Crystal structure of the coordination polymer $\left[\mathrm{Fe}^{\mathrm{III}}{ }_{2}\left\{\mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right\}_{3}\right]$

Maksym Seredyuk, ${ }^{\text {a* }}$ M. Carmen Muñoz, ${ }^{\text {b }}$ José A. Real ${ }^{\text {c }}$ and Turganbay S. Iskenderov ${ }^{\text {a }}$

[^0]Received 19 November 2014; accepted 28 November 2014

Edited by M. Weil, Vienna University of Technology, Austria

The title complex, poly[dodeca- μ-cyanido-diiron(III)triplatinum(II) $],\left[\mathrm{Fe}^{\mathrm{III}}{ }_{2}\left\{\mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right\}_{3}\right]$, has a three-dimensional polymeric structure. It is built-up from square-planar $\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right]^{2-}$ anions (point group symmetry $2 / m$) bridging cationic $\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right]_{\infty}^{+}$layers extending in the $b c$ plane. The $\mathrm{Fe}^{\mathrm{II}}$ atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the $\mathrm{Pt}^{\mathrm{II}}$ atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring $\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right]_{\infty}^{+}$layers corresponds to the length $a / 2=$ 8.0070 (3) \AA, and the separation between two neighbouring $\mathrm{Pt}^{\mathrm{II}}$ atoms of the bridging $\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right]^{2-}$ groups corresponds to the length of the c axis [7.5720 (2) \AA]. The structure is porous with accessible voids of $390 \AA^{3}$ per unit cell.

Keywords: crystal structure; polycyanidometalate; spin-crossover.

CCDC reference: 1036669

1. Related literature

Coordination compounds have interesting properties in catalysis (Kanderal et al., 2005; Penkova et al., 2009) or as photoactive materials (Yan et al., 2012). Magnetically active polycyanidometallate network complexes of $\mathrm{Fe}^{\mathrm{II}}\left[\mathrm{Fe}^{\mathrm{II}} L_{2^{-}}\right.$ $\left.\left\{M^{\mathrm{I}}(\mathrm{CN})_{2}\right\}_{2}\right]$ or $\left[\mathrm{Fe}^{\mathrm{II}} L_{2}\left\{M^{\mathrm{II}}(\mathrm{CN})_{4}\right\}\right]\left(M^{\mathrm{I}}=\mathrm{Ag}, \mathrm{Au} ; M^{\mathrm{II}}=\mathrm{Ni}, \mathrm{Pd}\right.$, $\mathrm{Pt} ; L=N$-heterocyclic ligand) have been studied because they show versatile polymeric structures (Piñeiro-López et al. 2014;

Seredyuk et al., 2007, 2009), spin transition (Muñoz \& Real, 2013) and functionalities such as sorption-desorption of organic and inorganic molecules (Muñoz \& Real, 2013) or reversible chemosorption (Arcís-Castillo et al., 2013).

2. Experimental

2.1. Crystal data

$\left[\mathrm{Fe}_{2} \mathrm{Pt}_{3}(\mathrm{CN})_{12}\right]$
$M_{r}=1009.18$
Monoclinic, C2/m
$a=16.0140$ (5) Å
$b=13.8250(5) \AA$
$c=7.5720$ (2) \AA
$\beta=102.946$ (2) ${ }^{\circ}$

2.2. Data collection

Oxford Diffraction Gemini S Ultra diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.611, T_{\text {max }}=0.772$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=0.97$
1909 reflections

$$
\begin{aligned}
& V=1633.78(9) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=13.68 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.04 \times 0.04 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

3358 measured reflections
1909 independent reflections 1568 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

This study was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013-46275-P) and Generalitat Valenciana (PROMETEO/2012/049). MS thanks the EU for a Marie Curie fellowship (IIF-253254).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5094).

References

Arcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., Ruiz, E., Ohba, M., Matsuda, R., Kitagawa, S. \& Real, J. A. (2013). Inorg. Chem. 52, 12777-12783.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. \& Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.
Muñoz, M. C. \& Real, J. A. (2013). Spin-Crossover Materials, edited by M. A. Halcrow, pp. 121-146: London: John Wiley \& Sons Ltd.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

data reports

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. \& Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.
Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. \& Real, J. A. (2014). Chem. Commun. pp. 1833-1835.

Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Verdaguer, M., Villain, F. \& Gütlich, P. (2009). Inorg. Chem. 48, 6130-6141.
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. \& Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yan, B., Li, Y.-Y. \& Qiao, X.-F. (2012). Microporous Mesoporous Mater. 158, 129-136.

supporting information

Acta Cryst. (2015). E71, i1-i2 [doi:10.1107/S2056989014026188]

Crystal structure of the coordination polymer $\left[\mathrm{Fe}^{\mathrm{II}}{ }_{2}\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{CN})_{4}\right\}_{3}\right]$

Maksym Seredyuk, M. Carmen Muñoz, José A. Real and Turganbay S. Iskenderov

S1. Synthesis and crystallization

Single crystals of the title compound were grown using a slow diffusion technique. During the reaction time a side product had formed serendipitously due to oxidation of the initial $\mathrm{Fe}^{\mathrm{II}}$ salt. One side of a multi-arm shaped vessel contained $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg}, 51 \mathrm{mmol})$ dissolved in water $(0.5 \mathrm{~mL})$. The second arm contained $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(22 \mathrm{mg}, 51 \mathrm{mmol})$ in water $(0.5 \mathrm{ml})$. The vessel was filled with a water/methanol (1:1) solution. Square shaped orange crystals suitable for single crystal X-ray analysis were obtained after several weeks.

