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The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by
Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it
satisfies Kung andTraub’s conjecture relevant to construction optimalmethodswithoutmemory.Moreover, some concretemethods
of this class are shown and implemented numerically, showing their applicability and efficiency.

1. Introduction

Multipoint methods for solving nonlinear equations 𝑓(𝑥) =
0, where 𝑓 : 𝐷 ⊂ 𝑅 → 𝑅, possess an important advantage
since they overcome theoretical limits of one-point methods
concerning the convergence order and computational effi-
ciency [1–5].

During the last years, there have been many attempts
to construct optimal three-step iterative methods without
memory for solving nonlinear equations. Indeed, Bi et al.
[6, 7] are pioneers in this case, after Kung and Traub [8].
Some other optimal methods are due to Cordero et al. [9–
11], Dzunic et al. [12, 13], Heydari et al. [14], Geum and Kim
[15–17], Kou et al. [18], Liu and Wang [19–21], Sharma and
Sharma [22], Soleimani et al. [4], Soleymani [23], Soleymani
et al. [24–27],Thukral [28–30], andThukral andPetković [31].
Recently, iterative methods for root finding have been used
for finding matrix inversion arising from linear systems; for
more details consultWang [32], Babajee et al. [33], Montazeri
et al. [34], Soleymani [35, 36],Thukral [37], and the references
therein.

In this paper we present a new optimal class of three-step
methods without memory, which employs the idea of weight
functions in the second and third steps. The order of this
class is eight requiring four functional evaluations per step

and therefore it supports Kung andTraub’s conjecture [8].The
proposed class includes the Bi et al. methods [6, 7].

In order to design the new methods, we will use the
divided differences. Let 𝑓(𝑥) be a function defined on
an interval 𝐼, where 𝐼 is the smallest interval containing
𝑘 + 1 distinct nodes 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
. The divided difference

𝑓[𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑘
]with 𝑘th-order is defined as follows:𝑓[𝑥

0
] =

𝑓(𝑥
0
),

𝑓 [𝑥
0
] =

𝑓 [𝑥
1
] − 𝑓 [𝑥

0
]

𝑥
1
− 𝑥
0

, . . . , 𝑓 [𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑘
]

=
𝑓 [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
] − 𝑓 [𝑥

0
, 𝑥
1
, . . . 𝑥
𝑘−1

]

𝑥
𝑘
− 𝑥
0

.

(1)

It is clear that the divided difference 𝑓[𝑥
0
, 𝑥
1
, . . . 𝑥
𝑘
] is a

symmetric function of its arguments𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑘
.Moreover,

if we assume that 𝑓 ∈ 𝐶(𝑘+1)(𝐼
𝑥
), where 𝐼

𝑥
is the smallest

interval containing the nodes 𝑥
0
, 𝑥
1
, . . . 𝑥
𝑘
, and 𝑥, then

𝑓[𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑘
, 𝑥] = 𝑓(𝑘+1)(𝜉)/(𝑘 + 1)! for a suitable 𝜉 ∈ 𝐼

𝑥
.

Specially, if 𝑥
0
= 𝑥
1
= ⋅ ⋅ ⋅ = 𝑥

𝑘
= 𝑥, then

𝑓 [𝑥, 𝑥, . . . , 𝑥, 𝑥] =
𝑓(𝑘+1) (𝑥)

(𝑘 + 1)!
. (2)
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Moreover, we recall the so-called efficiency index defined by
Ostrowski [38] as EI = 𝑝1/𝑛, where 𝑝 is the order of conver-
gence and 𝑛 is the total number of functional evaluations per
iteration.

2. Main Result: Development and Convergence
Analysis of the New Methods

It is well known that Newton’s method converges quadrati-
cally under standard conditions. To obtain a higher order of
convergence andhigher efficiency index than that ofNewton’s
scheme, we compose Newton’s method twice as follows:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝑧

𝑛
= 𝑦
𝑛
−
𝑓 (𝑦
𝑛
)

𝑓 (𝑦
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)
, 𝑛 = 0, 1, 2, . . . .

