . 53
4.9 Cyclododecane acquired artifacts . 54
4.10 Cyclododecane sublimation result . 55

5.1 3DOF Technique Overview . 58
5.2 Cost function . 60
5.3 GPU architecture . 61
5.4 GPU computed depth-map . 62
5.5 2D Pre-Processing . 62
5.6 3D Pre-Processing . 63
5.7 Cost function evaluation for two centered fragments 65
5.8 Exhaustive cost function . 66
5.9 Graphic representation of a fragment in a coarse orientation LOD 67
5.10 Hierarchical orientation refinement . 68
5.11 Angular search process . 69
5.12 Hierarchical displacements . 70
5.13 Hierarchical displacements search process 71
5.14 Demonstration of convergency for hierarchical displacements 72
5.15 Test dataset example . 76
5.16 Evaluation with real fragments . 77
5.17 Time results using exhaustive search . 78

XVII

5.18 Time results using hierarchical displacements 78
5.19 Time results using hierarchical orientations 79
5.20 Time results using the hierarchical approach 79
5.21 Time results using the full hierarchical approach 80
5.22 Griphos Fresco dataset . 81
5.23 Some alignments found using the Griphos Fresco dataset. 12.5mm. 82
5.24 Some alignments found using the Griphos Fresco dataset. 25mm. 82
5.25 Some alignments found using the Griphos Fresco dataset. 50mm. 83
5.26 Some alignments found using the Griphos Fresco dataset that the ribbon

matcher could not find. 83
5.27 Semi-automatic tool implementation for 2D re-assembly 84

6.1 6DOF Technique Overview . 89
6.2 Saliency of a point . 90
6.3 Best fitting plane calculation . 91
6.4 Saliency feature . 92
6.5 Saliency feature for diferent search radius 93
6.6 Multi-scale salience feature . 94
6.7 Roughness feature . 95
6.8 Keypoint selection with multiple search distances 96
6.9 Keypoint rejection using the roughness descriptor 97
6.10 Construction of the PFH reference frame 98
6.11 Construction of the PFH reference frame 98
6.12 PFH pairs between points . 99
6.13 PFH descriptors extended for reconstruction purposes 99
6.14 Potential matches between two fragments 101
6.15 Geometric constraints for one fixed pivot 102
6.16 Geometric constraints for two fixed pivots 103
6.17 Results of the one-to-one search strategy 106
6.18 Cluster representation as a graph . 107
6.19 Cluster append operation with one fragment of the alignment inside the

considered cluster . 108
6.20 Cluster append operation with both fragments of the alignment inside the

considered cluster . 108
6.21 Cluster merge operation . 109
6.22 Pre-processing time distribution . 112
6.23 Pre-processing time respect to the number of points and density 113
6.24 One-to-One search results for the brick dataset 115
6.25 One-to-One search results for the cake dataset 116
6.26 One-to-One search results for the gargoyle dataset 117
6.27 One-to-One search results for the sculpture dataset 118
6.28 One-to-One search results for the venus dataset 119
6.29 Many-to-many search results . 121

7.1 Execution cycle of the proposed technique 124
7.2 Calculation of the error associated to each measurement 125
7.3 Use of the line visibility concept . 127

7.4 Updating of Vmax . 129
7.5 Filtering of measurements . 131
7.6 Alignment between corner c and a corner from the known map m 132
7.7 Robotino with Hokuyo laser rangefinder installed 134
7.8 Time and correction results . 135
7.9 Measures about the cost distribution of the algorithm 136
7.10 Outlier cases . 136
7.11 General overview of the proposed execution cycle. 138
7.12 Kinect triangulation technology . 139
7.13 Relation between relative depth and measured disparity. 140
7.14 Warping effect when acquiring data with Velodyne 142
7.15 Randomly distributed training poses . 143
7.16 Proposed Kinect descriptor . 144
7.17 Density of incorrect training poses . 144
7.18 Ambiguous poses . 145
7.19 Number of neighbors for each training pose 146
7.20 Density of ambiguous training poses . 146
7.21 Density of correct training poses . 147
7.22 Kidnapped solver overview . 147
7.23 Proposed voxel representation . 150
7.24 JFA discrete Voronoi diagram . 151
7.25 JFA+1 algorithm example . 152
7.26 Eigenvector and eigenvalue analysis of ambiguity 153
7.27 Relocalization algorithm . 155
7.28 World consistency test . 156
7.29 Self error consistency test . 157
7.30 Design of the sensor holder . 159
7.31 Evaluation tunnel . 160
7.32 Velodyne tracking results for track 1 . 161
7.33 Velodyne tracking results for track 2 . 161
7.34 Velodyne tracking results for track 3 . 162
7.35 Velodyne tracking results for track 4 . 162

CHAPTER1
Introduction

Since the dawn of mankind, our ancestors have built man-made objects to assist in every-
day life. As a consequence of numerous causes, like earthquakes, floods, wars and many
more, these artifacts have been broken apart and, with the passing of time, fragments have
been eroded, spread or even lost. In fact, in current archaeological sites, artifacts are rarely
found intact. More often, what archaeologists and anthropologists find, are fragments of
ancient relics that have to be re-assembled in an attempt to recompose the original artifact.

The study of recovered objects in archaeological sites provides a better understanding
of our history and our ancestors life. In fact, ceramic pots (generally referred to as sherds)
are often the most important source of information because they allow archaeologists to
infer about the society that existed at a given location: chronology, the population’s socioe-
conomic standards... By reconstructing mural paintings and mosaics, lot of information
is revealed about the iconography of an age, stylistic and drawing tools developments.
In the case of stone tablets and other artifacts that bear text inscriptions, reconstructions
that allow epigraphists to read part of the entire text provide important information about
the society’s organization and the scientific and cultural evolution (e.g., poetry, drama), of
ancient civilizations such as Greek, Persian, Egyptian, etc. For all these reasons, recon-
struction of broken or torn artifacts of archaeological, historical or cultural importance is
an indispensable tool in the hands of researchers in these fields.

1

Chapter 1. Introduction

1.1 Motivation

Reconstruction of ancient artifacts from fragments found at archaeological sites, is a te-
dious task that requires many hours of work from the archaeologist and restoration per-
sonnel. Historically, this reconstruction process has been manual, occupying a major
proportion of the human effort at excavation sites. In fact, since the assembly work is
so time-consuming and labor-intensive, reconstruction is not even attempted at countless
sites around the world, leaving vast quantities of material unstudied and stored indefinitely.

Advancements in low-cost, high-volume acquisition devices and modern computer
systems performance have provided a new tool for archaeologists to face the problem
of reconstruction from fragments.

Nowadays, in the field of heritage restoration, 3D acquisition devices and techniques
are used primarily for documentation tasks, virtual simulation, multimedia applications
and monitoring and control tasks of the conservation status of the recorded material when
morphological and/or texture changes happen. However, operating on digital models of
fragments can rapidly and systematically consider many thousands of possible fragment
alignments and combinations, improving this way the overall performance on the recon-
struction stage.

The final goal of these techniques is reducing the amount of candidate matches be-
tween fragments, and providing an automatic or semi-automatic tool for archaeologists
to recompose the original artifact efficiently. This way, the extra time spent in acquiring
computer models is compensated by the time reduction in the matching stage and, addi-
tionally, ensures the integrity of the studied fragments and provides a digital database that
can be easily shared with the rest of the research community for further studies.

The proposed Ph.D. Thesis dissertation is an extension of the work started in a research
project granted by the Generalitat Valenciana to the Instituto de Automática e Informática
Industrial (Robotics Group) in 2008. Under the designation “CATALOGARQ: Catalo-
gación, Reconocimiento y Clasificación de Piezas Arqueológicas”. This project proposed
a low cost semi-automatic procedure to catalogue mural painting fragments.

Starting from an upper and lower image of each fragment, a basic feature extraction
was performed and information introduced by the user was associated. Afterwards, us-
ing a pattern matching technique, relative alignments between the upper and lower faces
were corrected and an automatic 3D reconstruction of the fragment was generated. Data
associated to each piece and extracted features were used to perform a classification of
resources and to assist restoration personnel in the reconstruction of the original artifact.

The motivation of the project came from the variety of archaeological sites existing
in the Comunitat Valenciana, from where lots of fragments are extracted every year. Ac-
cording to local legislation, these fragments have to be properly classified before being
displayed in museums or stored for further interventions. However, archaeology has tradi-
tionally been a field with a very artisanal methodology, where Information Technologies
have not been applied (or have been applied in a wrong manner). This way, the catalogu-
ing process is generally manual, supported by more or less standardized technical notes,
which takes lots of time to the archaeologist and restoration personnel that works in the
archaeological sites.

2

1.2. Objectives

The techniques described in this document continue the work started in 2008 and focus
on the re-assembly problem. To do so, close collaboration has been stablished with expert
personnel from museums and research groups from the field of restoration. The goal of
this collaboration is to produce an efficient method that automatizes manual procedures
involved in the re-assembly of archaeological artifacts and to create a closed-form solution
that could be applied in the everyday’s work of the museums.

As an alternative use of the developed registration algorithms, a different kind of pro-
blem has been faced to prove the applicability of the proposed techniques: indoor location
in known environments. Self-localization techniques based on observations can be under-
stood as an specific application of surface registration techniques: the observer’s location
can be inferred after calculating the optimal correspondence between a local observation
and a ground-truth map of the known environment.

In this line of research, two approaches have been developed: a fast mobile robot self-
localization algorithm for structured indoor environments and a system to allow nuclear
inspectors from IAEA (International Atomic Energy Agency) to keep track of their loca-
tion inside nuclear facilities and to automatically detect changes in the environment. First
approach has been done in close collaboration with the robotics group of ai2 (Instituto de
Automática e Informática Industrial, Universitat Politècnica de València), and the second
one is the result of an internship in the Institute of Transuranium Elements, Joint Research
Center (European Comission).

The development of this research is supported by the “Programa de Ayudas de In-
vestigación y Desarrollo (PAID)” of the Universitat Politècnica de València and enclosed
in a national research project granted by the Spanish government in 2012 as part of the
“Plan Nacional de I+D+i 2008-2011” from the Ministerio de Economía y Competitividad,
Project ID: HAR2012-38391-C02-02.

1.2 Objectives

The main goal of this research is providing an automatic computer-based solution to the
problem of reassembling archaeological artifacts from fragments. To do so, all stages are
considered: from acquisition of B-Rep models using 3D triangulation laser scanners to
pairwise matching of fragments to the final reassembly of the original artifact.

Quality of achieved results has to be measured according to two different criteria: cor-
rection and performance. This way, an automatic solution has to be proven to find correct
correspondences between neighbor fragments in the original artifact, and the overall per-
formance of the system has to be greater than the manual procedure. Otherwise, it is not
worth replacing traditional restoration processes.

First challenge to face is generating well-defined 3D B-Rep models from original frag-
ments. Acquisition using 3D triangulation laser scanners is a relatively simple process,
well documented and used in many fields (mostly industrial). However, acquiring objects
whose surface present reflections and/or refractions make acquisition harder, because these
kind of objects violate almost every assumption made in vision algorithms. For industrial
solutions, whitening sprays are used to create a thin white opaque layer that allows ac-
quisition. However, these sprays are hard to remove, and additional chemical or physical
procedures have to be applied to clean the original object. Considering that archaeological
artifacts are unique and fragile objects, rubbing the surface or applying chemical products

3

Chapter 1. Introduction

to them is not possible. To face this problem, the alternative use of a known product in
restoration is proposed: cyclododecane. Thanks to its chemical stability and to the fact
that it sublimes at room temperature leaving no residuals, a set of experiments have been
developed in order to prove that it can be used as a whitening spray for acquisition of
singular artifacts.

Once fragments have been acquired, the variety of topologies makes interesting to
distinguish between two kinds of approaches: one to face 3 degrees of freedom problems
and another to face 6 degrees of freedom problems.

First one deals with the reassembly from flat fragments, characterized by 2D contours
or 3D B-Rep models. These kind of objects are very common in archaeological sites (like
frescoes, mosaics or ripped-up documents), and the engravings in their surface provide
lots of useful information to archaeologist. In this case, the reduced size of the solution
space allows implementing efficient search strategies that ensure global correction, since
a complete exploration of the solution space can be performed.

The second kind of problems, that consider 6 degrees of freedom, allow working with
full 3D problems, like the re-assembly of sculptures, friezes... In this kind of problems,
the combinatory explosion in the solution space make exhaustive approaches prohibitive,
so a reduction in the problem size has to be applied. To do so, singular key-points are
identified and, using descriptors, their surrounding geometry is characterized in a compact
manner. This way, matching is performed using this reduced set of features instead of the
whole original object.

In general terms, the re-assembly process is divided in two different contexts: one that
faces one-to-one correspondences between fragments, and a more general one that takes
these correspondences and tries to reconstruct the original artifact. For both cases, an NP-
complete problem has to be faced: in one-to-one comparisons, matches between fragments
are usually partial (the whole surface of a fragment rarely matches the whole surface of its
neighbor).

Deciding which parts of one surface have a counterpart in the other fragment is a
strong NP-complete problem. The same way, for the global reconstruction stage, where
the puzzle has to be solved, deciding which potential matches are correct and which are
not has also been characterized as a strong NP-complete problem, which becomes harder
when the effect of erosion increases the uncertainty of correspondences.

First problem needs to be automatically solved, in order for the proposed system to be
helpful to restoration personnel. By applying some simplifications (based on discretization
or in feature extraction), an efficient solution has to be achieved. The second one is hardly
formalizable and, performing an exhaustive search for the best solution may lead to an
extremely slow result. This way, since puzzling is a problem humans can solve very fast if
the proper help is provided, the final goal of the proposed research is developing a semi-
automatic tool that offers the user potential matches of fragments, leaving him the last
decision about which ones are globally consistent or not.

Given the hard computing needs of the proposed approach, and the geometric nature
of the involved operations, exploiting the GPU (Graphics Processors Unit) computing
capabilities has been considered during the implementation of the automatic re-assembly
technique.

4

1.3. Document Organization

Additionally to the re-assembly from fragments technique presented in this disserta-
tion and, considering that this research is enclosed in a national research project, results
achieved have been applied in the same field to several other applications: an on-line
database of scanned fragments has been generated, where users can visualize and down-
load the 3D B-Rep models generated from a web page, an automatic approach for creating
tailored packagings for archaeological artifacts has been developed taking advantage of
GPUs and the use of 3D printers to create the missing parts of the finally reconstructed
artifacts is being developed.

1.3 Document Organization

After this chapter, the document is organized as follows:

Chapter 2: Given that the re-assembly of broken artifacts is a specific application of a
more general discipline called Shape Matching, this chapter provides a full back-
ground and a classification of the most common techniques in this field.

Chapter 3: Provides an overview to the most important automatic fragment reconstruc-
tion techniques, classifying them according to the kind of problems faced: from
jigsaw puzzles to global reconstruction techniques.

Chapter 4: Presents the problem of fragment acquisition for 2D and 3D cases, paying
special attention to the second one, where more complex situations have to be faced
due to the physical limitations of acquisition devices when working with reflective /
refractive surfaces.

Chapter 5: Introduces the proposed technique to face 3 degrees of freedom problems,
where the reduced solution space is efficiently exploited and, with the support of the
GPU, a hierarchical search strategy is presented.

Chapter 6: Introduces the proposed technique to face 6 degrees of freedom problems,
where the input size of the problem is efficiently reduced using a feature extraction
stage. Then, a fast matcher based on descriptors and geometrical consistency tests is
proposed to address the alignment of the fragments. Finally, a global reconstruction
algorithm is presented to exploit all the one-to-one alignments in order to produce
the final re-assembly.

Chapter 7: Shows the application of surface registration techniques to address the self-
localization problem, considering two different scenarios: (1) a resource-limited
autonomous robot, where the structured nature of indoor environments is exploited
and a sparse efficient registration is performed. (2) A general purpose application to
address the self-localization problem for inspection and verification purposes. The
goal is developing a technique that allows nuclear inspectors from the IAEA (In-
ternational Atomic Energy Agency) orienting inside nuclear facilities and detecting
changes with respect to previously acquired 3D models. In this case, since no special
resource limitations are assumed, a dense approach is used.

Chapter 8: Presents the conclusions of this dissertation.

5

CHAPTER2
Background on Shape Matching

Reconstruction of broken artifacts from fragments can be classified as a specific applica-
tion of a more general discipline called shape matching (also referred in the bibliography
as “shape correspondence”, “shape registration”, “shape alignment”, or simply “match-
ing”), which can be enclosed into many different fields: Computer Vision, Computer
Graphis or Artificial Inteligence and Pattern Recognition. The main difference between
the general approach and this particular application is that reconstruction from fragments
adds an extra non-penetration constraint, that has to be satisfied for all pairs. Shape match-
ing applications cover a wide range of fields:

Shape registration given a set of scans with partial overlaps, align them to reconstruct
the targeted object. If shapes do not change during acquisition it is called rigid
registration, otherwise is called non-rigid registration.

Shape interpolation morph one shape into another satisfying some aesthetic conditions.

Recognition and retrieval computing a correspondence between a query shape and the
models contained in a dataset, which is one of the challenges in computer vision.

Statistical shape modeling generate models that describe the valid variations in the ap-
pearance and the size of a given shape. Very common in anatomical applications.

Change detection track changes on a shape over time.

This chapter gives a background on current shape matching techniques, and classifies them
according to a set of different criterions.

7

Chapter 2. Background on Shape Matching

2.1 Classification

Finding the best match between a set of shapes can be formulated in a general way as
an optimization problem: “Given some input data (shapes) and a cost function, find the
mapping/transformation between their elements that maximizes the quality of the match”.
When two elements of different shapes are related, we say that they match to each other.
This relation may vary depending on the specific problem, so sometimes pairs are stabli-
shed as one-to-one relationships, whilst other times are one-to-many or many-to-many.

The proposed classification criteria followed in this chapter derives from the previous
general problem statement:

• Input data: “How are the input shapes represented?”

• Resulting match: “What kind of result is expected after calculating the mapping/
transformation function, and what properties does it possess?”

• Cost function: “How good is a given correspondence?”

• Search strategy: “How do we get the best correspondence?”

Next sections in this chapter will expand this four classification categories. This way,
Section 2.2 details the kinds of input data that shape registration algorithms work with.
Section 2.3 covers the expected resulting matches. Section 2.4 deals with the different
ways to evaluate the quality of a match and, finally, Section 2.5 analyses the most common
search strategies.

2.2 Input data

2.2.1 Dimensionality
Classifying shape matching techniques according to their input data allows filtering them
based on a dimensionality criteria. Normally, the most common cases are 2D and 3D
domains. However, due to recent technological advances, an application that is gaining
increasing importance is the reconstruction of shapes acquired over time, while moving
and deforming.

When considering time, input data consists on a set of scans acquired on a fixed period
and registration has to find correspondences in both objects and motion sequences [175]
[91] [147] [44] [57] [165]. With this extra dimension new challenges appear due to big
amounts of missing data that can present in each frame (occlusion problems) [130], or
dataset captured without a fixed acquisition period [29] [194]. However, adding a temporal
dimension might simplify the search process if kinematic constraints are assumed [111].

Datasets used for shape matching are obtained from multiple sources, depending on
their dimensionality. 2D datasets are fast to acquire and do not present occlusion prob-
lems with flat scan beds or cameras. 3D datasets require an extra processing step due to
topological problems, generally induced by self-occlusions. Common acquisition devices
are 3D scanners based on laser triangulation, structured light, physical contact... but also
more complex devices like magnetic resonance images (MRI) or computed tomographies
(CT) are used, generally in medical applications [135] [156] [134].

8

2.2. Input data

This way, classifying shape matching techniques according to the input data dimensio-
nality presents four main groups: 2D problems, 3D problems, and their variants including
time (2D + time and 3D + time). However, in this chapter, time techniques will be ignored
for being out of the scope of this document.

2.2.2 Shape representation
The way shapes are represented is a key aspect for designing a shape matching algorithm:
intrinsic properties of the representation may accelerate computation considerably, and
allow a technique to converge faster and more accurately to the global solution of the
problem faced.

Shape representation and search strategies are very close: classic registration methods
such as RANSAC [49], geometric hashing [184], pose clustering [117], and alignment
[73] typically work with point sets. Recent methods based on articulated shapes [28],
isometric surfaces [22] [95] deformation [72] [192] and graphic applications based on
template matching [91] [4] [128] use surfaces as most common representation. Time-
varying surfaces are typical on motion reconstruction of deforming surfaces [111] [175]
[147] [194] and, finally, skeletons are a more general name for shape representations such
as Reeb graphs, medial axis or M-reps [150] [37] [16] [9].

Instead of working directly on the original representation of the datasets, it is a very
common practice to reduce the size of the input data by extracting some representative
key points (features) and computing descriptors for these points. Descriptors are normally
scalar values, or vectors of scalars, that capture some properties of the surface around
the interest point. This way, similarity between datasets can be computed indirectly by
comparing the similarity between their associated descriptors. Ideally, if two descriptors
are similar, their corresponding points should also be similar. Alternatively, the descrip-
tors can be used to guide the search for initial solutions, while the final verification of
the correspondence quality is performed with the original dataset. Figure ?? graphically
illustrates this concept.

Figure 2.1: Feature selection and descriptor computation. (left) original input model.
(right) features extracted, marked with white points, and two histogram-based descrip-
tors associated with the marked features.

9

Chapter 2. Background on Shape Matching

2.2.2.1 Feature detectors

Feature-based approaches became very popular in computer vision and image analysis
applications, due to the works like [101] [154] [109]. In these approaches, an image
was described as a collection of local features from a given vocabulary, resulting in a
representation referred to as a bag of features. In shape analysis, feature-based approaches
have been introduced more recently and are gaining popularity in registration applications.

Features can be classified as global or local. Global features are very common in the
field of shape retrieval (given an input shape, find the most similar ones in a database) and
object recognition. They focus on describing the whole shape with a unique feature that
captures its topological properties. On the other side, local features attempt to find patterns
in the shape which differs from its immediate neighborhood. They are normally associated
with changes of a shape property or several properties simultaneously, although they are
not necessarily localized exactly on this change. In this section, we focus on local features
for being more related to the scope of this Thesis project.

Local features can be points, but also regions. Typically, some measurements are taken
from a region centered on a local feature and converted into descriptors. It is the task of the
feature detector (also called extractor in the bibliography) to identify these points/regions.

Local features typically have a spatial extent. Ideally, one would like such local fea-
tures to correspond to semantically meaningful object parts. In practice, however, this is
unfeasible, as this would require high-level interpretation of the scene content, which is
not available at this early stage. Instead, detectors select local features directly based on
the underlying geometric patterns.

Good features should have the following properties:

1. Repeatability: given two shapes of the same object, taken under different conditions,
a high percentage of the features detected on the part visible in both shapes should
be found in both shapes. This is arguably the most important property of all, can be
achieved in two different ways: either by invariance or by robustness.

2. Distinctiveness/informativeness: patterns underlying the detected features should
show a lot of variation, such that features can be distinguished and matched.

3. Locality: features should be local in order to reduce the probability of occlusion
and facilitate the matching of shapes acquired under different conditions. Locality
and distinctiveness are competing properties and cannot be fulfilled simultaneously:
the more local a feature, the less information is available in the underlying pattern
and the harder it becomes to match it correctly, especially in database applications
where there are many candidate features to match to.

4. Quantity: the number of detected features should be sufficiently large, such that a
reasonable number of features are detected even on small objects. However, the op-
timal number of features depends on the application. Ideally, the number of detected
features should be adaptable over a large range by a simple and intuitive threshold.
The density of features should reflect the information content of the image to provide
a compact image representation.

5. Efficiency: the detection of features in a new shape should satisfy temporary re-
quirements of the application.

10

2.2. Input data

A very common way to measure the quality of a feature detector is based on the re-
peatability of the extracted features. Assuming for each transformed shape Y in a dataset
the ground truth dense correspondence to the null shape X is given by pairs of points
C0(X,Y) = {(x′k, yk)}|Y |k=1, a feature point yk ∈ F(Y) is said to be repeatable if a
geodesic ball of radius ρ around the corresponding point x′k : (x′k, yk) ∈ C0(X,Y) con-
tains a detected feature point xj ∈ F(X). Repeatable features are

Fρ(Y) = {yk ∈ F(Y) : F(X) ∩Bρ(x′k) 6= ∅, (x′k, yk) ∈ C0(X,Y)} (2.1)

where Bρ(x′k) = {x ∈ X : dX(x, x′k) ≤ ρ} and dX denotes the geodesic distance
function in X.

Similarly, for region detectors, a region Yl ∈ F(Y) is repeatable if the corresponding
region X ′l ⊂ X has overlap larger than ρ,

Fρ(Y) = {Yl ∈ F(Y) : |X ′l ∩Xl|/|X ′l ∪Xl| ≥ ρ} (2.2)

The repeatability of a feature detector is defined as the percentage |Fρ|/|F(Y)| of features
that are repeatable, the definition being dependent of whether a point or region descriptor
is used [21].

Some of the most common 3D feature detectors are:

Harris 3D [153] extends the 2D Harris corner detector [65] to work with 3D data. The
algorithm suggests to determine a neighborhood around a vertex. Next, this neigh-
borhood is used to fit a quadratic patch which is considered as an image. After
applying a gaussian smoothing, derivatives are calculated which are used to calcu-
late the Harris response for each vertex.

Mesh-DoG [186] considers the general setting of 2D manifolds M embedded in R3

endowed in with a scalar function f :M→ R, such as color or curvature. This rep-
resents a generalization of 2-D images, that can be viewed as a uniformly sampled
square grid with vertices of valence 4. Operators, such as the gradient and the convo-
lution are defined in this context. A scale-space representation of the scalar function
f is build using iterative convolutions with a Gaussian kernel. Feature detection
consists of two steps. Firstly, the extrema of the function’s Laplacian (approximated
by taking the difference between adjacent scales - Difference of Gaussian) are found
across scales, followed by non-maximum suppression using a 1-ring neighborhood
both spatially and across adjacent scales. Secondly, the detected extrema are thresh-
olded (400 points). Mean and Gaussian curvature computed using [108] were the
scalar functions used for current tests.

Mesh SIFT [104] detects scale space extrema as local feature locations. First, a scale
space is constructed containing smoothed versions of the input mesh, which are
obtained by subsequent convolutions of the mesh with a binomial filter. Next, for
the detection of salient points in the scale space, the mean curvature H (Mesh SIFT-
H) and the principal coordinates in curvature space KK (Mesh SIFT-KK), which
are minimal and maximal curvature, are computed for each vertex and at each scale
in the scale space (Hi and KKi). Note that the mesh is smoothed and not the
function on the mesh (H orKK). Scale space extrema in scale spaces of differences
between subsequent scales (dHi = Hi+1 − Hi for Mesh SIFT-H and dKKi =
KKi+1 −KKi for Mesh SIFT-KK) are finally selected as local feature locations.

11

Chapter 2. Background on Shape Matching

Mesh-Scale DoG [41] following the work described in [186] that presented a Difference
of Gaussians based feature points detector for mesh objects, a Gaussian filter on the
mesh geometry is defined, and a set of filtered meshes are computed. Consecutive
octaves are subtracted to compute the DoG function, and define the local maxima
(both in location and scale) as feature points at that point and scale.

Some other interesting interesting approaches to choose the set of descriptors that gives
the best correspondence results are derived from the machine learning discipline, and can
be consulted in [64] [177] [79] [171].

2.2.2.2 Descriptors

Once features have been selected, a unique signature has to be computed for each one of
them in order to characterize, as best as possible, the underlaying properties of the surface
they enclose. This signature is what descriptors are.

In order to measure how similar two shapes are, distances between pairs of descriptors
are computed using a dissimilarity measure (the term “similarity” is often used as a syn-
onym in the bibliography, but dissimilarity corresponds better to the notion of distance:
small distance means small dissimilarity).

A dissimilarity measure can be formalized by a function defined on pairs of descriptors
indicating the degree of their resemblance. In a more formal way, a dissimilarity measure
d on a set S is a non-negative valued function d : S × S → R+ ∪ {0}. Function d may
have some or all of the following properties:

1. Identity: ∀x ∈ S, d(x, x) = 0.

2. Positivity: ∀x 6= y ∈ S, d(x, y) > 0.

3. Symmetry: ∀x, y ∈ S, d(x, y) = d(y, x).

4. Triangle inequality: ∀x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

5. Transformation invariance: for a chosen transformation group T ,
∀x, y ∈ S, t ∈ T, d(t(x), t(y)) = d(x, y).

The identity property says that a shape is completely similar to itself, while the positiv-
ity property claims that different shapes are never completely similar. These properties are
sometimes too strong for high-level shape descriptors, and often not satisfied. Symmetry is
not always wanted. Actually, it is a common situation that the dissimilarity between x and
y is different than the opposite way. Also, triangle inequality is not always satisfied when
partial matching situations happen. The only property that has to be completely satisfied
is the transformation invariance: comparisons and shape descriptors extraction have to be
independent of the location, orientation and (sometimes) scale of the shapes compared.

Some other desirable properties for shape descriptors are:

1. Discriminative power: a descriptor should capture properties that discriminate ob-
jects, or parts of objects, well.

2. Partial matching: in contrast to global matching, partial matching consists on finding
a shape of which a part is similar to a part of other shape. This is specially common
when registering partial views obtained with a 3D scanner.

12

2.2. Input data

3. Robustness and sensitivity: it is desirable that a shape descriptor is insensitive to
noise and robust agains arbitrary topological degeneracies. This means that small
changes in a shape should result in small changes in its associated descriptors. The
same way, big changes in the shape should result in big changes in its descriptors.
Otherwise, the descriptor is said to be not sensitive, which leads to poor discrimina-
tive abilities.

4. Pose normalization: in the (common) absence of prior knowledge, shapes are arbi-
trary oriented, positioned and, sometimes, scaled in space. Descriptors have to be
invariant to these transformations or, in case they are not, shapes have to be normal-
ized to be compared. Common normalization techniques are translating the center
of mass of a shape to the origin of coordinates, using Principal Component Analysis
(PCA) or more advanced techniques, like the one described in [31], for orientation,
and scaling the shape so the average distance of its points to the center of mass is
constant.

5. Efficiency: computing shape descriptors has to be fast enough to satisfy temporary
requirements of a given application.

A variety of descriptors have been proposed in the literature. In general terms, they
can be classified according to the type of dataset they work with. This way, shape con-
text approaches [10] [87], describe the coarse arrangement of the shape with respect to a
point inside or on the boundary of the shape using unoriented point datasets. When con-
sidering oriented point datasets, spin images [78] and multi-scale features [93] are very
common in the literature. Finally, for describing local properties of surfaces, some typical
approaches are curvature maps [59], integral invariants [105] [60], spherical harmonics
and wavelets [53] [36] [82], salient geometric features [56], part-aware metrics [98] or
heat kernel signatures [161].

More in detail, shape descriptors can be classified according to the dimensionality of
the input data, and their philosophy. For 2D domains, the most common techniques can be
split into three main categories: contour based descriptors, region based descriptors and
hybrid 2D descriptors.

Contour based descriptors Contour based descriptors only consider the boundary of the
shape ignoring the information contained in the interior [152]. These descriptors
are very efficient at filtering out the results based on the boundary points because of
their low computation complexity. However, they are not good at handling image
noise and thus not accurate.

1. Fourier Descriptor (FD): a Fourier descriptor represents the shape obtained af-
ter applying a Fourier transform on the coefficients of the shape signature (any
1D function used to represent 2D shapes or boundaries). The most frequently
used shape signatures are centroid distance, complex coordinates, curvature
function and cumulative angular function. Among them, Fourier descriptor
method performs better using centroid distances [191]. Main advantages of
Fourier descriptors are that they are simple to compute, simple to normalize,
capture both local and global features and are insensitive to noise.

13

Chapter 2. Background on Shape Matching

2. Wavelet Descriptor (WD): Wavelet descriptor was proposed in [34], where
the authors used wavelet transforms to describe the shape of planar closed
curves. It is a multi-resolution approach which decomposes the shape into
several components in multiple scales. In higher resolutions, components con-
tain the global information whilst, in lower resolutions, information is more
detailed in a local area. Their main advantages are that they are insensitive to
noise, invariant, unique ad stable against boundary variations. They have been
recently used in [83] in combination of Fourier descriptors.

3. Curvature Scale Space (CSS): originally introduced in [8] this is one of the
most widely used in content based image retrieval. The key idea below this
algorithm consists on dividing the shape into convex and concave segments
by identifying a set of inflection points. A two dimensional vector is associa-
ted with each inflection point, expressed as (s, l), where s is the amount of
smoothing applied until to there are no zero curvature points (so the contour
becomes convex) and l is the position of the point on the contour curve. The
original algorithm is fully detailed in [14] [19], and improved in [141].

4. Shape Context Descriptor (SCD): introduced in [11] shape context finds the
correspondence between two shapes and finds out the dissimilarity measure
between them. To find the correspondence, N points are sampled from the
contour of the shape and a reference point is fixed. The points are sampled us-
ing an edge detector algorithm. Then a set of vectors are computed originating
from the reference point to all the other sampled points. The shape context for
each point is defined as a histogram of relative polar coordinates of the remain-
ing sampled points. Shape context is a very robust shaped descriptor which is
highly discriminative. It is also transformation invariant, robust against shape
variations, and has few outliers [110].

Region based descriptors Region based descriptors take into account the boundary as
well as the internal information of the image and are more robust against noise and
other shape variations than countour based descriptors.

1. Zernike moments descriptor: this descriptor was introduced in [164]. It is
one of the most commonly used region based descriptors and has been im-
proved since it was first released. Zernike moments are continuous orthogonal
moments derived from Zernike polynomials [190]. Main advantages of this
descriptor are rotation invariance, robustness against small changes in shape,
that it is insensitive to noise and highly expressive [27]. On the counterpart, its
main disadvantages are related to the coordinate space normalization (image
coordinate space must be transformed) and that the discrete approximation of
continuous integrals lead to errors in the computations.

2. Scale Invariant Feature Transform (SIFT): originally introduced in [100], this
descriptor is based on the work published on [144] that stated that efficient ob-
ject recognition could be achieved by using local image descriptors that could
be sampled at a large number of repeatable locations. This way, the SIFT al-
gorithm converts the image into a huge collection of location feature vectors
invariant to scale, rotation and translation. In the first step of the algorithm,

14

2.2. Input data

extracts the scale invariant features in the image using the staged feature ap-
proach. These vectors are called SIFT keys, and used for indexing and iden-
tifying candidate object models by using a nearest neighbor search algorithm.
Main advantages of SIFT descriptors are invariance to scale, rotation and trans-
lation, partially invariance to illumination changes, robust against occlusions
and object degeneracies and insensitivity to noise.

3. Angular Radial Transform (ART): originally proposed in [84] is a popular RBD
which is used in the MPEG-7 standard [19]. It has been described as “the or-
thogonal unitary transform defined on a unit disk that consists of the complete
orthogonal sinusoidal bases functions in polar coordinates” in [19].

Hybrid 2D shape descriptors By combining the two previous kinds of descriptors, some
new techniques have been introduced. In [178] a two-component solution was pro-
posed in which centroid distances, contour curvature and Zernike moments were
selected as shape features, while a two-component strategy was applied in feature
matching. In [152] a hybrid approach was proposed which combines Fourier (to
extract local features) descriptor with ART (to extract global features). The authors
performed experiments with Fourier descriptors + ART and Fourier descriptors +
Zernike moments and showed that their techniques performed better than the two-
component solution.

When working with 3D input data, the main categories are view based descriptors, his-
togram based descriptors, transform based descriptors, graph based descriptors and hybrid
3D descriptors. These descriptors have been extensively used by researchers since the 90’s
in 3D search engines and sketch based modeling systems.

View based descriptors View based descriptors use silhouette, greyscale or depth-buffer
images extracted from multiple views of 3D objects. Their main advantages are that
they do not require the explicit virtual model information, which makes the method
robust to real practical applications, and that the view-based 3D model analysis
methods can be benefited from existing image processing technologies which have
been studied from several decades [97].

1. Compatc Multi-View Descriptor (CMVD): this method was introduced in [39]
[40]. It accepts multi-modal queries (3D images, sketches and 3D models). In
a first step, a pose is estimated using PCA and visual contact area methods.
Then, 24 sets of 3D image views are generated from 18 different viewpoints
of a 32-hedron surrounding the 3D object. Two type of views are extracted:
binary views (silhouettes) and depth views. After that, 2D descriptors are cal-
culated, and 3D matching is achieved by computing the total dissimilarity of
the 2D images generated from the 3D objects.

2. Light Field Descriptor (LFD): Introduced in [30] is based on the idea that two
3D objects are similar if they look similar from all viewing angles. To compare
objects, 10 silhouette images are taken from viewing angles distributed in a
dodecahedron. Zernike moments and Fourier descriptors are the used to extract
features, and dissimilarity is calculated from rotating the viewing spheres of
one light field descriptor relative to the other light field descriptor. In [55] LFD
has proven to perform better than Spherical Harmonics Descriptors.

15

Chapter 2. Background on Shape Matching

Histogram based descriptors Histogram based descriptors work over the feature domain
by collecting numerical values in bins that represent the features of a 3D shape.

1. Point Feature Histograms (PFH): Point Feature Histograms (PFH) [139] des-
criptor’s goal is to generalize both the surface normals and the curvature es-
timates. Given two points, p and q, a fixed reference frame consisting of the
three unit vectors (u, v, w) is built centered on p as follows:

• The vector u is the surface normal at p.
• v = u× p−q

d .
• w = u× v, where d = ‖p− q‖2.

Using this reference frame, the difference between the normals at p (np) and q
(nq), can be represented by:

• α = acos(v · nq).

• φ = acos(u·(p−q)d)

• θ = atan(w · np, u · np)
The angles α, φ, θ and the distance d are computed for all pairs in the k-
neighborhood of point p. In fact, usually the distance d is dropped as it changes
with the viewpoint, keeping only the 3 angles. These are binned into an 125-
bin histogram by considering that each of them can fall into 5 distinct bins, and
the final histogram encodes in each bin a unique combination of the distinct
values for each of the angles.

2. Fast Point Feature Histograms (FPFH): the Fast Point Feature Histograms
[138] are a simplification of the PFH descriptor above that reduce the compu-
tational complexity of the PPF algorithm from O(nk2) to O(nk). The first
step is to compute the histogram of the three angles between a point p and its
k-nearest neighbors (not between all pairs of neighbors) in the same way as
in PPF. This produces the Simplified Point Feature Histogram (SPFH). Then,
for each point p, the values of the SPFH of its k neighbors are weight by their
distance wi = d to p to produce the FPFH at p:

FPFH(p) = SPFH(p) + 1/k
k∑
i=1

SPFH(i)/wi

The three angles are binned into 1-bin histograms that are concatenated into a
single 33-bin FPFH descriptor.

3. Signature of Histograms of Orientations (SHOT): the SHOT descriptor [168]
is based on obtaining a repeatable local reference frame using the eigenvalue
decomposition around an input point. Given this reference frame, a spherical
grid centered on the point divides the neighborhood so that in each grid bin
a weighted histogram of normals is obtained. The descriptor concatenates all
such histograms into the final signature. It uses 9 values to encode the refer-
ence frame and the authors propose the use of 11 shape bins and 32 divisions
of the spherical grid, which gives an additional 352 values. The descriptor is
normalized to sum 1.

4. 3D Shape Context: this descriptor is was proposed in [52]. It uses a spherical
grid on each of the features. The north pole of the grid is oriented as the

16

2.2. Input data

surface normal at the feature and the grid consists of bins along the radial,
azimuth and elevation dimensions. The divisions along the radial dimension
are logarithmically spaced. The number of bins can be set by the user. Each bin
makes a weighted count of the number of points that fall into it. The weights
used are inversely proportional to the bin volume and the local point density.
Since the axes tangent to the surface are placed randomly, there is the need
to extract as many versions of this descriptor per database object as there are
divisions along the azimuth direction. All these versions of the descriptor need
to be tried on a test cloud to find an object match.

5. Unique Shape Context: the Unique Shape Context [167] was proposed as an
upgrade of the 3D Shape Context with the goal of avoiding the need to obtain
as many versions of the descriptor as the number of azimuth bins. Consider
a point p with a spherical neighborhood of radius R. A weighted covariance
matrix M of the points in the neighborhood is computed as:
M = 1

Z

∑
i=di≤R

(R− di)(pi − p)(pi − p)T

where pi is a point in the spherical neighborhood, di = ‖pi − p‖2 and Z =∑
i=di≤R(R− di). The eigenvector decomposition of M is used to obtain the

3 unit vectors of the local reference frame. The sign of the eigenvectors with
the biggest and smallest eigenvalues is changed so that it is coherent with the
majority of the vectors they represents. The sign of the third eigenvector is
obtained from the other two considering that they must form an orthonormal
base. The eigenvector with the smallest eigenvalue gives the normal direction.
Apart from this reference frame determination process, the Unique Shape Con-
text descriptor is obtained like the 3D Shape Context.

6. Rotation Invariant Feature Transform (RIFT): the RIFT descriptor [89] was
developed to generalize the SIFT descriptor [101]. A circular normalized
patch is built at each input point. The circular patch is divided into 4 rings
of equal width. For each ring, a histogram of gradient orientations with 8 bins
is computed, thus producing a 32 value descriptor for each input point. The
orientations of this histogram are obtained with respect to the radial outward
direction at each point.

7. Viewpoint Feature Histogram: the Viewpoint Feature Histogram (VFH) [140]
adds viewpoint variance to the above FPFH by using the viewpoint vector
direction. It also produces only one descriptor for the input point cloud (it is a
global descriptor). The process is the following:

• Find the input cloud centroid, c.

• For each point p in the cloud, build the the local reference frame (u, v, w)
using u = n, v = (p− c)× u, w = u× v

• Find the angles (α, φ, θ) as in the PFH, using this reference frame.

Each of the three angles is binned into a 45-bin histogram. The angle β =
acos(np · c/‖c‖) that the central viewpoint direction translated to each normal
makes with each point’s normal is also encoded in a 128-bin histogram.

17

Chapter 2. Background on Shape Matching

8. Clustered Viewpoint Feature Histogram: the Clustered Viewpoint Feature His-
togram (CVFH) descriptor for a given point cloud dataset containing normals,
was proposed in [2]. Stable regions are obtained by first removing the points
with high curvature and then applying a smooth region growing algorithm.
The CVFH is obtained using the following steps:

• Determine the set S of stable regions.
• For each si ∈ S, find the centroid (c) and its normal (nc).
• Build a local reference frame (ui, vi, wi) like in the VHF but using c and
nc instead of the centroid and respective normal for the whole input cloud.
• Find the histograms of the angles (α, φ, θ, β) as in VHF (the first 3 coded

as 45-bin histograms and β coded as a 128-bin histogram).
• Find the Shape distribution Component (SDC) as
SDC = (c−pi)2

max{(c−pi)2} , i = 1, ..., |S|.

The CVFH is given by the concatenated histograms (α, φ, θ, SDC, β) which
is a 308-bin histogram.

9. Ensemble of Shape Functions: this is a global shape descriptor proposed in
[182] consisting of 10 concatenated 64-bin histograms resulting in a single 640
value histogram for a given input point cloud. It is based on three shape func-
tions [119] describing distance (D2: distance between two randomly selected
points), angle (A3: the angle enclosed by two lines created from 3 randomly
selected points) and area (D3: area of the triangle formed by 3 randomly se-
lected points) distributions. They also use an idea from [75] that is to classify
each of the values into three classes based on where the connecting lines be-
tween points reside: on the object surface, off the surface and mixed (partly on
and off). Before finding these distances the cloud is approximated by a voxel
grid of side 64 and the match is done using L1-distance. The authors propose
to optimize this descriptor by learning weights for the sub-histograms.

10. 3D Shape Spectrum Descriptor (3D SSD): a 3D shape spectrum descriptor
is a shape descriptor that combines a shape index distributed over the entire
mesh [187]. The index is defined as a local geometric feature of the shape,
expressed as the angular coordinate of the polar representation of the principal
curvature vector. This descriptor locally characterizes free form discrete poly-
gon 3D meshes. Its main characteristics are generality, invariance to scale and
Euclidean transforms, and robustness. Given that this descriptor is a simple
local feature representation, it should be combined with some globe represen-
tation schemes.

11. Generalized Shape Distributions (GSD): originally proposed in [99] this des-
criptor is commonly used in shape retrieval applications. GSD is based on local
and global shape signatures / descriptors of a 3D model. Before generating the
histogram, first steps involve the generation of a dictionary of local shape de-
scriptors using spin images. A set of points are sampled on the surface of the
shape and accumulated to create spin images. These images are then clustered
into 1500 clusters using k-means, and each spin image is assigned an index
base on the index of its nearest cluster. After this, a 3D histogram is created.

18

2.2. Input data

First dimension stores Euclidean distance of the 2 point pairs. while the other
two dimensions store the index value of the two points. In [120] it has been
proven the technique to be more accurate and efficient than shape distributions
and bag of features descriptors.

12. Bag-of-Features Histogram (BoF): this descriptor consists on accumulating
the visual features of a 3D model in a histogram where thousands of visual
features are extracted from range images. This technique has proved to be
robust against articulated or non-rigid 3D models.

Transform based descriptors The theoretical foundations of transform based descrip-
tors are in classical processing such as spherical harmonics and Fourier transform.
Usually, all techniques of this kind have a first step for pose normalization using
principal component analysis.

1. Spherical Harmonics Descriptor (SHD): first approach using spherical har-
monics to describe a 3D shape was [55]. With this descriptor, the 3D model
is first binary voxelized and then, the voxel is placed under concentric spheres
and decomposed into spherical functions. Next, a set of harmonic functions
are computed from each concentric sphere and each one is represented as a
histogram called the spherical signature. By combining these signatures a rota-
tion invariant 3D shape descriptor is generated. Fig. ?? illustrates this process.
Spherical harmonics descriptors are compared using Euclidean distances.

2. PCA Spherical Harmonics Transform: there has been a debate around whether
to use PCA for pose normalization or not. In [173] [172] another spherical
based shape descriptor was proposed that used PCA as its pose estimation step.
This work differs from [55] in a way that this descriptor involves a generalized
PCA step for pose estimation not only considering the vectors and coordinate
axes, but also all the points on the mesh with equal weights. According to [173]
this descriptor is slightly more expensive, but more accurate than the original
approach.

3. Spherical Trace Transform Descriptor (STTD): originally proposed in [188]
this descriptor is an extension of the ’Trace Transform’. STTD does not em-
ploy PCA as its preliminary step but it uses rotation invariant spherical func-
tions to produce a completely rotation invariant shape descriptor. First step
is to achieve translation and scaling normalization by placing the 3D model
inside a bounding cube and voxelizing. Then a set of initial 2D functions are
applied to the model creating a set of concentric spheres. For similarity match-
ing, weights are assigned to each descriptor.

Graph based descriptors This kind of descriptors represent the topology of a 3D shape
in the form of a graph or a tree structure. These descriptors are easy to compute.
However they are not computationally efficient. One of their best advantages is that
they allow representation at multiple levels of detail and facilitate matching of local
geometry.

1. Skeletal Graph Descriptors: the concept of skeletons was proposed in [18].
The main idea of these descriptors is to use a skeletal graph of a shape as its

19

Chapter 2. Background on Shape Matching

descriptor. A skeleton in 2D is a medial axis, while in 3D is the medial sur-
face. Several methods have been proposed to perform skeletonization such as
distance transform [20], thinning [88], Voronoi-based methods [115] or curve
skeletonization [47]. The skeletal graph stores the various entities obtained
after skeletonization in a graph data structure. Advantage of these methods is
that they are topology preserving. Hence, the ca be used for subgraph isomor-
phism at a ver low computational cost. Additionally, local part attributes can
be stored for a more accurate comparison.

2. Reeb Graph Descriptors: defined by Reeb in [133], a Reeb graph is deter-
mined using a continuous scalar function on an object. Three types of scalar
functions have been used: height function, curvature function, and geodesic
distance. Geodesic distance has been used in many applications because it
provides invariance against rotation and robustness against noise and small
perturbations. The function is integrated over the whole body to make it in-
variant to the starting point and is also normalized to achieve scale invariance.

Hybrid 3D shape descriptors Hybrid approaches are combinations of the previous ones
that improve, in some aspect, the quality of the 3D shape analysis.

1. CMVD + STT: in [40] a Compact Multi-View Descriptor was combined with
Spherical Trace Transform, achieving better results than all the algorithms pro-
posed before. This hybrid algorithm has been compared with Light Field De-
scriptors, SIFT + bag of features and Depth-Buffer + Silhouette + REXT, pro-
viding better precision-recall results.

2. SIFT + Bag of Features (BF-SIFT): proposed in [116], this hybrid approach
is based on extracting local visual features of a 3D model using SIFT algo-
rithm and efficiently integrating the in a histogram using the Bag of Features
approach. In this algorithm, several 2D range images are obtained from the 3D
model. Then, SIFT algorithm is used to extract local features. Each feature is a
vector quantized using a visual codebook. K-means learning is used to cluster
the local features into a bag of visual words. Then a histogram is generated us-
ing the frequencies of visual words, which acts as the feature vector for the 3D
model. Some advantages of BF-SIFT are 1) suitable for articulated models, 2)
high discriminative power, 3) suitable for 2D image and sketch based queries,
and 4) effective for partial matching.

3. Depth-Buffer + Spherical Harmonics: originally proposed in [121] this des-
criptor uses a depth buffer algorithm for extracting 2D features and spherical
harmonics for encoding 3D features. Pose is normalized by using two methods
named CPCA and NPCA. Performance achieved by this descriptor has been
proven to be superior agains LFD.

20

2.3. Output match

2.3 Output match

Correspondence between shapes can be represented in different manners and can posses
different properties that are exploited in the search strategy. This way, for example, shape
retrieval approaches expect a query as input data (a 3D model, a sketch, a picture...), and
search for similar objects. The kind of result expected here is only a correspondence
(without a transformation), typically calculated on a global context. On the other hand,
scan registration approaches take as input data partial views of the same scene, and return
the transformation that minimizes the error on the overlapping area. Here registration is
performed using partial correspondences (only a fraction of two point clouds are overlap-
ping), and a dense correspondence is typically used (lots of points in both point clouds are
used to perform the final registration).

