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Abstract 

Genetic algorithms (GA) are optimization techniques that are widely used in the design of water 

distribution networks. One of the main disadvantages of GA is positional bias, which degrades the 

quality of the solution. In this study, a modified pseudo-genetic algorithm (PGA) is presented. In a 

PGA, the coding of chromosomes is performed using integer coding; in a traditional GA, binary 

coding is utilized. Each decision variable is represented by only one gene. This variation entails a 

series of special characteristics in the definition of mutation and crossover operations.  

Some benchmark networks have been used to test the suitability of a PGA for designing water 

distribution networks. More than 50,000 simulations were conducted with different sets of 

parameters. A statistical analysis of the obtained solutions was also performed. Through this 

analysis, more suitable values of mutation and crossover probabilities were discovered for each 

case. The results demonstrate the validity of the method.  

Optimum solutions are not guaranteed in any heuristic method. Hence, the concept of a "good 

solution" is introduced. A good solution is a design solution that does not substantially exceed the 

optimal solution that is obtained from the simulations. This concept may be useful when the 

computational cost is critical. The main conclusion derived from this study is that a proper 

combination of population and crossover and mutation probabilities leads to a high probability that 

good solutions will be obtained.  
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Introduction  

Traditionally, water distribution network design, upgrading, or rehabilitation is 

based on engineering judgment. However, in the last three decades, a significant 

amount of research has focused on the optimal design of water distribution 

networks. Initially, researchers used linear programming to optimize the design of 

a pipe network (Alperovits and Shamir 1977). Subsequent studies applied 

nonlinear programming to network design problems. Some examples include the 

optimization of looped pipe networks (Su et al. 1987) or the development of 

models that simulate pumps, tanks and multiple loading cases (Lansey and Mays 

1989).  

The application of heuristic optimization techniques facilitates searching 

beyond these local minimums, which generally extends the field search and, 

consequently, the capacity to obtain better solutions. Evolutionary algorithms are 

a set of optimization techniques that are based on natural principles of evolution. 

Some examples of these techniques include genetic algorithms (GA), particle 

swarm optimization (PSO), shuffled frog-leaping algorithms (SFLA), and 

memetic algorithms. Although some investigators have compared these 

techniques (Reca et al. 2008), no technique has been declared superior to all 

others.  

Due to their versatility, evolutionary algorithms can be applied to all types 

of optimization processes. In the field of hydraulic engineering, some 

evolutionary optimization techniques, such as memetic algorithms (Baños et al. 

2007), SFLA (Eusuff and Lansey 2003) or harmony search (Geem 2006), have 

been successfully applied to the design of water distribution networks. The 

flexibility of these methods has facilitated the development of hybrid models that 

combine features of different methodologies. An example of a hybrid model 

applied to the design of water networks is the GALP method (Cisty 2010), which 

combines genetic algorithms and linear programming.  

Similarly, the heterogeneity of evolutionary algorithms can be used for the 

optimization of various problems related to water distribution networks. Some 

researchers have successfully applied genetic algorithms to water network 
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rehabilitation (Halhal et al. 1997), calibration of water distribution models (Balla 

and Lingereddy 2000), complex supply systems (Louati et al. 2011, Chung and 

Lansey 2008), and to control hydraulic pressure in a water distribution network 

(Nazif et al. 2010).  

In this study, we use a modified genetic algorithm. In general, GA aim to 

find an optimal solution for a given design problem from the evolution of a 

random initial solution. This searching method, which is based on Darwin´s 

theory of evolution, functions identically to the evolution of a population that 

experiences similar random actions to which they react in a biological evolution 

(mutations and genetic recombination). Based on established criteria, the 

individuals who are best adapted survive, and the individuals who are less adapted 

perish.  

For a given network layout and demand, most of these methods consider 

the minimization of the cost of a pipe network as the objective. In the field of 

water engineering, previous studies by Goldberg and Kuo (1987), Savic and 

Walters (1997), Fujiwara and Khang (1990), Jin et al. (2007) and Tsai et al. 