(3)

As this scheme is eighth-order convergent but its efficiency is
poor, we need to reduce the number of functional evaluations.
In the third step, 𝑓(𝑧

𝑛
) can be approximated in a similar way

as in [6].
Consider

𝑓 (𝑧
𝑛
) ≈ 𝑓 [𝑧

𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
) . (4)

Also, a “frozen” derivative can be used in the second step and
adequate weight functions will improve the efficiency in the
second and last steps. So, the following three-step methods
are proposed:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝑧

𝑛
= 𝑦
𝑛
− 𝑔 (𝑠

𝑛
)
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑠
𝑛
=
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
− ℎ (𝑡
𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
,

𝑡
𝑛
=
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
.

(5)

It is clear that the proposed methods by (5) require
only four functional evaluations per iteration, while they
are not eighth-order methods, in general. To recover the
optimal eighth-order, we find some suitable conditions on the
introduced weight functions 𝑔(𝑠

𝑛
) and ℎ(𝑡

𝑛
).

To find the weight functions 𝑔 and ℎ in (5) providing
order eight, we will use the method of undetermined coef-
ficients and Taylor’s series about 0, since 𝑡

𝑛
→ 0, 𝑠

𝑛
→ 0,

when 𝑛 → ∞.
Let us consider

𝑔 (𝑠
𝑛
) ≈ 𝑔 (0) + 𝑔


(0) 𝑠
𝑛
+ 𝑔 (0)

𝑠2
𝑛

2
,

ℎ (𝑡
𝑛
) ≈ ℎ (0) + ℎ


(0) 𝑡
𝑛
.

(6)

The following result states suitable conditions for proving
that the new class has eighth-order of convergence.

Theorem 1. Assume that 𝑓 is a sufficiently differentiable real
function. Let one suppose that 𝛼 ∈ 𝐷 is a simple zero of 𝑓. If
the initial estimation 𝑥

0
is close enough to 𝛼, then the sequence

{𝑥
𝑛
} generated by any method of the family (5) converges to 𝛼

with eighth-order of convergence if 𝑔 and ℎ are real sufficiently
differentiable functions satisfying 𝑔(0) = ℎ(0) = 1, 𝑔(0) =
ℎ(0) = 2, and 𝑔(0) = 10.

Proof. Let us introduce the following notations:

𝑒
𝑛
= 𝑥
𝑛
− 𝛼, 𝑒

𝑦
𝑛

= 𝑦
𝑛
− 𝛼, 𝑒

𝑧
𝑛

= 𝑧
𝑛
− 𝛼,

𝑒
𝑛+1

= 𝑥
𝑛+1

− 𝛼, 𝑐
𝑖
=
1

𝑖!

𝑓(𝑖) (𝛼)

𝑓 (𝛼)
, 𝑖 ≥ 2.

(7)

Using Taylor’s expansion and taking into account 𝑓(𝛼) = 0,
we have

𝑓 (𝑥
𝑛
) = 𝑓 (𝛼) [𝑒

𝑛
+ 𝑐
2
𝑒2
𝑛
+ 𝑐
3
𝑒3
𝑛
+ 𝑐
4
𝑒4
𝑛

+ 𝑐
5
𝑒5
𝑛
+ 𝑐
6
𝑒6
𝑛
+ 𝑐
7
𝑒7
𝑛
+ 𝑐
8
𝑒8
𝑛
] + 𝑂 (𝑒9

𝑛
) .

(8)

Also by direct differentiation, we obtain

𝑓 (𝑥
𝑛
)

= 𝑓 (𝛼) [1 + 2𝑐
2
𝑒
𝑛
+ 3𝑐
3
𝑒2
𝑛
+ 4𝑐
4
𝑒3
𝑛
+ 5𝑐
5
𝑒4
𝑛

+6𝑐
6
𝑒5
𝑛
+ 7𝑐
7
𝑒6
𝑛
+ 8𝑐
8
𝑒7
𝑛
] + 𝑂 (𝑒8

𝑛
) .

(9)

From (8) and (9) we get

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

= 𝑒
𝑛
− 𝑐
2
𝑒2
𝑛
+ 2 (𝑐2
2
− 𝑐
3
) 𝑒3
𝑛
+ (7𝑐
2
𝑐
3
− 4𝑐3
2
− 3𝑐
4
) 𝑒4
𝑛

+ (8𝑐4
2
− 20𝑐2
2
𝑐
3
+ 6𝑐2
3
+ 10𝑐
2
𝑐
4
− 4𝑐
5
) 𝑒5
𝑛

+ [−16𝑐5
2
+ 52𝑐3
2
𝑐
3
− 28𝑐2
2
𝑐
4
+ 17𝑐
3
𝑐
4

+𝑐
2
(−33𝑐2

3
+ 13𝑐
5
) − 5𝑐

6
] 𝑒6
𝑛

+ 2 [16𝑐6
2
− 64𝑐4
2
𝑐
3
− 9𝑐3
3

+ 36𝑐3
2
𝑐
4
+ 6𝑐2
4
+ 9𝑐2
2
(7𝑐2
3
− 2𝑐
5
)