This section characterizes shape registration techniques according to the properties and
representations of the resulting output match.

2.3.1 Correspondence representation
A correspondence can be represented as a transformation applied to the shapes (i.e. reg-
istration of scanned point clouds) or simply as a relation between elements of the dataset
(i.e. shape retrieval approaches).

When looking for a transformation, one of the most distinguishing factors is the type of
transformations that are considered. These transformations can be ordered by increasing
the number of degrees of freedom: translation, rigid transformation (translations and ro-
tations), similarity transformation (includes isotropic scaling), affine transformation (adds
shearing), and nonlinear deformation (includes nonlinear transformations):

Rigid transformations preserve distances between points, and are composed by transla-
tions, rotations and reflections. These set of transformations are very common when
dealing with problems such as scan registration [137] [60].

Similarity transformations when incorporating the possibility of uniform scaling to rigid
transformations, more complex problems can be faced, like matching patterns to
limited portions of larger datasets [129].

Affine transformations if affine transformations are considered, the possibility of shear-
ing is included in the search space. This can be used at a global [76] [1] or lo-
cal [4] [158] level.

Non-rigid transformations in this case, it might be necessary to allow the shape elements
to move freely in order to match with the corresponding dataset, which can be seen
as assigning a nonlinear deformable transformation to each element [128].

It also should be distinguished whether the transformation is applied to the whole shape
(a global transformation) or whether it is applied in a local manner (elements of the shape).
Generally, the global case is in the domain of rigid alignments, whilst the local one is in
the non-rigid alignments domain.

When looking only for a correspondence, the relation between pairs can be bijective
(one-to-one mapping), injective (every element of one shape must be related to one or

21

Chapter 2. Background on Shape Matching

multiple elements of the other shape) or full (many-to-many). Even more, restrictions
one-to-one or one-to-many can be required for only a subset of elements.

Some methods allow the user to select which type of mapping is desired [90] where
the final correspondence is obtained by filtering an initial result according to the mapping
constraints. Other approaches build their search strategy by assuming that the focus of
interest is only on a specific type of mapping [103] [13].

Correspondences can also be characterized by whether pairwise assignments are weighted
based on their confidence. These weights can be discrete (either an assignment is part of
the correspondence or not) or fuzzy (there is a degree of confidence). The type of confi-
dence measure that is available depends on the correspondence algorithm. There are prob-
abilistic approaches that return probabilistic weights [189], algorithms based on relaxation
to the continuous domain that also return confidence weights attached to each assignment
or methods [35] [90] that formulate the problem in terms of integer optimization and return
binary weights [103] [13].

2.3.2 Full and partial correspondences

Some techniques are only suitable for contexts in which the whole shape is considered,
while others can also compute partial correspondences. The partial case is more generic
than the full one, so partial correspondence algorithms can be applied to full correspon-
dence problems, but not necessarily the opposite way. In fact, it is considered that partial
algorithms are a very important specialization of shape correspondence.

The problem of partial correspondence can be defined as finding a subset of shape
elements for which a meaningful correspondence can be computed. This problem can be
divided in two main tasks: finding the optimal subset of elements that match consistently,
and finding the correspondence between these elements.

One way to find the best subset of elements is to evaluate the objective function look-
ing for sharp increases in the alignment error, that happens when an outlier point is added
to the set of matched points [60] [192]. Also, an estimation on the number of outliers can
be provided to the optimization, limiting the number of points of the computed correspon-
dence [103] [13]. This estimation can be derived from the data itself [118].

Another way to find the best subset of elements is to use a strategy based on vot-
ing [95] [9], where a set of candidate correspondences is computed and votes are cast on
the pairwise assignment that constitute each candidate. When this voting ends, inlier as-
signments are easily distinguishable from outlier assignments because of their quantity of
votes. This procedure acts as a group reinforcement, where only assignments are voted if
they can be part of a consistent correspondence.

Partial correspondence can also be treated like a problem of matching two graphs. Fea-
ture points can be represented as nodes, connected with an edge proportionally weighted
to some geometric quantity. Then, partial matching becomes the problem of subgraph iso-
morphism, known as a NP-complete problem. Given that different heuristics have been
proposed to address this problem, they can be applied for shape matching as well. In [146]
and [16] skeleton matching was faced using the notion of matching two graphs by finding
a set of operations that transform one graph into the other by merging nodes [114].

22

2.4. Cost function

2.3.3 Dense and Sparse correspondences
Sparse correspondences are characterized by considering a very reduced amount of ele-
ments. Their main advantage is that the complexity of the computation in both, time and
space, is reduced considerably.

Some techniques are designed considering this factor, such as search-based methods
described in [60] [192]. Despite their associated search space is exponential, these tech-
niques can be used in practice by considering a sparse set of feature points extracted from
the shapes.

There are other approaches whose complexity increases linearly with the size of the
problem and so, they can be used for both sparse and dense problems.

Finally, a specialized set of techniques has been developed in order to work with dense
correspondences from an initial sparse one [3] [4] [158] [128] [145], or techniques that
progressively refine a sparse initialization into a dense one [143].

2.4 Cost function

The cost function gives a measure of how good a given correspondence is (or how far it is
from the desired solution). Sometimes it is referred as the “error measure”, the “objective
function” or the “energy”, in the case of methods that formulate the problem as the min-
imization of some energy function. Its formulation depends on the type of input dataset
and also on the specific problem to be solved.

2.4.1 General distance metrics
In general terms, this similarity measure can be seen as an order relation between shapes
that has to satisfy some basic properties. Suppose that there are three shapes P , Q and R
and that the distance (cost function) between P and Q is represented as d(P,Q). For d to
be a valid cost function, the following properties have to be satisfied:

1. Metric properties:

• Non-negativity: d(P,Q) ≥ 0.

• Identity: dP, P = 0.

• Uniqueness: d(P,Q) = 0↔ P = Q.

• Strong Triangle Inequality: d(P,Q) + d(P,R) ≥ d(Q,R).

• Relaxed Triangle Inequality: c(d(P,Q) + d(Q,R)) ≥ d(P,R), c ≥ 1.

• Symmetry: d(P,Q) = d(Q,P).

If a distance function obeys the identity, uniqueness and strong triangle inequal-
ity properties, it is referred to as a metric. If only identity and the strong triangle
inequality are satisfied, it is called a semi-metric.

2. Continuity properties: with respect to similarity functions, robustness is considered
a form of continuity. This property allows the distance function to be robust against
the effects of discretization, noise or outliers.

23

Chapter 2. Background on Shape Matching

3. Invariance properties: a distance function d is considered invariant under a group of
transformation G if ∀g ∈ G, d(g(P), g(Q)) = d(P,Q).

Some of the most common distance functions are:

Discrete Metric d(P,Q) = 0, if P equals Q. Otherwise d(P,Q) = 1. The main disad-
vantage with this metric is that if P is even minutely distorted (to form shape P ′) the
discrete distance d(P, P ′) will always be 1. If the discrete metric is used, computing
the smallest d(P,Q) over all transformations in a set G is equivalent to looking for
a transformation g ∈ G such that g(P) = Q. This is called the exact congruence
matching.

Minkowski Distance (Lp Distance) The Minkowski distance is a metric on Euclidean
space which can be considered as a generalization of both the Euclidean distance
and the Manhattan distance. For two points x, y ∈ Rk, th Lp distance is defined as:

Lp(x, y) =

(∑k

i=0
|xi − yi|p

) 1
p

Bottleneck Distance Assume A and B are two point-sets of size n. Let d(a, b), a ∈
A, b ∈ B be the distance between two points a and b. The bottleneck distance,
F (A,B), is the minimum over all one-to-one correspondences f between A and B
of the maximum distance d(a, f(a)).

Hausdorff Distance The Hausdorff distance, or Hausdorff metric, also called Pompeiu-
Hausdorff distance, measures how far two subsets of a metric space are from each
other. Two sets are close in the Hausdorff distance if every point of either set is close
to some point of the other set. This way, the Hausdorff distance is the greatest of
all the distances from a point in one set to the closest point in the other set. Let P
and Q be two sets of points in Rd. The directed Hausdorff distance from P to Q,
denoted by h(P,Q), is:

max
p∈P

min
q∈Q
‖p− q‖

The Haussdorf Distance between P and Q, denoted by H(P,Q), can be defined as:

max{h(P,Q), h(Q,P)}

Intuitively, the function h(P,Q) finds the point p ∈ P that is farthest from any point
in Q and measures the distance from p to its nearest neighbor in Q. However, as is
apparent from its definition, the Hausdorff distance is extremely sensitive to noise
(outliers). A measure that seems to be less sensitive to noise is the partial Hausdorff
distance, defined as:

Hk(P,Q) = max{hk(P,Q), hk(Q,P)}

where hk(P,Q) is the k-th value in increasing order of the distance from a point
in P to Q. Thus, hk(P,Q) = kthp∈P minq∈Q d(p, q). However, the partial Haus-
dorff distance is not a metric as it does not satisfy the triangle inequality property
mentioned earlier.

24

2.4. Cost function

Fréchet distance This is typically used to measure the similarity between curves, taking
into account the location and ordering of the points along the curves. The Fréchet
distance between two curves is defined as follows:

Fr(P,Q) = inf
α,β

max
t∈[0,1]

‖P (α(t))−Q (β(t))‖

where P,Q : [0, 1]→ R2 are parametrizations of the two curves and α, β : [0, 1]→
[0, 1] range over all continuous and monotone increasing functions. In some varia-
tions, the monotonicity condition of the parametrization could be dropped. Partial
matching could also be considered, where the goal is to find the section of one curve
to which the other has the smallest Fréchet distance.

2.4.2 Rigid alignment
For the problem of rigid alignment between two or more datasets, the objective is normally
defined in terms of the number of matching points, or given by a metric that quantifies how
well the datasets align to each other after applying a rigid transformation.

Largest Common Pointset (LCP) here the interest is in finding a transformation that
brings the largest number of points into correspondence [76] [1], given a thresh-
old ε which indicates whether two points are close enough and can be considered as
matching to each other. Therefore, the objective is to maximize the cardinality of
the set of matched points. It can be expressed for two point sets P and Q as

LCP(P,Q) =
∑
p∈P

Match(p,Q)

where

Match(p,Q) =

{
1, ∃q ∈ Q, ‖p− q‖ < ε

0, otherwise

for some distance measure ‖. . .‖

Geometric distance another common objective function does not rely on a parameter ε
but minimizes the alignment error given by the sum of squared distances between
points. That is, for each point in the transformed set, the closest point in the ref-
erence set is found and the distance between these two points is added to the error
measure, expressed as:

Dist(P,Q) =
∑
p∈P

Dist(p,Q)

where

Dist(p,Q) = min
q∈Q
‖p− q‖

This is the common measure utilized in algorithms such as the Iterated Closest Point
(ICP) [137]. Variants of this scheme can also be utilized, like adding orientation or
surface information [32], where Dist(p,Q) is replaced by a more elaborate point-to-
surface measures.

25

Chapter 2. Background on Shape Matching

From the above, the LCP formulation has the advantage that partial matching can be
directly handled by the objective function, since the largest set of matching points will
correspond to the region of overlap between the two point sets. The sum of squared dis-
tances will necessarily consider all the points in the objective, unless the user provides the
algorithm with an estimate of the amount of overlap between the point sets or a threshold
to identify points that are too far away from each other [137].

2.4.3 Non-rigid alignment
In the case that the shapes are aligned to each other by a non-rigid deformation, the ob-
jective will have to incorporate terms to quantify when such a transformation is mean-
ingful. That is, if each vertex can move freely according to its own transformation or
displacement, some form of global consistency (regularization) has to be enforced. Such
a regularization can be obtained by limiting the number of degrees of freedom of the
transformations or by penalizing large deformations. For example, we can demand the
transformations of neighboring vertices to be similar (which provides a smooth transition
of transformations from one vertex to the other). Such a transformation similarity can be
measured in a direct manner (e.g., by the norm between the matrix representations of the
transformations [4] [158]) or according to derivatives [128]. Moreover, as in the case of
similarity-based matching, the error measure in the non-rigid case also includes a quantifi-
cation of how well the datasets are aligned. This can be given by a measure of geometric
distance (similar to the rigid case discussed above) [158] [128] or point to plane distance
in the case of surfaces [4].

2.4.4 Similarity-based correspondence
When the goal is to find a correspondence between two datasets without first aligning the
shapes, shape descriptors and intrinsic measures to quantify the quality of the correspon-
dence must be used. Therefore, for two shapes P and Q and a correspondence relation R,
the objective takes the form

Obj(P,Q,R) = Sim(P,Q,R) + αDistor(P,Q,R)

with a similarity term that is linear on the number of feature points and a distortion term
that is usually quadratic on the number of feature points, since it commonly involves com-
paring properties of pairs of points. The weight a controls the influence of each term in the
objective function. Automatically setting a to a value that reflects the user’s goal can also
be a challenging problem [25].

Similarity term this term encodes the similarity of the shape descriptors of points in cor-
respondence. The descriptors can also include geometric attributes such as point
normals or local frames, which can give an indication of whether the orientation of
the points is coherent across the two matched point sets [6].

Distortion term this term quantifies how much the shapes would be deformed if their
corresponding elements were brought into alignment. A common candidate for a
distortion measure is the disparity in the distances between pairs of matched points.

26

2.5. Search strategy

The disparity is an approximate way of measuring the distortion introduced by the
correspondence without having to first align the shapes. It can be expressed as

Distor(P,Q,R) =
∑

Dispar(p1, p2, q1, q2), {p1, p2} ⊂ P, {q1, q2} ⊂ Q

where (p1, q1) ∈ R and (p2, q2) ∈ R. The disparity term between two pairs {p1, p2}
and {q1, q2} is given by the difference in the distances between the pairs of points

Dispar(p1, p2, q1, q2) = |distP (p1, p2)− distQ(q1, q2)|

Any appropriate distance measure can be used. Examples include Euclidean dis-
tance [28], or geodesic distance in the case of surfaces [6]. Alternatively, the com-
patibility between pairs of assignments can be evaluated with the intersection con-
figuration distance [160], which utilizes fuzzy geodesics (a generaization of surface
geodesics) to measure the similarity in the structural arrangement of points on the
shapes.

Deformation a more elaborate form of quantifying distortion is to use a global deforma-
tion measure, such as described in [72] [192]. Once the matching of feature points
is known, one shape can be deformed into the other so that the matched points are
aligned. For this step, one of the recently proposed deformation methods can be
utilized, as in the surveys [155] [159]. Then, measuring how much the surfaces had
to deform to align to each other (an intrinsic rigidity energy) gives an indication of
the distortion introduced by the correspondence. One advantage of using a surface-
based deformation energy is that it is able to differentiate between correspondences
that switch symmetric parts of the shape, which usually pass undetected when only
pairwise distances are utilized. Note that the deformation can also be performed at
the part level and with the aid of binary relations between parts [185].

2.5 Search strategy

Finding the best correspondences in a given dataset can be faced in several manners. In
order to classify registration techniques based on their search strategy, two criterions are
proposed: one based on particular properties of the existing approaches, and another based
on terms of the solution paradigm. First classification criteria deals with the differentia-
tion between automatic/semi-automatic techniques, global/local search strategies and pair-
wise/groupwise approaches. The second classification criteria deals with the distinction
between methods that search for a transformation that aligns the shapes, methods that only
consider the pairwise assignments between elements and find a solution using well-known
optimization or search techniques, and methods that perform a hybrid search, alternating
between alignment and correspondence computation.

2.5.1 Properties of existing search strategies
Fully-automatic/semi-automatic semi-automatic methods require user input, such as a

proper initialization or a set of corresponding landmarks between the shapes. Fully-
automatic methods do not require any user input besides a few parameter values.

27

Chapter 2. Background on Shape Matching

Semi-automatic methods include the approaches for cross-parameterization [3] and
methods that take markers as input [4] [158] [128] [145].

Although user input is required for the proper initialization of certain methods, this
can also be seen as a necessary requirement when the semantics of the shapes can-
not be easily inferred. Therefore, a track open for future research is that of meth-
ods based on a feedback loop, where the user gradually improves a correspondence
based on his or her preferences. Ideally, such a method would minimize the amount
of user interaction and provide hints on what in- formation is missing to refine the
correspondence.

Global/local search : this distinction refers to the way the solution space is explored: in
the case of global search strategies, the whole domain is considered in order to get
a good solution (e.g., by performing an exhaustive search [60] [192]). On the other
hand, when results of the method depend directly on its initialization, only a part
of the solution space is considered. This is what is called local search strategies.
The initialization can be given by a user, as with semi-automatic methods, or by
a fully-automatic method, whose solution will be used as the starting point for the
local search of the algorithm.

The most prominent example of the local search category is the ICP algorithm [137].
Since this iterative process follows a single path in the solution space, it can end
up with a result that is a local minimum. Thus, the initial state clearly influences
the final result of the algorithm, and therefore different forms of initialization have
been proposed for this algorithm (which take the form of computing a pre-alignment
between the shapes to be matched).

Another example of algorithms that perform local search are the methods for non-
rigid alignment based on explicitly computing the transformation for each shape
element. Since these transformations are computed with a method based on gradient
descent or Newton’s optimization, the initialization will also necessarily influence
the final correspondence result [4] [158] [128].

Pairwise/groupwise methods for group correspondence appear predominantly in approaches
that focus on object reconstruction from fragments and in the computational anatomy
community [66], where a coherent correspondence between a group of shapes is
important for the accurate construction of a statistical model. A successful class of
methods for this case is based on the minimum description length approach, where
quality criteria of the statistical model are used to guide the computation of the group
correspondence and simultaneous construction of the statistical model [42].

Although the term group correspondence is not used in the field of time-varying re-
construction, a certain class of methods applied to this problem can also be seen as
following this approach, since all scans are considered simultaneously in the regis-
tration. The difference to the case of anatomical shapes is that each scan can deform
over time and there can be a significant amount of missing data between frames,
while in the anatomy case the goal is typically a full correspondence between com-
plete shapes, which are seen as variations from the same mean shape of an organ or
bone. The time-varying reconstruction methods pose the problem as the reconstruc-
tion of a space-time surface [111] [163] [147], or obtain a skeleton that is coherent

28

2.5. Search strategy

for all the time frames [194]. The advantage of such formulations is that missing
data can be filled in with data from frames that are further away in time.

2.5.2 Solution paradigm
Classifying registration techniques according to their solution paradigm is based on how
do they obtain the correspondences. This way, the methods are primarily divided into those
that search for an aligning transformation, those that search directly for a correspondence
without performing alignment, and the ICP method, which works in a hybrid manner
alternating between transformation search and correspondence search.

2.5.2.1 Transformation and alignment search

Methods enclosed in this category are the ones that first search for a transformation that
aligns shapes and, then, derive the correspondences by proximity between facing points
in the considered shapes. For these methods, a secondary classification criteria can be
established, depending on the group of transformations considered.

Rigid transformations When considering rigid transformations, the final alignment can
be inferred from a small set of sample points. For example, if the problem faced is
three-dimensional, the transformation matrix can be obtained by simply matching 3
points from each shape.

After a candidate transformation has ben calculated, its correction has to be vali-
dated. To do so, two major approaches are used: one based on verification, and
another based on voting.

Verification The most simple verification approach is a naive algorithm [73], which
exhaustively samples three points from the first shape and three points from
the second one. For each possible combination, a transformation matrix is
computed, and some cost function is evaluated in order to quantify the quality
of the achieved result. After testing all possible triplets, the best transformation
is returned as result. The resulting time cost of this strategy is O(m3n2 log n)
for the 2D case, andO(m4n3 log n) for the 3D case, considering that m and n
are the sizes of the two considered point-sets.
In order to improve performance, some approaches use a Random Sample
Consensus (RANSAC) strategy [49] that consists on using only a constant-
sized set of random samples on one shape, reducing complexity by a factor of
O(m3) in the 3D case, or even applying this idea also to the verification step,
reducing the complexity by another factor of O(m) [76].
Other approaches propose to explore geometric invariances maintained by the
transformations. One such case is the ratio of distances between three copla-
nar points, which is preserved by rigid and affine transformations. Thus, the
problem of searching for triplets of points that provide the optimal transforma-
tion can be transposed to that of finding four sets of coplanar points that share
the same ratios [74]. By pre-processing these invariances and keeping them
in appropriate data structures that allow for efficient retrieval, output-sensitive
methods can be achieved [1], reducing the complexity of the alignment pro-
blem even further to O(n2 + k), where k is the size of the reported output.

29

Chapter 2. Background on Shape Matching

Voting Instead of sampling a transformation and evaluating its quality, the verifica-
tion step can be replaced by a voting procedure. For this purpose, pose clus-
tering utilizes an accumulation table [157] [117]. After selecting two triplets
of points and deriving a transformation, a vote indexed by the parameters of
the transformation is stored in the table. At the end of this O(m3n3) process,
the cells with most votes correspond to the best candidate transformations that
align the point sets.
Another technique based on the voting concept is geometric hashing. This
method makes use of pre-processing to speed up the alignment [184]. Its main
idea is to store in a hash table all the possible configurations of a group of refer-
ence point sets, so that when we seek the reference point set that best matches
to a query point set, this search can be performed efficiently. This splits the
previous O(m3n3) complexity of the naive enumeration into an O(m3 log n)
preprocessing phase (which samples all the possible configurations of a ref-
erence set and stores them in the hash table) and an O(n3 log n) query phase
(which samples all the possible configurations of the query set and accumulates
votes in the hash table to allow the retrieval of the best matching reference set).
The increase in speed in the query phase is gained at the cost of memory.

Piecewise transformation previous methods use one global transformation to compute
the matching between one shape to another. This same idea can be generalized by
applying transformations to local portions of the shapes. In [28], these transforma-
tions are applied in a piece-wise rigid manner to establish a correspondence between
articulated shapes. The problem is formulated as labeling the vertices of the shapes
with candidate transformations. Since now the vertices are restricted to possess a
transformation from a pre-defined set, the solution search is greatly simplified. By
adding a regularization term to the labeling optimization, a grouping of the vertices
into rigid components is guaranteed. An alternative to this approach is to explicitly
fit the shapes to a kinematic skeleton of articulated bones, so that the skeleton can
be used to track the movement of the shape and also infer in which regions there is
missing data [130] [29] [58].

Non-rigid alignment for the methods described in [4] [158] [128], different transforma-
tions are assigned to each vertex on the shape. The problem is formulated as find-
ing the best transformation that brings each vertex in a reference shape close to its
counterpart in the target shape, and a regularization term is added to enforce the
similarity of transformations across neighboring vertices. The difficulty in this set-
ting is avoiding solutions that are local minima. This is achieved by initializing the
methods with a set of corresponding marker points and solving the optimization in
a multi-level fashion. The optimization can be posed as a non-linear least squares
problem and solved with a Newton-based method. This mainly involves the compu-
tation of derivatives of the high-dimensional problem and least-squares optimization
at each step. Alternatively, the optimization can be performed by labeling a Markov
random field [127].

Instead of computing local deformations or displacements for the vertices, in [145],
the displacements are implicitly obtained by learning a function that warps one
shape into the other. The warp is obtained by solving a convex optimization pro-

30

2.5. Search strategy

blem similar to learning a support vector machine classifier (which includes a form
of regularization in its definition). Thus, global minima are avoided.

An extension of this methods which avoids the need of marker points is proposed
in [92], where the alignment between two shapes is performed with two separated
transformations: a global rigid transformation which roughly aligns the shapes, and
per-vertex affine transformations that bring the non-rigid shapes into full alignment.
A robust alignment can also be obtained by deforming one shape into the other in
terms of a 3D optical flow [43] or a Laplacian deformation of the meshes [44].

2.5.2.2 Correspondence search

Correspondence search methods work primarily with the pairwise assignments between
feature points, without searching for transformations that align the shapes. The corre-
spondence problem is typically defined as optimizing an objective function of the form
Obj(P,Q,R) = Sim(P,Q,R) + αDistor(P,Q,R). The objective is based on the qual-
ity of pairwise assignments and the compatibility between pairs of such assignments.

Most of the approaches in this category find the solution by using well-known discrete
or continuous optimization methods: if the objective being optimized is only composed
of a similarity term Sim(P,Q), then the formulation becomes a Linear Assignment Pro-
blem (LAP). This simplified objective can be solved by the simplex algorithm, since it is
a special case of a linear program [122]. However, if the correspondence is constrained
to a one-to-one mapping, the problem becomes that of finding an optimal matching in a
weighted bipartite graph [122]. On the other hand, if the objective comprises both the
linear (pairwise assignments) and quadratic terms (compatibility between pairs of such
assignment), we arrive at a Quadratic Assignment Problem (QAP), which is known to be
NP-hard [126]. Several techniques have been proposed to compute approximate solutions
to this problem. Examples include the softassign technique [62] (which iteratively normal-
izes rows and columns of an affinity matrix), concave programming [103], approximations
based on linear programming [13], spectral clustering [90], or relaxation labeling [196].
It can also be formulated in probabilistic terms and solved as a convex optimization pro-
blem [189].

Another group of methods solves the problem in the discrete setting without resorting
to the continuous domain. One common solution approach in the discrete case is to solve
the problem by computing an optimal labeling of a graph, for example, the problem can
be posed in terms of a Markov network where the set of labels corresponds to matching
points on the target shape [6] [194]. Other methods make use of heuristics for combina-
torial optimization, such as ant colony optimization [170]. One more option is to sample
the space of correspondences in search of a solution, guided by geodesic distances and
importance sampling [165].

A special group of methods in discrete optimization utilize a tree-based search to ex-
plore the solution space, such as branch-and-bound or priority search [60] [53] [192] [9]
[185]. During the tree expansion, each node represents a partial solution. A full solution
is found by following the path from the root of the tree to one of its leaves. Although
the specific strategy in which the tree is expanded differs from method to method, these
techniques usually involve three important steps: expanding a node that represents a new
partial solution (branching), estimating how far the partial solution is from the optimum

31

Chapter 2. Background on Shape Matching

solution (bounding), and eliminating nodes that will not lead to the optimum solution
(pruning).

In the case of correspondence, solutions are mainly represented as collections of as-
signments between pairs of feature points, and the expansion step involves adding a new
pairwise assignment to a given solution. Bounding and pruning can be performed by
verifying the quality of the registration given by the current solution, either by aligning
the shapes [60] or by deforming one shape into the other [192]. Other pruning methods
include testing the compatibility between pairwise assignments, such as quantifying the
distortion introduced in the Euclidean [60] [53] or geodesic distances [192] [9] between
pairs of points, or testing the agreement in the spatial configuration of the shapes [9].

When a hierarchical or multi-resolution structure is extracted from the shape repre-
sentation, this information can also be considered in the solution search. Skeletons are
commonly represented as trees or graphs for which a tree can be easily extracted. There-
fore, in this context, it is common to resort to search-based algorithms that take this hi-
erarchy into account [162]. Methods of a more greedy nature can also benefit from such
hierarchical [16] or coarse-to-fine representations of the shapes [67].

2.5.2.3 Hybrid search: ICP

The Iterative Closest Point (ICP) method [32] [15] can be considered as an hybrid search
strategy, since it alternates between finding correspondences in the considered shapes
(based on proximity), and calculating the transformation that better aligns them. It is a
local search algorithm, whose correction depends on a initial guess for the relative rigid-
body transform between two shapes that aligns them, computed with a different global
search strategy. ICP is widely used for geometric alignment of three-dimensional models.
In fact, almost every registration technique searching for a rigid alignment between shapes
uses it in some of the matching stages.

Given two shapes, P and Q, the first step of the ICP algorithm consists on selecting
which points p ∈ P use for computing the correspondence. Original implementation of
the algorithm [15] considered all the available points, and looked for the closest neighbor
of each one of them on shape Q. In [169], a uniform subsampling of the available points
was proposed, in order to accelerate the search process. A randomized approach using
different sample points at each iteration was proposed in [107]. In special cases, when
color or intensity is also considered, the alignment can be aided by selecting points with
high intensity gradient. An alternative approach that selected points in both shapes was
introduced in [61].

Once candidate points are selected, the next stage of ICP matches these points with
their counterpart on the other shape. On the original algorithm, this search was exhaus-
tively performed, increasing considerably the execution time of the registration. In [151]
the use of a k − d tree was proposed to accelerate the correspondence search. Another
approach, that intersects in the destination shape a ray originating at the source point and
in the direction of its normal was proposed in [32]. Some other approaches based on
projections onto the destination mesh where proposed [17] [113] [12] [48] [179] [132].

For each pair of selected points, ICP computes a weight based on some criteria. Origi-
nal approach had a constant value, but some alternatives have been suggested, like weight-
ing proportionally to the distance, or the compatibility of the normals [61] or based on the
expected effect of scanner noise on the uncertainty in the error metric.

32

2.5. Search strategy

Closely related to assigning weights to corresponding pairs is rejecting certain pairs
entirely. The purpose of this is usually to eliminate outliers, which may have a large
effect when performing minimization. Some common criterions are based on a maximum
separation between pairs, rejecting the worst n% pairs based on a metric (in [131] a 10%
value is given as a reference), rejecting pairs whose point-to-point distance is larger than
some multiple of the standard deviation distances ([107] suggest 2.5 times), or rejecting
pairs not consistent with neighboring pairs.

Finally, when potentially bad correspondences have been pruned, ICP minimizes a
given error metric in order to find the best transformation that aligns the selected pairs.
When considering sum of point-to-point squared distances, closed-form solutions exists
for the minimization problem, such as singular value decomposition [7] quaternions [69],
orthonormal matrices [70], and dual quaternions [174]. If considering point-to-plane dis-
tances, or plane-to-plane distances (being the planes defined by each point position and
normal), no closed-form solutions are available. The least squares equations may be solved
using a generic non-linear method (e.g. Levenberg-Marquardt), or by simply linearizing
the problem (assuming that incremental rotations are small so sin θ ≈ θ and cos θ ≈ 1).

To perform the alignment search, ICP can repeatedly generate new sets of correspond-
ing points using the calculated transformation in the previous step, and finding a new
transformation that minimizes the error metric, or combine this idea with an extrapolated
transform to accelerate convergence [15]. It can also start with several perturbations in
the initial conditions and selecting the best result [151] to avoid local minima solutions, or
perform the iterative minimization using various randomly-selected subsets of points, then
selecting the optimal result using a robust metric [107] or, finally, perform a stochastic
search using simulated annealing [17].

33

CHAPTER3
Background on Automatic Fragment

Reconstruction

In the previous chapter, the general problem of shape matching was introduced, and the
most common techniques were explained and classified. This chapter focuses on the spe-
cific application of shape matching techniques to the automatic reconstruction of archaeo-
logical artifacts from fragments.

Reconstruction of ancient artifacts from fragments found at the archaeological sites,
is a tedious task that requires many hours of work from the archaeologist and restoration
personnel. Historically, this reconstruction process has been manual, occupying a major
proportion of the human effort at excavation sites. In fact, since the assembly work is so
time-consuming and labor-intensive, the reconstruction is not even attempted at countless
sites around the world, leaving vast quantities of material unstudied and stored indefinitely.

Advancements in low-cost, high-volume acquisition devices and computer systems
performance have provided a new tool for archaeologists to face the problem of reconstruc-
tion. Operating on digital models of fragments can rapidly and systematically consider
many thousands of possible fragment alignments. The final goal is reducing the amount of
candidate matches between fragments, and providing an automatic or semi-automatic tool
to recompose the original artifact efficiently.

This chapter analyses the most remarkable techniques in this field following a chrono-
logical/complexity criteria: from 2D jigsaw puzzles to complex 3D multi-piece problems.

35

Chapter 3. Background on Automatic Fragment Reconstruction

3.1 Jigsaw Puzzles

The problem domain of jigsaw puzzles is widely known to almost every person from child-
hood. Given n different non-overlapping pieces of an image, the player has to reconstruct
the original image, taking advantage of both the shape and color information (when avail-
able). Although this game was proven to be an NP-complete problem [5] [46], it has
been played successfully by children worldwide. Solutions to this problem might benefit
the fields of biology [106], chemistry [176], speech descrambling [193], archeology [24],
image editing [33] and the recovery of shredded documents or photographs [96] [94] [45].

The first approach in this discipline faced the problem of solving jigsaw puzzles [51].
Jigsaw puzzles considers a set of constraints that considerably simplify the correspon-
dence search: each fragment is rectangular, with a flat outside edge, pieces often have
exactly four neighbors, and they fit together via interlocking “indents” and “outdents”.
Although there may be measurement noise when digitizing pieces, erosion was not consid-
ered. These properties lead to a variety domain-specific algorithms that, while instructive,
do not apply in a general fragment-matching context.

The solution proposed in [51] made no special assumptions about the type of surface
match, except that most matches were complete matches between two edges. Each piece
boundary was divided into edges at slope discontinuities, and global shape statistics of
each edge were used to find candidate matches. Final matching determinations came from
measuring the distance between aligned curve candidates. The puzzle was constructed
piece-by-piece, spiraling outward from the starting point.

In [183] larger puzzles were solved by assuming four-sided pieces and efficiently com-
puting the alignment error of every pair of sides. Edge pieces were detected separately,
and an alignment sequence was searched among all pairwise alignments until a loop was
closed. Then, starting at one corner of the frame and working across the puzzle, all pieces
were tested for addition. At all times, the top 200 configurations were maintained, until
the puzzle was completely assembled.

A more recent approach [63] eliminates the requirement that pieces have four sides.
Instead of explicitly detecting the sides, this algorithm extracts indents, straight edges (to
detect edge pieces), and outdents. Ellipses are fit to indents and outdents, and their centers
are used as feature points to determine matches. After reconstructing the border, pieces
are added to the puzzle which match with, at least, two already-placed pieces. New pieces
are added in a greedy way, however a global re-alignment is performed on all pieces after
each addition to redistribute error.

An interesting variation of purely geometrical approaches has gained increasing im-
portance in the latest years: image puzzles, also called pictorial jigsaw puzzles (in contrast
of the previous commented approaches, which are apictorial). For this type of puzzles,
the shape information of individual pieces is normally disappeared, and replaced by chro-
matic information. This causes evaluating pairwise affinities critical. In this situation, the
jigsaw puzzles problem becomes more challenging and compels the approaches to focus
the efforts on image content.

The general methods in the recent works can be roughly divided into two steps: a mea-
sure for describing the proximity between pieces and a strategy for puzzle assembly. In
the first step, only the image content consistency between adjoining pieces is considered.
In the second step, the strategy of assembling the pieces bases on the previous measure.

36

3.2. Contour Matching Techniques

However, the measure computed in the first step is not completely correct due to the local-
ity of measure. Therefore, a self-correcting mechanism is necessary before the assembly.
Some of the most recent approaches in this field can be found in [77] [149] [112] [195].

3.2 Contour Matching Techniques

Contour matching techniques provide solutions for more general problems, without dis-
tinguishing between specific edges or features. Applied to 2D domains, some of the most
outstanding techniques can be found in [38] [86] [125] [68] and the references therein.

Approaches presented in [38] [86] both represent discretized contours using the cur-
vature at each point. The matching cost between sequences of points on two contours is
related to the difference in curvature at corresponding points and difference in length be-
tween the two sequences. The optimal matching sequence given a pair of starting points
on each contour is found using a dynamic program. In the case of [38], a multi-scale ap-
proach is implemented in order to speed-up the search process, whilst in [86] only two
different levels of detail are used. Despite being focused on 2D problems, [86] generalizes
aspects of the proposed approach in order to extend the technique to certain 3D pieces.

In [125] an automatic process for reconstructing the wall paintings of Thera (Santorini)
is proposed. Taking as input data photographies of each fragment, contours are automat-
ically extracted and represented as discrete bitmaps. Then, for two input fragments, all
possible pairings of fixed-length segments of edges are exhaustively searched. Alignment
is computed based on the first pixel in each segment, and alignment quality is determined
by a weighted measurement of both the open area between segments and their intersection
area. A measure of each segment’s curvature is used to prune the set of pairs to compare.

One of the most famous approaches for automatically reconstructing archaeological
broken artifacts is the Stanford Digital Forma Urbis Romae Project [85]. Despite working
with 3D models, this approach could not take advantage of the geometric information of
the fragments because they were heavily eroded and adjacent fracture surfaces sometimes
did not even touch each other. Instead, they used a contour matching strategy where the
reconstruction was performed using the annotated incisions on the fragments.

The proposed automated boundary incision matching technique searches for incised
topography that corresponds across the boundaries between two candidate adjacent frag-
ments. A set of topographic feature types was selected from a hierarchy of over 150
possible labels which allowed annotations to encode varying levels of certainty about the
topography depicted by particular incisions. The search process considered each possible
pair of fragments, and then considered each reasonable alignment of annotated features
between the fragment pairs. Candidate configurations of two fragments were scored based
on the alignment of the corresponding feature types, being the highest scores the ones that
had the highest number of strongly similar features aligned. Fragment pairings with high-
est scores were output in a ranked listing for further review by an archaeological expert.

A very common extension of contour matching techniques in archaeological fragment
reconstruction are pottery re-assembly techniques. These are applied to revolution sur-
faces and can take advantage on the additional constraints of axial symmetry, torsion and
curvature to guide the search process [81] [180] [86] [198]. Archaeologists commonly
document pots based on their axis of rotation and profile curve (the pot’s cross section in a
plane through the axis of rotation) and many computational methods have been developed

37

Chapter 3. Background on Automatic Fragment Reconstruction

to extract this information
The approach proposed in [80] starts with the estimation of the correct orientation of

each fragment, taking advantage of the axial symmetry. This rotational axis is calculated
using a Hough inspired technique. Next, the classification of the fragment based on its
profile section allows the authors to decide to which class of object it belongs to. Since
orientation of the candidate fragments is known the search space to work in is completely
defined using two degrees of freedom. Then, a matching algorithm based on the point-by-
point distance between facing outlines is used to perform the final reconstruction.

In [180], not only axial symmetry is exploited, but also contours are extracted to aid in
the matching process. Starting with an initial estimate of the axis, a 6-th order polynomial
is fit to the sherd for the profile curve. The axis is re-estimated, and the process iterates
until convergence. Then, a probabilistic framework is used to find contour matches which
are consistent with the axis of rotation and profile curve, which are re-estimated from all
aligned fragments as the pot is reconstructed.

Algorithm described in [181] focuses on the problem of simultaneously estimating the
geometric parameters of the unknown axially symmetric surface while aligning the pieces,
assuming hat the correspondence between the piece break segments is already known. The
method presented in this work solves the problem using a 2 step recursive algorithm. In
step 1, the geometric constraint of axial symmetry is used to obtain an estimate of the
unknown surface for a configuration of aligned pieces. Step 2 uses this surface estimation
to obtain accurate estimates of the break segment and transformation parameters for a new
piece added to the configuration.

3.3 Surface Matching

All of the previous matching contexts are two dimensional (embedded in three dimensions
in the case of pottery matching, or in the Stanford Digital Forma Urbis Romae Project).
Surface matching techniques are applied to more general problems, considering 3D input
data, and providing solutions to problems with six degrees of freedom. In these kind
of techniques the combinatory explosion in the solution space makes exhaustive searches
prohibitive. Two ways to reduce the complexity: (1) grouping surfaces into facets, between
which to search for matches, and (2) identifying features in all fragments to reduce the
search space.

The first approach in this area was presented in [123] [124] as a semi-automatic sys-
tem for the reconstruction of archaeological artifacts from their fragments. This approach
exploited the underlying assumption that the fractured faces were nearly planar and they
matched each other completely. Using a projective space, GPU depth maps where ana-
lyzed to reconstruct the original object. The proposed reconstruction scheme was divided
into three main stages: the first stage dealt mesh segmentation (detecting independent re-
gions, and classifying as “fracture facets” or “original facets”). In the second stage all
pair of fragments and facets marked as “fracture” were compared looking for a pose that
optimized the alignment. The third stage dealt with the full reconstruction by selecting
those fragment combinations that minimized a global reconstruction error, equal the sum
of matching errors of a given set of fragment pairs.

As happened with the previous approach, the technique described in [124] segments
polygonal meshes into facets based on normal compatibility, and classifies them into orig-

38

3.4. Multi-Feature Matching

inal or fracture surfaces based on roughness. Fracture surfaces are aligned with each other
by first aligning their average normals, then using simulated annealing to minimize error.
For fracture surfaces which border an original surface, contour matching on the boundary
is used to quickly find candidate matches and alignments.

The technique described in [71] also segments fragments into faces to help restrict
matching, but eliminates the requirement that faces completely match each other by com-
puting local features to match instead. Volume descriptors giving the amount of the frag-
ment inside a ball centered at each point, and the distance of each point in the ball from
the surface, are computed everywhere. Features are computed with multiple-size balls,
and are clustered by overlapping ranges of value and at multiple scales (so that larger
clusters contain smaller ones). Each cluster is then represented by it center of mass, orien-
tation (as defined by PCA), and size and anisotropy signatures computed from its singular
values. Similar edge features are computed on face boundaries. Now fine-scale clusters
with similar size and anisotropy signatures are considered matches provided all enclos-
ing, larger-scale feature clusters also match. Additional geometric pruning finds sets of
feature correspondences that lead to a consistent alignment. Starting from a rough initial
alignment of pairs of clusters (using the PCA axes and singular values), surfaces are fur-
ther aligned using a non-intersecting variant of ICP; any feature correspondence that leads
to unstable alignment is rejected. Next, a forward search over all corresponding features
between two faces computes the set of candidate alignments (there may be several corre-
sponding to different subsets of correspondences), and a graph-based global optimization
over all candidate fragment alignments extracts the final assembly. Final positions are
optimized using a global, non-intersecting alignment algorithm.

Finally, [24] exploits the orientation constraints of flat fragments to achieve a simple,
fast matcher based on edge geometry. The proposed technique analyzes exhaustively ev-
ery possible alignment of a pair of fragments in a few seconds. To efficiently compute
fragment matches, the proposed technique regularly resamples fragment edges into what
authors call a “ribbon”. A contour is extracted at a fixed offset from the front surface,
then each sample is extruded vertically in a plane defined by the contour point’s smoothed
normal. Ribbon points are arranged in a grid, allowing efficient computation of corre-
spondences. Results of the technique were evaluated using ground-truth fresco paintings,
proving a very high success rate.

3.4 Multi-Feature Matching

One of the main problems faced during reconstruction of fractured archaeological arti-
facts is sorting through a large number of candidate matches between fragments to find the
relatively few that are correct. Approaches commented so far in this chapter focus their
effort on evaluating the quality of a match according to the geometric compatibility and,
sometimes, color information. However, when artifacts have deteriorated over many years,
ambiguity is highly increased, making extremely hard to distinguish between correct and
incorrect correspondences. For example, some techniques may consider features such as
color, which frequently have changed over time even among neighboring fragments. Al-
ternatively, other techniques may operate exclusively on 3D geometry, which may not only
have deteriorated, but is also challenging to acquire with the same fidelity and resolution
as color images.

39

Chapter 3. Background on Automatic Fragment Reconstruction

As suggested in [166], search process can be enriched by additional criteria, in ad-
dition to the geometric one. Thus, including color and texture information, may provide
better results in certain cases [142] [50]. However, when considering multiple properties,
a classifier is required to estimate the quality of a given alignment, according to all con-
sidered criteria [54] [148]. This way, in order to rank all the potential matches found, a
multi-feature metric has to be used that, somehow, has to balance all the available infor-
mation.

The approach described in [166] addresses the problem of reconstruction by consid-
ering multiple cues based on color, shape, and normal maps. The latter feature is a new
source of information that had not been used before for matching purposes, and authors
argue that it combines high data quality and resolution with high discriminability and ro-
bustness with respect to certain types of deterioration. As [24] proved, it is practical to
use flatbed scanners to obtain normal maps of mostly-flat objects with 600 or 1200 dpi
resolution. These normal maps reveal salient surface characteristics including string im-
pressions, brush strokes, surface roughness, and fine cracks.

Using this information, a set of novel feature descriptors were introduced. Using only
chromatic information, authors formalized features based on average color, saturation and
variance and contour curvatures. Using only normal information, the following descriptors
were introduced: average and variance of normals, normal discontinuities and dominant
orientation. By combining chromatic and normal information new descriptors were sug-
gested: color/normal variation, cracking and erosion. Finally, exploiting the scanned 3D
model thickness and ribbon-matcher error and volume intersection derived from the ap-
proach presented in [24] were also included.

Once all the features were introduced, in order to combine them all in a metric re-
lation, authors manually labeled sets of matching fragments, and selected some random
non-matching pairs. Using this data as a training set, they trained four machine learning
approaches: decision trees, random forests, support vector machines and logistic regres-
sion, and compared results in terms of performance, precision-recall and correction.

A similar technique was introduced in [166] that combined the ideas of the previ-
ous commented approach with the ones introduced in [148], where the properties of the
matches in assembled frescoes were analyzed. The goal is to train a classifier that predicts
the probability that a proposed match between two fresco fragments is correct. This way,
large numbers of properties can be considered into a complex match scoring function.

3.5 Multi-Piece Matching

Multi-piece matching techniques are applied to the global reconstruction of the original
object. Taking as input data pairwise matches, these techniques deal with the assembly of
larger clusters. Considering the whole object adds new challenges to the reconstruction
process, but can also help disambiguating pair-wise matches (since global consistency
adds new constraints to the problem formulation). The main difficulty associated to this
context is that small errors in alignment between adjacent fragments lead to gaps and
interpenetration. To face this problem, most of the techniques apply a global relaxation
step [63] that optimizes the global alignment. Even with global relaxation, however, error
accumulation increases as the cluster grows, eventually rendering true and false matches
indistinguishable. This effect limits the problem size automated assembly systems can

40

3.5. Multi-Piece Matching

handle in practice.
The approach presented in [71] uses a graph-based global optimization over all can-

didate fragment alignments in order to extract the final assembly. Final positions are op-
timized using a global, non-intersecting alignment algorithm. The key idea proposed is
to iteratively perform a local multi-piece registration and merge matched fragments into
larger clusters until the original object is fully reassembled.

Applied to ripped-up documents, the approach presented in [197] performs a global
reconstruction in two stages: first, it finds pair-wise candidate matches from document
fragments using a contour matching approach. Second, the global disambiguation pro-
blem is formulated in a relaxation scheme in which the definition of compatibility between
neighboring matches is proposed, and global consistency is defined as the global criterion.
Initially, global match confidences are assigned to each of the candidate matches. After
that, the overall local relationships among neighboring matches are evaluated by com-
puting their global consistency. Then, these confidences are iteratively updated using the
gradient projection method to maximize the criterion. This leads to a globally consistent
solution and, provides complete document reconstruction.

For archaeological purposes, the technique described in [26] focuses on the problem
of automatically agglomerating clusters of fragments from previously determined pairwise
matches. By introducing two careful modifications on the traditional relaxation scheme,
authors lift the limit imposed by error accumulation considerably. In contrast to previous
work, global relaxation is integrated earlier, in the search phase of the assembly process.
In addition, connections between assembled fragments are not fixed, but rather left flexible
throughout the assembly. By modifying two representative assembly algorithms, authors
demonstrate the effectiveness of the presented approach.

41

CHAPTER4
Acquisition

Acquiring models of archaeological artifacts allows having detailed digital representations
of them that can be used for analytical or dissemination purposes. Furthermore, operating
on digital models prevents damaging original artifacts and facilitates the access to the re-
search community. Acquisition stage is the only part in the entire process where original
physical fragments are involved. The goal of this stage is to generate a vectorial represen-
tation of them, as accurate as possible, without compromising their safety.

In order to create these digital representations, acquisition devices are used to capture
the topology of real objects. There are several technologies to perform such operation,
like common 2D acquisition devices, such as digital cameras or flatbed scanners, contact
scanners based on physical touch, photogrammetry approaches, time of flight cameras and
triangulation laser scanners, amongst others. Last ones are the most common in heritage
applications, given the balance between accuracy and cost that they offer.

Depending on the nature of the fragments, a 2D or 3D approach will be used: for
thin fragments, or fragments with sharp fracture edges, a 2D approach is more convenient,
since 2D acquisition devices are cheaper, faster, and provide very accurate results. Also,
the search process using 2D images is faster than the one that considers 3D volumes. In
case the 2D characterization does not provide enough information for the reconstruction
process, 3D models will be acquired using a triangulation based 3D scanner, and B-Rep
models will be generated to work with. Next sections cover the details of both processes,
paying special attention to the 3D case, where more complex situations have to be faced.

Major contribution of this chapter is the introduction of Cyclododecane as whitening
spray, allowing to perform the 3D acquisitions of reflective/refractive archaeological arti-
facts without compromising their integrity.

43

Chapter 4. Acquisition

4.1 2D acquisition

Obtaining two-dimensional representations of fragments is quite simple: using a flatbed
scanner or a digital camera, objects can be quickly acquired into high resolution bitmaps,
with 600 or 1200 dpi. Together with the contour information, color data is retrieved and,
as explained in [166], high resolution normal maps can be generated, revealing salient
surfaces characteristics including brush strokes, surfaces roughness... However, since the
proposed technique focuses only on geometry, all the extra information is discarded.

Given that the proposed search strategy finds the rigid transformation that better aligns
fragments, scale transformations are not considered. This has to be taken into account
during the acquisition stage in the sense that all fragments have to be represented propor-
tionally to their original size. This way, an extra degree of freedom in the solution space is
avoided, and the final search time is reduced.

Once discrete bitmaps are obtained, a vectorial representation of the contour has to be
computed. To do so, an image segmentation stage is mandatory, in order to differentiate
between the fragment and the background. Afterwards, a contour extraction has to be
applied over the fragment’s discrete representation.

Segmenting the image is straight forward, considering that it has been acquired in a
controlled environment, and that a proper background for the acquisition has been chosen.

For the contour extraction stage, frontier pixels have to be identified. Given a fragment
pixel p = (xp, yp), it is considered to be a frontier pixel if any of its 4-connected neighbors
is a background pixel. A pixel q = (xq, yq) 6= p is a 4-connected neighbor of p if it verifies
that q = (xp + 1, yp) g q = (xp, yp + 1). It is said that q is an 8-connected neighbor of p
if it verifies that |xp − xq| ≤ 1 f |yp − yq| ≤ 1 (Figure 4.1).