S2. Refinement

The highest and lowest remaining electron density are located 3.66 and $0.83 \AA$, respectively, from the Pt atom. The highest electron densities are connected with positions in the voids of the framework. However, modelling of the electron density e.g. under consideration of disordered (partially occupied) water molecules lead to implausible models.

Figure 1

Displacement ellipsoid plot (30% probability level) of the principal building units of the structure of the title compound. [Symmetry codes: (i) $1 / 2+x, 1 / 2+y, 1+z$; (ii) $0.5-x, 1 / 2+y, 1-z$, (iii) $x, 1-y, 1+z$.]

Figure 2
A fragment of three-dimentional coordination polymer of the title compound in a perspective view along c. Polyhedra correspond to FeN_{6} and PtC_{4} chromophores.

Poly[dodeca- μ-cyanido-diiron(III)triplatinum(II)]

Crystal data

$\left[\mathrm{Fe}_{2} \mathrm{Pt}_{3}(\mathrm{CN})_{12}\right]$
$M_{r}=1009.18$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=16.0140$ (5) \AA
$b=13.8250(5) \AA$
$c=7.5720(2) \AA$
$\beta=102.946(2)^{\circ}$
$V=1633.78(9) \AA^{3}$
$Z=2$

Data collection

Oxford Diffraction Gemini S Ultra
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.611, T_{\text {max }}=0.772$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$F(000)=884$
$D_{\mathrm{x}}=2.051 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 200 reflections
$\theta=12-20^{\circ}$
$\mu=13.68 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prismatic, orange
$0.04 \times 0.04 \times 0.02 \mathrm{~mm}$

3358 measured reflections
1909 independent reflections
1568 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-17 \rightarrow 16$
$l=-9 \rightarrow 9$
$S=0.97$
1909 reflections
71 parameters
0 restraints

0 constraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0615 P)^{2}+15.455 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.25 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-1.33 \text { e } \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Pt1	0.0000	0.0000	0.0000	$0.02376(17)$
Pt2	$0.19452(3)$	0.5000	$0.47749(5)$	$0.02524(16)$
Fe	0.2500	0.2500	0.0000	$0.0215(3)$
N1	$0.1335(5)$	$0.1622(5)$	$-0.0284(10)$	$0.0368(17)$
N2	$0.2081(6)$	$0.3449(5)$	$0.1843(10)$	$0.0400(18)$
N3	$0.3039(6)$	$0.1577(5)$	$0.2273(10)$	$0.0385(17)$
C1	$0.0859(5)$	$0.1023(6)$	$-0.0190(12)$	$0.0310(17)$
C2	$0.2001(6)$	$0.4002(6)$	$0.2915(11)$	$0.0335(19)$
C3	$0.3072(6)$	$0.1012(6)$	$0.3373(10)$	$0.0312(18)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt 1	$0.0208(3)$	$0.0167(3)$	$0.0343(3)$	0.000	$0.0073(2)$	0.000
Pt 2	$0.0389(3)$	$0.0182(2)$	$0.0195(2)$	0.000	$0.00824(18)$	0.000
Fe	$0.0294(8)$	$0.0165(7)$	$0.0199(7)$	$-0.0040(6)$	$0.0083(6)$	$-0.0004(5)$
N 1	$0.041(4)$	$0.026(4)$	$0.042(4)$	$-0.009(3)$	$0.008(4)$	$-0.002(3)$
N 2	$0.056(5)$	$0.030(4)$	$0.038(4)$	$-0.004(4)$	$0.017(4)$	$-0.006(3)$
N 3	$0.053(5)$	$0.026(4)$	$0.037(4)$	$0.002(4)$	$0.011(4)$	$0.006(3)$
C 1	$0.028(4)$	$0.023(4)$	$0.043(4)$	$0.000(3)$	$0.011(4)$	$0.004(3)$
C 2	$0.050(6)$	$0.026(4)$	$0.026(4)$	$0.003(4)$	$0.012(4)$	$-0.001(3)$
C 3	$0.045(5)$	$0.021(4)$	$0.025(4)$	$-0.001(4)$	$0.004(4)$	$0.000(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pt} 1-\mathrm{C} 1$	$2.000(8)$	$\mathrm{Fe}-\mathrm{N} 2$	$2.130(7)$
$\mathrm{Pt} 1-\mathrm{Cl}^{\mathrm{i}}$	$2.000(8)$	$\mathrm{Fe}-\mathrm{N} 3$ vii	$2.161(7)$
$\mathrm{Pt} 1-\mathrm{C}^{\text {ii }}$	$2.000(8)$	$\mathrm{Fe}-\mathrm{N} 3$	$2.161(7)$
$\mathrm{Pt} 1-\mathrm{Cl}^{\text {iii }}$	$2.000(8)$	$\mathrm{Fe}-\mathrm{N} 1^{\text {vii }}$	$2.195(7)$
$\mathrm{Pt} 2-\mathrm{C}^{\text {iv }}$	$1.986(8)$	$\mathrm{Fe}-\mathrm{N} 1$	$2.195(7)$
$\mathrm{Pt} 2-\mathrm{C} 3^{v}$	$1.986(8)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.139(10)$