+11𝑐
3
𝑐
5
+ 𝑐
2
(−46𝑐

3
𝑐
4
+ 8𝑐
6
) − 3𝑐
7
] 𝑒7
𝑛

+ [−64𝑐7
2
+ 304𝑐5

2
𝑐
3
− 176𝑐4

2
𝑐
4

− 75𝑐2
3
𝑐
4
+ 31𝑐
4
𝑐
5
+ 𝑐3
2
(−408𝑐2

3
+ 92𝑐
5
)

+ 4𝑐2
2
(87𝑐
3
𝑐
4
− 11𝑐
6
) + 27𝑐

3
𝑐
6

+𝑐
2
(135𝑐3
3
− 64𝑐2
4
− 118𝑐

3
𝑐
5
+ 19𝑐
7
) − 7𝑐

8
]

× 𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) .

(10)
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Hence,

𝑒
𝑦
𝑛

= 𝑐
2
𝑒2
𝑛
+ 2 (−𝑐2

2
+ 𝑐
3
) 𝑒3
𝑛
+ (−7𝑐

2
𝑐
3
+ 4𝑐3
2
+ 3𝑐
4
) 𝑒4
𝑛

− (8𝑐4
2
− 20𝑐2
2
𝑐
3
+ 6𝑐2
3
+ 10𝑐
2
𝑐
4
− 4𝑐
5
) 𝑒5
𝑛

− [−16𝑐5
2
+ 52𝑐3
2
𝑐
3
− 28𝑐2
2
𝑐
4

+17𝑐
3
𝑐
4
+ 𝑐
2
(−33𝑐2

3
+ 13𝑐
5
) − 5𝑐

6
] 𝑒6
𝑛

− 2 [16𝑐6
2
− 64𝑐4
2
𝑐
3
− 9𝑐3
3
+ 36𝑐3
2
𝑐
4
+ 6𝑐2
4

+ 9𝑐2
2
(7𝑐2
3
− 2𝑐
5
) + 11𝑐

3
𝑐
5

+𝑐
2
(−46𝑐

3
𝑐
4
+ 8𝑐
6
) − 3𝑐
7
] 𝑒7
𝑛

− [−64𝑐7
2
+ 304𝑐5

2
𝑐
3
− 176𝑐4

2
𝑐
4

− 75𝑐2
3
𝑐
4
+ 31𝑐
4
𝑐
5
+ 𝑐3
2
(−408𝑐2

3
+ 92𝑐
5
)

+ 4𝑐2
2
(87𝑐
3
𝑐
4
− 11𝑐
6
) + 27𝑐

3
𝑐
6

+𝑐
2
(135𝑐3
3
− 64𝑐2
4
− 118𝑐

3
𝑐
5
+ 19𝑐
7
) − 7𝑐

8
]

× 𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) .

(11)

Similar to (8),

𝑓 (𝑦
𝑛
)

= 𝑓 (𝛼) [𝑐
2
𝑒2
𝑛
+ 2 (−𝑐2

2
+ 𝑐
3
) 𝑒3
𝑛
+ (5𝑐3
2
− 7𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒4
𝑛

− 2 (6𝑐4
2
− 12𝑐2
2
𝑐
3
+ 3𝑐2
3
+ 5𝑐
2
𝑐
4
− 2𝑐
5
) 𝑒5
𝑛

+ (28𝑐5
2
− 73𝑐3
2
𝑐
3
+ 34𝑐2
2
𝑐
4
− 17𝑐
3
𝑐
4

+𝑐
2
(37𝑐2
3
− 13𝑐
5
) + 5𝑐

6
)] 𝑒6
𝑛
+ 𝑂 (𝑒7

𝑛
) .

