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Abstract

In this work, signal processing techniques are 
combined with non-destructive evaluation 
(NDE) to evaluate the capability for detecting 
defects in historic walls. To join this aim, ashlar 
masonry walls of 3x2x0.2m have been made at 
laboratory facilities with controlled and localized 
defects. These scale walls have been inspected 
by means ultrasound and ground penetrating 
radar (GPR) with loads of different weights (0Tn, 
10Tn, 50Tn and 80Tn). The ultrasonic and GPR 
signals provided tomographies that have been 
improved by means processing techniques. Re-
lated to ultrasonic tomographies, kriging algo-
rithm have been implemented for visualization 
improvement. By the other hand, novelty dif-
ferential tomographies have demonstrated their 
sensibility to defects. Related to GPR, different 
algorithms have been developed to improve the 
tomographies: elimination of the background 
noise, depth resolution enhancing and automat-
ic detection and correction of hyperbolas due 
to radiation pattern of the antenna. Finally, it is 
concluded the added value of signal processing 
applied to NDE for the detection of defects in 
historic walls.

Application of non-destructive evaluation 
and signal processing for diagnosis of 
historic heritage buildings

1. Introduction

Great part of the constructed heritage in our cit-
ies is built using stone and mortar, as well as brick 
as constitutive materials. This kind of construc-
tions resists well the passage of time, nonetheless, 
degradation processes are inevitable [1][2] and 
difficulties exist when it is necessary to evaluate 
the degree of the above mentioned processes. 
The degradation processes affect so much struc-
tural level (cracks, fissures, detachments, displace-
ments…) as aesthetic (dirt, crusts, efflorescence…) 
of the historical buildings. The knowledge of this 
reality will be important for the valuation of its 
stability conditions and also for restoration plan-
ning environment. The main pathologies that can 
result in the breakdown of historical buildings are 
humidity damages caused by capillarity ascent, 
breeze or high humidity environments, successive 
freeze-thaw cycles that result in crystallization, 
broken mortar joints, loss of the most exposed 
material and finally erosion damages caused by 
lack of vegetation.

Centering on structural pathologies (cracks, fis-
sures …), the detection and characterization of 
the above mentioned problems is important to 
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radation of material. NDE can again avoid a new 
deterioration on the restored material as well 
as the possibility to test the whole element be-
cause of preventing the extraction of probes.

The utilization of NDE already supposes an inno-
vation in the area of the restoration, but the ap-
plication of signal processing algorithm to this 
area will provide an added value and supposes 
a novelty technological advance in the process 
of evaluation of the historic and artistic heritage. 

The objective of this paper is to combine NDE 
with signal processing algorithms from the per-
spective of diagnosis. The NDE selected have 
been ultrasounds and GPR. The present paper is 
organized as follows. In Section 2, the construc-
tion, dimensions and controlled defects of a scale 
ashlar masonry wall are described. This scale wall 
is analyzed by means different NDE and the re-
sults are compare with its known and real status. 
This Section 3 is dedicated to ultrasound testing. 
An introduction of this technique, equipment, 
algorithms and results of experimental meas-
urements are explained. In Section 4, the results 
from GPR are described: introduction, equip-
ment, measurement and results. Finally, in Sec-
tion 5 the main conclusions are listed.

2. Single hard wall waveguides

At historic walls, different typologies exist but 
brick walls, ashlar walls and rubble wall are the 
main ones (Figure 1). The first case was built 
mainly with cooked bricks as base material plus 
plaster or mortar as binding material. The brick-
laying method could follow different pattern 
bonds: running, common or American, Flemish, 
English, stack, and English cross or Dutch bond. 
Ashlar walls and rubble walls masonry use same 
base material, ashlars of marble, but in case of 
masonry, the elements are more irregular and 
the wall has less compression resistances.
 
At this work, scale ashlar walls were made at 
laboratory facilities in order to be able to repro-
duce and to have control over the defects. Two 
walls (wall 1 and wall 2) were built with traver-
tine ashlars from Godella’s quarry (SPAIN) and 
the dimension of the ashlars was 40x30x20cm. 
The final dimension of the two walls was 287cm 
length, 220cm height and 20cm thickness. As 
binding material it was used impoverished 
mortar that has a low compression resistance 
(<4MPa), typical of historic buildings.