(2008) reflect the importance of these algorithms in the optimal design of water 

distribution networks.  

In this study, a method is developed for the optimal design of water 

distribution networks based on a GA and applied to different benchmark 

networks. The aim of the study is to minimize the necessary costs of investment 

for the implementation of a system, beginning with the topological layout and the 

demands and requirements of pressure in the nodes. The study also introduces the 

optimization of the different genetic operators, which influence the minimum 

solutions, such as the probabilities of mutation and crossover and the population 

size in which the algorithm will operate.  

Methodology  

All evolutionary methodologies share some principles: a data structure that stores 

the characteristics of a solution, certain operations that modify these solutions, an 

objective function, and a selection mechanism to ensure that only best solutions 

survive.  
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Traditionally, GA have included methods adapted for problems formulated in 

binary variables, but not suitable for other searching methods. Previous studies 

describe numerical encoding in GA (Reca and Martinez 2006; Vairavamoorthy 

and Ali 2000; Prasad and Park 2004). A pseudo-genetic algorithm (PGA), which 

is based on an integer coding of the solution, is introduced in the present study. A 

brief description of PGA follows.  

In the PGA, every decision variable can store different values that are 

represented with alphanumerical variables. Each gene is identified with a decision 

variable through integer coding (Figure 1), which did not occur in the classic GA. 

PGA includes elements such as pipes, pumps, tanks, and valves.  

 

Fig 1. Binary and alphanumerical representation 

To solve the optimization problem, it is necessary to establish a discrete set of 

solutions. A solution is represented by a chromosome. This is comprised of a 

series of genes. Each gene identifies the discrete value of a variable. In the PGA, a 

generic chromosome X
i
 consists of as many genes as decision variables retain 

(NDV). This chromosome X
i
  is defined as a vector of numerical values.  

 
DV

i i i i

1 2 NX X ,X , ,X      (1) 

The aptitude is the ability of a chromosome to survive during the 

reproduction process. The aptitude of a generic chromosome X
i
 is identified by 
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the value of the objective function for the encoded solution. In the case of the 

proposed PGA, the NVD decision variables are NP pumps and ND diameters. The 

objective function is defined as follows:  

         

   

SP D R

S SR R

NN N N
i i i i

e,j D,j D,j a j j j 1 k,s min,k k,s

j 1 j 1 s 1 k 1

N NN N

2 k,s max,k k,s 3 k,s min,k k,s

s 1 k 1 s 1 k 1

F X F H X Q X F C X L λ δ H H

λ δ V V λ δ V V

   

   

       

       

  

 

  

 (2) 

In the first term of (1), HD,j(X
i
) and QD,j(X

i
) represent the pressure head 

and the flow of each pump, respectively; Fe,j is the energy cost in each of these 

pumps. The second term represents the capital cost of the pipes, where Cj is the 

associated unit cost of the decision variable contained in link j of chromosome i, 

and Lj is the length of pipe j.  

There are NR constraints that must be achieved by the solutions. These 

restrictions have been included as a penalty in the total cost of the solution. The 

constraints that must be satisfied are the minimum pressure height in each node 

(Hmin,k), maximum (Vmax,k) and minimum (Vmin,k) velocity in pipes. These 

constraints must be verified in NS scenarios. The analyzed scenarios are the 

different loading conditions under which the water distribution system is tested.  

To compute the penalties several binary variables (k,s) are used. These 

variables adopt the value one if the constraint is not satisfied, and zero otherwise.  