(12)

Moreover, taking into account (8), (9), and (12),

𝑠
𝑛
=
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

= 𝑐
2
𝑒
𝑛
+ (−3𝑐2

2
+ 2𝑐
3
) 𝑒2
𝑛
+ (8𝑐3
2
− 10𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒3
𝑛

+ (−20𝑐4
2
+ 37𝑐2
2
𝑐
3
− 8𝑐2
3
− 14𝑐
2
𝑐
4
) 𝑒4
𝑛

+ (48𝑐5
2
− 118𝑐3

2
𝑐
3
+ 55𝑐
2
𝑐2
3
+ 51𝑐2
2
𝑐
4
− 22𝑐
3
𝑐
4
) 𝑒5
𝑛

× (−112𝑐6
2
+ 344𝑐4

2
𝑐
3
− 252𝑐2

2
𝑐2
3
+ 26𝑐3
3

−163𝑐3
2
𝑐
4
+ 150𝑐

2
𝑐
3
𝑐
4
− 15𝑐2
4
) 𝑒6
𝑛
+ 𝑂 (𝑒7

𝑛
) ,

(13)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
= 𝑐
2
𝑒2
𝑛
+ (−4𝑐2

2
+ 2𝑐
3
) 𝑒3
𝑛

+ (13𝑐3
2
− 14𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒4
𝑛

+ (−38𝑐4
2
+ 64𝑐2
2
𝑐
3
− 20𝑐
2
𝑐
4
+ 4 (−3𝑐2

3
+ 𝑐
5
))

× 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) .

(14)

By using Taylor’s expansion around zero

𝑔 (𝑠
𝑛
) ≈ 𝑔 (0) + 𝑔


(0) 𝑠
𝑛
+
𝑔 (0)

2
𝑠2
𝑛
, (15)

and by using (11)–(15),

𝑒
𝑧
𝑛

= 𝐴
2
𝑒2
𝑛
+ 𝐴
3
𝑒3
𝑛
+ 𝐴
4
𝑒4
𝑛
+ 𝑂 (𝑒5

𝑛
) , (16)

where𝐴
2
= (1−𝑔(0))𝑐

2
,𝐴
3
= ((−2+4𝑔(0)−𝑔(0))𝑐2

2
−2(−1+

𝑔(0))𝑐
3
), and

𝐴
4
= ((4 − 13𝑔 (0) + 7𝑔


(0) −

𝑔 (0)

2
) 𝑐3
2

+ (−7 + 14𝑔 (0) − 4𝑔

(0)) 𝑐
2
𝑐
3
− 3 (−1 + 𝑔 (0)) 𝑐

4
) .

(17)

We now need to vanish 𝐴
2
and 𝐴

3
not only for making

the first two steps optimal but also for simplifying subsequent
relations. It is enough to ask the weight function 𝑔 to satisfy
conditions 𝑔(0) = 1 and 𝑔(0) = 2. Then

𝑒
𝑧
𝑛

= ((5 −
𝑔 (0)

2
) 𝑐3
2
− 𝑐
2
𝑐
3
) 𝑒4
𝑛
+ 𝑂 (𝑒5

𝑛
) . (18)

For the third step, we also require

𝑡
𝑛
=
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)

= ((5 −
𝑔 (0)

2
) 𝑐3
2
− 𝑐
2
𝑐
3
) 𝑒3
𝑛

+ ((−41 +
11𝑔 (0)

2
) 𝑐4
2

−3 (−11 + 𝑔 (0)) 𝑐
2

2
𝑐
3
− 2𝑐2
3
− 2𝑐
2
𝑐
4
) 𝑒4
𝑛
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+ [(211 −
73𝑔 (0)

2
) 𝑐5
2

+
3

2
(−200 + 27𝑔 (0)) 𝑐

3

2
𝑐
3

+ 3 (23 − 2𝑔 (0)) 𝑐
2
𝑐2
3

+
1

2
(100 − 9𝑔 (0)) 𝑐

2

2
𝑐
4
− 7𝑐
3
𝑐
4
] 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) ,

(19)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] = 𝑓 (𝛼) [1 + 𝑐

2

2
𝑒2
𝑛
+ 2𝑐
2
(−𝑐2
2
+ 𝑐
3
) 𝑒3
𝑛

−
1

2
𝑐
2
((−18 + 𝑔 (0)) 𝑐

3

2
+ 14𝑐
2
𝑐
3
− 6𝑐
4
)

×𝑒4
𝑛
] + 𝑂 (𝑒5

𝑛
) ,

(20)

𝑓 [𝑧
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
]

= 𝑓 (𝛼) [𝑐
2
+ 2𝑐
3
𝑒
𝑛
+ 3𝑐
4
𝑒2
𝑛

−
1

2
(𝑐
2
𝑐
3
((𝑔 (0) − 10) 𝑐

2

2
+ 2𝑐
3
)) 𝑒4
𝑛
] + 𝑂 (𝑒5

𝑛
) .