1 2 3

4 5 6

7 8 9

Figure 4.1: Pixel neighborhood. For pixel number 5 (shaded with gray), pixels 1 to 4 and
6 to 9 are the 8-connected neighbors, and pixels 2, 4, 6, 8 are the 4-connected ones.

Once frontier pixels are extracted, a random frontier pixel is selected as starting point
and a line connecting it to one of its 8-connected neighbors is created. Iteratively, a new
line starting from the last visited pixel is created with the same criteria, taking care of not
visiting twice the same pixels. This process ends when the initial vertex is reached again.

Notice how this simple contour extraction technique expects fragments to be solid
(without islands inside). If that were the case, inner holes would be discarded, considering
only the outer perimeter. More complex contour extraction approaches can be found in
the bibliography, since this kind of techniques are very common in the field of Computer
Vision. Nevertheless, considering that contour extraction is out of the scope of this doc-
ument and that the proposed solution is sufficient for the reconstruction purposes of this
Thesis, this matter will not be discussed in more detail.

44

4.2. 3D acquisition

4.2 3D acquisition

Generating 3D models from the original fragments is much more complicated than the
2D acquisition. This is a consequence of two main reasons: self-occlusions and reflec-
tions/refractions. Self-occlusions happen because there is no way of observing (and thus
acquiring) the whole surface of the fragment simultaneously. Reflections/refractions are
related to the physical limitations of the acquisition devices, and the properties of the frag-
ment’s surface.

To face self-occlusion problems a set of partial views have to be acquired from dif-
ferent locations. After the acquisition, all views have to be registered in order to fully
characterize the original object. To do so, two stages are involved: global registration
and local refinement of the alignment. Global registration consists on identifying common
parts in the acquired point clouds from two different views. This way the search space gets
considerably reduced and an initialization is provided to the local refinement stage. The
second step applies ICP from the provided rough alignment and refines the final result.
In order to obtain quality results, it is very important that overlapping area between two
different views are big enough to have as much correspondences as possible.

In order to accelerate the acquisition process, a turning plate connected to the scanner
has been used. This way, by using a calibration chart that allows identifying the rotation
axis of the plate, the global registration stage can be automatized: having the scanner in a
fixed position, pointing towards the center of the plate, and the rotation axis properly iden-
tified in the scanner’s reference frame, a set of equi-spaced angular views of the original
object are acquired and globally aligned using the known orientations of the turning plate.
Since local refinement is automatic, both stages are executed without user’s intervention.

To face reflections/refractions the simplest way of proceeding will be to use an acqui-
sition device whose technology allows working with reflective/refractive fragments. This
way, contact scanners which probe the original object through physical touch, are good
candidates. However, this technology has been discarded, given that fragments are some-
times extremely fragile and that acquisition times are longer.

Non-contact 3D scanners are mostly based on reflection: time-of-flight cameras probe
distances to the object by timing the round-trip time of a pulse of light, triangulation based
3D laser scanners use calibrated cameras to identify the location of a laser beam reflected
by the object’s surface...

Transparent objects violate most of the fundamental assumptions made by vision algo-
rithms. For instance, they cause the projection of a background scene to the image plane
to be deformed. Furthermore, this projection can vary from one viewpoint to the next.
Additionally the reflection of light by the surface complicates the reconstruction process.

To address this problem, industry solutions commonly use whitening sprays designed
to create an opaque thin film over the object’s surface. This way, acquisition using tri-
angulation laser scanners can be performed and, if the film is thin enough, measurement
errors introduced by the sprays can be ignored (since 3D scanners accuracy is orders of
magnitude coarser).

The main problem with these sprays is that they are not suitable for archaeological
fragments: after the acquisition has been performed, removing the spray layer requires
lot of rubbing and the use of strong dissolvents, which may damage or alter the surface
properties of the acquired object.

45

Chapter 4. Acquisition

Given the unique nature of the fragments and their fragility, neither of these two pro-
cedures can be applied for obvious reasons. Also, chemical stability is a common require-
ment for manipulating these kind of artifacts and none of the available commercial spray
satisfies this condition.

To provide a solution to the acquisition problem in the field of archaeology, a new
application of a common conservation material is proposed: the use of cyclododecane
as whitening spray. Cyclododecane (abbreviated as CDD) is a volatile cyclic alkaline
(C12H24) that is solid at room temperature. For being non-polar and compound exclu-
sively by carbon and hydrogen, it is an inert material whose most attractive characteristic
is that it sublimes, eliminating additional chemical or physical treatment steps to remove
it. Its physico-chemical properties include good film-forming capabilities, insolubility in
water, solubility in organic solvents and low toxicity, which render the compound partic-
ularly useful in the field of cultural heritage. In fact, in the latest years it has become
very common in this field as a temporary consolidant, sealant and hydrophobic protecting
coating for fragile materials (paintings, ceramics, papers, textiles...).

Figure 4.2 shows the accelerated sublimation process, where the artifact has been over-
sprayed to better illustrate this concept.

Figure 4.2: From left to right and top to bottom, the sublimation of cyclododecane applied
on an artifact. Images are captured in 45 seconds intervals since the application of
the spray (top-left picture). The process has been accelerated pointing a hair dryer
towards the object.

46

4.2. 3D acquisition

Cyclododecane can be applied in different manners but, for the proposed use, spray
seems the most convenient since it is the one that creates the thinner film. After applying
it to an object, it can be observed that its surface turns opaque and white, which are the
most desirable conditions for laser scanning purposes. Immediately after the application,
the thin layer starts to sublimate (pass from solid to gas state).

The average sublimation speed has been observed to be of 0.03mm each 24 hours
but, there are additional factors that affect this behavior, like film thickness and density,
substrate porosity, atmospheric temperature and pressure and air exchange over the surface
of the film. This way sublimation can be accelerated by directing a hair dryer over the
surface of the fragment, or retarded by reducing the airflow over the surface of the object.

4.2.1 Residuals Analysis
For CCD to be useful in acquisition it has to be proven that, after applying it, the frag-
ment can be correctly acquired and that the error introduced by the thin layer created is
smaller than the accuracy of the 3D scanner used. A set of experiments has been designed
to demonstrate this and to compare CCD with common industrial whitening acquisition
sprays: Helling Developer U 89 (referred as U89 in the tests), Helling Developer D 70
(referred as D70 in the tests) and OPN Developer White (referred as WHITE in the tests).
To perform the proposed experiments, a Konica Minolta VIVID 900 has been used, with
a 24mm lenses that provides an average accuracy of 600µm.

First experiment consists on scanning a flat calibration chart and comparing the ac-
quired point cloud with the optimal plane that better fits it. Residuals are expressed as
signed distances between this plane and each point, and displayed together in an histogram.
Average errors and standard deviations are calculated together with the two 2.5% intervals
containing the worst samples (one for positive distances and another for negative ones).

The proposed experiment has been performed without applying any whitening spray
(so the error distribution of the sensor can be characterized), with the 3 commercial whiten-
ing sprays commented before and with cyclododecane spray. For this experiment and the
next ones, a colorimeter has been used in order to have fair comparisons: spray is applied
on the surface, until an specific white tone is achieved.

Results of this experiment, shown in Figure 4.3, reveal no significant differences be-
tween using or not using any spray, and between cyclododecane and the other commercial
solutions. As it can be appreciated, 95% of the samples are always in a range almost
centered in 0, and with 600µm of size, which makes sense given the scanner’s accuracy.

Second experiment uses more complex shapes to evaluate each sprays’ performance.
Given that, in this case, no optimal surface can be approximated, residuals are calculated in
a different way: starting from an opaque object, a ground-truth model is acquired. Without
touching the object and leaving the scanner focus fixed, the spray is applied until the
desired level of white is achieved. Then, the model is acquired again, and both point-clouds
are registered (because, even not focusing the scanner again, the focal length changes
between acquisitions). Residuals are expressed as point-to-point distances between closest
neighbors in both point clouds. To prevent measurement errors, each object has been
scanned three times with each spray, and no object has been re-used after each test. This
way, 12 identical replicas of each object have been used: after the acquisition with one
spray, the object is discarded for further tests, so residuals remaining in the surface do not
alter next measurements. Figures 4.4, 4.5 and 4.6 show the achieved results.

47

Chapter 4. Acquisition

−0.5 0 0.5
0

50

100

150

200

250

300

350

400

450

NO SPRAY

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = 0.0167

−0.2925 0.3899

σ = 0.1614

0.

Error magnitude (mm)

Sa
m

pl
e

co
un

t

−0.5 0 0.
0

100

200

300

400

500

CYCLODODECANE

μ = 0.0148

−0.2326 0.3356

σ = 0.1323

5 −0.5 0 0.5
0

50

100

150

200

250

300

350

400

D70

μ = 0.0119

−0.3328 0.4196

σ = 0.1762

Error magnitude (mm)

Sa
m

pl
e

co
un

t

−0.5 0 0.5
0

50

100

150

200

250

300

350

400

450

U89

μ = 0.0177

−0.2829 0.4154

σ = 0.1616

Error magnitude (mm)

Sa
m

pl
e

co
un

t

−0.5 0 0.5
0

50

100

150

200

250

300

350

400

450

500

WHITE

μ = 0.0134

−0.2814 0.3832

σ = 0.1555

Error magnitude (mm)

Sa
m

pl
e

co
un

t

Figure 4.3: Residuals for the calibration chart after applying each spray, with respect to
the optimal plane. The red line indicates the signed average error. Blue intervals on
both sides represent (each one) a 2.5% of the total acquired samples.

48

4.2. 3D acquisition

0

 = 0.0000

−0.5 0.5
0

200

400

600

800

1000

1200

1400

CYCLODODECANE

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ

−0.1936 0.2117

σ = 0.1048

−0.5 0 0.5
0

200

400

600

800

1000

D70

Error magnitude (mm)

Sa
m

pl
e

co
un

t

 = −0.0020μ

−0.2444 0.2301

σ = 0.1278

−0.5 0 5
0

100

200

300

400

500

600

700

800

900

U89

Error magnitude (mm)

Sa
m

pl
e

co
un

t

 = 0.0008μ

−0.2725 0.2845

σ = 0.1352

0. −0.5 0 0.5
0

100

200

300

400

500

600

700

800

900

WHITE

Error magnitude (mm)

Sa
m

pl
e

co
un

t

 = 0.0020μ

−0.2233 0.2804

σ = 0.1343

Figure 4.4: Residuals for model ES after applying each spray, with respect to the same
model/pose before appliying the spray, and properly registered. The red line indicates
the signed average error. Blue intervals on both sides represent (each one) a 2.5% of
the total acquired samples. This model presents an irregular shape with no curvature
on the surface. As it can be noticed, all four sprays fall into the 600µm range of the
scanner and cyclododecane performs even better than the others.

49

Chapter 4. Acquisition

CYCLODODECANE

 μ = 0.0061

σ = 0.1337

−0.2430

 0.3333

D70

 μ = 0.0005

−0.1301 0.1303

σ = 0.0782

0

200

400

600

800

1000

1200

1400

1600

Sa
m

pl
e

co
un

t

Error magnitude (mm)
0 0.5−0.5 −0.5 0 0.5

0

500

1000

1500

2000

2500

Sa
m

pl
e

co
un

t

Error magnitude (mm)

U89

 μ = −0.0131

σ = 0.1843

WHITE

WHITE

−0.5 0 0.
0

500

1000

1500

2000

2500

3000

Error magnitude (mm)

Sa
m

pl
e

co
un

t

5

−0.2558 0.1626

−0.5 0 0.5
0

500

1000

1500

2000

2500

3000

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = −0.0003

−0.1089 0.1022

σ = 0.0632

Figure 4.5: Residuals for model CO after applying each spray, with respect to the same
model/pose before appliying the spray, and properly registered. The red line indicates
the signed average error. Blue intervals on both sides represent (each one) a 2.5% of
the total acquired samples. This model presents an irregular shape with some smooth
curvature on the surface. In this case results are more accurate than in the previous
one, being cyclododecane slightly worst than the alternatives, but always inside the
scanner’s accuracy range.

50

4.2. 3D acquisition

−0.5 0 0.5
0

200

400

600

800

1000

1200

1400

1600

1800
CYCLODODECANE

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = 0.0004

−0.0974 0.1067

σ = 0.0685

−0.5 0 0.5
0

200

400

600

800

1000

D70

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = 0.0073

−0.1569 0.2253

σ = 0.1135

−0.5 0 0.5
0

200

400

600

800

1000

1200

1400

1600

U89

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = 0.0005

−0.0905 0.0920

σ = 0.0600

−0.5 0 0.5
0

200

400

600

800

1000

1200

1400

1600

1800
WHITE

Error magnitude (mm)

Sa
m

pl
e

co
un

t

μ = 0.0006

−0.0878 0.0875

σ = 0.0552

Figure 4.6: Residuals for model MO after applying each spray, with respect to the same
model/pose before appliying the spray, and properly registered. The red line indicates
the signed average error. Blue intervals on both sides represent (each one) a 2.5%
of the total acquired samples. This model presents an irregular shape with strong
incisions on the surface. As happened with previous objects, all four sprays present an
error distribution very similar, and inside the scanner’s accuracy range.

51

Chapter 4. Acquisition

4.2.2 Electronic Microscope Analysis
As previous results suggest, all four compared products are suitable for acquiring 3D mod-
els of archaeological fragments. However, a simple visual inspection of the surface of the
fragment after applying the spray reveals differences between cyclododecane and the other
products: the white film created by cyclododecane shows more irregularities than the other
sprays, suggesting a bigger particle size.

To confirm this, and measure the differences, a set of pictures have been taken using
an electronic microscope. In Figure 4.7 it can be appreciated how cyclododecane particles
are considerably bigger than the other products. However, a closer look to the 5.000
augments picture of cyclododecane (top-right image) clearly shows that the particle size
is around 10µm, which is one order of magnitude smaller than current laser triangulation
scanners’ accuracy. This observation confirms previous experiment results, and explains
the empirical visual differences between cyclododecane and the other sprays.

600µm

CDD

WHITE

U89

D70

80µm 30µm 10µm
100x 750x 2000x 5000x

Figure 4.7: Electronic microscope comparison of whitening sprays at different scales.
Notice how, even having a bigger particle size than the other sprays, cyclododecane is
still small enough to not interfere with laser scanners.

4.2.3 Sublimation speed
In order to estimate the effective time in which CCD can be used as opacifier for acquisi-
tion purposes, two objects have been selected: a big flat glass with some roughness on its
surface and a glass pot with more pronounced reliefs and irregularities. Both objects have
been sprayed and scanned several times in a fixed pose.

52

4.2. 3D acquisition

Taking as reference model the point cloud acquired immediately after applying the
spray, subsequent acquisitions have been compared against it, focusing on two different
estimators for the sublimation speed: the number of valid measures returned by the scanner
and the average deviation with respect to the reference model.

On average, the total amount of CCD applied to each object in order to ensure a good
acquisition has been estimated as 7, 998mg/cm2.

Results presented in Fig. 4.8 show how, after the first hour since the spray was applied,
the total number of valid points do not change significantly (98.44% of the original points
are still present in the ‘Pot’ case and 98.41% in the ‘Flat glass’ case), whilst average acqui-
sition deviations are always very close to 0 (0.0526mm for the ‘Pot’ and 0.0052mm for the
‘Flat glass’). During the next four days, the average error does not change significantly,
whilst the number of valid measurements gradually decreases, remaining present 77.79%
of the original points for the ‘Pot’ and 59.44% for the ‘Flat glass’ at the end.

It can be noticed how sublimation speed changes considerably from one case to the
other: in the case of the ‘Flat glass’, since the air exchange over a big flat surface is
greater than in an irregular object as the ‘Pot’, the evaporation process gets considerably
accelerated. However, both objects were perfectly scanned during the first 75 minutes
after the application of the spray which, from our experience, provides plenty of time to
perform the acquisition.

Time since application (minutes)
10 100 1000

N
um

be
r o

f o
bs

er
ve

d
po

in
ts

 (x
10

 4)

CCD sublimation (Pot)

Time since application (minutes)

Er
ro

r d
is

tr
ib

ut
io

n
(m

ill
im

et
er

s)

CCD acquisition error (Pot)

Time since application (minutes)

Er
ro

r d
is

tr
ib

ut
io

n
(m

ill
im

et
er

s)

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2
CCD acquisition error (Flat glass)

Time since application (minutes)
10 100 1000

N
um

be
r o

f o
bs

er
ve

d
po

in
ts

 (x
10

 5)

CCD sublimation (Flat glass)

5 10 20 30 40 50 60 75 90 100
120

150
180

210
240

285
345

405
1290

1410
1530

1650
1770

5670

5 10 20 30 40 50 60 75 90 105
120

150
180

210
240

285
345

405
1290

1410
1530

1650
2370

5685
-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

3

2,8

2,6

2,4

2,2

2

1,8

1,6

5,2

5

4,8

4,6

4,4

4,2

4

3,8

Figure 4.8: Evaluation of the sublimation speed of CCD. Left charts show the number of
valid measures over time with respect to the reference model (acquired immediately
after applying the spray), whilst right charts show the error distribution over time.

53

Chapter 4. Acquisition

4.2.4 Conclusion
According to all previous experiments, the advantages arising from cyclododecane’s chem-
ical stability and the fact that it sublimes at ambient temperature make it a perfect candidate
for the acquisition of reflective/refractive archaeological artifacts, even taking into account
that its particle size is bigger. Also, it is interesting considering that it is a relatively cheap
product (cheaper than whitening sprays), and that its toxicity is very low.

Figure 4.9 shows the results achieved when scanning a set of glass artifacts using and
not using CCD as a whitening spray.

Original Artifact Result without CCD Result with CCD

La
m

p
D

is
h

Bo
w

l 1
Bo

w
l 2

Figure 4.9: Results achieved using and not using CCD as a whitening spray.

In Figure 4.9 it can be appreciated how, for the topmost two artifacts (“Lamp” and
“Dish”), transparent areas are not visible to the scanner when CCD is not used and, con-
sequently, the resulting model presents lots of holes. Also, in the “Lamp” model and in
“Bowl 1” and “Bowl 2”, the areas opaque enough to be acquired present lot of noise, due
to the reflections/refractions that happen when the laser beam hits the surface. Notice how
the use of cyclododecane allows capturing the whole model and reduces considerably the
noise introduced by this phenomenon.

54

4.2. 3D acquisition

Figure 4.10: The artifact “Bowl 2” with cyclododecane applied (left), and after the (un-
accelerated) sublimation process (right). Notice how no trace of the spray remains on
the surface of the object. The sublimation process took 36 hours after acquisition.

Figure 4.10 shows one of the artifacts sprayed with cyclododecane for its acquisition,
and the same artifact after the white film has completely sublimated, without rubbing or
using solvents to remove it.

The development of these experiments has been done in collaboration with restoration
experts from the IRP, (Universitat Politècnica de València) and it is enclosed inside the
national research project supported by the "Plan Nacional de I+D+i 2008-2011" from the
Ministerio de Economía y Competitividad of Spain, Project ID: HAR2012-38391-C02-01,
HAR2012-38391-C02-02.

55

CHAPTER5
3 Degrees of Freedom Approach

This chapter deals with the automatic reconstruction of flat archaeological artifacts. These
are very common in archaeological sites and have the advantage of constraining the search
space to three degrees of freedom: one associated to orientations, and two to translations.
One of the most typical examples in this kind of problems are frescoes, whose mural
paintings and surface engravings are of huge importance in the field of Cultural Heritage.

The proposed technique takes as input data two 2D/3D digital models of flat frag-
ments and outputs the rigid transformation that maximizes the contact area between their
surfaces. Results achieved always ensure that, for the calculated alignment, there are no
penetrations between fragments and that the solution corresponds to the global minima.

Of course, depending on erosion, the best match is perhaps not the real solution. In this
case, it is up to the user to discard the alignment and ask the system to return alternative
matches. This way, the goal of the proposed technique is not solving the global puzzle,
but providing a fast/robust algorithm to perform the necessary intermediate comparisons
between pairs. Once these pairwise alignments have been calculated, an interactive semi-
automatic tool uses them to assist the restoration personnel in the final reconstruction.

The reason for not facing the global problem is that it is known to be NP-complete [5]
[46], which gets even harder when considering the extra ambiguity introduced by erosion.
Also, error accumulation when re-assembling the original object increases as the num-
ber of fragments grows (even using relaxation techniques). This, eventually makes true
and false matches indistinguishable, limiting the problem size fully-automated assembly
systems can handle in practice [26].

57

Chapter 5. 3 Degrees of Freedom Approach

Major contributions of this chapter are:

• A discrete characterization of fragments and alignments that allows performing all
heavy geometric operations by the GPU on a pre-processing stage, and ensures data
alignment.

• A hierarchical characterization of fragments.

• A hierarchical search strategy with a very high performance.

• An optimistic cost function that ensures convergency and global correction of the
hierarchical search strategy, that operates on the hierarchical characterization of the
fragments.

5.1 Overview

The proposed technique faces all the stages involved in the reconstruction process (Fig.
5.1). The final goal is to provide the potential matches between pairs to an interactive semi-
automatic tool that will represent them graphically, assisting the restoration personnel in
the decision making process, and accelerating the re-assembly of the original artifact.

Original fragments

B-Rep 3D models / 2D Shapes

Depth maps

Match (Transformation + Cost)

PRE-PROCESSING

PAIR-WISE
SEARCH

ACQUISITION

SEMI-AUTOMATIC
EXPERT SYSTEM

Figure 5.1: 3DOF technique overview

Starting from the original fragments, first stage deals with the acquisition into a digital
format. Depending on fragments’ nature and, mostly, their thickness, a 2D or 3D acquisi-
tion device will be used. For thick fragments, a 3D B-rep model will be generated and, for
thin ones, a vectorial 2D contour shape. Previous chapter covered this stage.

58

5.2. Cost Function and Solution Space

Taking as input data these vectorial representations of the fragments, a set of dis-
crete GPU-computed hierarchical depth maps will be generated in the pre-processing stage
(Section 5.3). The discrete and hierarchical nature of this alternative characterization will
accelerate the search process in the next stage.

From the hierarchical depth maps of two fragments generated previously, the pair-wise
search stage finds the rigid transformation that maximizes the contact area between them
while preventing penetration. The result of this stage is the transformation matrix that
stores this information, together with a quality measure. Section 5.4 covers this process,
starting from an exhaustive approach and ending into a fully hierarchical one.

To accelerate the final expert system, Subsection 5.4.5 introduces a small modifica-
tion in the one-to-one hierarchical search algorithm that allows taking advantage of the
proposed search strategy in many-to-many comparisons.

In Section 5.5 achieved results with each technique are presented and compared and,
in Section 5.6, major conclusions are highlighted and future improvements are introduced.

5.2 Cost Function and Solution Space

To compute the cost function of a given alignment, and for the proposed search strategy,
fragments are assumed to have their upper and lower faces aligned to the X − Z plane,
being the lower face laying on the Y = 0 plane. This alignment is normally performed
manually during the data acquisition stage, but it can also be automatized by segmenting
data as explained in [71], and applying least squares to infer the optimal planes that contain
the upper and lower faces.

The quality of an alignment is evaluated by using the LCP (Largest Common Pointset)
metric, which is widely extended in matching techniques and can be defined as:

LCP (P,Q) =
∑
p∈P

Match(p,Q) (5.1)

Match(p,Q) =

{
1, ∃q ∈ Q, ‖p− q‖ < ε

0, otherwise
(5.2)

where P and Q are two fragments, p is a sampled point in P , q is a sampled point in Q,
and ε is a tolerance given by the user that indicates if two points are close enough to be
considered as matching. The value of ε depends on how eroded the compared fragments
are, and has to be empirically estimated using known matches. Normal values are in the
range of [0.1%..2%] of the average fragment size.

To efficiently calculate the corresponding point q that is aligned to a point p, both frag-
ments are sampled uniformly using a parallel projection plane, Π, which is perpendicular
to the X − Z plane. This way, the two degrees of freedom associated to translations are
expressed according to the cartesian system (u, v) defined by the projection plane. Dis-
tances between facing samples in both fragments can be easily calculated as the sum of
their individual distances (v values) to the projection plane. Fig 5.2 illustrates this concept.

Despite being a three degrees of freedom problem, the non penetration constraint that
has to be satisfied makes that, given a relative rotation between fragments, only u transla-
tions are independent: the value of v can then be estimated as the translation that has to be
applied to fragment Q, so both fragments’ surfaces get in contact.

59

Chapter 5. 3 Degrees of Freedom Approach

In order to keep samples aligned, the total amount of discrete displacements over axis
u is determined by the sampling resolution (n) of the fragments, whilst the value of v
remains continuous. With respect to orientations, the solution space is discretized into a
set of m equispaced intervals, being m = 2k, k ∈ N. This assumptions leave a solution
space with two discrete axes (orientations and u displacements) and a continuous one (v
displacements) that is dependent on the other two dimensions.

The proposed solution space make this approach suitable to solve the same problems
faced in [24]. The main difference with this technique is that here the total alignment
error is optimized by minimizing a cost function that considers the entire edge of the
fragment, instead of a local patch. This allows performing a hierarchical search strategy
that increases performance, and that would not yield into a big speedup in Brown’s.

P
Q

∏

v
wu

P

Q

u

v
∏

X

Z

X

YZ

Figure 5.2: Proposed cost function for 2D problems (left) and 3D problems (right). Dots
represent the samples on the fragments’ surface, colored in the 3D version to facilitate
the understanding of the ilustration. Lines connecting samples represent the distance
between the projection plane and the surface of the fragment. 3D models are courtesy
by Vienna University of Technology.

5.3 Pre-Processing

During the search process lots of comparisons between pairs of fragments have to be done,
so it is convenient the evaluation cost to be minimum. Such cost is associated to the
intrinsic operations performed, that can be classified as:

• Geometric: translations, rotations and projections.

• Visibility: self-occlusions in fragments.

• Discretization: uniform sampling of the fragments.

• Comparison between samples.

Notice how geometric, visibility and discretization operations depend only on the
topology of each fragment, whilst comparison operations depend on which pair of frag-
ments are compared and the specific alignment evaluated. It is also important to notice

60

5.3. Pre-Processing

that, while the first kind of operations require hard computing (including geometric trans-
formations, visibility tests and discretization operations) the second can be performed us-
ing simple additions, as commented before.

These ideas lead to including a pre-processing stage to deal with all these costly op-
erations that only depend on each fragment. Results achieved in this stage can be used in
as many comparisons as needed in further searches. This way, the search process can be
performed by using only simple operations over pre-processed aligned data.

To pre-calculate the projective distances of fragments, the proposed technique uses
GPU (Graphic Processor Unit) computing capabilities, which makes it very similar to
the approach presented in [123]. The main difference with this technique is that, in this
case, fractured faces are not assumed to be nearly planar and match each other completely.
This way, a major number of cases have to be considered, making the proposed approach
suitable for more general problems.

Since nVidia first introduced T&L (Transform Clipping and Lightning) technology
in 1999, graphics hardware have specific units embedded in its pipeline that efficiently
perform all the geometric transformations needed. The use of depth buffers, combined
with stencil buffers, allows GPUs performing visibility tests in screen-space with hard-
ware acceleration and, given the discrete nature of generated images, the rasterization unit
performs all the heavy calculations needed to get uniform samples over the surface of the
fragment. Figure 5.3 shows the hardware architecture of modern GPUs.

Input Assembler Stage

Vertex Shader Stage

Geometry Shader Stage

Stream Output Stage

Rasterizer Stage

Pixel Shader Stage

Output Merger Stage

M
em

ory Resources (Buffers, Textures...)

Figure 5.3: GPU architecture for the Shader Model 4.0 standard. Rounded boxes are
programmable units. Vertex Shader Stage deals with T&L operations. The rasterizer
stage deals with discretization and depth tests are evaluated before rasterizer stage
and after pixel shader stage.

Given these advantages, the way to measure distances to the surface of the fragment
lies in calculating the orthographic projection matrix defined by the angle of the plane,
and rendering the depth buffer into a frame buffer object. The resolution of the depth

61

Chapter 5. 3 Degrees of Freedom Approach

buffer used determines the number of samples calculated, and the precision of measures is
considerably high (up to 32 bit float values of depth, distributed linearly on the visibility
frustum). Figure 5.4 shows the result of measuring distances using a GPU-accelerated
parallel projection.

0 50 100 150 200 250

0

50

100

150

200

250

1

0

0.5

0.75

0.25

N
orm

alized distance (Z)

sa
m

pl
e

(X
)

sample (Y)

Figure 5.4: GPU computed depth-map. Depth values obtained using the GPU, expressed
in normalized distances with respect to the projection plane. Points outside the 3D
model are represented with distance 1.

For 2D approaches, the contour extracted from the acquired image is extruded along
the Y axis and the vertical resolution of the computed depth buffer is one pixel. For 3D
approaches, the acquired B-Rep model is used, and the depth buffer resolution ratio is
forced to one (with respect to the object’s dimensions), so surfaces are sampled with the
same frequency in both axes. Figures 5.5 and 5.6 illustrate the measuring process carried
out in the pre-processing stage for both, 2D and 3D cases.

P Q

∏Q

uP

vP

uQ

vQ

X

Z∏P

Figure 5.5: 2D Pre-Processing of the fragments compared in Fig. 5.2 (left) for two given
orientations (represented as the projection plane orientation).

62

5.4. Search Strategy

uP

wPvP uQ

wQ

vQ

∏P ∏QP Q

X

Y
Z

Figure 5.6: 3D Pre-Processing of the fragments compared in Fig. 5.2 (right) for two given
orientations (represented as the projection plane orientation).

5.4 Search Strategy

Having a proper cost function defined and the solution space characterized, the search
stage deals with finding, as fast as possible, the best solution amongst all.

Subsection 5.4.1 introduces a basic exhaustive strategy whose main disadvantage is
performance. To speedup the search process, a hierarchical strategy is introduced in sub-
sections 5.4.2, 5.4.3 and 5.4.4, which faces the main bottlenecks of the exhaustive ap-
proach: orientations, displacements and cost function evaluation, respectively.

Using exhaustive search results as ground truth, hierarchical techniques accelerate the
process preventing correction loss and ensuring that the search always converges to the
optimal solution without stopping in local minima.

5.4.1 Exhaustive Search
Exhaustive approach, also known as naive search, is the most basic approach. Its main
advantage is that it always produces the correct results, avoiding local minima. On the
other hand, its main disadvantage is related to performance: it has to evaluate all possible
alignments between fragments to find the best match.

An Alignment, A, and its associated cost function, c(A) are defined as:

A(θP , θQ, δu) (5.3)
c : R× R× Z→ {x ∈ N : x > 0} (5.4)

where θP and θQ in (5.3) correspond to the orientation of both fragments, and δu cor-
responds to the relative displacement along the u axis, defined by the projection plane,
and illustrated in Fig. 5.2. The other displacement, δv , will be handled when deriving the
matching between two projective planes, as explained below and in Fig. 5.7. The cost
function detailed in (5.4) takes as input data an alignment, and returns a natural number

63

Chapter 5. 3 Degrees of Freedom Approach

greater than 0 that corresponds to the amount of matching samples in both fragments that
are close enough to be considered as matching.

Given that all possible alignments have to be compared, the total amount of evaluations
of c(A) can be expressed as:

O(m,n) ≈ m2 ∗ (2n− 1) (5.5)

where m is the number of orientations considered, and n is the number of samples.
The 2n − 1 term in (5.5) represents the total amount of displacements that can be

performed, in order to keep samples from both fragments aligned. The m2 term in (5.5)
means that, for every orientation in fragment Q, every orientation in fragment P has to be
compared. However, notice how there are lots of pairs of orientations which produce the
same results (θP = θQ + b).

To reduce the number of combinations calculated, it can be assumed that one fragment
(P), is only studied for k equi-spaced orientations, whilst the second (Q) is studied for
the whole m orientations, being k < m. The value of k has to be great enough to fully
characterize P , but low enough to simplify the search process. This way, k is not related
to the size of the fragment, but to the convexity of its surface: the more self-occlusions on
the surface of the fragment, the bigger value of k. In practice, values for k in the range
[6..16] have provided results equivalent to k = m.

The final amount of alignments to be evaluated can, then, be expressed as:

O(m,n, k) ≈ (m ∗ k) ∗ (2n− 1) (5.6)

To speedup the cost function evaluation, each fragment P is characterized as a set
of distance matrices Pθk = [pi,j]|u|×|w|, where θk is the orientation of the projection
plane, |u| and |w| represent the sampling resolution over axes U and W , respectively,
and each element pi,j stores the calculated distance between the (i, j)th sample and the
projection plane Πθk . Orientation values of θk are defined as: θk = k ∗ 2π/m, being m
the discretization resolution on rotations.

To generalize equations for both, 2D and 3D cases, it can be considered that, in the
2D case, |w| = 1, so the third dimension of the bidimensional fragment is discarded. This
will be assumed during the entire chapter.

Since alignment between samples is ensured by the proposed characterization, given
two fragments (P , Q) and a discrete displacement of fragment Q over U axis (δu), the
sample facing pi,j is qi−δu,j .

c(A) =

|u−1|∑
i=0

|w−1|∑
j=0

Match(pi,j , qi−δu,j) (5.7)

δv = Min(pi,j + qi−δu,j) (5.8)

Match(pi,j , qk,j) =

{
1, pi,j + qk,j − δv ≤ ε
0, Otherwise

(5.9)

To calculate the cost function of an alignment (5.7), the maximum displacement δv of
fragment Q over V axis that produces contact between the surfaces of fragments (5.8) has
to be calculated firstly. Then, given the calculated δv , for each pair of aligned samples

64

5.4. Search Strategy

pi,j ∈ P and qi−δu,j ∈ Q, it has to be evaluated if they are close enough to be considered
as matching (5.9), where ε is the tolerance introduced by the user.

Notice how the distance between the projection plane and the surface of the fragment
does not affect the technique, given that δv ensures that contact between both fragments
always happens. Figure 5.7 illustrates the calculation of δv and c(A).

PP

Q

Q ε
pi+qi pi+qi-δvδv

Figure 5.7: Cost function evaluation for two centered fragments (δu = 0). (left) δv calcu-
lation stage. Minimum distance is marked as blue samples. (right) Cost function cal-
culation applying the δv displacement. Matching samples, according to ε, are marked
in purple.

Algorithm 1 shows the pseudo-code to perform an exhaustive search.

Algorithm 1 Exhaustive search

1: best← null;
2: for θP ← 0 to 2π step 2π/k do
3: for θQ ← 0 to 2π step 2π/m do
4: for δu ← −|u|+ 1 to |u| − 1 step 1 do
5: A← Alignment(θP , θQ, δu);
6: if c(A) > c(best) then
7: best← A;
8: end if
9: end for

10: end for
11: end for
12: return best;

As Algorithm 1 shows, in order to return the best alignment, all possible solutions have
to be evaluated and compared with the previous ones. This forces to explore the whole
solution space, making the approach very inefficient. Fig. 5.8 shows all the values for
the cost function during the exhaustive search over the alignment displayed in Fig. 5.16,

65

Chapter 5. 3 Degrees of Freedom Approach

considering that fragment P (represented in blue) is fixed in the orientation displayed, and
fragment Q (represented in green) is the one that moves.

Angle of fragment Q (degrees)

D
is

pl
ac

em
en

t o
f f

ra
gm

en
t Q

 (m
ilim

et
er

s)

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

Cost function
-80

-60

-40

-20

0

20

40

60

80

Figure 5.8: Solution space and cost function results for all posible orientations and dis-
placements of the alignment represented in Fig. 5.16.

5.4.2 Hierarchical Orientations
The goal of this optimization is to reduce the computational cost associated to the (m ∗ k)
term shown in (5.6), that is caused by the exhaustive exploration of orientations in the
solution space. By introducing a binary hierarchical search, it is intended to achieve an
execution cost of O(m) ≈ log2(m) for the best case execution scenario.

A hierarchical fragment characterization is proposed, based on the concept of Levels
Of Detail (LOD), that can be defined as:

1. Each fragment is characterized as a set of log2(m) + 1 LODs.

2. Each LODx covers the full 2π orientations, and is made up of 2x distance matrices.

3. Each distance matrix P[θ1..θ2[= [pi,j]|u|×|w|, of a given LODx covers 2π/2x ori-
entations.

4. Each element of the distance matrix pi,j stores two values: the maximum and mini-
mum projective distance of the (i, j)th sample in the covered angular range, which
we notate as dpi,je and bpi,jc, respectively.

66

5.4. Search Strategy

Fig. 5.9 illustrates the proposed characterization for a given orientation interval.

This way, it can be said that LOD1 refines LOD0 with two distance matrices P[0..π[

and P[π..2π[, which are called children of P[0..2π[∈ LOD0, and provide a complete and
disjoint partition of their father. Fig. 5.10 illustrates the hierarchical refinement proposed.
Notice how, since sampled data stores the maximum and minimum distance from the pro-
jection plane to the surface of the fragment in the covered orientations, children represen-
tations always present lower or equal maximum distances and greater or equal minimum
distances than the parent representation. This way, the amount of uncertainty decreases as
the representation of the fragment is refined.

S[0..�/4[S[0..�/4[

Figure 5.9: Graphic representation of a distance matrix for a fragment in a coarse ori-
entation LOD. Red points represent the calculated distances in the orientation shown.
Blue and green boxes represent the minimum and maximum distance for each sam-
ple in current orientation interval. Boxes marked in green have in (left) and (right)
the samples that produce the minimum and maximum distance. In (left) is shown the
minimum angle of considered interval, whilst in (right) is shown the maximum one.

This idea is particularly useful for the memory issue on exhaustive approach: the coars-
est LODs are the most time consuming to calculate, since they need to compute all possible
orientations contained in the covered range. However, these LODs store lots of informa-
tion in a few distance matrices. As the search evolves, uncertainty decreases, and only
several orientations present a potential match. This way, pre-calculations can be done only
for the first k LODs. The potentially useful distance matrices of the finest LODs are cal-
culated on the fly by the search algorithm and, considering the advantage that they contain
only a few possible orientations, these calculations are executed extremely fast.

The proposed hierarchical search starts by comparing coarse representations of frag-
ments and, recursively, refines the most promising ones until the finest Level Of Detail is
reached. When this happens, the search stops returning the resulting alignment as the re-
sult. For the technique to converge to the global solution, avoiding local minima, the cost
function of each alignment in an intermediate LOD has to be evaluated in an optimistic
way. This makes necessary to extend equations (5.3) (5.4) (5.8) (5.9) as follows:

67

Chapter 5. 3 Degrees of Freedom Approach

S[�/2..�[

S[0..�[

S[0..�/2[

Figure 5.10: Hierarchical orientation refinement. In (left) is shown the distance matrix
S[0..π[∈ LOD1, whilst in (right) are shown the two refined children, S[0..π/2[and
S[π/2..π[∈ LOD2. Marked in red, in (right), are the samples calculated in the parent
representation. Notice how uncertainty always decreases as the resolution increases.

A
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu

)
(5.10)

c : R× [R . . .R]× Z→ {x ∈ N : x > 0} (5.11)
δv = Min (dpi,je+ dqi−δu,je) (5.12)

Match(pi,j , qk,j) =

{
1, bpi,jc+ bqk,jc − δv ≤ ε
0, Otherwise

(5.13)

From (5.10) it can be appreciated that now, we compare a unique orientation of frag-
ment P with a range of orientations of fragment Q, which correspond to a distance matrix
of a given LOD of Q. The cost function (5.11), as it did before, evaluates how many sam-
ples are close enough to be considered as matching. To do so, first it calculates δv using
maximum projection distances (5.12) and then, it evaluates the distance between facing
samples using minimum projection distances (5.13).

As it can be appreciated in Fig. 5.11, samples in children distance matrices always have
minimum distances greater or equal than their father, and maximum distances smaller or
equal than their father. This means that the value of δv decreases as the representation
is refined, since it uses maximum distances. In the other hand, since the value of the
Match() function depends on δv and the minimum distances, as the representation is
refined the value returned by this function is monotonically decreasing. According to this
property of the metric, it can be ensured that the search process converges to the optimal
solution without stopping in local minima.

The search process starts by initializing a heap with k alignments: one for each k
orientation of fragment P , facing fragment Q represented in LOD0. The heap stores all
evaluated alignments sorted in descending order according to their cost function. Each

68

5.4. Search Strategy

P P

Q
Q

P P

Q Q

Figure 5.11: Angular search process. FragmentQ is represented in the middle orientation
of each distance matrix rotational interval. Purple boxes show the most restrictive
distances in each case (which determines the value of δv), green boxes show matching
samples, and blue boxes show non-matching samples. Notice how, in four iterations,
ambiguity is highly reduced and the solution converges to the optimal one. Also notice
how the value of δv decreases in each iteration, and how some previously matching
samples fail the Match() test in later alignments.

iteration, the alignment (A) in the root of the heap (the one with the highest cost function
value) is popped and refined into another two alignments in the next LOD as follows:

A
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu

)
→

A1

(
θP ,
[
θQ

(a) . . . θQ
((b−a)/2)

]
, δu

)
A2

(
θP ,
[
θQ

((b−a)/2) . . . θQ
(b)
]
, δu

)
(5.14)

where A ∈ LODx : A1, A2 ∈ LODx+1

For each one of the two new alignments the cost function has to be evaluated in all
possible displacements. The maximum score achieved is the one we use to insert each new
alignment into the heap. This process continues until the root of the heap is an alignment
in the finest LOD. In this case, the alignment is returned as the result of the problem. Fig.
5.11 shows a graphical representation of the proposed search process.

69

Chapter 5. 3 Degrees of Freedom Approach

5.4.3 Hierarchical Displacements
In this case, the goal is to reduce the computational cost associated to the (2n − 1) term
shown in (5.6), caused by the exhaustive exploration of displacements in the solution
space, given the orientation of the fragments. By introducing a binary hierarchical search,
an execution cost ofO(n) ≈ log2(n) is intended to be achieved, for the best case scenario.

As happened with orientations, Levels of Detail are used to characterize fragments
(Fig. 5.12) as follows:

1. Each distance matrix is represented as a set of log2(n) + 1 displacement LODs,
being n = Max(|u|, |w|).

2. Each LODx is a distance matrix of size 2x×
⌈

2x|w|
|u|

⌉
, if |u| ≥ |w|, or

⌈
2x|u|
|w|

⌉
× 2x

if |w| > |u|.

3. Each element p(i, j) of the distance matrix in LODx stores three values: the max-
imum projective distance dp(i, j)e of samples dp(k, l)e ∈ LODx+1, being i ∗ 2 ≤
k ≤ i∗2 + 1 and j ∗2 ≤ l ≤ j ∗2 + 1, the minimum projective distance bp(i, j)c of
samples bp(k, l)c ∈ LODx+1, and the total amount of samples |p(i, j)| contained
in |p(k, l)| ∈ LODx+1.

10

13

2 8
8

5

2
4

4
4

4

4

1

LOD3LOD2 LOD4

Figure 5.12: Hierarchical displacements. A fragment represented in three diferent LODs.
Red dots show samples at maximum resolution, whilst blue boxes represent samples in
the illustrated LOD. Associated numbers to each box correspond to the value of |pi,j |.

Searching strategy for displacements is very similar to the one for orientations, and the
same restrictions in the cost function have to be applied to ensure convergency: it has to
be monotonically decreasing as LOD increases. To do so, equations (5.10) (5.11) (5.12)
(5.13) have to be extended as follows:

A
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu, LODδ

)
(5.15)

c : R× [R . . .R]× Z× Z→ {x ∈ N : x > 0} (5.16)
δv = Min (dpi,je+ dqi−δu,je) (5.17)

Match(pi,j , qk,j) =

{
|pi,j |, bpi,jc+ bqk,jc − δv ≤ ε
0, Otherwise

(5.18)

70

5.4. Search Strategy

In this case, notice how an alignment (5.15) now indicates the displacement, δu, and
also the LOD in which this alignment is represented. As happened in (5.12), in (5.17)
maximum distances are used to calculate δv whilst in (5.18), instead of adding single
samples for each comparison in the Match() function, |pi,j | is used.

Search process starts with a heap containing only one alignment, in which both frag-
ments are represented in LOD0. The heap stores all evaluated alignments sorted in de-
scending order according to their cost function. Each iteration, the alignment (A) in the
root of the heap is popped and refined into another three alignments in the next displace-
ment LOD as follows:

A
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu, LODδ

)
→ (5.19)

→

A1

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2− 1, LODδ+1

)
A2

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2 + 0, LODδ+1

)
A3

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2 + 1, LODδ+1

) (5.20)

This means that, when refining an alignment in a given LOD, three children alignments
are inserted into the heap (Fig. 5.13): a centered one, a left displaced one and a right
displaced one. The heap is then sorted according to the cost function of each alignment,
and the process continues until the root element is an alignment in maximum LOD. In this
case, this is returned as the result.

In Fig. 5.13 it can be appreciated how convergency for cases B, C, D, E, F, H, J and K
can be demonstrated as it was done for hierarchical orientations: all facing samples have
already been evaluated in the parent alignment, in which minimum distances were smaller,
maximum distances were greater, and the amount of contained samples were also greater.

A

B C D

E F G H I J K

Figure 5.13: Hierarchical displacements search process. Search process from LOD0 to
LOD2. Each box represents a sample. Marked in green are the samples compared in
case B, in blue the ones compared in case C, and in purple the ones compared in case
D. Marked in red are the samples without a corresponding one in the other fragment.

Cases G and I present an extra ambiguity given that they have two parents and, in none

71

Chapter 5. 3 Degrees of Freedom Approach

of them, all the facing samples have been compared. However, it can be demonstrated that
a child alignment with two parents will always have a smaller or equal cost function than
one of them, which is sufficient to ensure convergency in the proposed approach.

Considering that both cases (G and I) are symmetrical, case G is used to demonstrate
this property. Fig. 5.14 shows in detail this case, and illustrates the nomenclature used for
the next equations.

B C

G

C1 C2B1

G1 G2 G3

|C1| |C2|δv

(C1)
δv

(C2)

c1 c2

c’1 c’2

Figure 5.14: Demonstration of convergency for case G. (left) both parents, B and C of
case G, where matching samples colored with the same criteria as Fig. 5.13. (right)
nomenclature used for the demonstration, taking as exmple case C: Ci represents two
corresponding samples, ci and c′i. |Ci| is the total number of matching samples. δ(Ci)

v

represents the distance between the maximum projective distances dcie and dc′ie.

The first thing to prove is that the value of δv decreases as the alignment is refined. For
this, facing samples from case C are considered and compared with the ones from case G
as follows:

(dc1e ≥ dg1e) ∧ (dc′1e ≥ dg′1e)→ dc1e+ dc′1e ≥ dg1e+ dg′1e (5.21)
(dc2e ≥ dg3e) ∧ (dc′2e ≥ dg′3e)→ dc2e+ dc′2e ≥ dg3e+ dg′3e (5.22)

From these equations it can be said that:

δC1
v ≥ δG1

v (5.23)

δC2
v ≥ δG3

v (5.24)

which leads to the conclusion

Min(δC1
v , δC2

v) ≥Min(δG1
v , δG2

v , δG3
v) (5.25)

δCv ≥ δGv (5.26)

no matter which value takes δG2
v , as shown below:

δCv =

{
δC1
v → δCv ≥Min(δG1

v , ...) , δC1
v ≥ δG1

v

δC2
v → δCv ≥Min(δG3

v , ...) , δC2
v ≥ δG3

v

(5.27)

72

5.4. Search Strategy

Once proven that the value of δv decreases as the alignment is refined, to prove that the
cost function value also decreases, we distinguish between two cases: 1) |C1| 6= 0, and 2)
|C1| = 0. The first one is easier to demonstrate because, if C1 has matching samples, it
can be said that:

|G1|+ |G2| ≤ |C1| (5.28)
|G3| ≤ |C2| (5.29)

For the second one, where C1 has no matching samples, it can be demonstrated that:

|G1| = 0 (5.30)
(|G2|+ |G3| ≤ |C2|) ∨ (|G2|+ |G3| ≤ |B1|) (5.31)

considering that the fragment is a closed 3D model, without discontinuities.

5.4.4 Hierarchical Search
Given the previous two optimizations, it makes sense to combine both to perform a full
hierarchical search. The technique proposed here is an orientation-driven search that, in
an outer loop hierarchically explores the orientation of both fragments and, for each align-
ment in a given LODθ, an inner loop hierarchically explores displacements. The goal
of the inner loop is to calculate the value of δu that maximizes the cost function of the
alignment passed by the outer loop, whilst the goal of the outer loop is to find the global
solution to the stated problem.

Algorithm 2 Hierarchical orientation-driven search

1: H ← Heap() :
2: for θP ← 0 to 2π step 2π/k do
3: H.Push(Alignment(θP , [0..2π], 0, 0));
4: end for
5: while true do
6: A

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu, 0

)
← H.Pop();

7: if A.LODθ = LODθmax then
8: return A;
9: else

10: A1 ← Alignment
(
θP ,
[
θQ

(a) . . . θQ
((b−a)/2)

]
, δu, 0

)
;

11: A2 ← Alignment
(
θP ,
[
θQ

((b−a)/2) . . . θQ
(b)
]
, δu, 0

)
;

12: H.Push(BestDisplacement (A1)) ;
13: H.Push(BestDisplacement (A2)) ;
14: end if
15: end while

Each iteration of the outer loop (Algorithm 2) pops an alignment from the heap, and
inserts two new alignments. Each child alignment is passed to the inner loop (Algorithm
3) in order to compute its maximum value of the cost function and, according to this value,

73

Chapter 5. 3 Degrees of Freedom Approach

is stored in the sorted heap of active alignments in the outer loop. When the best active
alignment is in the maximum orientation LOD, it is returned as the solution to the problem.

By combining these two optimizations, the excessive amount of evaluations of the cost
function proposed in the exhaustive approachO(m,n, k) ≈ (m∗k)∗(2n−1) gets reduced
to O(m,n) ≈ log2(m) ∗ log2(n) in the best execution case scenario. However, the third
bottleneck associated to the evaluation of the cost function (which has to perform |u| ∗ |w|
calculations per alignment) is still not solved.