$\mathrm{Pt} 2-\mathrm{C} 2$	1.988 (8)
$\mathrm{Pt} 2-\mathrm{C} 2{ }^{\text {vi }}$	1.988 (8)
$\mathrm{Fe}-\mathrm{N} 2{ }^{\text {vii }}$	2.130 (7)
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{Cl}^{\mathrm{i}}$	90.0 (5)
C1-Pt1-C1 ${ }^{\text {ii }}$	180.0 (6)
$\mathrm{C} 1-\ldots \mathrm{Pt1}-\mathrm{Cl}^{\text {ii }}$	90.0 (5)
$\mathrm{C} 1-\mathrm{Pt} 1-\mathrm{C} 1^{\text {iii }}$	90.0 (5)
$\mathrm{C} 1{ }^{\text {i }}$-Pt1- $\mathrm{Cl}^{\text {iii }}$	180.0 (6)
$\mathrm{Cl}^{\text {iii- }} \mathrm{Pt1}-\mathrm{C} 1^{\text {iii }}$	90.0 (5)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{Pt} 2-\mathrm{C} 3{ }^{\text {v }}$	89.6 (4)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{Pt} 2-\mathrm{C} 2$	178.1 (4)
C3 - ${ }^{\text {- }}$ 2- $2-\mathrm{C} 2$	91.2 (3)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{Pt} 2-\mathrm{C} 2{ }^{\text {vi }}$	91.2 (3)
$\mathrm{C} 3{ }^{v}-\mathrm{Pt} 2-\mathrm{C} 2{ }^{\text {vi }}$	178.1 (4)
$\mathrm{C} 2-\mathrm{Pt} 2-\mathrm{C} 2{ }^{\text {vi }}$	87.9 (5)
$\mathrm{N} 2{ }^{\text {vii- }} \mathrm{Fe}-\mathrm{N} 2$	180.0 (5)
$\mathrm{N} 2^{\text {vii }} \mathrm{FFe}-\mathrm{N} 3{ }^{\text {vii }}$	88.3 (3)
$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 3{ }^{\text {vii }}$	91.7 (3)
$\mathrm{N} 2{ }^{\text {vii }}$-Fe-N3	91.7 (3)
$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 3$	88.3 (3)

N2-C2	1.143 (11)
N3-C3	1.134 (10)
$\mathrm{C} 3-\mathrm{Pt} 2^{\text {v }}$	1.986 (8)
N3 ${ }^{\text {vii }}$-Fe-N3	180.0 (3)
$\mathrm{N} 2^{\text {vii }}-\mathrm{Fe}-\mathrm{N} 1{ }^{\text {vii }}$	91.1 (3)
$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 1^{\text {vii }}$	88.9 (3)
$\mathrm{N} 3{ }^{\text {vii }}$-Fe-N1 ${ }^{\text {vii }}$	86.0 (3)
$\mathrm{N} 3-\mathrm{Fe}-\mathrm{N} 1{ }^{\text {vii }}$	94.0 (3)
$\mathrm{N} 2{ }^{\text {vii }}$-Fe- N 1	88.9 (3)
$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 1$	91.1 (3)
$\mathrm{N} 3{ }^{\text {vii }}$-Fe- N 1	94.0 (3)
N3-Fe-N1	86.0 (3)
$\mathrm{N} 1{ }^{\text {vii }}-\mathrm{Fe}-\mathrm{N} 1$	180.0 (2)
C1-N1-Fe	164.2 (7)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Fe}$	168.3 (8)
C3-N3-Fe	159.4 (8)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Pt} 1$	178.3 (7)
N2-C2-Pt2	175.9 (9)
N3-C3-Pt2 ${ }^{\text {v }}$	176.4 (8)

Symmetry codes: (i) $x,-y, z$; (ii) $-x,-y,-z$; (iii) $-x, y,-z$; (iv) $-x+1 / 2, y+1 / 2,-z+1$; (v) $-x+1 / 2,-y+1 / 2,-z+1$; (vi) $x,-y+1, z$; (vii) $-x+1 / 2,-y+1 / 2,-z$.

[^0]: ${ }^{\text {a }}$ National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, ${ }^{\mathbf{b}}$ Departamento de Fisica Aplicada, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain, and ${ }^{\text {T}}$ Institut de Ciencia Molecular (ICMol), Departament de Quimica Inorganica, Universitat de Valencia, C/Catedratico José Beltran Martinez, 2, 46980, Paterna, Valencia, Spain. *Correspondence e-mail: mcs@univ.kiev.ua

