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Abstract

In this paper the problem of the determination of the preliminary orbit of a celestial
body is studied. We compare the results obtained by the classical Gauss’s method
with those obtained by some higher-order iterative methods for solving nonlinear
equations. The original problem of the determination of the preliminary orbits was
posed by means of a nonlinear equation. We modify this equation in order to obtain
a nonlinear system which describes the mentioned problem and we derive a new
officient iterative method for solving it. We also propose a new definition of optimal
order of convergence for iterative methods for solving nonlinear systems.

Key words: orbit determination, Gauss’s method, nonlinear systems, order of
convergence, efficiency index

1 Introduction

Finding the simple roots of a nonlinear equation f (x) = 0 or a nonlinear system F’ (z) = 0 are common
and important problems in science and engineering. In recent years, many modified iterative methods
have been developed to improve the local order of convergence of some classical methods such as
Newton, Potra-Ptdk, Chebyshev, Halley and Ostrowski’s methods.
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As the order of an iterative method increases, so does the number of functional evaluations per step.
The efficiency index (see [1]), gives a measure of the balance between those quantities, according to
the formula p/?, where p is the order of the method and d the number of functional evaluations per
step. Kung and Traub [2] conjecture that the order of convergence of any multipoint method without
memory cannot exceed the bound 2471, (called the optimal order). Ostrowski’s method [1], Jarrat’s
method [3] and King’s method [4] are some of optimal fourth order methods.

More recently, some optimal eight order methods have been proposed, see for example [5] and [6].
In [7] the authors derive an optimal eighth order method, denoted MOPS, starting from the well
known third order Potra-Ptédk’s method, by composing it with modified Newton’s iterations and
approximating several function evaluations in order to improve the efficiency.

In the multidimensional case, it is also important to take into account the number of operations
performed, since for each iteration a number of linear systems must be solved. We recall that the
number of products/quotiens that we need for solving m linear systems with the same matrix of
size n X n, by using LU factorization, is %n?’ + mn? — %n, n = 2,3,.... For this reason, in [§]
the authors defined the Computational Efficiency Index as CI = p'/(4t°P) wwhere op is the number
of products/quotients per iteration. For example, the computational efficiency index of Newton’s

1
method is C'Iy = 20/3n3+202+2/3)n

One of the most used methods to solve nonlinear systems is Jarratt’s method [3], of fourth order
of convergence. It uses two functional evaluations of the jacobian matrix and one of the nonlinear

function, per step. So, its efficiency index is I; = 42+*t= and its computational efficiency index is

1
Cl; = 4@/3n3+52+0/5n . The HMT method described in [9] uses four functional evaluations per step,
but only one of them involves the jacobian matrix, so the computational effort made is lower than

1
in Jarratt’s method. So, its efficiency index is Iy = 472+3» and its computational efficiency index
TN XS
18 Clgyr = 4@/3m3+4n2+(8/3)n

We have adapted the definition of optimal order of convergence to the case of iterative methods
to solve nonlinear systems. The extension to several variables of the conjecture of Kung and Traub
could be done in the following way:

Conjecture 1 Given a multipoint iterative method to solve monlinear systems of equations which
requires d = ki + ko functional evaluations per step such that ky of them correspond to the number

of evaluations of the jacobian matriz and ke to evaluations of the nonlinear function. We conjecture
that the optimal order for this method is 2F17%2=1 f by < k.

This concept of optimal order is an important tool to establish a classification between the iterative
methods for solving nonlinear systems. In this classification of methods, only Newton’s method can
be considered as an optimal method of order two. When we look at fourth-order methods, we find
that ko > ki, as in Jarratt’s, or k1 + ko > 3, as in HMT. It should be necessary to design fourth-order
methods with one functional evaluation of jacobian matrix and only two evaluations of the nonlinear
function. As far as we know, this methods does not exist yet. So, further effort must be made in the




future to get optimal methods to solve nonlinear systems. In this paper we propose a new iterative
method of order five that, not being optimal, has the best efficiency index of the methods we know
till now. It is very competitive since it only needs one evaluation of the jacobian matrix per iteration.

The rest of this paper is organized as follows: in Section 2 we present the new method, analyze its
convergence order and establish the comparison between known optimal (or not) iterative methods in
terms of efficiency indices, in Section 3 we present an application of this analysis with the preliminary
orbit determination of a satellite. Finally, in Section 4, different numerical tests confirm the theoretical
results.