The parameters λ1, λ2 and λ3 represent weight functions that establish 

penalties for not verifying the restrictions. In our model, pressure and velocity are 

considered hard constraints. For this reason, the values of λ1, λ2 and λ3 are large 

enough (10
7
) to reject all solutions that violate the constraints. There is an existing 

controversy regarding the penalty terms. Although the use of large multipliers 

often prevents infeasible solutions, optimum solutions are located within the 

boundary of feasibility. However, infeasible solutions may also contain useful 

information that can be carried to the next generation (Vairavamoorthy and Ali 

2000). Conversely, small variations of numerical values for certain parameters 

may lead to more expensive or infeasible solutions (Savic and Walters 1997; Reca 

and Martínez 2006). Therefore, steps should be taken to ensure that the solution 

will not violate any restrictions, such as by using large multipliers or adding a 

Con formato: Centrado
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multiplier that represents the existence of any type of penalty in the system 

(Iglesias et al. 2012).  

The method of the proposed PGA tests the evolution of a random population 

through a parallelism that is similar to the laws of natural selection, which occurs 

in a classic GA. This is obtained through three basic processes: reproduction, 

crossover and mutation. The different stages of the optimization process are 

described below.  

Genetic operators 

Genetic operators are specific functions of a PGA that maintain genetic diversity 

in the population of the algorithm. The implementation of these genetic operators 

is different for each optimization model. The following lines define the genetic 

operators used in this study.  

A ranking reproduction method was selected among all existing methods of 

reproduction (Wang, 1991; Savic and Walters, 1997). This method arranges the 

individuals of a population in increasing order according to their cost.  

The probability assigned to each chromosome will fall between a maximum 

probability pmax, associated with the smaller cost solution, and a minimum 

probability, associated with the greater cost solution. Both probabilities are 

defined as  

CN
p


max     

CN
p




2
min      (3) 

where β is a constant, whose value is between 1.5 and 2, and NC is the number of 

chromosomes.  

The crossover process consists of randomly select the chromosomes of the 

intermediate population and modifying the different genes from a certain 

crossover gene randomly determined.  

In a traditional GA, the random selection of a crossover gene can create the 

fraction of binary code that identifies a possible decision variable. This 

phenomenon is known as positional bias and degrades the quality of the solutions. 

One of the fundamental characteristics of a PGA is that the crossover operation 

does not produce this effect because each gene corresponds to a decision variable. 

For this reason, the PGA is less sensitive to this operator than a classic GA.  
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The mutation process is applied to the obtained population after the crossover 

and reproduction processes. The usefulness of the process is realized in the 

expansion of search areas within the space of feasible solutions. Every gene in 

each chromosome can eventually change if a randomly generated number falls 

under a certain probability.  

 

 

PGA uses an alphanumerical representation based on Gray coding. One of the 

main advantages of Gray coding is that it prevents major changes in the decision 

variable by modifying a single gene. In PGA coding, mutation process consist of 

increasing or decreasing the selected gene only one step.  

In a traditional GA, the mutation operator is considered a secondary priority 

regarding the use of the crossover probability as the main genetic operator. In 

practice, mutation rates between 0.1 and 1% are often recommended for binary 

representations. The crossover process in the PGA generates less alternatives than 

a classic GA. For this reason, the probability of mutation in the PGA is slightly 

higher (1 to 10%). The main operator to generate diversity in a PGA is mutation, 

not crossover. This is the greatest difference between a PGA and a traditional GA.  

The mutation is not only a mechanism of generating diversity. The use of 

high values of mutation can reduce a genetic algorithm to a random search. It is 

always recommended to use other mechanisms of diversity generation, such as 

increasing the size of the population or guaranteeing the randomness of the initial 

population. The main problem with using large populations is that they require 

more convergence time in the algorithm. Therefore, it is necessary to reach a 

commitment solution depending on the approach of the problem.  

The following sections analyze the capacity of the proposed PGA to 

determine the minimum design cost of different water distribution networks. The 

influence of different parameters on the final solution was analyzed. The analysis 

was divided into two phases. In the first stage, the best combination of the 

crossover and mutation probabilities was analyzed. In the second phase, the effect 

of population size on the performance of the algorithm was evaluated.  