(21)

Now let

ℎ (𝑡
𝑛
) ≈ ℎ (0) + ℎ


(0) 𝑡
𝑛
. (22)

Taking into account relations (19)–(22) and the third step of
(5), we get

𝑒
𝑛+1

= 𝑒
𝑧
𝑛

− ℎ (𝑡
𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑒
𝑧
𝑛

− 𝑒
𝑦
𝑛

)

= 𝐵
4
𝑒4
𝑛
+ 𝐵
5
𝑒5
𝑛
+ 𝐵
6
𝑒6
𝑛
+ 𝐵
7
𝑒7
𝑛
+ 𝐵
8
𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) ,

(23)

where 𝐵
4
= (1/2)(−1 + ℎ(0))𝑐

2
((−10 + 𝑔(0))𝑐2

2
+ 2𝑐
3
). For

the sake of simplicity, we first vanish this coefficient and
afterwards the other coefficients will be given in the same
strategy. Needless to say, ℎ(0) = 1 implies the desired result.
Then, imposing this condition, it follows at once that 𝐵

4
=

𝐵
5
= 𝐵
6
= 0 and

𝐵
7
= −

1

4
(𝑐2
2
((−10 + 𝑔 (0)) 𝑐

2

2
+ 2𝑐
3
)

× ((−10 + 𝑔 (0)) ℎ

(0) 𝑐
2

2
+2 (−2 + ℎ (0)) 𝑐

3
) ) .

(24)

Finally, taking 𝑔(0) = 10 and ℎ(0) = 2, we obtain

𝑒
𝑛+1

= 𝑐2
2
𝑐
3
(28𝑐3
2
+ 2𝑐
2
𝑐
3
− 𝑐
4
) 𝑒8
𝑛
+ 𝑂(𝑒

𝑛
)
9

, (25)

which shows that under the provided conditions on weight
functions 𝑔 and ℎ the method (5) has eighth-order conver-
gence and it is optimal. This finishes the proof.

According to the above analysis, we can obtain the fol-
lowing special cases.

Corollary 2. If one sets 𝑔(𝑠
𝑛
) = (1 + 𝛽𝑠

𝑛
)/(1 + (𝛽 − 2)𝑠

𝑛
) =

(𝑓(𝑥
𝑛
) + 𝛽𝑓(𝑦

𝑛
))/(𝑓(𝑥

𝑛
) + (𝛽 − 2)𝑓(𝑦

𝑛
)), scheme (14) in [6] is

obtained.
Consider

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) + 𝛽𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) + (𝛽 − 2) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝛽 =

−1

2

𝑥
𝑛+1

= 𝑧
𝑛
− ℎ (𝑡
𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
,

𝑡
𝑛
=
𝑓 (𝑧
𝑛
)

𝑓 (𝑥
𝑛
)
.

(26)

Corollary 3. If one sets ℎ(𝑡
𝑛
) = (1 + 𝜃𝑡

𝑛
)/(1 + (𝜃 − 2)𝑡

𝑛
) =

(𝑓(𝑥
𝑛
) + 𝜃𝑓(𝑧

𝑛
))/(𝑓(𝑥

𝑛
) + (𝜃 − 2)𝑓(𝑧

𝑛
)), 𝜃 ∈ 𝑅, our proposed

method becomes scheme (13) in [7].
Consider

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
− 𝑔 (𝑠

𝑛
)
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝑠

𝑛
=
𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) + 𝜃𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
) + (𝜃 − 2) 𝑓 (𝑧

𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(27)

In addition to those fromCorollaries 2 and 3, some simple
but efficient weight functions which satisfy conditions of
Theorem 1 are