2 Description and convergence analysis

Following the ideas described in [9], we propose a new iterative method, called M5, that uses the
same number of functional evaluations and operations as in the method shown in the mentioned
paper, but the order of convergence is higher:

g = g —SF e F ), 0
2+ = 2 — L O] [-16F (W) + F(=9)]

where y®) is the kth iteration of Newton’s method. We show in the next result that the order of
convergence of this method is 5. The proof is based on Taylor expansions around the solution, whose
notation was introduced in [8]. -

Theorem 1 Let F: D C R* — R” be sufficiently differentiable al each point of an open neighbor-
hood D of & € R™, that is a solution of the system F(z) = 0. Let us suppose that F'(x) is continuous
and nonsingular in T. Then, the sequence {JE(k)}kZO obtained using the iterative expression (1) con-
verges to T with order 5.

Proof: Taylor’s expansion of F' and F’ around Z gives
Fa®) = F'(@) [e® + Coe®* + C3e®’ + C1e®] + O(el™”)

F/(2®) = F'(2) [T +2Coe® +3C;¢®” + 4C1e®’ + 5C5e®] + 0(e®®),
‘where C, = (1/kD[F'(2)] 'F®(z), k= 2,3, ..., and e® = 2® — z. From this expression, we have
[F'(@®)] 7 = [I + Xoe® + X3e® + Xue®’] [F/(2)] 72 + O™, (2)
where Xz = —202, X3 = 4022 o 303 and X4 — MSCS ot 60203 + 60302 - 404

Therefore, the expression for y*¥) — 7 is

y® — 7 = Cpe®? 4 (205 — 202)e®® 1 (4C3 — 4C5C; — 3C5C, + 3C)e®* + 0(e®”)




and

F(y®) = F'(2) [Coe®’ + (25 —203)e®” + (5C5 — 4025 — 3C5C; + 3C1)e®] + 0(e)(3)

In same way, we obtain the expression of z(®) — Z and

F(z¥) = F'(z) [-4C2e®” + (1802 — 8C5)e® +
+(—45C3 + 36C5Cs + 27C5C; — 12C4)e®"] + 0(eM). (4)

Finally, by replacing (2), (3) and (4) in (1), we obtain

g®D) g = g® gz ZJ[F'(z®)] [—16F(y(k)) + F(z(k>)] = O(e(k)S).D

o] =

1 :
Therefore, the efficiency index of method M5 is Is5 = 5»%+3» and its computational efficiency index

Il
is CIys = 503 +n2+6/3n | In Figure 1 and Figure 2 we can see the respective indices of Newton,
Jarratt, HMT and M5 methods, for different sizes of the system.
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Fig. 1. Classical efficiency indices. Fig. 2. Computational efficiency indices.

3 An application: the preliminary orbit determination

The first step in orbit determination methods is to obtain preliminary orbits, as the motion analyzed
is under the premises of the two bodies problem. It is possible to set a two-dimensional coordinate
system (see Figure 3), where the X axis points to the perigee of the orbit, the closest point of the
elliptical orbit to the focus and center of the system, the Earth. In this picture the true anomaly v
and the eccentric anomaly E can be observed. In order to place this orbit in the celestial sphere and




determine completely the position of a body in the orbit, some elements (called orbital or keplerian
elements) must be determined.

Fig. 3. Size, shape and anomalies in orbital plane 2-dimensional coordinate system.

Some fundamental constants are the Earth gravitational constant, k = 0.07436574(e.r.)2 /min (see
[10]) and the gravitational parameter p = —— (MBarth +Mobject) = 1. Then, modified time variable
is introduced as 7 = k(ty — t1), where {; is an initial arbitrary time and ¢, is the observation time.

To estimate the velocity we can make use of the closed forms of the f and g series (see [10,11}),
f=1-13 |[ —cos (Ey — Ey)] and g =7 — @[(Eg — Ey) —sin (Ey — Ey)], so we can express the rate

respect two positions vectors and time as

ro— f-11

; ()

Y =

So, it is clear that, knowing two position vectors and its corresponding observational instants, the
main objective of the different methods that determine preliminary orbits is the calculation of the
semi-major axis, a, and the eccentric anomalies difference, Fs — Ey. When they have been calculated,
it is possible to obtain by (5) the velocity vector corresponding to one of the known position vectors
and, then, to obtain the orbital elements.

From the available input data, two position vectors and times for the observations, 7 can be immedi-
ately deduced. We can also obtain other intermediate results as the difference of true anomalies, (vo—

v1). This difference is calculated by cos (vp — 1) = 272 and sin (1p — 1) = F2H2=220 \/ 1 — cos? (v — vy

GREE] \ar y2—2201]
with positive sign for direct orbits, and negative for retrograde orbits. il
Once the difference of true anomalies is obtained from the position vectors and times, the specific
orbit determination method is used. In our particular case, we will introduce in the following section
the classical Gauss’ method and, thereafter, we will modify it in order to estimate the value of the

semi-major axis and eccentric anomalies by means of high-order iterative methods.