For each calculation, it was necessary to determine the pressure in the nodes 

and the flow in the pipes. These calculations were performed with the model 
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EPANET (Rossman, 2000). Simulations to obtain the parameters of the PGA 

were performed with a specific application developed by the authors.  

Application examples 

The evaluation of the proposed model was performed on the water 

distribution networks of Hanoi and New York. Both systems consist of large 

water networks with real layouts. As noted in the bibliography, some results were 

obtained with different design models, which allowed a comparison of the results 

of the different models.  

The Hanoi network (Figure 2) was proposed by Fujiwara and Khang (1990). 

The network consists of a reservoir, 31 demand nodes and 34 pipes. The objective 

of the problem is to dimension all pipes of the network, considering that the 

minimum required pressure head at each node is 30 m.  
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Fig 2. Hanoi network.  

The second example (Figure 3) entails an analysis of the New York tunnel 

network (Goulter and Morgan 1985). The network consists of 20 demand nodes, 

21 pipes and a reservoir. The objective of the problem is to add new pipes in 

parallel to existing ones because the pressure is inadequate for proper operation of 

the distribution network under current conditions. 
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Fig 3. New York tunnels network.  

One of the characteristics that contribute to the definition of an optimal 

solution of the network is the range of diameters employed. The original range 

from the bibliography in both cases was used (table 1).  

Table 1. Original diameters for Hanoi and New York tunnel networks.  

 

Network Hanoi tunnel network New York tunnel network 

Available commercial 

diameters 

304.8; 406.4; 508; 609.6; 762; 

1016 (mm) 

36; 48; 60; 72; 84; 96; 108; 

120; 132; 144; 156; 168; 180; 

192; 204 (inches) 

 

Cost 45.726; 70.4; 98.378; 129.333; 

180.748; 278.28 (um/m) 

93.5; 134; 176; 221; 267; 316; 

365; 417; 469; 522; 577; 632; 

689; 746; 804 (um/feet) 

 

Number of potential solutions 6
34

 = 2.86·10
26

  16
21

 = 1.93·10
25 

   

Results 

The best solution obtained by the APG has a cost of 6.081 million um. This 

combination of diameters results in all network nodes with pressures above 30. 

This result coincides with the current lowest cost of design obtained for this 

network, which satisfies all constraints of minimum pressure in the system. Table 

2 displays the results obtained by different researchers, as well as the results 

obtained by the proposed method.  

  



11 

 

Table 2. Solutions to the Hanoi network design problem 

 Bibliography Solutions                   Solution PGA 

Pipe Matías
(1) 

Savic1
(2) 

Savic2
(3) 

Cunha
(4) 

Reca
(5) 

Sol
(6)

  