To do so and without loss of correction, when evaluating displacements of an align-
ment in the inner loop, instead of searching until the maximum LOD search is performed
until LODθ = LODδ . This allows performing very fast evaluations of the cost function
when the uncertainty of the representation is high, and progressively achieve more precise
results, as the process approaches to the global solution. Given that the proposed cost
function is optimistic, convergency is ensured and, despite that the lack of precision in
coarse representations may lead to perform some unnecessary comparisons, the increase
of global performance fully justifies the proposed optimization, as it will be shown in the
next section.

Algorithm 3 Hierarchical displacement search BestDisplacement(A)

1: H ← Heap() :
2: H.Push(A);
3: while true do
4: A

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu, LODδ

)
← H.Pop();

5: if A.LODδ = A.LODθ then
6: return A;
7: else
8: A1 ← Alignment

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2− 1, LODδ+1

)
;

9: A2 ← Alignment
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2 + 0, LODδ+1

)
;

10: A3 ← Alignment
(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu ∗ 2 + 1, LODδ+1

)
;

11: H.Push(A1, c(A1));H.Push(A2, c(A2));H.Push(A3, c(A3));
12: end if
13: end while

5.4.5 Many-to-Many Search
In order to create a semi-automatic tool to assist restoration personnel in the re-assembly of
the original artifact, the one-to-one comparison search strategy proposed should compare
each fragment with all the rest and, then, sort the resulting alignments in descending order
to offer first the most promising matches. The main problem with this strategy is that, in
a large database, lots of results will be discarded, since one fragment only matches with a
very reduced set of neighbors.

However, with a simple modification in the proposed technique this process can be
considerably accelerated: if the orientation-driven search illustrated in Algorithm 2 is
initialized with all the possible pairs of fragments in the coarsest LOD, the first result
achieved will be the best pair among all possible ones. Given that each iteration of the

74

5.4. Search Strategy

hierarchical algorithm the most promising alignment is selected and refined, potentially
bad alignments are automatically discarded.

As happened with previous hierarchical optimizations, first match found will ensure
to be the best match of all the considered dataset, and next results will be also ordered
according to the cost function, allowing the tool to offer first solutions with less ambiguity.

To do so, an alignment should be defined as:

A
(
P, Q, θP ,

[
θQ

(a) . . . θQ
(b)
]
, δu, LODδ

)
(5.32)

c : N× N× R× [R . . .R]× Z× Z→ {x ∈ N : x > 0} (5.33)

where P and Q are two indices pointing to the compared fragments in the alignment.
The final search algorithm according to this new strategy is shown in Algorithm 4.

Algorithm 4 Hierarchical N -to-N search

1: H ← Heap() :
2: for i← 0 to Fragments.Count step 1 do
3: P ← Fragments[i];
4: for j ← i+ 1 to Fragments.Count step 1 do
5: Q← Fragments[j];
6: for θP ← 0 to 2π step 2π/k do
7: H.Push(Alignment(P, Q, θP , [0..2π], 0, 0));
8: end for
9: end for

10: end for
11: while true do
12: A

(
θP ,
[
θQ

(a) . . . θQ
(b)
]
, δu, 0

)
← H.Pop();

13: if A.LODθ = LODθmax
then

14: return A;
15: else
16: A1 ← Alignment

(
P, Q, θP ,

[
θQ

(a) . . . θQ
((b−a)/2)

]
, δu, 0

)
;

17: A2 ← Alignment
(
P, Q, θP ,

[
θQ

((b−a)/2) . . . θQ
(b)
]
, δu, 0

)
;

18: H.Push(BestDisplacement (A1)) ;
19: H.Push(BestDisplacement (A2)) ;
20: end if
21: end while

From the code below, it is important to notice that, the return instruction in line 14
should not stop the execution and thewhile loop in line 11 should not be taken as in infinite
loop. The implementation of this algorithm is done using an independent thread that con-
tinuously searches in an asynchronous manner for new results. Each time an alignment in
the highest LOD is found, it is “returned” to the main thread without interrupting the search
loop, which only ends when the application is closed, or all matches have been found. As
this process continues refining alignments, the interface offers the user the already found
matches so he does not have to wait until the whole database has been compared to start
the re-assembly process.

75

Chapter 5. 3 Degrees of Freedom Approach

5.5 Results

This section empirically evaluates the correction and performance of the proposed tech-
nique. First, a set of ceramic fragments is used to compare the efficiency of each one-to-
one algorithm, from the exhaustive approach to the fully hierarchical one. Later, a singular
fresco database from Brown’s Ph.D. Thesis [23] is used to compare results. Finally, an ex-
ample implementation of the many-to-many technique is presented.

5.5.1 Performance evaluation

To evaluate the efficiency of the proposed technique, a set of flat ceramic fragments from
the seventeenth century has been used. As it can be seen in Fig. 5.16 (left) fragments are
very eroded, and the fractured edges do not match between them perfectly.

It is important to notice that comparisons are performed considering only pairs of frag-
ments, and results are expressed as the average search time for each possible combination.
The goal is, then, to prove the performance and correction for pairwise comparisons, no
matter how big the dataset of fragments is.

All tests have been executed in a 3.4 GHz Intel Core i7 computer with 4GB of RAM.
The 3D models of the fragments have been acquired using a Konica Minolta Vivid 9i
laser scanner and a turning plate. The average acquisition time, including partial view
registration and global remeshing of the scanned point-clouds, has been around an hour
per fragment. Resulting 3D files present an average triangle count of about 100K triangles.

An example of the 3D models used for evaluation purposes is shown in Fig. 5.15.

Figure 5.15: A real fragment (left) and the acquired 3D model (right).

In order to compare within the different proposed techniques, 36 different searches
between all pairs of fragments have been executed. Each search is characterized by the
amount of considered orientations (from 25 to 210) and the sampling resolution on the
fragment’s surface over axis U (from 25 to 210).

Each fragment has been pre-processed once per each resolution of the evaluations per-
formed. The maximum pre-processing time has always been below 20 seconds, when
calculating 1024 orientations with 1024 sample points in the U axis and 16 points in the
W axis. Considering that, in a normal execution, one fragment has to be pre-processed

76

5.5. Results

Figure 5.16: Evaluation with real fragments. (left) Some of the fragments used to evaluate
the proposed technique. (right) One of the results achieved during the search process.

only once and that the acquisition time is much bigger, these times can be considered as
not significant.

The total amount of memory required to store a fragment depends on the number of
considered orientations (m), and on the sampling resolution for axes U and W (|u| and
|w|, respectively), which gives an overall cost of O(m, |u|, |w|) ≈ m ∗ |u| ∗ |w|.

More in detail, and considering |u| = |w|, the total size can be expressed as:

O(m, |u|, |w|) ≈ 1− 4nLodsd

1− 4
∗ (2nLodsa − 1) (5.34)

being nLodsd = log2(|u|) + 1, and nLodsa = log2(m) + 1.
For the simplest search (m = 32, |u| = 32 and |w| = 16) using the hierarchical

approach, the total amount of memory used was 404 KB, whilst for the most detailed
search (m = 1024, |u| = 1024 and |w| = 16) 532.8 MB were required.

Given that the goal of this approach is to solve the pairwise matching of fragments,
and not to solve the global puzzle, a result is considered to be correct if the transformation
returned is the global minima of the stated cost function. Global correction considering
all the fragments is out of the scope of this technique, and is highly conditioned by the
ambiguity of the set of fragments considered: a higher level technique to reconstruct the
original artifact should discard the matching pairs that contradict the common goal.

During the tests, all techniques have returned exactly the same results for each couple
of fragments compared. This was expected given that it has been formally demonstrated
that the hierarchical strategy always find the global minima solution.

Local minima results only exist when the sampling resolution is too low, given the
irregularities of fragments’ surface. In the evaluation set used, the maximum fragment
size was smaller than 20 centimeters meaning that, with a sampling resolution over U axis
of 1024, the separation between samples was always smaller than 0,019 millimeters (which
is similar to a high resolution scanner accuracy). When a local minima solution appears,
due to under-sampling, it appears in all proposed techniques. This way, after performing
all the tests, the only difference between proposed techniques was the execution time.

77

Chapter 5. 3 Degrees of Freedom Approach

Fig. 5.17 shows achieved results for exhaustive approach. Notice how execution time
is linear to the amount of orientations considered, and spacial resolution affects more the
speed of the technique. This happens because resolution affects both the evaluation the cost
function and the amount of displacements to consider. In the other hand, since exhaustive
approach has to consider all possible alignments, the increase of execution time is always
proportional to the increase of the complexity of the problem.

0

100

200

300

400

32 64 128 256 512 1024

Naive search
Ti

m
e

(s
ec

on
ds

)

U resolution (W resolution = 16 samples)

32 angles
64 angles
128 angles
256 angles
512 angles
1024 angles

Figure 5.17: Time results using exhaustive search.

Fig. 5.18 shows achieved results using hierarchical displacements. In this case, the
effect of spacial resolution in execution time is reduced, since the amount of displacements
to consider are drastically reduced. This makes the total execution time to be arround 6.5%
with respect to the exhaustive approach. However, since the amount of samples to operate
with while evaluating the cost function remains the same, results can be still improved.

0

7.5

15

22.5

30

32 64 128 256 512 1024

Hierarchical Displacements

U resolution (W resolution = 16 samples)

32 angles
64 angles
128 angles
256 angles
512 angles
1024 angles

Ti
m

e
(s

ec
on

ds
)

Figure 5.18: Time results using hierarchical displacements.

78

5.5. Results

Fig. 5.19 shows achieved results using hierarchical orientations. In this case, the
amount of orientations considered does not affect linearly to execution time. This is a
consequence of the fact that each characterization of fragments in an orientation range
provides new information to work with, and allows to discard lots of potentially bad align-
ments. As the search process evolves, and ambiguity is reduced, the result converges very
fast to the optimal solution.

0

1.5

3

4.5

6

32 64 128 256 512 1024

Hierarchical Orientations

U resolution (W resolution = 16 samples)

32 angles
64 angles
128 angles
256 angles
512 angles
1024 angles

Ti
m

e
(s

ec
on

ds
)

Figure 5.19: Time results using hierarchical orientations.

Fig. 5.20 shows achieved results combining both hierarchical techniques together.
As it can be appreciated, both improvements are also combined and the overall execution
time behaves almost linearly to the global size of the problem (notice that theX axis of the
charts uses an exponential scale, and so does the rotation resolution). The most complex
search is now about 1.400 times faster than with the exhaustive approach.

Ti
m

e
(s

ec
on

ds
)

0

0.05

0.1

0.15

0.2

32 64 128 256 512 1024

Hierarchical Disp. / Orientations

U resolution (W resolution = 16 samples)

32 angles
64 angles
128 angles
256 angles
512 angles
1024 angles

Figure 5.20: Time results using the hierarchical approach.

79

Chapter 5. 3 Degrees of Freedom Approach

Finally, if the cost function evaluation is optimized by stopping the inner displacement
search when LODθ = LODδ , the final hierarchical technique is obtained (Fig. 5.21),
which speeds-up the naive results more than 20.000 times in the most complex problem,
and provides the technique an execution cost linear to the size of the problem. Given that,
in the proposed hierarchical technique, the displacement and orientation searches evolve
simultaneously, only problems with the same resolution in both parameters are efficiently
evaluated. If only these combinations are considered (right chart), it can be seen how the
resulting technique behaves linearly to the size of the problem: O(n) ≈ n, being n the
resolution of angles/displacements considered.

0

0.001

0.01

0.1

32 64 128 256 512 1024

y = 0,0003e0,6949x

R = 0,9786

Hierarchical (true combinations)

U resolution & number of orientations

0

0.008

0.015

0.023

0.03

32 64 128 256 512 1024

Hierarchical

U resolution (W resolution = 16 samples)

32 angles
64 angles
128 angles
256 angles
512 angles
1024 angles

Ti
m

e
(s

ec
on

ds
)

Figure 5.21: Time results using the full hierarchical approach.

5.5.2 Griphos dataset
To evaluate the performance of the proposed algorithm with a different dataset, the Griphos
Fresco fragments have also been tested. These fragments were originally published in [24],
and were used in Brown’s Ph.D. Thesis [23] to to evaluate the performance of the ribbon
matcher technique. 3D models used in this section are courtesy of Dr. Tim Weyrich
(University College London), Prof. Szymon Rusinkiewicz (Princeton University) and Dr.
Benedict Brown (University of Pennsylvania).

The Griphos Fresco dataset includes 263 fragments of wall paintings from the site of
Akrotiri on the volcanic island of Thera (modern-day Santorini, Greece). These fragments
have been exhaustively scanned, catalogued and textured.

One of the most interesting aspects of the Griphos dataset is that matches are already
known, so correction of automatic re-assembly techniques can be evaluated. Fig 5.22
shows one of the biggest cluster of fragments found, together with the fragments’ numbers
and the matches found using the ribbon matcher technique.

Results achieved with the proposed technique using this dataset were always correct
(the search process never stopped in a local minima solution). Amongst the matches found
using fragments known to be neighbors, 92% corresponded to the real solution. The other
8% corresponded to alignments with a better cost, despite not being the correct match.

80

5.5. Results

Figure 5.22: Griphos Fresco dataset. Red lines indicate matches found using the ribbon
matcher with a 25 mm strip width. Blue links indicate additional matches found with
a 12.5 mm strip width, and green links indicate further matches found with a 50 mm
strip width. Only numbered fragments have been scanned

Performance in this case was slightly slower than in the previous dataset, probably
because the erosion and the shape of the breaks created more ambiguity. However, the
acceleration rate introduced by the hierarchical optimizations was similar.

One of the advantages of the proposed search algorithm is that, using always the same
search settings (256 orientations and 256 * 16 samples for axes U and V , respectively),
all matches were found. In the case of the ribbon matcher, as Fig. 5.22 shows, different
configurations had to be used to find different matches. Figs. 5.23, 5.24 and 5.25 show
some of the matches found that the ribbon matcher could find using a 12.5mm, 25mm
and 50mm strip width, respectively. Fig. 5.26 shows some matches found that the ribbon
matcher could not find. Numbers of the fragments in these figures correspond to numbers
in Fig. 5.22 and search times using the full hierarchical approach are displayed below each
match. The other great advantage of the proposed technique is that alignments between
fragments are computed extremely fast (with an average search time of 0.015 seconds),
whilst the ribbon matcher took an average search time of 2 seconds.

81

Chapter 5. 3 Degrees of Freedom Approach

0,075551 s. 0,013164 s.

0,003589 s.

0,006201 s.

0,004019 s. 0,001795 s.

0,020905 s. 0,011472 s. 0,002379 s.

0,006215 s. 0,006375 s.

71
72 72

92
81

82

85 86 87 103 103
108

108 130 109
129

120
122

155 176
156

157

Figure 5.23: Some alignments found using the Griphos Fresco dataset. This set of align-
ments corresponds to some that the ribbon matcher found using a 12.5mm strip width.

0,036226 s. 0,021192 s.

0,004050 s.

0,039184 s.

0,012674 s. 0,010294 s.

0,007602 s. 0,001281 s. 0,005853 s.

0,009274 s. 0,013534 s.

44
42 44 45

44
49

46 47 46 48
67 52

67 73
77

89
88 102

89
101

94 95

Figure 5.24: Some alignments found using the Griphos Fresco dataset. This set of align-
ments corresponds to some that the ribbon matcher found using a 25mm strip width.

82

5.5. Results

0,004557 s.

57 78

0,021924 s.

64 65

0,006997 s.

64 76

0,003480 s.

72
91

0,012498 s.

73 74

0,012869 s.

110 111

0,022121 s.

125 126

0,013074 s.

130
131

0,008386 s.

54 65

0,007434 s.

53
67

0,022613 s.

54 55

Figure 5.25: Some alignments found using the Griphos Fresco dataset. This set of align-
ments corresponds to some that the ribbon matcher found using a 50mm strip width.

0,011536 s. 0,014898 s.

0,009209 s.

0,019559 s.

0,022442 s. 0,005781 s.

0,017854 s. 0,010821 s. 0,014707 s.

0,006356 s. 0,013315 s.

39 42 59 84
67

72

87 88 101 111
102

109

103 109 110 128 128 129

129 130 138 165

Figure 5.26: Some alignments found using the Griphos Fresco dataset that the ribbon
matcher could not find.

83

Chapter 5. 3 Degrees of Freedom Approach

5.5.3 Many-to-many sample implementation
In order to prototype a semi-automatic tool that implements the proposed many-to-many
search algorithm and to model the interaction with the end-user, an implementation of
the 2D reconstruction tool has been developed. Fig. 5.27 shows a screenshot of the user
interface during the re-assembly process.

Figure 5.27: Semi-automatic tool implementation for 2D re-assembly.

The proposed application performs a global search by introducing into the heap all pos-
sible combinations between fragments and, hierarchically, searches for the most promising
matches. Since the search process is performed asynchronously, after selecting the dataset
to work with, best results are offered almost instantly. Thanks to the demonstrated optimist
cost function, first results ensure to be the global best ones, so the re-assembly process can
be started as soon as first matches are returned.

Potential alignments are offered to the user according to the ones he has previously
selected, allowing to pre-visualize them in real-time (displayed as an orange fragment
with a dashed outline in Fig. 5.27).

A tree structure representing selected alignments always provides a feed-back to al-
low reproducing the re-assembly with the real fragments, and contextual information for
each fragment is shown graphically by clicking on the pre-visualization area (in the case
shown in Fig. 5.27, fragment 6 has been selected, marked in red, and its parent and child
fragments are displayed, marked in blue and green, respectively).

Thanks to the many-to-many hierarchical search proposed, the sample dataset illus-
trated (with 8 fragments pre-processed with 512 orientations and 512 samples over the
U axis) returns the best match amongst the 28 possible pairs of fragments in just 0.159
seconds and it takes an average time of 0.031 seconds to find all best matches.

Of course, the bigger the dataset the longer it will take to compute all matches but,
considering the hierarchical nature of the proposed technique and the achieved execution
times, the use of this tool improves in orders of magnitude the efficiency of manual inter-
ventions.

84

5.6. Conclusions and Future Work

5.6 Conclusions and Future Work

This chapter has presented an automatic process for re-assembling ancient artifacts from
fragments found at archaeological sites. Focusing on flat topologies, the relatively low
dimensionality of the solution space has been exploited in order to create an algorithm that
efficiently solves the puzzling problem.

Starting from the acquisition stage, a solution for scanning fragile fragments has been
introduced: the use of cyclododecane as a whitening spray. Thanks to its chemical sta-
bility and to the fact that it sublimes at room temperature leaving no residuals, CCD is a
perfect candidate to solve reflection/refraction issues during the scanning process. A set
of experiments has been presented, proving that the thin layer created on the surface of
fragments do not interfere with the scanner accuracy thanks to the reduced particle size.

An easy to compute cost function and a detailed characterization of the solution space
has been presented. Taking advantage of a parallel projection plane, distances between
fragments in a given alignment are very fast to compute, since the only operations involved
are simple additions, subtractions and logical comparisons.

In order to speed-up the search stage, a pre-processing stage has been introduced tak-
ing advantage on the GPU rendering capabilities. This way, all complex geometrical trans-
formations, visibility tests and discretization operations are carried out using wired units
embedded in the GPUs’ architecture pipeline. Results achieved in pre-processing stage
depend only on fragments, but can be used in as many alignments between different pairs
as necessary.

A set of search algorithms has been proposed to find the best alignment between a
given pair of fragments. Starting from a naive approach that explores exhaustively the
complete solution space, a set of hierarchical optimizations have been progressively ap-
plied to improve performance. During the acceleration of the search technique, it has
been formally demonstrated that none of the hierarchical algorithms loses correction with
respect to the exhaustive approach. As result of these improvements, a linear cost with
respect to the size of the problem has been reached.

In order to improve results in the final many-to-many search, a small modification has
been applied to the fully hierarchical search strategy, in order to consider all fragments
of a given dataset at the same time. This way, best matches amongst all possible pairs of
fragments are found in the first place, automatically discarding potentially bad alignments.

A set of evaluation experiments has been presented, paying special attention to the
empirical confirmation of the technique’s correction and the use of resources (CPU and
memory) for different problem sizes. A singular dataset of frescoes from the Thera island
(the Griphos dataset) has also been used to compare achieved results with the most similar
technique in the recent bibliography: the ribbon matcher proposed by Dr. Benedict Brown
in his Ph.D. Thesis dissertation. Results using this dataset have provided new matches that
could not be found with the previous approach, and search times have been considerably
reduced. Also, the proposed technique has been proven to be less parametrized, avoiding
the need of performing different searches over the same fragments with different settings.

Finally, a semi-automatic tool has been implemented to illustrate the potential of the
full process in 2D problems. Taking advantage of the many-to-many hierarchical search
strategy, and presenting the user an easy-to-use interface, efficiency with respect to manual
interventions has been proven to be improved.

85

Chapter 5. 3 Degrees of Freedom Approach

For further improvements in future approaches, several aspects of the process can be
optimized. Perhaps, the most important one, that will make this technique feasible for
museums to work with, is not related to the software aspect but to the hardware itself:
the acquisition stage is the main bottleneck because the need to use a general purpose
3D scanner makes it to time-consuming. This problem could be faced in two ways: (1)
by designing a specific acquisition hardware (probably based on laser triangulation and a
turning plate) that efficiently exploits the flat nature of the fragments, or (2) by creating
an acquisition software that automatically registers all partial views (scanned with the
fragment laying on both the upper and lower face), and generates a triangulated B-Rep
mesh to directly feed the pre-processing stage.

On the software side, during the experiments it has been observed that the main bot-
tleneck in the search process is due to memory bandwidth. Since processor operations
are so simple, computing the cost function and deciding the next alignment to refine is
straight forward. However, for each cost function evaluation, the whole pre-computed
projection matrix has to be loaded into memory. Even using a single threaded applica-
tion (all results shown in this chapter only use one of the eight cores of the test computer),
memory accesses keep the processor idle most of the time. Probably, trading between CPU
and memory usage to find a solution that better balances the requirements of the proposed
technique would yield into an enormous improvement. For this matter, using a compressed
representation of the distances matrices would be an interesting way to explore.

Having the memory bottleneck solved, the next logical step would be to paralelize the
search strategy. This way, using the same computer, a theoretical maximum acceleration
of eight times could be achieved. Even better, by parallelizing the search strategy into
the GPU, faster results could be obtained and the pre-processing stage could be partially
included into the search stage, since all processing will be done in the same graphic con-
text. This way, fragments could be only pre-processed until some coarse LOD, leaving
the finest representations to be calculated on-demand during the search process. Keeping
in mind that only a few finest LODs are reached in a given alignment, this improvement
would yield into saving lots of memory, in exchange for some extra computing time.

Some other improvements would involve considering extra properties besides geom-
etry in the cost function, or providing some “intelligence” to the semi-automatic tool, so
collisions between fragments could be avoided, or a global optimization process could be
applied to register big clusters of fragments considering all paired samples.

86

CHAPTER6
6 Degrees of Freedom Approach

This chapter deals with the automatic reconstruction of generic archaeological artifacts.
The main difference with previous approach is related to the dimensionality of the solution
space to search in: since a flat topology is no longer assumed, the total amount of degrees
of freedom to consider duplicates (three for positions and another three for orientations).
This fact forces to change the search strategy from a dense to a sparse one, given that
exhaustively exploring all possible alignments renders to prohibitive execution costs.

Some typical examples of this kind of problems are broken sculptures, friezes, columns...
whose importance in Cultural Heritage Recovery is considerable.

The proposed technique takes as input data a set digital models of fragments, charac-
terized as unstructured point clouds, and outputs the rigid transformation that maximizes
the contact area between their surfaces. Unlike the previous approach, since the whole so-
lution space cannot be explored within a reasonable time, results achieved cannot ensure
global correction. To mitigate this drawback, a global reconstruction strategy is proposed
in order to consider the whole original artifact. This allows to properly identifying good
correspondences, and rejecting potentially incorrect ones in a more general context.

As commented in the previous chapter, global reconstruction in a NP-complete pro-
blem so, defining a deterministic solution may lead to an unbound execution time. How-
ever, exploiting highly potential alignments to disambiguate more doubtful ones can pro-
vide to an automatic system a great advantage over a simple one-to-one matcher. Of
course, in certain cases, the human interpretation will be necessary. However, even for
these cases, having an automatic tool that suggests potential correspondences can lead
into an enormous performance boost.

87

Chapter 6. 6 Degrees of Freedom Approach

The radical change in the search strategy introduced here attempts to mitigate the ex-
cessive cost of a dense registration approach. Even considering the hierarchical algorithm
commented in the previous chapter, it has to be taken into account that the increase of per-
formance achieved was a consequence of the progressive reduction of uncertainty. When
facing 3-DOF problems, ambiguity was highly reduced exploring relatively high LODs.
This way, until the hierarchical search produced an almost complete exploration of the
5th/6th LOD, high ambiguity situations were still present. Since only 3 degrees of free-
dom were considered, fully exploring LOD5 meant exhaustively evaluating 32 orienta-
tions with their corresponding 65 displacements over the U axis (2080 alignments, with
32× |w| facing samples).

For the 6-DOF approach, in order to fully explore LOD5, it will be necessary to ex-
haustively evaluate 32.768 orientations (253

) with their corresponding 3.969 translations
(((2× 25)− 1)2), giving a total number of 130.056.192 alignments with 1024 facing sam-
ples (252

) each one of them. At this point, ambiguity would be expected to reduce so
the hierarchical strategy could filter only potentially good results. The computing require-
ments to reach this relatively low level of detail (only 32 orientations per axis considered)
are extremely high, making the approach unsuitable for this dimensionality.

Also memory requirements and pre-processing times are extremely high. Fully char-
acterizing a fragment with 8 LODs, for example, means computing 28 orientations per
axis, which leads to 283

= 16.777.216 distance matrices with 282

= 65.536 samples each
one. This means storing 1.099.511.627.776 float values, which takes 4TB (tera bytes),
assuming a 4 byte float representation.

This computational and memory costs are simply prohibitive. This way, instead of
performing an exhaustive search based on a dense representation of the correspondence, a
sparse one based on descriptors is introduced.

Major contributions in this chapter are:

• A multi-scale feature extraction technique and a keypoint selection strategy driven
by saliency.

• The extension of the Persistent Feature Histogram descriptor to reconstruction ap-
proaches.

• A fast one-to-one registration algorithm based on a three-level hierarchical search
that exploits a set of formalized geometrical constraints.

• A graph based global reconstruction algorithm that uses individual matches to per-
form the final reassembly of the original artifact.

6.1 Overview

The proposed 6-DOF technique faces all the stages involved in the reconstruction process
(Fig. 6.1). The final goal is to exploit all the individual matches between pairs in a many-
to-many search algorithm that automatically attempts to reconstruct the original artifact.
Redundant matches between adjacent fragments are used in a global optimization algo-
rithm to refine the individual poses and highly probable matches are used to disambiguate
more doubtful ones.

88

6.1. Overview

Original fragments

Unsorted point cloud

Keypoints + descriptors

Match

PAIR-WISE
SEARCH

ACQUISITION

MANY-TO-MANY
SEARCH

Feature Extraction

Keypoint Selection

Descriptor Calculation

Points + features

Keypoints

Clusters of matches

PR
E

-P
R

O
C

E
SS

IN
G

Figure 6.1: 6DOF technique overview

Starting from the original fragments, first stage deals with the acquisition into a digital
format. Unlike the previous approach, where a well defined B-Rep representation was
needed to fully characterize the fragments, the proposed 6-DOF technique relaxes this
requirement, being only necessary unstructured point clouds.

As commented before, the absence of planar constraints in the general problem forces
to simplify the representation of fragments in order to achieve reasonable execution times.
This process is carried out by the pre-processing stage, detailed in Section 6.2. In a first
step, for each point in the original point cloud, a set of features is calculated in order to
characterize them according to their local neighborhood. Using this features, only a subset
of points called keypoints are selected. This selection is based on their uniqueness in their
local domain, according to the previously calculated features. Once keypoints are selected,
a set of histogram-based descriptors are calculated for each one of them trying to capture,
in a compact representation, the topology of their surrounding neighbors. This way, from
the pre-processing stage to the next ones, the original object representation is no longer
necessary, and all algorithms operate over the keypoints and their associated descriptors.

Taking as input data the resulting keypoints and descriptors of two fragments (Section
6.3), the pairwise search algorithm tries to compute the rigid transformation that maxi-
mizes the number of keypoints in correspondence from both fragments. This way, the new
cost function is defined over keypoints instead of uniformly sampled points in the frag-
ment’s surface. To efficiently do so, fast searches based on the descriptors are preformed.

Finally, the global reconstruction algorithm (Section 6.4) performs all the one-to-one
combinations between fragments in a dataset to attempt to reconstruct the original artifact.
Resulting individual matches are sorted according to their cost function and a graph based
search is executed to build clusters of matching fragments. Ideally, if all the fragments
considered fully define an artifact, the result of this last stage will be a single cluster that
contains all the fragments properly registered. In the case of incomplete datasets, results
will be sets of clusters partially defining parts of the object.

89

Chapter 6. 6 Degrees of Freedom Approach

6.2 Pre-processing

This stage deals with the alternative sparse representation of the fragments. Taking as input
data an unstructured point cloud, results are expected to be a set of strategically selected
keypoints that reduce the dimensionality of the registration algorithm.

To accelerate the correspondence search process, each keypoint is supported by a com-
pact representation of the topology of its local neighborhood provided by a descriptor. This
descriptor has to be invariant to rigid transformations, in order to ensure that a random pose
in the input fragments do not affect the quality of the achieved results.

Also, keypoint selection has to be robust against surface deformations, introduced by
random noise during the acquisition stage, data discretization and erosion of the fragments.

The main idea of the proposed keypoint selection is inspired by the first jigsaw puzzle
approaches: by properly identifying indents and outdents, the registration algorithm at-
tempts to match pairs of complementary keypoints from two fragments to achieve the final
registration.

6.2.1 Feature extraction

In order to efficiently identifying indents and outdents in the fragment’s surface, a feature
that represents the saliency of each point in the original point cloud has to be computed.

The saliency for a given point p, that belongs to a locally defined surface Φ is defined
according to its surrounding neighbors. This way, using different search distances, r,
different values for the saliency of p, Sr(p), can be estimated.

To distinguish between indents and outdents, proposed saliency values are signed, be-
ing positive saliences associated to outdents and negative saliences associated to indents.
Also, for bounding salience values into a uniform range, it is desirable a normalization
that ensures that −1 ≤ Sr(p) ≤ 1.

Intuitively, the salience feature should be 0 when a point lays over a flat surface, it has
to be a positive value when the point is a local maximum, and a negative value when the
point is a local minimum.

Figure 6.2 illustrates these three cases for three different points p1, p2 and p3, with their
associated local surfaces, Φ1, Φ2 and Φ3 respectively and the same search radius r. Notice
how, according to the intuitively explained concept of saliency, it should be verified that
Sr(p3) ≤ Sr(p1) ≤ Sr(p2) being Sr(p1) = 0. This way, it will be immediate to identify
p2 as an outdent, p3 as an indent and, more important, p1 as a point with no relevant
information for matching purposes, according to the introduced strategy.

p1

r
Φ1

r

p2
Φ2

r

p3

Φ3

Figure 6.2: Saliency of a point. Three different cases with different saliencies with a local
neighborhood defined using the same radius r.

90

6.2. Pre-processing

To estimate the value of Sr(p) for all the points in the original point cloud, the signed
distance with respect to the best fitting plane for a given search radius, Πr

p, is used. To
compute this plane defined by a point, π, and a normal vector, nΠ, the covariance matrix,
H , of all the points enclosed inside the sphere defined by r and centered on p is estimated
as follows:

µΦ =
1

N

N∑
i=1

pi (6.1)

H =
∑

(pi − µΦ)(pi − µΦ)T (6.2)

where each point pi verifies that pi = ‖pi−p‖ ≤ r andN corresponds to the total number
of points that satisfy this condition.

After computing H , which is a 3 × 3 matrix, a Singular Value Decomposition (SVD)
is performed, so three 3 × 3 matrices are calculated: [U, S, V] = svd(H). The third co-
lumn of the U matrix, U (3) corresponds to the third eigenvector with the lowest associated
eigenvalue, and it can be said that:

π = µΦ (6.3)

nΠ = U (3) (6.4)

However, since the signed distance to the best fitting plane is required in order to dis-
tinguish between indents and outdents, and the orientation of the third eigenvector does not
ensure to be the correct one, it may result from the previous calculation that the estimated
normal is mirrored with respect to the plane. To prevent this from happening, it has to be
ensured that its projection with respect to the normal associated to p is always a positive
value. Otherwise, nΠ should be inverted. More formally:

nΠ =

{
U (3), 〈U (3), np〉 ≥ 0

−U (3), 〈U (3), np〉 < 0
(6.5)

where 〈a, b〉 represents the dot product between the vectors a and b, and whose value when
considering normalized vectors is the cosine of the angle they define. Figure 6.3 illustrates
these two cases.

r

Φ

np

π
nπ

∏

r

Φ

np

π

nπ
∏

Figure 6.3: Best fitting plane calculation. (left) A best fitting plane with the correct normal
estimation 〈nπ, np〉 ≥ 0. (right) The same best fitting plane with the normal inverted
〈nπ, np〉 < 0

91

Chapter 6. 6 Degrees of Freedom Approach

Notice how, for estimating the normal associated to p, which is the one used to dis-
ambiguate the orientation problem, the process is identical to the proposed one. However,
since the original point cloud has been acquired using a 3D laser scanner, a viewing ray,
vp, from the scanner sensor to p is available, so np can be oriented in order to verify that
〈vp, np〉 ≤ 0.

Once the best fitting plane is calculated for the given point p and considering the local
neighborhood with a radius r, the signed distance between p and Π, is computed as:

‖p,Π‖ = 〈nπ, (p− π)〉 (6.6)

Finally, since the proposed saliency feature representation has to be bound in the in-
terval, Sr(p) ∈ [−1 . . . 1], and considering that the absolute value of ‖p,Π‖ is always
smaller than the search radius used to compute the plane Π, the normalization that leads
to the final feature formulation is defined as follows:

Sr(p) =
‖p,Π‖
r

(6.7)

In order to select keypoints in the next stage, this saliency feature has to be calculated
for all the points in the original representation, leading to a characterization as the one
presented in Figure 6.4. Notice how upper flat face is shaded in cyan (denoting 0 saliency
for the vertices that make it up), while outdents and indents are easy to distinguish.

Figure 6.4: Saliency feature for a 3D fragment. Cyan represents a close to 0 saliency
value. The darker the blue, the more saliency, and the greener, the less.

The proposed descriptor provides a good characterization for the points in the original
dataset, but it presents a major drawback: which value for r should be used to locally
characterize the saliency of a given point?. Using small search distances will yield into
a very dense keypoint representation, where random noise introduced in the model could
seriously affect the robustness of the search process. On the other hand, using large search
distances may lead into a too sparse representation, where only sharp edges will be distin-
guishable from the rest of the object. Figure 6.5 illustrates this concept.

92

6.2. Pre-processing

Figure 6.5: Saliency feature for diferent search radius. Left image shows the saliency
values calculated using a small search radius, whilst right image shows the same model
with the saliencies associated calculated using a very big radius.

In order to mitigate the effect that a wrong search radius selection could introduce into
the final registration results, and to provide a more robust keypoint selection, the proposed
saliency feature Sr(p) is extended in order to consider multiple simultaneous scales, as
proposed in [102].

The main idea of this improvement consists on applying the concept of scale-space for
saliency estimation using a surface variation estimation. Given that the proposed feature
is normalized with respect to the search distance, r, increasing the size of the local neigh-
borhood is similar to applying a smoothing filter. This concept is more clear by analyzing
the impact of the scale in the covariance matrix previously calculated: since H is defined
as the sum of squared distances from the neighborhood’s centroid, if r increases, each in-
dividual point contributes less to the surface variation estimate. This way, high-frequency
variations are attenuated as a standard low-pass filter would do.

According to this, the saliency for each point p is defined as:

S(p) =
1

N

N∑
i=1

Sri(p) (6.8)

where ri = rmin + i · (rmax − rmin) /N . Values for minimum search distance, rmin, and
maximum search distance, rmax, can be specified by the user. However, considering that
this concepts are not very intuitive, an automatic selection can be performed according to
the average radius of the fragments in a given dataset and to the resolution of the original
point cloud or, even better, well known combinations can be defined as presets to work with
different kinds of materials (stone fragments normally present higher roughness surfaces
than clay fragments, so smaller search radius can be used to capture this information). The
value of N represents the amount of scales to consider in the feature extraction process
and, according to the empirical results presented in next sections, N = 10 has proved to
provide a good compromise between calculation efficiency and results quality.

Figure 6.6 shows the results of applying the proposed multi-scale salience feature for
the same fragment shown in Figure 6.5, and evaluating 10 different scales, linearly dis-
tributed between the radius illustrated in the left image and the one in the right image.

93

Chapter 6. 6 Degrees of Freedom Approach

Figure 6.6: Multi-scale salience feature.

Notice how indents and outdents are more precisely characterized than in the previ-
ous case when a big search radius was used, and how high frequency details are added,
allowing to identify new keypoints. With respect to the results achieved in the previous
figure when using a small search radius, notice how the effect of high frequency noise
is considerably mitigated, and how relevant points for further searches are more clearly
distinguished from the rest of meaningless points.

Taking advantage on the proposed multi-scale feature, and with the aim of providing
more information to the keypoint selection algorithm, a differential roughness descriptor
is also computed in order to be able to discard smooth areas that probably correspond to
the outer surface of the fragment.

In this sense, unlike other reconstruction approaches like [71] [123] [124], the pro-
posed pre-processing stage does not perform a full segmentation of the fragment into sets
of fracture faces and original ones. Instead, it computes for each single point the prob-
ability of being part of a fracture. This way, the search strategy gets more complicated,
since the solution space cannot be divided into disjoint sets of potentially matching key-
points, but also more robust (the whole process cannot be compromised by misinterpreting
a cluster of vertices) and a more general solution to the reconstruction problem is provided
(having highly eroded edges can make impossible to detect the boundaries of facets).

The proposed roughness descriptor, Rr(p), for a given point, p, is expressed as the
variation of the signed distance previously calculated with respect to the distance, for a
given local neighborhood enclosed inside a sphere centered in p and with radius r.

Considering that S(p) has been already calculated with a multi-scale strategy, the
roughness descriptor is directly computed using a search distance equal or smaller than
the previous one, and considering the final multi-scale descriptor, S(p), instead of a sin-
gular one, Sr(p). This way, the value of the roughness descriptor can be expressed as:

Rr(pi) =
1

k

k∑
j=1

S(pi)− S(pj)

‖pi − pj‖
(6.9)

where i 6= j, all considered points verify that ‖pi − pj‖ ≤ r and k is the number of points
that satisfy this condition. Figure 6.7 illustrates this concept.

94

6.2. Pre-processing

Figure 6.7: Roughness feature. Red color indicates low values for the proposed descriptor.
The more blue, the more roughness.

Notice how, the points that belong to the original faces of the fragment present very
low roughness values, whilst the ones that correspond to outdents and indents present very
high values. In this sense, it is important to notice that, since the keypoint extraction
algorithm, explained in the next section, is driven by the saliency, the roughness descriptor
does not need to be calculated for all the points: only selected singular points will have the
descriptor associated, and a threshold based rejector will discard those who present low
values. This way, pre-processing execution costs are considerably reduced.

6.2.2 Keypoint selection
Once salience features are computed for all the points, the next stage in the proposed
execution cycle selects the most meaningful ones in order to reduce the size of the data to
work with in the searching stage. The selection strategy proposed in this section is based
on the concept of dominancy of points with respect to their local neighborhood.

Given a point pi and a search radius r, pi is said to be dominant if one of the two
conditions described below is verified:

∀j S(pi) > S(pj), ‖pj − pi‖ ≤ r ∧ S(pi) > 0 (6.10)
∀j S(pi) < S(pj), ‖pj − pi‖ ≤ r ∧ S(pi) < 0 (6.11)

In other words, if pi is an outdent (saliency bigger than 0), it is considered as dominant if
its associated saliency is bigger than all the saliences in his local neighborhood and, if pi
is an indent (saliency smaller than 0) it is considered as dominant if its associated saliency
is smaller than all the saliences in his local neighborhood.

The bigger the size of the local neighborhood, the less keypoints will be selected. On
the other hand, if the value of r is small, more new keypoints will be selected.

Regarding this property, it is important to notice that a dominant point using a search
distance r1 will always be dominant using search distances r2 ≤ r1. This way, reducing

95

Chapter 6. 6 Degrees of Freedom Approach

the local neighborhood during the keypoint selection stage can be understood as refining
the model characterization. Experimental results show that a good compromise between
efficiency and correction is setting the value of of r as the average value of the set of radius
used for saliency estimation. However, if fragments are highly eroded or made of soft
materials (like clay, for example), using a more reduced local neighborhood helps during
the matching stage, since more keypoints are available to check the geometric consistency
of the calculated alignment.

Figure 6.8 graphically illustrates this concept. In the left case, the search radius for the
keypoint selection algorithm is the same as the one used in the highest scale for the feature
extraction algorithm, r = rmax. The middle case shows the proposed average search
radius, r = (rmax − rmin)/2, whilst the right case shows the results achieved when using
a very small search radius, r = (rmax − rmin)/4. Notice how, in the three images, a
dominant keypoint is highlighted. Given that this point was dominant when using the
biggest radius, its dominancy is kept for all the illustrated cases. The same concept applies
to all the keypoints shown in the left image.

Figure 6.8: Keypoint selection with multiple search distances. Three different searching
radius (in decreasing order from left to right) over the same feature extraction. Key-
points are represented as white dots, and the fragment is shaded according to salience
values, being green associated to indents and blue/magenta to outdents.

Once keypoints are selected, the previously introduced roughness descriptor is com-
puted only for the meaningful points. Introducing this descriptor in this stage covers two
basic functions: (1) discarding keypoints that potentially lay over the original faces of the
fragment and (2) removing keypoints in the fracture faces whose dominancy over their
local neighborhood is very weak. To do so, a threshold based rejector evaluates all the se-
lected points, invalidating those whose associated roughness is below to a given tolerance.
As happened with the other parameters, the proper value for this one depends mostly on
the kind of material considered, being higher for rock-made fragments, where roughness
in the fractured faces is higher, and lower for fragments made with soft materials or highly
eroded.

Figure 6.9 shows the results after performing the proposed prune of keypoints. Notice
how in the top of the fragment, which is an original face, all keypoints have been rejected,
reducing considerably the size of the input data for the matching algorithm. Also notice
how, in the fracture faces, some weak keypoints have also been removed, contributing this
way to reduce execution costs and improving search robustness.

96

6.2. Pre-processing

Figure 6.9: Keypoint rejection using the roughness descriptor. (left) Keypoint selection
results without considering the roughness descriptor. (right) Keypoint selection results
considering the roughness descriptor.

6.2.3 Descriptor calculation
Once keypoints are selected, the last part of the pre-processing stage deals with the des-
criptor extraction. The main idea is to compute, in a compact way, a local characterization
of the surrounding neighborhood for each selected point to provide extra information to
the search stage. This information will be helpful to reduce the number of potential corre-
spondences between keypoints: only pairs with similar descriptors will be used to evaluate
potential matches.

The selected descriptor for this purpose is a modified version of Persistent Feature His-
tograms (PFH). This descriptor was introduced in [139] as an alternative characterization
of keypoints for point cloud alignment calculation. Given that originally it was intended to
help in the registration process of partial views acquired over the same static environment,
the original formulation has to be extended to support the indents and outdents concept.

To compute the descriptor associated to a given point, pi, considering a neighborhood
of size r, fist stage selects all points pj that verify ‖pi − pj‖ < r. Then, for each pair of
points pi and pj , where i 6= j, j > i, a source and target points are identified (ps and pt,
respectively), being the source the one that has the smallest angle between its associated
normal and the line connecting the two points:

ps =

{
pi, 〈ni, pj − pi〉 ≤ 〈nj , pi − pj〉
pj , otherwise

(6.12)

being ni and nj the normals associated to pi and pj , respectively. This way, for each pair
of points a source is uniquely defined.

Given a source point and a target point, and their associated normals, an orthonormal
Darbux reference frame is built centered in the source point, as illustrated in Figure 6.10:

u = ns (6.13)
v = (pt − ps)× u (6.14)
w = u× v (6.15)

97

Chapter 6. 6 Degrees of Freedom Approach

ps

pt

ns = u

nt

pt - ps

w

v

Figure 6.10: Construction of the PFH reference frame given a source point ps and a
target point pt and their associated normals ns and nt, respectively. Red triangle is
the plane defined by the vectors (pt − ps) and ns = u, whilst the green one is defined
by (pt − ps)× ns = v and ns = u

Using the proposed frame as a reference, all surrounding points are expressed as a
quadruplet of values (α, φ, θ, d) calculated as detailed below and illustrated in Figure 6.11:

α = 〈v, nt〉 (6.16)

φ =
〈u, pt − ps〉
‖pt − ps‖

(6.17)

θ = atan(〈w, nt〉, 〈u, nt〉) (6.18)
d = ‖pt − ps‖ (6.19)

This way, for each pair of points, instead of storing 12 values (position and normal 3D
coordinantes), a more compact representation is achieved, being only necessary 4 values:
α, φ, θ and d.

pt

φ
θ

α
ps

u

v

w

u

v

w

pt

nt

pt - ps

Figure 6.11: Construction of the PFH reference frame given a source point ps and a
target point pt and their associated normals ns and nt, respectively. Red triangle is
the plane defined by the vectors (pt − ps) and ns = u, whilst the green one is defined
by (pt − ps)× ns = v and ns = u

The final PFH representation takes all the points around the selected keypoint inside
a given search radius and generates the proposed alternative representation for each pair
of them (Figure 6.12). Then, a histogram representation is built by spitting each value

98

6.2. Pre-processing

of α, φ, θ and d into n bins, and counting the number of occurrences for each case. For
example, if each feature is divided into into n = 5 correlated intervals, a histogram of 45

bins is created. In this space, the value stored in a bin will be incremented only if a given
point has the proper value for all its 4 features.

r

Figure 6.12: PFH pairs between points around a selected keypoint (represented in red)
with a given search radius, r.

Finally, in order to extend the proposed descriptor to the reconstruction problem, where
the indents from one fragment are supposed to be matched with outdent of another, the
formulation has to be modified. To do so, for each fragment and its associated keypoints
two descriptors are calculated: one using the standard PFH formulation, and another one
considering np = −np, for all the points.

In other words, for indents to be properly matched with their corresponding outdents,
one of the two descriptors used for the matching needs to be computed with the normals
flipped. This way, the compact topological representation of the neighborhood around a
given keypoints behaves identically as the input data PFH was designed for: partial views
of the same model.

Figure 6.13 illustrates this concept with two fragments that match each other.

Figure 6.13: PFH descriptors extended for reconstruction purposes. Two corresponding
keypoints are marked in two different fragments (one indent and one outdent). Notice
how their associated PFH histograms are practically identical, when computing the
descriptor associated to the fragment shown in the left with the normals flipped.

99

Chapter 6. 6 Degrees of Freedom Approach

6.3 One-to-one search strategy

This stage takes as input data the keypoints calculated in the previous stage and their asso-
ciated descriptors and outputs a rigid transformation (a rotation matrix R and a translation
vector t) that better aligns both fragments. In order to be able to compare the quality of
the alignment with respect to other one-to-one matches, an estimation of the quality is also
provided. These results will be used in the next stage to perform the final reconstruction
of the original object.

In order to be able to decide if a couple of keypoints (one from each fragment) are
in correspondence, two basic conditions have to be satisfied: (1) their local neighborhood
must be similar and (2) geometric consistence has to be granted with respect to other
matching keypoints.

6.3.1 Local similarity

In order to measure the local similarity between a couple of keypoints, the information
contained in the previously calculated descriptors is exploited. This way, given two frag-
ments P andQ, with their associated keypoints pi and pj , respectively, and the descriptors
associated to each keypoint (p+

i , p
−
i) and (q+

i , q
−
i), respectively, where + and − distin-

guish between the descriptors calculated using regular or inverted normals, respectively, a
kd-tree of 4n dimensions is built for each fragment using the inverted-normals descriptor
(where n is the number of bins used for the PFH descriptor, and 4 corresponds to the α, φ,
θ and d features).

For each keypoint pi ∈ P a k-nearest neighbor search is performed over the kd-tree
created for fragmentQ. Results for this search are a set of keypoints qj ∈ Q, together with
their associated distances, defined in the 4n dimensional space, and calculated as:

d =

√√√√ 4n∑
b=1

(
p+
ib
− q−ib

)2
(6.20)

where p+
ib

stands for the b-th bin of the positive PFH descriptor of keypoint p, and q−ib for
the corresponding b-th bin of the negative PFH descriptor of keypoint q.

Once potential correspondences between keypoints according to their local similarity
are calculated, all of them are stored in a sorted array according to their associated distance.
The rest of potential pairs between keypoints in both fragments will not be considered in
the next search stages.

In order to reduce the number of possible combinations between the selected corre-
spondences, this sorted list can be pruned so only the first k best matches are considered.
Even if this prune operation is not performed, the total number of matches to evaluate is
considerably reduced taking advantage of the previously calculated descriptor.

Figure 6.14 shows the result after this stage. Notice how, even having a powerful
descriptor and a good selection of keypoints, the number of matches to consider is still
very high. The main task of the search algorithm will be, then, discarding all the potential
correspondences according to their geometric properties, and selecting only the ones that
provide geometrically consistent results.

100

6.3. One-to-one search strategy

Figure 6.14: Potential matches between two fragments considering only local similarity
between keypoints.

6.3.2 Geometric consistence

Starting from the results achieved by the local similarity search, the geometric consistence
tests proposed here are divided in three major cases: (1) given a pair of matching key-
points (called pivot from here on), discard all the ones that make no sense in terms of
geometric consistence, (2) given two pivots, perform the same operation and (3) given a
roto-translation matrix that aligns fragment Q with fragment P , decide which keypoints
are geometrically consistent.