The two walls were divided in 7 rows, 4 of these 
rows are subdivided in 7 columns and the other 
3 in 6 columns in order to have the intersection 
between rows and columns in the center of the 
ashlar (Figure 2). The separation between rows 
was 31cm and 41cm for columns. An ultrasonic 
measure has been taken (46 points per wall) 
per each point of this array providing a first to-
mography of the wall. Wall 1 was homogeneous 

estimate the state and to plan its possible repair. 
At present, to deal with this valuation, it is usual 
to realize destructive testing by means of the ex-
traction and characterization of tubes from the 
material, principally stone tubes. These tubes 
are characterized using classical morphological 
and physiochemical analyses. Thus, physical-me-
chanical properties of the materials can be de-
termined: one-axial compressive strength, water 
absorption, saturation, porosity, dimensional 
variation by temperature and humidity, salt crys-
tallization strength, and damp-drying cycle [3]
[4]. But the realization of these extractions sup-
poses a degradation of the historic element 
and it only offers punctual information from 
the extraction position. Taking into account this 
limitation and that it is necessary to preserve to 
the maximum the integrity of the element due 
to the historic and cultural value, the detection 
should be as least invasive as possible. As far as 
possible, NDE should be used, like ultrasounds, 
X-rays, GPR, acoustic monitoring… This kind of 
tests do not alter the examined element, allow 
an analysis of the totality of the historic element 
and help to the valuation of the condition of the 
element and to choice the intervention-restora-
tion technologies. Additionally, they can provide 
information after the repair.

NDEs are based on indirect measures [5], for this 
reason, it is necessary the utilization of different 
algorithms capable of extracting the informa-
tion of the signals obtained from inspected ma-
terial. For example, sonic and ultrasonic technol-
ogies are based on elastic or mechanical waves 
that propagate through the structure, whereas 
the exploration with GPR is based in the propa-
gation and interpretation of electromagnetic 
waves. Both technologies measure the varia-
tions of the transmitted signals that are due to 
the interaction with the element under analysis. 
It is expected that these variations could be cor-
related with physical parameters: cracks, fissures, 
changes of properties… On the one hand, the 
technologies based on elastic waves are sensi-
tive to the geometry of elements that compose 
the structure and to tensional condition of the 
same ones. On the other hand, the electromag-
netic technologies are sensitive to the geometry 
and disposition of elements. Other NDE technol-
ogies as vision testing allow monitoring super-
ficial parameters of deformation and displace-
ment whereas X-rays testing allows detecting 
densities changes inside of materials. 

When defects of the structural elements are 
detected (flaws, cracks that decrease compres-
sion resistance, break resistance to, deformation 
module…), it should be necessary the restora-
tion and it will be useful to check the scope of 
the restoration tasks. For example, in case of 
sealed cracks and hollows by means of the injec-
tion of resins, it will be useful to evaluate the de-
gree of penetration and consolidation because 
this degree will condition the improvement of 
the physical characteristics and the future deg-
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whereas wall 2, some defects were artificially in-
cluded: two drill holes, one vertical flaw and one 
crack or nook filled with mortar (Figure 3). The 
objective is to detect these defects by means 
NDE combined with signal processing algo-
rithms. By other hand, the walls were introduced 
in a hydraulic press and were load with different 
levels of weight (10Tn, 50Tn and 80Tn) in order 
to check also the sensibility of the NDE to ten-
sional state of the wall.
 

3. Ultrasonic testings

3.1 Introduction and hardware description
Non-destructive evaluation (NDE) by ultra-
sounds is a very useful technique that has been 
applied in several fields such as construction, 
food, and biomedicine. The technique has ba-
sically two operation modes: pulse-echo (one 
sensor is used both as emitter and as receiver) 
and through-transmission (two sensors are used, 
one emitter and one receiver sensor) [6]. An ul-

trasound pulse is injected in the inspected ma-
terial and a response of the material structure 
is received. The measured signal can contain 
echoes produced from discontinuities, inhomo-
geneities, borders of the material, plus material 
grain noise (superimposition of many small ech-
oes due to the material microstructure). All of 
this information can be used for quality control 
and characterization of materials since physical 
properties of the material such as porosity and 
density have a definite influence on the propa-
gation of the ultrasound [7][8]. Recently, we in-
troduced ultrasound NDE in novel applications 
to heritage problems: diagnosis of the consoli-
dation condition, detection of layers in historical 
walls [9][10][11] and cataloguing of archaeologi-
cal ceramics [12].