4 Modified Gauss’ method of orbit determination

Gauss’ method calculate a preliminary orbit of a celestial body by means of only two observations
(position vectors). It is based on the relation between the areas of the sector of the ellipse and the
respective of the triangle delimited by both position vectors, 71 y 75. The ratio sector-triangle can

be expressed as
VIPT viT ©)
rorisin (va — 1) 2y/ay/rary sin (£2521) cos (254’
(with (v — v1) # 7). This method holds also on the first

9 m
— 7
y l+z AT)

and second

y2(y o 1) = mX7 (8)
Gauss equations, where the constants of the problem (based on the data and the previously made
calculations and the difference of true anomalies), are

Ty 411 1 ol i (9)

NZE cos (251) "B [2./r277 cos (z%ﬂ)]?'
Moreover, also must be determined in the process the value of:

_ ey -
i <E2—_E_1) " X:Ez E.13 s;n_(Ez E1)'
4 sin® (22571)

l

(10)

With these equations we present two different schemes to solve the problem. One of them is the
classical method, which reduces first (eq. (7)) and second (eq. (8)) Gauss equations to a unique
nonlinear equation, y = 1 + X (I + ), solved by fixed point method. The other one is the proposed
modified Gauss scheme, which solve directly the nonlinear system formed by both Gauss equations.

The Gauss method has some limitations as the critical observation angles spread (v, — 11 = ), in
which case the denominator of equation (6) vanish. Moreover, it is known that this method is only
convergent to a coherent solution if the observation angles spread is less than 70°. The ratio y grows
with the angles spread, leading to an invalid solution, if it converges. So this method is suitable for
small spreads in observations, that is, observations which are close to each other.

The first variation proposed is to use high-order schemes in order to solve the unified nonlinear
equation in the classical Gauss method. In this case, we will use optimal methods of increasing order:
Newton and Ostrowski’s methods, and MO Fy of order 8.

Nevertheless, it is possible to make a different approach to the problem, solving the nonlinear system
formed by both Gauss equations, (7) and (8), whose unknowns are the ratio y and the difference of
eccentric anomalies, Fy — I;, with different higher order iterative methods. In particular we will use
Newton, Jarratt, HMT and Mb5 methods.




5 Numerical results

Numerical computations have been carried out using variable precision arithmetic, with 500 digits, in
MATLAB 7.1. The stopping criterion used is Hx(k“) — a:(k)H + HF(I(k)) H < 10729 therefore, we check
that the iterates succession converge to an approximation to the solution of the nonlinear system.
For every method, we count the number of iterations needed to reach the wished tolerance and the
elapsed time. The reference or test orbits we use can be found in [10].

1-dimensional 2-dimensional
Scheme | Iter. | e-time | Scheme | Iter. | e-time
(] 133 | 8.7156
N1 8 3.0753 N2 9 3.5372
J 5 3.4459
Os 5 2.7519
HMT 5 4.8358
MOPS 3 3.9366 M5 5 4.4452

Table 1
Comparison of different Gauss method schemes for a reference orbit

In Table 1 we show the results obtained by the classical (C), Newton (N), Ostrowsky (Os), MOPS,
Jarratt (J), HMT and M5 methods, for one and several variables, in the case of a test orbit with
spread of the observations SP = vy — 1y = 12.23°. Several conclusions can be made:

e In 1-dimensional case, the number of iterations and the elapsed time have been reduced in a great
amount. Indeed, the most efficient method is the optimal fourth-order method from Ostrowski.

e In the case of the system of Gauss equations, the number of iterations have also been reduced, but
the times of execution are slightly higher, due to the ill-conditioned system. Moreover, as the size
of the system is small, the effect of the evaluations and operations made with the jacobian matrix
are not very evident. In this case, the new method M5 appears to be quite efficient.

e From a global point of view, 1-dimensional Ostrowski’s method seems to be the most efficient to
solve this particular problem.

Due to limitations in number of digits and format in observations data, and to the last phase of
calculations, some accuracy is lost, but it is hard to determine differences in errors in the presented
schemes. In fact, the maximum exact error is round about 1071%,

In Table 2, we can compare the number of iterations needed for different test orbits with different
angles spread in observations. Our aim is to realize that the limitation of angles spread is still present,
but overall process is made faster, not increasing iterations to find a solution in cases with bigger
difference of true anomalies. Nevertheless, in these cases a higher sensitivity is observed in the 1-
dimensional case, as methods of order 4 and 8 usually do not converge. In this respect, the Modified
Gauss schemes that use the system of Gauss equations (egs. (7) and (8)) appear to be more stable




Scheme | SP =12.23° | SP =22.06° | SP = 31.46°

C 133 188 250
N1 8 8 8
Os 5 NC 5

MOPS8 3 NC NC
N2 9 8 9
J 5 5 5
HMT ) 5 )
M5 5 5 5

Table 2
Iterations needed for different spreads

and competitive.
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