Notice how, for the first proposed case, having a pivot fixed, π = (pi, qj) where pi ∈ P
and qj ∈ Q, the three degrees of freedom associated to the relative translation that puts Q
in contact with P are locked, while the three degrees of freedom associated to rotations
remain unlocked. In the second case, having two pivots fixed (π1 and π2), two extra
degrees of freedom associated to rotations get locked, leaving only the possibility to rotate
with respect to the line defined by π1π2. Finally, in the third case, all degrees of freedom
are locked, so a final rigid transformation can be computed.

In order to evaluate which pairs of keypoints (called candidates from here on, ci) are
geometrically consistent with a given pivot, the next conditions have to be satisfied:

|‖p1 − p2‖ − ‖q1 − q2‖| ≤ εt (6.21)
|〈np1 , np2〉 − 〈nq1 , nq2〉| ≤ εr (6.22)∣∣∣∣ 〈p1 − p2,−np2〉

‖p1 − p2‖
− 〈q1 − q2, nq2〉
‖q1 − q2‖

∣∣∣∣ ≤ εr (6.23)

being π1 = (p1, q1), c1 = (p2, q2), np1 and np2 the normals associated to p1 and p2,
respectively, nq1 and nq2 the normals associated to q1 and q2, respectively, εt a given
tolerance for position errors and εr a given tolerance for normal orientation errors. Notice
from the previous two equations that it is stated that relative distances between points in
both fragments and relative orientations of the normals have to be similar.

In Equation 6.23 it is stated that the angle between the normals and the line connecting
the pivot and the candidate has to be similar. Notice how the sign of np2 has been inverted.

101

Chapter 6. 6 Degrees of Freedom Approach

φp

p
1 - p2

q1
q2

p1

p2

nq1 nq2

np1 np2

q
1 - q2

-np2

np2

nq2 φq

θp

θq

Figure 6.15: Geometric constraints for one fixed pivot, π = (p1, q1). Similarity has to be
preserved for relative distances between points, relative orientations between normals
(represented as φp and φq), and angles between the normals of the candidates and the
line connectig each candidate with its associated pivot (represented as θp and θq).

This condition is necessary for mathematical correction (see Figure 6.15) and, attempts to
avoid penetration between fragments by forcing normals to be in opposite directions.

When two pivots are fixed, π1 = (pi, qj) and π2 = (pk, ql), i 6= k and j 6= l, candidate
correspondences are considered as valid if the next conditions are satisfied:

|‖p1 − p3‖ − ‖q1 − q3‖| ≤ εt
|‖p2 − p3‖ − ‖q2 − q3‖| ≤ εt
|〈np1 , np3〉 − 〈nq1 , nq3〉| ≤ εr
|〈np2 , np3〉 − 〈nq2 , nq3〉| ≤ εr∣∣∣∣ ((p3 − p1)× (p3 − p2)).norm()

(p2 − p1).norm()
− ((q3 − q1)× (q3 − q2)).norm()

(q2 − q1).norm()

∣∣∣∣ ≤ εt
|〈(p3 − p1)× (p3 − p2).normalized(), p1 − (p3 + np3)〉−
〈(q3 − q1)× (q3 − q2).normalized(), q1 − (q3 − nq3)〉| ≤ εr

being π1 = (p1, q1), π2 = (p2, q2), c1 = (p3, q3), the operator norm() returns the distance
of the preceding vector and the operator normalized() expresses that the preceding vector
has module 1.

First two conditions ensure that relative distances between the candidate points and
their corresponding pivots are similar. Next two conditions preserve the similarity be-
tween the normals of the candidates and the normals of their corresponding pivots. Fifth
condition compares the distance of the candidate with respect to the line that connects
its two corresponding pivots. Last condition compares the normal of the candidate with
respect to the plane defined by the two pivots and the candidate (see Figure 6.16).

102

6.3. One-to-one search strategy

p1

p2

np1 np2

p
1 - p2

φp1

θp

p3

np3

p 1
- p 3

p
2 - p

3
np3

np3 φp2
|p3 , p2 p1|

Figure 6.16: Geometric constraints for two fixed pivots, π1 = (p1, q1) and π2 = (p2, q2).
Similarity has to be preserved for relative distances between points, relative orienta-
tions between normals (represented as φp1 and φp2), the distance between the can-
didate and the line connecting the two pivots, and for the relative orientation of the
candidate’s normal with respect to the normal of the plane defined by the two pivots
and the candidate (represented as θp).

Finally, when three pivots are fixed, π1 = (pi, qj), π2 = (pk, ql) and π2 = (pm, qn), ,
i 6= k 6= m and j 6= l 6= n, all degrees of freedom are locked, so the only conditions that
have to be satisfied for each candidate correspondence are:

|‖p1 − p4‖ − ‖q1 − q4‖| ≤ εt
|‖p2 − p4‖ − ‖q2 − q4‖| ≤ εt
|‖p3 − p4‖ − ‖q3 − q4‖| ≤ εt
|〈np1 , np4〉 − 〈nq1 , nq4〉| ≤ εr
|〈np2 , np4〉 − 〈nq2 , nq4〉| ≤ εr
|〈np3 , np4〉 − 〈nq3 , nq4〉| ≤ εr

being π1 = (p1, q1), π2 = (p2, q2), π3 = (p3, q3) and c1 = (p4, q4).

6.3.3 Search strategy
The proposed search strategy for one-to-one alignments starts by reducing the search space
using the explained local similarity function. When all potential matches between key-
points have been found, a set of alignments is created as follows: for each match be-
tween keypoints, a new alignment is created fixing it as a pivot and adding all the rest of
correspondences as candidates (if they satisfy all the geometrical consistence conditions
explained before for one pivot).

In order to sort alignments according to their potential quality, a cost function is de-
fined by adding the number of pivots and the number of candidates. This way, a max-heap
is built with all the possible combinations, where the top of the tree is the alignment with

103

Chapter 6. 6 Degrees of Freedom Approach

better cost function (in the initialization case, the one that has more correspondences geo-
metrically consistent with the selected pivot).

Iteratively, the most promising alignment is popped from the heap, and refined into a
set of child alignments. To compute these new alignments, the proposed search strategy
proceeds as follows:

Algorithm 5 GetChildren(Alignment A)

1: result← List(Alignment);
2: for i← 0 to A.candidates.Count step 1 do
3: child← Alignment();
4: child.pivots← A.pivots+A.candidates[i];
5: child.candidates← A.candidates[i+ 1 . . . A.candidates.Count];
6: child.RemoveInconsistentCandidates();
7: result.Add(child);
8: end for
9: return result;

The function RemoveInconsistentCandidates() associated to an alignment takes
in consideration the total amount of fixed pivots and applies the proper set of geometric
consistence tests.

Once child alignments have been calculated, they are added to the heap of active align-
ments, and the process continues until the top of the heap (the alignment with more cor-
rect candidates) reaches three fixed pivots. When this happens, all degrees of freedom get
locked, and a transformation that aligns fragment Q with P is computed as follows:

µP =
1

3

3∑
i=1

pi , p1 ∈ π1, p2 ∈ π2, p3 ∈ π3 (6.24)

µQ =
1

3

3∑
i=1

qi , q1 ∈ π1, q2 ∈ π2, q3 ∈ π3 (6.25)

H =
1

3

3∑
i=1

(pi − µP) (qi − µQ)
T (6.26)

[U, S, V] = svd(H) (6.27)

R3×3 = V UT (6.28)
t3×1 = −R× (µP + µQ) (6.29)

The result of these operations are a rotation matrix, R, and a translation vector, t, that
align pivots in fragment Q with their counterpart in P when q′i = R ∗ qi + t.

After performing this operation considering only the three fixed pivots, the set of geo-
metric consistence tests for a given roto-translation are applied to all the candidates. After
removing the ones that make no geometrical senses, a new set of rotation and translation
matrices are calculated again, as explained in the previous formulation, but considering all
the pivots and candidates that remain valid in the alignment.

Then, the resulting alignment is pushed back into the heap, promoting all the candidate
correspondences as pivots. The iterative search process ends when the top of the heap is

104

6.4. Many-to-many search strategy

an alignment with more than 3 pivots. In this case, the alignments is returned as the
result of the process, together with the calculated roto-translation, and considering as cost
function the total number of correspondences marked as pivots (notice that, at this point,
no candidate correspondences are available since they have been promoted to pivots if they
made geometrical sense or deleted if not). The general search algorithm is detailed below:

Algorithm 6 One-to-OneSearch(Keypoints P , Keypoints Q)

1: KdTree kd← Q.buildKdTreeOfDescriptors();
2: List(Correspondence) correspondences← kd.kNeighbors(P.descriptors);
3: correspondences.sortOnDescriptorDistance();
4: correspondences.removeLast(n);
5: Heap alignments← Heap(Alignment);
6: for i← 0 to correspondences.Count step 1 do
7: Alignment A← Alignment();
8: A.pivots = correspondences[i];
9: A.candidates = correspondences[i+ 1 . . . correspondences.Count];

10: alignments.push(A);
11: end for
12: while alignments.top.pivots.Count < 4 do
13: Alignment current← alignments.removeTop();
14: if current.pivots < 3 then
15: alignments.push(current.getChildrenAndEvaluateConsistence();
16: else
17: alignments.push(current.computeRotoTranslation();
18: end if
19: end while
20: return alignments.top()

This way, a three-level hierarchical search is performed, where not all possible com-
binations of three correspondences have to be exhaustively evaluated. Considering that
correspondences are sorted with respect to their euclidean distance in the descriptor space
(line 3 on the previous algorithm), and that pivots are fixed in potential alignments in this
order, a normal execution of the proposed search strategy converges very fast to the global
solution, being only necessary to evaluate the first two-to-six alignments created in the
loop shown in line 6.

Figure 6.17 shows the results using the proposed search strategy for the same problem
illustrated in Figure 6.14. Notice how, for the thousands of possible correspondences
between keypoints considering only local similarity, only a subset of 19 of them make
geometrical sense, according to the stated restrictions.

6.4 Many-to-many search strategy

Last stage in the global reconstruction proposed execution cycle deals with the many-to-
many searches between the fragments of a given dataset. Input data are a set of alignments
calculated using the one-to-one search strategy explained before and the result is a set of
clusters of matching fragments.

105

Chapter 6. 6 Degrees of Freedom Approach

Figure 6.17: Results of the one-to-one search strategy.

Each of the clusters considered during this global reconstruction stage can be seen as
a graph, where each node represents a fragment with its associated pose, and each edge
represents a pair of matching keypoints connecting two fragments.

Considering that the previously proposed one-to-one strategy performs a three-level
hierarchical search, in order to solve the many-to-many correspondence problem, the heap
of the active alignments could be initialized considering all the one-to-one pairs of frag-
ments. This approach would be similar to the one presented in the 3-DOF problem, but
with one major difference: unlike the former solution, the 6-DOF hierarchical search only
considers 3 different levels (one pivot, two pivots and three or more pivots). Trying to
solve all the one-to-one correspondences at once would not yield into a great performance
boost since, at least, the first level on the hierarchy must be exhaustively evaluated. Also,
the major drawback of a pure hierarchical search is that, until the most promising align-
ment has not been refined into its child alignments, it cannot be decided which is the next
most potential alignment. This way, the problem cannot be divided into independent tasks,
so no parallelization can be performed.

As an alternative way of solving all the one-to-one correspondences, and considering
the hardware architecture of modern CPUs, the proposed search algorithm starts by creat-
ing a list of one-to-one alignments to compute, and splitting this list into a set of n tasks,
where n corresponds to the number of logic processors in the machine that is executing
the algorithm. This way, since each one-to-one search is independent from the others, n
threads are created and n simultaneous one-to-one alignments are solved at the same time.

Once all the searches have finished, results are collected in a list, where the alignments
are sorted according to their cost function (number of pivots) in descending order. Then,
the global reconstruction process begins.

In order to perform the final re-assembly of the original fragment, a set of operations
with clusters are defined: create operations, where new clusters are defined, append op-
erations, where new correspondences between fragments are added to an existing cluster
and merge operations, where two existing clusters are combined into a single one.

106

6.4. Many-to-many search strategy

First operation in this stage is a create operation, since no clusters exist during the
initialization. Basically, the alignment with higher cost function is popped from the sorted
list of one-to-one alignments, and a cluster is created with two nodes: one for the first
fragment P , with an identity transformation matrix associated, and another for fragment
Q, with a transformation matrix, M (Q)

4×4 created by composing the rotation matrix, R, and
the translation vector, t, calculated in the alignment:

M
(Q)
4×4 =

R(1, 1) R(1, 2) R(1, 3) t(1, 1)
R(2, 1) R(2, 2) R(2, 3) t(2, 1)
R(3, 1) R(3, 2) R(3, 3) t(3, 1)

0 0 0 1

 (6.30)

Then, a set of attributed edges connecting nodes P andQ are defined, where each edge
contains the index of the two keypoints matching in the nodes connected. Figure 6.18
shows the graphical representation of a cluster just created. In the left image the complete
representation is shown, whilst in the right image, a compact alternative representation
is shown, where all edges are condensed into a single one, pondered with the number of
matching keypoints. From this point, this is the representation that will be used in figures.

P Q

(pi , qj)

(pk , ql)

(pm , qn)
P Q

n

Figure 6.18: Cluster representation as a graph. Resulting cluster after performing a
create operation. Left image shows the complete representation, whilst right image
shows the compact representation.

After the first cluster has been created, two possibilities exist: (1) the next best match
does not include none of the two fragments enclosed in the first cluster, so a new cluster has
to be created, or (2) the next best match includes one of the previously enclosed fragments,
so an append operation has to be performed.

Append operations add new correspondences to existing clusters. There are two differ-
ent cases for this kind of operations: (1) just one fragment is already present in the cluster
or (2) both fragments are already present in the fragment, but not previously connected.

In the first case, a new node is created, containing the newly added fragment, R, and
connections between R and its matching fragment, P , are defined. In order to compute
the transformation matrix of R, two possibilities exist:

1. R is the moving fragment in the alignment that connects it with P , so its transfor-
mation matrix is defined asMR = MP ∗R+t, whereR and t are the rotation matrix
and translation vector of the alignment, respectively, and MP is the transformation
matrix of P .

2. R is the fixed fragment in the alignment that connects it with P , so its transformation
matrix is defined as MR = MP ∗ [Rt]−1, where [Rt]−1 is the inverse of the 4 × 4
matrix built by appending t to R and adding [0 0 0 1] to the last row.

107

Chapter 6. 6 Degrees of Freedom Approach

P n QC1 :

P m RA:

P n Q

R

m

Append(C1 , A):

Figure 6.19: Cluster append operation with one fragment of the alignment inside the
considered cluster. Given one cluster, C1, and one alignment, A, (left), result of the
append operation when only one of the fragments considered in A exists in C1 (right).

Figure 6.19 illustrates this case for the append operation.
In the case of both fragments considered in the new alignment being part of a given

cluster, a geometric consistency test is performed to evaluate if the new alignment makes
sense with the previous poses of the fragments involved. This way, by fixing the pose of
one of the fragments of the alignment to the one it has in the cluster, and by computing
the new pose for the other fragment according to the criteria previously explained, a new
transform is computed. If this transform is not too different for the one that already had
inside the cluster, a new set of edges connecting both fragments are created. Otherwise,
the alignment is considered as incorrect and, thus, rejected.

Notice how, when this situation happens, the pose of the moving fragment was al-
ready calculated using matches with higher associated cost functions (since fragments are
added according to this criterion). This way, global consistency is evaluated in a very fast
way, and potential incorrect correspondences can be identified and rejected. Figure 6.20
illustrates this particular case of the append operation.

C1 :

Q o RA:

Append(C1 , A):P n Q

R

m

P n Q

R

m

Append(C1 , A):

o

P n Q

R

m
(inconsistent)

(consistent)

Figure 6.20: Cluster append operation with both fragments of the alignment inside the
considered cluster. Given one cluster, C1, and one alignment,A, (left), result of the ap-
pend operation when both fragments considered in A exists in C1. (right-top) Results
when the consistence test is not passed. (right-bottom) Results when the consistence
test is passed.

Finally, the merge operation is performed when the most promising alignment in the
sorted list of one-to-one matches, includes one fragment from one cluster and another
fragment from other cluster. In this case, both previously defined clusters are removed,

108

6.5. Results

and a new one is created containing the union of the nodes and edges defined in its parent
clusters, together with the newly added alignment. To update the transformation matrices
of all the fragments, one of them is fixed and the others are updated in cascade according
to the criterion already commented.

C1 : Merge(C1 , C2 , A):P m Q P m Q

C2 : R n S

A : R o Q

R n S

o

Figure 6.21: Cluster merge operation. Given two clusters, C1 and C2, and one alignment,
A, whose fragments are present in C1 and C2 (left), result of the merge operation
(right).

Given these operations, the global reconstruction process iterates through all the po-
tential one-to-one alignments creating, appending and joining clusters until no alignment
is left. This means that, for the first set of alignments (the ones that have a higher cost
function), lots of changes are introduced in the final reconstructed object. When the best
alignments have been processed, most of the subsequent results are discarded, since they
contradict the previously computed poses.

Notice that (n−1)! one-to-one searches are produced, being n the number of fragments
in the dataset, and most of them will provide "good" results (alignments with more than
three pivots in correspondence). By evaluating the global correction, these incorrect results
are very easily identified and rejected.

6.5 Results

This section empirically evaluates the correction and performance of the proposed tech-
nique. To do so, the fragments presented in [71] are used. These datasets are courtesy
by the Vienna University of Technology, and available on-line for research purposes. All
tests presented here have been executed in a 3.4 GHz Intel Core i7 computer with 4GB of
RAM.

In next subsections, results achieved in each stage of the proposed execution cycle are
analyzed: from the pre-processing of the original point clouds, to the one-to-one search
strategy, to the final reconstruction algorithm.

6.5.1 Pre-processing
In order to measure the performance of the pre-processing stage, all fragments in the
considered datasets have been processed with the same parameters: a 10 level multi-
scale feature extraction, with the neighbor search distances linearly distributed between
0.1 to 1.0 centimeters, a keypoint extraction based on the proposed dominancy value,
(rmax − rmin)/2 = 0.5 centimeters and a PFH descriptor where distances are ignored
(since models are so dense and uniformly sampled, distances between pairs of points do

109

Chapter 6. 6 Degrees of Freedom Approach

not provide much information) and each relative orientation with respect to the reference
frame is splitted into 5 bins, so the final descriptor is a histogram of 53 = 125 float values.

Next tables show the achieved results, where the first column, Frag, corresponds to
the file name of the fragment, second column, #V ert, is the total number of points in
the original point cloud, third column, #nn, is the average number of nearest neighbors
for each point when using the maximum search distance (which provides an estimation
on the model density of points), fourth column, knn(sec), is the time spent in computing
all the nearest neighbors searches, fifth column, Feat(sec), is the time spent in extracting
the proposed multi-scale feature, sixth column, Key(sec), corresponds to the time spent
in extracting keypoints, seventh column, Rough(sec), is the time required to compute the
roughness of the selected keypoints and filter the ones that are below the given tolerance,
eighth column, Desc(sec) corresponds to the time spent in calculating the proposed PFH
descriptors for both characterizations (with regular normals and inverted normals) and,
finally, last column is the total pre-processing time of the fragment.

Frag #Vert #nn knn Feat Key Rough Desc Total
(sec) (sec) (sec) (sec) (sec) (sec)

1.obj 185833 389,8 7,463 2,573 0,097 0,087 2,076 12,296
2.obj 80116 430,2 3,487 1,234 0,049 0,049 1,098 5,916
3.obj 69443 412,0 2,733 0,976 0,035 0,030 0,699 4,474
4.obj 54197 505,6 2,641 1,001 0,032 0,037 0,895 4,606
5.obj 18441 529,3 0,935 0,340 0,012 0,009 0,202 1,499
6.obj 36229 519,2 1,858 0,630 0,021 0,019 0,373 2,900
7.obj 20381 614,2 1,170 0,418 0,013 0,012 0,306 1,919

Table 6.1: Pre-processing times for the venus dataset.

Frag #Vert #nn knn Feat Key Rough Desc Total
(sec) (sec) (sec) (sec) (sec) (sec)

01.obj 138694 840,1 11,697 3,464 0,102 0,090 2,604 17,958
02.obj 146464 958,0 13,245 4,211 0,116 0,102 3,164 20,837
03.obj 154838 809,1 11,642 3,811 0,113 0,105 2,971 18,641
04.obj 90789 354,0 3,266 1,098 0,042 0,039 0,866 5,310
05.obj 135535 986,6 12,925 3,970 0,110 0,093 2,861 19,959
06.obj 149336 748,4 10,624 3,411 0,107 0,098 2,293 16,533
07.obj 112363 520,8 5,577 1,873 0,066 0,056 1,040 8,611
08.obj 135055 608,0 8,335 2,550 0,091 0,075 1,560 12,611
09.obj 149837 597,0 8,990 2,834 0,099 0,084 1,516 13,523
10.obj 136698 988,7 12,589 3,991 0,112 0,096 2,864 19,652
11.obj 98084 622,8 5,926 1,947 0,065 0,056 1,196 9,190

Table 6.2: Pre-processing times for the cake dataset.

110

6.5. Results

Frag #Vert #nn knn Feat Key Rough Desc Total
(sec) (sec) (sec) (sec) (sec) (sec)

1.obj 174014 711,7 12,047 3,987 0,119 0,116 2,608 18,877
10.obj 111879 578,0 6,122 2,122 0,072 0,079 1,739 10,134
11.obj 132920 544,1 7,044 2,393 0,083 0,086 1,791 11,396
12.obj 122982 2.130,4 24,142 8,259 0,188 0,194 6,616 39,399
13.obj 72461 1.651,2 10,826 3,617 0,090 0,077 2,639 17,249
14.obj 141851 495,7 6,725 2,370 0,077 0,079 1,515 10,766
15.obj 126422 784,3 9,159 3,071 0,092 0,090 2,159 14,570
16.obj 101445 1.065,5 10,436 3,216 0,089 0,087 2,484 16,311
17.obj 77285 852,7 6,298 2,113 0,058 0,058 1,530 10,057
18.obj 124089 579,3 7,147 2,322 0,080 0,076 1,433 11,058
19.obj 161356 811,8 12,508 3,979 0,118 0,112 2,692 19,410
20.obj 67317 1.306,3 8,690 2,635 0,071 0,056 1,515 12,967
21.obj 120157 6.890,5 228,059 41,417 11,659 3,181 15,826 300,141
22.obj 131421 2.475,0 31,613 10,100 0,235 0,217 7,650 49,816
23.obj 81085 3.156,2 23,807 7,996 0,192 0,153 5,267 37,414
24.obj 66150 2.861,7 17,525 5,851 0,134 0,100 3,595 27,205
25.obj 94084 6.469,2 85,541 24,866 0,416 0,351 15,658 126,832
2A.obj 145973 938,1 12,593 4,104 0,113 0,122 3,351 20,283
2B.obj 118270 1.082,6 11,911 3,775 0,106 0,100 3,281 19,174
2C.obj 147204 919,0 12,498 4,031 0,111 0,105 3,097 19,842

3.obj 146258 627,4 8,665 2,830 0,097 0,099 2,657 14,349
4.obj 106489 396,8 4,191 1,391 0,052 0,052 1,174 6,860

5A.obj 146906 353,2 5,220 1,747 0,065 0,075 1,702 8,809
5B.obj 92887 1.557,3 13,345 4,267 0,110 0,122 4,583 22,426
6A.obj 87836 838,9 6,837 2,230 0,067 0,069 2,177 11,381
6B.obj 152881 726,7 10,804 3,334 0,108 0,108 2,443 16,797

7.obj 128676 566,7 7,193 2,280 0,082 0,085 2,013 11,653
8.obj 121254 894,2 10,116 3,191 0,092 0,091 2,568 16,058
9.obj 111897 578,4 6,069 2,000 0,072 0,075 1,682 9,898

Table 6.3: Pre-processing times for the gargoyle dataset.

Frag #Vert #nn knn Feat Key Rough Desc Total
(sec) (sec) (sec) (sec) (sec) (sec)

1.obj 295487 917,0 27,468 8,876 0,244 0,258 7,180 44,025
2.obj 171707 1.687,4 27,205 9,642 0,217 0,186 6,213 43,463
3.obj 180248 1.477,5 26,305 9,088 0,210 0,208 6,734 42,545
4.obj 274032 1.366,9 41,763 14,558 0,305 0,313 10,853 67,791
5.obj 280763 1.234,4 34,986 11,864 0,288 0,277 8,972 56,387
6.obj 167468 1.617,9 25,325 8,709 0,206 0,208 7,070 41,519

Table 6.4: Pre-processing times for the brick dataset.

111

Chapter 6. 6 Degrees of Freedom Approach

Frag #Vert #nn knn Feat Key Rough Desc Total
(sec) (sec) (sec) (sec) (sec) (sec)

1.obj 141271 1.500,7 22,478 6,413 0,163 0,116 3,166 32,336
10.obj 104749 1.098,8 10,661 3,575 0,095 0,067 1,718 16,116
11.obj 102985 2.147,6 21,100 6,863 0,158 0,119 4,386 32,625
12.obj 87634 2.791,3 23,228 7,718 0,173 0,108 3,560 34,787
13.obj 104944 2.945,1 32,762 10,161 0,219 0,138 5,145 48,426
14.obj 96881 912,6 8,564 2,793 0,074 0,049 0,954 12,433
15.obj 119678 1.010,9 11,462 3,659 0,099 0,061 0,898 16,178
2.obj 110021 1.189,7 12,409 3,911 0,108 0,093 2,249 18,770
3.obj 115932 1.126,2 12,360 3,892 0,108 0,077 1,897 18,335
4.obj 161158 1.210,0 18,799 5,901 0,161 0,116 2,845 27,822
5.obj 113270 991,0 10,548 3,313 0,093 0,070 1,607 15,631
6.obj 133121 887,3 11,932 3,531 0,099 0,066 1,287 16,916
7.obj 79554 660,5 5,088 1,623 0,053 0,043 0,767 7,574
8.obj 89634 744,6 6,288 2,022 0,064 0,055 1,046 9,475
9.obj 95271 729,1 6,601 2,136 0,067 0,058 1,165 10,026

Table 6.5: Pre-processing times for the sculpture dataset.

According to the previous tables, the average pre-processing time per fragment is
25.305 seconds, distributed as follows: 66,22% of the time is consumed in computing
the nearest neighbors for each point, 19.53% of the time is dedicated to extracting features
at 10 different scales,1.12% of the time is spent in extracting keypoints, 0.58% of the time
is consumed in computing the roughness of the selected keypoints and removing the in-
correct ones and, finally, the remaining 12.54% of the time is dedicated to computing the
PFH descriptors. Figure 6.22 illustrates this time distribution.

Figure 6.22: Pre-processing time distribution.

As it can be noticed, searching for neighbors is the most time-consuming task. This
search is performed over an optimized kd-tree and simultaneously for all the points in the
fragment. This setting provides faster results than individual searches, but makes paral-
lelization very inefficient. In order to reduce the impact of the local searches in the pre-
processing stage, the proposed implementation starts by caching all the neighbors for each

112

6.5. Results

point in a local list, according to the higher search radius. This way, the search process has
to be performed only once and results are re-used for smaller search radius. Nevertheless,
despite of this optimization, local searches are still the main bottleneck.

From previous tables, it can be noticed how the total pre-processing time is linearly af-
fected by the total amount of points in a given fragment. However, in cases like fragment
21.obj from the gargoyle dataset, extremely high values of density of points (6.890 neigh-
bors using a 1 centimeter search radius) produce a radical increment on pre-processing
times (300 seconds). These cases should be identified in a prior step, so a point reduction
algorithm could be executed to prevent this from happening.

This way, a new linear relationship can be identified: pre-processing times also depend
on the density of the input point cloud.

Figure 6.23 shows the relationship between the number of points in a fragment and
the total pre-processing time (left) and the point density and the total pre-processing time
(right). To compute the tendency line, all cases have been considered. However, to fa-
cilitate the lecture of the figure, the vertical axis is clamped to a maximum value of 80
seconds, so the two most time-consuming fragments are not displayed.

Figure 6.23: Pre-processing time respect to the number of points (left) and density (right).

6.5.2 One-to-one search
To evaluate the one-to-one search algorithm, the previous datasets have been used and, for
each one, each fragment has been aligned with the rest in the same dataset. Performance
of the search process is measured using two scalar values: the time spent on finding the
best registration and the number of matching samples between both fragments.

In order to evaluate the impact of the parameters in the search algorithm (number
of neighbors considered, position tolerance...), three search presets have been used (fast,
medium and precise). Table 6.6 shows the values for these presets, where the column
#neighbors corresponds to the number of k-nearest neighbors calculated for each key-
point, #correspondences corresponds to the number of best matches between keypoints
that are used as pivots, εt is the maximum separation between two facing keypoints to be
considered geometrically consistent and εr is the maximum normal orientation difference
between two facing keypoints to be considered geometrically consistent.

Despite only #correspondences are used as pivots to evaluate the potential align-
ments, all correspondences between keypoints are used to evaluate their associated score.

113

Chapter 6. 6 Degrees of Freedom Approach

Preset #neighbors #correspondences εt (cm) εr (o)
Fast 5 100 2 3,6

Medium 10 300 2 3,6
Precise 15 1000 2 3,6

Table 6.6: One-to-one search presets.

Figures 6.24, 6.25, 6.26, 6.27, 6.28 show the results achieved during the one-to-one
search process for all the considered fragment pairs, using the three introduced search
presets. In order to facilitate the interpretation of the results, search times and scores are
displayed as density matrices, where element mi,j represents the search time / score of
comparing fragment i with fragment j, where i 6= j. Complete tables of results can be
found in Appendix A. Table 6.7 shows the average execution times and scores for all the
compared fragments in each dataset.

Notice how increasing the number of potential matches considered as pivots has an
exponential impact in the search time. However, results also show that one-to-one align-
ments are computed extremely fast (less than a second in the worst case), and that the final
score density for a given dataset presents a similar distribution as the precision increases.
Taking as example the brick dataset (Figure 6.24), no new significative one-to-one matches
appear as the search quality is increased. This means that, using a very fast search preset,
correspondences between fragments 1-{2, 3, 4}, 2-5, 4-{5, 6} and 5-6 can be identified
without the need to increase precision, since no new significative matches appear.

However, for more complex cases like the gargoyle dataset or the venus dataset, higher
precision might be needed. It has been empirically observed that the medium preset
provides a good balance between correction and efficiency.

It is also important to notice that the score function increases as the search precision
does. This is an interesting aspect for the final registration since, the more matching key-
points are found, the more information is available for computing the final roto-translation
matrix that puts both fragments in contact.

Fast Medium Precise Fast Medium Precise
time time time score score score

Brick 0,0233 0,0675 0,2051 5,5333 16,3333 19,7333
Cake 0,0371 0,094 0,3111 6,8909 16,8909 19,2364

Gargoyle 0,0136 0,0362 0,135 1,0148 5,8547 7,1108
Sculpture 0,0062 0,0276 0,0985 3,0571 8,7333 9,9429

Venus 0,0124 0,0272 0,0884 2,4286 7,5714 9,381

Table 6.7: One-to-one average searching times (in seconds) and scores for all datasets.

Notice that one-to-one searches take one or two orders of magnitude below the second
(depending on the selected preset), and how the score function increases as the search
precision does. Also notice how, the bigger the dataset, the smallest the average score
function is. This is a consequence of the combinatory explosion that happens when lots of
fragments are considered since, in real cases, one fragment only has valid correspondences
with a very reduced set of neighbors (typically between 3 and 5 fragments). In this sense,
the gargoyle dataset is a good example (Figure 6.26).

114

6.5. Results

Figure 6.24: One-to-One search results for the brick dataset. Top row shows the search
times (in seconds) for each pair of fragments, whilst bottom row shows the score of the
final alignment found. Bottom images show some of the best correspondences found,
together with the fragment numbers.

115

Chapter 6. 6 Degrees of Freedom Approach

Figure 6.25: One-to-One search results for the cake dataset. Top row shows the search
times (in seconds) for each pair of fragments, whilst bottom row shows the score of the
final alignment found. Bottom images show some of the best correspondences found,
together with the fragment numbers.

116

6.5. Results

Figure 6.26: One-to-One search results for the gargoyle dataset. Top row shows the
search times (in seconds) for each pair of fragments, whilst bottom row shows the score
of the final alignment found. Bottom images show some of the best correspondences
found, together with the fragment numbers.

117

Chapter 6. 6 Degrees of Freedom Approach

Figure 6.27: One-to-One search results for the sculpture dataset. Top row shows the
search times (in seconds) for each pair of fragments, whilst bottom row shows the score
of the final alignment found. Bottom images show some of the best correspondences
found, together with the fragment numbers.

118

6.5. Results

Figure 6.28: One-to-One search results for the venus dataset. Top row shows the search
times (in seconds) for each pair of fragments, whilst bottom row shows the score of the
final alignment found. Bottom images show some of the best correspondences found,
together with the fragment numbers.

119

Chapter 6. 6 Degrees of Freedom Approach

6.5.3 Many-to-many search

In order to evaluate the global reconstruction algorithm, all the previous datasets have been
evaluated using the three search presets commented before. Results can be found in Figure
6.29 and in Table 6.8.

Notice in Figure 6.29 how, for the brick, cake and venus datasets, global reconstruction
results are apparently identical using any parameter preset: the final assembly is complete
and correct. However, given that the more precise the search is performed, the more match-
ing keypoints are found, final alignments are expected to be more exact with higher search
parameters (more correspondences to compute the transformation matrices).

On the other hand, notice how the gargoyle dataset returns two separate clusters using
the fast preset, since no valid correspondences are found between the head and the body
of the object. Also, correspondences between the right eyebrow and the left foot are not
found with these settings. Similarly, the sculpture dataset has a misplaced fragment using
the fast preset in the lower left corner.

Execution times have proven to be extremely fast in all the cases, with a maximum
searching time of 14.34 seconds for the gargoyle dataset, and a global average time of 2.11
seconds. Comparing these results with the ones published in [71] shows a performance
boost of many orders of magnitude: the only timing result provided was for the brick
dataset, which took around 15 seconds (whilst it only took 0.36 seconds with the proposed
medium search preset). Extrapolating this relationship, the gargoyle dataset would take
them 2 minutes and 15 seconds, which is considerably more than the 3.25 seconds achieved
with the proposed technique.

It is also important to remark that the search technique presented in [71] uses the whole
point cloud to compute the final reconstruction, whilst the one presented here uses only
a reduced set of keypoints. This way, memory requirements are very reduced, being the
average file size for each fragment 209 KB. This fact allows processing very large datasets
without stressing the computer’s memory.

Brick Cake Gargoyle Sculpture Venus
Fast 0,072668 0,384117 1,179188 0,126020 0,056107

Medium 0,363549 1,238172 3,250621 1,109079 0,131010
Precise 0,810381 4,504372 14,345377 3,080175 0,431054

Table 6.8: Many-to-many searching times (in seconds)

From Table 6.8 is important to remark that one-to-one searching times presented in the
previous sub-section are measured by looking for the best alignment between two frag-
ments in a single thread. However, as explained before, the many-to-many search strategy
exploits the hardware architecture of modern computers to parallelize these individual
tasks. This explains the extra acceleration achieved in the global reconstruction time.

According to the results presented in this section, themedium preset seems to provide
a good balance between correction and performance, providing always correct results,
while keeping searching times very reduced: 1.22 seconds on average.

120

6.5. Results

Fast Medium Precise
Br

ic
k

C
ak

e
G

ar
go

yl
e

Sc
ul

pt
ur

e
Ve

nu
s

Figure 6.29: Many-to-many search results for all the datasets using the three proposed
presets.

121

Chapter 6. 6 Degrees of Freedom Approach

6.6 Conclusions and Future Work

In this chapter, an automatic technique for re-assembling archaeological artifacts from
fragments has been presented. Providing a general solution for 6 degrees of freedom prob-
lems, an efficient execution cycle has been introduced in order to work with an alternative
characterization of fragments.

A pre-processing stage has been proposed, where the size of the problem is consid-
erably reduced: singular keypoints in the original point cloud are selected based on a
multi-scale feature extraction process driven by the saliency of each point, together with
a roughness estimation. Computing a modified version of the PFH descriptor, the local
neighborhood of each keypoint is described in a compact histogram. All this geometric
and topological information is stored in a very small file, that contains all the required data
to perform the final reconstruction.

Using exclusively the selected keypoints and their associated descriptors, a very fast
one-to-one search algorithm is executed for each possible pair of fragments. This pro-
cess uses a three-level hierarchical search strategy driven by the local similarity between
keypoints, and applying a set of geometric consistence tests for intermediate results.

Finally, a graph-based global registration algorithm uses all the individual matches to
provide the final reconstruction of the artifact by creating clusters of matching fragments,
appending new potential matches and joining individual clusters into bigger structures.
This global registration algorithm exploits modern computer’s hardware architecture, by
performing simultaneous parallel one-to-one searches.

Achieved results have proven the technique to be very fast and accurate: it has been
shown how, in a few seconds (or even less), complex reconstruction problems with millions
of 3D acquired points have been correctly solved. It has also been evidenced that the
proposed technique is scalable, and can be applied to very large datasets: fragment data
is very reduced and individual searches are independent, parallelizable and very fast to
execute.

Future works on this technique will focus on exploiting the extra information returned
by the one-to-one matcher in order to perform a global registration of fragments consider-
ing loop-closures. Also, to improve robustness, a penetration detection algorithm will be
implemented to enrich the detection of incorrect alignments between fragments/clusters.
This last aspect is indirectly evaluated by the one-to-one geometric consistence constraints
proposed, but may provide very useful information if considered in the many-to-many
search strategy, allowing to detect incorrect results.

122

CHAPTER7
Applications to Self-localization problems

This chapter applies surface registration techniques to a different field: self-localization
problems in known environments. The two cases proposed face the same basic problem
(inference of the observer’s location) using two different approaches: a sparse one, based
on a feature extraction process (like the proposed 6DOF technique) and a dense one, driven
by the exploration of the solution space (like the proposed 3DOF technique).

7.1 Fast Indoor Localization for Mobile Robots

This section focuses on applying geometric registration techniques for mobile robot self-
localization in structured indoor environments.

Self-localization techniques based on robot’s observations can be understood as a spe-
cific application of surface registration techniques: by calculating the best correspondence
between a given observation of the robot and a previous one (or a well-known map of the
environment) the relative position of the observer can be obtained by simple triangulation

The final goal is to implement a fast algorithm that can be executed, in real-time,
in a mobile robot with very limited computational resources. To do so, the proposed
method takes advantage of the available structural information of a ground-truth map to
perform a geometrical matching with the measurements collected by a laser rangefinder.
In contrast to other global self-localization algorithms like Monte Carlo or SLAM, the
proposed algorithm provides a linear cost with respect the number of measures collected,
making it suitable for resource-constrained embedded systems.

Given the limited computational resources of the platform targeted, a dense correspon-

123

Chapter 7. Applications to Self-localization problems

dence approach cannot be considered. Instead of this, a keypoint extraction algorithm has
to be implemented that simplifies the observed data into a set of singular points that will
be matched against the map. To efficiently do so, the structured nature of indoors environ-
ment is exploited. This structure is normally introduced by the presence of straight walls
and, consequently, this work focuses its effort on developing a fast line extraction algo-
rithm in order to detect them. However, the proposed algorithm can be easily extended to
recognize any other type of geometric primitives using the same basic idea.

7.1.1 Overview
The self-localization technique proposed in this section runs in three different stages: cal-
ibration, segmentation and localization. Calibration stage is executed before the robot can
move autonomously, and its results can be used in subsequent stages without re-calibrating
the sensor. The goal of this stage is to calculate the error function e(d) associated to the
distance measurements di returned by the sensor.

Once the calibration has been performed, the execution cycle of the robot starts by
reading the measures obtained by the laser, and converting the set of local 2D points ob-
tained to a much simpler representation. This task is performed in the segmentation stage,
where points si are inferred into lines li, filtered, and intersected between themselves, in
order to calculate a set of corners ci.

The most defined corner c is then passed to the localization stage, where it is aligned
with all the similar corners in the known map mi. Each alignment produces one possible
location for the robot (θrobot, xrobot, yrobot), which is evaluated using a cost function based
on squared errors. The alignment with the smallest error is then returned as the location of
the robot in the known map. Fig. 7.1 shows the complete execution cycle of the proposed
technique that is explained in this section.

Figure 7.1: Execution cycle of the proposed technique.

Main contributions of this subsection are (1) a fast line extraction algorithm that can
be executed in a resource-limited system providing a linear cost with respect to the sensor

124

7.1. Fast Indoor Localization for Mobile Robots

resolution and (2) an indoor localization pipeline that exploits the structured nature of
indoor environments to address the problems of global localization and kidnapped solving.

7.1.2 Calibration
Calibration stage deals with the estimation of the sensor’s measurement error. The result
of this stage is critical, since line inference algorithm uses this value to establish if a given
sample belongs to the line defined by the previous ones or if it belongs to a new line.

The measurement error e(d) is a function that indicates, for each distance di, the un-
certainty of the returned value. Its value can be a constant, or a function that depends on
the measured distance and/or the orientation of the laser beam in local coordinates.

To calibrate the sensor, the robot is placed in front of a straight wall and, using least
squares, the equation of the line that best fits the returned measurements, is calculated. The
error associated to each distance is calculated as the geometric distance between the point
defined by the distance measurement returned by the sensor, and the point defined by the
intersection between its projection line and the optimal line calculated using all samples.
Fig. 7.2 illustrates this concept.

During the empirical tests with the laser, the error remains constant, no matter the
measured distance or the projection angle. This way, a error function as a constant value
for all measures has been set, being e(d) = 2cm, which corresponds to the maximum
error obtained in the calibration stage.

Figure 7.2: Calculation of the error associated to each measurement. In orange is shown
the line calculated using least squares.

7.1.3 Segmentation
The goal of the segmentation stage is to reduce input data to a much simpler representation
that allows comparing it with the known map in an efficient and robust way. For this, noise
introduced by the sensor and real world objects imperfections has to be filtered using the
error estimation calculated in the calibration stage. To speed-up localization calculations,
the input set of distance measurements returned by the sensor is inferred into a set of
straight lines. These lines are intersected with their neighbors to compute a set of corners.
The most accurate estimated corner will be used in the localization stage to evaluate the
position of the robot in the known map.

125

Chapter 7. Applications to Self-localization problems

7.1.3.1 Data acquisition

A sensor is defined as S(f, n, e(d)) where f represents the FOV (Field Of View), n is
the number of distance samples returned and e(d) is the error function that estimates the
measurement error associated to each distance di.

Values of f and n are specified by the sensor manufacturer, whilst value of e(d) is
calculated in the calibration stage.

The set of distance measurements obtained by the sensor D = (d1, d2 . . . dn) is an
ordered array of decimal values. Projection angle ϕi of distance di can be calculated as
ϕi = f ∗

(
i
n −

1
2

)
, and its local coordinates (ui, vi) as follows:

ui = sin(ϕi) ∗ di (7.1)
vi = cos(ϕi) ∗ di (7.2)

Given a set of distances D, a set of samples S = (s1, s2 . . . sn) are calculated in this
stage, where each sample si is defined by three points in the sensor’s local coordinates:

si = (sin(ϕi) ∗ di, cos((ϕi) ∗ di) (7.3)
bsic = (sin(ϕi) ∗ (di − |e(di)|) , cos(ϕi) ∗ (di − |e(di)|)) (7.4)
dsie = (sin(ϕi) ∗ (di + |e(di)|) , cos(ϕi) ∗ (di + |e(di)|)) (7.5)

where e(di) is the associated measurement error for each sample.
This way, each sample is characterized by its measured distance to the sensor, si, its

minimum possible distance, bsic, and its maximum possible distance, dsie, according to
the error estimation performed in the calibration stage.

These samples are used in next stages to perform several calculations. If the required
frequency for the proposed technique cannot be ensured, due to computational restrictions,
an interesting simplification can be performed at this point: each calculated sample can
represent a set of distance measures. Thus, by averaging distances, the amount of samples
to process in further stages can be reduced, and some random noise can be filtered.

7.1.3.2 Line inference

The goal of this stage is to calculate a set of straight lines L = (l1, l2 . . . lm) that best fits
the set of samples calculated during the acquisition stage, considering the measurement
error. The main difficulty associated to these calculations is to establish if a given sample
si belongs to the line obtained considering previous samples si−j , or if it belongs to a new
line. To solve this problem, an estimator called line visibility is associated to each line, lk,
defined by two scalar values Vlk = (dmin, dmax). This estimator specifies the range of
projective distances in which sample si will be considered as part of the line defined by
previous samples. This way, the following can be established:

si ∈ lk ↔ [bsic . . . dsie] ∩ [dmin . . . dmax] 6= ∅ (7.6)

being [dmin . . . dmax] the range of distances specified by Vlk , and lk the line defined by
previous samples (si−1, si−2, . . .). Values of [bsic . . . dsie] represent the uncertainty asso-
ciated to the position of si, considering its associated measurement error. Fig. 7.3 illus-
trates this concept.

126

7.1. Fast Indoor Localization for Mobile Robots

Figure 7.3: Use of the line visibility concept. Red circles correspond to si values, dashed
circles correspond to bsic and dsie values. Dark gray lines represent the uncertainty
associated to each sample [bsic . . . dsie]. (Left) Graphical representation of Vl1 con-
sidering all illustrated samples. (Right-up) A new sample s5, represented in green, that
satisfies Eq. (7.6) and, thus, belongs to the line l1. (Right-down) A new sample s5 that
does not satisfy Eq. (7.6), so it does not belong to the line l1.

Given a set of consecutive samples S = (si−j . . . si−2, si−1), to compute values of
dmin and dmax for the next sample si, it is necessary to find the minimum/maximum
slope lines, Vmin and Vmax respectively, that intersects all ranges [bskc . . . dske], sk ∈ S.

The intersection points between these lines and the lineOsi, defined by ϕi and marked
in blue in Fig. 7.3 (left), correspond to dmin and dmax, being dmin = Vmin ∩ Osi and
dmax = Vmax ∩ Osi. This way, if a sample si fails Eq. (7.6), it means that it cannot
exist one line that intersects all ranges [bskc . . . dske], sk ∈ (S∪si) and, consequently, the
sample must belong to a new line.

To infer L, all samples are iterated in order, creating new lines when it is necessary.
Algorithm 7 illustrates this process.

If a sample si passes Eq. (7.6), defined by the line that considers previous samples
(si−j . . . si−2, si−1), it is then included in the line, and values of dmin and dmax are
updated considering the new sample.

If si fails the test established in Eq. (7.6), a new line is created that only includes si,
and the equation of the previous line is calculated using least squares for fitting, according
to the projective distance measured for each included sample (si).

This way, by using bsic and dsie, the line visibility estimator that splits the original
sample set into smaller clusters of aligned samples is calculated. Then, by using si dis-
tances, the line that best fits all samples inside each cluster is calculated too and this set of
lines is the result of this stage.

127

Chapter 7. Applications to Self-localization problems

Algorithm 7 proposed clustering algorithm to infer the set of lines L that best fits the set
of samples S.

1: L← ∅;
2: l← new Line(∅);
3: for all Sample si ∈ S do
4: dmin ← Vlmin

;
5: dmax ← Vlmax

;
6: if [bsic . . . dsie] ∩ [dmin . . . dmax] 6= ∅ then
7: l.AddSample(si);
8: l.RecalculateVl();
9: else

10: l.LeastSquareFit();
11: L.Add(l);
12: l← new Line(∅);
13: end if
14: end for
15: l.LeastSquareFit();
16: L.Add(l);
17: return L;

One of the advantages of this technique is that it first produces the set of aligned sam-
ples, and then, it calculates the equation of the optimal line that best fit them. This is
important, since Ordinary Least Squares (or Linear Least Squares), minimizes the sum
of squared vertical distances between observations and the responses predicted by linear
approximation. Thus, the more horizontal samples are distributed, the more accuracy. In
order to optimize the results of this technique, the set of samples of a cluster can be rotated,
then approximated, and then the optimal line is rotated back again.

To calculate values of dmin and dmax, minimum and maximum slope lines that inter-
sect all [bsic . . . dsie] ranges have to be calculated. Given that the way of calculating these
lines is symmetrical, the calculations are focused on finding out the value of Vmax. The
first thing to consider when updating Vmax consists in differentiating two different cases,
according to the new sample (sj) position: (A) if [bsjc . . . dsje] intersects Vmax no update
is necessary, since Vmax is already the maximum slope line. (B) If not (dsje < dmax),
Vmax is no longer the maximum valid slope line, and has to be recalculated. In this case, it
is important to notice that the new maximum slope line is defined by two points: bspc and
dsqe, which are the most restrictive projective distances. Fig. 7.4 illustrates this concept.

Calculating the value of dsqe is immediate (dsqe = dsje), since dsje < dmax. To
calculate the value of bspc, it is necessary iterate through each sample included in the
current line, looking for the point bsjc that minimizes the angle between the line dsjebsic,
and the projection line defined by Osj .

Considering that the addition of samples to the line is an iterative process, an inter-
esting optimization can be performed: once a sample has been identified as the most
restrictive one, none of the previous samples needs to be considered in subsequent iter-
ations. This way, by storing the index of the most restrictive sample, a lot of unnecessary
evaluations can be avoided, ensuring a correct result. Algorithm 8 illustrates this process.

128

7.1. Fast Indoor Localization for Mobile Robots

Figure 7.4: Updating of Vmax: a) update case A, where no computation is required. b)
Update case B, where Vmax has to be recalculated. c) Calculation of the new value for
Vmax . In the proposed example, Vmax is the line defined by dsiebsi−3c.

In terms of computational complexity, the worst-case scenario for the proposed algo-
rithm consists in a set of samples perfectly aligned: since all of them will pass the visibility
test, there will only be one line. When updating Vmin and Vmax, all new samples will force
to recalculate the lines, and the most restrictive sample will always be the first one, so the
final execution cost is expected to beO(n2), being n the number of samples. However, the
worst-case scenario is extremely unusual to happen, even impossible when using a sensor
with FOV values similar or greater than 180o. In the best-case scenario, each sample in-
cluded in a line will not force to update values of Vmin and Vmax so, the execution cost is
expected to be O(n), being n the number of samples.