The hardware that has been used for ultrasonic 
measurements are composed by five modules: 
ultrasonic module, responsible of electric signal 
generation and conditioning (MATEC PR5000), 
acquisition module, responsible to digitalize 
electric signals (oscilloscope Tektronix 3012), 
control module (notebook), responsible to con-
trol other modules and process and store sig-
nals, transducer module, responsible to convert 
electric signals to ultrasonic signals and vice 
versa (1MHz K1SC from General Electrics) and 
finally an external pre-amplifier to provide an 
extra gain of 40dB. In Figure 4 it is shown pho-
tography of this equipment whereas in the Table 
1 it is shown the setup parameters.
 

 Figure 2. Photography of ashlar wall (Wall 2)

 Figure 3 Distribution of measurement positions 
and defects (Wal 2)

  Figure 1. Different kind of walls 

  Figure 4. Photography of ultrasonic equipment
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The variation 
of the color in 
the ultrasonic 
tomography 
provide 
information 
of the defect 
and spatial 
position

Once the ultrasonic parameters are extracted for 
each ashlar (Figure 2), it is possible to obtain an 
image or tomography where X axis is associated 
to the length and Y axis is associated to height of 
the wall. The color of the image represents the 
value of the selected parameter (Figure 6). Then, 
the variation of the color provide variation of the 
ultrasonic parameters that it is related to defect 
and spatial position.

As it is shown in Figure 6.a, the 46 measures do 
not provided smoothed tomographies and the 
heterogeneities (see the bottom right zone of 
the Figure 6.a) present sharp edges. It is neces-
sary to apply interpolation algorithms to obtain 
a more realistic visualization of the tomography 
of the wall. For this case, it has been used a linear 
algorithm based in kriging. This algorithm pre-
dicts the value of unknown points, (r), as a lin-
ear combination from the known values (Z(r_i )) 
(1), where r is the position vector. Thus [13],

			 
	

	 (1)

The estimation of the weights Wi (r) produces 
that the estimator for the interpolated values 

has an optimal relationship with a given set 
of N data values Z(ri ),i=1…N.  The restrictions 
that E[ (r)-Z(r)]=0 and the residual variance 

is minimum, impose the con-
dition that the estimator is both unbiased and 
gives the least dispersion. Kriging established 
the concept of structural analysis, and the 
weight vectorWi(r), , is estimated beginning 
from covariance and semivariogram which indi-
cates the degree of correlation between values 
of the variable as a function of distance. The rele-
vant definitions to kriging are the covariance (C) 
and the semivariogram (γ), defined by (4) and (5) 
respectively. 

Generally, the covariance and the variogram de-
pend on both positions r1 and r2 , but in such a 
case many realizations of the pair  are required to 
be evaluated. The hypothesis of stationarity has 
to be invoked involving to make the assumption 
that C and γ depend only on the separation vec-
tor |ri-rj|. This allows the consideration of all data 
points separated by the same distance, h, as be-
ing realizations of the same pair of the random 
variables [Z(r1 )-Z(r2 )]. Simple kriging obtains 
the weights Wi (r) by solving the system of equa-
tions (6) and ordinary kriging solving the system 
equations (7) where µ is a Lagrange multiplier 
involved in the minimization of . 

3.3 Ultrasonic results
The extraction and interpolation algorithms 
allow obtaining tomographies with a major 
number of points and improving the visual rep-
resentation. In Figure 6.a, the original tomogra-
phy is represented with a 7x7 grid. This tomog-
raphy corresponds to wall 1, where a reduction 
of velocity could be appreciated in the right 

3.2 Ultrasonic signal processing
An ultrasonic measure (A-SCAN, Figure 5) has 
been taken for each spatial position described 
in Figure 2 and Figure 3. Beginning from these 
A-SCANs, different ultrasonic parameters are 
extracted and associated to each position. The 
selected parameters are speed (1), power (2) and 
maximum frequency (3) and have been selected 
due to their low variance. The temporal window 
used for their estimation begins at 30µs and fin-
ish at 100µs  (Figure 5).
 