1 1016 1016 1016 1016 1016 1016 

2 1016 1016 1016 1016 1016 1016 

3 1016 1016 1016 1016 1016 1016 

4 1016 1016 1016 1016 1016 1016 

5 1016 1016 1016 1016 1016 1016 

6 1016 1016 1016 1016 1016 1016 

7 1016 1016 1016 1016 1016 1016 

8 1016 1016 1016 1016 1016 1016 

9 1016 762 1016 1016 1016 1016 

10 762 762 762 762 762 762 

11 609.6 762 609.6 609.6 609.6 609.6 

12 609.6 609.6 609.6 609.6 609.6 609.6 

13 508 406.4 508 508 508 508 

14 406.4 406.4 406.4 406.4 406.4 406.4 

15 304.8 304.8 304.8 304.8 304.8 304.8 

16 304.8 406.4 304.8 304.8 304.8 304.8 

17 406.4 508 406.4 406.4 406.4 406.4 

18 609.6 609.6 508 508 609.6 609.6 

19 609.6 609.6 508 508 508 508 

20 1016 1016 1016 1016 1016 1016 

21 508 508 508 508 508 508 

22 304.8 304.8 304.8 304.8 304.8 304.8 

23 1016 1016 1016 1016 1016 1016 

24 762 762 762 762 762 762 

25 762 762 762 762 762 762 

26 508 508 508 508 508 508 

27 304.8 304.8 304.8 304.8 304.8 304.8 

28 304.8 304.8 304.8 304.8 304.8 304.8 

29 406.4 406.4 406.4 406.4 406.4 406.4 

30 304.8 406.4 406.4 304.8 304.8 304.8 

31 304.8 304.8 304.8 304.8 304.8 304.8 

32 406.4 304.8 304.8 406.4 406.4 406.4 

33 406.4 406.4 406.4 406.4 406.4 406.4 

34 609.6 508 508 609.6 609.6 609.6 

Cost 

(millions um) 

6.093 6.187 6.073 6.056 6.081 6.081 

(1) Solution obtained by Matías (2003). 

(2) Solution obtained by Savic and Walters (1997). 

(3) Solution obtained by Savic and Walters (1997). No pressure restrictions accomplished in 

EPANET2.  

(4) Solution obtained with a heuristic method (Cunha and Sousa, 1999). No pressure restrictions 

accomplished in EPANET2  

(5) Solution obtained by Reca and Martínez (2006).  

(6) Best solution obtained with the proposed method. 
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In the case of the New York tunnel network, the best solution obtained has a 

cost of 38.642 million um. The diameters of each pipe are listed in Table 3.  

A comparison of this solution with solutions obtained by other authors 

reveals that only one solution in the literature improves the results presented in 

this paper. Savic and Walters (1997) estimated an alternative solution with a cost 

of 37.130 million um. Although their solution does not meet the minimum 

pressure if solved by EPANET2, it complies with those constraints. The answer to 

this contradiction lies in the value of the Hazen-Williams coefficients using 

different versions of EPANET. The differences among various versions of 

EPANET affect flow rates and pressure in the nodes. The results by Savic were 

computed with the first version of EPANET; the difference in coefficients with 

respect to the second version prevents the solution from meeting the pressure 

constraints.  

 

Table 3. Solutions to the New York tunnel design problem. 

Pipe Savic(1) Goulter & Morgan(2) Solution PGA(3) 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 108 144 144 

8 0 0 0 

9 0 0 0 

10 0 0 0 

11 0 0 0 

12 0 0 0 

13 0 0 0 

14 0 0 0 

15 0 0 0 

16 96 96 96 

17 96 96 96 

18 84 84 84 

19 72 60 72 

20 0 0 0 

21 72 84 72 

Cost (millions um) 37.130 39.200 38.642 

(1) Solution obtained by Savic and Walters (1997). No pressure restrictions accomplished in 

EPANET2. 

(2) Solution obtained by Goulter and Morgan (1985).  

(3) Best solution obtained with the proposed method. 
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Statistical Analysis 

The characteristics of evolutionary algorithms do not guarantee with certainty 

that the optimal value of the system will be obtained. In addition, the obtained 

result sometimes contains certain variations. To analyze this randomness, it is 

necessary to statistically analyze the influence that the different parameters have 

on the proposed PGA in the solution of the analyzed network, with the purpose of 

optimizing them to increase the probability of obtaining the minimum. More than 

50000 simulations were conducted in this analysis. A computer system in parallel 

with 24 computers to perform the simulations was used.  

 

Influence of crossover and mutation probability  

Previous studies have indicated that the population size must be large enough to 

ensure diversity in the solutions. This first study addresses fixed populations of 

100 individuals, with the aim to optimize the crossover and mutation parameters. 

Another assessment was made from the best values obtained for both parameters, 

with the objective of studying the influence of population in the search for the best 

solution.  

A large number of simulations are useful in a statistical analysis to filter the 

results based on any criteria. Sorting them according to the final value obtained 

increases the probability of finding a better set of parameters.  