7.1.3.3 Line filtering

The goal of this stage is to add robustness to the proposed technique, considering new
uncertainties not contemplated when calculating the error function in the measures of the
sensor e(d). These uncertainties are mainly related to physical imperfections in both, the
sensor and the environment.

During the empirical tests, these imperfections have been classified in two cases: (a)
interferences in the laser range finder due to the topology and material of the measured
area and, (b) imperfections in the walls that lead to split them in several separated lines.

Interferences in the scanner happen when the laser beams intersect reflective/refractive
surfaces. The resulting distance measures are unpredictable, and add a lot of noise to the
input data. Also, this precision decreases significantly when scanning a sharp corner.

Imperfections in the walls make theoretically planar surfaces to be curved. This affects
the line inference technique by making that, eventually, one sample of the same wall fails
the visibility test defined by the previous ones. The result is that a wall is then characterized

129

Chapter 7. Applications to Self-localization problems

Algorithm 8 pseudo-code to update value of Vmax. Consider that posmin is a global
variable that keeps its value after each invocation of the function.
CalculateVmax(sj : Sample, Vmax : Line)

1: dmax ← Vmax ∩Osj ;
2: if dsje < dmax then
3: anglemin ←∞;
4: for pos ∈ [posmin . . . j − 1] do
5: if Angle

(
dsjebsposc, Osj

)
< anglemin then

6: anglemin ← Angle
(
dsjebsposc, Osj

)
;

7: posmin ← pos;
8: end if
9: end for

10: Vmax ← dsjebsposmin
c;

11: end if
12: return Vmax;

by more than one line.
By detecting and properly filtering these imperfections, the quality of results improves

significantly. Fig. 7.5 illustrates these two kinds of interferences using real data, some
examples of them, and the result of applying the proposed filtering.

To filter interferences in the scanner, the fact that an anomalous measure seriously pe-
nalizes the line visibility estimator it is considered. Thus, a line containing a bad sample
has a very limited amount of samples in it (cases A and B in Fig. 7.5), so all lines contain-
ing less than k samples are discarded (|li| < k), and so are the samples within them. The
value of k is a parameter specified by the user, and empirical tests have proven that values
in the range [4 . . . 6] provide good results.

After removing the lines created by interferences in the scanner, imperfections in the
walls are filtered using a second parameter, α, that indicates the maximum tolerance for
wall deviations. All consecutive lines with an angular deviation smaller than α, are com-
bined and recalculated considering all samples.

The result of this stage is a new set of lines L′ = (l′1, l
′
2 . . . l

′
o) that improves the

segmentation obtained in L = (l1, l2 . . . lm), and that verifies that o ≤ m.

7.1.3.4 Corner extraction

To efficiently compare the resulting set of lines L′ with the known map, a global regis-
tration between the two datasets is necessary. One of the most common techniques to
perform this operation is to simplify the representation of both datasets into simpler ones.
This way, alignment calculations are considerably accelerated.

Instead of working directly with lines, the use of corners is proposed to perform this
operation. A corner is defined by the intersection between two consecutive lines, and
characterized by its inner angle (β), its position (x, y) and its orientation (θ).

To obtain the set of corners C = (c1, c2 . . . cp) defined by L′ = (l′1, l
′
2 . . . l

′
o), all lines

are intersected between them, storing only the intersections that are close enough to the
endings of both lines. All calculated corners maybe do not exist in the real world but they

130

7.1. Fast Indoor Localization for Mobile Robots

Figure 7.5: Imperfections in the sensor measures that affect the line inference calcu-
lations. (Left) Result of the previous stage without considering these imperfections.
(Right) Result after filtering. Case A shows the error of the sensor when scanning a
sharp corner. Case B the consequences of reflections in the line inference algorithm.
Case C shows a wall that deviates in both directions.

can be very helpful in the location algorithm (e.g. this allows to avoid interferences caused
by small pillars like the one shown in Fig. 7.5). Given the interest in accelerating global
registration, instead of using all corners, only the best characterized is used: c. To find this
one among all C, the quality of a corner is defined as |ci| = min(|l1|, |l2|), being l1 and l2
the lines that generate it, and |l1|and |l2| the amount of samples of each line, respectively.

c = max(|ci|), ci ∈ C (7.7)
|ci| = min(|l1|, |l2|), l1 ∈ ci, l2 ∈ ci (7.8)

7.1.4 Localization
The localization stage takes, as input data, the resulting corner obtained in the segmen-
tation stage and a pre-calculated map, where all the corners have been identified. By
aligning these corners with the one obtained in the previous stage, all possible locations
for the robot are inferred. For each location, a measure of correctness is calculated, so
they can be sorted according to the quality of achieved results. The most correct result is
expected to be the robot localization in the real world.

7.1.4.1 Matching calculation

This stage deals with the calculation of all possible locations of the robot in the real world.
To do so, all corners in the known map with a similar inner angle to the one obtained in
the segmentation stage are aligned, producing each alignment a localization for the robot.

In order to accelerate calculations, the known map has been pre-processed so all cor-
ners have been obtained and sorted accord- ing to their inner angle. This way, finding
similar angles computational cost is reduced to O(log2(n)), being n the total number of
corners in the map. In case the map is too big and, to simplify this search, once the location
of the robot has been calculated only corners around the last known position have to be
checked.

131

Chapter 7. Applications to Self-localization problems

Given an alignment between corners, the robot orientation (θrobot) is calculated as
follows:

θrobot = π
2 + θm − θc − (βm−βc)∗|l1c|

|l1c |+|l2c |
(7.9)

where θm is the orientation of the selected corner in the map (in global coordinates), θc
is the orientation of the corner calculated in the segmentation stage (in local coordinates),
βm is the inner angle of the selected corner in the map, β is the inner angle of the corner
calculated in the segmentation stage, and |l1c |, |l2c | are the amount of samples contained
in the lines that define the corner calculated in the previous stage.

By calculating θrobot as proposed, the difference between inner angles is compensated
proportionally to the amount of samples of each line that define the corner c. It is expected
that, the more samples a line contains, the more accurate the estimation is.

Then, the robot position (xrobot, yrobot) is inferred by simple triangulation, as shown
below:

xrobot = −xc ∗ cos(θrobot) + yc ∗ sin(θrobot) + xm (7.10)
yrobot = −xc ∗ sin(θrobot)− yc ∗ cos(θrobot) + ym (7.11)

where xm and ym are the global coordinates of the intersection point defined by the se-
lected corner in the map, and xc and yc are the local coordinates of the intersection point
defined by the corner calculated in the segmentation stage. Fig. 7.6 illustrates these con-
cepts.

Figure 7.6: Alignment between corner c and a corner from the known map m. (Top-
left) Characterization of m, in global coordinates. (Top-right) Characterization of c
in local coordinates. (Bottom) Correspondence between both corners and robot pose
calculation.

132

7.1. Fast Indoor Localization for Mobile Robots

7.1.4.2 Cost function

This is the last stage in the proposed technique, and it is responsible to evaluate the quality
of each pose calculated in the previous one. The final result of the localization algorithm
is a sorted list of possible poses, where the first element is expected to be the real world’s
robot position. To quantify the quality of each possible pose calculated using the known
map, the set of measures D′ = (d′1, d

′
2 . . . d

′
n) that the sensor should have produced in

ideal conditions (no measurement error), given the position and orientation calculated.
The total error of a given orientation can then be calculated as:

error =
n∑
i=0

(di − d′i)i2 (7.12)

being di the original measures returned by the sensor.
In case the computational cost of these calculations does not satisfy the execution

frequency required, as it occurs at some robots with limited computational resources only
a subset of equispaced distances can be used.

7.1.5 Results
In order to verify the correct functionality of the proposed algorithm, it has been imple-
mented and analyzed in an experimental platform. This platform is based on a Robotino
mobile robot equipped with a laser range finder sensor.

Robotino is a FESTO mobile robot system with three omnidirectional drives. The robot
controller consists of an embedded PC running with a Linux operating system installed on
a compact flash card. In order to improve its functionality, Robotino is also equipped with
several types of sensors, like infrared distance measuring sensors, incremental encoders,
anti-collision sensor, analog inductive proximity sensor, camera module, etc.

Robotino is driven by 3 independent, omnidirectional drive units. They are mounted at
an angle of 120o to each other. The drive units allow for motion in all directions (forward,
backward and sideways) and the robot can be turned on the spot as well. Each of the 3
drive units consists of a DC motor, a gear unit, an all-way roller, a toothed belt and an
incremental encoder unit. Actual motor speed can be compared with desired speed by
means of the incremental encoder, and can then be regulated with a PID controller. The
controller unit consists of 3 components:

• PC 104 processor, compatible with MOPSlcdVE, 300 MHz, and Linux operating
system with real-time kernel, SDRAM 128 MB and Ethernet, USB and VGA inter-
faces.

• Compact flash card that contains the operating system, the functions libraries (C++
API) and the included programs for controlling Robotino.

• Wireless LAN access point.

In order to read the measures for the proposed automatic localization algorithm, the
Hokuyo URG-04LX-UG01 has been used. It is a laser sensor for area scanning. The light
source of the sensor is an infrared laser, and the scan area is a 240o semicircle with a max-
imum radius of 5600mm. Pitch angle is 0.36o and sensor outputs the distance measured

133

Chapter 7. Applications to Self-localization problems

at every point (maximum: 684 steps). Principle of distance measurement is based on cal-
culation of the phase difference, due to which it is possible to obtain stable measurements
with minimum influence from object’s color and reflectance.

The Hokuyo laser range finder is connected via USB to the controller unit of Robotino.
For software integration, a library that provides the basic methods of connection and re-
ceiving laser measurements has been used. The connection is made using the COM port
assigned to the laser, and measures are asynchronously received with a period of 400ms.
per event. At each event 684 measures are stored and processed. See Fig. 7.7.

Figure 7.7: Robotino with Hokuyo laser rangefinder installed.

Several tests with the Hokuyo with Robotino were performed to calculate the actual
computational cost of the algorithm based on the number of samples collected by the laser.
Fig. 7.8 shows the relation between the time used by the algorithm according to the number
of measures processed by Robotino’s processor and the global correction of the technique
respect to the sampling ratio, in an outlier-free environment.

As it can be seen, the computation cost is linearly related to the number of samples.
In the worst case, using 668 measures from the laser, the algorithm takes 0.058s to run,
which is not a problem for Robotino processor and it allows to locate the robot in each
iteration of the control loop (control loop period is set at 100ms). Also, global correction
of the technique decreases, as the number of samples considered is reduced.

To analyze in depth the computational cost of each phase of the algorithm, Fig. 7.9
shows the cost distribution of all stages for each test performed according to the number of
samples. For example, for 668 samples, the total time is 0.058s. The data acquisition stage
occupies 0.00464s (8% of the total time), the lines inference algorithm 0.0377s (65%), fil-
tering, corner detection and localization 0.00116s (2%) and the cost function occupies the
rest: 0.0145s (25%). However, for 66 samples the total time is 0.0044s, with a 0.00136s for
the cost function (31%), 0.00015s for filtering, corner detection and localization (3.5%),
0.00242s for line inference (55%) and 0.00046s for acquisition (10.5%).

Analyzing the complete graph, the line inference stage is the heaviest one, with 65%
of time on average. The cost function stage occupies 25% and the acquisition 10%. The
filtering, corner detection and localization phases are the fastest, with 2% of the time.

134

7.1. Fast Indoor Localization for Mobile Robots

0

0,015

0,03

0,045

0,06

175 350 525 700

Time against number of samples
Ti

m
e

(s
ec

on
ds

)

Number of samples

1
2
3
4
5
6
7
8
9

10 47,98%

56,45%

71,77%

74,19%

89,11%

88,71%

95,16%

99,19%

99,6%

100%

Success Rate

Sa
m

pl
in

g
ra

tio

Figure 7.8: (Left) Several tests to show the relation between the execution cost of the
algorithm in Robotino processor and the number of samples collected by the Hokuyo
sensor. (Right) Global correction of the achieved results, depending on the sampling
ratio used in an outlier-free environment.

To estimate the accuracy of the proposed technique, an offline registration algorithm
that uses as many ICP iterations, has been applied using the same data collected by the
robot in actual testing. This algorithm iterates over itself until it converges to the actual
position of the robot. By checking that all paired points of the ICP algorithm in the last
iteration are correct, it ensures that the achieved solution is the global optima, so it can
be used as ground truth to evaluate the accuracy of the technique. Table 7.1 shows the
actual accuracy in different scenarios calculated by this technique. These scenarios include
an outlier-free environment, an environment with moving people in front of the robot, a
scenario with some pieces of furniture, not included in the ground truth map and, finally,
a scenario with moving flat outliers.

Test scenario Success rate Accuracy
Without outliers 100% 3.16
Moving people 97.67% 7.87
Furniture 88.66% 5.13
Flat outliers 95.99% 5.75

Table 7.1: Results achieved for the different evaluation scenarios with sampling ratio =1..

On the other hand, to evaluate the robustness of the proposed algorithm, the impact of
outliers in several scenarios where the ground truth map does not fully correspond with
the sensor readings, has been tested. Achieved results show that the effect of outliers can
be classified in two major groups: (1) the presence of an outlier “breaks” a wall, so the
total amount of samples used to infer the line is reduced causing several non-consecutive
segments. (2) If the outlier is a flat surface it can be considered as a false wall leading to a
misinterpretation of the environment. Fig. 7.10 shows both cases.

Post-processing the extracted lines and merging together aligned segments can attenu-

135

Chapter 7. Applications to Self-localization problems

Acquisition

Line Inference

Filtering
+ Corners
+ Localization

Cost Function

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10

Cost Distribution

Sampling Ratio

Figure 7.9: Measures about the cost distribution of the algorithm for different number of
samples collected by Hokuyo.

ate the effects of case 1. This, of course, will require extra computing time. However, em-
pirical tests have shown that results of the proposed technique without this post-processing
stage are very robust when using a full sampling ratio as Table 1 shows.

The tests performed to evaluate this case include static and dynamic outliers, with
the robot in static and dynamic locations. It is important to notice that, since time is not
considered (each iteration previous data is ignored), there is no distinction between moving
and static outliers.

For case 2, the effect of misinterpreting a flat outlier as a wall is very dependent on
several factors: the portion of the environment visible for the sensor, the size and distance
of the outlier respect to the sensor and the ambiguity introduced by the location of the
outlier: if the outlier is isolated in the middle of an empty space, or if it makes an angle with
other line segment that does not exist in the ground truth map, the risk of misinterpretation
is very low.

Table 7.1 shows the results achieved for the different evaluation scenarios, considering
all the samples collected by the sensor (sampling ratio=1). Success Rate measures the ro-

Figure 7.10: (Left) Three people standing in front of the robot. Notice how the longest
wall is split into four different segments. (Right) A box, represented with a blue line,
leaning against a wall and misinterpreted as a wall.

136

7.2. Indoor Localization for Inspection and Verification

bustness of the technique, since a result is only considered successful if the paired corners
are correct. Accuracy is the Euclidean distance between the estimated location, and the
correct one. Only correct results are considered for estimating the accuracy.

It must be taken into account that the proposed algorithm is not using any feedback.
Each iteration the previous estimated position is ignored and a new one is calculated.
Thus, the algorithm does not accumulate any error between iterations and it does not need
to know any previous estate. Considering previous estimations might accelerate the exe-
cution, evaluating only the part of the map close to the latest known position.

7.1.6 Conclusions and Future Works

A global self-localization fast algorithm for resource-limited systems has been proposed.
The algorithm needs a laser or any other environment analysis sensor for auto-locate within
a known map. Contrary to other algorithms as Monte Carlo, which uses particle filters
hardly implementable in embedded systems, or SLAM algorithm which requires many
resources to run, the proposed algorithm allows to self-localize analytically by a geometric
matching, achieving a linear cost in relation to the number of measurements taken.

Given the low computational cost, and the fact that the proposed technique does not
need any initialization or external feedback, this algorithm can be used cyclically in a
separate thread or it can be launched by events, for example, when the positioning error
estimated by odometry is too high.

Although the algorithm gives, in most cases, a unique pose as a result, there are some
situations where ambiguity between multiple solutions appears. For this cases, future
works aim to merge the proposed technique with odometry systems in order to exploit the
benefits of time integration to face the global localization problem. Also, extending the
line extraction algorithm to other parametrizable primitives is considered as a promising
future line of work.

7.2 Indoor Localization for Inspection and Verification

This chapter focuses on applying the surface registration techniques to solve the locali-
zation problem in indoor environments. The goal is to use the 3D data provided by a
Microsoft Kinect sensor and/or a Velodyne lidar sensor to localize a person inside of a
known map, and track changes from previous acquisitions.

This ongoing project is oriented to assist nuclear inspectors from the International
Atomic Energy Agency (IAEA) in their verification and change detection tasks inside
nuclear facilities. The key idea is that, once the inspector is properly localized, 3D data
acquired from the sensor is compared against previous scans of the same facility in order
to automatically detect changes in sensitive areas.

The proposed technique assumes to have a Ground Truth point cloud of the environ-
ment (with no color information), and a continuous feed of partial views provided by the
sensor. From these partial views only depth information is used (discarding color infor-
mation provided by Kinect), so the technique can be applied to a big variety of sensors.

Since the sensor is supposed to be handheld, no specific motion models are used to
approximate the observer’s pose. The only cinematic constraints considered are non-
correlated maximum displacements and rotational speeds.

137

Chapter 7. Applications to Self-localization problems

Also, in order to provide a generic solution for the localization problem, the environ-
ment is assumed to be completely unstructured and with the presence of several outliers
(topological variations introduced after generating the point cloud used as ground truth),
which can be dynamic or static.

7.2.1 Overview

The execution cycle proposed starts by grabbing a new frame from the sensor. If there were
no previous known locations, a kidnapped robot solver is executed in order to estimate the
observer’s position. This process continues until the current observation produces some
potential locations. When potentially correct locations have been found, for each one of
them, a local update based on a tracking algorithm is executed. After a pose has been
updated, its correction is evaluated. In case the new location is classified as correct, it has
to wait until the next frame produced by the sensor to be updated again. Otherwise, it has
to be decided if it is worth spending computing resources in relocalizing it. In case the
test succeeds, a relocalization algorithm is executed from the last known correct position,
performing a local search in the surroundings, to attempt to recover it. On the contrary, if
the test fails, the location is deleted and no longer tracked. Figure 7.11 shows the complete
process.

The key idea of the proposed execution cycle is to have a kidnapped solver that popu-
lates the set of active locations using a single observation. Disambiguation of potentially
good solutions is integrated in the execution cycle in a generic way. This way, there is no
need to distinguish between different specific states, and the resulting technique provides
a general solution for the tracking problem.

Grab New
Frame

Active
Locations?

Kidnapped
Solver

Results?

Tracking

Correct?

Relocate?

Delete

Relocate

yes

no

yes

no

no

yes

yes

no

for each location

Figure 7.11: General overview of the proposed execution cycle.

138

7.2. Indoor Localization for Inspection and Verification

Major contributions of this section are:

• A complete workflow to perform the continuous tracking of the sensor inside a
known environment: from the kidnapped solving to the tracking and relocation,
with well defined transitions between states.

• An efficient kidnapped robot solver supported by an optimization stage that effi-
ciently filters ambiguous and incorrect poses.

• An efficient voxel-based representation of the ground truth point cloud that allows
accelerating the registration process and achiving realtime results.

7.2.2 The Sensors

7.2.2.1 The Kinect Sensor

The Kinect sensor was released by Microsoft in November 2010. This low-cost range
sensor was primarily designed for a natural interaction in a computer game environment.
However, the characteristics of the data captured by Kinect and, specially, its reduced
prices have attracted the attention of researchers from other fields, including mapping and
3D modeling.

This sensor captures depth and color images simultaneously at a frame rate of up to 30
Hz. The integration of depth and color data results in a colored point cloud that contains
about 300000 samples in every frame.

The underlying technology of Kinect consists of an infrared laser emitter, an infrared
camera and an RGB camera. The laser source emits a single beam which is split into
multiple beams by a diffraction, creating a constant pattern of points projected onto the
scene. This pattern is captured by the infrared camera and is correlated against a reference
one. The reference pattern is obtained by capturing a plane at a known distance from the
sensor, and is stored in the memory of the sensor. When a speckle is projected on an object
whose distance to the sensor is smaller or larger than the reference plane, the position of
the speckle in the infrared image is shifted in the direction of the baseline between the laser
projector and the perspective center of the infrared camera. These shifts are measured for
all points by a simple image correlation procedure, which yields a disparity image.

Figure 7.12 shows the resulting range image from the projected pattern.

Figure 7.12: Kinect IR projected pattern (left) and its corresponding range image (right).

139

Chapter 7. Applications to Self-localization problems

Figure 7.13 illustrates the relation between the distance of an object point k to the
sensor relative to a reference plane and the measured disparity d. To express the 3D co-
ordinates of the object points we consider a depth coordinate system with its origin at the
perspective center of the infrared camera. The Z axis is orthogonal to the image plane
towards the object, the X axis perpendicular to the Z axis in the direction of the baseline
b between the infrared camera center and the laser projector, and the Y axis orthogonal to
X and Z making a right handed coordinate system.

Reference plane

Object plane

C (IR camera) L (laser projector)
X

Z

Zk

Zo

o

k

f

d

D

b

Figure 7.13: Relation between relative depth and measured disparity.

Assume that an object is on the reference plane at a distance Zo to the sensor, and a
speckle on the object is captured on the image plane of the infrared camera. If the object is
shifted closer to (or further away from) the sensor the location of the speckle on the image
plane will be displaced in the X direction. This is measured in image space as disparity d
corresponding to a point k in the object space. From the similarity of triangles we have:

D

b
=
Zo − Zk
Zo

(7.13)

and:
d

f
=

D

Zk
(7.14)

where Zk denotes the distance (depth) of the point k in object space, b is the base length,
f is the focal length of the infrared camera, D is the displacement of the point k in object
space, and d is the observed disparity in image space. Substituting D from Equation 7.13
into Equation 7.14 and expressing Zk in terms of the other variables yields:

Zk =
Zo

1 + Zo

fb d
(7.15)

140

7.2. Indoor Localization for Inspection and Verification

Equation 7.15 is the basic mathematical model for the derivation of depth from the ob-
served disparity provided that the constant parameters Zo, f , and b can be determined by
calibration. The Z coordinate of a point together with f defines the imaging scale for that
point. The planimetric object coordinates of each point can then be calculated from its
image coordinates and the scale:

Xk = −Zk
f

(xk − xo + δx) (7.16)

Yk = −Zk
f

(yk − yo + δy) (7.17)

where xk and yk are the image coordinates of the point, xo and yo are the coordinates of
the principal point, and δx and δy are corrections for lens distortion.

Measurement errors and imperfections in the depth data acquired by the Kinect sensor
are mostly related to three main reasons: (1) the sensor, (2) the measurement setup and (3)
specific properties of the object surface.

Sensor errors refer to inadequate calibration and inaccurate measurement of disparities.
Inadequate calibration and/or error in the estimation of the calibration parameters lead to
systematic error in the object coordinates of individual points. Such systematic errors can
be eliminated by a proper calibration.

Errors caused by the measurement setup are mainly related to the lighting condition
and the imaging geometry. The lighting condition influences the correlation and measure-
ment of disparities. In strong light the laser speckles appear in low contrast in the infrared
image, which can lead to outliers or gap in the resulting point cloud. The imaging geom-
etry includes the distance to the object and the orientation of the object surface relative
to the sensor. The operating range of the sensor is between 0.5 m to 5.0 m according to
the specifications. Also, depending on the imaging geometry, parts of the scene may be
occluded or shadowed.

The properties of the object surface also impact the measurement of points. This way,
smooth and shiny surfaces may appear overexposed in the infrared image, impeding the
measurement of disparities, and resulting in gaps in the point cloud.

The resolution of the infrared camera, or more precisely the pixel size of the disparity
image, determines the point spacing of the depth data on the XY plane. Since each depth
image contains a constant 640×480 pixels, the point density will decrease with increasing
distance of the object surface from the sensor. Considering the point density as the number
of points per unit area, while the number of points remains constant, the area is propor-
tional to the square distance from the sensor. Thus, the point density on the XY plane is
inversely proportional to squared distance from the sensor.

The depth resolution refers to the minimum depth difference that can be measured, and
is determined by the number of bits per pixel used to store the disparity measurements. The
Kinect disparity measurements are stored as 11-bit integers, where one bit is reserved to
mark the pixels for which no disparity is measured, so-called no-data. Thus, a disparity
image contains 1,024 levels of disparity. Since depth is inversely proportional to disparity,
the resolution of depth is also inversely related to the levels of disparity. This way, it can
be said that the depth resolution is also a quadratic function of depth, and decreases with
increasing distance from the sensor.

141

Chapter 7. Applications to Self-localization problems

7.2.2.2 The Velodyne Sensor

The Velodyne is a 3D sensor produced by Velodyne Lidar, specially designed for obstacle
detection and navigation of autonomous ground vehicles and marine vessels. Its durability,
360o field of view and very high data rate makes it ideal for the most demanding perception
applications as well as 3D mobile data collection and mapping applications. There are two
different models: HDL64e and HDL32e.

Velodyne HDL64e scans a 360o horizontal field of view (FoV) and 26.8o vertical (FoV)
at 5 to 15 Hz, providing over 1.3 million points per second. Data is acquired by means
of 64 lasers mounted to specific vertical angles, with the entire unit spinning to cover
the horizontal field of view. Velodyne HDL32e was introduced in 2010 with the same
horizontal FoV as the HDL64e sensor but with a bigger vertical FoV (40o) covered by 32
lasers and providing about 0.7 million of points per seconds. HDL32e sensor is a rugged
sensor, having the Ingress Protection rating of 67 (IP67, the highest possible), thus it can
be used in almost all environments. HDL32e is superior to HDL64e regarding vertical
field of view, size, design and robustness, but it has a less dense angular resolution in the
vertical field of view. Both versions of the sensor provide an operating range up to 100
meters with an accuracy of 2cm.

Respect to the Kinect sensor, Velodyne offers a full 360o horizontal field of view and
a larger operating range with higher accuracy. However, acquisition rates are slower (5-
15Hz vs 30Hz), vertical resolution is smaller (32/64 planes vs 480), no color information
is provided and, the most important difference, since the acquisition of data using the
Velodyne sensor is performed continuously as the sensor spins, resulting point clouds
suffer from the warping effect.

When reading data from the sensor it is necessary to consider that each consecutive
distance sample in the same plane has been measured at a different time. This means that
a continuous motion model is required in order to project each single sample into its world
position with respect to a fixed reference frame. This process is called unwarping and, if
not performed, resulting point clouds may be highly distorted, as shown in Figure 7.14.

d1

d2

d3

d4

d5
d6

p1

p2

p3

p4

p5

p6
p7

p8

d1

d2

d3 d4

d5 d6

p1

Figure 7.14: Warping effect when acquiring data with Velodyne. (left) Distances measured
in time (dn) as the sensor moves through different positions (pn). (right) Resulting
reconstruction of the environment when not considering motion but a fixed acquisition
position (p1 in the proposed example).

142

7.2. Indoor Localization for Inspection and Verification

7.2.3 Kidnapped Robot Solver

Solving the kidnapped robot problem is a special global localization issue in mobile robotics
that consists on localizing the observer inside the known environment with no prior know-
ledge on his pose.

Classical approaches facing this problem apply probabilistic Bayesian models over
a set of random-initialized particles (which represent potential locations) over the entire
map. Using a time-spaced set of observations and odometry data, these techniques at-
tempt to converge to the real position by pruning potentially bad particles and populating
zones around potentially good ones. This kind of techniques easily solve the problem for
bi-dimensional representations of the environment, where only three degrees of freedom
exist. However, when considering a three-dimensional environment with six degrees of
freedom, the combinatory explosion in the solution space forces to use huge amounts of
particles and increases considerably the execution and memory costs. This fact makes the
approach unsuitable in lots of cases and, specially, when considering very large environ-
ments (like nuclear facilities in the proposed case).

In order to prevent the excessive cost of exhaustively exploring the whole solution
space, and considering that no odometry is available for the proposed hand-held appli-
cation, an alternative solution is suggested: using the known environment point cloud, a
synthetic training dataset is built taking advantage of the GPU computing capabilities. This
dataset consists on simulating the readings that the sensor would produce from different
random poses spread all around the known map, as shown in Figure 7.15.

For each one of these poses, a set of fast-to-compute descriptors are calculated and
stored for further searches queried with the real readings of the sensor (produced online).
When a search is performed, most similar training observations are selected as potential
locations and injected into the set of active poses proposed in the execution cycle of the
application (Figure 7.11). Each one of these poses is then tracked using subsequent ob-
servations of the sensor. In case a potential pose were wrong, tracking will be lost and
the pose will be deleted. Otherwise tracking will continue and, when all but one potential
poses are deleted, the problem will be solved.

Figure 7.15: Randomly distributed training poses (500K) inside a lab, where each pose is
represented as a three-color coordinate system.

143

Chapter 7. Applications to Self-localization problems

To compute the synthetic readings of the sensor, a virtual camera that mimics the
sensor’s field of view and resolution is placed in a random position inside the known
map. Using an openGL Frame Buffer Object (FBO), an off-screen depth map is calculated
extremely fast. Values stored in this depth map correspond to the undistorted range map
that the sensor would produce under ideal working conditions.

Taking as input data each one of these range maps, an easy and fast-to-compute des-
criptor has to be calculated. It is important to notice that, during the training process, it is
not critical the descriptor to be fast to compute, since this process is performed off-line.
However, since further searches will be queried with it (extracted using data provided by
the sensor) and real-time results are expected, computing costs have to be kept low.

For a Kinect based kidnapped solver algorithm a matrix of 4×3 median distances is
proposed, stored as a 12 bin histogram. Advantages of this descriptor is that is very sim-
ple to compute, efficiently removes noise and that it is not very sensitive to outliers. Fi-
gure 7.16 shows a synthetic range map used for the training dataset and the proposed
criteria for computing descriptors.

d1 d2 d3 d4

d5 d6 d7 d8

d9 d10 d11 d12

Figure 7.16: Proposed Kinect descriptor. (left) A synthetic range map computed by the
GPU using the ground truth point cloud. (right) Proposed criteria for computing the
descriptor: each square is the set of values used to compute each median distance (di).

In order to reduce the size of the training dataset and to speed-up the final technique,
a last optimization stage is proposed. The goal of this stage is to remove all poses in the
training set that may produce incorrect or ambiguous results.

Incorrect results are produced when the location of the sensor violates its operating

Incorrect Locations

X (meters)

Z
(m

et
er

s)

20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60 0

50

100

150

Figure 7.17: Density of incorrect training poses for the Kinect. Notice how most of them
are located by the walls, where minimum distances are not respected.

144

7.2. Indoor Localization for Inspection and Verification

distances (e.g. the observer is too close to a wall and the minimum distance is not re-
spected). These cases are easy to detect in the training dataset (resulting depth maps can
be clamped to the operating range of the sensor) and in the real data (too much null mea-
sures). Removing them from the training dataset makes it smaller and accelerates further
searches. Figure 7.17 shows the density of incorrect training poses in the dataset illustrated
in Figure 7.15.

Ambiguous results are produced by symmetries on the known map: if the partial view
retrieved by the sensor has multiple correspondences in the environment, multiple results
will be returned. This is not a wrong result, but may compromise the performance of the
final algorithm: each time the sensor provides a new range map the tracking algorithm has
to update all the potential locations. If, as a result of the kidnapped robot solver, there
are too many of them, the execution cost will increase, leading to a frame-loss situation.
To prevent this from happening, ambiguous poses should be detected and the kidnapped
solver should only provide results when the current observation is not ambiguous.

Figure 7.18 shows some cases with different decreasing levels of ambiguity. Notice
how for the first example, where the sensor is pointing to a wall, lots of possible results are
produced. It will make no sense to track all of them. In the second case, when pointing to
a corner, the number of possible results is considerably smaller, all being around similar
parts of the map. However, in the last case, since the location is singular, only a set of
results are returned, all of them around the right position.

Figure 7.18: Some poses in decreasing order of ambiguity. Left side of the figure shows
the readings from the sensor (RGB and Depth channels). Right side of the figure shows
the results produced by the kidnapped solver considering all training poses.

To perform such optimization, a kd-tree is built using all the training data (except for

145

Chapter 7. Applications to Self-localization problems

the previously deleted incorrect poses). For each entry, a neighbor search is performed
using an hyper-sphere of radius r. Only poses with less than k neighbors will be used for
solving the kidnaped problem, deleting all the rest.

As Figure 7.19 shows if, after computing the number of neighbors for each pose, poses
are sorted according to this value, it can easily be distinguished which poses are ambiguous
and which are not. For the given example, the first 300.000 training poses show low
ambiguity, whilst all the rest are highly ambiguous.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10x104

Sample #

N
um

be
r o

f n
ei

gh
bo

rs

x105

Number of neighbors for each training pose

Figure 7.19: Number of neighbors for each training pose.

Figure 7.20 shows the density distribution of ambiguous poses. Notice how close to
the walls there are few ambiguous poses, since they have already been deleted for being
incorrect. The corridor presents high ambiguity due to the lack of distinctive elements and
the center of the room shows low ambiguity values thanks to the furniture and variety of
elements that reduce symmetries.

Ambiguous Locations

X (meters)

Z
(m

et
er

s)

20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60

50

100

150

200

Figure 7.20: Density of ambiguous training poses for the Kinect.

After removing ambiguous and incorrect locations, the resulting training set is ready

146

7.2. Indoor Localization for Inspection and Verification

to be used in the real-time application. Figure 7.21 shows the density of correct training
poses remaining after the optimization process. Notice how best positions to be localized
are in the center of the room and places nearby the intersection between the corridor and
the room.

Correct Locations

X (meters)

Z
(m

et
er

s)

20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60

0

10
20
30
40
50
60
70
80
90
100

Figure 7.21: Density of correct training poses for the Kinect.

Once the training set is calculated, results are stored in a 12th dimensional kd-tree
containing the values of the proposed descriptor, together with the poses from which they
were taken from. During the on-line execution of the proposed technique, each time the
sensor produces a new rangemap and no active locations exist, the proposed descriptor
is computed from the depth values and used for a radius search on the training dataset.
Most similar training poses are then marked as active locations and inserted into the main
application loop. Since ambiguous poses have been filtered, the number of results is con-
strained, avoiding frame-loss situations. Figure 7.22 summarizes the entire process.

OptimizationDescriptor
extraction

Random
poses

Kidnapped solver kd-tree
+ associated poses

poses
depth-maps

Point cloud

poses
descriptors

OFF-LINE PROCESSING

rangemap descriptor

Sensor
read

Descriptor
extraction

kd-tree
search

Potential poses

Figure 7.22: Kidnapped solver overview.

147

Chapter 7. Applications to Self-localization problems

7.2.4 Tracking and Relocalizing Algorithms
According to the proposed execution cycle, once active poses exist, they have to be tracked
as the observer moves inside the known environment. This tracking process is performed
as a surface registration approach: if the sensor’s observation can be registered with the
known environment, the observer’s pose can be inferred by simple triangulation.

Given that the approximate pose of the observer has been provided by the kidnapped
solver algorithm, no global registration is needed. Instead, the tracking algorithm has to
compute the total displacement from the last known position (local registration). To do so,
the ICP algorithm is used.

7.2.4.1 Real-time ICP algorithm

The way ICP works makes it an hybrid registration technique: first, it searches for point
correspondences and then it calculates a transformation that minimizes an energy function
defined over these correspondences. This process is iteratively repeated until a termina-
tion criteria is satisfied (typically expressed as a number of iterations, maximum execution
time, minimum residual...). It is important to notice that, since each iteration a transfor-
mation is applied to one cloud, correspondences between points change and have to be
re-computed for subsequent iterations.

The proposed ICP algorithm for tracking finds point correspondences according to
their distance. This way, given a point p from the range image acquired by the sensor,
its correspondent q, is the closest point to p in the point cloud that represents the known
environment. The energy function to minimize is the point-to-point squared distance,
which is not a very powerful approach, but can be easily solved by using closed-form
solutions like singular value decompositions, quaternions or orthonormal matrices.

In the proposed implementation, given two point-sets P and Q, where P is defined
over the range image returned by the sensor and in world coordinates according to the
observer’s pose, Q is defined over the point-cloud that represents the known environment
and the correspondent point to pi ∈ P is qi ∈ Q, the update of each ICP iteration, defined
as a translation vector t and a rotation matrix R, is computed as:

µP =
1

N

N∑
i=1

pi (7.18)

µQ =
1

N

N∑
i=1

qi (7.19)

H =
1

N

N∑
i=1

(pi − µP) (qi − µQ)
T (7.20)

[U, S, V] = svd(H) (7.21)

R = V UT (7.22)
t = −R× µP + µQ (7.23)

where N is the total number of points in both datasets, µP and µQ are the centroids of
both point clouds, H is the 3 × 3 covariance matrix, svd() performs the singular value
decomposition of the H matrix, and R and t are the rotation and translation matrices,

148

7.2. Indoor Localization for Inspection and Verification

respectively, that applied to P minimize the square distance between the considered cor-
responding points in both datasets.

Calculation costs for the centroids, covariance matrix, SVD decomposition and final
roto-translation matrices are not very high in terms of CPU usage. However, finding cor-
responding points in both point clouds is.

To compute this correspondence, common registration techniques build a kd-tree over
the ground truth point cloud, Q, and use it to find the closest point to each sample in
the point cloud retrieved by the sensor, P . However, considering that the application is
supposed to provide real-time results, and that the number of samples returned by Kinect
in a second is around 7,680,000 and for Velodyne is around 700,000, search times using a
big ground truth point cloud with so many query points would yield into very slow results.

A common solution to this problem is performing a RANSAC based selection of points
for each sensor reading, so high sub-sampling rates are used and faster results are achieved.
This solution, however, leads to a precision loss and, eventually, if the sub-sampling rate
is too high, to incorrect results. To accelerate this neighbor-search process, an alternative
solution is proposed exploiting the fact that the ground truth point cloud is already known:
a discrete characterization of the map based on a voxel representation.

A regular voxel representation consists on a discrete 3D matrix, where each cell is a
box marked as full if it contains some point inside and marked as empty otherwise. The
proposed voxel representation adds some extra features: for each full cell a vector repre-
senting the centroid of all contained samples is stored. For each empty cell, a reference to
the closest centroid is stored if the total distance between the box center and the centroid
is smaller than a given maximum.

This way, the proposed voxel structure can be understood as a discrete Voronoi dia-
garam, or a pre-calculated signed distance function, making immediate the selection of the
closest neighbor for a given point in space. For example, assume we want to find the clos-
est neighbor in the known map for a given point p = (px, py, pz) ∈ R3. Its corresponding
voxel cell index, idx = (idxx, idxy, idxz) ∈ N3 will be calculated as:

idxx = bpx/cellSizec (7.24)
idxy = bpy/cellSizec (7.25)
idxz = bpz/cellSizec (7.26)

where cellSize is the edge length of a single cell, and assuming a positive-defined point
cloud. The data structure containing the voxel, accessed using the calculated indices, will
return a null value, in case there is no point closest than the given maximum distance, or
the position of the closest neighbor otherwise.

Thanks to this characterization, two different functions are indirectly executed: (1) the
nearest neighbor of a given point is calculated in a constant time (O(n) ≈ k), no matter
how big the ground truth point cloud is, or how small voxel cells are. (2) An implicit outlier
rejection technique is executed, since points with their correspondent nearest neighbor too
far are automatically detected and rejected.

Figure 7.23 shows a partial view of the known environment represented as a point
cloud, as a voxel with full cells storing the centroid of the contained samples and as the
proposed voxel structure, where empty cells point to their closest neighbor in case the
resulting distance is small enough.

149

Chapter 7. Applications to Self-localization problems

Figure 7.23: Voxel representation. (top-left) Original point of the known environment.
(top-right) Voxel with 5cm box length computed from the original point cloud, and
showing the centroid of each cell in blue. (bottom) proposed voxel representation,
where empty cells are pointing to the closest centroid in case it is not further than
25cm. Colors are only used to facilitate the reading of the figure.

150

7.2. Indoor Localization for Inspection and Verification

In order to calculate the proposed voxel structure from the original point cloud, a jump
flooding algorithm like the one proposed in [136] is used, properly adapted to 3D cases.
Main advantages of this technique is that it can be easily parallelized, taking advantage
of the GPU computing capabilities, and that it provides results at constant execution time
with respect to the number of full cells in the voxel.

JFA algorithm computes a discrete Voronoi diagram by performing a set of searches
from each voxel cell to its neighbors, with different decreasing search radius. Given a
search radius r ∈ N and a voxel cell v = (vX , vY , vZ) ∈ N3, another voxel cell w is
considered to be a neighbor of v with radius r if, and only if, w = (vX + r, vY , vZ) or
w = (vX , vY + r, vZ) or w = (vX , vY , vZ + r). Given this neighborhood function, and
a maximum search radius (expressed as a power of two), the algorithm works in different
steps, as illustrated on Figure 7.25:

1. The voxel is initialized with all cells marked as null pointers, and populating the full
ones with pointers to themselves. The search radius is initialized with the maximum
search distance.

2. Perform an initial grow iteration to prevent “crossing triangle” errors (JFA+1).

3. For each cell, a neighbor search is performed with the current search distance.

4. From all the not-null neighbors found from each cell, the distance to their reference
is calculated and a reference to the closest one is stored.

5. If the search radius was one, the diagram is complete, so return. Otherwise, the
search radius is divided by two and back to step 3.

After the execution of the algorithm, every cell in the voxel has a reference to its closest
full cell, or a null reference if the distance is greater than the maximum value indicated by
the user. Figure 7.24 shows a graphical representation of the resulting Voronoi diagram.

Figure 7.24: JFA discrete Voronoi diagram. Each color filled cell is a full one and each
wireframed cell is colored according to its closest full cell, whose distance is smaller
than 8 times the side of a single cell.

151

Chapter 7. Applications to Self-localization problems

Populate full cells Grow Search r = 8 Write closest

Search r = 4 Write closest Search r = 2 Write closest

Search r = 1 Write closest Result

Figure 7.25: JFA+1 algorithm 2D example, with a maximum search distance of r = 8,
and with four initial full cells. Each time a search is performed, a sample cell (marked
in green) is illustrated. Each time an update is performed (labeled as “Write closest”)
cells evaluating new neighbors are representes with a light version of the color of their
reference.

7.2.4.2 Tracking

Thanks to the proposed characterization of the environment, ICP registration is performed
extremely fast, allowing around 500 iterations per Kinect frame with an average subsam-
pling ratio of 8 (which provides the capability of registering around 60 ∗ 106 points per
second, depending on the machine used).

Thanks to this performance, an interesting optimization can be applied to mitigate the
effect of the weak point-to-point cost function minimized and to provide more robustness
when having lots of outliers: after a new range map is acquired by the sensor, the local
registration is initialized assuming that the new pose is a linear extrapolation of the two
previous ones (constant speed motion model). However, instead of having only one initial-
ization, a set of k potential poses are considered around the extrapolated one and registered
with a high subsampling ratio. After a number of iterations, residuals for each pose are
computed and the lowest one is selected for a fine refinement (with more ICP iterations
and lower subsampling ratios).

152

7.2. Indoor Localization for Inspection and Verification

Figure 7.26: Eigenvector and eigenvalue analysis of ambiguity. Images are captured
during real-time tracking. The estimated pose is represented as a three-colored axis,
the eigenvectors are represented in white and scaled according to their corresponding
eigenvalues.

To efficiently distribute these poses around the extrapolated one, an analysis of the
eigenvectors and eigenvalues of the acquired range map is performed. The goal is to use
the eigenvalues to measure the uncertainty associated to the orthogonal axis defined by
their correspondent eigenvectors, and distribute the potential poses proportionally to this
ambiguity.

Intuitively, this concept is very simple: if the sensor is pointing to a flat surface, ambi-
guity is distributed over the plane that better fits this surface (Figure 7.26 top-left), leaving
two degrees of freedom associated to position and one to rotation poorly defined. If the
sensor is pointing to a corner, and with a partial view of the floor/ceiling, ambiguity is
equally distributed in all the axes (Figure 7.26 top-right). If the sensor is facing a corridor,
ambiguity is distributed along the longitudinal axis of the corridor (Figure 7.26 bottom),
leaving one degree of freedom associated to the position poorly defined.

Adding this feature to the tracking algorithm improves robustness considerably but
produces a side-effect: initializing each tracking iteration with a set of random poses dis-
tributed as commented adds some high frequency noise to the final estimation of the pose.
To attenuate this effect in the pose extrapolation algorithm and to prevent bad initializa-
tions, a low pass filter is added.

153

Chapter 7. Applications to Self-localization problems

7.2.4.3 Relocalization

During the tracking of a pose it may happen that the achieved registration is considered as
incorrect, leading to a tracking lost situation. This can be a consequence of several factors:
the number of outliers is too high because the ground truth environment has changed too
much since it was acquired, the previous poses of the sensor had high ambiguity (i.e.
facing a wall) which lead to a great drift in the pose estimation, the sensor moved too
fast or, simply, the initial pose for the tracking algorithm was not correct and registration
results are inconsistent with the ground truth map.

In any of these cases, if it is decided that the pose has to be re-localized (see Fi-
gure 7.11), a local search starting from the last known good position has to be performed,
in order to recover the correct sensor’s location. Also, after the kidnapped solver provides
a set of potential poses, and in order to initialize the tracking with a better estimation, a
re-localization for each one of them has to be performed, taking as the last known position
the pose returned by the kidnapped solver.

To do so, and exploiting the proposed voxel characterization and ICP algorithm, a set of
random poses are distributed around the last known position. Given that no specific motion
model is assumed and that the only cinematic constraints considered are non-correlated
maximum displacements and rotational speeds, the potential poses are distributed accord-
ing to these values and to the time elapsed since the tracking was lost. However, since
normally rotational speeds in a hand-held application can be so high, a full 360o uncer-
tainty over each axis is considered.

For each one of these poses, an ICP iteration is performed and a cost function is com-
puted as follows:

‖P, V ‖ =
∑
p∈P
‖p, V ‖2 (7.27)

‖p, V ‖ = argmin
v∈V

‖p, v‖ (7.28)

being P the point cloud acquired by the sensor, projected in world coordinates according
to a given pose, and V the voxel representing the ground truth map.

Poses are then sorted in increasing order according to this sum of residuals, and a set of
refinement iterations are executed as follows: worst poses are discarded while best poses
are kept for the next iteration together with a new set of poses defined as the component-
independent random linear combination of the best poses. After each iteration, the number
of potential poses is progressively reduced. This way, a genetic-like algorithm is executed
that accelerates convergence to the global minimum.

Figure 7.27 illustrates an example case of re-localization, where the initial ambiguity
value is very high (notice the radius of the sphere in the top image), and 5000 random
locations are created around the last known position. For initial guesses also notice how
extremely high subsampling values are used and progressively refined when the number
of potential poses gets reduced.

154

7.2. Indoor Localization for Inspection and Verification

Figure 7.27: Relocalization algorithm. Top image shows the potential poses used for
initialization. Next images, from left to right and from top to bottom show the partial
result of each iteration, illustrating the projected point cloud returned by the sensor
from the pose that minimizes the proposed cost function. Notice how convergence is
very fast (the third iteration has almost found the correct solution).

7.2.5 Parameter Optimization

In previous sections, a set of parametric algorithms have been proposed to face the indoor
localization problem in known environments. Together with these algorithms, Figure 7.11
proposes two conditions which have to be evaluated for each active pose and that have not
yet been commented: “is a pose correct?” and if not, “shall it be re-localized?”.

This section deals with the optimization process of all the parameters involved in the
global execution cycle, first by analyzing the factors that have to be considered in the
previous questions, and then presenting the optimization framework proposed to tune all
the parameters.

155

Chapter 7. Applications to Self-localization problems

7.2.5.1 Tracking lost detection

In order to decide if a potential pose has been successfully tracked or if, on the contrary,
the tracking has been lost and the estimated location cannot be considered as correct, three
factors are considered: (1) its geometric consistence with respect to the known environ-
ment, (2) its geometric consistence with respect to the previous observations projected
from their previous estimated poses and (3) if the cinematic constraints are respected.

First condition is very simple to evaluate, and has been previously defined in equations
7.27 and 7.28: to measure the consistency of the projected rangemap from a given pose
with respect to the known environment, the squared sum of the residuals is used. This way,
if a maximum value is exceeded, the tracking will be considered as lost. Figure 7.28 shows
illustrates the outlier detection taking advantage of the propose voxel representation.

Figure 7.28: World consistency test. The presence of an outlier represented as a discrete
distance function. Samples colored in green are closer than 10cm to the reference point
cloud, and samples colored in red are further.

Second condition locally evaluates the quality of the tracking, ignoring the ground truth
model. To do so, given a projected rangemap Pt with respect to the currently tracked pose,
and another previously projected rangemap Pt−k from its estimated pose, points from
Pt−k are inversely re-projected into the the current rangemap’s image plane, and depth
values are between corresponding points are compared in order to compute the square
sum of residuals. Figure 7.29 illustrates this concept.

However, since not all the points have its counterpart (due to the observer’s movement),
the resulting distance has to be divided by the number of corresponding points to have a fair
comparison. It is also important to notice that, since re-projection from one rangemap to
the other operates on coordinates defined in R3, the local re-projected (u, v) coordinates
in the current range map will be also defined in R2, so a interpolation between depth
values has to be performed. Finally, in order to improve the quality of the estimation,
and considering a high frequency acquisition, it is interesting to have a relatively big time
separation between compared observations, in order to prevent numerical errors and to
better filter the sensor’s noise.

Finally, the last condition is satisfied if the total angular and linear speeds computed
according to the current pose are inside the range defined by the maximum speeds.