  Table1. Setup parameters

  Figure 5. Ultrasonic A-Scan

Parameter Value

Ultrasound 
parameters

Mode
Through/trans-

mission

PRF 76Hz

Width 1µs

Frequency 1MHz

Amplitude 90%

Gain 45dB+40dB

Filter [100kHz, 5MHz]

Acquisition 
parameters

Sample freq. 50MHz

Bits/sample 12 real bits

Sensibility 0.5V/div

Dinamic 
range

8Vpp
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bottom of the image due to natural heteroge-
neities of the ashlars. This representation does 
not look natural and it is difficult to have an idea 
about the shape of the defect. Whereas, Figure 
6.b represents the same tomography but with 
a 100x100 grid estimated by means ordinary 
kriging. Notice how visualization has improved 
and the shape of the defect can be appreciated 
clearly.

Once the interpolation and parameters ex-
traction algorithms were implemented, it was 
checked the capacity of ultrasound for detect-
ing the defects at ashalar wall 2, described in 
section 2. At first sight, the tomography did not 
show the defects. The variations of the tomog-
raphy values that were expecting to associate 
with defects, were masked by variations of the 
own material and by the variance of the meas-
urement. We can see in Figure 7 as speed varies, 
but these variations are not significant and do 
not correspond with the theoretical positions of 
defects. As several tomographies were obtained 
for different weights of load (see section “2. De-
scription of scale ashlar masonry wall”), it was 
possible to obtain differential tomographies be-
tween loads. By this way, the variations between 
the ultrasonic parameter and the variations of 
the load were compared (ultrasonic parameters 
are sensible to tensional state: velocity and sig-
nal power suffer an increment with load whereas 
central frequency is kept constant). The result is 
shown in Figure 8, where it is important to no-
tice how some defects are detected. The reason 
is that ultrasonic dependence with load is dif-
ferent between sound and unsound zones and 
ultrasonic parameters suffer different percent-
age of variation, as it is reflected in Figure 8. The 
vertical flaw and horizontal drill hole were not 
detected because the load was not so high to 
suppose an important variation of the ultrasonic 
parameter, in this case, velocity. The crack is per-
fectly detected by this way and it is possible to 
notice how this defect affects adjacent ashlars.
 

4. Ground penetrating radar 

4.1 Introduction and hardware description
Ground Penetrating Radar (GPR) is a Non-De-
structive Evaluation (NDE) method that uses 
electromagnetic waves to study the composi-
tion of a material. The GPR equipment transmits 
pulses of radio waves through the material struc-
ture. Afterwards, the response of the material is 
measured by signals that contain the reflections 
produced by the microstructure plus the echoes 
caused by the inhomogeneities inside the mate-
rial [14][15]. The principal goal of the GPR signal 
processing consists of characterizes the propa-

  Figure 7. Velocity tomography for Wall 2 with 
defect representation (m/s)

  Figure 6. Velocity tomographies (m/s) in ashlar wall 1. Different interpolation 
resolution: a) 7x7 b) 100x100

 Figure 8. Differential tomography of velocity (per-
centage of variation) for Wall 2 between weights of 
load (50Tn and 10Tn). 
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gation medium and then subtracting it from the 
measured signals in order to detect the material 
inhomogeneities. GPR has been used in several 
applications such as detection of non-metallic 
land mines; concrete and rebar imaging and in-
spection; and locating unmarked geologic sites 
of interest [16][17]. However, there are a few 
references of application of GPR in historic build-
ings NDE [18][19].

The used equipment was a SIR 3000 from 
"Geophysical Survey Systems, Inc" with 1.6GHz 
antenna. The dimension of the antenna was 
3.8x10x16.5 cm and it was fit to an encoder dis-
placement device (Figure 9). Figure 11 represent 
the positions and trayectories that have been 
measured with GPR to obtain the radargrams. A 
radargram is an image (also called B-Scan) that 
represents values of the measured signal at dif-
ferent depths of the material through the points 
of a trajectory; see an example in Figure 12. The 
horizontal axis of this radargram represents the 
position of the antenna along a row or column, 
whereas the vertical axis represents the penetra-
tion of the electromagnetic wave, it means the 
width of the wall. And finally, the level of signal 
is presented in pseudo-color. By this way and 
beginning from this radargram, it is possible 
to obtain information about the width of the 
wall, the presence or not of faults and material 
changes and the positions of these artifacts. In 
Figure 12, it is possible to see the backwall re-
flection or echo and therefore to determine the 
depth of the wall. It is important to notice, that 
these radargram differs from ultrasonic tomog-
raphies. The ultrasonic tomography provides a 
kind of frontal radiography of the wall. Whereas, 
the radargram provides information from a cut 
of the wall.