𝑔
1
(𝑠
𝑛
) =

2 − 𝑠
𝑛

2 − 5𝑠
𝑛

=
2𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

2𝑓 (𝑥
𝑛
) − 5𝑓 (𝑦

𝑛
)
,

𝑔
2
(𝑠
𝑛
) =

1

1 − 2𝑠
𝑛
− 𝑠2
𝑛

=
𝑓(𝑥
𝑛
)
2

𝑓(𝑥
𝑛
)
2

− 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) − 𝑓(𝑦

𝑛
)
2
,

𝑔
3
(𝑠
𝑛
) = 1 + 2𝑠

𝑛
+ 5𝑠2
𝑛

=
𝑓(𝑥
𝑛
)
2

+ 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) + 5𝑓(𝑦

𝑛
)
2

𝑓(𝑥
𝑛
)
2

,
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ℎ
1
(𝑡
𝑛
) =

1 + 𝜃𝑡
𝑛

1 + (𝜃 − 2) 𝑡
𝑛

=
𝑓 (𝑥
𝑛
) + 𝜃𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
) + (𝜃 − 2) 𝑓 (𝑧

𝑛
)
, 𝜃 ∈ 𝑅,

ℎ
2
(𝑡
𝑛
) = 1 + 2𝑡

𝑛
=
𝑓 (𝑥
𝑛
) + 2𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
)

.

(28)

3. Some Concrete Methods

In this section, we put forward some particular three-step
methods based on the general class designed in this work.

3.1. Methods 1 and 2. Firstly, by combining the methods (26)
and (27),

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
) + 𝛽𝑓 (𝑦

𝑛
)

𝑓 (𝑥
𝑛
) + (𝛽 − 2) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝛽 =

−1

2
,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) + 𝜃𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
) + (𝜃 − 2) 𝑓 (𝑧

𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
, 𝜃 ∈ 𝑅.

(29)

Consequently, a special case of (29) appears when 𝑔
1
(𝑠
𝑛
) =

(2 − 𝑠
𝑛
)/(2 − 5𝑠

𝑛
) = (2𝑓(𝑥

𝑛
) − 𝑓(𝑦

𝑛
))/(2𝑓(𝑥

𝑛
) − 5𝑓(𝑦

𝑛
)) and

ℎ
1
(𝑡
𝑛
) = 1/(1 − 2𝑡

𝑛
) = 𝑓(𝑥

𝑛
)/(𝑓(𝑥

𝑛
) − 2𝑓(𝑧

𝑛
)), (𝜃 = 0):

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
2𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

2𝑓 (𝑥
𝑛
) − 5𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝛽 =

−1

2

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑧

𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(30)

3.2. Method 3. Now, let us substitute 𝑔
1
(𝑠
𝑛
) = (2 − 𝑠

𝑛
)/(2 −

5𝑠
𝑛
) = (2𝑓(𝑥

𝑛
) − 𝑓(𝑦

𝑛
))/(2𝑓(𝑥

𝑛
) − 5𝑓(𝑦

𝑛
)) and ℎ

2
(𝑡
𝑛
) = 1 +

2𝑡
𝑛
= (𝑓(𝑥

𝑛
)+2𝑓(𝑧

𝑛
))/𝑓(𝑥

𝑛
) into (5). It gives us the following

iterative scheme:

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
2𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
)

2𝑓 (𝑥
𝑛
) − 5𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
, 𝛽 =

−1

2
,

𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑥
𝑛
) + 2𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(31)

3.3. Method 4. Let us consider 𝑔
2
(𝑠
𝑛
) = 1/(1 − 𝑡

𝑛
)2 =

𝑓(𝑥
𝑛
)2/(𝑓(𝑥

𝑛
)2 − 2𝑓(𝑥

𝑛
)𝑓(𝑦
𝑛
) − 𝑓(𝑦

𝑛
)2) and ℎ

1
(𝑡
𝑛
) = 1/(1 −

2𝑡
𝑛
) = 𝑓(𝑥

𝑛
)/(𝑓(𝑥

𝑛
) − 2𝑓(𝑧

𝑛
)), (𝜃 = 0). By using them in (5),

we have

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓(𝑥
𝑛
)
2

𝑓(𝑥
𝑛
)
2

− 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) − 𝑓(𝑦

𝑛
)
2

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑧

𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(32)

3.4. Method 5. If we consider 𝑔
2
(𝑠
𝑛
) = 1/(1 − 𝑡

𝑛
)2 =

𝑓(𝑥
𝑛
)2/(𝑓(𝑥

𝑛
)2−2𝑓(𝑥

𝑛
)𝑓(𝑦
𝑛
)−𝑓(𝑦

𝑛
)2) and ℎ

2
(𝑡
𝑛
) = 1+2𝑡

𝑛
=

(𝑓(𝑥
𝑛
) + 2𝑓(𝑧

𝑛
))/𝑓(𝑥

𝑛
) in (5), we have

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓(𝑥
𝑛
)
2

𝑓(𝑥
𝑛
)
2

− 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) − 𝑓(𝑦

𝑛
)
2

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑥
𝑛
) + 2𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(33)