156

7.2. Indoor Localization for Inspection and Verification

Current pose (t)

Previous
pose (t-k)

p=(x, y, z) ∈ Pt-k

p’=(u, v)

Figure 7.29: Self error consistency test. Left image illustrates the re-projection of a point
observed in a previous instant into the image plane of the currently tracked pose. Right
image shows the self error test performed during real-time tracking. The more green
points are, the smaller the error is. The more red, the bigger. Gray points are those
that do not have counterpart, because of the sensor’s movement.

7.2.5.2 Relocalization test

In order to decide if it is worth spending computational resources in re-localizing a lost
pose after a tracking failure, four factors are considered:

1. The tracking was lost not too long ago, so the uncertainty around the last known
location is small enough to perform a local search in its surroundings. In Figure 7.11
it is not specified but, when the relocalization is performed, the corrected pose is kept
in the list of potentially valid poses for the next iteration. However, only until the
tracking succeeds updating this pose with new observations, the pose keeps marked
as invalid. This way, before deciding to delete a wrong pose, several relocalization
attempts may happen.

2. The lifetime of the pose makes worth spending computational resources in relocal-
izing it. This way, poses returned by the kidnapped solver have less priority for
relocalization, whilst poses that were alive during a long time (tracking had suc-
ceeded using many observations) are more probable to be correct, and have to be
relocalized when possible.

3. The quality of the observation when the tracking was lost was poor. This way, if a
pose has been lost while facing a wall, or having too many null distances because
the operating range of the sensor is not respected, the tracking fail can considered
as normal and not a consequence of a bad pose. However, if the quality of the
observation is good and the tracking has been lost, it is more likely that the pose
were wrong.

4. The quality of the current observation is good: it is only worth spending computa-
tional resources in relocalizing a pose if the quality of the data used to do so is good.
Otherwise, it is better to wait until the sensor produces a point cloud that allows
performing such task.

157

Chapter 7. Applications to Self-localization problems

Given that two of the previous conditions are defined according to the quality of the
data, a formal way to measure it is defined according to two different criteria:

1. The quality of a range map retrieved by the sensor is proportionally related to the
percentage of points defined inside its operating range. Null distances and points
outside this range are assumed to be outliers and contribute to degrade the data.

2. The quality of a range map retrieved by the sensor is also proportionally related
to the geometric detail of the resulting cloud. This way, an analysis based on the
principal components of the cloud (eigenvectors and eigenvalues) is performed, and
a scalar descriptor of this quality is defined as the relationship between the first
(biggest) and third (smallest) eigenvalues.

7.2.5.3 Optimization framework

In order to set proper values to the parameters involved in the execution of the proposed
algorithms, and to perform an optimization over them, two factors have to be considered:
(1) a cost function has to be defined that considers the accuracy of the achieved results
together with the execution time and (2) a set of ground truth datasets with known motions
has to be acquired in order to perform an off-line optimization that can compare achieved
results with the reference ones to compute the proposed cost function.

For the cost function computation, it is important to notice that there are two objectives
to optimize, accuracy and performance, and that the two of them can be correlated: looking
for excessively accurate results may lead to a critical performance loss, which will also
render into losing sensor readings, which will produce tracking fails and, eventually, would
also affect to accuracy. This way, a proper balance between both objectives has to be
achieved. In the proposed (ongoing) optimization strategy, the way these two objectives
are combined in a single cost function consists on calculating the total number of sensor
readings that produce a correct pose, considering that a pose is qualified as correct if its
inside of a given distance range from the correct one.

For this cost function, it is also important to notice that the optimization is highly
dependent on the processing capabilities of the computer that is executing the application.
This way, instead of a generic calibration, the proposed optimization process has to be
executed once for each different computer.

For the ground truth motion estimation, the need of evaluating performance and accu-
racy when moving inside large environments adds an extra difficulty: no motion detection
facilities or robotic arms can be used to create reference models. Instead of this, and con-
sidering that the proposed tracking algorithm provides extremely accurate results when
using the Velodyne sensor (as next section shows), a sensor holder has been designed and
3D printed in order to use simultaneously Kinect and Velodyne sensors (see Figure 7.30).

Given that, before recording the datasets, both sensors have been calibrated one with
respect to the other, Velodyne sensor is used to compute the ground truth trajectory (prop-
erly transformed into the Kinect global coordinates), and the Kinect sensor readings are
used as input data for the calibration process.

158

7.2. Indoor Localization for Inspection and Verification

Figure 7.30: Design of the sensor holder used for generating training datasets. (left) 3D
model of the holder. (right) 3D printed version with both sensors attached.

Once the training dataset is recorded, a grid search optimization process is executed
with some manually predefined ranges for some parameters (like subsampling ratios dur-
ing the ICP registration, maximum number of registration iterations, maximum number of
random poses for the relocalization...). The goal is then to find the values for the parame-
ters that minimize the proposed cost function as follows:

minimizeΘ=θ1,θ2...θn

1

2m

m∑
1

(
fΘ

(
x(i)
)
− y(i)

)2

(7.29)

being Θ = θ1, θ2 . . . θn the set of n parameters to optimize, m the number of sen-
sor readings of a given training motion, fΘ

(
x(i)
)

= (x, y, z, α, β, γ)
(i) the i-th pose

returned by the proposed algorithm using the set of parameters evaluated and y(i) =

(x′, y′, z′, α′, β′, γ′)
(i) the i-th ground truth pose calculated with the Velodyne, and trans-

formed into the Kinect reference frame.

7.2.6 Results
In order to perform the proposed parameter optimization for the Kinect sensor, a ground
truth trajectory is needed to compare with. To do so, as proposed, the Velodyne sensor is
being used properly attached and calibrated with the Kinect sensor. However, given that
the result of the tracking using the Velodyne is assumed to be correct, its accuracy has to
be evaluated.

To do so, a set of experiments has been performed in both, structured and unstructured
environments. The proposed structured environment is the interior of a building (shown in
previous figures), where there lots of elements have moved since the ground truth model
was acquired. The unstructured environment is a rocky tunnel very similar to some nuclear

159

Chapter 7. Applications to Self-localization problems

Figure 7.31: Evaluation tunnel used for the Velodyne sensor. The top image povides a
general overview of the tunnel (120 meters long), whilst the bottom one shows the
interior shape of the walls. Both images represent the same data during one of the
evaluation tests. Notice how no red dots are represented, meaning that all points from
the sensor have a counterpart in the ground truth point cloud. This is a consequence
of both, the absence of outliers and a correct tracking.

facilities where the proposed system will be used. For this environment, hand-held and car-
mounted tests have been performed at different speeds. Figure 7.31 shows the acquired
point cloud for the tunnel.

In the tests performed in the tunnel environment, the reference point cloud was ac-
quired just before the data retrieval, so no outliers exist. For each test, the tracking al-
gorithm has been executed with a voxel cell size of 10cm. In an offline process, a fine
registration of the data recorded and the ground truth point cloud has been performed in
order to compare the real-time results using the voxel against it. Table 7.2 and Figures
7.32, 7.33, 7.34 and 7.35 show the achieved results.

#Track Motion Avg. speed Distance Avg. error Std. dev.
1 hand-held 0.87 m/s 226.06 m 2.42 cm 3.60 cm
2 car-mounted slow 1.42 m/s 113.64 m 1.74 cm 2.08 cm
3 car-mounted fast 4.30 m/s 75.75 m 3.71 cm 3.50 cm
4 car-mounted backwards 1.25 m/s 106.05 m 1.66 cm 1.76 cm

Table 7.2: Results of the evaluation tests performed in the tunnel with the Velodyne sensor.

160

7.2. Indoor Localization for Inspection and Verification

0 5 10 15 20 25 30 35
0

200

400

600

800

Error (centimeters)

N
um

be
r o

f f
ra

m
es

Error histogram

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

Frames

R
es

id
ua

ls
 (c

en
tim

et
er

s)

 Residuals

Voxel realtime ICP
ICP with the groundtruth point cloud

Figure 7.32: Velodyne tracking results for track 1 (hand-held).

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

0 5 10 15 20 25 30 35
0

100

200

300

400

Voxel realtime ICP
ICP with the groundtruth point cloud

Residuals

Error histogram

N
um

be
r o

f f
ra

m
es

R
es

id
ua

ls
 (c

en
tim

et
er

s)

Figure 7.33: Velodyne tracking results for track 2 (car-mounted, slow movement).

161

Chapter 7. Applications to Self-localization problems

0 20 40 60 80 100 120 140 160 180
3

3.5

4

4.5

0 5 10 15 20 25 30 35
0

10

20

30

40

Voxel realtime ICP
ICP with the groundtruth point cloud

Residuals

Error histogram

N
um

be
r o

f f
ra

m
es

R
es

id
ua

ls
 (c

en
tim

et
er

s)

Figure 7.34: Velodyne tracking results for track 3 (car-mounted, fast movement).

0 5 10 15 20 25 30 35
0

100

200

300

400

0 100 200 300 400 500 600 700 800 900
1

2

3

4

5

Voxel realtime ICP
ICP with the groundtruth point cloud

Residuals

Error histogram

N
um

be
r o

f f
ra

m
es

R
es

id
ua

ls
 (c

en
tim

et
er

s)

Figure 7.35: Velodyne tracking results for track 4 (car-mounted, backwards).

162

7.2. Indoor Localization for Inspection and Verification

From Table 7.2 it can be appreciated how speed affects directly on the average error and
standard deviation. This is, mostly, a consequence of the previously commenter unwarping
effect with the Velodyne sensor and does not necessarily mean that the tracking algorithm
is failing. In the case of the hand-held track, it can be noticed how the standard deviation
increases considerably, as a consequence of the shaking produced in this kind of motion.

In the previous figures, it can be seen how the position error histograms always peak in
the 1 centimeter error bin, having most of the samples inside the 0...5 centimeters range.
In the residuals plots, first thing to notice is how error periodically increases and decreases
in both, real-time and off-line results. This is not a consequence of a bad tracking, but of
a bad ground truth point cloud: given that the scans were taken each 15 meters and that
the tunnel is extremely narrow, areas close to the acquisition locations are extremely well
defined and areas in between two acquisition positions are poorly defined.

As a consequence of this factor, residuals are low when the environment is well defined
because the nearest neighbor for each point acquired by the sensor can be better estimated.
On the other side, in areas poorly defined, the closest neighbor for a sensor point do not
represent properly the nearest point in the tunnel, so residuals increase. For this reason, as
an estimation of the error produced, local minimum values should be used as a reference.

As Table 7.2 showed, residuals depend on the speed, having low values in tracks 2
and 4, and higher values in tracks 1 and 3. In the first track (hand-held), higher residuals
around frame 1200 and in the end are a consequence of the sensor getting out of the tunnel,
where no ground truth model exists, and less correspondences can be used for tracking.
Also in the last stage of the track, to test for robustness, the person holding the sensor
made fast movements and jumped. The tracking was able to locate the sensor in all the
stress test, but a bit of precision was lost.

Regarding to the data representation, tests performed in the structured indoor environ-
ment showed the results detailed in Table 7.3. It is important to notice how, the more
general the problem is, the less memory is required to store the data necessary to solve
it. This is very important in the case of considering a big environment: in order to solve
the kidnapped robot problem, the whole environment has to be considered, so its spatial
requirements have to be small enough to fit in memory. For tracking and re-localization
purposes, only the part of the facility surrounding the last known pose has to be considered,
so a higher detail representation ca be afforded.

Representation # samples Size (MB)
Point cloud 15,104,800 points 345
Voxel (5cm cell size) 18,668,538 cells 213
Voxel (10cm cell size) 2,347,380 cells 26.8
Training dataset raw 500,000 poses 34.3
Training dataset optimized 165,585 poses 11.3

Table 7.3: Memory requirements to store the propsed data structures

163

Chapter 7. Applications to Self-localization problems

7.2.7 Conclusions and Future Works
In this chapter, a general technique has been proposed in order to face the particularities
of the localization in indoor environments using 3D sensors. Three major situations have
been identified: the kidnapped robot problem, the tracking problem and the re-localization
problem.

The kidnapped robot problem refers to estimating the pose of the observer with no
prior information. To do so, and considering that he can be located in any point of the
facility, a global search strategy has been proposed that simplifies the range map acquired
by the sensor into a set of descriptors. Using this signature, a fast k-dimensional search
is performed over pre-computed training data, obtained using the ground truth map of the
facility, to find the most similar potential locations. An optimization stage has been also
proposed to prune from the training dataset ambiguous and incorrect potential poses.

Once the observer is localized inside the map, a tracking algorithm is executed using
next sensor’s observations in order to update his pose. These updates are preformed using
a local search strategy that only considers the part of the environment that surrounds the
sensor and, as a result, provide a local displacement from the previous known pose. To
efficiently do so, a voxel-based representation of the ground truth point cloud has been pro-
posed. This representation allows accelerating the registration process between the partial
view observed by the sensor and the known environment, providing real-time results.

In the eventual case of a tracking-lost situation as a consequence of several factors, like
a fast movement of the inspector or the presence of too many outliers, a re-localization
strategy has been proposed. This algorithm performs a local search around the last known
position of the observer, distributing potential locations distributed according to an uncer-
tainty model and using a genetic-like strategy to accelerate convergence. Taking advantage
of the proposed characterization of the environment, this search is performed extremely
fast and allows to be integrated in the final real-time application.

A complete execution cycle has also been introduced, and a procedure to calibrate the
parameters involved in each stage has been presented.

Since this is an ongoing project, major improvements are being implemented in almost
every stage. Firstly, for the general ICP algorithm that is used in tracking and relocalization
stages, a point-to-plane distance function is being minimized instead of a point-to-point.
Advantages of this minimization is that it converges faster than the point-to-point one and,
for some situations, it is able to solve registrations that the simplest approach cannot. In
order to keep the computational cost of this operation as low as possible, normals will
be calculated on the ground truth model (so no extra pre-processing time is required for
the range maps acquired by the sensor), and orientations will be linearized in order to
analytically solve the minimization problem.

To improve the kidnapped robot solver algorithm, and to avoid populating with exces-
sive number of potential locations the proposed execution cycle, a local odometry estima-
tion algorithm ignoring the ground truth map is being implemented. The main idea consist
on executing the proposed kidnapped solver in order to get potential locations but, instead
of tracking them directly using the ground truth map, a particle filter fed with the motion
estimation is proposed. This way, after several observations, the kidnapped solver is exe-
cuted again and only particles in poses compatibles with the new set of potential locations
are kept alive. This process is iteratively repeated until only one potential location exists.

Thanks to this optimization, global execution performance is expected to improve and

164

7.2. Indoor Localization for Inspection and Verification

the memory requirements are expected to be considerably lower: since only one poten-
tial pose exists, only the part of the voxel surrounding it has to be loaded into memory,
allowing to work with bigger ground truth environments.

Finally, in order to create a portable tool that can be used in real situations, a backpack
is being designed in order to fix the sensor and batteries to the inspector and a portable
hand-held display is being designed to provide useful information in real time.

165

CHAPTER8
Conclusions

In this document surface registration techniques have been applied to solve the automatic
reconstruction of broken archaeological artifacts from fragments.

For archaeological and computational complexity reasons, the problem has been di-
vided into two different sub-problems and treated independently: a 3 degrees of freedom
approach to face problems that consider flat fragments and a 6 degrees of freedom ap-
proach to provide a general solution to the reconstruction problem.

To work with digital representations of fragments an initial acquisition stage, common
to both approaches, has been studied. Working with fragile and singular objects imposes
physical restrictions when scanning reflective/refractive surfaces. To face them, an alterna-
tive use of cyclododecane has been proposed. Thanks to its good film forming capabilities,
its chemical stability and to the fact that it sublimes at room temperature leaving no resid-
uals, CCD is a perfect candidate to solve reflection/refraction issues during the scanning
process. A set of experiments has been presented, proving that the thin layer created on
the surface of fragments do not interfere with the scanner accuracy thanks to the reduced
particle size.

To face 3 degrees of freedom problems, the reduced size of the solution space has been
exploited. Starting from an exhaustive approach that evaluates all possible discrete align-
ments, a set of optimizations have been proposed to increase the overall performance while
keeping the correction of results. It has been formally and empirically demonstrated that
the use of the proposed optimistic cost function estimator for intermediate results ensures
convergency and speeds up considerably the search process. Also, by taking advantage of
modern GPUs, all heavy computations are executed in specifically designed wired units,
so the final algorithm performs the registration using only addition and comparison oper-

167

Chapter 8. Conclusions

ators. Combining these advantages with an alternative characterization of fragments that
ensures data alignment, achieved execution times have shown a performance boost of the
proposed technique with respect to previous approaches.

To face 6 degrees of freedom problems, the combinatory explosion that happens in the
solution space when adding three extra dimensions has been proven to make exhaustive
approaches prohibitive in terms of execution times and memory requirements. This fact
makes mandatory a paradigm change: instead of looking for a dense correspondence us-
ing an exhaustive technique, a sparse registration algorithm has been proposed. Taking
advantage of a pre-processing stage, an alternative characterization for fragments has been
introduced. Using a key-point selection algorithm based on a multi-scale saliency feature
and a modified version of the PFH descriptor, a compact and descriptive representation of
fragments has been proposed. A fast one-to-one three-level hierarchical search strategy has
been presented to exploit local similarity between keypoints and geometrical consistence
tests during the registration process. Then, using these results, a many-to-many search
algorithm performs the final reconstruction taking advantage of modern computers’ archi-
tecture and using a graph-based strategy. Empirical results have proven the technique to
be very fast and suitable for solving large problems.

To show alternative applications of surface registration techniques to other fields, two
localization techniques have been presented. First one exploits the structured nature of
indoor environments to solve the self-localization problem for mobile robots with very
limited computational resources. In order to keep execution times low, a sparse registra-
tion technique is proposed that takes advantage of a very fast line inference algorithm.
Second one allows nuclear inspectors to localize and detect changes in known environ-
ments for verification and inspection purposes. A complete execution cycle for the self-
localization problem has been presented where, the fact of having a ground truth map of
the environment is effectively exploited: by pre-computing a training dataset of syntheti-
cally generated points of view, an efficient kidnapped solver has been introduced. Also, a
voxel-based representation of the ground truth point cloud has been proposed. This rep-
resentation allows accelerating the registration process between the partial view observed
by the sensor and the known environment, providing real-time results.

168

169

Bibliography

[1] Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 4pointss congruent sets for robust pairwise
surface registration. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pages 85:1–85:10,
New York, NY, USA, 2008. ACM.

[2] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, and G. Bradski. Cad-
model recognition and 6dof pose estimation using 3d cues. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on, pages 585–592, Nov 2011.

[3] Marc Alexa. Recent advances in mesh morphing. Comput. Graph. Forum, 21(2):173–196,
2002.

[4] Brett Allen, Brian Curless, and Zoran Popović. The space of human body shapes: Recon-
struction and parameterization from range scans. ACM Trans. Graph., 22(3):587–594, July
2003.

[5] Tom Altman. Solving the jigsaw puzzle problem in linear time. Appl. Artif. Intell., 3(4):453–
462, January 1990.

[6] Dragomir Anguelov, Praveen Srinivasan, Hoi cheung Pang, and Daphne Koller. The cor-
related correspondence algorithm for unsupervised registration of nonrigid surfaces. In In
TR-SAIL-2004-100, pages 33–40, 2004.

[7] K.S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PAMI-9(5):698–700, Sept 1987.

[8] H Asada and M Brady. The curvature primal sketch. IEEE Trans. Pattern Anal. Mach. Intell.,
8(1):2–14, January 1986.

[9] Oscar Kin-Chung Au, Chiew-Lan Tai, Daniel Cohen-Or, Youyi Zheng, and Hongbo Fu. Elec-
tors voting for fast automatic shape correspondence. Comput. Graph. Forum, 29(2):645–654,
2010.

[10] S. Belongie and J. Malik. Matching with shape contexts. In Content-based Access of Image
and Video Libraries, 2000. Proceedings. IEEE Workshop on, pages 20–26, 2000.

[11] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape
contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522, April 2002.

[12] R. Benjemaa and F. Schmitt. Fast global registration of 3d sampled surfaces using a multi-
z-buffer technique. In 3-D Digital Imaging and Modeling, 1997. Proceedings., International
Conference on Recent Advances in, pages 113–120, May 1997.

171

Bibliography

[13] Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching and object recog-
nition using low distortion correspondences. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 -
Volume 01, CVPR ’05, pages 26–33, Washington, DC, USA, 2005. IEEE Computer Society.

[14] F. Berrada, D. Aboutajdine, S.E. Ouatik, and A. Lachkar. Review of 2d shape descrip-
tors based on the curvature scale space approach. In Multimedia Computing and Systems
(ICMCS), 2011 International Conference on, pages 1–6, April 2011.

[15] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern
Anal. Mach. Intell., 14(2):239–256, February 1992.

[16] Silvia Biasotti, Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. Sub-part cor-
respondence by structural descriptors of 3d shapes. Computer-Aided Design, 38(9):1002 –
1019, 2006. Shape Similarity Detection and Search for CAD/CAE Applications Shape Simi-
larity Detection and Search for CAD/CAE Applications.

[17] Gérard Blais and Martin D. Levine. Registering multiview range data to create 3d computer
objects. IEEE Trans. Pattern Anal. Mach. Intell., 17(8):820–824, August 1995.

[18] Harry Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT
Press, Cambridge, 1967.

[19] M. Bober. Mpeg-7 visual shape descriptors. Circuits and Systems for Video Technology, IEEE
Transactions on, 11(6):716–719, Jun 2001.

[20] Gunilla Borgefors. Distance transformations in arbitrary dimensions. Computer Vision,
Graphics, and Image Processing, 27(3):321 – 345, 1984.

[21] E. Boyer, A. M. Bronstein, M. M. Bronstein, B. Bustos, T. Darom, R. Horaud, I. Hotz,
Y. Keller, J. Keustermans, A. Kovnatsky, R. Litman, J. Reininghaus, I. Sipiran, D. Smeets,
P. Suetens, D. Vandermeulen, A. Zaharescu, and V. Zobel. Shrec 2011: Robust feature detec-
tion and description benchmark. In Proceedings of the 4th Eurographics Conference on 3D
Object Retrieval, EG 3DOR’11, pages 71–78, Aire-la-Ville, Switzerland, Switzerland, 2011.
Eurographics Association.

[22] Alexander M. Bronstein, Michael M. Bronstein, Alfred M. Bruckstein, and Ron Kimmel.
Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vision,
84(2):163–183, August 2009.

[23] Benedict J. Brown. Registration and Matching of Large Geometric Datasets for Cultural
Heritage Applications. PhD thesis, Princeton University, June 2008.

[24] Benedict J. Brown, Corey Toler-Franklin, Diego Nehab, Michael Burns, David Dobkin, An-
dreas Vlachopoulos, Christos Doumas, Szymon Rusinkiewicz, and Tim Weyrich. A system
for high-volume acquisition and matching of fresco fragments: Reassembling theran wall
paintings. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pages 84:1–84:9, New York,
NY, USA, 2008. ACM.

[25] T.S. Caetano, J.J. McAuley, Li Cheng, Quoc V. Le, and A.J. Smola. Learning graph matching.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(6):1048–1058, June
2009.

[26] A. G. Castañeda, B. J. Brown, S. Rusinkiewicz, T. Funkhouser, and T. Weyrich. Global
consistency in the automatic assembly of fragmented artefacts. In Proceedings of the 12th
International conference on Virtual Reality, Archaeology and Cultural Heritage, VAST’11,
pages 73–80, Aire-la-Ville, Switzerland, Switzerland, 2011. Eurographics Association.

172

Bibliography

[27] M. Emre Celebi and Y. Alp Aslandogan. A comparative study of three moment-based shape
descriptors. In Proceedings of the International Conference on Information Technology: Cod-
ing and Computing (ITCC’05) - Volume I - Volume 01, ITCC ’05, pages 788–793, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[28] Will Chang and Matthias Zwicker. Automatic registration for articulated shapes. In Proceed-
ings of the Symposium on Geometry Processing, SGP ’08, pages 1459–1468, Aire-la-Ville,
Switzerland, Switzerland, 2008. Eurographics Association.

[29] Will Chang and Matthias Zwicker. Range scan registration using reduced deformable models.
Comput. Graph. Forum, 28(2):447–456, 2009.

[30] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based
3d model retrieval. Computer Graphics Forum, 22(3):223–232, 2003.

[31] Jiun-Hung Chen and L.G. Shapiro. Groupwise pose normalization for craniofacial applica-
tions. In Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pages 248–255,
Jan 2011.

[32] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range images.
Image Vision Comput., 10(3):145–155, April 1992.

[33] Taeg Sang Cho, Moshe Butman, Shai Avidan, and William T. Freeman. The patch transform
and its applications to image editing. In CVPR. IEEE Computer Society, 2008.

[34] G.C.-H. Chuang and C.-C.J. Kuo. Wavelet descriptor of planar curves: theory and applica-
tions. Image Processing, IEEE Transactions on, 5(1):56–70, Jan 1996.

[35] Haili Chui and Anand Rangarajan. A new point matching algorithm for non-rigid registration.
Comput. Vis. Image Underst., 89(2-3):114–141, February 2003.

[36] Moo K. Chung, Richard Hartley, Kim M. Dalton, and Richard J. Davidson. Encoding cortical
surface by spherical harmonics. Statistica Sinica, 18(4):1269–1291, 2008.

[37] Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton properties, applications,
and algorithms. IEEE Transactions on Visualization and Computer Graphics, 13(3):530–548,
May 2007.

[38] H. C. da Gama Leitão and J. Stolfi. A multiscale method for the reassembly of two-
dimensional fragmented objects. IEEE Trans. Pattern Anal. Mach. Intell., 24:1239–1251,
September 2002.

[39] P. Daras and A. Axenopoulos. A compact multi-view descriptor for 3d object retrieval. In
Content-Based Multimedia Indexing, 2009. CBMI ’09. Seventh International Workshop on,
pages 115–119, June 2009.

[40] Petros Daras and Apostolos Axenopoulos. A 3d shape retrieval framework supporting multi-
modal queries. Int. J. Comput. Vision, 89(2-3):229–247, September 2010.

[41] T. Darom and Y. Keller. Scale-invariant features for 3-d mesh models. Image Processing,
IEEE Transactions on, 21(5):2758–2769, May 2012.

[42] Rhodri Davies, Carole Twining, and Chris Taylor. Statistical Models of Shape: Optimisation
and Evaluation. Springer Publishing Company, Incorporated, 1 edition, 2008.

[43] E. de Aguiar, C. Theobalt, C. Stoll, and H. P Seidel. Marker-less deformable mesh tracking
for human shape and motion capture. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1–8, June 2007.

[44] Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel, and
Sebastian Thrun. Performance capture from sparse multi-view video. In ACM SIGGRAPH
2008 Papers, SIGGRAPH ’08, pages 98:1–98:10, New York, NY, USA, 2008. ACM.

173

Bibliography

[45] A. Deever and A. Gallagher. Semi-automatic assembly of real cross-cut shredded documents.
In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 233–236,
Sept 2012.

[46] Erik D. Demaine and Martin L. Demaine. Jigsaw puzzles, edge matching, and polyomino
packing: Connections and complexity. Graph. Comb., 23(1):195–208, February 2007.

[47] Gabriella Sanniti di Baja and Stina Svensson. A new shape descriptor for surfaces in 3d
images. Pattern Recognition Letters, 23(6):703 – 711, 2002. Discrete Geometry for Computer
Imagery.

[48] Chitra Dorai, Gang Wang, Anil K. Jain, and Carolyn Mercer. Registration and integration
of multiple object views for 3d model construction. IEEE Trans. Pattern Anal. Mach. Intell.,
20(1):83–89, January 1998.

[49] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981.

[50] M. Fornasier and D. Toniolo. Fast, robust and efficient 2d pattern recognition for re-
assembling fragmented images. Pattern Recogn., 38:2074–2087, November 2005.

[51] H. Freeman and L. Garder. Apictorial jigsaw puzzles: The computer solution of a problem in
pattern recognition. Electronic Computers, IEEE Transactions on, EC-13(2):118–127, April
1964.

[52] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik. Recognizing
objects in range data using regional point descriptors. In Tomás Pajdla and Jiri Matas, editors,
ECCV (3), volume 3023 of Lecture Notes in Computer Science, pages 224–237. Springer,
2004.

[53] T. Funkhouser and P. Shilane. Partial matching of 3d shapes with priority-driven search. In
Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pages
131–142, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[54] T. Funkhouser, H. Shin, C. Toler-Franklin, A. G. Castañeda, B. J. Brown, D. Dobkin,
S. Rusinkiewicz, and T. Weyrich. Learning how to match fresco fragments. J. Comput.
Cult. Herit., 4(2):7:1–7:13, November 2011.

[55] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman, David
Dobkin, and David Jacobs. A search engine for 3d models. ACM Trans. Graph., 22(1):83–
105, January 2003.

[56] Ran Gal and Daniel Cohen-Or. Salient geometric features for partial shape matching and
similarity. ACM Trans. Graph., 25(1):130–150, January 2006.

[57] Jürgen Gall, Carsten Stoll, Edilson de Aguiar, Christian Theobalt, Bodo Rosenhahn, and
Hans-Peter Seidel. Motion capture using joint skeleton tracking and surface estimation. In
2009 IEEE Conference on Computer Vision and Pattern Recognition : CVPR 2009, pages
1746–1753, Miami, USA, 2009. IEEE.

[58] Jürgen Gall, Carsten Stoll, Edilson de Aguiar, Christian Theobalt, Bodo Rosenhahn, and
Hans-Peter Seidel. Motion capture using joint skeleton tracking and surface estimation. In
2009 IEEE Conference on Computer Vision and Pattern Recognition : CVPR 2009, pages
1746–1753, Miami, USA, 2009. IEEE.

[59] Timothy Gatzke, Cindy Grimm, Michael Garland, and Steve Zelinka. Curvature maps for
local shape comparison. In Proceedings of the International Conference on Shape Model-
ing and Applications 2005, SMI ’05, pages 246–255, Washington, DC, USA, 2005. IEEE
Computer Society.

174

Bibliography

[60] Natasha Gelfand, Niloy J. Mitra, Leonidas J. Guibas, and Helmut Pottmann. Robust global
registration. In Proceedings of the Third Eurographics Symposium on Geometry Processing,
SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[61] Guy Godin, Marc Rioux, and Rejean Baribeau. Three-dimensional registration using range
and intensity information, 1994.

[62] Steven Gold and Anand Rangarajan. Softmax to softassign: Neural network algorithms for
combinatorial optimization. Journal of Artificial Neural Networks, 2:2–4, 1995.

[63] David Goldberg, Christopher Malon, and Marshall Bern. A global approach to automatic
solution of jigsaw puzzles. Comput. Geom. Theory Appl., 28(2-3):165–174, June 2004.

[64] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157–1182, March 2003.

[65] Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc. of Fourth
Alvey Vision Conference, pages 147–151, 1988.

[66] Tobias Heimann and Hans-Peter Meinzer. Statistical shape models for 3d medical image
segmentation: A review. Medical Image Analysis, 13(4):543 – 563, 2009.

[67] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topology
matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
pages 203–212, New York, NY, USA, 2001. ACM.

[68] K. Hori, M. Imai, and T. Ogasawara. Joint detection for potsherds of broken earthenware.
Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:2440–
2445, 1999.

[69] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America A, 4(4):629–642, 1987.

[70] Berthold K. P. Horn, H.M. Hilden, and Shariar Negahdaripour. Closed-form solution of abso-
lute orientation using orthonormal matrices. JOURNAL OF THE OPTICAL SOCIETY AMER-
ICA, 5(7):1127–1135, 1988.

[71] Q. Huang, S. Flöry, N. Gelfand, M. Hofer, and H. Pottmann. Reassembling fractured objects
by geometric matching. ACM Trans. Graphics, 25(3):569–578, 2006.

[72] Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J. Guibas. Non-rigid registration
under isometric deformations. In Proceedings of the Symposium on Geometry Processing,
SGP ’08, pages 1449–1457, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics As-
sociation.

[73] Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects by alignment with an
image. Int. J. Comput. Vision, 5(2):195–212, November 1990.

[74] D.P. Huttenlocher. Fast affine point matching: an output-sensitive method. In Computer
Vision and Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer Society Con-
ference on, pages 263–268, Jun 1991.

[75] Cheuk Yiu Ip, Daniel Lapadat, Leonard Sieger, and William C. Regli. Using shape distri-
butions to compare solid models. In Proceedings of the Seventh ACM Symposium on Solid
Modeling and Applications, SMA ’02, pages 273–280, New York, NY, USA, 2002. ACM.

[76] Sandy Irani and Prabhakar Raghavan. Combinatorial and experimental results for randomized
point matching algorithms. In Proceedings of the Twelfth Annual Symposium on Computa-
tional Geometry, SCG ’96, pages 68–77, New York, NY, USA, 1996. ACM.

175

Bibliography

[77] Sou-Young Jin, Suwon Lee, N.A. Azis, and Ho-Jin Choi. Jigsaw puzzle image retrieval via
pairwise compatibility measurement. In Big Data and Smart Computing (BIGCOMP), 2014
International Conference on, pages 123–127, Jan 2014.

[78] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object recognition in
cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell., 21(5):433–449, May 1999.

[79] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3d mesh segmentation
and labeling. ACM Trans. Graph., 29(4):102:1–102:12, July 2010.

[80] M. Kampel and R. Sablatnig. On 3d mosaicing of rotationally symmetric ceramic fragments.
In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference
on, volume 2, pages 265–268 Vol.2, Aug 2004.

[81] A. Karasik and U. Smilansky. 3d scanning technology as a standard archaeological tool for
pottery analysis: practice and theory. Journal of Archaeological Science, 35(5):1148–1168,
2008.

[82] Khaled Khairy and Jonathon Howard. Spherical harmonics-based parametric deconvolu-
tion of 3d surface images using bending energy minimization. Medical Image Analysis,
12(2):217–227, 2008.

[83] Suchitra Khoje and Shrikant Bodhe. Article: Performance comparison of fourier transform
and its derivatives as shape descriptors for mango grading. International Journal of Computer
Applications, 53(3):17–22, September 2012. Published by Foundation of Computer Science,
New York, USA.

[84] Whoi-Yul Kim and Yong-Sung Kim. A region-based shape descriptor using zernike moments.
Signal Processing: Image Communication, 16(1–2):95 – 102, 2000.

[85] D. Koller and M. Levoy. Computer-aided reconstruction and new matches in the Forma Urbis
Romae, volume Supplement, pages 103–125. 2006.

[86] W. Kong and B. B. Kimia. On solving 2d and 3d puzzles using curve matching. Computer
Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:583–590, 2001.

[87] Marcel Körtgen, G. J. Park, Marcin Novotni, and Reinhard Klein. 3d shape matching with 3d
shape contexts. In The 7th Central European Seminar on Computer Graphics, April 2003.

[88] Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. Thinning methodologies-a comprehensive
survey. IEEE Trans. Pattern Anal. Mach. Intell., 14(9):869–885, September 1992.

[89] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A sparse texture representation using
local affine regions. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1265–1278, August 2005.

[90] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems
using pairwise constraints. In Proceedings of the Tenth IEEE International Conference on
Computer Vision - Volume 2, ICCV ’05, pages 1482–1489, Washington, DC, USA, 2005.
IEEE Computer Society.

[91] Hao Li, Bart Adams, Leonidas J. Guibas, and Mark Pauly. Robust single-view geometry and
motion reconstruction. ACM Trans. Graph., 28(5):175:1–175:10, December 2009.

[92] Hao Li, Robert W. Sumner, and Mark Pauly. Global correspondence optimization for non-
rigid registration of depth scans. In Proceedings of the Symposium on Geometry Processing,
SGP ’08, pages 1421–1430, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics As-
sociation.

[93] Xinju Li and Igor Guskov. Multi-scale features for approximate alignment of point-based
surfaces. In Proceedings of the Third Eurographics Symposium on Geometry Processing,
SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

176

Bibliography

[94] Huei-Yung Lin and Wen-Cheng Fan-Chiang. Reconstruction of shredded document based on
image feature matching. Expert Syst. Appl., 39(3):3324–3332, February 2012.

[95] Yaron Lipman and Thomas Funkhouser. Möbius voting for surface correspondence. ACM
Trans. Graph., 28(3):72:1–72:12, July 2009.

[96] Hairong Liu, Shengjiao Cao, and Shuicheng Yan. Automated assembly of shredded pieces
from multiple photos. Multimedia, IEEE Transactions on, 13(5):1154–1162, Oct 2011.

[97] Qiong Liu. A survey of recent view-based 3d model retrieval methods. CoRR, abs/1208.3670,
2012.

[98] Rong Liu, Hao Zhang, Ariel Shamir, and Daniel Cohen-Or. A part-aware surface metric for
shape analysis. Comput. Graph. Forum, 28(2):397–406, 2009.

[99] Yi Liu, Hongbin Zha, and Hong Qin. The generalized shape distributions for shape matching
and analysis. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International
Conference on, pages 16–16, June 2006.

[100] David G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99, pages 1150–,
Washington, DC, USA, 1999. IEEE Computer Society.

[101] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004.

[102] M. Gross M. Pauly, R. Keiser. Multi-scale feature extraction on point-sampled surfaces. In
Eurographichs 2003, 2003.

[103] João Maciel and João P. Costeira. A global solution to sparse correspondence problems. IEEE
Trans. Pattern Anal. Mach. Intell., 25(2):187–199, February 2003.

[104] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vandermeulen. Feature
detection on 3d face surfaces for pose normalisation and recognition. In Biometrics: Theory
Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on, pages 1–6,
Sept 2010.

[105] Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J. Yezzi, and Stefano Soatto.
Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1602–
1618, October 2006.

[106] William Marande and Gertraud Burger. Mitochondrial DNA as a Genomic Jigsaw Puzzle.
Science, 318(5849):415+, October 2007.

[107] T. Masuda, K. Sakaue, and N. Yokoya. Registration and integration of multiple range images
for 3-d model construction. In Proceedings of the 1996 International Conference on Pattern
Recognition (ICPR ’96) Volume I - Volume 7270, ICPR ’96, pages 879–, Washington, DC,
USA, 1996. IEEE Computer Society.

[108] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-
geometry operators for triangulated 2-manifolds. pages 35–57. Springer-Verlag, 2002.

[109] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descriptors.
IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, October 2005.

[110] Yang Mingqiang, Kpalma K. Idiyo, and Ronsin Joseph. A Survey of Shape Feature Extraction
Techniques. Pattern Recognition, Peng-Yeng Yin (Ed.) (2008) 43-90, pages 43–90, November
2008.

[111] Niloy J. Mitra, Simon Flöry, Maks Ovsjanikov, Natasha Gelfand, Leonidas Guibas, and Hel-
mut Pottmann. Dynamic geometry registration. In Proceedings of the Fifth Eurographics
Symposium on Geometry Processing, SGP ’07, pages 173–182, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

177

Bibliography

[112] Debajyoti Mondal, Yang Wang, and Stephane Durocher. Robust solvers for square jigsaw
puzzles. In Proceedings of the 2013 International Conference on Computer and Robot Vision,
CRV ’13, pages 249–256, Washington, DC, USA, 2013. IEEE Computer Society.

[113] P.J. Neugebauer. Geometrical cloning of 3d objects via simultaneous registration of multiple
range images. In Shape Modeling and Applications, 1997. Proceedings., 1997 International
Conference on, pages 130–139, Mar 1997.

[114] Michel Neuhaus and Horst Bunke. Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.

[115] R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In in Proc. Conf. on
Computer Vision and Pattern Recognition, pages 63–69, 1992.

[116] R. Ohbuchi, K. Osada, T. Furuya, and T. Banno. Salient local visual features for shape-based
3d model retrieval. In Shape Modeling and Applications, 2008. SMI 2008. IEEE International
Conference on, pages 93–102, June 2008.

[117] Clark F. Olson. Efficient pose clustering using a randomized algorithm. Int. J. Comput. Vision,
23(2):131–147, June 1997.

[118] C. Olsson, O. Enqvist, and F. Kahl. A polynomial-time bound for matching and registra-
tion with outliers. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8, June 2008.

[119] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Matching 3d mod-
els with shape distributions. In Proceedings of the International Conference on Shape Mod-
eling & Applications, SMI ’01, pages 154–, Washington, DC, USA, 2001. IEEE Computer
Society.

[120] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape distribu-
tions. ACM Trans. Graph., 21(4):807–832, October 2002.

[121] P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, and S. Perantonis. 3d object retrieval
using an efficient and compact hybrid shape descriptor. In IN EUROGRAPHICS 2008 WORK-
SHOP ON 3D OBJECT RETRIEVAL, 2008.

[122] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[123] G. Papaioannou, E. Karabassi, and T. Theoharis. Virtual archaeologist: Assembling the past.
IEEE Computer Graphics and Applications, 21:53–59, 2001.

[124] G. Papaioannou and E. A. Karabassi. On the automatic assemblage of arbitrary broken solid
artefacts. Image and Vision Computing, 21(5):401–412, 2003.

[125] C. Papaodysseus, T. Panagopoulos, M. Exarhos, C. Triantafillou, D. Fragoulis, and
C. Doumas. Contour-shape based reconstruction of fragmented, 1600 bc wall paintings. Sig-
nal Processing, IEEE Transactions on, 50(6):1277–1288, June 2002.

[126] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz. The quadratic assignment problem:
A survey and recent developments. In In Proceedings of the DIMACS Workshop on Quadratic
Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 1–42. American Mathematical Society, 1994.

[127] RasmusR. Paulsen and KlausB. Hilger. Shape modelling using markov random field restora-
tion of point correspondences. In Chris Taylor and J.Alison Noble, editors, Information Pro-
cessing in Medical Imaging, volume 2732 of Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2003.

178

Bibliography

[128] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and Leonidas J. Guibas.
Example-based 3d scan completion. In Proceedings of the Third Eurographics Symposium on
Geometry Processing, SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics
Association.

[129] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut Pottmann, and Leonidas J. Guibas.
Discovering structural regularity in 3d geometry. ACM Trans. Graph., 27(3):43:1–43:11,
August 2008.

[130] Yuri Pekelny and Craig Gotsman. Articulated object reconstruction and markerless motion
capture from depth video. Computer Graphics Forum, 27(2):399–408, 2008.

[131] Kari Pulli. Multiview registration for large data sets. In Proceedings of the 2Nd International
Conference on 3-D Digital Imaging and Modeling, 3DIM’99, pages 160–168, Washington,
DC, USA, 1999. IEEE Computer Society.

[132] Kari Pulli and Linda G. Shapiro. Surface reconstruction and display from range and color
data. Graphical Models, 62(3):165 – 201, 2000.

[133] Georges Reeb. Sur les points singuliers d’une forme de Pfaff complètement intégrable ou
d’une fonction numérique. Comptes Rendus Acad. Sciences, 222:847–849, 1946.

[134] T. Rohlfing. Image similarity and tissue overlaps as surrogates for image registration accu-
racy: Widely used but unreliable. Medical Imaging, IEEE Transactions on, 31(2):153–163,
Feb 2012.

[135] K. Rohr and S. Worz. An extension of thin-plate splines for image registration with radial
basis functions. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on,
pages 442–445, May 2012.

[136] Guodong Rong and Tiow-Seng Tan. Jump flooding in gpu with applications to voronoi di-
agram and distance transform. In Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, I3D ’06, pages 109–116, New York, NY, USA, 2006. ACM.

[137] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In Third
International Conference on 3D Digital Imaging and Modeling (3DIM), June 2001.

[138] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh)
for 3d registration. In Proceedings of the 2009 IEEE International Conference on Robotics
and Automation, ICRA’09, pages 1848–1853, Piscataway, NJ, USA, 2009. IEEE Press.

[139] R.B. Rusu, N. Blodow, Z.C. Marton, and M. Beetz. Aligning point cloud views using per-
sistent feature histograms. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 3384–3391, Sept 2008.

[140] R.B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and pose using the
viewpoint feature histogram. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ In-
ternational Conference on, pages 2155–2162, Oct 2010.

[141] Farzin Mokhtarian Sadegh, Sadegh Abbasi, and Josef Kittler. Robust and efficient shape
indexing through curvature scale space. In In Proceedings of British Machine Vision Confer-
ence, pages 53–62, 1996.

[142] M. S. Sagiroglu and A. Ercil. A texture based matching approach for automated assembly of
puzzles. Pattern Recognition, International Conference on, 3:1036–1041, 2006.

[143] Y. Sahillioglu and Y. Yemez. Coarse-to-fine combinatorial matching for dense isometric shape
correspondence. Computer Graphics Forum, 30(5):1461–1470, 2011.

[144] Cordelia Schmid and Roger Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:530–535, 1997.

179

Bibliography

[145] Bernhard Schölkopf, Florian Steinke, and Volker Blanz. Object correspondence as a ma-
chine learning problem. In Proceedings of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 776–783, New York, NY, USA, 2005. ACM.

[146] Thomas B. Sebastian, Philip N. Klein, and Benjamin B. Kimia. Recognition of shapes by
editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell., 26(5):550–571, May
2004.

[147] Andrei Sharf, Dan A. Alcantara, Thomas Lewiner, Chen Greif, Alla Sheffer, Nina Amenta,
and Daniel Cohen-Or. Space-time surface reconstruction using incompressible flow. In ACM
SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, pages 110:1–110:10, New York, NY,
USA, 2008. ACM.

[148] H. Shin, C. Doumas, T. Funkhouser, S. Rusinkiewicz, K. Steiglitz, A. Vlachopoulos, and
T. Weyrich. Analyzing fracture patterns in theran wall paintings. In Proceedings of the 11th
International conference on Virtual Reality, Archaeology and Cultural Heritage, VAST’10,
pages 71–78, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[149] Dror Sholomon, Omid David, and Nathan S. Netanyahu. A genetic algorithm-based solver
for very large jigsaw puzzles. In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’13, pages 1767–1774, Washington, DC, USA, 2013.
IEEE Computer Society.

[150] Kaleem Siddiqi and Stephen Pizer. Medial Representations: Mathematics, Algorithms and
Applications. Springer Publishing Company, Incorporated, 1st edition, 2008.

[151] David A. Simon. Fast and Accurate Shape-based Registration. PhD thesis, Pittsburgh, PA,
USA, 1996. AAI9838226.

[152] Chandan Singh and Pooja. Local and global features based image retrieval system using
orthogonal radial moments. Optics and Lasers in Engineering, 50(5):655 – 667, 2012.

[153] Ivan Sipiran and Benjamin Bustos. A robust 3d interest points detector based on harris
operator. In Proceedings of the 3rd Eurographics Conference on 3D Object Retrieval, EG
3DOR’10, pages 7–14, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Associa-
tion.

[154] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object match-
ing in videos. In Proceedings of the Ninth IEEE International Conference on Computer Vision
- Volume 2, ICCV ’03, pages 1470–, Washington, DC, USA, 2003. IEEE Computer Society.

[155] Olga Sorkine. Differential Representations for Mesh Processing. Computer Graphics Forum,
25(4):789–807, December 2006.

[156] A. Sotiras and N. Paragios. Discrete symmetric image registration. In Biomedical Imaging
(ISBI), 2012 9th IEEE International Symposium on, pages 342–345, May 2012.

[157] George Stockman. Object recognition and localization via pose clustering. Comput. Vision
Graph. Image Process., 40(3):361–387, December 1987.

[158] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes. ACM Trans.
Graph., 23(3):399–405, August 2004.

[159] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape
manipulation. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[160] Jian Sun, Xiaobai Chen, and Thomas Funkhouser. Fuzzy geodesics and consistent sparse cor-
respondences for deformable shapes. Computer Graphics Forum (Symposium on Geometry
Processing), 29(5), July 2010.

180

Bibliography

[161] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. In Proceedings of the Symposium on Geometry Pro-
cessing, SGP ’09, pages 1383–1392, Aire-la-Ville, Switzerland, Switzerland, 2009. Euro-
graphics Association.

[162] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and
retrieval. In Proceedings of the Shape Modeling International 2003, SMI ’03, pages 130–,
Washington, DC, USA, 2003. IEEE Computer Society.

[163] Jochen Sussmuth, Marco Winter, and Günther Greiner. Reconstructing animated meshes from
time-varying point clouds. In Proceedings of the Symposium on Geometry Processing, SGP
’08, pages 1469–1476, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Associa-
tion.

[164] Michael Reed Teague. Image analysis via the general theory of moments. J. Opt. Soc. Am.,
70(8):920–930, Aug 1980.

[165] Art Tevs, Martin Bokeloh, Michael Wand, Andreas Schilling, and Hans-Peter Seidel. Isomet-
ric registration of ambiguous and partial data. In CVPR, pages 1185–1192. IEEE, 2009.

[166] C. Toler-Franklin, B. J. Brown, T. Weyrich, T. Funkhouser, and S. Rusinkiewicz. Multi-
feature matching of fresco fragments. ACM Trans. Graph., 29(6):185:1–185:12, December
2010.

[167] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique shape context for 3d data
description. In Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR ’10, pages
57–62, New York, NY, USA, 2010. ACM.

[168] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of histograms for
local surface description. In Proceedings of the 11th European Conference on Computer Vi-
sion Conference on Computer Vision: Part III, ECCV’10, pages 356–369, Berlin, Heidelberg,
2010. Springer-Verlag.

[169] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of
the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’94, pages 311–318, New York, NY, USA, 1994. ACM.

[170] Oliver van Kaick, Ghassan Hamarneh, Hao Zhang, and Paul Wighton. Contour correspon-
dence via ant colony optimization. In Proc. 15th Pacific Conference on Computer Graphics
and Applications (PG’2007), pages 271–280, 2007.

[171] Oliver van Kaick, Andrea Tagliasacchi, Oana Sidi, Hao Zhang, Daniel Cohen-Or, Lior Wolf,
, and Ghassan Hamarneh. Prior knowledge for part correspondence. Computer Graphics
Forum (Proc. Eurographics), 30(2):553–562, 2011.

[172] D.V. Vranic. An improvement of rotation invariant 3d-shape based on functions on concentric
spheres. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference
on, volume 3, pages III–757–60 vol.2, Sept 2003.

[173] D. V. Vranić, D. Saupe, and J. Richter. Tools for 3d-object retrieval: Karhunen-loeve trans-
form and spherical harmonics. In IEEE MMSP 2001, pages 293–298, 2001.