A histogram (Figure 4) that incorporates the accumulated probability of the 

obtained solutions was created to detect the more frequent solutions. Note that the 

histogram represents the results of all cases analyzed.  
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Fig. 4. Frequency and accumulated probability for the Hanoi network solutions. 

To determine the influence of mutation and crossover probability, the 

solution corresponding to 6.081 million monetary units was adopted as optimal 

design value. The success rate of PGA was defined as the probability of obtaining 

the optimal design value with every set of parameters. The representation of this 

success rate is shown in Figure 5. Note that there are combinations of values of 

the mutation probability and crossover that may never generate an optimal value. 

The maximum success rate is obtained approximately for a mutation probability 

of 3–4% and an approximate crossover probability of 90%.  
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Fig. 5. Probability of obtaining the minimum solution about the mutation and crossover 

probability of the Hanoi network.  

One of the general characteristics of the GA and the proposed PGA is the 

capacity to obtain not only one single optimal value but also to obtain a set of 

good solutions for the design problem. 

A new concept is introduced. In this study, a "good solution" is defined as 

a combination of solutions whose cost exceeds the minimum cost until it reaches a 

maximum cost of 3%. Thus, Figure 6 indicates the probability of obtaining a 

“good solution” for each combination of mutation and crossover probabilities. 
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Fig 6. Probability of obtaining a good solution about the mutation and crossover probabilities in 

the Hanoi network. 

Figure 6 lists the capacity of the method to not only obtain minimum values 

but also to frequently obtain values near the optimal defined value. The statistical 

analysis of the simulations verifies the robustness of the method. Thus, the effect 

of the crossover probability becomes smaller for the values of the best adapted 

mutation probabilities. This result is illustrated not only in the process of 

obtaining the minimum cost solution but also in the process of obtaining solutions 

near the optimal solution.  

For the Hanoi network, the adjustment of crossover and mutation operators 

can enhance the probability of obtaining the minimum (6.081 million um) from 2 

to 8%. Similarly, a good parameter setting increases the success rate of obtaining 

a good solution (<6.263 million um) to 68%.  

-
1

2
3

4
5

6
7

8
9

-

0%

10%

20%

30%

40%

50%

60%

70%

80%

- 10 20 30 40 50 60 70 80 90

Mutation (%)

S

u

c

c

e

s

s

r

a

t

e

Crossover (%)

70%-80%
60%-70%
50%-60%
40%-50%
30%-40%
20%-30%
10%-20%
0%-10%



17 

 

The design of the New York tunnel network is a less challenging problem. 

The number of possible design solutions is less than the number of possible 

design solutions in the Hanoi network. In this case, the number of simulations 

exceeds 8000, which enables 100 repetitions for each of the possible parametric 

combinations. The results obtained are considerably better than the results 

obtained for the Hanoi network because the lowest cost solution (38.642 million 

um) was obtained in approximately 12% of simulations.  

The analysis of genetic operators in the New York tunnel network confirmed 

the results obtained for the Hanoi network. Thus, the mutation operator is a key 

influence on the quality of the obtained design results. In this case, the optimal 

value of mutation is approximately 4–5%, whereas qualitatively the optimization 

process is slightly favored when the probability of crossover exceeds 50%.  

Under these conditions, the probability of obtaining the minimum design 

solution is approximately 27%. By extending the analysis to obtain good design 

solutions (<39.801 million um), the success rate increases to approximately 62%. 

The results show the usefulness of parameter setting because an improper choice 

of genetic operators drastically reduces the success rate of the optimization 

process.  

 

Influence of population size  

In the previous statistical analysis, the collected data demonstrate that certain 

combinations of crossover and mutation generate greater rates of success to obtain 

the optimal solution. The results are better in the analyzed networks for 

probabilities of mutation between 3 and 5% (a gene by chromosome). Conversely, 

we deduce from the analysis that the crossover probability does not exhibit a 

critical influence on the optimization process of the PGA when the population 

consists of 100 units.  