As it is shown Figure 11, the wall was divided 
in 7 columns and 7 rows of 2.2m and 2.87m re-
spectively. The setup of the equipment was dis-
tance mode with 156 scans per meter. It means 
343 scans for each column and 447 scans for 
each row. The acquired time for each scan was 
10ns. A temporal scan is shown in Figure 10 and 
beginning from this register, the dielectric con-
stant (εr ,wall) was calculated (8) for the wall. 
Beginning from this εr ,wall, the propagation 
velocity of the wall, vp ,wall, is derived and the
 temporal axis converts into distance axis.

 Figure 9. Photography of GPR SIR 3000 with 
1.6GHZ antenna plus displacement device

 Figure 10. Realization of GPR measurement

 Figure 11. Description of GPR trayectories

 Figure 12. Example of radargram
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4.2 GPR signal processing 
As it has explained, a radargram is an image that 
represents values of the measured signal at dif-
ferent depths through a trajectory. The objective 
of the several processing steps is to highlight 
the zones in the radargram where the inhomo-
geneities are located. The GPR signal processing 
has been implemented in three main stages: 
background signal removal, depth resolution 
enhancing and Kirchoff migration; see Figure 14. 
 
The first stage, background signal removal, as-
sumes that the measured GPR signal is a mix-
ture for blind source separation (BSS) using 
independent component analysis (ICA). This 
technique aims to separate hidden sources 
from their observed linear mixtures without any 
prior knowledge [20]. Thus, ICA was applied to 
separate the background (reflections from the 
air-wall interfaces) from the rest of the back-
scattered measured signal. The background 
contributes to the observed mixture (the GPR 
signal) as a kind of interference that is recovered 
by ICA. We assumed that the signal of backscat-
tering measured by the GPR can be modelled as 
a stochastic process {Z(x,t)}, with x being the 
position and t the time [10]. This model can be 
written as: , where An is the scat-
tering cross-section of the n-th scatter at posi-
tion x, τn is the delay of the backscattered signal, 
and N(x) is the number of scatterings that con-
tribute from position n.

A novel ICA algorithm called Mixca was applied 
for background signal removal [12]. This algo-
rithm provides several advantages over classical 
ICA algorithms such as increasing of the source 
modelling flexibility since the probability density 
functions of the sources are modelled with non-
parametric distributions. In addition, the system 
includes two additional classical methods for 
background removing (polynomials and spatial 
mean) and several methods to enhance the cap-
tured data such as depth resolution enhance-
ment, and cepstral deconvolution [21][22][23]. 

The second stage, resolution enhancement, is 
implemented by means an AGC (Automatic Gain 
Control) button to enhance contrast [24] and an 

envelope button, which shows the time enve-
lope of the most recent result (sometimes used 
for data interpretation). Finally, the third stage, 
Kirchoff migration, tries to correct the effect of 
the antenna radiation diagram. This effect pro-
duces that a punctual reflector becomes into 
a hyperbola. These hyperbolas have been de-
tected using Hough transformed and Random 
Hough transform and have been corrected using 
the Kirtchoff method. At Figure 15, it is shown 
the result of this stage and how the hyperbola is 
returned to a more realistic shape.

4.3 GPR Results
Many of the flaws described in Figure 3 were 
detected. Fig. 12 shows the obtained results 
where the crack and the flaw that are on row 2 
are detected. Notice the difference in perceived 
amplitude between both defects. Said differ-
ence is due to the straight geometry of the flaw, 
which accentuates the reflection of the waves. 
The crack is irregularly shaped and with rough 

  Figure 14. Stages of data processing method

  Figure 15. Migration example: a) Direct radargram (the reflector produces a 
hyperbola). b) Radargram after migration process 

 Figure 13. A-scan used for calculation of the di-
electric constant of the material

 Figure 16. Flaw and crack detection in masonry 
wall 2: 
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5. Conclusions
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developed to remove the background signal 
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