[174] Michael W. Walker, Lejun Shao, and Richard A. Volz. Estimating 3-d location parameters
using dual number quaternions. CVGIP: Image Underst., 54(3):358–367, October 1991.

[175] Michael Wand, Philipp Jenke, Qixing Huang, Martin Bokeloh, Leonidas Guibas, and An-
dreas Schilling. Reconstruction of deforming geometry from time-varying point clouds. In
Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages
49–58, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

181

Bibliography

[176] C. Wang. Determining Molecular Conformation from Distance Or Density Data. Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Computer Sci-
ence, 2000.

[177] AaronD. Ward and Ghassan Hamarneh. Statistical shape modeling using mdl incorporat-
ing shape, appearance, and expert knowledge. In Nicholas Ayache, Sébastien Ourselin, and
Anthony Maeder, editors, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2007, volume 4791 of Lecture Notes in Computer Science, pages 278–285. Springer
Berlin Heidelberg, 2007.

[178] Chia-Hung Wei, Yue Li, Wing-Yin Chau, and Chang-Tsun Li. Trademark image retrieval us-
ing synthetic features for describing global shape and interior structure. Pattern Recognition,
42(3):386 – 394, 2009.

[179] S. Weik. Registration of 3-d partial surface models using luminance and depth information.
In Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging
and Modeling, NRC ’97, pages 93–, Washington, DC, USA, 1997. IEEE Computer Society.

[180] A. R. Willis. Stochastic 3d geometric models for classification, deformation, and estimation.
PhD thesis, Providence, RI, USA, 2004. AAI3134376.

[181] Andrew Willis and David B. Cooper. Alignment of multiple non-overlapping axially sym-
metric 3d datasets. In Proceedings of the Pattern Recognition, 17th International Conference
on (ICPR’04) Volume 4 - Volume 04, ICPR ’04, pages 96–99, Washington, DC, USA, 2004.
IEEE Computer Society.

[182] W. Wohlkinger and M. Vincze. Ensemble of shape functions for 3d object classification. In
Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages 2987–
2992, Dec 2011.

[183] H. Wolfson, E. Schonberg, A. Kalvin, and Y. Lamdan. Solving jigsaw puzzles by computer.
Ann. Oper. Res., 12(1-4):51–64, February 1988.

[184] Haim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE Comput.
Sci. Eng., 4(4):10–21, October 1997.

[185] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and Zhi-Quan Cheng.
Style-content separation by anisotropic part scales. ACM Trans. Graph., 29(6):184:1–184:10,
December 2010.

[186] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature detection and description
with applications to mesh matching. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 373–380, June 2009.

[187] Titus Zaharia and Francoise J. Preteux. 3d-shape-based retrieval within the mpeg-7 frame-
work, 2001.

[188] Dimitrios Zarpalas, Petros Daras, Apostolos Axenopoulos, Dimitrios Tzovaras, and
Michael G. Strintzis. 3d model search and retrieval using the spherical trace transform.
EURASIP J. Appl. Signal Process., 2007(1):207–207, January 2007.

[189] R. Zass and A. Shashua. Probabilistic graph and hypergraph matching. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8, June 2008.

[190] Von F. Zernike. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der
phasenkontrastmethode. Physica, 1(7-12):689–704, May 1934.

[191] Gang Zhang, Zong-min Ma, Lian-qiang Niu, and Chun-ming Zhang. Modified fourier des-
criptor for shape feature extraction. Journal of Central South University, 19(2):488–495,
2012.

182

Bibliography

[192] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi.
Deformation-driven shape correspondence. In Proceedings of the Symposium on Geome-
try Processing, SGP ’08, pages 1431–1439, Aire-la-Ville, Switzerland, Switzerland, 2008.
Eurographics Association.

[193] Yu-Xiang Zhao, Mu-Chun Su, Zhong-Lie Chou, and Jonathan Lee. A puzzle solver and
its application in speech descrambling. In Proceedings of the 2007 Annual Conference on
International Conference on Computer Engineering and Applications, CEA’07, pages 171–
176, Stevens Point, Wisconsin, USA, 2007. World Scientific and Engineering Academy and
Society (WSEAS).

[194] Qian Zheng, Andrei Sharf, Andrea Tagliasacchi, Baoquan Chen, Hao Zhang, Alla Sheffer,
and Daniel Cohen-Or. Consensus skeleton for non-rigid space-time registration. Computer
Graphcis Forum (Special Issue of Eurographics), 29(2):635–644, 2010.

[195] Xiangtao Zheng, Xiaoqiang Lu, and Yuan Yuan. Image jigsaw puzzles with a self-correcting
solver. In Virtual Reality and Visualization (ICVRV), 2013 International Conference on, pages
112–118, Sept 2013.

[196] Yefeng Zheng and D. Doermann. Robust point matching for nonrigid shapes by preserving
local neighborhood structures. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 28(4):643–649, April 2006.

[197] L. Zhu, Z. Zhou, and D. Hu. Globally consistent reconstruction of ripped-up documents.
IEEE Trans. Pattern Anal. Mach. Intell., 30:1–13, January 2008.

[198] G. Üçoluk and I. H. Toroslu. Automatic reconstruction of broken 3-d surface objects. Com-
puters and Graphics, 23(4):573–582, 1999.

183

APPENDIXA
6 DOF One-to-One results

A.1 Brick dataset

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d
1.3d 0.0247s 0.0273s 0.0415s 0.0440s 0.0230s

8 6 7
2.3d 0.0141s 0.0222s 0.0238s 0.0126s

9
3.3d 0.0196s 0.0210s 0.0104s

4.3d 0.0318s 0.0156s
29 9

5.3d 0.0172s
15

6.3d

Table A.1: One-to-one search results for the brick dataset using the ’Fast’ preset. Each
cell in the matrix shows the total search time (up) and the number of matching keypoints
(down).

185

Appendix A. 6 DOF One-to-One results

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d
1.3d 0.0458s 0.0486s 0.0737s 0.0801s 0.0397s

30 16 29 4 4
2.3d 0.0397s 0.0590s 0.0632s 0.0332s

5 5 19 5
3.3d 0.0685s 0.0665s 0.0336s

5 6 6
4.3d 0.2647s 0.0351s

62 16
5.3d 0.0609s

33
6.3d

Table A.2: One-to-one search results for the brick dataset using the ’Medium’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d
1.3d 0.1109s 0.1367s 0.2081s 0.2308s 0.1097s

39 24 36 5 5
2.3d 0.1546s 0.2561s 0.2561s 0.1304s

6 6 20 7
3.3d 0.2959s 0.2935s 0.1423s

8 7 7
4.3d 0.4410s 0.1167s

73 16
5.3d 0.1932s

37
6.3d

Table A.3: One-to-one search results for the brick dataset using the ’Precise’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

186

A.2. Venus dataset

A.2 Venus dataset

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d
1.3d 0.0419s 0.0135s 0.0223s 0.0078s 0.0179s 0.0089s

5 8
2.3d 0.0131s 0.0218s 0.0081s 0.0170s 0.0091s

3.3d 0.0137s 0.0050s 0.0105s 0.0060s
4

4.3d 0.0055s 0.0120s 0.0062s
8 13 5

5.3d 0.0081s 0.0042s
4

6.3d 0.0068s
4

7.3d

Table A.4: One-to-one search results for the venus dataset using the ’Fast’ preset. Each
cell in the matrix shows the total search time (up) and the number of matching keypoints
(down).

187

Appendix A. 6 DOF One-to-One results

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d
1.3d 0.0730s 0.0269s 0.0441s 0.0148s 0.0336s 0.0173s

13 17 5 5 4 4
2.3d 0.0266s 0.0443s 0.0152s 0.0345s 0.0169s

4 5 4 5
3.3d 0.0360s 0.0127s 0.0307s 0.0142s

5 4 5 6
4.3d 0.0148s 0.0314s 0.0142s

18 30 8
5.3d 0.0380s 0.0153s

7 5
6.3d 0.0164s

5
7.3d

Table A.5: One-to-one search results for the venus dataset using the ’Medium’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d
1.3d 0.1808s 0.0760s 0.1243s 0.0421s 0.0979s 0.0465s

15 24 5 6 5 4
2.3d 0.0777s 0.1302s 0.0433s 0.1064s 0.0477s

4 5 4 7 4
3.3d 0.1339s 0.0467s 0.1217s 0.0487s

6 5 7 8
4.3d 0.0512s 0.1320s 0.0478s

21 38 9
5.3d 0.1745s 0.0644s

8 6
6.3d 0.0623s

6
7.3d

Table A.6: One-to-one search results for the venus dataset using the ’Precise’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

188

A.3. Cake dataset

A.3 Cake dataset

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d 10.3d 11.3d
1.3d 0.0353s 0.0424s 0.0437s 0.0327s 0.0390s 0.0366s 0.0415s 0.0405s 0.0285s 0.0298s

32 28 4 4
2.3d 0.0381s 0.0409s 0.0284s 0.0356s 0.0343s 0.0389s 0.0375s 0.0268s 0.0278s

30 16 25 21
3.3d 0.0484s 0.0340s 0.0425s 0.0405s 0.0469s 0.0442s 0.0306s 0.0413s

43
4.3d 0.0376s 0.0459s 0.0432s 0.0483s 0.0474s 0.0329s 0.0355s

10 4
5.3d 0.0358s 0.0343s 0.0387s 0.0366s 0.0267s 0.0274s

17
6.3d 0.0442s 0.0470s 0.0459s 0.0304s 0.0334s

42
7.3d 0.0460s 0.0410s 0.0302s 0.0313s

37
8.3d 0.0423s 0.0296s 0.0317s

24 6 4
9.3d 0.0310s 0.0337s

14 18
10.3d 0.0266s

11.3d

Table A.7: One-to-one search results for the cake dataset using the ’Fast’ preset. Each cell
in the matrix shows the total search time (up) and the number of matching keypoints
(down).

189

Appendix A. 6 DOF One-to-One results

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d 10.3d 11.3d
1.3d 0.0734s 0.1805s 0.0950s 0.2115s 0.0872s 0.0846s 0.0988s 0.0872s 0.0619s 0.0672s

5 56 34 57 6 6 7 6 6 6
2.3d 0.1229s 0.0875s 0.0644s 0.0802s 0.0775s 0.0863s 0.0835s 0.0718s 0.0713s

44 5 7 6 6 6 35 44 35
3.3d 0.1007s 0.0750s 0.0932s 0.0887s 0.1009s 0.0920s 0.0669s 0.2010s

5 6 5 6 6 5 5 75
4.3d 0.0720s 0.0919s 0.0873s 0.0975s 0.0935s 0.0647s 0.0701s

24 7 6 5 6 5 5
5.3d 0.0839s 0.0799s 0.0885s 0.0828s 0.0610s 0.0635s

34 7 6 5 6 6
6.3d 0.2021s 0.1065s 0.0978s 0.0689s 0.0760s

72 6 5 5 6
7.3d 0.2921s 0.0916s 0.0657s 0.0694s

72 5 5 5
8.3d 0.1035s 0.0628s 0.0705s

55 11 6
9.3d 0.0767s 0.0762s

31 28
10.3d 0.0649s

5
11.3d

Table A.8: One-to-one search results for the cake dataset using the ’Medium’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

1.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d 10.3d 11.3d
1.3d 0.2496s 0.5521s 0.3257s 0.6241s 0.3267s 0.3244s 0.3773s 0.3056s 0.2239s 0.2634s

7 64 42 59 8 8 7 7 8 7
2.3d 0.3324s 0.2945s 0.2267s 0.2738s 0.2725s 0.2961s 0.2715s 0.1917s 0.2327s

47 6 7 8 6 7 38 46 37
3.3d 0.3261s 0.2747s 0.3267s 0.3115s 0.3495s 0.2962s 0.2200s 0.5481s

7 6 8 7 7 7 6 80
4.3d 0.2133s 0.2896s 0.2780s 0.3090s 0.2951s 0.2010s 0.2158s

30 11 7 7 6 7 7
5.3d 0.3281s 0.2979s 0.3338s 0.2845s 0.2251s 0.2450s

37 8 8 6 8 7
6.3d 0.5152s 0.3803s 0.3070s 0.2354s 0.2644s

81 7 7 6 7
7.3d 0.9731s 0.3298s 0.2248s 0.2604s

79 6 7 8
8.3d 0.3265s 0.2201s 0.2580s

60 13 7
9.3d 0.2276s 0.2292s

37 30
10.3d 0.2244s

7
11.3d

Table A.9: One-to-one search results for the cake dataset using the ’Precise’ preset. Each
cell in the matrix shows the total search time (up) and the number of matching keypoints
(down).

190

A.4. Sculpture dataset

A.4 Sculpture dataset

1.3d 10.3d 11.3d 12.3d 13.3d 14.3d 15.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d
1.3d 0.0080s 0.0043s 0.0022s 0.0026s 0.0046s 0.0034s 0.0067s 0.0057s 0.0079s 0.0064s 0.0072s 0.0067s 0.0066s 0.0080s

10 5 21 11 4
10.3d 0.0038s 0.0024s 0.0031s 0.0047s 0.0035s 0.0064s 0.0058s 0.0082s 0.0064s 0.0088s 0.0067s 0.0074s 0.0089s

4 4 4 32 5
11.3d 0.0018s 0.0024s 0.0046s 0.0034s 0.0056s 0.0052s 0.0071s 0.0060s 0.0065s 0.0061s 0.0064s 0.0075s

4 11
12.3d 0.0020s 0.0032s 0.0027s 0.0044s 0.0040s 0.0060s 0.0050s 0.0051s 0.0045s 0.0050s 0.0060s

13.3d 0.0038s 0.0030s 0.0047s 0.0044s 0.0062s 0.0052s 0.0060s 0.0054s 0.0056s 0.0065s
5 4 5

14.3d 0.0032s 0.0055s 0.0051s 0.0073s 0.0060s 0.0067s 0.0060s 0.0065s 0.0075s
11

15.3d 0.0053s 0.0047s 0.0070s 0.0058s 0.0065s 0.0057s 0.0063s 0.0086s
28

2.3d 0.0069s 0.0086s 0.0078s 0.0073s 0.0068s 0.0074s 0.0087s
15 17

3.3d 0.0085s 0.0069s 0.0076s 0.0069s 0.0075s 0.0091s
4

4.3d 0.0080s 0.0162s 0.0087s 0.0081s 0.0098s
40 18

5.3d 0.0077s 0.0073s 0.0074s 0.0090s
12

6.3d 0.0078s 0.0077s 0.0089s
4

7.3d 0.0081s 0.0091s
16 6

8.3d 0.0103s
21

9.3d

Table A.10: One-to-one search results for the sculpture dataset using the ’Fast’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

191

Appendix A. 6 DOF One-to-One results

1.3d 10.3d 11.3d 12.3d 13.3d 14.3d 15.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d
1.3d 0.0208s 0.0119s 0.0066s 0.0087s 0.0130s 0.0113s 0.0539s 0.0174s 0.0227s 0.0181s 0.0205s 0.0177s 0.0193s 0.0224s

5 15 4 5 8 5 32 14 5 5 5 4 5 4
10.3d 0.0149s 0.0083s 0.0110s 0.0127s 0.0138s 0.0215s 0.0191s 0.0260s 0.0217s 0.0824s 0.0193s 0.0223s 0.0267s

5 6 7 4 5 6 6 5 6 52 5 5 6
11.3d 0.0079s 0.0112s 0.0121s 0.0137s 0.0201s 0.0184s 0.0238s 0.0207s 0.0221s 0.0174s 0.0209s 0.0245s

5 6 5 5 6 22 6 5 6 5 5 5
12.3d 0.0217s 0.0140s 0.0253s 0.0208s 0.0267s 0.0332s 0.0213s 0.0307s 0.0196s 0.0250s 0.0268s

7 7 8 7 9 8 6 9 6 6 7
13.3d 0.0126s 0.0139s 0.0228s 0.0233s 0.0341s 0.0222s 0.0344s 0.0191s 0.0238s 0.0262s

6 6 8 6 7 7 9 5 6 10
14.3d 0.0107s 0.0157s 0.0150s 0.0215s 0.0200s 0.0197s 0.0170s 0.0186s 0.0217s

4 5 4 5 18 7 4 4 4
15.3d 0.0185s 0.0199s 0.0270s 0.0200s 0.0284s 0.0188s 0.0225s 0.1189s

5 5 6 6 6 5 6 44
2.3d 0.0313s 0.0234s 0.0305s 0.0215s 0.0179s 0.0208s 0.0243s

22 5 19 4 4 5 4
3.3d 0.0248s 0.0201s 0.0232s 0.0183s 0.0205s 0.0252s

6 5 5 4 4 4
4.3d 0.0207s 0.5489s 0.0271s 0.0220s 0.0255s

5 62 34 6 4
5.3d 0.0214s 0.0235s 0.0202s 0.0237s

5 24 4 4
6.3d 0.0188s 0.0211s 0.0254s

4 5 4
7.3d 0.0342s 0.0239s

25 9
8.3d 0.0314s

28
9.3d

Table A.11: One-to-one search results for the sculpture dataset using the ’Medium’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

1.3d 10.3d 11.3d 12.3d 13.3d 14.3d 15.3d 2.3d 3.3d 4.3d 5.3d 6.3d 7.3d 8.3d 9.3d
1.3d 0.0731s 0.0464s 0.0234s 0.0314s 0.0477s 0.0458s 0.1022s 0.0643s 0.0891s 0.0724s 0.0825s 0.0698s 0.0781s 0.0903s

6 18 5 5 9 5 32 14 6 6 5 4 5 5
10.3d 0.0674s 0.0343s 0.0435s 0.0496s 0.0567s 0.0920s 0.0790s 0.1143s 0.0873s 0.1980s 0.0764s 0.0921s 0.1155s

7 7 9 5 7 8 7 8 8 53 6 6 7
11.3d 0.0326s 0.0476s 0.0493s 0.0600s 0.0933s 0.0752s 0.1087s 0.0861s 0.1032s 0.0721s 0.0892s 0.1042s

6 8 6 6 8 22 7 7 8 6 6 6
12.3d 0.1147s 0.0632s 0.1400s 0.1030s 0.1465s 0.1719s 0.1101s 0.1645s 0.0950s 0.1428s 0.1510s

8 9 9 10 9 11 8 10 9 7 8
13.3d 0.0564s 0.0755s 0.1288s 0.1090s 0.1654s 0.1034s 0.1681s 0.0907s 0.1098s 0.1235s

6 7 9 8 9 8 11 7 7 11
14.3d 0.0436s 0.0617s 0.0616s 0.0852s 0.0736s 0.0822s 0.0657s 0.0740s 0.0865s

4 6 5 6 20 7 5 6 5
15.3d 0.0823s 0.0956s 0.1251s 0.0876s 0.1466s 0.0801s 0.1028s 0.2287s

6 7 7 6 7 6 8 45
2.3d 0.0787s 0.0913s 0.0951s 0.0858s 0.0674s 0.0795s 0.0919s

24 8 19 5 5 8 6
3.3d 0.0948s 0.0758s 0.0902s 0.0685s 0.0794s 0.0945s

6 5 7 5 5 6
4.3d 0.0776s 0.9962s 0.0842s 0.0813s 0.0935s

5 64 34 7 6
5.3d 0.0829s 0.0749s 0.0788s 0.0916s

7 25 5 5
6.3d 0.0715s 0.0862s 0.0999s

6 5 6
7.3d 0.0856s 0.0901s

26 9
8.3d 0.0996s

29
9.3d

Table A.12: One-to-one search results for the sculpture dataset using the ’Precise’ preset.
Each cell in the matrix shows the total search time (up) and the number of matching
keypoints (down).

192

A.5. Gargoyle dataset

A.5 Gargoyle dataset

193

Appendix A. 6 DOF One-to-One results

1.3d
10.3d

11.3d
12.3d

13.3d
14.3d

15.3d
16.3d

17.3d
18.3d

19.3d
20.3d

21.3d
22.3d

23.3d
24.3d

25.3d
2A

.3d
2B

.3d
2C

.3d
3.3d

4.3d
5A

.3d
5B

.3d
6A

.3d
6B

.3d
7.3d

8.3d
9.3d

1.3d
0.0248s

0.0265s
0.0051s

0.0040s
0.0250s

0.0128s
0.0086s

0.0086s
0.0150s

0.0157s
0.0039s

0.0009s
0.0047s

0.0020s
0.0024s

0.0019s
0.0138s

0.0110s
0.0129s

0.0286s
0.0418s

0.0768s
0.0074s

0.0144s
0.0183s

0.0256s
0.0126s

0.0204s
14

21
10.3d

0.0259s
0.0054s

0.0043s
0.0250s

0.0138s
0.0092s

0.0092s
0.0162s

0.0172s
0.0041s

0.0010s
0.0052s

0.0021s
0.0026s

0.0022s
0.0149s

0.0117s
0.0136s

0.0285s
0.0429s

0.0769s
0.0080s

0.0152s
0.0190s

0.0263s
0.0134s

0.0216s
15

11
6

6
20

11.3d
0.0059s

0.0049s
0.0279s

0.0150s
0.0104s

0.0102s
0.0177s

0.0192s
0.0046s

0.0012s
0.0057s

0.0024s
0.0030s

0.0024s
0.0159s

0.0128s
0.0158s

0.0324s
0.0462s

0.0848s
0.0089s

0.0169s
0.0211s

0.0291s
0.0148s

0.0233s
4

9
8

7
12.3d

0.0021s
0.0138s

0.0075s
0.0051s

0.0047s
0.0087s

0.0097s
0.0020s

0.0006s
0.0026s

0.0011s
0.0011s

0.0009s
0.0082s

0.0065s
0.0075s

0.0151s
0.0194s

0.0336s
0.0043s

0.0078s
0.0102s

0.0141s
0.0071s

0.0115s
5

13.3d
0.0127s

0.0067s
0.0045s

0.0042s
0.0081s

0.0085s
0.0018s

0.0005s
0.0024s

0.0009s
0.0010s

0.0007s
0.0074s

0.0058s
0.0068s

0.0138s
0.0176s

0.0308s
0.0037s

0.0073s
0.0097s

0.0132s
0.0065s

0.0105s
4

14.3d
0.0147s

0.0099s
0.0098s

0.0172s
0.0190s

0.0045s
0.0011s

0.0054s
0.0023s

0.0028s
0.0023s

0.0157s
0.0125s

0.0145s
0.0309s

0.0465s
0.0855s

0.0086s
0.0162s

0.0213s
0.0290s

0.0144s
0.0238s

9
22

6
24

15.3d
0.0077s

0.0073s
0.0131s

0.0141s
0.0033s

0.0008s
0.0041s

0.0017s
0.0019s

0.0015s
0.0123s

0.0098s
0.0111s

0.0233s
0.0333s

0.0601s
0.0065s

0.0122s
0.0156s

0.0223s
0.0111s

0.0177s
12

16.3d
0.0059s

0.0109s
0.0116s

0.0025s
0.0007s

0.0033s
0.0014s

0.0015s
0.0011s

0.0100s
0.0081s

0.0091s
0.0189s

0.0256s
0.0454s

0.0052s
0.0098s

0.0126s
0.0174s

0.0090s
0.0143s

6
17.3d

0.0110s
0.0115s

0.0025s
0.0007s

0.0033s
0.0013s

0.0014s
0.0011s

0.0100s
0.0080s

0.0093s
0.0188s

0.0251s
0.0431s

0.0051s
0.0096s

0.0124s
0.0172s

0.0088s
0.0140s

22
4

18.3d
0.0140s

0.0034s
0.0007s

0.0040s
0.0017s

0.0020s
0.0015s

0.0119s
0.0095s

0.0111s
0.0235s

0.0340s
0.0618s

0.0066s
0.0122s

0.0165s
0.0223s

0.0109s
0.0176s

19
19.3d

0.0034s
0.0008s

0.0041s
0.0018s

0.0021s
0.0016s

0.0120s
0.0098s

0.0110s
0.0239s

0.0348s
0.0641s

0.0066s
0.0124s

0.0156s
0.0218s

0.0111s
0.0179s

6
20.3d

0.0005s
0.0025s

0.0009s
0.0009s

0.0007s
0.0075s

0.0059s
0.0068s

0.0137s
0.0174s

0.0304s
0.0037s

0.0069s
0.0092s

0.0128s
0.0065s

0.0104s

21.3d
0.0015s

0.0006s
0.0006s

0.0004s
0.0046s

0.0036s
0.0043s

0.0085s
0.0104s

0.0182s
0.0023s

0.0042s
0.0056s

0.0080s
0.0040s

0.0065s

22.3d
0.0010s

0.0010s
0.0008s

0.0076s
0.0061s

0.0070s
0.0145s

0.0192s
0.0340s

0.0041s
0.0074s

0.0097s
0.0138s

0.0068s
0.0111s

23.3d
0.0007s

0.0005s
0.0055s

0.0044s
0.0051s

0.0102s
0.0129s

0.0228s
0.0028s

0.0052s
0.0072s

0.0103s
0.0055s

0.0085s

24.3d
0.0006s

0.0061s
0.0046s

0.0054s
0.0109s

0.0134s
0.0233s

0.0029s
0.0053s

0.0069s
0.0100s

0.0051s
0.0081s

4
4

4
25.3d

0.0051s
0.0039s

0.0047s
0.0095s

0.0117s
0.0204s

0.0025s
0.0047s

0.0062s
0.0089s

0.0043s
0.0076s

2A
.3d

0.0091s
0.0102s

0.0225s
0.0326s

0.0589s
0.0059s

0.0110s
0.0142s

0.0200s
0.0099s

0.0161s
7

7
4

2B
.3d

0.0104s
0.0217s

0.0323s
0.0575s

0.0057s
0.0111s

0.0141s
0.0203s

0.0099s
0.0160s

19
2C

.3d
0.0218s

0.0318s
0.0572s

0.0060s
0.0114s

0.0143s
0.0198s

0.0101s
0.0161s

8
4

3.3d
0.0510s

0.0947s
0.0097s

0.0179s
0.0226s

0.0305s
0.0159s

0.0252s

4.3d
0.0776s

0.0102s
0.0188s

0.0238s
0.0323s

0.0169s
0.0272s

17
5

5A
.3d

0.0152s
0.0274s

0.0334s
0.0448s

0.0227s
0.0360s

4
5B

.3d
0.0094s

0.0125s
0.0165s

0.0087s
0.0134s

8
6A

.3d
0.0161s

0.0223s
0.0113s

0.0175s
9

13
6B

.3d
0.0250s

0.0130s
0.0203s

23
7

7.3d
0.0143s

0.0228s

8.3d
0.0165s

5
9.3d

Table
A

.13:
O

ne-to-one
search

results
for

the
gargoyle

datasetusing
the

’Fast’
preset.

E
ach

cellin
the

m
atrix

show
s

the
totalsearch

tim
e

(up)and
the

num
ber

ofm
atching

keypoints
(dow

n).

194

A.5. Gargoyle dataset

1.
3d

10
.3

d
11

.3
d

12
.3

d
13

.3
d

14
.3

d
15

.3
d

16
.3

d
17

.3
d

18
.3

d
19

.3
d

20
.3

d
21

.3
d

22
.3

d
23

.3
d

24
.3

d
25

.3
d

2A
.3

d
2B

.3
d

2C
.3

d
3.

3d
4.

3d
5A

.3
d

5B
.3

d
6A

.3
d

6B
.3

d
7.

3d
8.

3d
9.

3d
1.

3d
0.

05
48

s
0.

05
86

s
0.

01
11

s
0.

00
89

s
0.

05
90

s
0.

03
03

s
0.

01
95

s
0.

01
90

s
0.

03
47

s
0.

03
69

s
0.

00
90

s
0.

00
19

s
0.

01
03

s
0.

00
45

s
0.

00
45

s
0.

00
33

s
0.

03
44

s
0.

02
52

s
0.

02
98

s
0.

09
23

s
0.

08
40

s
0.

15
07

s
0.

01
66

s
0.

03
18

s
0.

04
27

s
0.

05
91

s
0.

02
96

s
0.

04
82

s
4

4
4

4
4

4
4

5
4

5
30

4
45

4
4

4
4

4
4

4
10

.3
d

0.
05

93
s

0.
01

19
s

0.
00

91
s

0.
05

87
s

0.
03

21
s

0.
02

04
s

0.
01

97
s

0.
03

64
s

0.
03

92
s

0.
00

87
s

0.
00

20
s

0.
01

08
s

0.
00

46
s

0.
00

49
s

0.
00

35
s

0.
03

41
s

0.
02

60
s

0.
03

07
s

0.
06

38
s

0.
08

37
s

0.
14

70
s

0.
01

76
s

0.
03

26
s

0.
04

34
s

0.
05

95
s

0.
03

07
s

0.
05

70
s

32
4

4
4

28
4

4
4

4
4

4
4

4
4

4
16

4
4

4
11

4
34

11
.3

d
0.

01
23

s
0.

00
94

s
0.

06
11

s
0.

03
15

s
0.

02
13

s
0.

02
13

s
0.

03
77

s
0.

04
07

s
0.

00
91

s
0.

00
20

s
0.

01
13

s
0.

00
47

s
0.

00
51

s
0.

00
40

s
0.

03
44

s
0.

02
67

s
0.

03
20

s
0.

06
77

s
0.

08
81

s
0.

15
71

s
0.

01
82

s
0.

03
52

s
0.

04
59

s
0.

06
24

s
0.

03
12

s
0.

05
02

s
4

5
19

23
4

4
4

4
4

4
14

4
4

4
14

4
4

12
.3

d
0.

00
93

s
0.

04
97

s
0.

02
68

s
0.

01
99

s
0.

01
93

s
0.

03
40

s
0.

03
21

s
0.

00
96

s
0.

00
15

s
0.

01
04

s
0.

00
40

s
0.

00
40

s
0.

00
26

s
0.

02
89

s
0.

02
30

s
0.

02
80

s
0.

05
24

s
0.

05
86

s
0.

11
80

s
0.

01
67

s
0.

02
87

s
0.

03
73

s
0.

04
73

s
0.

02
59

s
0.

03
93

s
5

5
5

5
5

9
5

6
5

4
4

5
5

6
6

5
5

6
6

5
5

5
5

13
.3

d
0.

04
93

s
0.

02
85

s
0.

02
11

s
0.

02
26

s
0.

03
33

s
0.

03
18

s
0.

01
10

s
0.

00
16

s
0.

01
17

s
0.

00
46

s
0.

00
47

s
0.

00
25

s
0.

02
94

s
0.

02
37

s
0.

03
01

s
0.

05
31

s
0.

06
43

s
0.

10
05

s
0.

01
68

s
0.

03
06

s
0.

03
76

s
0.

04
86

s
0.

02
64

s
0.

04
22

s
8

5
7

6
6

9
6

4
6

5
4

5
6

6
6

6
6

5
6

6
6

6
6

14
.3

d
0.

03
37

s
0.

02
19

s
0.

02
13

s
0.

03
93

s
0.

04
51

s
0.

00
94

s
0.

00
20

s
0.

01
14

s
0.

00
48

s
0.

00
51

s
0.

00
39

s
0.

03
65

s
0.

02
80

s
0.

03
32

s
0.

07
19

s
0.

09
34

s
0.

16
64

s
0.

01
88

s
0.

03
55

s
0.

04
82

s
0.

06
52

s
0.

03
21

s
0.

07
43

s
26

4
40

4
4

4
4

4
4

4
4

20
61

15
.3

d
0.

02
23

s
0.

01
81

s
0.

03
35

s
0.

03
51

s
0.

00
81

s
0.

00
18

s
0.

00
99

s
0.

00
41

s
0.

00
41

s
0.

00
29

s
0.

03
18

s
0.

02
43

s
0.

02
87

s
0.

05
78

s
0.

07
38

s
0.

13
21

s
0.

01
60

s
0.

03
03

s
0.

03
99

s
0.

05
51

s
0.

02
81

s
0.

04
41

s
27

4
5

4
5

4
4

4
4

4
4

4
4

4
4

4
4

4
16

.3
d

0.
01

69
s

0.
03

07
s

0.
03

29
s

0.
00

83
s

0.
00

15
s

0.
00

96
s

0.
00

38
s

0.
00

37
s

0.
00

27
s

0.
02

97
s

0.
02

28
s

0.
02

70
s

0.
05

40
s

0.
06

40
s

0.
11

13
s

0.
01

52
s

0.
02

78
s

0.
03

60
s

0.
05

05
s

0.
02

61
s

0.
03

98
s

13
5

5
4

4
4

4
4

5
5

4
4

5
4

4
5

5
4

17
.3

d
0.

06
07

s
0.

03
51

s
0.

00
91

s
0.

00
16

s
0.

00
99

s
0.

00
40

s
0.

00
38

s
0.

00
26

s
0.

03
12

s
0.

02
47

s
0.

02
92

s
0.

05
48

s
0.

07
02

s
0.

11
34

s
0.

01
59

s
0.

03
04

s
0.

03
89

s
0.

05
19

s
0.

02
78

s
0.

04
22

s
35

5
4

4
4

4
5

5
5

5
5

4
5

5
5

5
5

18
.3

d
0.

04
23

s
0.

00
85

s
0.

00
17

s
0.

00
99

s
0.

00
42

s
0.

00
42

s
0.

00
30

s
0.

03
10

s
0.

02
39

s
0.

02
87

s
0.

05
93

s
0.

07
42

s
0.

13
10

s
0.

01
61

s
0.

03
08

s
0.

04
11

s
0.

05
57

s
0.

02
78

s
0.

04
45

s
44

4
4

4
4

4
4

4
4

5
4

4
4

4
4

19
.3

d
0.

00
81

s
0.

00
16

s
0.

00
99

s
0.

00
40

s
0.

00
43

s
0.

00
30

s
0.

03
12

s
0.

02
36

s
0.

02
81

s
0.

06
33

s
0.

07
54

s
0.

13
48

s
0.

01
55

s
0.

03
01

s
0.

03
97

s
0.

05
48

s
0.

02
73

s
0.

04
44

s
15

4
4

4
4

4
4

4
4

4
4

5
4

4
20

.3
d

0.
00

15
s

0.
01

11
s

0.
00

41
s

0.
00

40
s

0.
00

26
s

0.
03

20
s

0.
02

37
s

0.
03

02
s

0.
05

56
s

0.
06

46
s

0.
10

83
s

0.
01

63
s

0.
03

12
s

0.
04

08
s

0.
05

14
s

0.
02

83
s

0.
04

27
s

5
5

4
4

5
5

6
6

6
6

6
5

7
7

6
6

21
.3

d
0.

00
87

s
0.

00
45

s
0.

00
40

s
0.

00
23

s
0.

02
36

s
0.

01
89

s
0.

02
07

s
0.

03
87

s
0.

04
40

s
0.

07
55

s
0.

01
25

s
0.

02
13

s
0.

02
78

s
0.

03
68

s
0.

02
03

s
0.

03
09

s
4

4
5

5
4

5
4

4
4

4
5

4
5

4
5

22
.3

d
0.

00
48

s
0.

00
44

s
0.

00
25

s
0.

02
87

s
0.

02
27

s
0.

02
68

s
0.

04
94

s
0.

05
61

s
0.

09
69

s
0.

01
63

s
0.

02
96

s
0.

03
54

s
0.

04
71

s
0.

02
88

s
0.

03
82

s
4

4
4

5
6

5
5

4
5

6
6

5
5

6
5

23
.3

d
0.

00
58

s
0.

00
29

s
0.

02
87

s
0.

02
40

s
0.

02
87

s
0.

04
90

s
0.

05
47

s
0.

09
38

s
0.

01
85

s
0.

02
87

s
0.

03
63

s
0.

04
54

s
0.

02
71

s
0.

03
93

s
5

4
6

8
6

6
5

6
5

7
6

6
6

6
24

.3
d

0.
00

34
s

0.
03

59
s

0.
02

75
s

0.
03

46
s

0.
05

40
s

0.
06

04
s

0.
11

32
s

0.
02

24
s

0.
03

57
s

0.
03

89
s

0.
05

16
s

0.
03

00
s

0.
04

60
s

4
6

7
6

6
6

7
6

6
7

7
6

6
25

.3
d

0.
02

36
s

0.
01

90
s

0.
02

23
s

0.
03

99
s

0.
04

85
s

0.
07

93
s

0.
01

21
s

0.
02

22
s

0.
02

88
s

0.
03

79
s

0.
02

09
s

0.
03

14
s

5
5

4
5

4
5

4
4

5
6

5
6

2A
.3

d
0.

02
30

s
0.

02
85

s
0.

05
55

s
0.

07
12

s
0.

12
47

s
0.

01
47

s
0.

02
80

s
0.

03
79

s
0.

05
48

s
0.

02
60

s
0.

04
19

s
26

14
9

4
7

4
4

4
4

4
4

2B
.3

d
0.

04
77

s
0.

05
42

s
0.

07
06

s
0.

12
24

s
0.

01
46

s
0.

02
84

s
0.

03
74

s
0.

05
13

s
0.

02
62

s
0.

04
26

s
42

12
4

4
5

4
5

4
4

5
2C

.3
d

0.
05

63
s

0.
07

28
s

0.
12

62
s

0.
01

55
s

0.
02

99
s

0.
03

88
s

0.
05

37
s

0.
02

79
s

0.
04

38
s

24
8

4
4

4
4

4
4

5
3.

3d
0.

09
54

s
0.

16
86

s
0.

01
92

s
0.

03
62

s
0.

04
81

s
0.

06
53

s
0.

03
37

s
0.

05
20

s
5

4
4

4
4

4
4.

3d
0.

17
49

s
0.

01
99

s
0.

03
83

s
0.

04
93

s
0.

06
67

s
0.

03
35

s
0.

05
54

s
46

5
11

4
5A

.3
d

0.
02

56
s

0.
04

65
s

0.
06

00
s

0.
08

13
s

0.
04

12
s

0.
06

56
s

4
5

13
7

5
5B

.3
d

0.
02

72
s

0.
03

57
s

0.
04

88
s

0.
02

53
s

0.
04

01
s

24
6

4
4

4
6A

.3
d

0.
03

93
s

0.
05

98
s

0.
02

80
s

0.
04

36
s

21
31

4
6

6B
.3

d
0.

10
70

s
0.

02
91

s
0.

04
65

s
54

15
4

7.
3d

0.
03

02
s

0.
04

93
s

4
4

8.
3d

0.
04

18
s

17
9.

3d

Ta
bl

e
A

.1
4:

O
ne

-t
o-

on
e

se
ar

ch
re

su
lts

fo
r

th
e

ga
rg

oy
le

da
ta

se
tu

si
ng

th
e

’M
ed

iu
m

’
pr

es
et

.
E

ac
h

ce
ll

in
th

e
m

at
ri

x
sh

ow
s

th
e

to
ta

ls
ea

rc
h

tim
e

(u
p)

an
d

th
e

nu
m

be
r

of
m

at
ch

in
g

ke
yp

oi
nt

s
(d

ow
n)

.

195

Appendix A. 6 DOF One-to-One results

1.3d
10.3d

11.3d
12.3d

13.3d
14.3d

15.3d
16.3d

17.3d
18.3d

19.3d
20.3d

21.3d
22.3d

23.3d
24.3d

25.3d
2A

.3d
2B

.3d
2C

.3d
3.3d

4.3d
5A

.3d
5B

.3d
6A

.3d
6B

.3d
7.3d

8.3d
9.3d

1.3d
0.1753s

0.1939s
0.0380s

0.0295s
0.2099s

0.1088s
0.0658s

0.0649s
0.1219s

0.1285s
0.0290s

0.0029s
0.0337s

0.0107s
0.0105s

0.0064s
0.1098s

0.0863s
0.1058s

0.2606s
0.2620s

0.5325s
0.0560s

0.1129s
0.1477s

0.2063s
0.1048s

0.1631s
5

6
4

4
5

5
4

5
5

4
5

4
4

4
33

4
4

50
5

9
5

5
5

5
4

5
10.3d

0.2233s
0.0377s

0.0296s
0.2395s

0.1007s
0.0670s

0.0642s
0.1206s

0.1282s
0.0285s

0.0031s
0.0338s

0.0111s
0.0109s

0.0065s
0.1140s

0.0877s
0.1072s

0.2126s
0.3178s

0.5145s
0.0558s

0.1085s
0.1443s

0.1980s
0.1035s

0.1623s
36

4
4

5
29

4
4

5
4

4
4

4
5

4
5

5
4

18
4

5
4

12
5

37
11.3d

0.0371s
0.0294s

0.2055s
0.1005s

0.0660s
0.0628s

0.1215s
0.1287s

0.0290s
0.0032s

0.0348s
0.0116s

0.0112s
0.0070s

0.1138s
0.0874s

0.1075s
0.2130s

0.2539s
0.5330s

0.0567s
0.1094s

0.1447s
0.1980s

0.1018s
0.1613s

6
4

5
21

24
7

4
4

4
4

4
4

4
5

19
5

4
4

4
15

4
4

12.3d
0.0426s

0.2177s
0.1261s

0.0924s
0.0928s

0.1450s
0.1395s

0.0442s
0.0028s

0.0472s
0.0139s

0.0127s
0.0060s

0.1323s
0.1035s

0.1326s
0.2260s

0.2457s
0.4146s

0.0742s
0.1345s

0.1654s
0.2081s

0.1188s
0.1767s

6
6

6
6

7
13

6
6

6
5

5
4

6
6

7
6

7
6

6
6

7
7

8
8

13.3d
0.2191s

0.1312s
0.0932s

0.1003s
0.1493s

0.1436s
0.0568s

0.0031s
0.0513s

0.0155s
0.0156s

0.0063s
0.1384s

0.1130s
0.1396s

0.2514s
0.2634s

0.4311s
0.0907s

0.1425s
0.1754s

0.2146s
0.1264s

0.1895s
8

7
7

8
7

9
7

4
6

5
6

4
7

7
7

7
6

7
6

7
6

7
7

7
14.3d

0.1142s
0.0745s

0.0706s
0.1382s

0.1469s
0.0310s

0.0034s
0.0374s

0.0123s
0.0121s

0.0073s
0.1260s

0.0977s
0.1182s

0.2409s
0.2910s

0.5088s
0.0609s

0.1210s
0.1608s

0.2251s
0.1093s

0.2151s
27

4
4

4
43

5
4

4
4

4
4

5
4

4
4

5
23

63
15.3d

0.0669s
0.0659s

0.1223s
0.1272s

0.0296s
0.0029s

0.0350s
0.0108s

0.0104s
0.0060s

0.1144s
0.0893s

0.1091s
0.2144s

0.2509s
0.4298s

0.0564s
0.1118s

0.1463s
0.2009s

0.1030s
0.1609s

27
5

5
4

5
5

4
4

5
4

5
5

5
5

4
5

5
5

5
5

16.3d
0.0659s

0.1219s
0.1294s

0.0339s
0.0028s

0.0379s
0.0112s

0.0104s
0.0059s

0.1185s
0.0939s

0.1108s
0.2051s

0.2367s
0.4027s

0.0604s
0.1137s

0.1436s
0.1944s

0.1063s
0.1600s

14
5

5
5

5
4

4
4

6
5

6
6

5
6

5
6

6
6

5
5

17.3d
0.1347s

0.1395s
0.0393s

0.0028s
0.0388s

0.0120s
0.0110s

0.0056s
0.1244s

0.1000s
0.1197s

0.2291s
0.2618s

0.4301s
0.0668s

0.1307s
0.1626s

0.2149s
0.1159s

0.1755s
39

6
5

5
4

4
5

5
7

6
6

6
6

6
6

6
6

6
18.3d

0.1314s
0.0302s

0.0032s
0.0355s

0.0110s
0.0109s

0.0062s
0.1150s

0.0939s
0.1073s

0.2150s
0.2526s

0.4337s
0.0583s

0.1108s
0.1465s

0.2011s
0.1035s

0.1601s
47

4
4

4
5

5
7

5
5

5
5

5
5

5
5

5
19.3d

0.0306s
0.0029s

0.0347s
0.0106s

0.0103s
0.0060s

0.1130s
0.0864s

0.1064s
0.2099s

0.2459s
0.4272s

0.0551s
0.1105s

0.1428s
0.2013s

0.1012s
0.1593s

17
4

4
5

4
5

5
5

5
4

5
5

6
5

5
20.3d

0.0027s
0.0489s

0.0140s
0.0136s

0.0066s
0.1475s

0.1166s
0.1645s

0.2761s
0.2906s

0.4714s
0.0831s

0.1505s
0.1990s

0.2555s
0.1431s

0.2144s
6

5
5

4
7

7
6

6
7

7
6

7
7

8
7

8
21.3d

0.0351s
0.0126s

0.0111s
0.0059s

0.1013s
0.0815s

0.0970s
0.1772s

0.2033s
0.3480s

0.0554s
0.0989s

0.1236s
0.1658s

0.0932s
0.1376s

5
4

5
4

5
5

5
5

5
4

4
5

5
6

5
5

22.3d
0.0156s

0.0133s
0.0064s

0.1348s
0.1118s

0.1264s
0.2165s

0.2312s
0.3925s

0.0808s
0.1392s

0.1570s
0.2069s

0.1302s
0.1692s

5
5

4
7

7
7

7
5

6
6

7
7

7
7

8
23.3d

0.0193s
0.0080s

0.1409s
0.1226s

0.1587s
0.2524s

0.2512s
0.4298s

0.0887s
0.1637s

0.1911s
0.2396s

0.1540s
0.2036s

6
4

7
8

7
7

7
7

6
7

7
7

7
7

24.3d
0.0091s

0.1841s
0.1568s

0.1844s
0.2817s

0.2856s
0.4580s

0.1226s
0.1835s

0.2077s
0.2687s

0.1790s
0.2262s

5
7

8
8

7
8

8
7

8
8

8
8

8
25.3d

0.1083s
0.0867s

0.1038s
0.1852s

0.2116s
0.3590s

0.0600s
0.1031s

0.1312s
0.1743s

0.0961s
0.1458s

5
7

6
6

6
6

5
6

6
7

6
6

2A
.3d

0.0863s
0.1023s

0.2017s
0.2430s

0.4216s
0.0539s

0.1060s
0.1399s

0.1930s
0.1012s

0.1566s
32

17
11

5
8

5
5

5
5

5
5

2B
.3d

0.1183s
0.2039s

0.2425s
0.4121s

0.0562s
0.1092s

0.1413s
0.1931s

0.1003s
0.1556s

46
13

5
6

5
7

5
6

5
5

2C
.3d

0.1977s
0.2423s

0.4138s
0.0553s

0.1086s
0.1414s

0.1943s
0.1030s

0.1551s
26

12
5

4
5

5
5

5
5

3.3d
0.2642s

0.4641s
0.0560s

0.1122s
0.1456s

0.2045s
0.1029s

0.1641s
9

7
4

4
5

4
4

4
4.3d

0.4954s
0.0558s

0.1110s
0.1464s

0.2072s
0.1028s

0.1657s
54

4
5

5
12

5
5

5A
.3d

0.0622s
0.1182s

0.1547s
0.2159s

0.1098s
0.1733s

4
5

18
8

4
6

5B
.3d

0.1020s
0.1391s

0.1848s
0.0989s

0.1521s
25

6
5

5
7

6A
.3d

0.1360s
0.1985s

0.1024s
0.1579s

23
32

5
6

6B
.3d

0.2102s
0.0994s

0.1610s
63

15
5

7.3d
0.1010s

0.1592s
4

4
8.3d

0.1533s
18

9.3d

Table
A

.15:
O

ne-to-one
search

results
for

the
gargoyle

datasetusing
the

’P
recise’preset.E

ach
cellin

the
m

atrix
show

s
the

totalsearch
tim

e
(up)and

the
num

ber
ofm

atching
keypoints

(dow
n).

196

	Introduction
	Motivation
	Objectives
	Document Organization

	Background on Shape Matching
	Classification
	Input data
	Dimensionality
	Shape representation
	Feature detectors
	Descriptors

	Output match
	Correspondence representation
	Full and partial correspondences
	Dense and Sparse correspondences

	Cost function
	General distance metrics
	Rigid alignment
	Non-rigid alignment
	Similarity-based correspondence

	Search strategy
	Properties of existing search strategies
	Solution paradigm
	Transformation and alignment search
	Correspondence search
	Hybrid search: ICP

	Background on Automatic Fragment Reconstruction
	Jigsaw Puzzles
	Contour Matching Techniques
	Surface Matching
	Multi-Feature Matching
	Multi-Piece Matching

	Acquisition
	2D acquisition
	3D acquisition
	Residuals Analysis
	Electronic Microscope Analysis
	Sublimation speed
	Conclusion

	3 Degrees of Freedom Approach
	Overview
	Cost Function and Solution Space
	Pre-Processing
	Search Strategy
	Exhaustive Search
	Hierarchical Orientations
	Hierarchical Displacements
	Hierarchical Search
	Many-to-Many Search

	Results
	Performance evaluation
	Griphos dataset
	Many-to-many sample implementation

	Conclusions and Future Work

	6 Degrees of Freedom Approach
	Overview
	Pre-processing
	Feature extraction
	Keypoint selection
	Descriptor calculation

	One-to-one search strategy
	Local similarity
	Geometric consistence
	Search strategy

	Many-to-many search strategy
	Results
	Pre-processing
	One-to-one search
	Many-to-many search

	Conclusions and Future Work

	Applications to Self-localization problems
	Fast Indoor Localization for Mobile Robots
	Overview
	Calibration
	Segmentation
	Data acquisition
	Line inference
	Line filtering
	Corner extraction

	Localization
	Matching calculation
	Cost function

	Results
	Conclusions and Future Works

	Indoor Localization for Inspection and Verification
	Overview
	The Sensors
	The Kinect Sensor
	The Velodyne Sensor

	Kidnapped Robot Solver
	Tracking and Relocalizing Algorithms
	Real-time ICP algorithm
	Tracking
	Relocalization

	Parameter Optimization
	Tracking lost detection
	Relocalization test
	Optimization framework

	Results
	Conclusions and Future Works

	Conclusions
	Bibliography
	6 DOF One-to-One results
	Brick dataset
	Venus dataset
	Cake dataset
	Sculpture dataset
	Gargoyle dataset