The present analysis considers the crossover and mutation settings proposed in 

the previous section as optimal parameters of design, aiming the study in the 

optimization of the initial population. More than 25000 simulations were 

performed with populations ranging from 25 to 225 individuals.  
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We adopted the solution that corresponds to a cost of 6,081 thousands of 

monetary units as the optimal value. With this fixed value, it has been analyzed 

the probability that the PGA obtains the optimal solution for each combination of 

the population values and probabilities of crossover. Figure 7 displays the 

representation of this rate of success in obtaining the minimum.  

 

Fig 7. Probability of obtaining a minimal solution about population size, fixed mutation and 

crossover probability for the Hanoi network. 

Figure 7 illustrates that as the initial population increases, the probability of 

obtaining the minimum value also increases. This increase becomes stable at a 

certain point. Initially, the best combination of values is populations of 200 with a 

probability of crossover of 10%. However, an evaluation will be necessary if this 

slight improvement is compensated with a reduction in calculation speed that 
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requires working with greater populations. Similarly, the algorithm is less 

effective for finding minimums for smaller populations of 50.  

Next, the New York tunnel network was analyzed. Figure 8 represents the 

success rate of minimum/good solutions in terms of population size and crossover 

probability. The probability of mutation varies between 4 and 5%, which is 

equivalent to the optimal setting for this network.  

 

 

Fig 8. Probability of obtaining a minimal/good solution about population size, fixed mutation and 

crossover probability in the NY tunnel networks.  

Figure 8 shows how the probability of finding better solutions increases with 

larger population sizes. In the range studied for the New York network, the results 

improve gradually without obtaining a maximum. Thus, for a population size of 

225 individuals, the probability of obtaining the minimum cost solution for the 

tunnel network in New York is approximately 35–40%, whereas the probability of 

obtaining a good solution increases to 75–80%.  
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Conclusions 

In this article a PGA method for design of water distribution networks has 

been presented. The use of a PGA-based method allows obtaining not only the 

minimum cost solution but also a set of different solutions very close to the 

optimal one. A “good solution” has been defined as a solution whose cost does not 

exceed the obtained minimum cost by 3%.  

The setting of PGA parameters improves the success rate of the method. 

Statistical analysis helps to determine this success rate in obtaining 

minimum/good design solutions with a PGA. Although it is not possible to 

precisely quantify the improvement in any network, it is possible to obtain 

reference values for improving the performance of the PGA. Thus, based on the 

statistical analysis of the results in the proposed model, it is possible to emphasize 

the following conclusions:  

- When the population of the PGA is fixed, it exhibits significant robustness 

in the values of the crossover probability. The mutation probability is a 

more sensitive parameter. It must fall between approximately 3 and 5% for 

the analyzed examples, which presumes to make the mutation of one gene 

by chromosome.  

- The success rate increases using the best set of parameters. For Hanoi 

network, the success rate increases from 2 to 8%, whereas in New York 

network it increases from 12 to 27%. The optimum combination of 

parameters is similar in both networks. However, this combination is valid 

only in the networks of this study. It would be necessary to verify the 

hypotheses in other models.  

- The results indicate that for a fixed population size, the influence of the 

crossover operator in the optimization process is less than the influence of 

the crossover operator in a traditional GA. In a PGA, the frequency of 

mutation is a key operator. The results obtained with the benchmark 

networks show that a mutation probability of approximately 1/NVD is a 

good starting point.  

- An increase in population size allows the availability of better solutions. 

But the greater the population size is, the longer the computational effort. 

It becomes necessary to reach a commitment solution. From a practical 
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point of view it can be better to obtain a set of good solutions instead the 

minimum one, reducing the computational effort.  

The proposed model seems valid for the water distribution networks 

optimization. The adjustments of its parameters were verified by statistical 

analysis. The methodology can be extrapolated to other optimization problems 

using the obtained results as a starting point.  
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