3.5. Method 6. When 𝑔
3
(𝑠
𝑛
) = 1 + 2𝑠

𝑛
+ 5𝑠2
𝑛
= (𝑓(𝑥

𝑛
)2 +

2𝑓(𝑥
𝑛
)𝑓(𝑦
𝑛
) + 5𝑓(𝑦

𝑛
)2)/𝑓(𝑥

𝑛
)2 and ℎ

1
(𝑡
𝑛
) = 1/(1 − 2𝑡

𝑛
) =

𝑓(𝑥
𝑛
)/(𝑓(𝑥

𝑛
) − 2𝑓(𝑧

𝑛
)), (𝜃 = 0) in (5), we get

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
𝑓(𝑥
𝑛
)
2

+ 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) + 5𝑓(𝑦

𝑛
)
2

𝑓(𝑥
𝑛
)
2

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑧

𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(34)
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3.6. Method 7. Finally, if we consider 𝑔
3
(𝑠
𝑛
) = 1 + 2𝑠

𝑛
+ 5𝑠2
𝑛
=

(𝑓(𝑥
𝑛
)2 + 2𝑓(𝑥

𝑛
)𝑓(𝑦
𝑛
) + 5𝑓(𝑦

𝑛
)2)/𝑓(𝑥

𝑛
)2 and ℎ

2
(𝑡
𝑛
) = 1 +

2𝑡
𝑛
= (𝑓(𝑥

𝑛
) + 2𝑓(𝑧

𝑛
))/𝑓(𝑥

𝑛
) in (5), we have

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−
𝑓(𝑥
𝑛
)
2

+ 2𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) + 5𝑓(𝑦

𝑛
)
2

𝑓(𝑥
𝑛
)
2

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−
𝑓 (𝑥
𝑛
) + 2𝑓 (𝑧

𝑛
)

𝑓 (𝑥
𝑛
)

×
𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)
.

(35)

All the methods (29)–(35) require three functional eval-
uations, namely, 𝑓(𝑥

𝑛
), 𝑓(𝑦

𝑛
), and 𝑓(𝑧

𝑛
), and one of the first

derivative, namely, 𝑓(𝑥
𝑛
), per iteration. Therefore, they are

optimal in the sense of Kung and Traub’s conjecture for 𝑛 = 4
with 𝑝 = 23. Thus, if we assume that all the evaluations have
the same cost, then EI = 1.682.

4. Numerical Implementation
and Comparisons

This section concerns numerical results of the proposed
methods (30)–(35). Moreover, they are compared with Kung-
Traub’s method presented in [8], whose iterative expression is

𝑦
𝑛
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑥
𝑛
)

(𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
))
2

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
− (

1

𝑓 (𝑥
𝑛
) − 𝑓 (𝑧

𝑛
)
(

1

𝑓 [𝑥
𝑛
, 𝑧
𝑛
]
−

1

𝑓 (𝑥
𝑛
)
)

−
𝑓 (𝑦
𝑛
)

(𝑓 (𝑥
𝑛
) − 𝑓 (𝑦

𝑛
))
2

𝑓 (𝑥
𝑛
)
)

×
𝑓2 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
)
.

(36)

Numerical results have been carried out using Mathematica
8 with 400 digits of precision. In each table, ACOC stands
for Approximated Computational Order of Convergence (see
[39]), which is given by

𝑝 ≈ ACOC =
ln (𝑥𝑛+1 − 𝑥𝑛


𝑥𝑛 − 𝑥𝑛−1


−1

)

ln (𝑥𝑛 − 𝑥𝑛−1

𝑥𝑛−1 − 𝑥𝑛−2


−1

)
. (37)

Table 1: Numerical results with 𝑓
1
.

Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| ACOC

(30) 0.1378 (−5) 0.7505 (−46) 0.5824 (−368) 8.0000
(31) 0.1487 (−5) 0.1386 (−45) 0.7890 (−366) 8.0000
(32) 0.1304 (−5) 0.6560 (−46) 0.2691 (−368) 8.0000
(33) 0.1417 (−5) 0.1272 (−45) 0.5365 (−366) 8.0000
(34) 0.3811 (−6) 0.2544 (−49) 0.1005 (−394) 8.0000
(35) 0.2083 (−6) 0.2029 (−51) 0.1641 (−411) 8.0000
(36) 0.6210 (−5) 0.1433 (−39) 0.1151 (−316) 8.0000

Table 2: Numerical results with 𝑓
2
.

Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| ACOC

(30) 0.2118 (−3) 0.6382 (−22) 0.4314 (−170) 8.0000
(31) 0.1311 (−3) 0.1375 (−23) 0.2004 (−183) 8.0000
(32) 0.2182 (−3) 0.9901 (−22) 0.1771 (−168) 8.0000
(33) 0.1358 (−3) 0.2225 (−23) 0.1150 (−181) 8.0000
(34) 0.4679 (−3) 0.2262 (−18) 0.7049 (−141) 7.9999
(35) 0.3139 (−3) 0.9409 (−20) 0.6319 (−152) 7.9999
(36) 0.2165 (−3) 0.1415 (−23) 0.4944 (−185) 7.9990

Among many test problems, the following four examples
are considered:

𝑓
1
(𝑥) = (𝑥 − 2) (𝑥

6 + 𝑥3 + 1) 𝑒−𝑥
2

, 𝛼 = 2, 𝑥
0
= 1.8,

𝑓
2
(𝑥) = 𝑥

2 − (1 − 𝑥)
25, 𝛼 = 0.1437392 . . . , 𝑥

0
= 2.5,

𝑓
3
(𝑥) =

12

∏
𝑘=1

(𝑥 − 𝑘) , 𝛼 = 5, 𝑥
0
= 5.3,

𝑓
4
(𝑥) = 𝑒

𝑥 sin (5𝑥) − 2, 𝛼 = 1.3639 . . . , 𝑥
0
= 1.2.

(38)

From Table 1, it can be seen that all methods work
perfectly. Furthermore, we can see that results frommethods
(34) and (35) are specially good. Table 2 shows that numerical
results are in accordance with their theory well enough. In
this example, methods (34) and (35) do not have as good
behavior as in Example 1. Table 3 represents an important
case. Although methods (34) and (35) are working very
well in Example 1, however, they do not produce convergent
iterations here. It should be remarked that these divergent
sequences show that some methods work better in some
cases, while they may not do it in other ones.

Table 4 shows that all the methods work in concordance
with theoretical results.

5. Conclusion

A new optimal class of three-step methods without memory
has been obtained by generalizing Bi et al. families. This class
uses four functional evaluations per iteration and it is optimal
in the sense of Kung and Traub’s conjecture. Some elements
of the family have been presented and they have been tested
in order to show its applicability and efficiency, showing that
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Table 3: Numerical results with 𝑓
3
.

Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| ACOC

(30) 0.2222 (−2) 0.5371 (−22) 0.5914 (−179) 8.0012
(31) 0.2197 (−2) 0.4897 (−22) 0.2824 (−179) 8.0012
(32) 0.8787 (−1) 0.2317 (−9) 0.3280 (−78) 8.0254
(33) 0.5637 (−1) 0.1005 (−10) 0.4105 (−89) 8.0407
(34) 0.1791 (1) 0.2000 (1) 0.2000 (1) —
(35) 0.4703 (1) 0.4584 (27) 0.9577 (26) —
(36) 0.2210 (−1) 0.5727 (−13) 0.1870 (−105) 7.9823

Table 4: Numerical results with 𝑓
4
.

Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| ACOC

(30) 0.2119 (−4) 0.1307 (−36) 0.2749 (−294) 8.0000
(31) 0.1731 (−4) 0.2597 (−37) 0.6668 (−300) 8.0000
(32) 0.2333 (−4) 0.2789 (−36) 0.1166 (−291) 8.0000
(33) 0.1973 (−4) 0.7310 (−37) 0.2599 (−296) 8.0000
(34) 0.1769 (−4) 0.2191 (−37) 0.1212 (−300) 8.0000
(35) 0.1767 (−4) 0.2177 (−37) 0.1153 (−300) 8.0000
(36) 0.2074 (−4) 0.2571 (−36) 0.1433 (−291) 8.0000

these methods work properly and confirm their theoretical
aspects.
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